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Abstrakt 
Disertační práce pojednává o polarizačních nedokonalostech optických 

komponentů, které jsou využívány ke kontrole a k transformaci polarizačního stavu 
světla. Získané teoretické výsledky jsou pak využity ve vybraných aplikacích, jež ke 
své činnosti využívají právě polarizace světla. Konkrétně se jedná o zařízení měřící 
vibrace oscilujících objektů, dále o interferenční měření dvojlomu v transparentních 
materiálech a konečně, o vybraná témata z optické kvantové komunikace. 

 

Klíčová slova 
Polarizace světla, polarizační stav, interferometrie, polarimetrie, stav fotonu. 

 



 

Abstract 
The emphasis of the dissertation is put on the investigating of polarization 

imperfections of optical components which are used to control and transform 
polarization of light. The theoretical results of this investigation are then applied to 
different applications which exploit light polarization, namely to the arrangements for 
high-resolution measurement of vibrating targets, to interferometric measurements for 
the determination of stress-induced birefringence in transparent materials and to the 
selected topics in quantum optical communication. 
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List of abbreviations 
AGC Automatic Gain Control 

DOP Degree of Polarization 

DUT Device Under Test 

FA Fast Axis 

FPGA Field Programmable Gate Array 
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List of symbols 
â  Anihilation operator 

E  Electric field vector 

xE~  A complex signal representing a component of the electrical field 

e  Extinction coefficient of the linear polarizer 

I  Irradiance (also called intensity) 

J  Jones matrix 

k  Wave vector 

M  Meuller matrix 

P  Degree of polarization 

SP  Degree of pseudo-polarization 

P̂  Projection operator, matrix representation is used without operator symbol 

IQ  ,  Quadrature signals 

(r), (i) Real and imaginary part 

S  Stokes vector 

vuzyx  , , , ,  Cartesian coordinates 

∆  Used to denote difference between quantities (phase, distance) 

ϕ  Mainly used for a phase shift between reference and signal beam 

ω  Angular frequency of the field 

λ  Wavelength of the light 

ρρ  ,ˆ  Density operator which define state of polarization and its matrix 
representation 

 Mean value notation, when the averaging is performed over time or spatial 
dimension is emphasized in the text 

Tr  Matrix trace (the sum of the diagonal elements) 
HX  Hermite conjugation 

X~  Used to emphasize the complex quantity 

x  Dirac vector notation 

yx  Dot product
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1 Introduction 

1.1 Motivation 

This doctoral thesis is partly connected with a research project which was running 
at Pforzheim University and which was funded with financial support from an industrial 
partner and from the German Ministry of Research and Development in its FH3 
program. The goal of this project was development of a laser vibrometer with a novel 
architecture: on the optical side based upon a polarization optical concept, and on the 
electronic side exploiting high-speed programmable electronic circuits (FPGAs). 
Background and main subject of the project is an optical laser vibrometer operating in a 
homodyne scheme. Homodyne schemes generally apply architectural concepts which 
generate a pair of quadrature signals which are then processed electronically to produce 
an output signal proportional to the speed of the measured target. Main emphasis of the 
dissertation is put on the optical part of the instrument, where a suitable architecture has 
to be defined, the properties of the required components have to be evaluated, and 
potential error sources resulting from non-ideal characteristics have to be determined. 

1.2 Current state of the art 

Interferometers are usually considered as belonging to either of two main 
families: heterodyne and homodyne interferometers [1].  

Heterodyne interferometers have an architecture where the optical frequencies of 
the beams in measuring and reference path, respectively, are different. Superposition of 
these beams on the detector then produces, in the electrical domain, an IF signal with a 
frequency identical to the difference of both optical beams (so-called bias frequency). A 
movement of the target in the direction of the measuring beam then produces, through 
the well-known Doppler effect, a frequency shift on the measuring beam proportional to 
the target velocity. In case of a vibrating target the interferometer detector gives an 
output that is frequency modulated. The bias frequency mentioned above must be 
introduced in order to distinguish the sign of the target velocity. The preferred methods 
are to use an electro-optic device in one interferometer arm or to use a stabilized He-Ne 
laser whose output beam consists of two frequency components. The heterodyne 
technique is the most common approach in today’s interferometric laser vibrometry. 

Contrary to the competing heterodyne approach with its light beams with differing 
optical frequencies, the homodyne scheme for generating signals from an 
interferometric arrangement is based on the use of two optical beams of the same 
frequency. Homodyne interferometers detect the phase difference between the 
measuring and the reference arms. The sign of the target velocity is, in this case, 
determined from two signals in quadrature generated at the output of the vibrometer. 
Known methods for producing the required 90°-phase shift include the use of a beam 
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splitter with an absorbing metal coating [2] and the use of specific polarization-optical 
arrangements [3]. The second method, although it requires additional components to be 
included in the setup, is preferred to the first one. It is because of the non-stable 
behavior of the metal coating in the beam splitter and due to the loss of the energy 
which was reported in the literuture. 

As mentioned, the heterodyne concept requires expensive optical components 
such as a Bragg cell or a Zeeman Laser. On the side of the electrical signal extraction, it 
requires RF circuitry which is also quite costly and does not offer a high flexibility. In 
contrast to this, the homodyne-based concept that we chose avoids all these drawbacks 
both on the optical and on the electrical part of the architecture. Thus, our strategy 
reduces the optical complexity for the prize of higher signal processing demand. Based 
on the fact that today highly integrated signal processing hardware such as DSPs 
(Digital Signal Processors) or FPGAs solutions are much less expensive than in the 
past, this so called HWSHD (Homodyne With Synthetic Heterodyne Demodulation) 
strategy is therefore competitive to the classical usage of expensive optical components 
in the heterodyne concept. 

In our investigations of this concept we have to focus on two main fields of 
problems. The first occurs with any interferometrical setup using light from a 
noncooperative target rather than a mirror. The light returning from the investigated 
target will be far from an ideal laser field with plane wave fronts. Instead, it will possess 
a statistical nature generally known as speckles [4]. As was stated previously, in the 
class of interferometers treated in the work, the required directional information is 
acquired by appropriately making use of the polarization properties of the light beams 
brought to interference. Consequently, we must pay special attention to the polarization 
of the backscattered field, and we cannot limit ourselves to the case of fully polarized 
speckle patterns (so called fully developed speckles [4]). 

The influence of a fully developed speckle field on an interferometric signal was 
investigated in [5], [6] and [7]. There was assumed, however, that the phase of the 
backscattered field is correlated only within a single speckle and that the correlation 
between speckles is zero. In the mentioned publications was clearly demonstrating the 
spoiling effect of speckles on the visibility, i.e. on the quality of the interferometric 
signal. 

The second difficulty arises due to polarization imperfection of components used 
in the optical part of interferometer. The errors due to these imperfections are called 
periodic deviations and were thoroughly studied in the dissertation [8] for the case of a 
heterodyne vibrometer. In [8] one can find analytical formulations of these errors. These 
errors, however, are in general difficult to analyze not for their mathematical 
complexity but for the finding the origin of these errors. Periodic deviations result not 
only from the inherent imperfections of components (non-ideal retardations, non-ideal 
transmission and reflection coefficients...) but also from the rotational misalignment of 
these components which is in practice hard to measure and control. Apart from the 
polarization-optical components, it must be kept in mind that the adjustment of all 
components (mostly mirrors and beamsplitters) has, above all, to satisfy several goals at 
once:  measuring and reference beam must be brought to a good lateral and angular 
overlap in order to guarantee a good interference contrast (and to optimally exploit the 
available light power). 
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Periodic deviations also play an important role in another kind of measuring 
instrument, the so-called polarimeter. This instrument belongs to one of the oldest forms 
of interferometric measurements for determination of stress-induced birefringence in 
transparent materials. The recent technologies offer to produce micropolarizers arrays 
[9] and [10]. This brings a possibility of using these arrays in imaging [11] and in 
polarimetry. However, as can be found in [9], [10] these arrays have quite low 
extinction coefficients (between 100 and 300). Another difficulty is the exact 
orientation of transmission axes of micropolarizers. These two problems result again in 
the degradation of measuring performance due to the polarization imperfections of used 
micropolarizer arrays, and commonly used phase shift algorithms [12], [13] need to be 
refined. 

The final part of the dissertation refers to polarization imperfections in optical 
communication with the emphasis on quantum optical communication. The part briefly 
summarizes published results in that field. Although this topic seems to be different 
from the main contents of the dissertation, some common features can be found. 
Namely, the function of the detector in communication schema is to determine which 
state was transmitted with the minimal probability of misdiagnosis. When polarization 
properties of light are used for encoding the information then a Wollaston prism fills the 
function of the detector and its imperfections increase the probability of misdiagnose. 
Some achieved results will be compared with papers from other authors [14], [15]. 
However a certain contradiction was found in [15]. 

1.3 Dissertation’s goals 

The main part of the dissertation is thus devoted to the problems that arise by 
using real optical components which possess non-ideal polarization properties. These 
problems are then in the dissertation analyzed, solved and obtained results are then 
applied to practical applications. 

Let us summarize the main goals of the dissertation: 

• Describe the influence of partly polarized speckle field on the interferometric 
signals. 

• Find a solution how to reduce speckle effects resulting from the usage of non-
cooperative target as the surface which is investigated by a vibrometer. 

• Find the influence of periodic deviations on interferometric signals generated by 
vibrometer working in the homodyne concept and find the way how this spoiling 
influence can be eliminated. 

• Study the influence of analyzer with low extinction coefficient and angular 
misalignment on measured retardation in polarimetry. Find an algorithm how the 
effect of low extinction coefficient can be eliminated from the current retardation 
determination procedure. 

• Investigation of the influence of polarization imperfections on probability of 
misdiagnose in quantum optical communication.
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2 Influence of non-cooperative target 

In this section, we discuss the problems occurring in the interferometrical 
vibrometers (arrangements for high-resolution measurement of vibrating targets as in 
Fig. 2-1) which arise when the interferometer uses a conventional, so-called “non-
cooperative” target rather than a mirror. In such arrangements, it is not generally 
possible to fix a mirror on the surface under consideration and as a result, the light 
returning from the target will be far from an ideal laser field with plane wave fronts. 
Instead, it will possess a statistical nature generally known as speckles [4]. This speckle 
field is then superimposed with the reference beam in order to generate an 
interferometric signal from which the information about the movement of the target can 
be derived by suitable electronic processing. Of course, the main aim in interferometry 
is then to achieve as high a visibility on the detector as possible. To achieve this, one 
needs to describe the speckle field in good detail. 

In the class of interferometers treated here, the required directional information is 
acquired by making appropriate use of the polarization properties of the light beams 
brought to interference. Consequently, we must pay special attention to the polarization 
of the backscattered field, and we cannot limit ourselves to the case of fully polarized 
speckle patterns (so called fully developed speckles [4]) whose influence on an 
interferometric signal was investigated in [5], [6] and [7]. It was assumed, however, that 
the phase of the backscattered field is correlated only within a single speckle and that 
the correlation between speckles is zero. However, when suitable imaging optics is 
used, then the phase of the speckle field is fully deterministic as will be shown later in 
this chapter. 

The main original author work in this chapter is the influence of a partly polarized 
speckle field on an interferometrical signal and a speckle reduction due to the using of a 
suitable imaging optics. The results were published in [16] and [17]. Next an idea of 
using a zoom objective in vibrometry is realized in the chapter. This enhances 
performances of the vibrometer, namely detected signal is independent of the target 
distance. 

 
Fig. 2.1. Standard architecture of an interferometrical laser vibrometer. 
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2.1 Fully developed integrated speckle pattern 

In [5] and [6], a probability density function for the field resulting from the 
superimposition of a fully polarized speckle field with a uniform reference field was 
derived. The results are interpreted using quantities 0I  and MI  which represent the 
background intensity and the modulation intensity respectively. Thence, the resultant 
intensity at a given point i  at the detector can be written as 

 ( ) ( )ϕϕϕϕ ∆+++=∆++= iiSiRiSiRiiMii IIIIIII cos2cos ,,,,,,0  (2.1) 

with RI  denoting reference beam intensity, SI  speckle intensity, ϕ∆  phase difference 
due to the different lengths of the interferometers arms and ϕ  phase difference due to 
the scattering from the target. The previous quantities (except ϕ∆ ) are related to a 
specific point at the detector and we used discrete labeling rather than continuous for 
the reasons that will be clarified shortly. The reference field is deterministic while the 
speckle field obeys first order statistics as derived in [4]. 

However, a detector has a finite size and the detected intensity DI  is an 
integration of (2.1) over the detector area S  and divided by the detector area to receive 
intensity. This is illustrated again in [4] for a single speckle field. The author there 
divides a detector into n  elementary areas in which the intensity iI  is assumed to be 
constant (so called box-car approximation). In fact, it is a numerical integration 

 ∑
=

⎟
⎠
⎞

⎜
⎝
⎛=

n

i
iD n

SI
S

I
1

1 . (2.2) 

The crucial point here is how to choose the number n . The first thought, to choose n  as 
high as possible in order to achieve best precision of the integration, would extend the 
calculation time unreasonably high (because of the correlation of elementary surface 
areas). In fact, it is quite obvious that it is sufficient to select n  identical to the number 
of speckles within the detector area. Then, the fields in these areas will be statistically 
independent of each other and (2.2) can be treated as a sum of n  independent random 
variables which is simple to perform. 

With this choice of n , the resultant statistics of the detected intensity is expressed 
quite simply, because in n , the correlation function of the speckle field is hidden. So 
the speckle field is represented by n  only and a first order statistics. 

For the details of the derivation of the MI  statistics, we refer to [5], [6] and for the 
experimental verification, to [7]. We only emphasize that the authors assumed the 
reference field to be uniform, the speckle field to be fully polarized, the phase of the 
speckle field to possess uniform distribution and finally the detector response to be 
constant over its area. 

In the following sections, we will drop the assumption of a fully developed 
speckle pattern (so as to be able to also treat targets partly depolarizing the incident 
light) and the assumption of the uniform distribution of the phase (speckle reducing). 
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2.2 Depolarization by the target – deterministic approach 

The influence of a partly polarized speckle field on an interferometric signal was 
investigated by the author in [16]. However, there was no distinction between the 
depolarization and so called pseudo-depolarization. The former deals with the familiar 
time average definition of the degree of polarization. The latter is related to the 
ensemble average over the surfaces with different microstructure. In this case, the light 
is in fact fully polarized at a particular point in the observer plane but the state of the 
polarization changes with the position. When this kind of light impinges on the 
polarizing sensitive detector of sufficiently large area, then this light appears partly 
polarized even though that there are no changes in time. This situation can be explained 
that the speckle field is viewed a superposition of large number of spatial modes. Each 
mode has a well defined polarization. The strength of the mode amplitudes varies with 
the position and hence the state of polarization is different from point to point. Note that 
the same effect can be observed in multimode fibers [18]. 

First, we will assume that a target partly depolarized the incident light which can 
be caused by some intrinsic time activity. Next, we assume that the light from the target 
is collimated by a lens (see Fig. 2.1) to form a narrow beam. Then, complex signals xE~ , 

yE~  represent the x  and y -component of the electric field at a particular point in space. 
The spatial dependence of the components will be suppressed for now which 
corresponds to the situation of a point-like detector. Then, we can use the familiar 
definition of Stokes time-averaged, non-normalized parameters 
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 (2.3) 

Note, that the symbol X~  indicates a complex quantity and angle-bracket notation is 
used for statistical or longer-time averages (this employ ergodic assumption) with an 
appropriate lower index. The degree of polarization is defined as 
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The light from the target is then put in the form 
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 (2.5) 

where we introduced the index “T” to distinguish the target field from the reference 
field which will be later superimposed. The assumption that the scattered light is 
partially linearly polarized constitutes no loss of generality, because one can always 
choose a coordinate system, in which the described light has the form of (2.5). 
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The next step is to express (2.5) for both electric field components 

 
( ) ( ) ( ) ( )
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 (2.6) 

where the complex analytic signal xTA~  is in the general form 

 ( ) ( ) ( )titatA xTxT ω−= exp~~  (2.7) 

where ( )taxT
~  is slowly varying complex envelope and ω  is the mean angular 

frequency. Similarly yTA~ . Finally xRA~  has the form 

 ( ) ( )titAxR ω−= exp~  (2.8) 

and represents analytic signals describing the laser source characterized by the mean 
angular frequencyω . Here we suppressed the time dependent complex envelope in 
accord with the assumption of the monochromaticity of the source (the laser source is 
assumed). 

In physical words equation (2.6) means that the scattered light is divided into one 
part which is unpolarized and independent of the illuminating beam and another which 
is polarized and maintains the history of the illuminating source beam. The analytical 
signals satisfy (these demands follow from eqns (2.3) and (2.5)) 
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where in the last line of (2.9) was assumed that ( )taxT
~  is zero mean complex-valued 

random process. 

At the detector the field from the target (2.6) is superimposed with the reference 
beam. We will assume that the field of the reference beam is linearly polarized in x -
direction. Thus, it can be described by a single component 

 ( ) ( )tAStE xRRxR
~~

0=  (2.10) 

where the Stokes parameter RS0  characterizing the intensity of the reference beam was 
introduced. The components of the superimposed field are then 
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where the phase difference ϕ∆  between the two interferometer arms was introduced. 
Using (2.3) and (2.9) we obtain the resulting Stokes vector (constituted of an 
unpolarized and a polarized part) as 

 ( ) ( )[ ] .
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0
1
1

 cos2
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0
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1 00000
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Next, we note that when the rough surface is illuminated by quasimonochromatic 
light (the coherence length of the light is greater than the maximum path length 
difference encountered in the experiment), the scattered light cannot be modeled as an 
ergodic random processes and one has to distinguish the ensemble and time average. 

If the surface has no in-plane velocity component and if there is no time activity 
of the material, then the modulus of the complex coherence factor is unity (for the time-
averaged definition of the spatial coherence). Hence, the rough surface does not reduce 
the coherence of the light, since the spatial structure of the surface (modeled as a 
stationary random process) does not change with time. However, a certain class of the 
targets can introduce pseudo-depolarization. When this kind of light is brought to 
interference with the reference beam, the interference signal is reduced due to the finite 
area of the detector. 

Let us introduce the Stokes ensemble-averaged parameters defined in similar way 
to (2.3) where the time averages are replaced by ensemble averages (also known as 
statistical averages). These parameters are related to the degree of pseudo-polarization 

SP . The overlap between the reference beam polarization and the scattered beam with 
degree of pseudo-polarization SP  is ( ) 21 SP+ . In this case, the Stokes vector of the 
detected interferometric signal is given by 

 ( ) ( ) .

0
0
1
1

cos1
2

2 00

S

S
TR PSS
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⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

∆+= ϕS  (2.13) 

Hence, even when the backscatter light is completely pseudo-depolarized, the 
interference fringes are visible. This is illustrated in Fig. 2.2 where normalized 
interferometric signal is depicted as a function of degree of polarization and pseudo-
polarization, respectively. 

We defer discussion of experimental verification of formula (2.13) to the next 
section which deals with measurements of the degree of pseudo-polarization which are 
needed in order to verify equation (2.13). For current discussion we only note that the 
degrees of pseudo-polarization of all used targets are 0.21, 0.6, 0.8, 0.93 and 0.97 and 
were obtained by experimental means discussed further. 
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Fig. 2.2. Normalized interferometric signal as a function of degree of polarization (dashed line) and 
pseudo-polarization (solid line).  

