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Abstract

A single trapped ion has proved to be one of the most convenient physical
systems to realize and experimentally control the quantum bit, which is
implemented as a superposition of a two-level system between two distinct
energy levels. Additionally, the perfect isolation from surrounding environment
of a single ion in a Paul trap placed in vacuum chamber provides a way to
experimentally realize the harmonic oscillator level scheme. Together, these
two physical systems allow for experimental realization of Jaynes-Cummings
and anti-Jaynes-Cummings interactions, which provide a deterministic control
over the motional degree of freedom in means of atom-light interaction. Such
experimental systems have already been proven useful for enhanced quantum
sensing, quantum computation, quantum communication and other areas of
recent scientific interest.

This thesis summarizes our experimental work devoted to generation and
control over the non-classical quantum states of motion. The discrete building
blocks of such states are the number states with exactly defined amount of
energy. In the first presented experiment, we realize a generation of number
states, with a main focus on characterization of their non-classical properties
with respect to the controllable amount of added thermal energy. The crucial
concept implemented to states’ characterization is a ’quantum non-Gaussianity’,
which sets the limit on states achievable by application of any combination of
coherent displacement or squeezing on a ground state. The results uncover that
even for the sufficiently high amount of added thermal noise the crucial quantum
non-Gaussian features are preserved, and such states can provide a significant
enhancement of metrological sensitivity.

Additional two experiments present a novel method of non-classical states
generation which takes advantage of the increasing initial thermal energy. The
heart of the generation process lies in the repetitive application of Jaynes, or
anti-Jaynes-Cummings interactions to the initial thermal state. The motional
population eventually converges towards the determined mixture of discrete
energy levels, a process which we denote as an ’accumulation’. By evaluation
of criteria of non-classicality and quantum non-Gaussianity, we prove that the
overall amount of the non-classical aspects in resulting states is clearly enhanced
by the repetition of the deterministic interaction process and also by increasing
energy of the initial thermal distribution.

Keywords: quantum state, quantum non-classicality and non-Gaussianity,
Jaynes-Cummings and anti-Jaynes-Cummings interaction, trapped ion,
mechanical oscillator
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Anotace

Jednotlivé atomy držené v Paulově pasti patří k nejvhodnějších fyzikálních
systémům pro experimentální kontrolu kvantového bitu, který je realizován jako
superpozice dvouhladinového systému mezi dvěma rozdílnými energetickými
hladinami. Dokonalá izolace atomu od okolního prostředí v Paulově pasti
umístěné ve vakuové komoře umožňuje také realizovat hladinové schéma
harmonického oscilátoru. Vzájemným provázáním pohybového stuplně volnosti
a dvouhladinového systému vzniká možnost realizace Jaynes-Cummings a
anti-Jaynes-Cummings interakcí, které poskytují deterministickou kontrolu
pohybového stupně volnosti s využitím principů interakce záření a látky. Tyto
experimentální interakce se ukazují jako užitečné pro vývoj kvantových sensorů,
kvantovém počítání, komunikaci a v dalších oblastech souvisejícího výzkumu.

Tato disertace shrnuje naši experimentální práci věnovanou tvorbě a
kontrole neklasických kvantových stavů pohybu. Základem těchto stavů
jsou číselné stavy pohybu s přesně definovanou energií. V prvním
z prezentovaných experimentů realizujeme generaci těchto číselných stavů
a zaměřujeme se především na charakterizaci jejich neklasických vlastností
v souvislosti s množstvím přidané tepelné energie. Klíčovým konceptem
použitým k charakterizaci vytvořených stavů je ”kvantová ne-Gaussovost”,
která určuje, jestli je možné dané pohybové stavy vytvořit pomocí kombinace
koherentních operací nebo stlačení aplikovaných na základní stav. Výsledky
experimentu ukazují, že i při výrazném množství přidaného tepelného šumu
jsou klíčové ne-Gaussovské vlastnosti zachovány, a vytvořené stavy mohou
poskytovat významné zvýšení metrologické citlivosti.

Další dva experimenty představují novou metodu generace neklasických
stavů pohybu, která využívá počáteční termální energii vstupního stavu
oscilátoru. Základním principem generace je opakovaná aplikace Jaynes nebo
anti-Jaynes Cummings interakce na počáteční termální pohybový stav. Populace
pohybových stavů směřuje k přesně dané směsi diskrétních energetických
hladin, což je proces, který definujeme jako ”akumulace”. Výpočtem kritérií
neklasičnosti a kvantové ne-Gaussovosti se podařilo dokázat, že celkové
množství neklasických vlastností ve vytvořených stavech se zvyšuje smnožstvím
opakování interakce a také s rostoucí energií počátečního termálního stavu.

Klíčová slova: kvantový stav, kvantová neklasičnost a ne-Gaussovost,
Jaynes-Cummings a anti-Jaynes-Cummings interakce, chycený ion, mechanický
oscilátor
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1. Introduction

The quantum mechanical treatment of light and matter, as we know it today,
dates back to beginning of the 20𝑡ℎ century. In 1905, Albert Einstein described
the experimentally observed photoelectric effect in means that the energy
exchanges only in discrete packets, where the energy itself is quantized with
frequency [1]. Later in 1926, Erwin Schrödinger came up with his description
of wave mechanics, describing the quantum states as wave functions having
certain amplitudes and phases, which may mutually interfere in constructive or
destructive way [2]. Although his equation is well capable to describe some of
the light-atom interactions at the single-atom level, Schrödinger himself assumed
that the experimental control over single atom will never be experimentally
feasible, as he once proclaimed that ’We never experiment with just one electron
or atom or (small) molecule. In thought-experiments we sometimes assume that
we do; this invariably entails ridiculous consequences...’ (1952) [3]. Just one
year later in 1953, Wolfgang Paul proposed the way to confinement of charged
particles with use of the electric fields, today well known as a Paul trap [4]
capable of trapping single charged atoms. A later advent of the laser technology
(1958) [5] provided the narrow frequency light sources that made it possible to
employ the light atom interactions. In 1978, the first laser cooling techniques
were successively experimentally demonstrated [6, 7]. The first observation of a
single barium ion in a radio-frequency Paul trap was then reported in 1980 [8].

Since then, the ability of controlling single ion system has hugely
extended, finding the practical implementation in broad range of scientific areas.
A significant advantage of the trapped ion quantum systems, with respect to
other broadly employed platforms such as quantum dots [9], superconducting
[10] or photonic qubits [11, 12], is a good isolation from the surrounding
environment and thus the partial resistance to the decoherence effects. Narrow
linewidths of transitions within the electronic level structure provide that the
ion is well addressable with conventional laser technology, and allows for
various ways of manipulation with the internal states. Last but not least, the
electronic level structure, as well as other physical properties, remain fixed for
each single atom of the corresponding isotope, which guarantees the mutual
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indistinguishability of employed quibits, being a fundamental condition to create
entangled quantum states [13, 14].

A list of broad application of trapped ion systems contains optical atomic
clocks [15], quantum computation [16], simulation [17], communication [18]
and also fundamental research [19]. This involves, for example, the engineering
of motional quantum states in mutually coupled two-level system of the
ionic electronic level structure, and the oscillatory normal mode of motion
corresponding to the pseudo-potential originating from the external electric
potentials at the electrodes of the Paul trap [19]. The basic interaction limit takes
into account the fact, that after performing the laser cooling, the motional energy
is efficiently subtracted to the regime where the quantized energy structure
of the harmonic oscillator has to be taken into account. In such a case, we
can investigate the probability of population for each energy level separately.
The amount of residual thermal energy is often expressed as the equivalent of
temperature, which typically reaches the scales of 10−3 K, which is close to the
limit of absolute zero. The mechanical oscillator state of a trapped ion can be
conveniently coupled with the ion’s internal electronic levels [19], forming a
joined Hilbert space where the motion can be detected and manipulated as a
frequency modulation in the spectrum.

The term ’non-classical’ state of motion in this work refers to the discrete
energy distribution of motion incompatible with any mixture of displaced
ground states of the oscillator [20]. We present several approaches where such
nonclassicality can be controllably engineered with non-linear interactions. The
’quantum non-Gaussian’ states represent the subclass of non-classical states
that is beyond all mixtures of squeezed displaced oscillator ground states
[21]. High quality quantum non-Gaussian states are in most experimental
scenarios hard to prepare and observe. A well known property of a subclass of
quantum non-Gaussian states is the negativity of the Wigner quasi-probability
distribution function, however, it is not the necessary condition for the
state to be non-Gaussian. In experiments considering single photons or
the quantized motion in trapped atom, a specifically derived criteria can be
conveniently used to characterize non-classical and non-Gaussian properties
from the reconstructed population and detect them even in the presence of
processes which destroy the negativity of Wigner function, such as losses or
addition of thermal noise [22, 23].

Physically, the non-classical states of atomic motion can be employed in
applications focused on experiments involving quantummetrology and quantum
enhanced sensing [24–26], and quantum error correction [27–30]. It also finds
it’s applications in treating quantum engines [31, 32], or in simulation of many
body interaction models and corresponding phase transitions [33].

The presented work focuses on engineering, measurement, and
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characterization of non-classical and quantum non-Gaussian states of motion,
implemented on the mode of motion of single 40Ca+ ion held in a Paul trap. The
non-classical properties of generated quantum states are evaluated from the
measured distributions of motional populations. The presented results originate
from three experiments, where two of them are already published in [34, 35],
and the last measurement is currently being prepared for publication.

The outline of this work goes as following. Chapter 2 summarizes the
basic physical principles of ion trapping and light matter interactions at the
level of single trapped ion interacting with coherent light. In the Lamb-Dicke
regime, the coupling is limited only on carrier interaction, red and blue
sideband transitions, where the last two are denoted as Jaynes and anti-Jaynes
Cummings interactions. We also present there the fundamental definitions of
mechanical non-classical and quantum non-Gaussian states and possibilities
of their unambiguous witnessing. Chapter 3 then focuses on methods of the
experimental control, describing mainly laser cooling, motional engineering and
motional state readout. Each of the following three chapters is then devoted to
a single experiment involving the manipulation with ion’s motion in order to
create and characterize mechanical non-classical states. In particular, Chapter 4
is based on the results published in the reference [35]. The measurement focuses
on generation of number states of motion and characterization of their quality
with respect to losses caused by recoil heating and experimental imperfections.
Chapter 5, based on the article [34], focuses on creation of non-classical statistical
mixtures by repetitive anti-Jaynes interaction, where we demonstrate that the
amount of non-classicality can be enhanced with initial thermal energy present
in the system. Chapter 6 presents measurements which are implemented with
use of Jaynes-Cummings interaction. We prove that the subtraction of the single
quantummay lead to enhancement of non-classicality, which is also being driven
with thermal energy. Together, these results implicate that the non-classical
statesmay not always suffer from high temperatures, but they can actually, under
certain circumstances, benefit from them.



2. Mechanics with a trapped ion
oscillator

The basic physical principles of the presented experiments consider coupling
between the internal two-level system of the ion’s electronic energy level
structure, and the motional quantum oscillator scheme, which is induced
externally by the electric field trap potentials. In this Chapter, we present and
discuss the basic theoretical concepts, which are necessary to understand and
discuss the physics of the implemented experiments and measured results.

We begin with discussion of the 40Ca+ ion (Sec. 2.1) and energy level
scheme of relevant low-lying valence electron energy levels. (Sec. 2.2). Further,
we shift towards description of two-level system and mechanical quantum
harmonic oscillator scheme, including the Lamb-Dicke approximation relevant
for the presented experimental regimes (Sec. 2.7). Finally, we include the basic
definition of state’s non-classicality and quantum non-Gaussianity, which is
important for understanding of the realized states of trapped ion mechanics.

2.1 Physical properties of 40Ca+ ion
Calcium is the species which is commonly used for experiments in ion trapping
community. Other elements also used for trapping experiments are Be, Mg,
Ca, Sr and Ba, where the basic differences between the species lie in increasing
atomic mass and also decreasing frequency differences between the transitions.
All of these chemical elements belong to the group of alkali-earth metals.
Additional elements, commonly used for the experiments of the similar type and
not belonging to the alkali-earth group, are Aluminum (Al), Indium (Id), and
Ytterbium (Yb). Typically, these species are being advantageously employed in
experiments implementing atomic optical clocks [36, 37].

A particular choice of the calcium species is justified by simple accessibility of
the energy transitions with use of the conventional laser technology. Especially,
the electronic level structure provides the narrow linewidth dipole-forbidden
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transition in the range of visible spectrum at wavelength 729 nm, which is
commonly being used for experiments in quantum metrology and quantum
motional manipulations with light. On the other hand, in the implementations
limited by photon recoil, the relatively small mass of calcium increases its
probability.

Another beneficial feature of calcium is it’s high attainability in nature.
Calcium as a chemical species is the fifth most abundant element in Earth’s
crust, and the third most abundant metal at the same time [38]. Considering
the stable isotopes, the 40Ca+forms the most common one, reaching the 96.94 %
abundance [39, 40]. Another stable isotope is 44Ca+, with the occurrence among
the other isotopes reaching 2.09 %. All the other stable isotopes, particularly
42Ca+,43Ca+,46Ca+ and 48Ca+ are populated with the probability less than 1 %.

Basic physical quantities related to 40Ca+ are as following. The standard
atomic mass is the 40.078(4) amu [39], the nuclear spin of this particular isotope
is zero, and so the hyperfine splitting does not occur. Since the number of protons
and neutrons is equal, the isotope is observationally stable [40].

2.2 Electronic level structure
The Fig. 2.1 presents all optical transitions within the lowest lying electronic
states relevant for the experiments presented in this work. We employ dipole
transitions at wavelengths 𝜆 = 397, 866 and 854 nm and a quadrupole transition
at 729 nm. In the following Sec. 2.3, we briefly describe the principles of coupling
on the dipole and quandrupole transitions.

In Table 2.1, we summarize the wavelengths and lifetimes of 40Ca+energy
level transitions, which we implement in our experiment. The presented data
are taken from references [41–44], and the values in brackets correspond to their
uncertainties.
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4S1/2 

4P1/2 

4P
3/2
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3D3/2 
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40Ca+

Figure 2.1: Energy level scheme of 40Ca+ion, with transitions employed in the
experiment. Transitions used for Doppler cooling (397 nm, 866 nm), qubit manipulation
(729 nm) and population re-shuffling to ground state (854 nm). Exact values of
wavelengths and also the lifetimes of energy levels are written in the Table 2.1 .
Transitions at 397 nm, 866 nm and 854 nm are dipole transitions described with dipole
vector 𝑑𝑒 (Eq. 2.3) , and 729 nm is a quardupole transitions (Eq. 2.4).

2.3 Dipole and quadrupole transitions in
40Ca+ atom

In order to describe the laser interaction with the atomic valence electron, we
view the electronic transitions in terms of electric multipole expansion, which is
in detail described for example in [45, 46]. The crucial part of the total interaction
is the Hamiltonian describing the coupling between the atom and the electric
field, denoted as 𝐻𝐴𝐸. This can be expressed in terms of the electric field vector
E(r) and the atomic polarization dipole vector P(r) as

𝐻𝐴𝐸 = −∫𝑑3𝑟P⊥(𝑟) ⋅ E⊥(𝑟) + 1
2𝜖0

∫𝑑3𝑟[P⊥(𝑟)], (2.1)

where E⊥(𝑟),P⊥(𝑟) are transversal parts of the electric field and polarization
vectors, and the center of mass of the system lies at point r = 0. The first term in
Eq. 2.1 describes the mutual coupling with the atomic polarization density, and
the second term describes the atomic self-energy from the polarization coupling
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transition |𝑒⟩ → |𝑔⟩ dip/quad 𝜆 (nm) lifetime of |𝑒⟩ transition rate (𝑠−1)
4𝑃1/2 → 4𝑆1/2 dip 396.959(1) 6.904(26) ns 1.3553(40) ⋅108
4𝑃1/2 → 3𝐷3/2 dip 866.452(5) 6.904(26) 9.45(10) ⋅106
4𝑃3/2 → 4𝑆1/2 dip 393.478(1) 6.639(42) ns 1.3923(41) ⋅ 108
4𝑃3/2 → 3𝐷3/2 dip 850.036(5) 6.639(42) 9.834(36) ⋅ 106
4𝑃3/2 → 3𝐷5/2 dip 854.444(5) 6.639(42) 8.752(32) ⋅ 106
3𝐷5/2 → 4𝑆1/2 quad 729.3478 1.163(11) s 0.8598(81)
3𝐷3/2 → 4𝑆1/2 quad 732.5905 1.194(11) s 0.8376(79)

Table 2.1: List of available transitions of 40Ca+ion in the energy level structure depicted
in Fig. 2.1. The dipole transitions (dip) at 397 nm, 866 nm, 854 nm and quadrupole
(quad) 729 nm transition are physically implemented in the experiments, while the other
transitions at 393 nm, 850 nm and 732 nm are unused, and they are written here only
to form a complete picture of transitions achievable within the experimental routine.
Lifetime of the excited state defines the average time which it takes for an electron
to spontaneously decay into the lower energy level which leads to a photon emission.
Transition rate determines the probability of spontaneous emission at the particular
transition.

to it’s own field. The second self-interaction term in Eq. 2.1 can be omitted for
further investigations, and the first term describing the atom-field interaction
can be expanded with use of Taylor series. In this way, the Hamiltonian in the
Eq. 2.1 can be expressed in the form of mutipole expansion as [45]

𝐻𝐴𝐸 = −d𝛼𝐸⊥𝛼 (0) + Q𝛼𝛽𝜕𝛼𝐸⊥𝛽 (0) − O𝛼𝛽𝛾𝜕𝛼𝜕𝛽𝐸⊥𝛾 (0) + ... (2.2)

where the terms denote dipole, quadrupole and octupole expansion elements,
and 𝑑𝛼, 𝑄𝛼𝛽 and 𝑂𝛼𝛽𝛾 are the corresponding moment vectors. The dipole
moment

d𝛼 = −𝑒 ⋅ r𝑒,𝛼, (2.3)

defines the oscillation to be in linear axis denoted as𝛼, proportional to the electric
charge. The quadrupole moment can be expressed as a tensor in a form

Q𝛼𝛽 = −12𝑒(r𝑒,𝛼 ⋅ r𝑒,𝛽 −
r2𝑒
3 𝛿𝛼𝛽), (2.4)

which also describes the oscillations in transversal directions denoted with
vectors r𝛼, r𝛽. For the considered transitions of the 40Ca+ atom, the leading
multipole terms are the dipole and quadrupole one, and the higher order parts
of the Eq. 2.2 can be neglected.