2.3 Measurements of the target’s pseudo-depolarization 

We start with presenting Meuller matrices of steel surface and white paper which 
we measured using a typical ellipsometer arrangement (see [37] for instance). White 
paper, in the first approximation, behaves like Lambertian surface, which scatters light 
uniformly into all hemispheric directions and pseudo-depolarize in random fashion. On 
the other hand, steel surface strongly reflects light specularly and does not depolarize 
incident light. The normalized matrices for normal incidence and for wavelength 633 
nm are 

.

19.008.003.002.0
12.018.005.000.0
02.007.019.012.0
00.006.010.000.1

   

94.008.002.001.0
12.099.002.000.0
01.002.000.101.0
00.001.000.000.1
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(2.14) 

The matrices fulfill so called over-polarization and over-gained conditions [38] 
which are usually tested for measured Meuller matrices and are necessary conditions for 
a physically realizable medium. Meuller matrix also fulfilled condition [38] to have an 
equivalent Jones matrix. 

A good understanding of Meuller matrixes was presented in [37]. The matrix in 
the principal frame (s and p-polarization are the principal axes in the case of a surface) 
can be express as 
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where xP  turns unpolarized light into linearly polarized light, circular polarization zP  
turns linear polarized light into circularly polarized light, the part which preserves the 
polarization of incident light is yP  and vD  is the cross-polarized scattering which is a 
part of depolarization. The degree of polarization (pseudo-polarization) of a response is 
then [37] 

 222
zyx PPPP ++=  (2.16) 

and depolarization is defined in [37] as 

 vu DDPD +=−≡1  (2.17) 

where uD  is defined as the self-correlation of the incoherent copolarized response 
relative to all polarizations. In our case we approximately have P = 0.97 for steel 
surface and P = 0.23 for white paper, respectively. 

In Fig. 2.3, a measurement setup suitable for investigation of polarization 
behavior of targets in interferometry is shown. This setup allow a sharp focusing of the 
illuminated beam on the target which can lead to eliminating of higher spatial modes in 
the backscattered field as will be shown later. The next figure 2.4 can be interpreted as 
the measurement of linear degree of pseudo-polarization. Moreover, from Meuller 
matrices one can see negligible amount of optical activity. Hence, linear degree of 
pseudo-polarization corresponds in good approximation to the overall degree of pseudo-
polarization. Measurement data points were obtained for two different surfaces. Smooth 
ceramic surface (black curve), which strongly scatters light in specular direction and 
white paper (blue) which in the first approximation behaves like Lambertian scatterer. 
Ceramic surface has scattering properties similar to the steel surface only with lower 
reflectance which is close to the reflectance of the paper. 

The red curve corresponds also to the white paper, but in this case, the illuminated 
beam was focused sharply in order to reduce higher spatial modes, i.e. speckles. The 
speckle reduction is treated in detail in section 2.6. 

 

Fig. 2.3. Measurement setup for determination of linear pseudo-depolarization of tested surfaces. 
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Figure 2.4. Detected scattered power from a target illuminated by a linearly polarized beam (633 nm, 1.2 
mW) as a function of analyzer angle. 

However, the speckle reduction was not perfect because we used slightly different 
imaging optics from that which was used in the final arrangement of the vibrometer. 
The optics used in this case were anti-reflection coated but the optics did not enable 
focusing sharp enough to eliminate all higher modes. When we used the same imaging 
optics like in the final arrangement of the vibrometer, then the reflected light from 
microscope objective exceeded the light of interest, the one scattered from target. This 
was not a problem in the vibrometer because reflected light from lenses was eliminated 
by polarization means. The irradiance pattern of the target field formed at the detector 
looked as it is depicted in the second-last figure in Fig. 2.15 on page 24 rather than in 
the last one. 

The important thing is that degree of pseudo-polarization increase with decreasing 
number of spatial modes in the backscattered field. This confirms the analogy with 
optical fiber. Indeed, when an illuminating beam is focused sharply on the target, the 
fundamental mode dominates in the backscattered field and has properties of the 
original beam (polarization, direction of the propagation only opposite in sign) which 
caused the disturbance. It is remarkable to note that the diameter of the illuminated 
target area in the speckle reduction mode is comparable with the diameter of the core of 
single-mode fiber.  As was stated before, a more detailed analysis of the problem is 
deferred to section 2.6. 

The final note belongs to power consideration. For the ceramic surface and white 
paper in speckle reduction mode, the detected area was same. For the case of white 
paper in the speckle mode, the area of detector was enlarged approximately 10 times, 
hence the irradiance of speckle field is reduced by factor 10. This is in good agreement 
with results shown in section 2.6, namely see Fig. 2.10 and 2.12 where irradiance 
patterns of backscattered field on the detector were obtained using computer simulation. 

In order to verify formula (2.13) measurements with different targets were 
performed. We used a simple interferometer arrangement shown in Fig. 2.1. No 
polarization components were involved in the setup as was the case of final vibrometer 
arrangement shown further. The first two measurements points in Fig. 2.2 correspond to 
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a steel metal surface and ceramic surface used as the targets. The three remaining 
measurements were performed using a white paper as the target. For each case a 
different imaging optics was used in order to control field backscattered from the paper. 
Note that the measurement point which corresponds to the case 8.0=SP  was in fact 
obtained by inverse using of (2.13) hence degree of pseudo-polarization was deduced 
from the measured interferometric signal. This was done because that in the direct 
measurement procedure shown in Fig. 2.3 used for the measurement of DOP different 
imaging optics was used as was mentioned before. The reflected light from microscope 
objective in the interferometrical arrangement in Fig. 2.1 (in this setup objective was 
not anti-reflection coated) caused no problems because it was not modulated (only 
target was oscillating). 

From measurement results depicted in Fig. 2.2, it is then reasonable state that the 
field at a single point on the detector can be indeed described by (scattered field was 
collimated with lens so longitudinal component of the field vector is zero) 
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where polarization of modes can differ (this depends on the material properties of the 
scattering media). Through substitution of (2.18) into (2.3) and using definition of 
degree of polarization (2.4), one obtains 1=P . However, the mode amplitudes in (2.18) 
are functions of spatial coordinates which define detector area which is of finite size. 

Now, we calculate degree of pseudo-polarization which means using ensemble 
averages in the definition of Stokes parameters. We will assume that polarimetric 
parameter χ  is uniformly distributed for the case of complete pseudo-depolarization. 
Stokes parameter 1S  is then 
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Similar results hold for the remaining Stokes parameters. Hence degree of pseudo-
polarization 0=SP . 

2.4 First order statistics of partly pseudo-polarized speckles  

Several numerical models for describing speckles are reported in literature [19]. 
According to these, the speckle effect is a function of the roughness of the scattering 
surface, the correlation function of the surface and the size of the illuminated area. 
Quite often, a different kind of target requires using a different model in order to 
properly describe the speckle pattern produced by the target. 

The most basic models view the rough surface of the target as amplitude or phase 
screens which perturbed the illuminating beam. Optical imperfection due to these 
perturbing screens can be modeled either as a collection of point scatterers or by a 
perturbation transmission function which is expressed as a superposition of sinusoidal 
spatial frequency components in the transverse direction. 
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In Fig. 2.5, two speckle patterns (cycle averaged optical intensity) with degree of 
pseudo-polarization 0.2 and 1 are shown. The patterns were produced by a computer 
simulation but experimentally, the former can be observed by illuminating a matt white 
surface (white paper for instance) and the latter by illuminating a metal surface. 

In the simulation, the rough surface was assumed to be consisting of a large 
number of independently radiating scatterers. Then, the field of each scatterer was 
decomposed into unpolarized and polarized part.  Namely, the former part is expressed 
as 
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where iE  is amplitude of the illuminating laser beam at the point where the scatter is 
considered, ( )u

xi
ϕ  and ( )u

yi
ϕ are phases for both components which possess uniform 

distribution over i  and are non-correlated. Polarized part was simulated as 
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where ( )u
xi

ϕ  is uniformly distributed. The choice of the circularly polarized light is just a 
basis choice. The total field in the plane of the target is then given by a superposition of 
(2.20) and (2.21). The Huygens principle for each component was then used to obtain a 
field in the observer plane. 

The probability density functions of intensity (expressed in the number of counts 
where a given parameter lies in a particular interval) are shown in Fig. 2.6. Also shown 
is the analytically obtained density function of the intensity based upon intensity basis 
rather than amplitude basis [4]. 

 

Fig. 2.5. Speckle patterns produced by scattering a laser light by a white paper (PS = 0.2) and a metal 
surface (PS = 1). 
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Fig. 2.6. The first order statistics of the intensity (irradiance). 

The remaining Stokes parameters are depicted in Fig. 2.7. The polarization of the 
illuminating beam was assumed to be circular. The 1S  statistics is symmetric with its 
mean value being approximately 0. For the metal, it has the shape of a Dirac function 
(note the fine scale of the x-axis). The departure from the “true” Dirac function is due to 
the simulation imperfection. The 2S  statistics has the same form as 1S  statistics and are 
not shown here. Finally, 3S  statistics for the metal scatterer are the same as for 1S  
statistics due to the fact that the metal does not depolarize the light. The 3S  statistics in 
the case of the paper is asymmetric with a mean value of 0.2. 

This result can be compared with [20]. There, an analytic expression is given for 
the statistics of Stokes parameters of a chaotic source. This source is simulated by a 
large sum of random phasors, thus in the exactly same way (but in a time domain) as a 
speckle field considered there. 

 

Fig. 2.7. The first order statistics of Stokes parameters. 
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2.5 Integrated speckle pattern  

In section 2.1, we had shown how the statistics of the modulation power can be 
obtained under the assumptions of a detector with finite aperture and with a fully 
developed (polarized) speckle field. The latter assumption will be dropped now. 
Through the section, it will be assumed that the scattered light is partly pseudo-
depolarized and all averages appearing in the section denote ensemble averaging. Then 
the interferometric signal (modulation intensity), at a given point at the detector, is 
given by (2.13). 

First we combine the method illustrated in section 2.1 (the MI  statistics for a fully 
developed speckle pattern) and the results from section 2.2. Namely, we assume that the 
intensity at a given elementary area i  at the detector is described by the formula 

 
( )

( ) ( ).cos
2

12    

cos

,,,,

,,0

ϕϕ

ϕϕ

∆+
+

++=

=∆++=

i
S

iSiRiSiR

iiMii

PIIII

III
 (2.22) 

To keep the information concerning the phase of the field, the convention to work 
with the complex representation of the modulated intensity is adopted. The real and 
imaginary part of modulation intensity are then expressed as 
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The aim is to establish the density probability function of the complex modulation 
intensity. 

The reference beam is assumed deterministic and uniform over the detector area. 
Hence, all of the randomness in (2.23) is due to the speckle field formed by the target. 

The first order statistics of the partly pseudo-polarized speckle field was presented 
in section 2.4. The first order statistic of the intensity was obtained by considering that 
the resultant speckle pattern can be decomposed into two independent fully developed 
speckle patterns. These patterns possess same statistic, namely negative exponential 
probability density function, but differ in the their mean values which are given by 
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where we used angle bracket to denote ensemble averaging and the lower index will be 
suppressed in the rest of the section. The probability density function of the resultant 
speckle intensity iSI ,  is then given by convolution of both negative exponential 
probability functions which yields to 
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The statistic of the complex modulated intensity iMI ,
~  is obtained by using rules of 

transformations of random variables 

 

( ) ( )

( ) ( )
i

S
iSR

i
iM

i
S

iSR
r

iM

PIII

PIII

ϕ

ϕ

sin
2

12

cos
2

12

,,

,,

+
=

+
=

 (2.26) 

where we suppressed index i  at reference intensity (assumed constant over the detector) 
and constant phase difference ϕ∆  which has no effect on the resulting statistics. To 
complete the task we recall that the probability density function of the phase is assumed 
to be uniform and the phase is assumed to be independent of intensity. The probability 
density function of the complex modulated intensity iMI ,

~  is then given by 
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Finally, to obtain statistics for the resulting modulated intensity MI~  (see left parts of 
equations (2.23)), one needs to perform convolution of n  independent random variables 
characterized by (2.27). 

Figure 2.8 shows probability distribution functions for modulated power for two 
different values of n . In this case, we preferred distribution functions to density 
functions because of the possibility of directly reading the mean values and we also 
interpreted the results in terms of modulated power rather than intensity. Figures were 
obtained by numerical calculation and the reference power is taken to be 370 µW and 
the speckle power 10 µW. 

 



 Polarization properties of light in interferometry 
 

 - 17 - 

 

Fig. 2.8. Distribution functions of modulated power for three values of n. Target pseudo-depolarized 
incident beam. 

The curves in Fig. 2.8 for fully developed speckles can be compared with [7] 
where experimental verification was shown. Next, from Fig. 2.8 one can see that the 
mean value of the interferometric signal (also denoted like modulated power) behaves 
like in Fig. 2.2. 

2.6 Speckle reduction  

In the previous section, it was shown that collecting more power scattered by the 
target reduces the contrast of the interference signal (modulated power). This spoiling 
effect is due to the stochastic nature of the speckles. However, with suitable imaging 
optics and for small oscillation amplitude of the target (order of 50 microns), the 
stochastic nature of the speckles can be reduced even for rough surfaces. 

The optimization of interferometers which operate with large displacement 
amplitude of the target (in the speckle mode) can be found in [21]. Here we are 
considering small vibration amplitudes (a situation which is normally encountered in 
laser vibrometry; large amplitude vibrations would often be measured with some 
alternative, less costly instrumentation). 

 

Fig. 2.9. Imaging optics of an interferometer. 

 



 Polarization properties of light in interferometry 
 

 - 18 - 

Let us assume imaging optics which is depicted in Fig. 2.9. The optics serve both 
for focusing the laser beam on the target and for collecting the backscattered light. The 
position of the second lens can be positioned by parameter ∆ . The amount of the light 
that reaches the detector placed in the image plane is determined by the aperture stop 
which coincides with the exit pupil. 

It is assumed that waves emitted by different surface elements are focused to form 
a parallel light beam and that the observed light has a fixed polarization, so that the 
electric field can be added algebraically. The total electric field produced by a large 
number of radiating surface elements on the detector is then [22] 

 ( ) ( ) ( ) ( ) ξξξ d~,~exp~
102 ∫−= UuKikLuU  (2.28) 

where the kernel is defined as 
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where the total optical path length through the paraxial ABCD system for a ray traveling 
exactly on the axis is denoted by 0L . Equation (2.28) represents Huygens’ integral in 
one transverse dimension for wave propagating all the way through the paraxial system, 
from plane 1z  to plane 2z . These planes correspond to the surface plane and the 
imaging plane where the detector is placed (cf. Fig. 2.9). Note that eq. (2.28) tacitly 
assumes that the system between the two planes does not contain elements which 
dramatically reduce the amount of transmitted light (aperture stops). If this is the case, 
the system is then viewed as a collection of subsystems where the previous statement is 
satisfied and (2.28) is used for input-output relation of each subsystem. 

From the geometrical optics point of view, the general relation between the object 
and image plane of an optical system in the ray-transfer matrix formalism and paraxial 
approximation is given by 
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where M  stands for a magnification of the system and C  for a general system can not 
be closely determined at this point. In the case of Fig. 2.9 matrix T  has the form 
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where 1M  ( 2M ) stands for the magnification of the first (second) lens. The relation 
between the absolute values of object and image field is given by 
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where u , v  are coordinates in the image plane. When the target distance from the 
object plane (denoted as z  in Fig. 2.9) is much larger than the illuminated area of the 
target, the phase of the backscattered field is deterministic. In fact, the phase can be 
approximated by a radius of curvature which is identical with the value of z . 
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Fig. 2.10. The upper part: irradiance and phase of the backscattered field in the object plane (z = -3.6 
mm, radius of illuminated area w = 25 µm), the lower part: irradiance and phase of the backscattered field 

in the image plane. 

The series of figures in Fig. 2.10 show the field in the object plane and in the 
image plane. Field in the object plane was obtained by using the Huygens’ integral for 
free space propagation and the field in the image plane was calculated by using (2.28). 
Next, it was assumed that the target does not absorb the incident light which was 
produced by He-Ne laser with the output power 1mW. The laser light was collimated on 
the target to produce the spot of radius 25 microns. 

One can see from Fig. 2.10 that the phase of the field can be approximated with 
the radius of curvature equal to z . The extent of the phase distortion apparent in Fig. 
2.10 is given by the ratio wz . In other words, to remove stochastic nature of the phase, 
one needs to use the imaging optics with the object plane situated sufficiently far from 
the target surface in comparison with the width of the spot of the illuminating beam. 

Next, a photograph of the speckle field in the detector plane is shown in Fig. 2.11 
on the left. The interferometric setting was the same as used in the computer simulation 
with results shown in Fig. 2.10. 

Finally, the interference fringes, obtained by superimposing the speckle field with 
the uniform reference beam, are shown in Fig. 2.11 on the right. This photograph 
confirms that the phase of the speckle field formed by rough surface can be described in 
the deterministic way when certain conditions are met. In the photograph, there is also 
apparent the phase distortion shown at the bottom of Fig. 2.10. 
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Fig. 2.11. A photograph of backscattered field in the detector plane (left) and interference fringes formed 
after superimposing with the reference beam (right). 

One can see that the irradiance pattern in Fig. 2.10 is highly overmoded and that 
the phase of the speckles is deterministic. The speckle effect in the irradiance pattern 
can be reduced considerably so that only the fundamental mode will survive. This can 
be achieved by focusing sharply the laser beam on the target. The field for this case is 
shown in Fig. 2.12. 

The difference in the irradiance patterns between Fig. 2.12 and 2.10 can be 
explained in the following way: The rough scattering surface in the case of Fig. 2.10 
was simulated as a large number of radiating elements. The intensity pattern over the 
surface was assumed to be Gaussian, and the phases of the radiating elements were 
assumed uniformly distributed and uncorrelated. Hence, the statistical correlation 
function of the electric disturbance (ensemble-averaged quantity over surfaces with 
different microstructure) on the surface was approximated by Dirac’s delta function. 
The amplitude speckle reduction (Fig. 2.12) is due to the fact, that the size of the 
illuminated area is comparable with the wavelength of the illuminating source. Then, 
the statistical correlation function in the surface plane is partly correlated and the width 
of the correlation function is approximately one wavelength. This fact results in killing 
of higher spatial modes. Based on our simulation results, we estimated the limit value of 
the beam waist on the target where higher-mode suppression can be expected as 25 
microns. 

  
Fig. 2.12. Irradiance and phase of the backscattered field in the image plane (radius of illuminated 

area w = 5µm). 
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The advantage of an interferometer working with this kind of backscattered field 
is that this field is similar to the reference Gaussian beam. Hence, it is simple to achieve 
the amplitude and phase matching on the detector to produce a maximum 
interferometric signal. 

Before concluding the section with experimental results, we present a 
mathematical approach how the speckle reduction can be understood. First we will limit 
ourselves to paraxial approximation of the backscattered field. The field on the target 
can be then decomposed into Hermite-Gaussian modes which form a basis set [22]. 
These normalized eigenfunctions for one transversal component at 0=z  where the 
target is placed are given by (the considered geometry is shown in Fig. 2.9) 
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where nH  are Hermite polynomials and complex quantity q~  is defined as 
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where R  stands for the radius of curvature. The second transversal component is 
expressed analogously. The backscattered field can be then written as 
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where the weighting coefficients are given by 
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This decomposition is suitable because the intensity pattern of any given mode 
changes size but not shape as it propagates forward in z – direction. Thus there is no 
mode coupling as the field propagates to the detector through free space and lenses (this 
is mathematically given by the fact that (2.33) are eigenfunctions of Fourier transform). 

The target is illuminated by Gaussian beam so one can write for backscattered 
normalized field at the target plane 
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where ( )ηξφ ,  may be interpreted as a sample function of a random process which 
characterizes the phase distribution. As we are interested in relative power contained in 
the modes, the normalization in (2.37) has no spoiling effects in the following 
calculation. 

The rough surface is described by a height function ( )ηξ ,h  that represents the 
departure of the surface from its mean position. Height functions for metal and white 
paper are depicted in Fig. 2.13. The height function is assumed to be a random process 
with autocorrelation function ( )ηξ ,hΓ . 
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Fig. 2.13. Height functions and two dimensional profile of rough steel surface (left) and white paper 

(right). Figures were obtained at University in Darmstadt. 

We will assume the simplest relation between the height function and the phase of 
the backscattered field 

 ( ) ( ) ( )ηξβ
λ
πηξφ ,cos12, h+=  (2.38) 

where β  is angle between the normal of the surface and the wave vector of the 
illuminating beam. Note that (2.38) does not include shadowing, multiple scattering and 
the field penetration into the material which should not be neglected especially in the 
white paper case. However, our used imaging optics eliminated speckles for all targets 
we tested without significant modification. So we will use (2.38) as an approximation 
which is sufficient for our purpose, namely for finding relation between the spot size of 
the illuminating beam and weighting coefficients nmc~ . 

When assumptions are made that the surface height fluctuations are a Gaussian 
random process and the normalized correlation function of the surface heights is also of 
Gaussian form, then the relation between the coherence factor of the reflected field φΓ  
and rough surface can be expressed as [4] 
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where ( ) ( )222 ηξ ∆+∆=r , next 2
φσ  represents the variance of the phase and can be 

obtained using (2.38) and cr  specifies the width of the surface Gaussian correlation 
function. 

Inserting of (2.37) into (2.36) one obtains 
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In order to evaluate integral (2.40), we need to know the parameters w  and R  
which characterize Hermite-Gaussian modes. We will choose them to be equal to the 
parameters of the illuminating beam which is focused on the target, hence 0ww =  and 

∞→R . This choice assures that when coherence factor 1=Γφ , only fundamental mode 

will be present in the backscattered field, i.e. 1~
00 =c . Next, the variance and correlation 

of the height function needed to evaluate φΓ  depends on the spot size of the illuminated 
beam as can be seen from Fig. 2.13. Finally, as was stated previously, when computer 
simulation was presented, the coherence factor has always a width of at least one 
wavelength. 

The integral (2.40) was solved numerically and the results for fundamental mode 
are shown in Fig. 2.14.  The modulus of coefficient 00

~c  is depicted as a function of 
beam waist of the illuminating beam. The coherence factor was chosen to correspond to 
the metal surface, white paper and in the last case, coherence was approximately one 
wavelength. 

 
Fig. 2.14. The modulus of the fundamental Gaussian-Hermite mode of the backscattered field for 

different surfaces as a function of beam focusing. 

The results described in the section were verified experimentally with the results 
shown in Fig. 2.15. The two figures on top right are background radiation and reference 
beam pattern on the detector respectively. The remaining pictures illustrate the varying 
signal irradiances obtained by step-wise reduction of the size of the illuminated area on 
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the target; the third figure depicts the case of 100 microns and the last figure (bottom 
right) depicts the case of 25 microns. 

 

  

  

  

 
Fig. 2.15. Experimental verification of spatial modes reduction. Two figures on the top correspond to 

background radiation and reference beam, respectively. Remaining figures represent irradiance 
patterns of the field backscattered from the target for different sizes of illuminated target area 

(from 2w = 100 µm to 2w = 25 µm). The dimensions of single area are 3 and 4 mm. 

Finally, it needs to be emphasized that the speckle reduction due to the sharply 
focusing should not be understand as the specular component of the backscattered field. 
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In the previous calculation and computer simulation the direction of propagation of the 
reflected field was opposite to the direction of the illuminated beam and not the one 
which corresponds to the specular reflection. Moreover, the target in the experiments 
was placed at the beam focus without careful rotational alignment. With the rotation of 
the target, the backscattered field at the detector held its position. 

2.7 Zoom lens in vibrometry 

Zoom lenses are standard components in modern photographic cameras and they 
are also being used in a broad range of technical applications [23]. However, to our 
knowledge, commercially produced vibrometers operate with optical systems having a 
fixed focal length. We demonstrate here, for the first time, that the use of a Zoom 
system in the imaging part of the vibrometer provides a considerable improvement in 
signal quality. 

Figure 2.16 visualizes the imaging situation in a laser vibrometer. We first 
consider the upper drawing (a). The light beam coming from the laser, at first slightly 
divergent, is made convergent by a  first lens - the field lens - and forms a focal point at 
some distance behind the field lens. Behind this focal point, the beam is divergent again 
and is then focused once again by a second lens, the front lens of the system. In a laser 
vibrometer, this second focal point must be made to coincide with the position of the 
target by suitably positioning the front lens. The conditions that the arrangement has to 
satisfy can be expressed by the imaging equation 
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from which we get for the magnification factor M1 of the front lens (relating the beam 
width on the target to the one at the intermediate focal point) 
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Now we consider the second drawing (b). There, the target is assumed to be 
placed at some larger distance, b1’. If we wanted to have the beam focus again on the 
target, we would then find that for increasing b1 to b1’ we would have to reduce g1 to a 
value g1’, i.e. we would have to move the lens to the left. This would, however, increase 
|M1| as can be seen from (2.42), and is a consequence of our assumption that we had 
kept the focal length f1 unchanged. Thus, we have to pay with a larger beam width for 
the correct placement of the beam waist in the target plane. 

Obviously, we have to adapt not only g but also f to the new situation. Anyway, 
we have to satisfy a condition analogous to (2.41) which – see drawing (c) - now has to 
be written  as 
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Fig. 2.16. Imaging optics in a laser vibrometer a) fixed target position, b) target position is enhanced and 
in order to have the beam focus on the target, front lens is slightly shifted towards the field 
lens, c) adaptation of focal length of the front lens and its position in order to preserve the 

beam with on the target. 

Again, we can calculate the magnification factor which becomes 
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As we want to have the same beam width on the target both in case (a) and in case (c) 
we must require that |M1| = |M2|. Substituting from (2.42) and (2.44) we find that we 
must be able to adapt the focal length of the front lens to the varying target distance; the 
condition that must be met then can be written as 
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This means that if we want our vibrometer to cover a certain distance range 
without changing the spot size on the target, we have to select a variable-focus lens with 
an appropriate zoom range. 

In Fig. 2.17 electrical output signals from the vibrometer (before digital 
processing) are shown for different targets placed at distances 0.5 m and 1m, 
respectively. The beam width was kept constant at 25 microns for both situations. By 
comparing the corresponding pictures for the same targets, one can see that the signal 
strength is not affected by the distance of the target and that the amplitude of the signal 
depends on the properties of the target. 
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Fig. 2.17. Left part:  output signals of the vibrometer analog front end (i.e., before AGC and ADC) for 
different types of targets (metal, ceramic, white paper) placed at a distance 0.5 m from the 
front lens, right part: output signals of the vibrometer for different types of targets (metal, 

ceramic, white paper) placed at a distance 1 m from the front lens. 

The analog front end of the vibrometer was followed by an AGC stage keeping 
the signal amplitude constant even for varying optical power. This was to make sure 
that the dynamic range of the analog-to-digital converter preceding the digital 
processing part of the instrument was covered to its best. In other words, the amplitude 
of the electrical signal was independent of the amount of optical intensity which was 
brought to interference with the reference beam. The different “effective” intensity of 
the backscattered field from the target is due to the different reflectivities of the targets, 
focusing and pseudo-depolarization. These effects result in different signal-to-noise 
ratios (see Fig. 2.18). 
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Fig. 2.18. Output signal of the vibrometer after automatic gain control for different types of targets 
(reflection film, metal, ceramic, white paper) placed at the distance 1 m from the front lens. 

We conclude the section with a photograph of the experimental arrangement of 
the vibrometer shown in Fig. 2.19. 

 

Fig. 2.19. Experimental arrangement of the vibrometer. 
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2.8 Multimode interference 

Even though this topic is not the main object of the chapter, we wish to illustrate a 
problem here which occurs in interferometry when a multimode He-Ne laser is used. 
Namely a periodic extinction and revival of the interferometric signal with the change 
of the target distance. 

The width of the Gaussian lineshape is approximately 1.5 GHz and the 
longitudinal mode spacing for a typical resonator is around 730 MHz. Hence, in normal 
working conditions (no external mode selection), two modes are present in the output 
beam. 

The beam from the laser is divided into two parts, reference part and a beam 
which hit a target. In the case of one mode case, the time-averaged power on the 
detector can be expressed in usual way 

 ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
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⎞

⎜
⎝
⎛+= zgPPD 2 2cos1 1
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where z is distance to the target (a half of the path difference between reference and 
measurement arm), 0P  is output power of the laser, λ  is the mean wavelength and 

( )( )τ1g  is the degree of first-order temporal coherence. In (2.46), it was assumed that 
reference and measurement beam share the same amount of the laser output power and 
are equally polarized. The time difference between reference and signal arm τ  in most 
interferometry applications is much shorter than the coherence time of He-Ne laser. The 
modulus of degree of first-order temporal coherence can be then set to unity 
(monochromatic assumption) and the contrast on the detector is independent of the 
target distance. 

 Now n modes are assumed to be within the atomic lineshape of the gain 
medium. The electrical field emerging from laser at some reference point can be written 
as 
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the polarimetric parameters nχ  and nϕ  for each frequency component are fixed in time, 
the angular frequencies and complex amplitudes of modes are nω  and nE0 , respectively. 
In the He-Ne laser, the gas envelope windows are tilted at Brewster’s angle which 
causes the output radiation modes to be identically linearly polarized. The resulting 
SOP (state of polarization) is thus the same like in single-mode case and the reference 
and signal beam again possess same polarization. However, the detected time-averaged 
power in the case of two modes with equal amplitudes is expressed as (we assume only 
two modes to be within the atomic lineshape because of the parameters stated at the 
beginning of the chapter) 
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where two modes have angular frequencies 
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Equation (2.48) can be also written in similar form to (2.46) 
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where the modulus of degree of first-order temporal coherence is now 
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In Fig. 2.20 on the left, there is shown a theoretical detected irradiance (related to 
its maximum value) as a function of the target distance. The target distance is here to be 
understood as a half of the path difference between the both interferometric arms.  The 
blue color in the figure indicates fast irradiance oscillations (the second cosine term in 
(2.48)). 

The situation with the unequal gain for both modes is depicted in Fig. 2.20 on the 
right. Namely, the power gain ratio of both modes is 0.762 (this particular value was 
found to fit with the measurement data for the used laser, see later). 

The solid curve in Fig. 2.21 is a theoretical curve which corresponds to the 
unequal gain for the both modes (with gain ratio 0.762) and takes into account the beam 
spreading of the target beam (it is not an interpolation of the measurement data). The 
marks in the Fig. 2.21 then indicate measurement data. The AC component of the 
electrical signal after the photodetection for a given target distance was measured. This 
AC component for a suitable detector is linearly proportional to the visibility. Finally, 
we need to state that a mirror was used as the target in order to achieve the same power 
of reference and signal beam and, more importantly, to neglect effects which arise using 
non-conventional target. 

 

Fig. 2.20. Relative irradiance as a function of the target distance in the case of the equal atomic gain for 
both modes (left) and with an unequal gain (right). 
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Fig. 2.21. Visibility dependence on the target distance in the case of unequal gain for Gaussian beams 
(solid curve) and measurement data marks. 

2.9 Chapter summary 

Let us summarize main results which were reported in the chapter. We derived 
probability density function of the complex modulated intensity for different degrees of 
pseudo-polarization and showed how the modulated intensity is reduced due to the 
speckle field. Next, we illustrated that this reduction of interferometric signal is not 
necessary. Using a suitable imaging optics the speckle field can be removed. The 
speckle reduction can be done both in phase and in amplitude. In fact when the 
illuminating beam is focused sharply on the target the fundamental mode in the 
backscattered field dominates. This single mode regime was compared to an optical 
fiber where also higher modes are eliminated with reducing the core diameter. Finally a 
zoom objective was used in order to achieve independency of the target distance.  

 



 Polarization properties of light in interferometry 
 

 - 32 - 

3 Periodic deviations in vibrometry 

In this chapter, it is studied how polarization imperfections of components 
influence the output signals of an interferometer. 

The mostly used interferometers produce interference signals which are in 
quadrature at the output of an interferometer. These quadrature signals are generated 
using polarization method. The main tasks, which are solved by the optical systems, are 
that the phase shift between these signals is 2π , the amplitudes of both signals are 
equal and as high as possible for increasing the accuracy of a measurement. Such 
optimization for a specific optical system can be found in [3]. 

The errors due to the polarization imperfection of real optical components are 
called periodic deviations and were studied in detail in [8] for the case of a heterodyne 
vibrometer. In [8], one can find the analytical formulations of these errors. These errors, 
however in general, are difficult to analyze not for the mathematical complexity but for 
finding the origin of these errors. Periodic deviations result not only from the inherent 
imperfections of components (non-ideal retardations, non-ideal transmission and 
reflection coefficients...) but also from the rotational misalignment of these components 
which in practice is hard to measure and control. 

The most important result in the chapter is that it is shown that in the first 
approximation, periodic deviations can be corrected in the optical part of the 
vibrometer. That is, output signals are in real quadrature. 

To accomplish the modeling of periodic deviation, one first needs to measure the 
polarization properties of optical components. We used a method based on detecting 
null intensity which we published in [24]. The basic idea of this method (and many 
other methods) can be found in [25]. However, in [25], we presented a variation of this 
method with a geometrical representation and discussed its accuracy in detail. 

3.1 Measuring properties of retarders and beamsplitters 

In this section, we developed methods to determine the polarization properties of 
basic optical devices like retarders, beamsplitters and mirrors using a Soleil-Babinet 
compensator. 

The most used technique for the polarization treatment is Jones and Meuller 
calculus. The Jones matrix formalism is a direct consequence of linearity of Maxwell’s 
equations. On the other hand, Meuller calculus is based on the assumption of a linear 
relation between the input Stokes vector and the output Stokes vector emerging from 
the optical system. Strictly speaking, Jones calculus is more fundamental then Meuller 
calculus. 

However, another so called spin-vector calculus is used in following sections. 
Spin-vector formalism (widely used in quantum mechanics) is based on the same 
assumption like the Meuller calculus, thus vectors which represents a SOP (state of 
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polarization) form a linear vector space. Spin-vector formalism is used because it attains 
a high degree of abstraction and in connection with Dirac notation; it can be neatly 
described (bra and ket vectors). Finally spin-vector formalism makes a connection 
between Jones and Meuller calculus. 

Retarders 

A general lossless, linear retarder introduces a phase difference between two field 
components oriented along two mutually orthogonal directions in a cartesian coordinate 
system. If we assume, in the simplest case, that these so-called eigenstates coincide with 
the coordinate axes ( x , y ), we can describe its operation on the field by a unitary Jones 
matrix in the form 

 ( ) 0     ,
exp0
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≥⎥

⎦

⎤
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⎡
−

= ϕ
ϕiRJ  (3.1) 

where ϕ  is the phase difference experienced by two eigenstates of a retarder. An 
angular misalignment between the eigenstates of the retarder (meaning that fast/slow 
axes of the retarder are not parallel to y / x  axes or, the device frame differs from the 
lab frame) and the axes of the coordinate system can be accounted for by applying a 
rotation matrix to matrix (3.1). 

We want to determine the retardation angle ϕ  introduced by a nominally-
isotropic retarder between its slow and fast axis. A suitable measuring set-up is shown 
in Fig. 3.1. The laser, in connection with the polarizer, provides linearly polarized light 
oriented parallel to the y -axis, denoted |y〉. A Wollaston prism and two photodetectors 
determine the state of polarization (SOP) in a |x〉-|y〉 basis (in the spin-vector formalism 
is described by first Pauli matrix). The fast axes (FA) of the retarder-under-test and a 
Soleil-Babinet compensator (SBC) are set so as to hold an angle of 4π  with the y -
direction. 

A common means for visualizing the situation is the Poincaré sphere (Fig. 3.2). 
There, the x  axis of the lab frame is represented by an axis extending from the center of 
the sphere to the left-forefront, |x〉. The y axis |y〉, in lab frame rotated by 2π with 
respect to the x  axis, also lies in the equatorial plane, however rotated with respect to 
|x〉 by twice its rotation angle in lab frame, π . As with the |x〉-|y〉 axes, any two 
orthogonal SOPs are represented by a line connecting two points diametrically opposed 
on the sphere. 

 

Fig. 3.1. Setup for measuring a phase difference experienced by two eigenstates of a retarder. 
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Fig. 3.2. Illustration on the Poincare sphere. 

A linear retarder is also represented on the sphere by a line lying in the equatorial 
plane, again with its angular orientation with respect to the Poincaré |x〉-|y〉 axis given by 
twice its rotation angle in lab space. Thus, an orientation in lab space of 4π  leads to 
an orientation on the Poincaré sphere of 2π  (horizontal blue line in Fig. 3.2). The 
retarder’s effect on the SOP is then to rotate the initial state |y〉 about this eigenstate axis 
by an angle ϕ . A device having 2πϕ =  is called a quarter-wave-plate (QWP). For an 
adjustable phase shift of the SBC, the output SOP can be made to move along the blue 
circle on the Poincaré sphere. A half-circle (as drawn), corresponding to a QWP’s 

2πϕ =  and shift by the SBC, changes the input SOP from |y〉 to |x〉, a SOP which can 
easily be detected by the Wollaston prism. Our measurement task of determining ϕ  of 
the retarder is now quite easy to solve: We set the combined retardation angle of 
retarder and SBC to π  by making sure the output state is |x〉 and read the SBC setting. 
The difference to π  gives the retardation provided by the retarder-under-test. 

We finally state that if the retarder is not lossless, (3.1) needs to be corrected. This 
is dealt with later in the section. 

Error estimation 

The used light source (He-Ne laser with a linear polarizer) produced well pure 
state. Also, the extinction coefficient of the Wollaston prism is very high (105).  Thus, 
the error sources of the method described are the phase resolution of the SBC and the 
setting error of its orientation angle 4π . The resolution of the compensator directly 
affects the measured phase ϕ  and was approximately 0.2° for our setup. 

A setting error of the orientation angle 4π  (cf. red curves in Fig. 3.2) has the 
effect that the rotation on the Poincaré sphere occurs around an axis rotated by an error 
angle ε  with respect to the desired ideal rotation axis. (In fact ε  is the difference 
between the orientation angles of the retarder and the compensator.) 

 

Fig. 3.3. Determination of α  based on the detected intensities in each eigenstate of the Wollaston 
prism. 
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For the estimation of the error angle ε  we use a following concept. Let us assume 
the situation plotted in Fig. 3.3. 