In the lowest-order dipole interaction description, the incoming
electromagnetic wave with the amplitude 𝐸(𝑟) = 𝐸0𝑒𝑘𝑟−𝜔𝑡, with wavevector
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k, maximal amplitude 𝐸0 and the angular frequency 𝜔 drives the oscillation
in the atomic electron, which has a charge 𝑒− and the orientation 𝑟𝑒,𝛼. The
oscillating dipole then decays through the emission of the single photon. In
multilevel atoms, the polarization of the scattered photon is simultaneously
dependent on the spatial orientation of the dipole and the polarization state
of the incoming electromagnetic wave. The strength of the dipole interaction
is directly proportional to the field amplitude, as described by the first term in
Eq. 2.2. In the energy level scheme of the employed 40Ca+ atom, all transitions
except of the one at 729 nm can be described by the dipole approximation,
because of the negligible contribution of the quadrupole and higher parts of
the multipole expansion. The 3D5/2 → 4S1/2 transition at 729 nm is denoted
as quadrupole transition, because it has zero matrix elements of the dipole
transition in the Eq. 2.36 (see Sec. 2.9) and the quadrupole term is the fist
non-zero matrix element.

Fundamental difference between the dipole and quadrupole transition also
lies in the excited state’s lifetime, and consecutively the line width of the
particular transitions and the overall experimental ability to achieve efficient
atom-photon coupling. The average lifetimes of the employed transitions are
written in Table 2.1. Due to the short lifetime of the excited level 4P1/2, which is in
order of nanoseconds, transition at 397 nm becomes suitable for the fluorescence
detection, and also theDoppler cooling routine, which is used to reduce the initial
oscillation energy (see details in Sec 2.8). On the other hand, the slowly-decaying
excited state of the 3D5/2 → 4S1/2 quadrupole transition is suitable to realize the
quantum bit and the coherentmanipulationswithmechanical states, as described
in the following Sec. 2.4 and Sec. 2.10.

2.4 The two-level approximation
The two-level system approximation is an idealization of the electronic level
structure, where only the single transition between two energy level is taken
into account. The practical implementation in 40Ca+atom can be approximated
by considering particular Zeeman sub-level within the 4S1/2 ground state and
the excited state 3D5/2. The fundamental condition to justify the two-level
approximation is the frequency of the electromagnetic field inducing the
interaction to be close to resonance, and that the corresponding Rabi frequency
of the interaction is much smaller than detuning with respect to the neighboring
off-resonant transitions.

We denote the ground state of the two-level system as |𝑔⟩ and the excited
state as |𝑒⟩. In order to transfer the electron from |𝑔⟩ to |𝑒⟩, the energy has
to be externally added into the system, while the opposite process can result
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from spontaneous decay or stimulated transition back to the ground state. The
spontaneous emission results in the emission with a statistics resembling that
of ideal single photon state up to the attenuation, and the rate of its emission is
corresponding to the parameter Γ. The system can also be driven in a coherent
way, which requires the excited state lifetime and coherence of the interaction
to be sufficient so that any interaction is not suppressed by the spontaneous
emission. The two level system then exhibits a periodic development of the
excited state population due to coupling to coherent light field, known as Rabi
oscillation [19].

A coherently controlled two-level system can physically realize a quantum
bit [47], however, in this work it rather corresponds to an internal atomic knob
for control of its mechanical properties. The state vector of the two level system
can be defined as

|𝜓⟩ = 𝛼 |𝑔⟩ + 𝛽 |𝑒⟩ , (2.5)

denoting a superposition of the two base states |𝑔⟩ and |𝑒⟩, which represents
the ground and excited energy levels. Here 𝛼, 𝛽 are the probability amplitudes,
satisfying the condition |𝛼|2 + |𝛽|2 = 1. The corresponding two-level system
Hamiltonian is defined as [19]

𝐻(𝑒) = ℏ𝜔𝑒2 (|𝑒⟩ ⟨𝑒| − |𝑔⟩ ⟨𝑔|) = ℏ𝜔𝑒2 𝜎𝑧, (2.6)

where the frequency difference 𝜔𝑒 defines the energy gap between the states |𝑔⟩
and |𝑒⟩ and 𝜎𝑧 = (|𝑒⟩ ⟨𝑒| − |𝑔⟩ ⟨𝑔|). Generally, the lifetime of the excited state and
the optical quibit coherence is given by the combination of bandwidth of applied
laser light and magnetic field noise.

2.5 Motion of ion in a Paul trap
This section briefly discusses the basic physical principles of operation of the Paul
traps. We follow the derivation by [48] and [19], which describes the physical
origin of the harmonic motion in the linear trap. For technical details of the trap
construction and operation, we refer to work [49–51].

In Paul trap, the charged particles are confined with electric potential Φ in
three spatial dimensions 𝑥, 𝑦, 𝑧. The Laplace’s equation ΔΦ = 0 requires that at
least one of these spatial components of the potentialΦ is negative, which would
principally result into continuous loss of atoms in that particular direction. The
issue can be overcome by inducing a time varying potential having both DC
and radio-frequency (RF) electric potential implemented. The potential can be
written as
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Φ0(𝑡) = 𝑈 + 𝑉 cos(Ω𝑅𝐹𝑡), (2.7)

withΩ𝑅𝐹 being the frequency of the RF trap drive and𝑈,𝑉 the amplitudes of the
constant (DC) and time varying potentials (RF). For the time varying potential,
we can further solve the equations of motion for a particle of massm and charge
Q and distance 𝑟 leading to a differential equation for particle trajectory 𝑟𝑖

̈𝑟𝑖 +
2𝛼𝑖𝑄
𝑚𝑟2

(𝑈 + 𝑉 cos(Ω𝑅𝐹𝑡))𝑟𝑖 = 0. (2.8)

The Eq. 2.8 can be expressed in form of the Mathieu equation

𝑑2𝑢
𝑑𝜁2 + (𝑎 − 2𝑞 cos(2𝜁))𝑢 = 0, (2.9)

where we have used the substitutions

𝑎𝑖 = − 8𝛼𝑖𝑄𝑈
𝑚𝑟2Ω2

𝑅𝐹
,

𝑞𝑖 =
4𝛼𝑖𝑄𝑉
𝑚𝑟2Ω2

𝑅𝐹
,

𝜁 = 1
2Ω𝑅𝐹𝑡.

(2.10)

The Eq. 2.8 defines regions of stability for ion trapping in terms of the substituted
coordinates 𝑎𝑖 and 𝑞𝑖. In the practically employed lowest region of stability,
where 𝑎𝑖 ≪ 𝑞𝑖 ≪ 1 [19, 48], the ion trajectory obtains the form

𝑟𝑖(𝑡) = 𝑟0𝑖 cos(𝜔𝑖𝑡 + 𝜙)[1 + 𝑞𝑖
2 cos(Ω𝑅𝐹𝑡)], (2.11)

where 𝑟0𝑖 is the distance from a potential minimum of Φ0(𝑡) and with 𝜔𝑖 defined
as

𝜔𝑖 = 𝛽𝑖
Ω𝑅𝐹
2 , (2.12)

and the parameter 𝛽𝑖 resulting from a substitution

𝛽𝑖 =√𝑎𝑖 +
𝑞2𝑖
2 . (2.13)

The first term in the Eq. 2.11, oscillating at the frequency 𝜔𝑖, corresponds to
the ’secular motion’. The second cosine term describes the ’micromotion’ which
is a fast oscillation of the particle around the trap center at the frequency of the
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RF-drive. The micromotion is usually an unwanted effect in the experiments
and we aim for it’s minimization within the experimental routine. It is typically
detected by experimental method of photo-correlation measurement, where the
arrival times of detected photons are modulated with the trap frequency (see
Sec. 3.2). The compensation of the excess micromotion is performed by applying
additional DC potentials in order to place the atom to the RF potential minimum,
where the effect is limited by the residual intrinsic micromotion due to finite
motional wavepacket extension.

The secular motion can be decomposed into three geometrical directions,
defining themainmodes of the oscillation. In the case of the linear Paul trap with
the axial symmetry, the conventional normal mode decomposition corresponds
to the axial mode along the trap axis and radial modes which are in the plane
orthogonal to the axial direction. Radial frequencies are dominantly determined
by the potentials originating from the radio-frequency electrodes, according to
the Eq. 2.8, while axial mode frequency results dominantly from the DC voltage
applied to tip electrodes.

The classical description of the motion of the oscillator suffices only in
the limit of large thermal motion of ions. The regime relevant for the
experiments presented in this thesis, however, requires introduction of the
quantum description of the mechanical oscillator - ion. The exact frequency and
the relative strengths of the oscillation modes can be measured spectroscopically,
which is described in detail in Sec. 3.6.

2.6 Single ion as a harmonic oscillator

The quantum mechanical harmonic oscillator can be described with the
Hamiltonian

�̂� = ̂𝑝2
2𝑚 + 𝑚𝜔2 ̂𝑥2

2 , (2.14)

where 𝜔 is an angular frequency of oscillation, 𝑚 is the particle’s mass and ̂𝑥, ̂𝑝
are the position and momentum operators obeying the commutation relation
[ ̂𝑥, ̂𝑝] = 𝑖ℏ in single mode of oscillation, forming together the ’phase-space’
figure of oscillation. Following the second quantization, it is possible to express
the motion in terms of creation and annihilation operators, which are defined as
[52]
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̂𝑎 = √
𝑚𝜔
2ℏ ( ̂𝑥 + 𝑖 ̂𝑝

𝑚𝜔),

̂𝑎† =√
𝑚𝜔
2ℏ ( ̂𝑥 − 𝑖 ̂𝑝

𝑚𝜔).
(2.15)

The two operators are non-Hermitian and their commutator is equal to
[𝑎, 𝑎†] = 1. Together, they form a number operator ̂𝑛 = 𝑎†𝑎, which can be
used to further simplify and express the Hamiltonian in Eq. 2.14 as

�̂� = ℏ𝜔( ̂𝑛 + 1
2). (2.16)

The Eq. 2.16 expresses the quantization of the energy levels, where the ground
state level energy equals to 𝐸0 =

1
2
ℏ𝜔. Annihilation and creation operators 𝑎, 𝑎†

realize subtractions and additions of the single quantum

̂𝑎 |𝑛⟩ = √𝑛 |𝑛 − 1⟩ ,
̂𝑎† |𝑛⟩ = √𝑛 + 1 |𝑛 + 1⟩ .

(2.17)

The eigenstates of the number operator ̂𝑛 are states with |𝑛⟩ exact value of
energy, corresponding to the energy level 𝑛. These states are also denoted as
Fock states [52, 53], and together they form the Fock basis. In such a system, any
quantum state with the discrete energy can be created by cumulative application
of the creation operator on the ground energy level |0⟩

|𝑛⟩ = (𝑎†)𝑛

√𝑛!
|0⟩ . (2.18)

In trapped ion system, nonlinear gates similar to the creation and annihilation
operations in ladder scheme are implemented in the joint Hilbert space with
the two-level system, on red and blue frequency motional sidebands, described
theoretically by Jaynes and anti-Jaynes Cummings interactions.

2.7 Interaction of light with two-level atom
in a harmonic potential

The fundamental principle of the motional state engineering lies in the
interaction of the valence electron of an ion with light, which s sensitive to
a motional state of an atom. In the Paul trap, the transition frequency of the
two-level system is modulated by the frequency of the secular motion forming
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the modulation sidebands. These sidebands can be conveniently addressed with
laser light while stabilizing, narrowing and fine-tuning the laser frequency, and
in this way the motional energy can be added or subtracted. The complete
Hamiltonian of such an interaction has a form

𝐻 = 𝐻𝑚 + 𝐻𝑒 + 𝐻𝑖, (2.19)

where 𝐻𝑚 defined with the Eq. 2.16 describes the motional degree of freedom,
𝐻𝑒 defined in Eq. 2.6 is the Hamiltonian of the two-level system, and the last
part 𝐻𝑖 describes the mutual interaction with light.

The light field providing the interactions between two-level and harmonic
oscillator system can be treated as traveling electromagnetic wave, with the
wavevector k, angular frequency 𝜔 and initial phase 𝜙. Each interaction can
be assigned with the physical quantity describing it’s strength denoted as a Rabi
frequency Ω [19, 54]. For the traveling light field and considering the electric
dipole or quadrupole interaction, the interaction Hamiltonian can be found to be
described by unified form, where we consider interaction with a single motional
mode along x [19]

𝐻(𝑖) = ℏ
2Ω(|𝑔⟩ ⟨𝑒| + |𝑒⟩ ⟨𝑔|) × [𝑒𝑖(𝑘𝑥−𝜔𝑡+𝜙) + 𝑒−𝑖(𝑘𝑥−𝜔𝑡+𝜙)], (2.20)

where the second bracket includes the electric field component of the laser
propagating along the direction of the motional mode x. Here, the 𝜔 and 𝜙 are
the frequency and phase of the excitation laser beam at the position of atom.

The transformation into the interaction picture is then expressed as

𝐻int = 𝑈†
0𝐻(𝑖)𝑈0, (2.21)

where 𝑈0 = exp[−(𝑖/ℏ)𝐻0𝑡] is the unitary transformation and 𝐻0 denotes free
Hamiltonian 𝐻0 = 𝐻𝑚 + 𝐻𝑒. In the rotating wave approximation where the
rapidly oscillating frequency components are dropped [19], the 𝐻int becomes

𝐻int(𝑡) =
ℏ
2Ω0𝜎+ exp[𝑖𝜂(𝑎𝑒−𝑖𝜈𝑡 + 𝑎†𝑒𝑖𝜈𝑡)]𝑒𝑖(𝜙−𝛿𝑡) + 𝐻.𝑐., (2.22)

with 𝛿 being the detuning from the transition frequency, H.c. is the Hermitian
conjugate and Rabi frequency Ω0 [19]

Ω0 =
Ω

1 + 𝑞𝑖/2
, (2.23)

where 𝑞𝑖 is the stability parameter of the trap as defined in Eq. 2.10.
Here, we have used the raising and lowering operators 𝜎+ = |𝑔⟩ ⟨𝑒| , 𝜎− =

|𝑒⟩ ⟨𝑔|, having the physical meaning of adding and subtracting energy in the
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two-level system. Additionally, we have defined the Lamb-Dicke parameter 𝜂
as

𝜂 = 2𝜋
𝜆 √

ℏ
2𝑚𝜔, (2.24)

which defines the ratio of the size of mechanical oscillation wavepacket
with frequency 𝜔 with respect to the wavelength of the involved two-level
system transition. Physically, the Lamb-Dicke parameter describes the relative
interaction strength of coupling of the light to motional modes compared with
its coupling to the carrier two-level transition where the motional change is not
involved. Additional step towards simplification of the Hamiltonian 2.22 takes
advantage of the Lamb-Dicke regime, where

𝜂2(2𝑛 + 1) ≪ 1. (2.25)

Here, 𝑛 stands for the mean value of the energy distribution of involved motional
mode. Physically, in the Lamb-Dicke regime, all the transition involving transfer
of more than single quantum in the motional mode are strongly suppressed. The
interaction Hamiltonian can be expanded into the first order of 𝜂 as

𝐻LD(𝑡) =
ℏ
2Ω0𝜎+[1 + 𝑖𝜂(𝑎𝑒−𝑖𝜈𝑡 + 𝑎†𝑒𝑖𝜈𝑡)𝑒𝑖(𝜙−𝛿𝑡)] + 𝐻.𝑐., (2.26)

containing only three resonances for the values of 𝛿 = −𝜈, 0, 𝜈. For the case
of 𝛿 = 0 after the rotating wave approximation [19] the Eq. 2.26 results into
’carrier’ transition, with the Hamiltonian

𝐻car =
ℏ
2Ω0(𝜎+𝑒𝑖𝜙 + 𝜎−𝑒−𝑖𝜙), (2.27)

describing coupling to two-level systemwithout affecting the motional degree of
freedom, with 𝜙 denoting the phase factor corresponding to the laser phase. The
detuning of laser from the carrier transition gives the second case, with 𝛿 = −𝜈,
as

𝐻rsb =
ℏ
2Ω0𝜂(𝑎𝜎+𝑒𝑖𝜙 + 𝑎†𝜎−𝑒−𝑖𝜙). (2.28)

This interaction at the lower frequency is conventionally denoted with the
term ’red sideband’. From the Eq. 2.28, it is apparent that the motional
state is addressed simultaneously with the two-level system, where Lamb-Dicke
parameter 𝜂 plays the role of the ’coupling efficiency’, defining the fraction of the
original Rabi frequency Ω0. Based on the initial state of the two-level system,
the finite application of the interaction corresponding to 𝐻rsb results in either



Laser cooling 15

subtraction of the single motional quantum while the two-level system being in
state |𝑔⟩, or oppositely addition of quantum when the system is in |𝑒⟩.

The complementary regime, where 𝛿 = +𝜈 in Eq. 2.22, is described as

𝐻bsb =
ℏ
2Ω0𝜂(𝑎†𝜎+𝑒𝑖𝜙 + 𝑎𝜎−𝑒−𝑖𝜙). (2.29)

The 𝐻bsb is denoted as anti-Jaynes-Cummings Hamiltonian, and the
corresponding transition as a ’blue sideband’. We can denote the Rabi
frequencies for couplings to higher and lower motional modes as Ω𝑛,𝑛+1 and
Ω𝑛,𝑛−1, where the scaling is quantized with carrier Rabi frequency and the
Lamb-Dicke parameter as

Ω𝑛,𝑛+1 = Ω0𝜂√𝑛 + 1,
Ω𝑛,𝑛−1 = Ω0𝜂√𝑛,

(2.30)

which results from the properties of the annihilation and creation operators.
The dependence of the Rabi frequency on the motional distribution provides

a key feature for engineering of the motional states and consequently for their
readout. The Fig. 2.2 shows the visualizations of carrier, blue and red sideband
interactions, as they result from the Eq. 2.26. The engineered interaction at
blue sideband can be naturally employed to append the motional quanta into
the oscillator, for the case that two-level system is in the ground state. On the
contrary, the red sideband coupling provides a way for energy subtraction.

2.8 Laser cooling
The ability of laser light to cool the atoms is hardly imaginable from a point
of view of the classical physics. The usual applications of lasers involve laser
cutting, ablations, heating, or generally, external addition of the energy into some
systems. Taking into account the physics of semi-classical light-atom interaction,
the laser light can actually realize both. It may either add or remove the energy
on the very precise basis, even on the scale of the single motional quanta.

The conventional scheme of the laser cooling employed in ion trapping
experiments consists of two stages, however, recent experiments with many
ions develop and apply new schemes for simultaneous cooling of many motional
modes close to a motional ground state [55, 56].

The Doppler cooling [7] leads to the subtraction of motional energy down
to the scale where the quantum effects start to play role. The Doppler cooling
is followed by a sideband cooling [57], which takes advantage of the coupling
between two-level system and the harmonic oscillator ladder in a sideband
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Figure 2.2: a) Visualization of the interactions for carrier (black), red sideband (red) and
blue sideband (blue) for two-level system being initially in the |𝑔⟩ state. Hamiltonian
𝐻rsb realizes the quantum subtraction between states |𝑛⟩ |𝑔⟩ ↔ |𝑛 − 1⟩ |𝑒⟩, 𝐻car does
not affect the motional number, so that |𝑛⟩ |𝑔⟩ ↔ |𝑛⟩ |𝑒⟩, and finally the blue sideband
realizes transitions at |𝑛⟩ |𝑔⟩ ↔ |𝑛 + 1⟩ |𝑒⟩. b) shows same two spin-motional coupling
interactions, also pictured for additional higher energy levels. With the increasing
energy, the initial Rabi frequency scales with the factor √𝑛 + 1 for blue sideband and
√𝑛 for the red.

resolved regime. The red-sideband of motion is directly addressed in the pulsed
sequence, which possibly leads, after some time of interaction, to the subtraction
of thermal energy down to the minimal level. In this case, the motion is said to
be ’ground-state’ cooled.

The simplest description presented here considers the absence of
micromotion, and simplifies the treatment to only single secular motional
mode. [19]. In case that the radiative lifetime of the excited state is much
shorter than the period of oscillation (𝜔 ≪ Γ, where Γ is the transition natural
linewidth), the single absorption or emission process does not significantly
affect the average ion’s velocity. At this point, the cooling can be treated as
continuous force causing the radiation pressure. The ion thus behaves like a
free particle, which is able to sense the motionally induced Doppler shifts. We
can write the radiation force

𝑑𝑝
𝑑𝑡 = 𝐹 = ℏ𝑘Γ𝜌𝑒𝑒, (2.31)
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where 𝜌𝑒𝑒 is the excited state probability [58]

𝜌𝑒𝑒 =
𝑠/2

1 + 𝑠 + (2𝛿𝑒𝑓𝑓/Γ)2
. (2.32)

Here 𝑠 = 2|Ω|2/Γ2 is the saturation parameter,Ω the Rabi frequency, Δ = 𝜔−𝜔0
the detuning from resonance, which is contained in effective detuning 𝛿𝑒𝑓𝑓 =
Δ − 𝑘𝑣, including the Doppler shift 𝑘𝑣.

The cooling mechanism can be also well understood in terms of momentum
conservation and classically treated Doppler effect. In frame of the atom moving
towards the laser beam, the actual transition frequency is higher due to the
Doppler shift. As a result, the atommost efficiently absorbs the incoming photon
in case that it moves towards the laser beam. An atom receives a momentum kick
Δ𝑝 = ℏ𝑘 in direction of the beam, and then it spontaneously emits a photon in a
random direction which, performed over many iterations, leads to the effective
net momentum transfer from laser photons and reduction of the motional energy.
In this way, the energy may not be reduced down to the ground level, because
the ion starts to heat again by recoils originating from the spontaneous emission.

In order to further reduce the motional energy, additional cooling methods
have to be employed. The ’sideband cooling’ method [19] is based on individual
addressing of motional transitions with the narrow-linewidth laser. Here, the
lifetime of the excited state has to be much longer than the period of motion
(𝜔 ≫ Γ). For this reason, the cooling is conveniently performed at 729 nm
quadrupole transition with Γ−1 = 1.16 s (see Sec. 2.2). The condition 𝜔 ≫ Γ
defines the so-called ’sideband-resolved’ regime.

The sideband cooling process is performed in cycles of repetitive absorption
on the red sideband followed with the spontaneous emission on the carrier,
assuming the condition that the Lamb-Dicke criterion holds. The overall cooling
rate 𝑅𝑛 is then given by two factors - the probability of the excited state 𝑝𝑒(𝑛) of
the motional state and the decay rate of the excited state Γ

𝑅𝑛 = Γ𝑝𝑒(𝑛) = Γ (𝜂√𝑛Ω0)2

2(𝜂√𝑛Ω0)2 + Γ2
, (2.33)

with ground state Rabi frequency Ω0 and the 𝜂 denoting the Lamb-Dicke
parameter of the transition.

The heating rate is strongly dependent on the mean motional energy, and
converges to zero when approaching the ideal ground state of motion. In
case that there are not any other heating sources present, the main origin of
the heating rate comes from the off-resonant carrier and first blue sideband
excitation and the consecutive spontaneous emission back to the electronic
ground state. While there is no change in motional mode at the carrier emission,
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the decay on the blue sideband appends the heating rate equal to [Ω0/(2𝜈)]2 ̃𝜂2Γ.
Here, the ̃𝜂 is the Lamb-Dicke parameter of emission generally different than
𝜂, as the emission can occur in any direction. This allows, for example,
cooling configurations utilizing three level system where the wavelengths of
emitted photon and cooling light are different [59]. The second source of
heating may originate from the excitation of the first blue sideband with the
probability (𝜂Ω0/[4𝜈])2, which is followed by the decay on the carrier calculated
as (𝜂Ω0/[4𝜈])2Γ. In the steady state, the mean energy after the sideband cooling
can be expressed as

𝑛 = 𝑝1 =
Γ2
4𝜈2 ([

̃𝜂
𝜂]

2
+ 1
4) . (2.34)

Sincewe have𝑝1 = 1−𝑝0, the ground state occupation probability after sideband
cooling can be written as 𝑝0 = 1 − (Γ/2𝜈)2 which is close to 1 in case that the
condition for the sideband-resolved regime 𝜔 ≫ Γ holds.

2.9 Angular momentum and Zeeman splitting

A Zeeman effect describes the frequency splitting of atomic energy levels caused
by the applied external magnetic fields [60]. The strength of the splitting and the
number of lifted degenerate spectral components is related to the total angular
momentum, which may be achieved by electron in the current energy level.
Addressing of different Zeeman spectral lines allows for multiple experimental
configurations, such as ground state cooling and coherent manipulations with
motional state, where the overall efficiency of these operations is strongly
dependent on the particular spectral line. On the other hand, the unwanted
Zeeman transitions can be conveniently suppressed by adjusting the beam
geometry and the light polarization.

The total angular momentum 𝐽 consists of an orbital momentum denoted as
L and the electron spin S, where 𝐽 = 𝐿+𝑆. A total amount of degenerate Zeeman
sub-levels is then equal to 2𝐽 + 1, each of them defined with a magnetic number
𝑚𝑗 , acquiring the values in the range of −𝐽,−𝐽 + 1, ...𝐽 − 1, 𝐽. In the presence
of the external magnetic field B, the degeneracy is lifted and the corresponding
sub-levels will form the separate spectral lines. For the small magnetic fields
on the order of a few Gauss, frequency difference between the split levels will
correspond to the linear Zeeman effect and can be approximated by

Δ𝜈 = 𝜇𝐵
ℎ (𝑚𝑗𝑔𝑗 −𝑚′

𝑗𝑔′𝑗)|𝐵|, (2.35)
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where 𝜇𝐵 is the Bohr magneton, ℎ the Planck constant, and 𝑚𝑗 and 𝑔𝑗 are the
magnetic quantum numbers and Landé factors for corresponding spectral lines
[61, 62] and |𝐵| is the intensity of the applied magnetic field. Corresponding
Landé factors for particular Zeeman levels of 40Ca+atom can be taken for
example from the reference [48].

Since an electron is a spin-half particle and the energy level scheme consists
of a single valence electron only, it may attain the values of 𝑆 = ±1/2. In such a
case, the eigenvalues of angular momenta would acquire the half integer values
as well. The excited state denoted as 𝐷5/2 will split into total of six sub-levels,
and the ground state 𝑆1/2 will have two sub-levels only, with 𝑚𝑗 = ±1/2. The
experimental measurement of Zeeman splitting of the employed 40Ca+atom is
presented and discussed in Sec. 3.6 and schematically depicted in Fig. 3.8.

For atom-photon interaction investigated in terms of magnetic splitting, the
change of the total angular momentum between the photon and electron has
to be conserved. This raises restrictions on transition between certain Zeeman
sub-levels. Considering the interactions at most common dipole transitions, the
circularly polarized photon will change the value of 𝑚𝑗 by Δ𝑚𝑗 = ±1, based
on the sign of the circular polarization, while the absorption of photon linearly
polarized along the direction of the B field will not change the magnetic quantum
number, so that Δ𝑚𝑗 = 0.

The same effect is apparent for spontaneous emission at different Zeeman
transitions. The transition which changes the momentum by Δ𝑚𝑗 = 0,±1
will emit linearly polarized photon, or right or left-handed circularly polarized
photon, respectively. The transitions are commonly denoted as 𝜎−, 𝜋 and 𝜎+
for Δ𝑚𝑗 = −1, 0, +1. The particular polarization state is always referred to
the quantization axis, which is defined here along the direction of the applied
B field. Corresponding transition probabilities for spontaneous emission are
defined with Clebsch-Gordan coefficients [63].

At the quadrupole 729 nm transition, the allowed change of the angular
momenta can be |𝛿𝑚| ≤ 2, depending on the mutual orientation of beam
polarization vector and the magnetic field, with respect to the Paul trap axis.
The combin‘lar states of𝑚𝑗 . This can be described with Wigner-Eckart theorem
[48, 64, 65]

Ω = 𝑒𝐸0
2ℏ ⟨𝑆1/2, 𝑚|(𝜖 ⋅ r)(k ⋅ r) |𝐷5/2, 𝑚′⟩|

= |𝑒𝐸02ℏ ⟨𝑆1/2| 𝑟2C(2) |𝐷5/2⟩
2
∑
𝑞=−2

(1/2 2 5/2
−𝑚 𝑞 𝑚′ ) 𝑐

𝑞
𝑖𝑗𝜖𝑖𝑛𝑗|. (2.36)

Here, the ⟨𝑆1/2| 𝑟2C(2) |𝐷5/2⟩ denotes a reduced matrix element and the matrix
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terms in the sum are the Wigner 3-j symbols. The geometric dependent
part 𝑔𝑞 = 𝑐𝑞𝑖𝑗𝜖𝑖𝑛𝑗 denotes the efficiency of transition corresponding to the
change of the quantum number 𝑚𝑗 . For the axial Paul trap geometry, the
vectors corresponding to magnetic field, beam propagation, and polarization
can be expressed as B = (0, 0, 𝐵0), k = 𝑘0(sin𝜙, 0, cos𝜙) and 𝜖 =
(cos 𝛾 cos𝜙, sin 𝛾, − cos 𝛾 sin𝜙). It is useful to define the variables 𝜙(𝑘, 𝐵),
denoting an angle between the wave-vector k and the magnetic field B, and
𝛾(𝜖, 𝐵), which is an angle betweenB and the polarization 𝜖. Considered particular
geometry together with these vectors can be conveniently used to characterize
the coupling factors 𝑔𝑞 as

𝑔0 = 1
2| cos 𝛾 sin(2𝜙)|,

𝑔±1 = 1
√6

| cos 𝛾 cos(2𝜙) + 𝑖 sin 𝛾 cos𝜙|,

𝑔±2 = 1
√6

|12 cos 𝛾 sin(2𝜙) + 𝑖 sin 𝛾 sin𝜙|.

(2.37)

The experimental realization is implemented for a fixed beam direction,
which is incident at the angle 𝜙(𝑘, 𝐵) = 45∘ with respect to the B field aligned
parallel with the trap axis. The strength of coupling to particular Zeeman states is
dependent on the polarization direction 𝜖. This allows particular configurations
of the coupling, as depicted in Fig. 2.4. Particularly, in case that 𝛾(𝜖, 𝐵) = 0∘, the
coupling is restricted only to transitions which correspond to Δ𝑚𝑗 = 0,±2, and
is particularly useful for implementation of the sideband cooling and motional
state manipulations (Sec. 2.10). Additionally, the case where 𝛾(𝜖, 𝐵) = 45∘
provides reasonable coupling strength to all Zeeman sublevels, so they can be
conveniently recognized.

2.10 Coherent interaction on motional side-
bands

The coherent Rabi oscillations denote the cyclic behavior of the population
probability of the two-level system, undergoing the coherent drive. In
implementations presented in this Thesis, they are observed either on carrier
transition, which does not involve the interaction with motional mode of
freedom, or at motional sidebands, which is accompanied with an addition
or subtraction of the single quantum. In such a case, the condition on
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Figure 2.3: Coupling to Zeeman levels corresponding to Δ𝑚𝑗 = 0, 1, 2 from left to
right, where 𝛾(𝜖, 𝐵) denotes a relative angle between polarization and magnetic field,
and 𝜙(𝑘, 𝐵) an angle of wavevector towards the magnetic field. The configuration for
typical experimental routine presented in this work is set to 𝜙(𝑘, 𝐵) = 45∘, 𝛾(𝜖, 𝐵) = 0∘.
Note that these calculations for geometric factors are similar also for other ion species
having the same quadrupole line structure and can be thus applied also to calculations
considering other atoms.
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Figure 2.4: Coupling strengths resulting from the Eq. 2.37 and Fig. 2.3 for two
particular experimental settings of angles 𝜙(𝑘, 𝐵) and 𝛾(𝜖, 𝐵). a) represents the ideal
setting employed for our experiment, where only the transitions for sideband cooling
(Δ𝑚𝑗 = 2) and motional state engineering (Δ𝑚𝑗 = 0) are coupled. b) shows the setting
which allows for spectroscopic measurement of all employed energy transitions. The
transitions depicted with red lines correspond to optical pumping set to 𝑆−1/2 lines. The
coupling strength for 𝜎+ would show analogical results. Bar plots on the right show
values of coefficients 𝑔𝑚 denoting the coupling efficiency to particular transitions with
Δ𝑚, calculated from the set of Eq. 2.37.
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sideband-resolved regime has to be fulfilled, meaning that the frequency of
the motional mode is much larger than the natural linewidth originating from
the spontaneous decay rate (so that 𝜔 ≫ Γ, where we consider 𝜔 on the
scale of 106 Hz and Γ ≈ 1 Hz for quadrupole transitions, see Table 2.1)
[48]. Consequently, the Rabi oscillations are more conveniently observable at
quadrupole 729 transition, due to the long lifetime of the excited state.