Our aim is to determine the orientation angle α  from the output intensities. In our 
measurement the output voltages for each detector were 30 mV and 30 mV. Suppose 
that detectors together detected approximately 100 photons. That means 50 photons 
were in state |y〉 and 50 photons in state |x〉. We first need to know the probabilities that 
the upper or the lower detector will be excited when only one photon is at the input. The 
final state |ψ〉 in Fig. 3.3 generally has an elliptic polarization and satisfies 

 ( ) ( ) yQWP ααψ RJR −=  (3.2) 

where the rotation matrix ( )αR  connecting the lab and the QWP frame, respectively, is 
defined as 
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As said, the matrix QWPJ  is given by (3.1) with 2πϕ = . Of course the actual ϕ  value 
is a little different, but in a first approximation we assume 2πϕ =  (moreover this 
method of determining the error angle ε  can be iterated). Using (3.2) one obtains the 
following probabilities for excitations of the upper and the lower detector 
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We determine the conditional probability that exactly m  photons excite the upper 
and n  the lower detector when the orientation angle of the QWP is between α  and 

αα d+ , and we get (we dropped the normalization) 

 ( ) ( ) ( ) αα dxPyPP nm= . (3.5) 

 

Fig. 3.4. Error angle estimation  for a test with a not suitable (left) and suitable (right) polarization of 
the incident light. 
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Fig. 3.4 depicts four calculated examples. For 10 incident photons in state |y〉 we 
find that 5 photons will be detected by the upper and 5 photons by the lower detector, 
respectively ( 5== nm , dot line). Note that the α  axis scaling is in radians 
( 785.045 == oα  rad). If we assume 100 incident photons in state |y〉 we find that 50 
photons will hit the upper detector and 50 the lower one. This is plotted with a dot-
dashed line. On can see that the peak still is not sufficiently narrow, even for a large 
number of detecting photons, and the error of the setting angle 4π  is too high. 

Note that in all examples in left part of Fig. 3.4 we assumed that the identical 
amount of photons was detected by both detectors. This assumption was done for the 
reason of easier comparison with the next test which follows. 

Much better results are obtained when the light source produces one of the 
eigenstates of the QWP (i.e., |L〉 or |R〉) rather than |y〉. Then one detector gets fully 
excited and the second detects zero intensity. The result for this setting is shown in Fig. 
3.4 on the right, for four different intensities which correspond to the previous example. 
For example when the number of incident photons was 10 the upper detector was 10 
times excited and the lower one was not excited at all. With increasing number of 
incident photons all curves are narrowing as is illustrated by Fig. 3.4. Note that for the 
second case (|L〉 state was produced by the source) probabilities for excitations of the 
upper and the lower detector are 
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The deviation of the curve in Fig. 3.4 can be taken as error ε . The main aim of 
this section was to recommend to use such a preparing state for the setting angle 4π  to 
obtain zero intensity for one detector. Then the error ε  is reduced. 

Beamsplitters 

The measurement task that we are treating next is determination of the 
polarization properties of optical beam splitters (BS). As in the set-up treated 
previously, the optical source consists of a laser and a linear polarizer. It is used to 
generate either vertical polarization, horizontal polarization, or diagonal polarization, 
i.e. three separate measurements will be performed. The measuring arrangement again 
includes the Soleil-Babinet compensator, the Wollaston prism and the photodiode. This 
allows one to determine an arbitrary pure polarization state (an arbitrary Jones vector). 

The action of the compensator is described by 
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 (3.7) 

where α  denotes the phase retardation between fast and slow axis of the compensator, 
and θ  is the angle between the fast axis of the compensator and the y -direction, i.e. the 
angle which connects the lab frame and the device frame. 

First, diagonal polarization is generated (Fig. 3.5). Then the compensator is set to 
produce a final state |y〉 by changing the angle of rotation θ  and the phase shift α . 
Then the state |ψ〉 immediately after passing the beamsplitter satisfies 
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 ( )ψθα ,SBy J= . (3.8) 

From (3.8) one obtains 

 ySB
1−= Jψ . (3.9) 

In a very good approximation one can write 
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=

J
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 (3.10) 

The eigenvalues of the BS determine the loss of the device. Hence the matrix of the BS 
is in the form 

 ( )⎥⎦
⎤

⎢
⎣

⎡
∆

=
δiy

x
BS exp~0

0~
J  (3.11) 

where δ∆  is the phase shift between the eigenstates |x〉 , |y〉. Note that it is not possible 
to illustrate loss on the Poincare sphere, because the particular operation on the initial 
pure state is not unitary. Although all operations in the nature are unitary the description 
of the real components without considering the interaction with an environment is not 
unitary. Hence if we want to look only on the system which consists of an input state 
and an optic component we need to introduce non-unitary operations. This follows from 
amplitude damping and phase damping (loss information without loss of energy). 

For determining δ∆  we, for the moment, suppose a unitary matrix (i.e. a lossless 
BS) 

 ( )⎥⎦
⎤

⎢
⎣

⎡
∆

=
δiBSu exp0

01
J . (3.12) 

We further have 

 DBSu −= Jψ . (3.13) 

Parameter δ∆  is obtained by comparing (3.9) and (3.13). 

Now we determine the magnitude of the eigenvalues which are needed in (3.11). 
First the light source is set to produce |x〉. Next we calculate x~ , the square root of the 

ratio of outgoing and incident intensity. The parameter y~  is obtained in an analogous 
way, by setting the source so as to generate light in state |y〉. 

 

Fig. 3.5. Measuring setup for a beamsplitter. 
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The matrix for the deflected (reflected) beam is obtained in the similar manner as 
for the transmitted beam. The method for measuring the polarization properties can be 
used as well for PBS (polarized beamsplitters) and mirrors. 

Let us summarize the assumptions which have been made in the measurement 
method just described. We supposed that the action of a device on an input state is 
unitary (no losses, no interaction with the environment). We also supposed 
orthogonality of eigenstates of measuring devices and no depolarization effects. And 
finally we assumed that the dynamical laws which govern the working of used devices 
do not influence the polarization properties. Then we took losses and correct previously 
determined unitary matrices. 

3.2 Influence of periodic deviations on quadrature signals 

Introduction 

The errors in the laser interferometers can be divided into three categories: setup 
dependent, instrument dependent and environment dependent. 

The setup dependent errors are found depending on the measurement setup. These 
type of errors are reduced using Mach-Zehnder interferometer instead of Michelson 
interferometer. In the Mach-Zehnder interferometer, beams are widely separated using 
the beam dividers and mirrors as separate elements. This is the basic difference between 
Mach-Zehnder and Michelson interferometer where a plane parallel glass plate is used 
(thus beam dividing and reflecting is at the same point, at one optical element). Hence 
in the Mach-Zehnder setup, one can control beams more to protect the undesirable 
interference with the source beam. The next advantage of Mach-Zehnder interferometer 
over Michelson interferometer is that there are lesser requirements on the angular 
position of the mirrors. So, Mach-Zehnder interferometer possesses better mechanical 
stability. However, both interferometers suffer from deathpath error (the difference in 
the distance in the air between the reference and measurement paths). 

All real components have non-ideal properties. These non-idealities are due to the 
instrumental errors. Using concept of homodyne detection instead of heterodyne has the 
advantage that there is lower requirement for the frequency stability of the laser source. 
On the other hand, in the homodyne detection, there are higher requirements on the 
polarization properties of the used components. The errors which are due to the non-
ideal polarization properties are called periodic deviation and are the result of polarizing 
mixing. Periodic deviations are the most important errors in the category of 
instrumental errors. 

In the category environment errors, the thermal influence of the interferometer is 
found. The main errors are expansion of optics components due to the thermal effects of 
the environment and due to the heat from the laser source. Also refracted index of the 
medium through the beams travels belong to this category too. But when traveling paths 
are relatively short and the whole setup is protected from turbulences of the air, this 
kind of error is not critical. 

In summary, by using Mach-Zehnder setup, the setup dependent errors are 
suppressed. The most important error source is in non-ideal polarization properties of 
components, so-called periodic deviation. 
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The most important result concerning the periodic deviations in [8] is that an 
interference signal can be expressed as 

 ( ) ( )[ ]pdSSR ttIItI φφφω ++∆+= cos2  (3.14) 

where RI  is intensity of the reference beam alone,  SI  is intensity of the signal beam 
alone, φ∆  is the phase difference between both beams, ( )tSφ  is the phase introduced 
due to the moving measured object and finally pdφ  represents a contribution from 
periodic deviations. The intensities appearing in (3.14) should be understood as time-
averaged over the integration time of a used photodetector. The average notation was 
suppressed in this case. In (3.14), it is also tacitly assumed that both beams possess the 
same polarization. If this is not the case, than the amplitude in (3.14) needs to be 
corrected according to section 2.2. 

However, equation (3.14) was derived in [8] for a specific optical setup. In 
general the output electrical quadrature signals (after a photodetection) can differ in 
amplitude and even can contain some DC components. Hence generally these signals 
can be expressed as 
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φφφω

φφφω
 (3.15) 

In (3.15), factors as a responsivity of a photodiode and intensities of reference and 
signal beam was suppressed for a clearer illustration of the influence of periodic 
deviations. We emphasize that factors IpdA , , Ipd ,φ , IpdD ,  (and similarly for the second 
quadrature) are constants and the coupling between amplitudes, phases and DC levels in 
both quadratures depend on the specific optical system. Note that we will use the word 
“quadrature” even in the case when the phase difference IpdQpd ,, φφ −  is not strictly equal 
to 2π . Hence the word “quadrature” generally refers to the output electrical signals. 

The possible reasons for periodic deviations are: elliptically polarized laser beam, 
rotational error in the alignment of a laser and used optics devices (beam splitters, linear 
polarizers, retarders) and different transmissions coefficients in the components for their 
eigenstates. 

In [8] was also shown that 

 
M
N

pd arctan−=φ  (3.16) 

where N , M  are some terms resulting from polarization imperfections of components 
and from non-ideal angular settings of the components. 

Periodic deviation analysis 

In Fig. 3.6, there is shown a schema of the interferometer which we have 
manufactured. It is the schematic schema of the real setup shown in Fig. 2.19. The 
meaning of the kets appearing in the schema is to represent particular polarization 
states. The normalization was dropped in the schema (for the states which passes the 
first two PBS and NBS) and was put back at the end of the description (the final four 
signals are already normalized). All components are assumed to possess no losses and 
ideal polarization properties and also all rotational settings are assumed ideal for the 
moment. 
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Fig. 3.6. Architecture of the interferometrical laser vibrometer. 

The symbol LP  denotes the power of the laser, d  is the component of the target 
displacement which is parallel to the illuminating beam and  k  is the magnitude of the 
wave vector. 

Note that polarization imperfections of the final two mirrors need not to be taken 
into account because the following components, namely photodetectors, are not 
sensitive to the polarization. The angle between the fast axis of both QWP and the 
reference y -axis (the angle between device and lab frame) is 45° and the angle between 
lab frame and frame of HWP is 22.5°. 

The action of the two last (measuring) polarizing beam splitters denoted as PBS 1 
and PBS 2 is interpreted in a slightly different way than the first two PBS. This is done 
because these beam splitters accompanied with photodiodes (the photodiodes are not 
explicitly shown in Fig. 3.6) represent projective measurements (the nomenclature is 
summarized in section 6.2) in their eigenbasis. Hence the measurement results are 
expressed as 
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 (3.17) 

To create two signals in the quadrature, the first two and the last two signals are 
subtracted in the analog part of the vibrometer. The resulting quadrature signals are 
depicted in Fig. 3.7. Three conditions are generally required for the quadrature signals: 
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the phase shift is to be equal to 2π , the amplitudes of AC components of the signals 
are to be equal to each other to provide identical conditions for the electronic signal 
processing and the amplitudes are to be high as possible for increasing the accuracy of a 
measurement. 

Non-idealities of real components can be considered quite straightforwardly. The 
Jones matrix of a component in its eigenbasis has a diagonal form 
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where the magnitudes of eigenvalues aλ , bλ  represent the amplitude attenuation of the 
light as it passes through the device in the corresponding eigenvector and the phase of 
the eigenvalue is the phase delay seen in the corresponding eigenvector. When the lab 
frame differs from the device frame in which possess the Jones matrix form of (3.18), 
then the Jones matrix in the lab frame can be expressed as 

 ( ) ( )θθ λRJRJ −=  (3.19) 

where angle θ  connects the lab frame and the device frame and R  is a two-
dimensional rotation matrix. For retarders, it is convenient to express the phase of the 
eigenvalue as a sum of the ideal phase and the phase error of the retarder and angle θ  
express as a sum of the desired orientation of the fast axis and the rotational 
misalignment. For example, a QWP which fast axis holds with the y -axis angle 4π  is 
described by the following matrix 
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where the rotational misalignment Errθ  and phase error of the QWP errδ was introduced. 

To see how the periodic deviations influence the output quadrature signals, let us 
assume that the used HWP in Fig. 3.6 possess retardation 150° rather than 180° and the 
rest of the components and angular setting of the HWP are treated as ideal. 

 

Fig. 3.7. Output quadrature signals (ideal components). 
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The resultant deformed “quadrature signals” are shown in Fig. 3.8. Note that the 
retardation error of the HWP mainly influences the phase shift between the quadrature 
signals and slightly their amplitudes. On the other hand, the effect of a rotational 
misalignment of the HWP is to change the amplitudes dramatically and the phase shift 
of the quadrature signals slightly. 

When these signals are then used for the determination of the displacement of the 
measured target, an error of the measurement is introduced. This error can be illustrated 
in terms of Fig. 3.9. On the left there is shown measured displacement as a function of 
the actual displacement for two different retardation errors of HWP. The magnitude of 
the measurement error is then shown in the right part of Fig. 3.9. 

 

Fig. 3.8. Deformation of quadrature signals due to the non-ideal retardation of the used HWP. 

 

Fig. 3.9. Periodic deviations due to the retardation error of the used HWP. 

3.3 Reduction of periodic deviation 

In the following discussion, we will investigate polarization imperfection in more 
details. The influence of polarization imperfections on quadrature signals were already 
investigated in the literature [8] by another author, as was already mentioned. We will 
investigate here how periodic deviations can be reduced in the optical part of the 
vibrometer. Because AGC and DC compensation were integrated in our vibrometer, the 
only requirement is that the signals are exactly in quadrature. Note, that we will 
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investigate a slightly different setup from Fig. 3.6. Namely, QWP 2 and the following 
mirror are exchanged (this does not influence results because of the reciprocity of these 
devices) and the second modification is that PBS 2 and preceding mirror are exchanged 
(this requires an additional mirror in order to bring the beams to the detectors). The 
reason for this is that polarization imperfections of the mirrors after measuring PBS 
need not be considered. The original setup in Fig. 3.6 was presented because it 
corresponds to the practical realization (see Fig. 2.19). 

Non-ideal measuring polarizing beam splitters 

We will first consider the effects of ideal measuring PBS which are misalignment. 
The angle between lab frame and PBS frame is iα  where index i  distinguish both beam 
splitters. Let us write the states before NBS in the general form 

 ( ) HbVarHbVas rs i
rr

i
ss

kdi ϕϕ e  and  ee 2 +=+=  (3.21) 

where ( )2cos iia υ= , ( )2sin iib υ=  and angles iυ , iϕ  are spherical coordinates in the 
Poincare sphere (see Fig. 3.10 on the left for clarity). The power impinging on 
photodiodes 1 to 4 is then proportional to (NBS was assumed ideal) 
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(3.22) 

If the PBS are perfectly angular adjusted, then 0=iα . The resulting electrical 
signals 21 PPI −≈  and 34 PPQ −≈  are in the first approximation (the trigonometric 
functions before large brackets in (3.22) were developed in Taylor series in the vicinity 
of the point 0=iα  and the second and higher orders terms were dropped which led to 
neglecting of second terms in (3.22)) in quadrature if condition 2πϕϕ =− rs  is held. In 
general, the quadrature signals differ in amplitudes (one amplitude decreases and the 
second one increases with increasing value of iα ) and possess different dc component. 
However, these spoiling effects can be eliminated by AGC and DC compensation. 

 

Fig. 3.10. Spherical coordinates of a state vector (left) and illustration of the action of a unitary operator 
as a rotation. 
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The more serious effect on the phase difference has non-zero value of extinction 
coefficient of a real PBS. The resulting signals have similar form to (3.22) with only the 
difference being that trigonometric functions are replaced by factors BA  , , defining 
extinction coefficient eBA =  (we assumed same extinction coefficient for both PBS). 
This replacement has the result that the phase of quadrature signals are more affected 
even for relative high values of e  (now the second spoiling terms in (3.22) cannot be 
dropped). 

The effects of a non-ideal PBS are illustrated Fig. 3.11. The first part of the figure 
shows quadrature signals before AGC and DC compensation when PBS were assumed 
ideal ( ∞=e ) and angular misalignments were o21 =α  and o101 =α  (exaggerated 
value). The second figure shows the signals after AGC and DC compensation. The 
signal with higher amplitude was reduced to the amplitude of the second one in order to 
make comparison of signal-noise ratio possible. Finally, the effect of finite value of 
extinction coefficients ( 100=e ) is illustrated in the last figure in Fig. 3.11. In both 
cases, the phase difference is 88.7°. To achieve this value, a high rotation misalignment 
of ideal PBS was introduced and a relatively good extinction coefficient of perfectly 
aligned PBS was assumed. 

The fact that non-ideal extinction coefficient of PBSs influences the phase of the 
output signals is similar to the phase effect of NBS due to the energy dissipation. Recall 
the well known fact, that lossless NBS introduces phase difference π  between 
emerging beams. In the case of lossy NBS, the phase difference changes depend on the 
amount of the losses. In Fig. 3.12, there is shown a slightly rearranged final part of the 
vibrometer for the case of ideal PBSs and non-ideal PBS with 1=e  (this extreme value 
was chosen for illustrating purposes). The NBS is assumed to be ideal, hence the phase 
shift between emerging beams from beam splitter is π . We assumed that in the upper 
arm, constructive interference occurred, and in order to conserve energy, destructive 
interference occurred in the lower arm. From the energy conservation, one can also 
deduce the final shift between resulting beams after passing PBSs. Although there is no 
energy dissipation due to the non-ideal PBS (only finite value of the extinction was 
assumed, PBS was treated as lossless, however), the non-ideal value of extinction 
coefficient influences phase difference of the resulting beams. This can be understood 
as a dissipation of “interference energy” due to the non-ideal polarization overlap 
between interfering beams after passing PBS. 

 

Fig. 3.11. The influence of rotational misalignment of PBS on output quadrature signals before and after 
AGC and DC compensation (on the left and in the middle) and influence of non-zero value of 

extinction coefficient. 
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Fig. 3.12. The influence of rotational misalignment of PBS on output quadrature signals before and after 
AGC and dc compensation (on the left and in the middle) and influence of non-zero value of 

extinction coefficient. 