Additionally, we consider coupling in the Lamb-Dicke regime, which restricts
the possible interactions to 1st motional sideband only, neglecting the higher
order motional modes. With an ion prepared close to the motional ground state,
there are only three achievable interactions, that being carrier, 1st red and 1st
blue sideband, as described in Sec. 2.7. Following this treatment we describe
the dynamics of the two-level system at carrier transition as an evolution of
population probability of the excited state [48]

𝑃𝑒(𝜏) =
1
2[1 −

𝑛max→∞
∑
𝑛=0

𝑃𝑛 cos(Ω0(1 − 𝜂2𝑛)𝜏)], (2.38)

where the sum is evaluated over the distribution of the motional modes 𝑃𝑛 with
𝑛max → ∞ being the maximal considered motional energy level, theoretically
approaching infinity. For evaluations on measured data, the value of 𝑛max is
set sufficiently high, so it does not significantly affect the resulting population
distribution.

The multiplication of the Rabi frequency Ω0 with the square of Lamb-Dicke
parameter 𝜂2 points to the weak dependence of carrier coupling on the
populations. The increasing thermal population in higher phonon states
described with the element 𝑃𝑛 is then responsible for the gradual damping of the
Rabi oscillation, which can originate from contribution of axial and both radial
motional modes. For thermal state, where 𝑃𝑛 is described with Bose-Einstein
distribution, the damped carrier Rabi oscillation pattern can be also expressed as
following [48]

𝑃𝑒(𝜏) =
1
2(1 −

cos(Ω0𝜏) + Ω0𝜏𝜂2(𝑛 + 1) sin(Ω0𝜏)
1 + (Ω0𝜏𝜂2(𝑛 + 1))2 ), (2.39)

where 𝑛 determines the mean energy of the single motional mode. The Eq. 2.39
can be also extended to describe the damping originating from other motional
modes, by replacing 𝑛 and 𝜂 with the summation over all motional modes and
their corresponding Lamb-Dicke parameters [48].

The coupling to 1𝑠𝑡 order motional modes at red or blue sideband contains
both the frequency dependence on the Lamb-Dicke parameter 𝜂 and the Rabi
frequency Ω0. The excited state probabilities 𝑃bsb

𝑒 (𝜏), 𝑃rsb
𝑒 (𝜏) for 1𝑠𝑡 blue and
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red sidebands are directly dependent on phonon probability distribution 𝑃𝑛 as
following

𝑃bsb
𝑒 (𝜏) = 1

2[1 −∑
𝑛
𝑃𝑛 cos(Ω𝑛,𝑛+1𝜏) exp(−𝛾𝑛𝜏)], (2.40)

𝑃rsb
𝑒 (𝜏) = 1

2[1 −∑
𝑛
𝑃𝑛 cos(Ω𝑛,𝑛−1𝜏) exp(−𝛾𝑛𝜏)], (2.41)

with

Ω𝑛,𝑛+1 = Ω0𝜂√𝑛 + 1,Ω𝑛,𝑛−1 = Ω0𝜂√𝑛, (2.42)

where the coefficient 𝛾𝑛 describes the Rabi oscillation damping which is
dependent on the energy of the motional mode denoted with n. In our
experimental observations and also in references [19, 66] it has been found that
the damping coefficient scales up with the motional energy and can be described
as

𝛾𝑛 = 𝛾0(𝑛 + 1)𝑥, (2.43)

with 𝛾0 is the damping of the motional ground state, and x is the scaling factor
which is related with the noise properties, typically estimated as x = 0.7, see
reference [66] and also experimental verification in Sec. 3.14.3.

2.11 Basic definitions of non-classicality in
ion’s motion

There are two basic ways to treat the quantum mechanical motional states. The
first treatment employs the decomposition of arbitrary state in the number state
basis, as described in Sec 2.6. Alternatively, the motion can be treated similarly
as in quantum optics, using the theory of coherent states, firstly introduced by
Glauber in 1963 [20]. In this way, the density matrix of the state can be described
as [67]

𝜌 = ∫𝑃(𝛼) |𝛼⟩ ⟨𝛼| 𝑑2𝛼, (2.44)

where the outer product |𝛼⟩ ⟨𝛼| denotes the over-complete non-orthogonal basis
of coherent states. By definition in [67], if 𝑃(𝛼) has meaning of classical
probability density function, then state is classical from the perspective of
classical coherence theory of linear oscillators. Such states can be obtained



Basic definitions of non-classicality in ion’s motion 25

by classical external linear drive of such oscillators with a fixed frequency. If
this is not the case, the state is called ’non-classical’. The special subclass
of non-classical states presents sub-Poissonian statistical properties where the
variance in phonon number is smaller than the mean phonon number [68]. This
is also the case of Fock mechanical states, where the phonon number noise is
principally zero, while the phase is infinitely uncertain. However, such noise
reduction can be also approached by a displaced squeezed ground states of
oscillators. They can be obtained using diverse linearized nonlinear dynamics
described approximately by the interaction Hamiltonians maximally quadratic
in the annihilation and creation operators. Such dynamics ideally keeps
Gaussian ground-state distributions of position and momentum still Gaussian.
To basically distinguish such trivial cases on sub-Poissonian statistics from more
relevant and applied still imperfect Fock states, quantum non-Gaussian sub-set
of non-classical states must be introduced.

Similarly with the definition in Eq. 2.44, we define the ’quantum
non-Gaussianity’ with use of the following equation [21]

𝜌 = ∫𝑃(𝜆) |𝜆⟩ ⟨𝜆| 𝑑2𝜆, (2.45)

where |𝜆⟩ = 𝑆(𝑟)𝐷(𝛼) |0⟩ is a pure Gaussian state, with displacement operator
𝐷(𝛼), squeezing 𝑆(𝑟) and |0⟩ denoting the vacuum state. In Eq. 2.45, the 𝑃(𝛼)
denotes the probability density distribution of Gaussian states |𝜆⟩. In case that
the quantum state cannot be described in a way of Eq. 2.45, it is denoted as
’quantum non-Gaussian’.

A convenient way to characterize the quantum states is the direct
reconstruction of number states population, where for example the Fock state
probabilities may be directly obtained from the fit of the coherent interaction (see
Eq. 2.40). A specific criteria has been derived [21], which distinguishes Gaussian
and quantum non-Gaussian states based solely on themeasured populations, and
can be applied even in the presence of high losses or for states with positive
Wigner functions in whole phase space.

The stricter form of quantum non-Gaussianity criteria can be formulated
using the hierarchical properties of the Fock states, which directly relate to
some of the sensing applications. The hierarchical nature of the criteria also
provides a way to gradually describe the ’quality’ of generated imperfect Fock
states, by evaluating their robustness with respect to thermal losses, which is
specific for each Fock state. The genuine quantum non-Gaussianity (GQNG)
is defined similarly to quantum non-Gaussianity (QNG), with the Eq. 2.45,
where |𝜆⟩ = 𝑆(𝑟)𝐷(𝛼)∑𝑛−1

𝑚=0 𝑐𝑚 |𝑚⟩ denotes the sum of coherent and squeezing
operations applied on the mixture of number states with order (𝑛 − 1) smaller
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than the number state of interest. Therefore, the GQNG state is such state, which
cannot be expressed with a mixture of displaced and squeezed number states of a
lower rank. A specific 𝑃max

𝑛 can be derived for each number state, for witnessing
the GQNG threshold. In a single term, the genuine quantum non-Gaussian state
of rank n can be defined as a state, which cannot be achieved by

|𝜓⟩ = 𝐷(𝛼)𝑆(𝑟)
𝑛−1
∑
𝑚=0

𝑐𝑚 |𝑚⟩ . (2.46)

Alternatively, it is possible to derive the condition for genuine quantum
non-Gaussianity for Fock states with use of stellar hierarchy formalism, as
described in the reference [69].

2.12 Estimation of discrete non-classicality
on broad phonon number distributions

In Section 2.11, we discuss the definitions of criteria of non-classicality and
quantum non-Gaussianity. In measurements presented, we employ additional
non-classicality measures, which are able to better describe specific features of
probability distribution shapes. We use the Fano factor defined as [70]

𝐹 = ⟨𝑛2⟩ − ⟨𝑛⟩2
⟨𝑛⟩ , (2.47)

which describes the ratio between the state’s variance and mean phonon number.
The values of 𝐹 ≥ 1 point to distributions with Poissonian or super-Poissonian
distribution, while 𝐹 < 1 corresponds to non-classical sub-Poissonian statistics.

Klyshko’s hierarchic criteria of nonclassicality [71] can be conveniently
employed when assessing non-classical properties manifested dominantly in the
high population of particular Fock state, as they are sensitive to population
difference in three neighboring states. For a chosen phonon number 𝑛, the
Klyshko’s criterion is defined as

𝐾𝑛 = (𝑛 + 1)𝑃𝑛+1𝑃𝑛−1 − 𝑛𝑃2𝑛 . (2.48)

Clearly, for number states of the order n, the corresponding measure of 𝐾𝑛 is
negative.

Experimentally accessible indicator of nonclassicality and quantum
non-Gaussianity is the value of Wigner function at the origin of the phase space,
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which can be calculated as [19]

𝑊(0, 0) = 2
𝜋

𝑛𝑚𝑎𝑥

∑
𝑛=0

(−1)𝑛𝑃𝑛, (2.49)

where 𝑃𝑛 corresponds to the measured population distribution. For odd
populations in number state basis, the origin value ofWigner function is negative
and thus serves as a direct indicator of quantum non-Gaussianity in the low loss
regime. However, the Eq. 2.49 fails to detect the non-classical properties for
even states and a various range of other quantum non-classical states. This can
be generally remedied by investigating the other regions in the phase space.

Finally, to have a global identification of the non-classical aspects of different
states with a large variance phonon number distribution, we employ the
entanglement potential [72] defined as the amount of entanglement contained
in the state

𝜌ent = 𝑒𝜋/4(𝑎𝑏†−𝑎†𝑏)𝜌k ⊗ |0⟩ ⟨0| 𝑒−𝜋/4(𝑎𝑏†−𝑎†𝑏), (2.50)

where 𝑎 and 𝑏 are the annihilation operators for the first and the second oscillator
mode, respectively. In quantum optics, this operation corresponds to splitting
an optical mode on a balanced beam splitter. The entanglement potential (EP)
measure reflects the fundamental inability to generate entanglement behind the
beam-splitter if the state 𝜌k at the input is not non-classical and takes further
advantage of greater availability of measures of bipartite entanglement relative
to measures of nonclassicality. In our case we quantify the entanglement using
the straightforwardly computable logarithmic negativity [73]

𝐿𝑁(𝜌ent) = log2 ∥ 𝜌PT
ent ∥ (2.51)

Here, PT denotes partial transposition and ∥ 𝐴 ∥= Tr√𝐴†𝐴 corresponds to trace
norm. This measure is not unique [74–76], however, it can be easily numerically
evaluated even for high-dimensional non-Gaussian states [77]. Experimentally,
it requires full density matrix andmight too sensitive to statistical and estimation
errors.



3. Experimental methods to control
ion’s motion

This Chapter covers the basic description of implemented experimental routines
of ion trapping, controlling the ion’s fluorescence rate and also motional
state. We include experimental and technical details on utilization of physical
principles described earlier in Chapter 2.

3.1 Laser manipulation of internal energy
level populations

The crucial point of the experimental control lies in addressing of the transitions
between energy levels in the 40Ca+ ion (see Sec. 2.1 and Fig. 3.1). This is done by
employment of in total four lasers. The description of the laser stabilization using
frequency offset locks to the fiber frequency comb and including the particular
set up for stabilization of the qubit 729 nm laser to the level of a few Hz can be
found in [50, 51]. In addition, other two lasers at 422 nm and 377 nm are used
to produce singly ionized 40Ca+ion. At first, one of the two valence electrons
is excited at transition 4𝑠2𝑆0 → 4𝑠4𝑝𝑃1 by 422 nm radiation, and in the second
step, it is sent into continuum by laser at 377 nm.

The transition 4S1/2 → 4P1/2 is used for Doppler cooling and also for
fluorescence detection, due to the short excited state lifetime which is 6.9 ns. The
light of the fluorescing atom is collected with a high numerical aperture lens1,
which is then further sent towards the EMCCD camera2, or to the avalanche
photo-detector3. In typical experimental setting, it is possible to detect up to
4 × 104 photons per second.

In the cooling and detection process at 4S1/2 → 4P1/2 transition, the finite

1Sill Optics S6ASS2241, covering 2 % of full solid angle [50]
2ANDOR Luca, type S
3Laser Components COUNT Blue
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Figure 3.1: Processes of electronic state manipulation used in experiments. a) shows
spectral lines for experimental control and motional manipulation. The fluorescent 397
nm transition serves for Doppler cooling and also for optical pumping with circularly
polarized beam. 866 nm serves for the re-shuffling of the dark state 3𝐷3/2 after Doppler
cooling. The narrow quadrupole 729 nm transition defines the two-level system coupled
with the harmonic oscillator. The beam at 854 nm serves for a reshuffling of the 3𝐷5/2
state down to the ground state 4𝑆1/2. In addition, the special circularly polarized beam
at 397 nm denoted as 𝜎− is used to distinguish transitions corresponding to two Zeeman
levels of 4𝑆1/2 ground state. b) shows the two-photon ionization process used for ion
trapping.

branching ratio of the excited state results into a probability of decay into the
metastable 3D3/2 state. Therefore, the reshuffling laser at 866 nm is employed to
re-excite the atom into the 4P1/2, from where the electron may decay back to the
ground level 4S1/2. The two beams at 397 nm and 866 nm have to be implemented
simultaneously, in order to detect the ion’s fluorescence and reduce the motion
in Doppler cooling step.

The quadrupole transition at 4S1/2 → 3D5/2 is addressed with the 729 nm
laser beam. The lifetime of the excited 3D5/2 state is very long (1.16 s), so the
729 nm beam frequency has to be narrowed and stabilized to the bandwidth
scale of approximately tens of Hz. This is achieved by PDH locking to a high
finesse reference cavity, which is in detail described in work [51]. The transition
between the states 3D5/2 → 4P3/2 serves for the reshuffling of the excited D-state
to the ground state S1/2.
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Figure 3.2: Geometry of normal motional modes in the trap and alignment of the laser
beams. a) shows the three main directions of oscillations, where 𝑥, 𝑦 represents two
radial modes which are bound to two pairs of ’blade’ electrodes (only one pair is shown
here), z is the direction of the axial mode. b) depicts the alignment of lasers used for
internal state control and two-photon ionization process, with respect to trap axes. A
Doppler cooling is performed with 397 and 866 nm lasers, 729 nm provides tools for
the motional state engineering, 377 and 422 nm lasers implement the ionization step,
397 𝜎− does the optical pumping and 854 nm re-shuffles the excited state level. For the
description of the typical pulse sequence, see Sec. 3.4. The direction of the magnetic field
depicted with 𝐵 is set as parallel to the axis of the trap in all experiments presented in
this thesis, which allows for a convenient optical pumping schemewith the 397 circullary
polarized beam along the trap axis.

The geometric orientation of the laser beams with respect to the trap is
depicted in Fig. 3.2. The orientation takes into account the geometry of direction
of normal oscillation modes in the trap. The beams which are aligned under 45∘
angle have a significant overlap with all of the three motional modes of a single
ion. This direction is used both for the Doppler cooling lasers and for the qubit
laser. The 397 𝜎− beam, denoted as ’optical pumping’, propagates parallel to the
trap axis. The beam is circularly polarized, and it’s direction coincides with the
local magnetic field vector. This ensures that only one of the two Zeeman levels
of the ground state S1/2 can be coupled [59, 78].

3.2 Compensation of micromotion
Micromotion is the fast oscillation which is being driven by the trap frequency
Ω𝑅𝐹 . The amplitude of the micromotion increases as a function of ion’s
distance from the trap RF potential minimum. In order to allow for independent
compensation of the excess micromotion, additional two pairs of compensation
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CH 1 CH 2

CH 0

CH 3

Figure 3.3: Main directions of the DC potentials in the employed Paul trap. Arrows
with labels Ch1 and Ch2 denote directions of the axial confinement in the trap.
Additional pointers Ch0 and Ch3 denote direction of applied compensation voltages,
where direction of arrow Ch3 is perpendicular with the plane of the page. Compensation
electrodes are not pictured in the schema.

electrodes are employed inside the vacuum chamber, with DC potential on scale
of tens to one hundred volts. Fig. 3.3 depicts the simplified geometry of the two
pairs of the micromotion compensation electrodes and of two axial electrodes in
our linear trap, observed from a direction of imaging on the CCD camera. All of
the electrodes are connected to the source of the high DC voltages4.