Non-ideal neutral beam splitter 

Next, the effect of a non-ideal NBS will be investigated. The states before NBS 
are again considered in the form (3.21) and measuring PBS are considered as ideal. The 
different amplitudes of transmission and reflection coefficients only affect the amount 
of power distributed in both quadratures but the phase is not influenced. The assumption 
of the same amplitudes for transmission and reflection coefficients is therefore no loss 
of generality. The matrices describing the polarization properties of NBS, which were 
found in [26], in the eigenbasis of the NBS can be written as 
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Matrix NBStM  is used for the transmitted beam, pT  and sT  are modulus of 
amplitude transmission coefficients for p and s components of electrical field vector and 
finally pτ  and sτ  are argument of these coefficients. Matrix +

NBSrM  is used for the 

reflecting beam when light is incident on NBS in one direction and −
NBSrM  is used for 

the reflected beam when light is incident on NBS in the opposite direction. The 
reflection coefficients are defined in the similar way as transmission coefficients. When 
a dielectric material is used in NBS, the amplitude coefficients arguments for each 
component of electric vector are connected with the expression [26] 

 πρρτ =++ −+2 . (3.24) 

Using relations for the states vectors (3.21), relations (3.23) and (3.24) and assuming 
that PBS perform ideal projective measurements, one can write for the quadrature 
signals 
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From (3.25), one can state a requirement for generating true quadrature signals 
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In the ideal case 0==== −+
spps ρρττ  and πρρ == −+

ps  which implies the requirement 
of 2πϕϕ −=− rs . However, the non-ideal phase properties of NBS require that the 
phase difference rs ϕϕ −  has a different value in order to generate proper quadrature 
signals. Next, from (3.25), it can be seen that phase imperfections of NBS reduce 
amplitudes of quadrature signals. 

Now it will be shown that the required phase difference can be achieved by 
intentional rotational misalignment of QWP 2. To show this, we will assume that 
components before NBS are ideal hence the state vector before QWP 2 is |V〉. A general 
unitary operation can be represented as a rotation by δ  about n  axis by the equation 
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where  ( )zyx nnn  , ,=n  is a real unit vector specifying the rotation (the vector in the case 
of a retarder lies in the equatorial plane, see Fig. 3.10 on the right) , I  is unit matrix and 

ZYX ,,  are Pauli matrices. For the QWP2 one can write 
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where θ  is the angle between lab frame and device frame in its geometrical 
interpretation in Poincare sphere is shown in Fig. 3.10. Applying operator (3.28) on 
vector |V〉 one obtains phase of the resulting vector in the form 

 ( )( )θπϕ 2cosarctan
2

−−−=s  (3.29) 

where properties HV =X  and VV =Z  were used. The equation (3.29) can be 
solved for θ  in order to fulfill phase condition (3.26). The first part of Fig 3.13 shows 
quadrature signals for a real NBP with o5=pτ , o170== −+

ps ρρ , o10=−
sρ , o0== +

ps ρτ  
(typical values). In the second part, there are illustrated quadrature signals after a 
rotational alignment of QWP 2 according (3.29) so that the phase was corrected and the 
signals after AGC are depicted in the last part of the figure. 
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Fig. 3.13. The influence of a real NBS on quadrature signals, phase correction and AGC. 

Non-ideal components before neutral beam splitter 

Finally it will be shown that all polarization imperfection of components placed 
before NBP can be, in the first approximation, corrected by a suitable adjustment of 
QWP 2. The operators describing actions of QWP 2 and HWP in the first approximation 
(after neglecting second and higher order terms) can be written as 
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where errδ  is a retarder imperfection and errθ  is the angle between real and ideal 
orientation of the retarder. The ideal angles between lab and device frames are 45° and 
22.5° for QWP 2 and HWP, respectively. The state vectors before QWP 2 and HWP 
are, in the first approximation, written as (the general form for state vector (3.21) was 
developed in Taylor series about the vector |V〉 and second and higher order terms were 
neglected) 
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After application operators (3.30) on vectors (3.31) one obtains 
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where additional properties of Pauli matrices VH =X  and HH −=Z  were used. 

If we assume ideal NBS and measuring PBS, the requirement of quadrature 
signals demands that the relative phase between states (3.32) and (3.33) is 2π . After 
investigation of these equations, it can be seen that this condition is fulfilled when 
simply 

 
2
1

1
υθ =err . (3.34) 

To illustrate these results, the first two PBS were assumed to be non-ideal. The 
resulting quadrature signals before correction and after the correction according to 
(3.34) are depicted in Fig. 3.14. The last part of the figure shows phase corrected signals 
after AGC. 

The result (3.34) is more remarkable than it seems. It is because that 1errθ  is 
independent of other imperfections, especially independent of 2errθ  which is 
misalignment of HWP. This independency suggests that 2errθ  can be used to equal 
power of both quadrature signals. 

Indeed, the two rows in (3.32) are power contributions to the both resulting 
quadrature signals due to the signal beam. Similarly two rows in (3.33) are reference 
beam contributions. The loss of the power in one quadrature due to the phase 
compensation in signal beam can be then compensated by redistribution of the power of 
reference beam which can be done by controlling parameter 2errθ . The exact analytical 
formula how this parameter needs to be chosen in order to achieve the same quadratures 
powers can be derive from (3.32) and (3.33). However, such exact formula has almost 
no practical importance because it depends on all imperfection parameters appearing in 
(3.32) and (3.33). For this reason, we verified the idea of power compensation only 
experimentally which is the subject of the next section. 

 

Fig. 3.14. Phase correction by a suitable adjustment of QWP 2. 

3.4 Experimental verification 

The previous results were obtained using computer simulation of the vibrometer. 
Direct experimental verification is not easy due to the plethora of parameters which 
need to be measured. This includes not only devices parameters itself (eigenvalues 
determination) but also angles which specify connections between devices frames and 
lab frame. For these reasons, we only present photos of quadrature signals which were 
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obtained after adjusting all optical elements (Fig. 3.15 on the left) and signals which 
were obtained exactly at same conditions only with the difference that QWP 2 was 
intentionally rotationally misalignment in order to obtain real quadrature signals (Fig. 
3.15 on the right). The effects of the changing of amplitudes of the signals due to the 
correction can be observed (illustrated signals are before applying of AGC). 

Next we demonstrate rotational misalignment of measuring PBS. We chose this 
imperfection because it can be controlled in simple way. Namely, it influences the 
directions of reference and signal beam in the same way, so interference pattern on the 
detector will not change and there is no need to readjust the other components (except 
finals mirrors, which is easy to perform). After bringing both beams in interference and 
readjusting QWP2 and HWP in order to obtain quadrature signals in real quadrature and 
with the same magnitude (see Fig. 3.16 on the left) we intentionally misalignment 
measuring beamsplitter PBS1, approximately by 10° (this was only estimated value). 
The resulting quadrature signals  are depicted on the right part of the figure. This figure 
can be compared with the Fig. 3.11 where a similar misalignment was simulated. 

 
 

Fig. 3.15. Quadrature signals from the real vibrometer, before and after phase correction. 

  

Fig. 3.16. Experimental illustration of amplitude correction and rotational misalignment of the PBS 1. 
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In order to appreciate the possibility to eliminate periodic deviations directly in 
the optical part of the vibrometer, which becomes important when only analog 
electronics in the vibrometer is used, we state the final algorithm which needs to be 
implemented in order to obtain velocity from the quadrature signals [27] 

 224 QI
QIIQv

+
⋅−⋅

=
&&

π
λ  (3.35) 

where λ  is the wavelength of the used light and Q   and I  denote quadrature time-
varying signals. The implementation of the algorithm using LabVIEW 8.2 FPGA 
Module was reported in [27]. 

However, as was discussed in this chapter used optical components in the 
interferometric setup non-ideally influence the polarization states of the beams which 
lead to the generating signals which are not in real quadrature. Then modified version of 
the algorithm (3.35) is introduced as 

 ( ) ( )
( )ϕ

ϕ
π
λ

∆−+
∆⋅−⋅

=
sin2

cos
4 22 IQQI

QIIQv
&&

 (3.36) 

where time-constant phase error ϕ∆  between non-ideal quadrature signals was 
introduced. Using digital rather than analog technology in the signal processing part of 
the vibrometer offers an easy utilization of the modified algorithm. The results of 
implementation of the original and modified algorithm using LabVIEW 8.2 FPGA 
Module are shown in Fig. 3.17 where a piezocrystal driven by sinus signal was used as 
vibrating target. Time constant phase error was o10=∆ϕ . We only wish to illustrate the 
different forms of the resulting signal so some relative units were used. 

 

Fig. 3.17. Synthetic Heterodyne Demodulation (upper part) and its modified version (lower part). 
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3.5 Chapter summary 

Let us summarize the results. All polarization imperfection of the components 
placed before measuring PBS can be, in the first approximation, compensated by an 
intentionally rotational misalignment of QWP 2. The phase imperfection of NBS can be 
corrected again by rotational misalignment of QWP 2. The angular misalignments of 
measuring PBS can be, in the first approximation, neglected. Finite value of extinction 
coefficients has a crucial effect on the quality of the quadrature signals. This spoiling 
effect cannot be compensated in the optical part of the interferometer. These results 
were expected because the measuring PBSs (accompanied by photodiodes) perform true 
measurements on the states and the components which precede these PBS perform a 
pure rotation of the states in the Poincare sphere. Finally, we conclude that by an 
additional rotational misalignment of HWP output quadrature signals can have not only 
required phase shift 90° but also same amplitudes. 
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4 Quantum description of optical devices 

A quantum-mechanical description of the phase shifters, retarders, mirrors and 
beam splitters is given in this section. The description is then applied on two types of 
states; on a coherent state, a classical-like state, and on a number state, hence the strict 
quantum state. The quantum description of a beam splitter can be found in the literature. 
However the description does not treat with the polarization concept. The main aim of 
this section is to introduce quantum description of an arbitrary oriented retarder and 
give a description of a beam splitter which treats with the polarization. These results 
were published by the author in the similar form as they are presented in [28]. 

4.1 Coherent and number states 

In this section we introduce the two most common states used in the quantum 
optics. Used relations in this section are taken from [29]. 

A coherent state is the eigenstate of the annihilation operator 

 ααα =â  (4.1) 

and can be generated from the vacuum state using the displacement operator 

 ( ) ( ) 0ˆˆexp0ˆ *aaD H αααα −==  (4.2) 

where the symbol XH denotes the Hermitian conjugate. A normalized coherent state can 
be expressed in the number state basis as 

 ( )∑∞
=

−=
0

2

!
2/exp

n

n

n
n

ααα . (4.3) 

Note that α  is related to the amplitude of the field. 

Number states are generated from the vacuum according to 

 ( ) 0ˆ
!

1 nHa
n

n = . (4.4) 

The time evolution of the number states is given by 

 ( ) ( ) ( )0exp ntintn ω−=  (4.5) 

where we neglected the global factor ( )2/exp tiω− , the contribution from the vacuum 
(does not influence the dynamic of the system). 
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4.2 Phase shifter and retarder 

A phase shifter P̂  acts like time evolution. It adds an extra time delay 
( ) cznnt P /0 ∆−=∆  which dependents on refractive index Pn  and thickness z∆  of the 

shifter. The symbol 0n  denotes the refractive index of the environment. In the 
following, the symbol n denotes the eigenvalue of energy eigenstate n . The 
dependency on the refractive index of the shifter is absorbed in t∆ . Hence the action of 
the shifter on a number state is 

 ( ) ninnP θexpˆ =  (4.6) 

where t∆= ωθ  was introduced and represents an extra phase due to the shifter. 
Relation (4.6) can be rewritten in the operator form as (due to the fact that n  represents 
eigenvalue of n ) 

 ( ) nninP θˆexpˆ =  (4.7) 

where the number operator aan H ˆˆˆ =  was introduced. Hence, the shifter is generally 
described by the following unitary operator 

 ( )θniP ˆexpˆ = . (4.8) 

When the shifter acts on the coherent state, one obtains 

 ( ) ( )( ) ( ) .exp
!

exp2/expˆ 2 θαωααα in
n

tiP
n

n

=
∆

−= ∑  (4.9) 

Note, that the time evolution of a coherent state is given by 

 ( ) tit ωαα −= exp  (4.10) 

where the contribution from the vacuum was neglected. 

Next, we describe the action of a retarder by extending the foregoing 
considerations through the assumption that different phase shifts are experienced for 
two eigenstates. Thus, a retarder is, on the contrary from phase shifter able to change 
the polarization and one needs to introduce an extra degree of freedom to treat with the 
polarization. 

Retarder in the lab frame 

First we consider the situation where the lab frame and frame of the retarder are in 
the coincidence (so fast axis (FA) of the retarder is parallel to the y-axis as is depicted in 
Fig. 4.1 on the left). 
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Fig. 4.1. Placing of a retarder. On the left, the lab frame coincides with the retarder frame. On the right 
the lab frame differs from the retarder frame. 

The action of a retarder (slow axis oriented parallel to x-axis) is described by 
using Jones matrix (expressed in the x- y basis) in the form 

 ( ) 0   ,
exp0

01
>⎥

⎦

⎤
⎢
⎣

⎡
−

= θ
θiSAhR

J  (4.11) 

where θ  denotes the phase difference between both eigenvalues of the retarder (the 
relative phase shift). In the Jones formalism is matrix (4.11) applied on the input vector 
where each entry of the vector describes the orthogonal (respect with the polarization) 
electric field component 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′
′

y

x

y

x

E
E

iE
E

θexp0
01

. (4.12) 

The usual way for obtaining a quantum description is replacing the classical complex 
field amplitudes by a set of annihilation operators as 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′
′

y

x

y

x

a
a

ia
a

ˆ
ˆ

exp0
01

ˆ
ˆ

θ
. (4.13) 

Now we can introduce new basis sates as 

 ( ) ( ) ( ) 0,0ˆˆ!!, 2/1 yx nH
y

nH
xyxyx aannnn −=  (4.14) 

where an extra degree of freedom was introduced in order to include polarization. A 
basis state yx nn ,  can be interpreted as the state containing exactly xn  x -polarized 

photons and yn  y -polarized photons. 

The input and output modes of a retarder are related according to (using (4.13)) 

 ( ) .ˆexpˆ
ˆˆ

yy

xx

aia
aa

θ−=′
=′

 (4.15) 

Note that the familiar commutations relations 

 ]ˆ,ˆ[0]ˆ,ˆ[,]ˆ,ˆ[ H
j

H
ijiij

H
ji aaaaaa === δ  (4.16) 

are still satisfied by transformation (4.15) (indexes ji,  represent input and output 
modes for each polarization). 



 Polarization properties of light in interferometry 
 

 - 55 - 

Relation (4.15) may be written in Heisenberg picture as 

 R
a
a

R
a
a

y

xH

y

x ˆ
ˆ
ˆˆ

ˆ
ˆ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′
′

 (4.17) 

where R̂  is an unitary operator representing a retarder. The operator satisfying (4.17) 
and (4.15) was found in the form 

 ( )y
H
y aaiR ˆˆexpˆ θ−= . (4.18) 

As an example let us act a retarder on input state which consists of one photon polarized 
diagonally 

 
( ) ( )

( )( )yxyx
R

yxyxyx
H
y

H
x

i

aa

1,0exp0,1
2

1

1,00,1
2

10,0ˆˆ
2

1

θ−+⎯→⎯

+=+
 (4.19) 

where we used inverse relation (from (4.15)) 

 
( )

( )( ) .ˆexpˆ

ˆˆ
H

y
H
y

H
x

H
x

aia

aa

′−=

′=

θ
 (4.20) 

Through investigation of (4.19), it can be seen that in the case of quarter-wave plate 
( 2πθ = ), one obtains from a photon initially diagonally polarized photon which is 
right-handed polarized. 

Retarder in the device frame 

Generally the retarder is placed as shown on the right in Fig. 4.1. Then the Jones 
matrix 

SAhRJ  is undergone the active transformation 

 ( ) ( )δδ UJU
SAhR−  (4.21) 

where 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
δδ
δδ

cossin
sincos

U . (4.22) 

Note that ( )δδ −= UU )(H . Working out the multiplication in (4.21) one again can 
associate the fields with annihilation operators as 

 
( ) ( ) ( ) ( )

( ) ( )y

xyxx

ai

aiaaa
ˆcossinexp     

ˆsinexpˆsincosˆcosˆ 22

δδθ

δθδδδ

−−

−−++=′
 (4.23) 

and 

 
( ) ( ) ( ) ( )
( ) ( ).ˆcossinexp    

ˆsinˆsincosˆcosexpˆ 22

x

yxyy

ai

aaaia

δδθ

δδδδθ

−−

++−=′
 (4.24) 

Note that commutation relations (4.16) are for the operators (4.23) and (4.24) again 
satisfied. Relations (4.23) and (4.24) can be formally written as 
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 RU
a
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xHH
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ˆ
ˆˆˆ

ˆ
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⎛
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 (4.25) 

where R̂  is given by (4.18) and 

 ( )( )H
yxy

H
x aaaaU ˆˆˆˆexpˆ −= δ . (4.26) 

Equation (4.26) is the quantum analogy of (4.22). Hence, the unitary operator 
describing arbitrary placed retarder is RU ˆˆ . As an example, let us suppose 4πδ = , 

2πθ =  and input state yx 0,2 . Using (4.23) and (4.24) one obtains 

 ( ) ( )( )H
y

H
x

H
x aiaa ˆˆ

2
1ˆ ′+′= . (4.27) 

Then 

 
( ) ( )( )

( ) ( ) .2,01,00,11,00,1       

1,122,00,20,0ˆˆ0,2
2

LR

H
y

H
x

R

ii

iaia

≡+⊗+=

=++=′+′⎯→⎯
 (4.28) 

And generally L
R

yx nn ,00, ⎯→⎯ . So, we obtained left-handed polarized photons as 
expected. As a last example suppose input x-polarized coherent state and the properties 
of the retarder from the previous example. Then 
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2
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2
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1exp0,0ˆˆexp
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⋅⎟
⎠
⎞
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⎝
⎛ ′−′⎯→⎯−

 (4.29) 

So, we obtained left-handed polarized beam. 

4.3 Mirror 

A common mirror has for normal incidence Jones matrix in the form 

 ⎥
⎦

⎤
⎢
⎣

⎡−
=

10
01

MirrorJ  (4.30) 

in the accordance with the Frenel’s equations (see Fig. 4.2). 

 

Fig. 4.2. Used notation for the components of the incident field and Frenel’s equations. 
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Hence the action of a mirror is the same as half-wave plate (HWP) when the fast 
axis is parallel to x -axis. The mirror is then described by the unitary operator satisfying 

 ( )x
H
x aaiR ˆˆexpˆ π=  (4.31) 

where we neglected the global phase factor 2π  (is same for both field components) 
due to the reflection. Now we apply the mirror on a coherent left-handed polarized light 
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−′−
⎯→⎯

 (4.32) 

where we used (4.15) with setting πθ = . Left-handed beam is converted to the right-
handed beam due to the reflection. This is obvious because the Jones matrix (4.30) in 
the left-right handed (helicity) basis is expressed as 

 ⎥
⎦

⎤
⎢
⎣

⎡
=′

01
10

MirrorJ . (4.33) 

4.4 Non-polarizing beamsplitter 

Classical scalar description of non-polarizing beam splitter 

The classical scalar (input and output beams are assumed to have a common linear 
polarization) description of a non-polarizing beam splitter (NBS) can be found in [29]. 
The output fields are related to the input fields by relation 

 ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
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⎣

⎡
=⎥
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⎤
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⎡

1

0

10
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3

2

E
E

tr
rt

E
E

 (4.34) 

where the meaning of reflection and transmission coefficients is illustrated in Fig. 4.3. 