The fundamental limitation arises while aiming to compensate micromotion
for long ion chains or large 3D ion crystals with a finite radial size [79, 80].
Since the amplitude of micromotion increases with the distance from the trap
center, the full compensation cannot be achieved for all ions simultaneously. For
compensation of the axial micromotion over the extended axial scale, our setup
included also the possibility to drive the radial RF electrodes symmetrically, but
with opposite phase [81, 82]. However, as this thesis is focused on experiments
with single ions, experiments presented here employ the more conventional RF
driving corresponding to one pair of opposite blades at ground and other pair
oscillating at RF potential around this ground value.

There are various experimental routines to minimize the micromotion [81].
At the first stage of the experiment, when the amplitude of the micromotion is
very high, it can be detected directly with the CCD camera [83], and recognized
as a motional blur caused by the fast oscillation. The coarse alignment of the
atom is employed, to erase the blur and position the atom closer to the trap center
[81].

Another method is a coincidence correlation method [81, 84], which is
based on detection of Doppler shifts of ion moving towards and backwards to

4powered by ISEG high DC voltage source
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Ch0 102 V
Ch1 1382 V
Ch2 1017 V
Ch3 96 V

Table 3.1: Tip voltages corresponding to the ion’s position in the center of the
trap (Ch1 and Ch2), and compensation voltages which are measured to provide the
minimal micromotional amplitude obtained by a photon correlation method (Ch0 and
Ch3). Current values are valid for RF trap setting of Ω𝑅𝐹 = 30 MHz and amplitude
corresponding to transmitted power of 4 W.

the direction of the excitation - Doppler cooling. Then, the micro-motional
oscillations are imprinted to the detected fluorescence as a periodical modulation
of arrival times of incoming photons.

We implement the correlation method as a coincidence measurement
between the trigger derived from the RF-drive, and the ion’s fluorescence
detected with the avalanche photo-diode detector. The result is recorded
with a two-channel time-correlating device5 with 4 ps time resolution. The
employed avalanche detector has a jitter approximately 1 ns, so the bandwidth of
measurable correlations is approximately 1 GHz, which is large enough to cover
the correlation signals expected at the trap frequencies around 30 MHz.

The sample results are presented in Fig. 3.4. The displayed data show
the correlation histogram of coincidence counts between the triggering pulse
derived from the RF-signal and the detected fluorescent photons. For the case
of uncompensated excess micro-motion, the correlation histogram should in
principle show harmonic periodical signal. However, the nontrivial dependence
of the excitation parameters in the multi-level structure of 40Ca+ion, together
with the nonlinear response of the excitation probability of the two level system
on the effective detuning of an ion result in typical signal shown in the Fig. 3.4.
For the compensated case, the probability of photon arrival will be constant for
all time delays, returning the flat line in the histogram. When the ion is displaced
to the opposite side of the RF potential, one observes a change in the phase of
the correlation signal equal to 𝜋.

Additional method of micro-motion estimation is the measurement of the ion
fluorescence in Hanbury-Brown-Twiss experimental configuration [85], where
several very useful modifications of such scheme have been developed including
the phase interferometry of the emitted fluorescence before the correlation
measurement. This, contrary to the previous method, allows for the detection of

5PicoHarp 300
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Figure 3.4: Sample data histogram for measurement of the RF trigger - photon
correlation, used for micromotion sensing. The vertical axis shows the histogram counts
as a function of delay 𝜏. The histogram resolution is 0.512 ns per point. The blue and red
lines show the case of the de-compensated excess micro-motion. The contrary phases
imply the ion is located at the opposite side of the potential well. The yellow line shows
the coincidence counts for nearly ideally compensated excess micro-motion. The ion is
displaced in the direction of the Ch0 electrodes.

the micromotion also in the direction of detection if the scattered fluorescence.
However, due to the small count rates on scales reaching tens of kHz atmaximum,
the data acquisition of photon-photon coincidences is much longer compared
with to cross-correlations with external trigger at 30 MHz frequency.

In this context we would also like to point to the recent work devoted
to measuring enhancement in sensing the micro-motional modulation by
correlating the fluorescent count rate with it’s reflection at the distant mirror [86,
87]. In such a configuration, the detection sensitivity is enhanced with respect
to the directly observed fluorescence by a factor of more than 100 due to the
phase-sensitive interferometric measurement of photons.

Finally, in Table 3.1, we write the voltages corresponding to compensation
and tip electrodes, which were measured to optimally compensate the
micro-motion for presented experimental tests. The trap is driven in asymmetric
configuration, where the two electrodes are grounded, and the other two are
suppliedwith the RF, at the frequency corresponding to 30MHz and the RF power
transmitted to the trap of 4W.
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Figure 3.5: V-like energy level scheme (a) with the measured ’quantum jumps’(b)
for weakly continuously illuminated transition at 729 nm, showing the discrimination
between two quibit eigenstates in 𝜎− basis. The detected count-rate points to the
population of level |𝑔⟩ = 4𝑆1/2, denoted as a ’bright state’, while the low count rate
around zero points ot the ion being in the ’dark state’ |𝑒⟩ = 3𝐷5/2.

3.3 Internal state detection

For estimation of the population of the qubit states in the 𝜎𝑧 basis we employ
method which is in literature commonly denoted as ’electron shelving’ [88, 89].
It enables the detection of the ion’s internal state with efficiency typically higher
than 99 %. The basic principle lies in addressing the additional electronic level
denoted as |𝑟⟩, so the scheme finally operates as a V-like three level system, as
described in Fig. 3.5 a). Thus, for the case when electron populates the state |𝑒⟩,
it is impossible to detect any fluorescence except for the rate of the dark counts.

In our experimental scheme, we realize the two-level system at 4S1/2 → 3D5/2
transition at wavelength 729 nm, where state |𝑔⟩ corresponds to the 4S1/2 level,
and the excited level |𝑒⟩ is the 3D5/2 state. Fluorescence is detected at 397 nm
transition 4S1/2 → 4P3/2. Once the electron is excited into the state 3D5/2 by
the 729 nm laser, the fluorescence at 397 nm is suppressed. Therefore, the state
|𝑒⟩ is denoted as a ’dark’ state, while the opposite level |𝑔⟩ is the ’bright’ state.
The ’quantum jumps’ [88] corresponding to the abrupt change in the population
of the excited state due to the projection by photon detection are manifested
in the famous telegraphic signal, see the Fig. 3.5 b) for the example of such
measurement. The flat areas where the fluorescence is measured correspond to
the situation when the ion is projected to the ground state, while the areas with
rate equal to zero correspond to the projection on the excited level |𝑒⟩.
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3.4 Pulsed sequence control
The electron shelving method provides the projection to one of the eigenstates
of the two-level system. Despite the actual superposition, the single shelving
experiment always returns a yes/no answer, if the atom was in the ’dark’ or
’bright’ state. Therefore, any experimental sequence is implemented with a
high number of repetitions, which allows to obtain the statistics of projections
on the two-level system. The sequences of excitation laser pulses are directed
with the programmable RF-generator6 and from here, pulses are delivered to the
set of acousto-optical modulators7. All the experiments consist of a hundred
independent sequence repetitions, which suppress the projection noise and
provide the probability amplitudes with the reasonable error estimate.

A general form of the sequence is depicted in Fig. 3.6. The sequence starts
with the Doppler cooling, followed with optical pumping, possibly sideband
cooling which further reduces the mechanical thermal energy, then with state
manipulation and finally the state analysis.

3.5 Optical pumping
The optical pumping in the experimental sequence is performed in order to set
the preference of electron transition into one of two possible Zeeman sublevels
of the 4S1/2 manifold. The splitting itself is performed with a pair of Helmholtz
coils placed parallel with the trap axis [50, 51], inducing the external magnetic
field of approximately 10 Gauss. The particular splitting of the spectral lines
for employed experimental setting was measured spectroscopically (see Fig. 3.8
in Sec. 3.6). Here, we describe the basic physical principle and experimental
optimization process of the optical pumping.

A weak and short optical pumping pulse at 397 nm is applied in each
sequential experiment. The pumping photon bears a left or right hand circular
polarization state, carrying the angular momentum Δ𝑚𝑗 = ±1. Consequently,
following the photon scattering into the unwanted ground state level, an
incoming pumping photon implements an excitation back to the excited state,
which is followed by additional spontaneous emission. This process occurs, until
the electron travels into the selectedm level, which is unaffected by the pumping
pulse.

From an experimental point of view, the choice between 𝜎+ and 𝜎− can
be made arbitrarily, however, it is necessary to choose one configuration for

6electronics based on FPGA logic, controlled in LabView software
7Brimrose, central frequency of modulation typically 250 MHz
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Figure 3.6: Example of the experimental sequence used for motional state preparation,
manipulation and state detection. The Doppler cooling represents the continuous
illumination with 397 nm and 866 nm lasers, typically with 1.2 ms duration. The
optical pumping initializes the state of the electron to particular 𝑚𝑗 state of the S state.
The sideband cooling part consists of multiple pulses of simultaneous 729 nm and 854
nm beams, which are interrupted with short 397 𝜎− optical pumping, preventing the
population to accumulate in unwanted Zeeman component of the S state through rare
decay of the excited 𝑃3/2 state to 𝐷3/2 followed by the optical reshuffling using 854 nm
laser back to the S state manifold. The overall length of the sideband cooling sequence
part depends on application. For ground state cooling with over 98 % of population in
the state |𝑛⟩ = 0, the required length exceeds 3 ms. State detection refers to the electron
shelving, and also contains the gating of window for detection by the APD.
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Figure 3.7: Optical pumping realized at the 397 nm with additional addressing beam,
employed in the axial direction. The 𝜎+ and 𝜎− correspond to the left or right handed
circularly polarized photons, which induce the angular momentum change ofΔ𝑚𝑗 = ±1.
In the case of photon scattering into one of the states addressed with pumping pulse, the
electron is transferred back to the excited level.

all experiments and keep it fixed. In our experimental scheme, we choose to
implement the experiments at 𝜎− transitions. This also brings up an advantage
for sideband cooling regime (see Sec. 3.8), which is realized at the 1𝑠𝑡 axial red
detuned sideband of the outermost transition 4S1/2(m = −1/2) → 3D5/2(m =
−5/2). Particularly in this case, the probability of off-resonant excitation of other
spectral lines is decreased, as the transition is located at the edge of the spectrum.
The principle of the optical pumping is displayed in Fig. 3.7.

In the experiment, the setup and optimization of the optical pumping routine
is set as following. The optical pumping beam is applied in the axial direction
of the trap, and it’s polarization is set to circular. The polarization is optimized
in the regime of continuous laser excitation, when the standard Doppler cooling
beam at 397 nm is turned off, so the the ion is Doppler cooled only in the axial
direction. This is however not a significant issue for ion’s stability on scale of a
few minutes, which are required for optical pumping optimization.

Once the polarization of the incoming beam is set to circular, the fluorescence
radiated at 4P1/2(m = +1/2) → 4S1/2(m = +1/2) is suppressed. Due to
the circular polarization of the interacting photon, one of the 𝜎 transitions is
then driven maximally, while the latter is not addressed. The rotation of the
polarization angle by 𝜋will then set the preference for scattering into the second
Zeeman sub-level.

Typically, the power of optical pumping beam is set to approximately 15 𝜇W.
We aim to illuminate the ion with the attenuated beam, which would, however,
still reliably implement the optical pumping effect. The 397 𝜎 beam, while being
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applied at high power for a long time, may cause the motional heating of the
axial mode. The power of optical pumping is optimized at Rabi oscillations for
carrier transition, and it is set to the lowest intensity and temporal length, which
does not yet lead to the decrease of the carrier flop contrast, which would be
caused by population scattering into the neighboring |𝑆⟩ state.

3.6 Spectroscopy on the quadrupolar transition
The spectroscopic measurements provide a tool to directly measure the energy
level structure of the 4S1/2 → 3D5/2 transition (see scheme in Fig. 3.8). They
allow for determination of all of the crucial information about the internal energy
level structure of the probed transition and, at the same time, serve for precise
estimation of its temperature or even of the full motional state. They can be used
also to determine the magnitude of DC magnetic field at the position of ion and
also the Zeeman splittings.

The pulse sequence consists of Doppler cooling, optical pumping, the probe
by a weak 729 nm laser pulse, and the state detection by electron shelving.
Each point of the spectrum corresponds to a probability originating from
100 repetitions of the experimental sequence. The frequency detuning of
the 729 nm pulse is controlled by setting the modulation frequency to the
acousto-optical modulator in double-pass configuration, while the first order
diffracted modulated light from the second modulator is sent to the experiment.

In order to observe transitions from both 4S1/2 states, we first set the optical
pumping such that it coincides with the 𝜎− transition of the 4S1/2 → 4P1/2 and
implement frequency spectroscopy on the quadrupole 4S1/2 → 3D5/2 transition.
After that, the polarization of the pumping pulse is rotated to the orthogonal
state 𝜎+, and the other five carrier transitions at 4S1/2 → 3D5/2 can be observed.
The positions of measured spectral lines are determined with respect to the AOM
modulation frequency. The measured spectra corresponding to 4S−1/2 state are
depicted in Fig. 3.9. From the resulting values, we determine the physical
frequency splitting of 4S1/2(m = −1/2) and 4S1/2(m = +1/2) ground state
as 28.22 MHz, and the splitting between 3D5/2 states to be 16.92 MHz which
corresponds to the applied magnetic field of 𝐵 = 6.72 Gauss.

A significant requirement on the amplitude of the B field is, that the induced
Zeeman splitting should exceed the frequency modulation emerging from the
motional modes. In addition, for some particular values of B one has to optimize
its magnitude in order to avoid the proximity of transitions corresponding to
different 𝜎+ or 𝜎− lines, which could become an issue in case that the optical
pumping is not set properly, due to the loss of population in advantage of the
unwanted 𝜎 transition.
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28.2 MHz

16.92 MHz

Δm = -2,-1,0,+1,+2

Figure 3.8: Scheme of spectroscopy of quadrupole transition 4S1/2 → 3D5/2. Red solid
lines depict the addressable transitions for optical pumping set to 𝜎−, corresponding to
the possible Δ𝑚 = ±2,±1, 0. Alternatively, 𝜎+ transitions can be measured by setting
optical pumping to 𝜎+, as depicted with black thin lines. The Zeeman splitting is induced
with external magnetic field 𝐵 = 6.72 Gauss according to the Eq. 2.35. For the current
setting, the frequency splitting between 4S1/2(m = −1/2) and 4S1/2(m = +1/2) is 28.2
MHz. The D5/2 is split into 6 sub-levels differing by 16.92 MHz.
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3.7 Laser spectroscopy of secular motion

The secular motional modes are imprinted to spectral lines as a frequency
modulation of electronic transitions, which makes them directly observable
when setting the laser to the correct detuning. The basic condition to distinguish
the modulation is the ’sideband resolved regime’, where the motional frequency
is much higher than the natural decay of the excited state (𝜔 ≫ Γ). The strength
of laser coupling to sidebands is driven by the energy in the motional mode. In
Lamb-Dicke regime, the significant coupling occurs for first sideband only, with
higher order modes being strongly suppressed.

To successfully measure the oscillatory motion, the vector defining the
direction of vibration has to have a significant projection into the direction of
the excitation beam. In our experimental configuration, the 729 nm beam is
aligned at the angle 45∘ with respect to the trap axis. This ensures that both
the axial and radial oscillations are projected to the plane of the laser and thus
they may effectively couple with it. For the measurement presented here, we do
not implement the sideband cooling routine, so the initial thermal distribution
corresponds to the Doppler cooling limit.

Fig. 3.10 displays the spectrum of the 4S1/2(m = −1/2) → 3D1/2(m = −1/2).
Horizontal axis denotes the laser frequency detuning from the central carrier
transition. The vertical points show the resulting probability of the electronic
state to be the excited D-state. Each point represents a probability reconstructed
from a hundred independent measurements.

In Fig. 3.10, the carrier transition is represented with the strongest central
line. First axial sidebands are displaced exactly 1.188 MHz apart from the
carrier, for the set axial DC potential of 1200 V. The radial motional modes are
represented by the highest peaks, at |𝛿| = 2.074 MHz from the carrier frequency.
The small peaks detected closest to the carrier resonance show the beating of the
axial and radial mode and the modulation frequency 𝜈𝑥𝑧 = 𝜈𝑥−𝜈𝑧 = 0.868MHz.
We can see the background excitation at the sides to the carrier, which arises
despite the attenuation of the excitation laser. With the increasing intensity of
the laser beam, the line-shapes tends towards the saturation.

3.8 Sideband cooling

Sideband cooling brings in the possibility to further reduce the energy of the
motional mode, typically down to mean energy around 𝑛 = 0.01 phonons. It
is also commonly denoted as the ’ground-state’ cooling, as the mean motional
energy of the oscillation mode is already very close to the minimal possible.
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Figure 3.11: A scheme of the sideband cooling routine. a) shows the cooling cycle in
the combined electronic-motional level scheme, where the first order axial red sideband
is addressed, and b) depicts the loop of the angular momentum change between the
Zeeman levels.

Fig. 3.11 depicts the cyclic scheme of the sideband cooling routine. The part
in b) shows the dynamics between the Zeeman sub-levels. This is a repetitive
loop, starting in the state 4S1/2(m = −1/2), following to 3D5/2(m = 5/2) with
angularmomentum changeΔ𝑚𝑗 = −2, then to 4P3/2(m = −3/2)withΔ𝑚𝑗 = +1,
and finally down to the S1/2(m = −1/2) again with the same Δ𝑚𝑗 = +1.
Importantly, due to the conservation of total Δ𝑚𝑗 and the selection rules on
dipole and quadrupole transitions, only scattering down to 4S1/2(m = −1/2)
level is allowed, preserving the closed cooling cycle. For this type of the cooling
loop, the optical pumping pulse in the experimental sequence is set to 𝜎−. Similar
cooling loop can be employed also for 𝜎+.

The part a) in Fig. 3.11 shows the dynamics of the cooling cycle in motional
ladder scheme. We address the red modulation sideband of 4S1/2(m = −1/2) →
3D5/2(m = −5/2) with 729 nm laser. A coherent transfer of electron into the
excited state 3D5/2(m = −5/2) leads to the subtraction of the single energy
quantum. The lifetime of the excited state is 1.1 s, so the population cannot
effectively transfer back to the ground state by the spontaneous emission. The
additional laser pulse at 854 nm is employed, which addresses the transition
between 3D5/2(m = −5/2) → 4P3/2(m = −3/2), from where the electron quickly
decays back to the 4S1/2(m = 1/2) ground state at the wavelength 393 nm.

The biggest limitation of the sideband cooling efficiency lies by the
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off-resonant excitation of the neighboring motional transitions from the state |0⟩,
which imposes a limit on the minimal mean energy 𝑛 achievable. In case that the
sidebands are well resolved, that is Γ ≪ 𝜔, the cooling efficiency increases and
the ion is cooled to the ground state with high probability.

Additional possible issue in the cooling routine lies in the finite probability of
the interruption of the loop. One of the reasons originates in the small probability
of a spontaneous decay from 4𝑃3/2(𝑚 = +3/2) level to a lower excited state
3𝐷3/2(𝑚 = +3/2), which is approximately 6 % [90]. From here, the electron
can be reshuffled to the 4𝑃1/2(𝑚 = +1/2) by 866 nm beam. Finally, from
4𝑃1/2(𝑚 = 1/2) level, the population may decay into both Zeeman sub-levels
4𝑆−1/2(𝑚 = −1/2) and 4𝑆+1/2(𝑚 = +1/2). We employ a short 𝜎− optical
pumping pulse every 1 ms which on average corresponds to the high probability
of populating the 4𝑆1/2(𝑚 = +1/2) state due to this process. The electron
scatters back to the 4𝑆1/2(𝑚 = −1/2) level, and the cycle may continue on. The
sideband cooling sequence is technically implemented as a pulse train, where
the long pulses consisting of the simultaneous excitation with 729 nm and 854
nm lasers are accompanied by short pulses of optical pumping to 𝜎−. Figure 3.6
visualizes the experimental sequence.

Typically, in our experimental configuration, the length of the sideband
cooling sequence varies from 2 to 4 ms. The achievable occupation of the
motional mode after the cooling approaches 𝑛 = 0.03±0.01 phonons. The power
of 729 nm laser is increased to 9 mW, which in our experimental configuration
corresponds to the carrier Rabi frequency of Ω0 = 2𝜋 × (69.7 ± 0.1) kHz. On
the contrary, the 854 nm laser is attenuated to the lowest possible intensity
which would still reliably implement the repump. The attenuation minimizes
the induced AC Stark shift of the excited level caused by the 854 nm beam. In
case of frequency shift being too large, the transition is effectively detuned out
of the 729 nm resonance. Although this issue can be partially fixed by detuning
of the 729 nm frequency, our experience guided us to the limit of very low 854
nm beam intensity. The 854 nm laser frequency is optimized at the reshuffling of
the 4𝑆−1/2 → 3𝐷−1/2 carrier transition, where the correct frequency detuning is
set to reach the best de-population of exited state to the ground state. Typically,
the power of 854 nm laser employed in our experiments is set in a range between
only 5 to 10 𝜇W.

3.9 Motional state estimation
The motional state readout is based on measurements of the coherent Rabi
oscillations, as described in Sec. 2.10. Particularly, the main relevant
transition for the presented population distribution estimations is the blue axial
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sideband. Additionally, we measure flopping at carrier transition too, in order
to experimentally determine the value of Rabi frequency and consequently the
Lamb-Dicke parameter. The measured carrier and blue sideband Rabi patterns
are fitted with the Eq. 2.39 and 2.40.

In the approximation of thermal states, which result from the Doppler and
sideband cooling steps [91], the carrier Rabi oscillation is described with the
Eq. 2.39. The measured carrier flops are presented in the Fig. 3.12. For the
measurement of the ground state Rabi frequency from carrier Rabi oscillation,
we calculate the coarse value of the Lamb-Dicke parameter 𝜂calc from the
spectroscopically measured frequency of the axial motional mode with use of
the Eq. 2.24

𝜂calc =
2𝜋
𝜆 cos(𝛼)

√
ℏ

2𝑚𝜔ax
, (3.1)

where 𝜆 = 729 nm, 𝑚 = 40 ⋅ 1.66 ⋅ 10−27 kg is 40Ca+atomic mass and 𝜔ax =
2𝜋 × 1.188 MHz is the measured frequency of the axial mode. We also employ
the excitation angle 𝛼 = 𝜋/4 given by the alignment of the 729 nm laser beam
with respect to the trap axis., which signifies that the laser beam is aligned at
the angle 45∘ with respect to the trap axis. For this motional frequency, this
initial estimation of the Lamb-Dicke parameter value results as 𝜂𝑐𝑎𝑙𝑐 = 0.0629.
Estimation of 𝜂 by measurement is discussed in in Sec. 3.11.

For the fit of the carrier oscillations depicted in Fig. 3.12, we thus assume
the 𝜂calc as constant, the Rabi frequency Ω0 as a fitting parameter, and the mean
energy 𝑛 as well, which is a term responsible for oscillation damping. From the
least-squares fitting method of the Eq. 2.39 into the measured data, we finally
obtain the Rabi frequency Ω0 = (2𝜋 × 59) kHz and the mean energy 𝑛 = 14.1
phonons.

Once the values of Rabi frequency Ω0 and Lamb-Dicke parameter 𝜂calc are
known, it is possible to directly obtain the phonon number distribution by
measurement of the Rabi oscillations on the blue axial sideband. This is described
with the Eq. 2.40 as

𝑃bsb
𝑒 (𝜏) = 1

2
[1 −∑𝑛 𝑃𝑛 cos(Ω𝑛,𝑛+1𝜏)𝑒−𝛾𝑛𝜏].

For the specific cases, the distribution 𝑃𝑛 may be substituted with coherent or
thermal statistics. The Rabi frequency scales up with the Lamb-Dicke parameter
as Ω𝑛+1 = Ω0𝜂√𝑛 + 1, and the incoherent decay is represented with element
𝛾𝑛 for each number state, which has been found to scale approximately as
𝛾𝑛 = 𝛾0(𝑥 + 1)0.7 [92] (see Sec. 3.14.3). According to the reference [66], the
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Figure 3.12: Carrier Rabi oscillation at 4S1/2(m = −1/2) → 3D1/2(m = −1/2) transition
for the axial mode being cooled close to the ground state motion. The solid line
corresponds to the fit by the Eq. 2.39, with the fitting parameters Ω0 = (2𝜋 × 59) kHz
and 𝑛 = 14.1 phonons.

damping is explained by the combination of multiple factors - one of them is the
interaction with the surrounding environment where the environmental degrees
of freedom are considered entangled with the motional state. The second origin
of damping can be attributed to the oscillation of some classical parameter, such
as the intensity of the laser or magnetic field noise, which can be also present in
systems which are perfectly isolated from the environment.

The occupation of higher motional states causes the increase in the measured
Rabi frequency. The ability to prepare these states with high fidelity provides a
feasible tool tomeasure this frequency scalingwith unprecedented high accuracy.
The statistical distribution of motional state population 𝑃𝑛 provides the crucial
information about the quantum state, which can be directly used to evaluate the
various measures of the non-classical and quantum non-Gaussian features.

3.10 Engineering motional quantum states

The aim of the motional state engineering in this Thesis is to control the phonon
number distribution 𝑃𝑛 in such way, that we are able to construct a state with
desired statistical distribution of interest. We will not consider coherent aspects
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Figure 3.13: Blue sideband Rabi oscillation at 4𝑆1/2(𝑚 = −1/2) → 3𝐷1/2(𝑚 = −1/2)
transition between the motional states |𝑔, 0⟩ → |𝑒, 1⟩, where in the ket state notation
|𝑔⟩ , |𝑒⟩ stands for the spin part and states |0⟩ , |1⟩ for the motional degree of freedom. The
axial motion is cooled close to ground state, being represented with thermal distribution
with measured mean energy 𝑛 = 0.03 ± 0.01 where the uncertainty is calculated from
projection noise, see Sec. 3.14.4. The damping factor 𝛾0 for Fock state |0⟩ was estimated
as 𝛾0 = 2𝜋 × (8.9 ± 0.2) kHz. For this measurement, the noise properties are described
exclusively with this damping factor 𝛾, unlike for the case of the damped carrier Rabi
oscillation, where the decay is contributed to the mean energy 𝑛.

of generated phonon superpositions and focus solely on the phonon number
probabilities. The methods to achieve so lie either in setting of the length of
Doppler and sideband cooling, leading to generation of classical states with
thermal distributions, or by setting the arbitrary combination of carrier and
first order motional sideband pulses. We will focus here on basic methods of
generation and population reconstruction for thermal and Fock states of motion,
and their statistical mixtures resulting from a mechanical thermalization or
deterministic nonlinear manipulations of thermal states.

3.10.1 Thermal states
A thermal state of motion can be simply achieved by laser cooling. Statistics of
phonon populations 𝑃𝑛 after cooling typically obeys the Bose-Einstein thermal
distribution [19, 58, 91] written as
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𝑃𝑛 = ∑
𝑛

𝑛𝑛

(𝑛 + 1)𝑛+1 . (3.2)

which is characterized with a single variable 𝑛 denoted as mean energy. The
amount of mean thermal phonon population 𝑛 can be tuned by length of the
sideband-cooling sequence in the state preparation step. In this way, the energy
may be tuned from a close-to ground state, up to the Doppler cooling limit.
Particularly, for our experiment, the scope lies between 𝑛 = 0.03 up to 𝑛 ≈ 8.

The characterization of the thermal motional distribution shrinks to the
aim of finding the mean energy 𝑛 and confirmation of the thermal character
of the observed photon probability distribution. There are various methods to
achieve so, including comparison of couplings to red and blue sidebands [19,
93], measuring of the strength of motional coupling with respect to the carrier
transition [48], or measuring the spatial and coherence properties of emitted
light. They include the implementation of thermometry based on the optical
spatial resolution of ion wavepacket [94], or related optical interferometric
schemes [86]. However, for thermal state energy which is close to the Doppler
cooling limit and lower, and in tight trapping potentials corresponding to
motional frequencies on the order of a few MHz, the most convenient way of
characterization is a direct fit of Rabi oscillations with the Eq. 2.40.

We discuss two different methods to fit the population distribution of thermal
states. For the bare estimation of the mean phonon population on the state,
which can be apriori expected to be in a thermal, i.e. Bose-Einstein phonon
number distribution, it becomes sufficient to employ the predetermined relation
between the relative weights of 𝑃𝑛 and merely use the mean phonon number ̄𝑛 as
the fitting parameter. We thus insert the Bose-Einstein probability distribution
in Eq. 3.2 directly to the fitting function. (Eq. 2.40). Fitting only the single
parameter 𝑛 largely simplifies the estimation. The main source of imperfections
of this routine lies in the fact that the actual distribution is never perfectly
thermal. The small deviation from the motional population could originate
mainly from the assumption of idealized cooling dynamics, which, however, can
be disturbed by the presence of different excitation scenarios and corresponding
parametric nonlinearities in the system. [95]. In addition, small intensity
fluctuations of the employed Doppler cooling laser, and detection projection
noise unavoidable for the finite number of measurement repetitions, result in
the deviations from the thermal distribution, which do not perfectly match the
simplified model of thermal oscillator.

For this purposes, we often prefer to employ the estimation of probability
phonon distribution without any assumption about its statistics. We compare
these two estimation methods when applied on same set of data, and present
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the results in Fig. 3.14. There, the first plot with blue line depicts the results
from direct probability estimation, on the data set resulting from 100 repetitions
of the sequence in each point of the measured Rabi oscillation. The second
method shows the statistical estimation based on the fit with a single fitting
parameter ̄𝑛. The comparison shows that in the limit of many experimental
repetitions, the direct fit of themotional populations returns the similar results as
the method which utilizes only the mean energy of the thermal state as a single
fitting parameter. The method of direct estimation of populations is preferred
for measurements in the scope of this work, due to it’s applicability beyond the
set of thermal states only.

For our experiment, the typical energy achieved after the optimization of
mutual detuning of 397 nm and 866 nm lasers and their intensities, the estimated
energy of a single ion after the Doppler cooling limit was corresponding to as
𝑛 = 8.0±1.0 phonons on axial mode. The correspondingmeasured Rabi flops are
depicted in Fig. 3.15, including the estimated probability distribution, compared
to the ideal Bose-Einstein statistics derived from the fitted 𝑛.

3.10.2 Number states

There are various methods which can be implemented for the number
state generation, such as accumulation of motion from repetitive anti-Jaynes
interaction [34, 96], rapid adiabatic passage [24], or implementation of reservoir
engineering [97]. The most understood method corresponds to the iterative
excitation of the Jaynes-Cummings (JC) and anti Jaynes-Cummins (anti-JC)
interactions, implemented on blue and red axial sidebands. This method
is reliable, convenient to implement, and previously provided experimental
demonstrations of low number states with very high deterministic population
of desired |𝑛⟩.

However, the necessary condition to be fulfilled is the ability to minimize
the initial population entropy which is typically approached by initialization
of the ion in the motional ground state |𝑔, 0⟩. In our experiment, we could
systematically reach the population of |𝑔, 0⟩ as 𝑃0 = 0.97 ± 0.02, which
corresponds to mean number of phonons 𝑛 = 0.03 ± 0.01. The corresponding
Rabi oscillation for 1𝑠𝑡 motional blue sideband at transition |𝑔, 0⟩ → |𝑒, 1⟩ has
estimated Rabi frequency Ω0 = (2𝜋 × 71) kHz.

For the transition |𝑔, 0⟩ → |𝑒, 1⟩, we define the experimental 𝜋-pulse
as a measured duration 𝜏, for which the maximal amount of population is
transferred to the excited state. For the particularΩ0, this has been estimated as
𝜋0 = 112 𝜇s with the measured efficiency of population transfer between 𝑃0 to
𝑃1 being close to 0.99.
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Figure 3.14: Comparison of two different fitting methods to measure the mean energy
of axial motion in thermal state. Figures a) and b) show fit and the results by the method
which employs direct reconstruction of the states’ probabilities from least squares fit of
the Eq. 2.40. The resulting distribution is then fitted with Eq. 3.2, returning the mean
energy 𝑛 = 1.5±0.2, with the error resulting from five independent measurement. Black
columns in b) show the ideal thermal distribution modeled for corresponding 𝑛 = 1.5.
The fidelity between this Bose-Einstein probability distribution with the same 𝑛 and
the distribution estimated from a full fit of 𝑃𝑛 is 96.5 % [47]. The upper limit on the
probability sum in Eq. 2.40 was set to 𝑛max = 7, above which the remaining population
of the thermal state is expected to be less than 1 %. Figures c) and d) show the fit by the
thermal distribution, when 𝑛 is taken as a single parameter, resulting to the mean energy
𝑛 = 1.67. Bothmethods return the result which are equivalentwithin the estimated error
bar.

The experimental sequence for generation of the previously observed low
number states |𝑔, 1⟩ and |𝑔, 2⟩ goes as following. We experimentally determine
the exact length of the 𝜋-pulse by scanning the pulse duration in order to reach
the most effective excitation to the |𝑒, 1⟩ level. Next, the 𝜋-pulse on carrier
transition transfers the population back to the ground state of two level system,
|𝑒, 1⟩ → |𝑔, 1⟩. In the last step, we apply a 854 nm quenching pulse, which serves
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Figure 3.15: a) Blue sideband transition 4S1/2(m = −1/2) → 3D1/2(m = −1/2) at
axial motional mode measured at the limit of Doppler cooling, which is the initial state
before application of the sideband cooling step. The state is prepared by application
of 1 ms of Doppler cooling sequence step (see Fig. 3.6). The mean phonon number is
estimated 𝑛 = 8.0 ± 1.0. Blue trace presents the measured data, black is the fit from
Eq. 2.40 with measured 𝑛. b) shows the corresponding measured population (in blue),
and theoretically estimated one (black), for the measured curves displayed in a). Fidelity
of the populations from the full 𝑝𝑛 fit with respect to theoretical was estimated as 78.5
%. The red error bars correspond to one standard deviation, which is evaluated for each
population with use of the Monte-Carlo simulation method (see Sec. 3.14.4), assuming
the projection noise from 100 population measurements on the two-level system. The
resulting uncertainty of each population varies between ±2.2 % to ±2.9 %, with the
average value ±2.4 %. Comparison of measured data with these uncertainties shows
that most of the values fall into to the interval defined by single standard deviation of
the ideal value for corresponding thermal state, which implies that the Monte-Carlo
estimation proves itself as a good method to estimate the uncertainty in case that it is
not possible or convenient to perform repetitive measurements.

to eliminate the residual population of the state |𝑒, 1⟩, which is typically much
below 5 %. We also apply a short optical pumping pulse at 𝜎− at 397 nm to
suppress the accumulation of the population in the 4S1/2(m = +1/2) level, which
can arise from the improbable 4P3/2(m = +3/2) → 3D3/2(m = +3/2) decay.