The phases of reflection and transmission coefficients are related via (formula 
derived by considering the energy conversation [29]) 

 ( ) ( ) ( ) ( ) π±=−−+ 1010 argargargarg ttrr . (4.35) 

 

 

Fig. 4.3. Classical scalar (a) and vector (b) description of NBS. 
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Note that there are two choices of phases which have different observable effects. These 
choices depend on the construction of the beam splitter [30]. For a beam splitter cube, 
the conventional choice is 

 ( ) ( ) ( ) ( ) π==== 1010 arg  and  0argargarg ttrr  (4.36) 

whereas for a single dielectric layer beam splitter,  the conventional choice is 

 ( ) ( ) ( ) ( ) 2argarg  and  0argarg 1010 π==== rrtt . (4.37) 

Of course, the phase choice in (4.36) and (4.37) is not unique. Hence for a 50:50 beam 
splitter cube one can write 

 
2

    and    
2

10
3

10
2

EEEEEE −
=

+
= . (4.38) 

Classical vector description of non-polarizing beam splitter 

In the previous subsection, it was assumed that all beams have the common linear 
polarization. The reason is following. In general, an optical device divides an incident 
field into two parts, the eigenstates (eigenvectors) of the optical device. And these 
eigenstates are treated independently. As an example, we measured Jones matrix of 
NBS 10701A in the form 

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

=
)9.172exp(62.00

067.0
  and  

)5.3exp(73.00
069.0

i
NBS

i
NBS rt oo

 (4.39) 

for the transmitted and the deflected (reflected) beam, respectively. Matrices (4.39) are 
expressed in the linear basis.  Hence matrix component 11NBS  tells us how evolves 
x component of the field. From (4.39), one can guess an ideal 50:50 NBS as 

 ⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

2
1   and   

10
01

2
1

rt NBSNBS . (4.40) 

However in general, the input beams are in the superposition of eigenstates of NBS. 
Hence the reflection and transmission coefficients are different for x  and y -
polarization. Now, we suppose a symmetric beam splitter cube ( 10 rr =  and 10 tt = ). 
Then the vector description of a beam splitter cube can be expressed as 

 
103

102

ENBSENBSE

ENBSENBSE

tr

rt
rrr

rrr

⋅−⋅=

⋅+⋅=
. (4.41) 

Note, that for non-symmetric beam splitter cube, one needs to measure Jones matrices 
for both input beams (hence the second formula in (4.41) will obtain different Jones 
matrices from the first formula). 

If we now assumed that input beams are both x -polarized 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=
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0
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0
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E
E

E
E

rr
 (4.42) 

and next we suppose an ideal 50:50  NBS, using (4.40) and (4.41) we arrive to (4.38). 
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Fig. 4.4. Quantum scalar (a) and vector (b) description of NBS. 

Quantum non-polarization description of NBS 

The quantum scalar description of a beam splitter is given in [29], [30]. The 
electric field vectors in (4.34) are replaced by annihilation operators (Fig. 4.4(a)) 

 ⎥
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Formula (4.43) can be formally written as 
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where the unitary operator of a 50:50 beam splitter has a form [30] 

 ( )⎟
⎠
⎞

⎜
⎝
⎛ += HH aaaaiB 1010 ˆˆˆˆ

4
expˆ π . (4.45) 

If a beam splitter is acted on the state 
10

11  (in both inputs is exactly one photon), one 
obtains 

 ( )
233210

0202
2

11 +⎯→⎯
iB . (4.46) 

The possibilities 
10

01  and 
10

10  do not occur due to the fact that the processes 
shown in Fig. 4.5 are indistinguishable and interfere destructively. 

For example, for input coherent states and a single dielectric layer beam splitter 
one obtains 

 
32

10 22
1

βαβαβα ++
⎯→⎯

iiB  (4.47) 

and for a beam splitter cube, made of a right angle prisms, one obtains 

 
32

10 22
1

βαβαβα +−+
⎯→⎯B . (4.48) 
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Fig. 4.5. Two indistinguishable processes. 

Quantum polarization description of NBS 

From (4.40), one can see that for the ideal beam splitter, there is the change of the 
polarization for the reflected beam. Note relation (4.40) differs from (4.30) only in the 
global factor which is for us unimportant now (has no observable effects). 

Thus, if we assume that the photon polarization is swapped under a reflection 
from left-handed to right-handed and vice versa (see Fig. 4.6) then the processes in Fig. 
4.5 are truly indistinguishable only if the inputs of the beam splitter are both x  or y -
linearly polarized. 

 

Fig. 4.6. Two distinguishable processes. 

Thus, for the complete description one needs to introduce an extra degree of 
freedom to treat with the polarization. For this purpose, we use the following definition 
(applicable only for a lossless beam splitter) for the reflection and transmission 
coefficients 

 tr == θθ sin     and     cos  (4.49) 

where we set rrr == 10  and ttt == 10  (assuming symmetric beam splitter). Note 
that the angle θ has no geometrical interpretation. For instance 4πθ =  represents a 
50:50 beam splitter. 

In Fig. 4.4(b) there is shown the new set of operators for the input and output 
modes. In this section, we use right-handed and left-handed basis. In this basis the 
transmitted photon is left untouched and the reflected photon is swap from R→L and 
vice versa. Then the action of a beam splitter cube can be expressed as 
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As an example, we suppose the following input states of a beam splitter 
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 (4.51) 

where we used the unitary property 1ˆˆ =BBH  and 
3210

0,00,00,00,0ˆ
LRLRLRLRB = . 

From (4.51), is clear that if we do not treat with the polarization and assume 50:50 beam 
splitter ( 4πθ = ), the two middle terms in (4.51) cancel and we obtain a relation 
similar to (4.46) (the different phases are due to the fact that in (4.46), we used a single 
dielectric layer as a beam splitter and in (4.51), beam splitter cube). 

4.5 Chapter summary 

The main goal of this section was to give quantum description of an arbitrary 
placed retarder and a vector description (description which treats with the polarization) 
of a beam splitter. 

The derivation was based on the analogy with Jones matrix calculus where 
electric fields vectors were replaced by annihilation operators. 

In quantum case, we supposed lossless components (no interaction with the 
environment) to represent them by unitary operators. This is the fundamental difference 
in comparison with Jones matrix concept where one can represent the loss optical 
device by Jones matrix. This difference is due to the fact that Jones concept arises from 
Maxwell’s equations hence analogy between Jones calculus and quantum description 
can’t be taken too seriously. The description of loss systems in quantum domain needs 
to introduce an environment which interacts with the principal system. 

Jones calculus can’t be used when the experiments are treated in the quantum 
domain. The quantum description of retarders, phase shifters and beam splitters is 
needed for a single photon transmission and quantum computation where mentioned 
devices are used for manipulation with single photons. 
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5 Polarization imperfections in Polarimetry 

The photoelasicity is one of the oldest forms of interferometric measurement. It 
involves the observation of fringe patterns for determination of stress-induced 
birefringent. Photoelastic stress was first investigated by so-called plane polariscope 
(also called polarimeter). Plane polariscope consists of a light source, polarizer, 
measured model, analyzer and detector. Model to be investigated is formed from 
transparent material, is non-scattering, has a form of a plate which normally is parallel 
to the beam and is homogenous in the beam direction. The information gained from a 
photoelastic experiment is then related to the stress or strain in the prototype, which is 
of different size and different material. 

When the light passes through all points of the measured model, then two families 
of fringes are formed at the detector. The first family consists of isoclinics – the locus of 
points whose principal stresses have the same directions. The second fringe family 
consists of isochromatics – the locus of points at which the relative retardation is a 
certain integer number of wave-lengths. 

In order to separate isoclines from isochromatics, two quarter wave plates are 
inserted before and after the model. The setup is then known as circular polariscope (see 
Fig. 5.1). Both principal states in the model are equally excited when circular light 
illuminates the model. This assures uniform and high fringe contrast over the detection 
plane. The other techniques to distinguish the types of fringes from one another in 
addition to circular polariscope are using loads on the model, polychromatic light or 
rotated crossed polarizers. 

The fringes do not indicate the order of fringes (i.e. the number of wave-lengths 
of relative retardation which it represents), or the sign of the relative retardation (i.e. 
which of the two waves is retarded to the other). To determine the orders of the fringes, 
a load technique is used. The sign of the fractional order depends on the handiness of 
QWPs, the photoelastic material properties and the direction of analyzer rotation. 

Recent methods usually use a certain discrete set of different orientations of 
analyzer and the second quarter wave plate in order to obtain required information. The 
methods are called as phase shifting methods. For instance, Asundi and Liu algorithm 
[12] uses typical circular setup with analyzer placed at 0°, 45°, 90°, 135°, respectively. 
However, this produces only three independent measurements (each angular orientation 
from the set can be deduced from the remaining three ones). Then, QWP 2 is rotated by 
45° degrees and two additional intensities for 45° and 135° analyzer orientation are 
measured (only one is sufficient, however). The rotation of the QWP2 is in order to 
obtain additional information which is used to eliminate influence of background 
radiation. Hence, in general there are four unknowns: background radiation, source 
intensity, isoclinic angle and retardation. This method works for constant background 
radiation and intensity of the source during the measurement. 

In phase shifting methods stated so far, the required information was collected 
sequentially by changing the orientations of elements within the polariscope. This 
restricts the applications of the polariscope to the static events only. To eliminate this 
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drawback, another two optical setups were introduced. In the first case, three beam 
splitters were used in the optical setup of the polariscope. The beam splitters were used 
to split the beam emerging from the measured model into fourth path in four different 
directions. Then different configurations of a quarter-wave plate and analyzer were 
placed in each path in order to produce required phase shifted images. The second and 
most recent method introduced by Asundi and Liu [13] uses so called Multispec Imager 
which splits the beam emerging from the measured model into fourth path along the 
same directions. This brings an advantage of using only one CCD camera as a detector. 

The recent technologies offer to produce micropolarizers arrays [9] and [10]. This 
brings a possibility of using these arrays in imaging [11] and in polarimetry in order to 
avoid beam splitting. However, as can be found in [9], [10] these arrays have quite low 
extinctions coefficients (between 100 and 300). Another difficulty is the exact 
orientation of transmission axes of micropolarizers. These two problems are 
investigated in this chapter. 

5.1 Laser as a light source 

In order to verify the basic mathematical model, we started with almost ideal 
experimental model which is depicted in Fig. 5.1. The difference in the usual setup is 
using He-Ne laser in order to avoid chromatic dispersion and produce almost perfect 
parallel rays, using Soleil-Babinet compensator as a measured model in order to 
compare measured data with the actual phase being introduced by the model and we 
used Wollaston prism in order to recover two measured intensities which are sufficient 
to obtain retardation information. Next, an aperture stop was placed before the detector 
in order to remove divergent rays and the function of chopper head is to increase signal 
to noise ratio of the measurement (intensity modulated signal after the photodetection 
was detected using Lock-In amplifier). 

The measurement results when “ideal” components were used are depicted in the 
first graph in Fig. 5.2. The difference between measured retardation and actual 
retardation of the compensator is plotted as a function of the compensator retardation. 

 

Fig. 5.1. Optical bench simulating single ray polarimeter. Components from left to right are: He-Ne 
laser, linear polarizer, chopper head, first quarter-wave plate (QWP 1) placed in high precision 
rotation mount, Soleil-Babinet compensator used as a testing model, QWP 2, Wollaston prism 

used as an ideal analyzer, aperture stop, photodiode. 

The interference of the signal beam and a beam resulting from ghost reflections is 
apparent from the graph (sine envelope with period equal to π ). The small fluctuations 
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with period approximately 20° are probably due to the surface imperfection of the 
compensator because they appear at the same positions in subsequent measurements. 
The sharp peaks at the edges are results of finite extinction coefficient of linear 
polarizer which was the least “ideal” component in the setup. These effects and also 
how the measured phase was obtained from measurement data will be treated in the 
next section. 

The next two graphs in Fig. 5.2 illustrate influence of misalignment of the first 
quarter wave plane and effects when non-ideal QWP 1, although well aligned, was 
used. The measured results are compared to the theoretical curves obtained using Stokes 
calculus. The final graph shows measurements results obtained using polarizer with a 
poor extinction coefficient, namely 25:1. 

 

 

Fig. 5.2. Plots of deviations between measured retardations and actual retardations obtained using 
circular polarimeter setup with laser source. 

In all measurements, the polarization of laser was diagonal (transmission axis of 
the polarizer forms reference). The angle between fast axis of the compensator and 
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transmission axis of polarizer, in the first three cases was 45° and in the last case 90°. 
We choose this value because the deviation was then maximal. The functionality of the 
measured data on orientation of the FA of the compensator when non-ideal polarizer is 
used is due to the coherency of the laser. This functionality is not observed using LED 
as a source. 

5.2 Using of non-ideal polarizers and depolarizations effects 

The usage of non-ideal QWPs of the same type has in fact not so dramatic effect 
on the polarimeter performances. This is because when they are used as an inverse pair 
(the fast axes are crossed), then imperfection retardation and chromatic dispersion is 
compensated. Hence main polarization imperfections firstly result from using analyzer 
with poor extinction coefficient and not perfect alignment of its transmission axis (as 
those in micropolarizers array). 

Linear analyzers which are placed at four different directions, namely at 0°, 45°, 
90°, 135°, will be described in the section using spin-vector formalism for its elegancy. 

Ideal analyzers which are perfectly alignment (no misalignment error) are 
represented by following set of projectors 

 135135ˆ  ,9090ˆ  ,4545ˆ  ,00ˆ
13590450 ==== PPPP  (5.1) 

where kets |0〉 and |90〉 form orthogonal basis and have meaning of horizontal and 
vertical polarization, respectively. 

Non-ideal analyzers characterized with extinction coefficient e  are then 
mathematically represented with following projectors 
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( ) ( ) 45451135135ˆ   ,0019090ˆ
13513514545ˆ   ,9090100ˆ
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+=+=

+=+=
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Note that in order to avoid plethora symbols, the notation for projectors is kept as for 
the ideal case. 

Ideal analyzers with angular misalignment can be, in the first approximation, 
written in the form (we assume that misalignment error is small enough that we can 
drop the second and higher orders terms in the Taylor series of sine and cosine) 
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 (5.3) 

where all kets were expressed using horizontal-vertical basis. The angles α , γ , β  and 
δ  are deviations from ideal orientations and they are positive in counter clockwise 
sense. 

Through combination of the preceding equations, one can treat non-ideal 
analyzers which possess error in angular alignment. For instance the first projector is 
written as 
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 [ ]09090090901090900000̂ αααα −−+++=
e

P  (5.4) 

and the other projectors are obtained similarly. 

A general normalized state which is being measured using an analyzer is 
represented by density matrix in the form 

 ( ) ( ) [ ]909000
2

1c.c.90
2

sine0
2

cos +
−

+⎟
⎠
⎞

⎜
⎝
⎛ +=

PP i υυρ ϕ  (5.5) 

where the vector in the first brackets is a general pure state, P  is degree of polarization, 
c.c. denotes complex conjugate, υ  and ϕ  are shown in Fig. 3.10 on page 43. Equation 
(5.5) hence represents a state after passing all components preceding analyzer. This 
representation is very convenient because υ  is the retardation of device under test and 

2ϕ  is the difference between polarizer frame and principal stresses at measured point. 
This can be seen from Fig. 3.10 and from the understanding of polarization 
transformations which take place in the circular polariscope and are depicted in Fig 5.3. 

The red marked points in Fig. 5.3 are states before the first polarizer (the one in 
the origin of the sphere), after the polarizer action (the one with cartesian coordinates 1, 
0, 0) and after passing QWP 1 (with coordinates 0, 0, 1). 

Action of the device under test results in rotation in the last state about axis lying 
in the equatorial plane (its exact position depends on υ ). Hence, the circle with its 
normal perpendicular to the equatorial plane is a set of all possible states after passing 
the DUT with a given retardation which is o302 =ϕ  for the illustrated case. This circle 
is then rotated about axis S2 which is a transformation due to the QWP 2 and represents 
states being measured by the analyzers. 

The black circle with its normal axis parallel to S1 axis represents states before 
analyzer when some depolarization effects prior to analyzer were assumed, namely the 
degree of polarization of the states lying on the circle is P = 0.8. 

 

  

Fig. 5.3. Transformation of polarization states in circular polarimeter. 

Hence, in relation (5.5), a polarization state was written in the most general way 
as a sum of fully polarized part and unpolarized part. This enables simultaneous 
treatment of coherent and incoherent light sources and depolarization effects (the 
origins for these effects will be discussed shortly). 
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The action of analyzers followed with photodiodes is then mathematically 
described as ( )ρPPH ˆˆTr . The physical meaning of taking trace of the resulting matrix is 
obtaining irradiance of the beam impinging on a photodiode. For four different analyzer 
orientations, one receive following irradiances 
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where I  denotes irradiance carried with the state being measured (this parameter does 
not appear in (5.5) because the state was normalized, i.e. divided by the own 
irradiance). 

We split analysis of equations (5.6) into two parts. First we assume imperfection 
in angular misalignment of analyzers only, hence 1=P  and ∞→e . Set of equations is 
then reduced to 
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First, it is clear that due to the angular misalignment 13545900 IIII +≠+   hence 
the equations (5.7) are independent. Equations (5.7) can be solved for angles γβα   ,  ,  
and δ  if detected irradiances for two special cases of retardation υ  are known. Namely 
for 0=υ  and 2πυ = . 

Next, we will investigate depolarization effects alone. Setting all errors in 
misalignment to zero and rearranging terms one obtains from (5.7) 
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 (5.8) 

where an additional index was attached to the extinction coefficient in order to 
distinguish between first polarizer and measuring polarizer (analyzer). In this set of 
equations, there are only three independent, however. Next, one can see that both P  
and e  reduce the modulation of the useful signal (retardation  υ  and isoclinic angle ϕ  



 Polarization properties of light in interferometry 
 

 - 68 - 

are searched unknowns) in the exactly same way. To illustrate this in more detail, let us 
recall that the reasons for 1<P  are non-coherent light source (LED diode as a light 
source is assumed), non-ideal polarizer, and chromatic dispersion which strictly pseudo-
depolarize the light. The difference between depolarization and pseudo-depolarization 
was discussed in the chapter concerning vibrometry. However, even when a coherent 
light source is used in polarimetry, there is no time varying path difference so it is not 
necessary to distinguish between depolarization and pseudo-depolarization. Because of 
using quarter-wave plate pair, Soleil-Babinet compensator which is in fact zero-order 
wave plate and LED with narrow spectrum (half-width was 20 nm and central 
wavelength 635 nm), chromatic dispersion was negligible. 

One additional depolarization effect was observed in our setup shown in Fig. 5.4.  
This effect cannot be neglected. Namely, we observed that placing the compensator in 
the beam path, even when zero retardation was set, depolarized the light. This effect is 
due to the non-ideal collimating. A ray which is not perpendicular to the optical axes of 
quartz crystals in compensator is double refracted. Hence, the double refracted rays 
after passing the compensator do not overlap and the resulting state of light is a 
statistical mixture rather than pure state which results in depolarization. 

Polarizer removes energy from the wave vibrating perpendicularly to the 
transmission axis. The degree of polarization of the emerging light from a polarizer is 
related to the extinction coefficient of polarizer 1e  as ( ) ( )11 11 +−= eeP . So the effect 
of non-ideal polarizer is exactly same as the effect of non-ideal measuring polarizer 
(analyzer), see equation (5.8). The reason that the factor ( ) 11 21 ee +  before the brackets 
in (5.8) is missing is that it is hidden in I  which denotes irradiance carried with the 
state before the measurement (after passing all components). But as was stated 
previously, required unknowns υ  and ϕ  are expressed using relative irradiances in 
order to remove requirement to measure I . 