In order to generate higher order Fock states, one may choose the method
which extrapolates the sequence for the generation of |2⟩, that is, iterative
excitation of blue and red sidebandswith pulse lengths corresponding to𝜋 pulses.
In order to end up in the ground state of the electronic transition, the last pulse
for the odd number state is the carrier 𝜋 pulse, or a red sideband 𝜋 pulse for even
Fock states, respectively.

In Fig. 3.16, we plot the Rabi oscillations for generated Fock states |1⟩ and
|2⟩. The frequency of the oscillation increases by the factor√𝑛 + 1, which leads
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Figure 3.16: Fock states of motion at axial mode up to order |2⟩, generated by the
method of alternate application of blue and red sideband 𝜋 pulses. The ground state Rabi
frequency for this measurement was measured for ground state as Ω0 = (2𝜋 × 71)kHz.
For these values the populations of the measured number states was 𝑃1 = 0.96 ± 0.02
for state |1⟩ and 𝑃2 = 0.98 ± 0.02 for state |2⟩. The increase of motional number for the
measured oscillations is manifested by the higher Rabi flopping frequency.

to shortening of the corresponding oscillation period. In order to maximize
the amount of population transferred between the |𝑔, 𝑛⟩ → |𝑒, 𝑛 + 1⟩ states (or
between |𝑒, 𝑛⟩ → |𝑔, 𝑛 + 1⟩ states), the duration of the 𝜋 pulse is optimized
experimentally by scanning the pulse duration. This is important due to the time
offset of the RF pulse generated by the programmable pulse sequencer, which
in our case slightly varies depending on the complexity of the pulse sequence.
Also, the oscillation damping and loss of contrast slightly shift the position of the
pulse maximum. he experimentally measured 𝜋 pulses differ from theoretically
estimated lengths by ±5 𝜇𝑠.

3.11 Estimation of the Lamb-Dicke parameter
For initial estimation of the carrier Rabi frequency and damping it is possible to
employ the coarse value of the Lamb-Dicke parameter 𝜂, which was calculated
from the spectroscopically measured frequency of the given motional mode
with use of the Eq. 2.24. Once the motional ground state cooling is achieved
in the experiment, 𝜂 can be also precisely experimentally estimated from the
comparison of the Rabi frequencies on the first blue motional sideband and
on the carrier transition. In case that the mean energy ̄𝑛 is zero, the carrier
Rabi oscillations given by the Eq. 2.38 should become independent on motional
coupling, and thus they should not be affected by the Lamb-Dicke parameter
𝜂. The measurement of the carrier Rabi oscillation then provides the Rabi
frequency Ω0. The oscillations on first blue motional sideband then allow for a
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direct estimation of Lamb-Dicke parameter without any prior knowledge of the
trapping parameters, like motional frequency or corresponding laser excitation
parameters. Note that by definition, the estimated Lamb-Dicke parameter is
always related exclusively to the given excitation laser frequency and direction
with respect to the particular normal mode of ion’s motion.

Themeasurements of carrier and blue sideband Rabi oscillations after ground
state cooling are shown in Fig. 3.17. The measured oscillation pattern always
appears damped even for ground-state cooled motion, with decay caused by the
residual population in radial modes, which were not ground-state cooled in this
sequence. Additionally, the damping can be typically caused by the intensity
fluctuations of the employed laser beam, however, after implementation of the
precise sample and hold stabilization of the 729 nm laser intensity at the input
to the vacuum chamber, we did not observe any significant contribution of this
kind.

Since we have to assume the damping in the fit, we fit the carrier oscillations
by the Eq. 2.39, where we assume the preliminary value of 𝜂 = 0.0629 together
with themean energy 𝑛 taken as a variable, resulting into 𝑛 = 14.1±0.2 phonons.

In the second step, we apply a sideband cooling method and reduce the axial
motion close to the ground state. The corresponding Rabi oscillation on the
blue sideband is then described with use of the formula 2.40, with 𝜂 and 𝛾 now
serving as fitting variables. We again employ five independent measurement
runs, returning the final value of 𝜂729 = 0.0611 ± 0.0002, and the damping
𝛾0 = 2𝜋 × (8.9 ± 0.2) kHz.

3.12 Motional heating on axial mode
Motional heating is a process which is manifested as a gradual increase of the
energy in the motional mode over the time of the measurement. The main
origin lies in the fluctuation of electric fields inside the trap, which couple to
the motional charge [90, 98]. Alternatively, the ion may be heated by the photon
scattering on the dipole transition. In the first case, the ion heats up to the limit
of energy of surrounding environment, in the latter, the ion will over time reach
the energy of the limit for Doppler cooling.

To measure the heating rate, the cooling is set close to the ground state
of motion. We insert the time delay interval between the state preparation
and state detection step into the experimental sequence, which is between 10
ms and 250 ms (see Fig. 3.6). While varying the duration of the time gap,
we are able to determine the amount of thermal heating acquired by the ion
during the corresponding time period. The resulting energy is obtained from a
statistical distribution, which is again extracted from a fit of the blue sideband
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a) b)

Figure 3.17: Measured Rabi oscillations at a) carrier and b) blue sideband to determine
the Lamb-Dicke parameter. For each estimation, in total five similar measurements
under the same experimental conditions were performed. From a), we have obtained
Ω0 = 2𝜋 × (58.9 ± 0.1) kHz, and 𝑛 = 14.1 ± 0.2, from the fit of the BSB Rabi
oscillations presented in b) we retrieve the experimentally determined value of 𝜂729 =
0.0611 ± 0.0002 and 𝛾 = 2𝜋 × (8.9 ± 0.2) kHz.

Rabi oscillation.
Fig. 3.18 shows the Rabi oscillations of initial close-to ground state, and

thermal state after 250 𝜇s of heating, which represents the maximal waiting
time set in the heating rate measurement. The similar measurements have been
made for time differences ranging from 50 𝜇s to 250 𝜇s with 50 𝜇s steps. The
amount of heating acquired by atom for each time interval is plotted in Fig.
3.19. From a linear dependence of the axial heating rate, we deduce the resulting
change of energy as Δ𝑛 = 2.7 ± 0.2. The measured amount of heating is further
used to characterize the source of imperfections for generated complex motional
mixtures, and their comparison with theoretical simulations.

3.13 Heating by random photon recoils
Significant, but to a large extent controllable source of motional heating in
presented experiments originates from the interaction with excitation lasers in
the sideband unresolved regime. This happens particularly in the processes of
reshuffling of the excited state 4𝑃1/2 or in the optical pumping. The certain
amount of population in prepared motional quantum state is always lost in credit
of the neighboring number states with the probability proportional to the square
of the Lamb-Dicke parameter 𝜂2.

We measure the recoil heating experimentally, as depicted in Fig. 3.20. The
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Figure 3.18: Axial heating rate measurement. Upper part of the figure shows the initial
thermal state with mean energy 𝑛 = 0.09 ± 0.01 phonons with corresponding statistics.
b) is a developed state after 250 ms waiting time, with estimated 𝑛 = 0.72 ± 0.05.
Blue columns show reconstructed populations, black columns are thermal distributions
corresponding to the measured mean energy 𝑛.

experiment starts in ground state of motion of axial mode and the two-level
system. We apply the carrier 𝜋-pulse to transfer the maximal amount of
population to the excited state (|𝑔, 0⟩ → |𝑒, 0⟩), where we apply re-shuffling at
854 nm. Before the detection step, we also add the 5 𝜇s optical pumping pulse.
At this point, certain amount of population proportional to 𝜂2 transfers into
the neighboring energy level |𝑔, 1⟩. We implement five sequential repetitions of
this ’carrier’→ ’reshuffling’→ ’optical pumping’ pulse sequence, and after each
iteration, we investigate the change of the population distribution with respect
to the previous iteration. In the limit of a single experimental reshuffling cycle,
the effective Lamb-Dicke parameter 𝜂2 can be estimated, which correspond to

𝜂2 = Δ𝑃1/𝑃0, (3.3)

with Δ𝑃1 = 𝑃out
1 − 𝑃in

1 denoting the population acquired into the state 𝑃1 during
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Figure 3.19: Axial heating rate measurement. The amount of acquired mean thermal
energy Δ𝑛𝑡ℎ is showed as a function of delay set into the experimental sequence. From
a linear fit, we estimate the axial heating rate as Δ𝑛 = 2.7 ± 0.2.

the heating, which is normalized on the population in the lowest level, initially
being close to the ground state. After five heating steps, we estimate the average
𝜂2 = 0.029 ± 0.002, where the uncertainty corresponds to a single standard
deviation, meaning that approximately 2.9 % of 𝑃0 is transferred due to heating.
As depicted in Fig. 3.20 c), the initial state 𝑃0 = 0.92 is reduced after two heating
cycles to 𝑃0 = 0.85 , and after six steps the population drops to 𝑃0 = 0.75.
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Figure 3.20: Illustration of the estimation of the heating rate due to photon recoils in the
processes of optical re-shuffling (a) and optical pumping (b). The excitation of the two-
level system with 729 nm beam (1.) and 854 nm (2.) light is followed by the spontaneous
emission of a 393 nm phonon back to the 4𝑆1/2, which may cause the addition of the
motional quantum. Similarly, this can happen also after excitation of 𝜎− transition (3.).
Finally, the state is probed and measured with 729 beam tuned to the first blue sideband
(4.). c) shows the results of the measurement, for initial state with k = 0 iterations, then
for k = 2 and k = 6 iterations. The measurement results into the value 𝜂2 = 0.029±0.002.

3.14 Approximations for reconstruction of
motional population

The following considerations are be related to the Rabi oscillations on the first
blue motional sideband using the Eq. 2.40.

𝑃𝑒(𝜏) =
1
2
[1 −∑𝑛𝑚𝑎𝑥

𝑛 𝑃𝑛 cos(Ω𝑛,𝑛+1𝜏) exp(−𝛾𝑛𝜏)].

We discuss the necessary conditions to be considered in the fitting routine,
in order to return estimated populations which would be closest to the
experimentally implemented state. We investigate the effect of constraints
on fitting parameters, particularly the truncation of the probability sum,
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then normalization of the resulting statistics, measuring scaling of damping
coefficient with motional population, and calculation of error estimate with the
Monte-Carlo methods.

3.14.1 Truncation of motional state distribution

The Rabi oscillation on the blue motional sideband described by the Eq. 2.40
consists of sum over the statistical distribution∑∞

𝑛=0 𝑃𝑛. Practically, the sum has
to be truncated at certain maximal population denoted as 𝑛max. The selection of
the sum maximum may impact the final distribution of probability. In particular,
for the states with low motional energy and populations concentrated in several
lowest 𝑛, the inclusion of very high 𝑛 typically increases the noise and probability
of population of high 𝑛, mainly due to their high oscillation frequencies which
become more similar to the sampling rate of the oscillations. On the other
hand, truncation at too low 𝑛 can obviously deform the observed statistics by
impossibility to resemble the population of higher phonon numbers.

We run a simulation of the population fitting on states with various thermal
energies. In the first step, we generate the Rabi oscillation pattern for thermal
state with mean 𝑛 the and the sum maximum 𝑛max →∞. In the second step, we
fit that Rabi oscillation with the Eq. 2.40 where the truncation parameter 𝑛max is
set as a variable. Finally, in the third step, we fit the resulting distribution with
the Eq. 3.2 describing a thermal motional state and project the resulting 𝑛fit as a
function of the original set 𝑛. The Fig. 3.21 shows the deviation from the optimal
fit result for various 𝑛max and 𝑛, which is very high for the low values of 𝑛max
and gradually decreasing with increasing 𝑛max.

The final value of 𝑛max for the fit is then considered as a value, whose
probability does not exceed 𝑃max

𝑛 = 0.01 for a thermal state with the same
energy as for the state under investigation. The whole process for the unknown
motional state thus goes as following. At first, we set the 𝑛max much higher than
expected for measured state. The population distribution is fitted with the Eq.
2.40. We calculate the mean motional energy as 𝑛 = ∑𝑛 𝑛𝑃𝑛. Then, we simulate
the Rabi oscillation with motional thermal distribution 𝑃𝑛 defined with the Eq.
3.2, fit it again with the Eq. 2.40 and select such a value 𝑛𝑚𝑎𝑥 where 𝑃max

𝑛 < 0.01.
In Fig. 3.24, the selected values are marked with black arrows.

As an example displayed in Fig. 3.24, we investigate the initial thermal state
with mean energy of about 𝑛 = 1.5, with the theoretical population 𝑝7 = 0.011
and 𝑝8 = 0.007. In this case, we set the 𝑛max = 7, since it is the last element
obtaining population higher than 1 %. Additional example is thermal state with
energy close to the Doppler limit, which is approximately 𝑛 = 7. Now, the sum
is truncated at 𝑛max = 18, with 𝑝18 = 0.011, where 𝑝19 = 0.01. Similarly, this
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Figure 3.21: Illustration of the effect of sum truncation for fits of ideal thermal states.
The 𝑦 axis shows the mean energies resulting from fits of Rabi oscillations for ideal
thermal states 𝑛 = 1.5, 3, 5, and 7, which are plotted as a function of set maximum of the
probability sum ∑𝑛𝑚𝑎𝑥

𝑛=0 𝑝𝑛. The resulting trends show that setting of a low maximum
leads to under-estimation of the resulting energy. The black arrows denote the highest
number states, which containmore than 1 % of the total population. These number states
are thus used to set 𝑛max in the fitting equation.

is applied also on states with 𝑛 = 3 and 𝑛 = 5 where 𝑛max = 11 or 𝑛max = 15,
respectively.

3.14.2 Population normalization and fitting constraints

Since the∑𝑛 𝑃𝑛 describes the actual probabilities of number state occupation, we
expect the results to be positive and the sum of the probabilities to be normalized
to 1. Generally, the completely unconstrained fit would be the most numerically
accurate, but the outputs will not comply with the physical constraints [99]. We
test different settings of fitting constraints to the Eq. 2.40 and in order to find the
fitting routine which returns most reliable outcomes.

We illustrate the effect of the reconstruction precision on the measurement
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of the thermal motional state with mean energy 𝑛 = 3.0 ± 0.4 phonons (see
Fig. 3.22 a). The data were taken with a 100 repetitions per the measurement
point, and the time difference between data points is 10 𝜇s. The maximum of the
probability sum is set as 𝑛max = 13, following the truncation condition described
in previous Sec. 3.14.1. We test four settings of constraints on the least-squares
method, as described in the Table 3.2. For each of the routines, we investigate
the probability sum, and also the mean absolute error (MAE), defined as

𝑀𝐴𝐸 =
∑𝑛 |𝑃meas

𝑛 − 𝑃th
𝑛 |

𝑛 , (3.4)

which tests the fit accuracy by returning average value of residuals between
the measured population and the idealized thermal state distribution, where
the lowest value shows the best numerical accuracy. The results of the fitting
routines and their comparison with the idealized state are depicted in Fig. 3.22 b).

Method constraints ∑𝑝𝑛 MAE
1 none 0.987 0.0269
2 0 < 𝑝𝑛 < 1 1.005 0.01805
3 ∑𝑝𝑛 = 1 1 0.01802
4 0 < 𝑝𝑛 < 1,∑𝑝𝑛 = 1 1 0.01792

Table 3.2: Table of tested settings of fitting constraints. The second column denotes the
constraints applied directly to the fit. 1st setting represents the unconstrained direct fit,
2nd the condition on the probability positiveness, 3rd the constraint on the probability
sum. The final 4th most accurate method combines both steps from 2 and 3, where only
first is applied as a direct least-squares constraint, and the second is achieved in weighted
normalization after the fit. MAE stands for the mean absolute error from Eq. 3.4, where
lowest value shows fit with the best physical validity.

At first, we assume a simple unconstrained model. In the second approach,
we make a simple general assumption that the probability should be greater or
equal to 0 and the single probability should be smaller or equal to 1. In the third
method, we force in the condition that the sum of all probabilities should be equal
to 1. Finally, in fourth approach, we take the conditions similar to the Method 2
and normalize the sum of the resulting probabilities to 1.