Important is that although physical reasons for depolarization can be different the 
final influence of depolarization on measured irradiances is the same. 

 

Fig. 5.4. Optical bench simulating polarimeter using LED as a light source. Components from left to 
right are: LED, collimating lens, polarizer, chopper head, QWP 1, compensator, QW2, analyzer 

placed in motorized high precision rotation mount, field lens, photodiode. 
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Fig. 5.5. Experimental illustration of depolarization effects. 

5.3 Experimental results 

Now measurement results for perfectly aligned analyzers will be presented. The 
measurement was performed using two kinds of analyzers which differed in extinction 
coefficients, namely 1000:1 and 25:1. In each case, the analyzer was then rotated using 
motorized high precision mount in order to obtain the four required irradiances. The 
retardation of the model was first computed using an ideal equation obtained from (5.8) 
with the settings 1=P  and ∞→e  
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Then the full version of (5.8) was used in order to eliminate depolarization effects. 
Hence the retardation from measured data was obtained using following formula 
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All results are shown in Fig. 5.5, where the deviation of measured retardation 
from the actual retardation is plotted as a function of actual retardation. P  in (5.10) can 
be expressed as ( ) ( )11 11 +−= eePP C  where CP  is depolarization due to collimating as 
was explained earlier in the section and 1e  is the extinction coefficient of used polarizer 
which was 1000 in both cases. Although there are three parameters CP , 1e  and 2e  in 
(5.10) which need to be determined in order to use (5.10), but due to the their equivalent 
effects, they can be replaced with single one, P′  let say. This single parameter can be 
then easily determined from measurement data by simply taking measured irradiances 
for the zero retardation as 
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In our two measurements, we obtained 99.01 =′P  and 90.02 =′P  or expressed them in 
terms of extinction coefficients 1671 =′e  and 192 =′e , respectively. 

In order to illustrate the influence of the rotational misalignment of analyzers we 
present another two measurements. For better illustration, we will show a list of all the 
measurements settings which have been discussed in this section. In the table, we 
distinguished between the angle which was approximately set and angles which were 
set with high precision (analyzers were placed in motorized high precision rotation 
mount, compensator was adjusted by hand). 

Tab. 5.1. Measurements parameters 

4 Measurements P′  2ϕ  α  β  γ  δ  
Blue curves in Fig. 5.5, 5.9 0.99 ~ 45° ≈ 0° ≈ 0° ≈ 0° ≈ 0° 
Red curves in Fig. 5.5, 5.9 0.90 ~ 45° ≈ 0° ≈ 0° ≈ 0° ≈ 0° 
Blue curves in Fig. 5.6, 5.7, 5.8, 
5.9 

0.99 ~ 22.5° ≈ 0° ≈ 0° ≈ 0° ≈ 0° 

Red curves in Fig. 5.6, 5.7, 5.8, 5.9 0.99 ~ 22.5° ≈ –2.5° ≈ –1° ≈ 2.5° ≈ 3.5°

In Fig. 5.6, there are shown cases when analyzers were perfectly aligned and 
when intentional misalignments were introduced. Recall that retardation was obtained 
from relative irradiances so we did not state exact units and that fluctuations of the total 
irradiance have no effects on measurement results and was probably caused by different 
transmittance of compensator for different retardation settings. The small oscillations 
are due to the power fluctuations of the LED. 

Of course, parameters in Tab. 5.1 are usually unknown prior to measurement. We 
will now illustrate how in the last case, misalignment angles can be found to give better 
estimation of the measured retardation. 
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Fig. 5.6. Experimental verification of analyzers alignment using sums of irradiances for orthogonal 
orientations. 

First, we check for measured irradiances if the equation 13545900 IIII +=+  is 
held. From right part of Fig. 5.6, we can see that this is not the case, so misalignment 
errors are present. Next, we present all measured intensities which are depicted in Fig. 
5.7. 

Now we use equations (5.7) and set 0=υ  which is obtained easily by 
measurement (no model is present) 

 ( ) ( ) δυγυ
+=

=
−=

=
2
10   and   

2
10 13545

I
I

I
I . (5.12) 

The irradiance I  can be taken in the first approximation as sum of one orthogonal 
pair, 900~ III +  let us say. Then, equations (5.12) have solutions o6.2~γ  and o4~δ  
which is in very good agreement with actual values (see Tab. 5.1). Unfortunately, α   
and β  can not be obtained from (5.7) in such a simple way because it is coupled with 

ϕcos . But as can be seen, their spoiling effects vanish at o0→υ  and o180→υ . Hence 
the deviation of the measured retardation from actual value is not increased by angular 
misalignment at these points which are significantly influenced by depolarization 
effects. This is illustrated in Fig. 5.8. 

Although the isoclinics angle 2ϕ  is the second in importance in residual stress 
measurement, it can be obtained from measured intensities using (5.8). The estimation 
of the angle ϕ  is shown in Fig. 5.9 for all the discussed measurements. 

The reason that the deviation of experimentally obtained isoclinics angle from the 
actual one is heavily increased when retardation approaches 0° and 180° can be 
understood from equations (5.7). It can be recognized that isoclincs angle is coupled 
with υsin . The solution for ϕ  is bad behaved when oo 180or  0→υ . 

 

Fig. 5.7. Measured irradiances for well aligned analyzers (blue curves) and for analyzer when rotational 
misalignments were introduced. 
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Fig. 5.8. Deviation of experimentally determined retardation from the actual one for well aligned 
analyzers (blue curves) and for analyzer when rotational misalignments were introduced. 

Finally, we wish to report the last effect which is due to the finite extinction 
coefficient of the analyzer and which can bring some confusion to the calibration 
procedure of the compensator. Namely, we observed that with decreasing extinction 
coefficient, the set compensator distance between two irradiances minima was slightly 
enlarged. When Wollaston prism was used, the two minima was observed for 
compensator setting 0.0 µm and 16.5 µm, let us say. These values correspond to the 
introduced retardation 0° and 360°. When analyzer with extinction ratio 1000:1 
replaced Wollaton prism, the irradiances minima appeared at –0.1 µm and 16.6 µm. And 
finally, when analyzer with extinction 25:1 was used, then irradiances minima appeared 
at –0.2 µm and 16.7 µm. However, the calibration data obtain for Wollaston prism was 
used for measurements interpretation. 

 

Fig. 5.9. Isoclincs angle determination from measured data. 
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5.4 Polariscope with only one QWP 

In residual stress measurement can be sufficient measure the retardation 
introduced by the investigated model in a small range, between 0° and 20° for instance. 
However, from Fig. 5.8 can be seen that using circular polariscope brings maximum 
deviation of the measurement in this range. On the other hand, the smallest deviation is 
centered at 90° as can be observed from the figure. 

An intuitive approach how to bring minimum deviation to the low retardation 
range is to remove the second QWP from the basic circular polarimeter setup. This can 
be shown mathematically as follow. First we write again equations (5.8) for irradiances 
after passing four different analyzer orientations 
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where we assumed ideal analyzers. These equations were derived for general state (5.5) 
and angles ν  and 2ϕ  were associated with the retardation of the model and with the 
isoclincs angle, respectively. 

When the second QWP is not present then this associations is not valid anymore. 
A new association can be derived using Fig. 5.3 and Fig. 3.10 on page 43. Through the 
investigating of these figures it can be recognized that the first two Stokes parameters 
satisfy 

 ϕννν cossin   and   
2

sin
2

cos 2
22

1 =−= SS . (5.14) 

The retardation θ  of the model in new polarimeter setup is then related to the Stokes 
parameters (5.14) as 

 2
2

2
1arcsin SS +=θ . (5.15) 

Using (5.13) and (5.14) in (5.15) one obtains 
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The equation (5.16) can be now compared with the equation obtained for the circular 
polarimeter (5.9) which is repeated here 
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In the circular polarimeter the minimum deviation of the measured retardation 
from the actual one was observed when irradiances 90I  and 0I  posses the same values 
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which was for retardation 2πυ = . As can be seen from (5.16) now the numerator of 
the arcsin is zero for retardation 0=θ  and hence the retardation deviation is minimal 
there because that arcsin for zero argument has the lowest slope (minimal derivation). 

5.5 Chapter summary 

The current retardation measurements do not include in the mathematical 
algorithm analyzer imperfections. This is mainly because of using a macroscopic 
analyzer with good performances. However, when a micropolarizer array with limited 
parameters is embedded in the measurement setup, analyzers imperfections also need to 
be considered. The integration of the finite extinction coefficient into current 
measurement algorithm was made in the chapter. The special attention was paid for the 
residual stress measurement applications. 
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6 Polarization properties in communication 

Quantum communication provides qualitatively new concepts which are in some 
aspects more powerful than their classical counterparts [31]. The most known novel 
schemes due to quantum communication are the secure exchange of cryptographic keys, 
the increase of channel capacity and the transfer of quantum information between 
distant parties. 

This section is a study of the feasibility for adopting the concepts of quantum 
physics to optical communication. The quantum view on optical communication is 
necessary to properly describe transmissions where a sender encodes information by 
preparing the communication channel into a non-classical state (for example single 
photon transmission). But even in the schemes, where the transmitted information can 
be represented in classical manner, the quantum description offers new possibilities. 
Namely, it gives a recipe in which way the receiver should perform a measurement on 
the channel to ascertain which state was transmitted by the sender with the minimal 
probability of misdiagnosis. 

Before describing quantum communication itself, a basic nomenclature of 
quantum mechanics is shortly presented. A special emphasis is made on describing the 
measurement process from the point of quantum mechanics. 

Section 6.2 with the resulting relation (6.8) was published in [32]. Section 6.3 was 
published in [33] without considering inefficient detectors (quantum efficiency of the 
detector and extinction coefficient of the Wollaston prism). In the section there is an 
extension made to treat an inefficient detector. The nature of background radiation and 
its influence on communication schemas is discussed in section 6.4 which was 
published in [34]. 

Some results (the general relation (6.20) which determines the possible minimal 
error probability) can be compared with papers from other authors [14] and [15]. In [15] 
there is also presented the influence of background radiation on on-off keying schema. 
However, as is discussed in section 6.4, a certain contradiction was found in [15]. 

6.1 Nomenclature 

A quantum system is a useful abstraction which does not really exist in nature. In 
fact, a quantum system is defined only in relation to the problem in which we are 
interested. For example if we are measuring polarization of a photon, the quantum 
system is not a complete photon. It is only the polarization of that photon. The most 
accurate definition of quantum system, unfortunately also the most abstract one, is [35]: 
a quantum system is whatever admits a closed dynamical description within quantum 
theory. 

A quantum state, which mathematically represents quantum system, can be 
defined only in relation to a test (in a particular basis). Then, the state is characterized 
by the probabilities of various outcomes of the given test. Of course, different state is 
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defined (another basis and probabilities) by a different choice of the test, but this state 
describes the same quantum system. For example, a quantum system can be polarization 
of photons. The first test can be performed by placing a linear polarizer after 
preparation device which produces identical polarized photons. Another test can be 
realized simply by a rotation of the polarizer by some angle. In the second test, the state 
will be different from the state in the first test, although the quantum system is the same 
(a well defined polarization). 

As was stated previously, terms quantum system and a test cannot be treated 
separately. A test is called complete if the number of different outcomes obtainable in a 
test of a given system is equal to a maximum number of outcomes. For example, if we 
test a polarization of a laser beam using a linear polarizer whose transmission axis has a 
fixed orientation, then the outcome of this experiment is only one measurement of 
intensity. On the other hand, two measurements of intensity are obtained if the laser 
beam is tested using a Wollaston prism. The latter test is complete test of the given 
system. 

There are two types of states. If a quantum system is prepared in such a way that 
it certainly yields a predictable outcome in a complete test, then a system prepared in 
such a way is called to be in a pure state (for example photons emitted from laser are 
identically polarized). If no complete test has a predictable outcome for a given 
quantum system, the system is said to be in mixed state (in statistical mixture). For 
example, polarization of photons emitted by a thermal source is completely random. 

The choice of a maximal test is analogous to the choice of a coordinate system in 
Euclidian geometry. The pure states which correspond to various outcomes of a 
maximal test are then analogous to unit vectors along a set of orthogonal vectors. 
Hence, it naturally arises that vectors representing pure states form a vector linear 
space. A pure state is usually denoted as |ψ 〉. 

Some quantum systems are in a state which is not completely known. More 
precisely, suppose a quantum system is in one of a number of states |ψ j〉, where j  is an 
index, with respective probabilities jw . The set { jw , |ψ j〉} is called as an ensemble of 
pure states. The density operator for the system is defined as 

 ∑=
j

jjjw ψψρ̂  (6.1) 

and the system is also called to be in a mixed state. From experimental point of view jw  
is the probability that the system will pass a test for state |ψ j〉. 

6.2 Quantum measurement 

Quantum measurement can be viewed as follows. The measuring device is 
composed of two parts. The first one is a separator which has a certain number of 
channels. And the second part is a detector which detects which channel was chosen. If 
some channels are obscured, the measurement device works like a filter. Let us assume 
that the maximum number of outcomes obtainable in a test of a given system is equal to 
four. The complete test is shown in Fig. 6.1c). If the tested system was prepared in such 
a way that only the third channel in Fig. 6.1c) was active, we say that the measurement 
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result is 3b  and the state of the system after measurement is | 3b 〉. Value 3b  is called as 
an eigenvalue or an observable. 

A measuring device with infinitely poor resolution is illustrated in Fig. 6.1 a). No 
information is gained from such a measurement apparatus. The most common case is a 
measurement device with limited resolution. 

The measuring process is mathematically represented by a complete set of 
orthogonal projection operators (von Neumann’s approach), or simply projectors. The 
structure of a projector is | kb 〉〈 kb |. Its action on a state |ψ 〉 results in | kb 〉〈 kb |ψ 〉 which 
is the projection of vector |ψ 〉 along the direction of | kb 〉. 

Let us assume that a quantum system before being measured is in state ρ̂  and 
after measurement being performed is the system in state ρ′ˆ . If the quantum system 
was measured by a measuring device with infinitely poor resolution than [36] 

 ∑∑=′
k

k
k

k bb PP ˆˆˆˆipr ρρ  (6.2) 

where 
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Note that in this special case, output state is identical to the input sate. On the other 
hand, if an ideal measurement device was used, then 

 
kk b

k
b PP ˆˆˆˆir ρρ ∑=′  (6.4) 

and the system after measurement is in a pure state. And finally, when a measurement 
device with limited resolution was used, then 

 ∑==′ ∑
m

mbll
l

l PPPP ˆˆ    whereˆˆˆˆ ρρ  (6.5) 

and m  goes over the channels which cannot be distinguished for a given group l  (see 
Fig. 6.1 b)). In (6.5), we suppressed lower index denoting the type of measuring device 
because (6.5) is a general case and situations (6.2) and (6.4) can be viewed as limiting 
cases of (6.5). 

 

Fig. 6.1. Resolution of measuring device: a) infinitely poor resolution, b) limited resolution, c) ideal 
resolution. 
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Note that using projection operators for describing a measuring process is 
sometimes non-physical. In some cases, after a measurement, a given quantum system 
is destroyed (converted to another one). For example, when photons are measured, they 
are absorbed by a detector. 

Now the amount of information which is gained upon measurement will be 
defined. For this purpose we calculate traces of  iprρ̂′ , irρ̂′  and ρ′ˆ  
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Let us assume that input state is normalized, i.e. 1ˆTr =ρ . Then also, 1ˆTr ir =′ρ  but 
1ˆTr ipr >′ρ  or 1ˆTr ipr <′ρ . This situation is a consequence of the interference (it is not 

certain which channel in the measuring device was chosen and hence different paths can 
interfere). 

At this point, the amount of information gained from a given measurement can be 
defined as 
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where N  denotes number of channels and the trace in numerator is computed according 
to (6.6) and denominator is computed according to (6.8) for the given measurement 
device. As can be seen from (6.6), the numerical value of iprˆTrρ′  depends on the 
quantum system being measured. Relation (6.9) is defined for the quantum system for 
which it reaches a maximum value (a pure state which is an equal superposition of basis 
states | kb 〉 with the identical phases). 

6.3 On-off keying 

In the case of on-off keying (OOK) the detection space is divided into two 
subspaces which are characterized by projectors 
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==
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ξξ 21
ˆ     ,ˆ  (6.9) 

where ξ  is a decision value. Relation (6.9) means that if the outcome of the 
measurement is lesser (greater) than ξ , then the decision of the detector is that bit 0 (bit 
1) was sent. 

Using a closure relation (the measurement device is assumed to represent a 
complete test, hence the eigenstates form orthonormal basis) 
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 1=∑
k

kk bb  (6.10) 

one can write 

 ( ) ( )ξξ 12
ˆ1ˆ PP −= . (6.11) 

The preparation device (transmitter or sender) produces quantum systems which 
carry information. Let us divide these systems into two groups. The first group 
corresponds to the situation when bit 0 was sent and the second group of quantum 
systems corresponds to the case when bit 1 was sent. These two groups are 
characterized by 21 ˆ ,ˆ ρρ , respectively. In other words, the sender encodes information by 
preparing the channel into a well defined quantum state ρ̂  selected from code words 
alphabet { }21 ˆ ,ˆ ρρ . 

The task of the receiver is to make a decision between two hypotheses. First is, 
that the transmitted state is 1ρ̂ . This hypothesis is selected when the measurement result 
corresponds to ( )ξ1̂P . Similarly, the second hypothesis, transmitting of state 2ρ̂ , is 
selected  when the measurement result corresponds to ( )ξ2̂P . One can write for the 
probability of right decision 
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where 1p  denotes the probability that event 0 occurs (bit 0 was sent) and 11 p−  denotes 
the probability of complementary event 1. 

The quantum error probability (QEP) can be then expressed as 

 ( ) ( ).1 ξξ CE PP −=  (6.13) 

Now, the optimization of the detector will be done for the case 5.01 =p . Hence 
we will seek for the minimal QEP. First, we rewrite (6.12) as 

 ( ) ( )( )( ) 2121 ˆˆˆ    whereˆTrˆˆTr
2
1 ρρρρξρξ −=∆+∆= PPC . (6.14) 

Next, we will suppose that states 21 ˆ ,ˆ ρρ  are normalized. Relation (6.14) then yields to 

 ( ) ( )( )( )1ˆˆTr
2
1

1 +∆= ξρξ PPC . (6.15) 

As can be seen from (6.15), the demand for minimum QEP is to maximize the 
term 

 ( )( )ξρ 1̂ˆTr P∆ . (6.16) 

In (6.16), it is hidden how the measurement need to be performed in order to 
minimize QEP. The operator ρ̂∆  expressed in its eigenbasis satisfies 

 mlmllll ,     ,ˆ δρρρρρρ ==∆  (6.17) 
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where vectors lρ  are eigenvectors of ρ̂∆  which correspond to eigenvalues lρ . Using 
(6.17), the term (6.16) can be expressed as 
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Eigenvalues lρ  of ρ̂∆  are real numbers. To maximize (6.18) the positive eigenvalues 

need to be maximized and negative minimized. Probability term  
2

kl bρ  takes values 

1 and 0 if and only if the condition lkkl b δρ =  is hold. Hence the minimum QEP is 
reached when the projector characterizing measuring is in the form 
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From (6.19) one can see that to minimize QEP, the measurement need to be performed 
in basis lρ  and not in the original basis kb . The minimal QEP can be calculated as 

 
( ) ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆−= ∑∑

≥≥ 00
min 1

2
1ˆ1

2
1

ll l
l

l
llEP

ρρ
ρρρρ  (6.20) 

where relations (6.12), (6.16) and (6.19) were used. 

In two following subsections, relation (6.20) will be studied for single photon 
transmission and for a classical OOK. 

Single photon transmission 

The most common situation in single photon transmission is that operators 21 ˆ ,ˆ ρρ  
are in the form 

 222111 ˆ ,ˆ ϕϕρϕϕρ ==  (6.21) 

hence they represent quantum systems in pure states | 1ϕ 〉 and | 2ϕ 〉. 

In the case of single photon transmission, the information is usually represented 
by polarization state of the photon. Let us then express states | 1ϕ 〉, | 2ϕ 〉 as 

 yaxayaxa 2212221111      , +=+= ϕϕ  (6.22) 

where | x 〉 stands for vertically polarized photon and | y 〉 for horizontally polarized 
photon. (Here we used notation | x 〉, | y 〉 rather than | 1b 〉, | 2b 〉 to emphasize that we 
describe polarization states of photons.) For finding EPmin  the eigenvalue equation 
(6.17) needs to be solved. After straightforward calculation, one obtains eigenvalues 
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And using (6.24) 
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The measurement process is then performed in the new basis 
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 ycxcycxc 2212221111      , +=+= ρρ  (6.25) 

where 
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Let us assume the ideal case where vectors | jϕ 〉 are orthonormal. One can see 
form (6.24) that if the measurement is done in this basis, the QEP tends to zero as 
expected. 

As an another example, let us assume two different situations for preparation of 
photons, namely 
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These systems are used to carry information. As a measurement device is used, a 
Wollaston prism is followed by photo diodes (phototubes) for each channel. This 
measurement device is defined by a rotation angle γ  of the prism (see Fig. 6.2) which 
corresponds to its eigenstates | x′ 〉, | y′ 〉. If the angle γ  is zero, then the measurement 
device works in | x 〉 − | y 〉 basis. 

QEP for both types of preparation is depicted in Fig. 6.3 as a function of γ  (see 
curves with parameter 0=E ). 

In the previous discussion, it was assumed that the measuring device consisting of 
a Wollaston prism and two photo detectors is ideal. That means that Wollaston prism 
never misdiagnoses the polarization of incident photons. However, more realistic model 
includes the extinction ratio e  of Wollaston prism. Measurement is then represented by 
following operators 
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Fig. 6.2. Single photon transmission – illustration of states of polarization. 
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Fig. 6.3. Quantum error probability as a function of position of the Wollaston prism. 

Equations (6.29) are more conveniently written in the form 
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where ( )eE += 11  can be interpreted as the probability of misdiagnosis and the 
connection between reference frame and Wollaston prism frame is made by the 
formulas 
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Relation (6.12) is still valid and can be used for calculating the probability of the correct 
decision. After substituting of (6.30) into (6.16), one obtains 

 ( )( ) ( ) .1ˆˆTr 1 ∑∑ ′+′−=∆
l

ll
l

ll yExEP ρρρρξρ  (6.32) 

The expression on the left in (6.32) reaches the maximum when conditions 

 21   and  ρρ =′=′ yx  (6.33) 

are met. Hence the optimal measurement basis is the same as in the case of ideal 
detection ( 0=E ) and the minimal QEP is expressed as (using (6.13), (6.15), (6.32) and 
(6.33)) 

 ( )( )EEP E 21min 11
2
1 ρρ +−−=  (6.34) 

where eigenvalues 2,1ρ  are defined in (6.23). For the case when photon states are 
orthogonal, that is | 1ϕ 〉 = | x 〉 and | 2ϕ 〉 = | x 〉, one obtains the error probability EP E =min  
as expected. QEP for the case of 1.0=E  and two distinct preparations (6.28) is shown 
in Fig. 6.3. 

 



 Polarization properties of light in interferometry 
 

 - 83 - 

Classical OOK 

If a light source emits a huge number of photons, the whole system of these 
particles can be written using a Fock space [35]. In particular, if λ,kn  is the number of 

photons in state λ,k , where k  denotes wave vector and λ  polarization, then the 
normalized basis states in Fock space are 

 ( ) ( )∏ +−=
λ

λλλ
,

,
21

,, 0!......
k

kkk
nann  (6.35) 

where |0〉 denotes normalized state which contains no photons and +
λ,ka  denotes creation 

operator for a given mode (the action of +
λ,ka  on |0〉 results in one photon being in the 

given mode). 

Laser radiation will be assumed for now. Hence, there is only one possible state in 
which photons can occur so we can write 

 ( ) ( ) 0! 21 nann +−= . (6.36) 

A coherent state is usually expressed in the basis (6.36). The reason for the choice 
for this basis is that the measurement is most often performed in this basis (a photo 
diode simply counts photons). The next task is then to find coefficients which specify a 
coherent state. These coefficients can be found easily because it is well known from 
classical physics that probabilities of finding exactly n  photons in the coherent state 
satisfy Poisson distribution. Using this outcome of classical physics is not in conflict 
with the concept of quantum mechanics. The reason is following. The result of a 
measurement of a quantum system must be expressed in the classical way. This 
statement is given by the fact that measuring devices are classical (macroscopic). 

From the mentioned condition of Poisson distribution, one can deduce 
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n
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where |α 〉 denotes the coherent state and n=2α  denotes average number of photons 
in state |α 〉. From the superposition principle, one obtains a familiar formula 
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Note that using (6.36) and (6.38) one can show that |α 〉 is an eigenstate of +a  with 
eigenvalue α  which is in fact a rigorous definition of coherent state. 

The bit 0 is represented by a quantum system in state |0〉 (no laser pulse was sent) 
and bit 1 is represented by a system in state |α 〉 (laser pulse was sent). The two 
projectors in the number basis are then expressed as (so called Kennedy receiver [14]) 
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Substituting in (6.12) and assuming that 5.01 =p  one obtains 
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The error probability as then 

 n
EP −= e

2
1  (6.41) 

which is well known formula in the classical theory in which the field is assumed to 
have cosine form and the detection process is viewed as a discrete process. 

However for EPmin  one obtains 
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The difference between (6.41) and (6.42) is that in the case of (6.41), the 
measurement is done in number basis (the detector is a simple photo diode) and in the 
case of (6.42), a measurement is performed in a different basis, which can be 
determined by using preceding relations. However, each basis state in this new basis is a 
certain superposition of number states and hence such detector is hard to realize in 
practice. (In [14], a detection was described where a certain system preceding photo 
diode performs a unitary operation on the receiving photons which yields to the optimal 
detection. However, this unitary operation was only described mathematically without 
possible experimental setup.) 

The relations (6.41) and (6.42) are plotted in Fig. 6.4 on the left and on the right, 
respectively (see the case with parameter 0=BRn , the other curves will be discussed 
further). 

In the previous description of the direct detection, it was assumed that every 
photon arrival is registered as a photocount. However, more realistic model includes 
quantum efficiency η  of the detector. 

 

Fig. 6.4. Probability of error for classical OOK as a function of mean number of photons in the coherent 
state and with the mean number of photons in the background radiation as the parameter. 
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Fig. 6.5. Representation of an inefficient photo detector using beam splitter and perfect detector. 

Inefficient photo detector can be represented as a perfect detector preceded by a 
lossless beam splitter with transmission coefficient 21η=T  as it shown in Fig. 6.5 [29]. 

The two input fields of beam splitter are then in states |α 〉 and |0〉. The field 
which impinges on perfect photo detector is then αη 21 . The relations (6.41) and 
(6.42) including quantum efficiency can then be found in forms 

 n
EP η−= e

2
1  (6.43) 

and 

 ⎟
⎠
⎞⎜

⎝
⎛ −−= − n

EP ηe11
2
1

min . (6.44) 

6.4 Background radiation 

In free space optics, background radiation plays an important role. Background 
radiation can be seen as a special type of light source. The number of irrelevant degrees 
of freedom depends on used measuring device. If a photo diode is used as a measuring 
apparatus, then the measurement is performed in basis |n〉. Hence, the density matrix 
specifying background radiation source in the number state representation has a 
diagonal form 

 

?000
0?00:
00?01
000?0

ˆ..1ˆ0ˆ

n

nρρρ

. (6.45) 

The remaining matrix elements can be obtained by using the following consideration. 
The statement that photo diode registers exactly n  photons means that events 

1 ..., ,2 ,1 ,0 −= nn  do not occur. In other words, diagonal elements of ρ  are equivalent 
to the question: how many independent attempts are needed to make until an event n  
occurs. Hence, one can guess that the required probability distribution is negative 
binomial distribution given by following formula 
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⎝

⎛
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= mpxpp
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mx

xf i
xmi

i
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where p  denotes probability of occurrence of an event n  (exactly n  photons are 
detected) and m  denotes the number of occurring events n . In our task 1=m . If the 
condition 1=m  is met, then one obtains from (6.45) 

 ( ) ( ) ix
i ppxf −= 1 . (6.47) 

Probability distribution (6.47) is called as geometric distribution. 

The diagonal elements in (6.45) then satisfy (6.47) where nxi ≡ . 

Up to now, the background radiation was not quantitatively characterized. To 
solve this problem, we calculate the average value and the variation of geometric 
distribution 

 ( ) ( ) 2

1 ,1
p

pXD
p

pXE −
=

−
= . (6.48) 

Now, one can deduce according to the analogy with Poisson distribution that the 
average in (6.48) characterizes background radiation. So one can equate 

 ( ) BRnXE =  (6.49) 

where BRn  denotes the average number of photons of background radiation. Using 
(6.48), one can calculate 

 
BRn

p
+

=
1

1 . (6.50) 

Let us now assume classical OOK which was discussed in the preceding section 
when the background radiation is present. The coherent state itself is described by 
density operator cohρ̂  which is obtained using (6.1) and (6.38). Background radiation is 
characterized by density matrix 

 ∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++
=

n

n

BR

BR

BR
BR nn

n
n

n 11
1ρ̂ . (6.51) 

Let us as an example, choose 2.0=BRn  and 1=cohn  then one obtains following 
matrices in number state basis (we dropped the operator notation for the matrix 
representation of operators) 

 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

......
0153.00307.00531.00751.00751.0
0307.00613.01062.01502.01502.0
0531.01062.01839.02601.02601.0
0751.01502.02601.03679.03679.0

...0751.01502.02601.03679.03679.0

cohρ  (6.52) 

and 
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00039.0000
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BRρ  (6.53) 

where only first elements were shown (number basis is infinite). The state space of the 
composite system (coherent field and background radiation) is the tensor product of the 
spaces of the components. Moreover, the joint state of the total system is cohBR ρρ ⊗  
with the basis cohBR nn ⊗ . This basis can be also written as 

 cohBRBRBRcohcoh nnnnnn ... 1 ,0... ,1... 11 ,10 ,0... ,01 ,00  (6.54) 

where first number corresponds to the background radiation and second to the coherent 
field. The detector, however, does not distinguish between laser source photon and 
background radiation photon. The detector simply works in |n〉 basis. Matrix cohBR ρρ ⊗  
expressed in basis |n〉 is then 
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⎟
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⎟
⎟
⎟
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⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
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0834.01613.02679.03577.03066.0

...0626.01252.02168.03066.03066.0

ρ . (6.55) 

The analytical expression of cohBR ρρ ⊗  can be found as follow. Using (6.38) and 
(6.51), one can write 

 ( )∑ ∑∑ ⊗⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++
=⊗

∗
−

n l m

ml
n

BR

BR

BR
cohBR mlnn

ml
e

n
n

n !!11
1 2 ααρρ α . (6.56) 

The tensor product mlnn ⊗  can be written in the form mnln ,, . As was 
stated previously, only the total number of photons is relevant for the photo detector. 
Hence the matrix elements of the total system expressed in this measuring basis are 
given by 
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The formula (6.57) can be put into the final form 
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Now the relation (6.12) and (6.13) can be used to calculate EP . The projection 
operator appearing in (6.12) is given by (6.39). The operator 1ρ  represents situation 



 Polarization properties of light in interferometry 
 

 - 88 - 

when no laser pulse was sent (bit 0). From the detector point of view, this corresponds 
to operator BRρ , hence 1ρρ =BR . On the other hand, bit 1 is represented by 2ρρ = . The 
probability EP  is shown in Fig. 6.4 for different BRn . 

The minimal error probability EPmin  which can be achieved by a suitable choice 
of measuring basis is calculated using (6.20) where lρ  are positive eigenvalues of 
matrix ρρρ −=∆ BR . The probability EPmin  is plotted in Fig. 6.4 on the right. 

As can be seen from Fig. 6.4, when the optimal measurement basis is used, the 
error probability is not so influenced by an increasing background radiation. The reason 
for this is that the optimal basis can distinguish relatively well between a pure coherent 
state and background radiation which is in a mixed state. 

The same problem (influence of background radiation) was presented in [15]. The 
matrices ρ  and BRρ  for the case 1.0=BRn  and 1=cohn  are in [15] expressed as 
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⎟
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ρ  (6.59) 

and 
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BRρ  (6.60) 

respectively. The matrix (6.60) describing background radiation itself has the same 
form also in our case when relation (6.51) is evaluated. However, matrix ρ  (coherent 
signal with the presence of background radiation) evaluated with using the concept 
described in the section (now for the parameters 1.0=BRn  and 1=cohn ) has in our 
case following matrix elements 

 

⎟
⎟
⎟
⎟
⎟
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⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

......
0740.01208.01580.01365.0
1208.02004.02669.02365.0
1580.02669.03648.03344.0

...1365.02365.03344.03344.0

ρ . (6.61) 

A disagreement between (6.59) and (6.61) can be found. Let us recall the matrix 
(6.55) for coherent radiation itself where the first two diagonal elements are equal to 
0.3679 and which represent probabilities of finding zero and one photon in the coherent 
state. Obviously, background radiation cannot increase matrix element ( )1,1ρ  as can be 
seen in (6.59). Hence, matrix (6.59) cannot properly describe the situation. Note that 
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only analytical formula (without derivation) for calculating matrix elements of ρ  is 
presented in [15]. 

Now, we will discuss single photon transmission when background radiation is 
present. In this case, the measurement device consists of a Wollaston prism and a 
photodetector for each refracted beam (see Fig. 6.6 on the left). Because in this case the 
measurement device is sensitive on polarization, density matrix (6.51) for background 
radiation needs to be expressed in a new basis according to 

 ( ) ( )∑ ++
+

⋅
+

=
yx

y

y

x

x

nn
yxyxn

y

n

y
n

x

n
x

BR nnnn
n

n

n
n

 ,
11  , ,

11
ρ  (6.62) 

where xn  and yn  denotes mean numbers of horizontally and vertically polarized 

photons, respectively. One can assume that 2BRyx nnn == . 

The source produces two quantum systems 1ρ  and 2ρ  which represent bit 0 and 
1. In order to find the minimal error probability, one needs to find positive eigenvalues 
of 

 ( )BRBRn ρρρρ ⊗−⊗ 21Tr  (6.63) 

where the tracing is over photon number. In (6.63), it was considered that the detection 
outcome is x (bit 0) if photocurrent yx II > . Therefore matrix (6.63) is expressed in 
polarization basis and has dimension two. As a concrete example, we will assume that  

xx=1ρ  and yy=2ρ . Eigenvalue problem (6.63) was than numerically solved 
with results shown in Fig. 6.6 on the right. Note that the optimal measuring basis (such 
an angular orientation of Wollaston prism that error probability is minimal) is not 
influenced by background radiation. 

 

 

Fig. 6.6. Schema of the detector for single photon transmission and evaluated error probability as a 
function of background radiation strength. 
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Quantum communication – refinement 

The previous description was limited to the description of experiments that use 
time-independent light beams. To incorporate time dependency the conversion of 
discrete mode field operators to the continuous operators is needed. Such a formal 
conversion can be found in [29]. For example, a single photon is then represented by a 
photon-wavepacket creation operator which is specified by a spectral amplitude 
function with a given bandwidth and the time at which peak of the pulse passes the 
coordinate origin (where the detector can be assumed to be placed). If the measuring 
time is not large enough in comparison with width of the pulse, then the photon need 
not to be detected. Clearly the detection probability can be incorporated into quantum 
efficiency of the detector as was done for on-off keying. 

In the case of single photon transmission, the time dependency can be ignored 
with the additional assumption that the detector is activated at the time when the photon 
is expected (the time at which peak of the pulse passes the detector). The duration of the 
activation time corresponds to the bandwidth of the pulse. 

6.5 Chapter summary 

An attempt of using some basics of quantum theory in optical communication was 
made in the chapter. Main result is a procedure prescribing a measurement basis in 
which the minimal QEP is achieved. This procedure was applied to the simplest 
communication protocols where also background radiation was included.
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7 Summary 
 

The topic of the doctoral thesis was investigation of polarization imperfections of 
optical components which are used to control and transform polarization of light. The 
theoretical results of this investigation were then applied to different fields which 
exploit light polarization. 

The first application, were the achieved results were applied to, were 
arrangements for high-resolution measurement of vibrating targets, i.e. interferometrical 
vibrometers. The required directional information can be acquired by making 
appropriate use of the polarization properties of the light beams brought to interference. 
In such arrangements, it is not generally possible to fix a mirror on the surface under 
consideration and as a result, the light returning from the target will be far from an ideal 
laser field. The spoiling effect on the interferometrical signal due to this real surface is 
well known. However, only non-depolarizing surfaces were treated in the literature. 

We showed how depolarizing surfaces influence the interferometrical signal in the 
speckle regime. However, the main original contribution to the vibrometry which was 
made in the thesis, was eliminating of speckle field using a suitable imaging optics. In 
fact, we showed, that when illuminating beam is focused sharply on the target then the 
fundamental mode dominates in the backscattered field and has properties of the 
illuminating beam even for depolarizing targets. Our results were published in [16] and 
[17]. Next, we showed how periodic deviations, i.e. errors due to the polarization 
imperfection of retarders, beam splitters and linear polarizers, can be, in the first 
approximation, eliminated directly in the optical part of the vibrometer. Only measuring 
method of properties of these devices was published in [24]. However, the possibility of 
the direct elimination of periodic deviations was used in a research project at Pforzheim 
University which goal was development of a laser vibrometer with a novel architecture. 

The achieved author results in the vibrometry gave motivation to investigate 
polarization imperfections in polarimetry, i.e. interferometric measurements for the 
determination of stress-induced birefringence in transparent materials. The main 
contribution of this investigation is an innovation of the current algorithm which is used 
in order to determine the retardation of the investigated material. This result will be 
used in the another project which is currently running at Pforzheim University. 

Polarization imperfections play also an important role in optical communication, 
especially in quantum optical communication where the polarization is used to encode 
the transmitted information. The obtained results, namely a procedure of prescribing a 
measurement basis in which the minimal error probability is achieved and the structure 
of background radiation, were published in [32], [33] and [34]. Author wish also to 
note, that these results was discussed with Markus Aspelmeyer from the institute of 
quantum information and computation in Vienna. 

And finally a quantum description of optical devices used in interferometry was 
given in the thesis and was published in [28]. 
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