From the comparison depicted in Fig. 3.22 b), we see that all the methods
perform well for populations having at least 3 % probability. Beyond that, the
unconstrained model often returns the nonphysical outputs corresponding to
negative probabilities. Even though the method gives the best possible values
for the least-squares fit, the results have the lowest correspondence with the
ideal distribution, as can be seen from it’s MAE value being higher than for
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Figure 3.22: Test of the constraints for the fitting method. a) shows the Rabi oscillation
corresponding to thermal state with measured 𝑛 = 3.0 ± 0.4 phonons on the first
blue axial sideband. b) shows the fits by Eq. 2.40 with various settings of fitting
constraints, where the black points show the expected ideal populations. The properties
of the methods are written in Tab. 3.2. For our experiment, we use the 4th method,
which constraints each probability to be 0 < 𝑝𝑛 < 1, and then utilizes the weighted
normalization of resulting probabilities to sum to 1.
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other employed routines. From here, we infer that at least some constraints on
probability distribution are needed.

The 3rd fitting method assuming the constraint on probability sum performs
well in this particular case, there is however a probability of returning the
negative state populations as well. We have empirically experienced around
10 % of random failure while estimating arbitrary motional state. This also gives
rise to additional problems in the Monte-Carlo uncertainty estimation routine
(described in 3.14.4), leading to artificial increase of the error bar due to the failed
estimations. This can be overcome by implementation of additional condition
for positivity of the parameters, which however further decreases the numerical
accuracy.

Finally, it appears that the optimal solution is to use the 4th method. The
residual statistical population is redistributed to the motional states with use of
the weighted average, meaning that the highly populated levels will be more
affected. The evaluated MAE is the least of all four implementation, while
at the same time the physical constraints on the probability positivity and
normalization are conserved.

3.14.3 Damping in Rabi oscillation
All Rabi oscillation measurements in our experimental setup are subjected to
decay, where in the limit of long probing times the oscillatory pattern converges
to incoherent mixture of |𝑆⟩ and |𝐷⟩ states. In the employed fitting model
corresponding to the Eq 2.40, we accounted for this effect with use of the
exponential decay parameter 𝛾𝑛. In the measured Rabi oscillations for various
phonon number populations, the damping rate is expected to scale according to
the power law [19, 48, 66]

𝛾𝑛 = 𝛾0(𝑛 + 1)𝑥, (3.5)

with 𝛾0 governing the ground state decay and x the damping factor. The decay
enhancement characterized with the factor x depends partially on the spectral
properties of noise, which can stem from both laser frequency or intensity
fluctuations, or from the noise in the magnetic field. In addition, motional
frequency fluctuations or fluctuations of the ion or laser beam position can
contribute [66, 100–102]. In the first order approximation, the laser intensity
fluctuations are expected to play most significant role, which, theoretically,
should correspond to x=0.7 [103].

We perform a measurement to experimentally determine the damping
factor on the generated states approaching close to ideal Fock states (see 3.16).
Populations of the prepared states are close to 100 %, we may therefore assume
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Figure 3.23: Estimation of the accuracy of 𝛾𝑛 scaling according to the Eq. 3.5 for various
values of scaling factor 𝑥. Black line shows directly fitted values of 𝛾𝑛 from the Eq. 2.40.
Green, blue and red lines show the values where 𝛾0 = 0.35 kHz and other values are
calculated from the Eq. 3.5 for various factors x.

that damping will closely match the behavior described with Eq. 3.5. We obtain
the corresponding 𝛾𝑛 factors from measured Rabi oscillations without any prior
assumption on value of scaling parameter 𝑥. Finally, we take the initial value 𝛾0
as a reference, and evaluate 𝛾𝑛 with use of various scaling factors. The results
are shown in Fig. 3.23. The initial damping factor corresponding to ground state
was here estimated as 𝛾0 = (0.35±0.02) kHz, where the uncertainty is estimated
from five independent measurements.

Fig. 3.23 shows the measured and theoretically predicted damping factors
𝛾𝑛, which are bound to the order of generated Fock state. The black line shows
the measured values of 𝛾𝑛 which are evaluated from the Eq. 3.5 without any
prior assumption on the scaling with factor x. In the other traces, we calculated
the particular value of 𝛾𝑛 from the Eq. 3.5 where 𝛾0 is taken measured as the
ground state damping and n depicts the number state order. We found out that
the measured trend of the dependence reliably matches with the prediction for
x = 0.7, which is in agreement with former observations and predictions [66].

3.14.4 Estimation of error in probability distributions

One of the crucial intrinsic effects in the estimation of the phonon number
probability originates from the projection on one of two electronic levels.
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This can be efficiently minimized by increasing the number of experimental
repetitions, but it may never be suppressed completely. The uncertainty of
projection then propagates through the whole fitting routine and additional
data processing, up to the final probabilities and also to evaluated measures.
For the short measurements, where long term temperature drifts contribute
negligibly, the majority of the experimental uncertainty can be mapped back
to the projection noise. With use of Monte-Carlo method, it is thus possible to
determine these unknown uncertainties from the measured projection noise.

A projection noise is mathematically described with a binomial distribution,
where N projections of the same experiment may result in two different
outcomes. We typically probe the corresponding two-level systemwith𝑁 = 100
repetitions of each experiment. The error of each projection of a two-level system
to it’s eigenstate is calculated as

𝛿𝑃𝑒 =√
𝑃𝑒(1 − 𝑃𝑒)

𝑁 , (3.6)

where 𝑃𝑒 denotes a probability of two-level projection.
The Monte-Carlo routine is then employed as following. After the Rabi

oscillationmeasurement, we simulate additional 100 pseudo-random realizations
of corresponding probed Rabi oscillation, where each measurement sample is
randomly chosen with the Gaussian probability distribution, where the standard
deviation of such a distribution is set to be equal to the error from the projection
noise. For each of these virtual datasets, we estimate the population distribution,
and from these, we can evaluate the standard deviation of each probability from
the simulations, while the mean value is always taken from the measurement.

Typically, the obtained standard average error of estimated motional
populations is usually ±0.02 of the estimated population. We note that, this
value does not represent the actual full measurement uncertainty, but it is the
lower limit on the uncertainty given by the fundamental projectionmeasurement.
We thus employ this routine for measurements, where we did not acquire the
multiple data sets for a given experimental setting, otherwise the error is always
estimated statistically from several independent measurements.
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Figure 3.24: Illustration of Monte-Carlo routine for error estimation. In the first step,
shown in a), we calculate the projection noise from 100 projection measurements of each
point in the Rabi oscillation. The error bars depict the corresponding single standard
deviation. Second, we generate the 100 random realizations of Rabi oscillations, where
each point is varied with Gaussian probability distribution, whose standard deviation
is set to be equal to measured projection noise. The scale of the generated values
is depicted by blue in b). Finally, each of these virtual realizations is fitted and the
corresponding phonon number distribution contributes to the final statistics. In c), we
plot the resulting population distribution including population uncertainties, which are
evaluated as standard deviations of the simulated distributions of 𝑃𝑛.



4. Mechanical Fock states of single
trapped ion

This chapter covers results published in [35], related to the generation
and characterization of number states. The discussion focuses mainly on
experimental implementation, theoretical background to the work presented in
this chapter can be found in references [21, 23, 104].

The process of number state generation from ground state of motion by
repetitive addressing of the ladder-scheme, described in Sec. 3.10.2, represents
a conceptually simplest method. However, the experimental feasibility of this
method requires in principle very high degree of control of the mechanical
quantum system. It requires a deep Lamb-Dicke regime of laser-ion interaction
and a good ground state cooling for minimization of initial state entropy. The
sequence time necessary to prepare higher number states is longer, which results
to bigger affection of these states by the spontaneous heating processes in a
room-temperature environments [111].

It is experimentally very demanding to create a desired motional number
state which would have nearly ideal population probability of the particular
energy level. However, even the state with small amount of imperfections can be
employed in certain applications of interest. In this chapter we will attempt to
answer the crucial question - what is the amount of thermal noise, which can be
added to the system, so that the non-classical and quantum non-Gaussian (QNG)
properties are preserved, necessary for the enhanced sensing applications [24]
or quantum error correction codes [112].

It appears that the criteria of quantum non-Gaussianity provide a convenient
tool to characterize the number states which undergo the noisy processes
(see Sec. 2.11). Each criteria in the genuine quantum non-Guassian (GQNG)
hierarchy [23] establishes a threshold value in number state basis, also specifying
the amount of noise which is sufficient for destroying the visibility of the QNG
properties. We also evaluate the quantum enhanced force estimation capability
for the realized QNG states of single ion’s mechanics.
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4.1 Realization of the motional states
approaching Fock states

The motional quantum states are generated by consecutive optimized
applications of the axial-mode blue and red sideband on the transition
4S1/2 → 3D5/2. The resulting statistical distributions of phonon populations are
detected by probing the Rabi oscillation on this spectral line, whose frequency is
spectroscopically measured at the detuning 𝜈 = 1.188 MHz from the carrier
transition. The population of the initial ground state |𝑔, 0⟩ was measured as
98 %, corresponding to estimated mean energy 𝑛 = 0.02 ± 0.02. The lengths
of the 𝜋 pulses for red and blue sideband interactions in ladder scheme are tuned
experimentally, in order to achieve the maximal possible pulse contrast. The
carrier Rabi frequency Ω0 = 2𝜋 × (69.7 ± 0.1) kHz was measured from Rabi
oscillations at |𝑔, 0⟩ → |𝑒, 1⟩ transition. Additional parameters used for the state
reconstruction are Lamb-Dicke parameter 𝜂 = 0.0611 ± 0.0002 and the ground
state damping factor 𝛾0 = 2𝜋 × (8.9 ± 0.2) kHz from the Eq. 3.5 found by fit of
the measured Rabi flops on the motional ground state with 𝑃0 = 0.98.

The population distributions are shown in Fig. 4.2. The measured data are
compared with the theoretical prediction, which takes into account the finite
heating rate influencing the state during the time of the sequence, measured
as 𝑛 = 2.7 ± 0.2 phonons/s. In simulation, we further do not consider any
dephasing and the efficiency of the population transfer by the employed 𝜋 pulses,
so the efficiency of the operation is for simulation set to 1. From 4.2, we see that
the measured data agree with prediction, which takes into account merely the
presence of the heating rate.

The non-Gaussian properties of the noisy states are evaluated with the
criteria forming a hierarchy [23], where the specified criteria for the given
number state |𝑛⟩ allow to exclude any state which would correspond to an
arbitrary superposition of displaced and squeezed number states |𝑚⟩ for anym<n.
The threshold probability for current number state under probe is calculated as
[35]

𝑝𝑛 = max
𝛼,𝑟,𝑐0,...,𝑐𝑚

|⟨𝑛|𝐷(𝛼)𝑆(𝑟)
𝑛−1
∑
𝑚=0

𝑐𝑚|𝑚⟩|2, (4.1)

Details of theoretical derivation tailored originally for the photonic
implementation, where the loss becomes themain state deterioratingmechanism,
can be found in [23]. However, for mechanical systems, such as the employed
trapped ion oscillator, thermalization due to the unavoidable direct coupling to
the thermal environment has been found much more dominant.
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Figure 4.1: Measured Rabi oscillations on a blue motional sideband ofr motional Fock
states up to the order |10⟩. The increasing motional population is manifested by higher
oscillation frequency, scaling up as Ω𝑛,𝑛+1 = Ω0𝜂√𝑛 + 1.
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Figure 4.2: Measured and simulated populations of the Fock states. The resulting
measured number state probabilities are 𝑃0 = 0.97, 𝑃1 = 0.97, 𝑃2 = 0.97, 𝑃5 = 0.95, 𝑃8 =
0.95, 𝑃10 = 0.91, where for each of these values, the error estimate was obtained with
use of the Monte-Carlo routine as ±0.02 (see Sec. 3.14.4). The corresponding measured
Rabi oscillations are shown in Fig. 4.1. A theoretical simulation, represented with black
bars, assumes solely the state’s imperfection caused heating effect during preparation
pulse sequence, measured as Δ𝑛 = 2.7 ± 0.2 phonons/s.

4.2 Heating dynamics on ground state of
motion

The main source of gradual diffusion of Fock state population towards the
neighboring oscillator states comes from the natural heating processes in the
trap. The heating rate in our trap has been measured as approximately 2.7
phonons/s as presented in Sec. 3.12. This heating rate is sufficiently small to
allow the realization of motional experiments on long scales of tens of ms, but
this long time scale also makes it inconvenient for controllable characterization
of robustness and thermalization depth of generated phononic QNG states.

The heating mechanism can be controllably implemented by photon
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scattering. In our implementation, this is performed simply by adding a very
short pulse at 397 nm transition before the state readout step. In the limit of
long laser excitation-thermalization times, the population converges towards
thermal distribution with energy corresponding to Doppler cooling limit. The
interactionwith the laser can be viewed as engineering of the thermal reservoir at
the temperature parameterized by the interaction setting. Depending on the 397
nm laser detuning, it can correspond to temperature scale from about theDoppler
cooling limit corresponding to cooling on the 4S1/2 → 4P1/2 transition, or much
higher temperature reservoirs for interaction with a resonant or blue-detuned
laser.

We characterize this heating by implementing the calibration measurement
on initial ground state of motion, in order to determine amount of energy added
to the system as a function of length of the thermalization pulse. Formally, we
can define the heating process as a map 𝑀𝑛 affecting the motional distribution
𝜌𝑖 in a way

𝑀𝑛(𝜌𝑖) = ∫𝑑2𝛼𝑒−
|𝛼2|
𝑛 𝐷(𝛼) 𝜌𝑖𝐷†(𝛼). (4.2)

For small energies 𝑛, the Eq. 4.2 can be further simplified as

𝑀�̄�(𝜌𝑖) ≈ 𝜌𝑖 + ̄𝑛2[𝑎𝜌𝑎† + 𝑎†𝜌𝑎 − (𝑎†𝑎 + 1/2)𝜌𝑖 − 𝜌𝑖(𝑎†𝑎 + 1/2), (4.3)

where terms proportional to ̄𝑛4 are neglected. Themap𝑀�̄� in this approximation
generally represents a change of the motional state caused by scattering with the
recoil probability parametrized by 𝑛.

A thermalization process described with equations 4.2 and 4.3 is valid only
in the limit of low initial energies. For a state close to the Doppler cooling limit,
one has to take into account the different heating dynamics with a steady state
corresponding to the finite temperature of the ion on the level of few mK. The
dynamics to reach this energy limit will be however dependent on the initial
thermal state.

Fig 4.3 shows the initial ground state with measured 𝑛 = 0.02 ± 0.02
phonons, undergoing thermalization with different lengths of the 397 pulse,
where the longest time is equal to 12.8 𝜇s. Each measured Rabi oscillation data
are fitted to estimate the 𝑃𝑛 (blue bars), and the corresponding estimated mean
phonon number is used for evaluation of the idealized Bose-Einstein distribution
expectable for the thermal motional state. The blue columns in Fig. 4.3 represent
the measured data, and the black bars correspond to theoretical statistical
distribution. The error estimates are evaluated by Monte-Carlo simulation
method (described in Sec. 3.14.4). Direct quantitative comparison of measured
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population distributions with ideal thermal statistics corresponding to the same
mean energies clearly confirms the expectation that the consecutive application
of laser induced random photon recoils results in thermalization of the single ion
mechanical oscillator.

We construct a function describing the amount of thermal energy added to
the system by a 397 nm pulse of the rate of laser induced thermalization. Fig. 4.4
depicts in red points the observed thermal energy as a function of heating pulse
duration 𝜏. The black dashed line shows the linear trend fitted to the data. For
experiments presented further, we use the trend function to estimate the amount
of energy added to the system, rather than taking the measured values directly.
The linear approximation is expected to hold in case that the added energy is
much lower than Doppler cooling limit. For higher values, we would expect
the trend to continuously saturate towards this limiting value. The available
data presented in Fig. 4.4 justify the use of linearized approach for the range of
heating used in our experiments. The measured heating rate, when assuming the
linear unsaturated part, was estimated to be Δ𝑛 = (115 ± 2) × 103 phonons/s.

4.3 Heating dynamics for number states
In this section, we describe the measurement of heating dynamics for number
states |1⟩ , |2⟩, with use of the heating process as described in previous Sec. 4.2.
Analogic experiments were also performed on number states |5⟩ , |8⟩ , |10⟩.

For the short time scales of the experimental sequence, relevant for
the generation of target Fock states, the heating results in the error given
predominantly by values of (𝑃𝑛, 𝑃𝑛−1, 𝑃𝑛+1). The QNG robustness may be thus
conveniently characterized by a simple comparison of the amount of population
𝑃𝑛 with respect to the populations contained in neighboring states 𝑃𝑛−1, 𝑃𝑛+1,
with the QNG threshold probability defined as (𝑃𝑛, 𝑃𝑛−1 + 𝑃𝑛+1). In case that the
population of state undergoing heating exceeds these values, it can be shown
that the state may be described as Gaussian [23]. The depth of non-Gaussianity
can be then understood as an amount of thermal noise, which can be added to
the system and at the same time, the state population is higher threshold.

Figures 4.5 and 4.6 show the measured heating dynamics of the Fock
states |1⟩ and |2⟩, respectively, illustrating the gradual thermal diffusion of
the number state population towards the neighboring oscillator levels. For
the measurement, we set the intensity of the Doppler heating pulse as in the
calibration measurement, and we take the calculated heating into the simulation
of the evolution probability. Both measured states show the slight asymmetry of
diffusion favoring the higher motional states for short thermalization times. This
is caused by the asymmetry in relative amplitudes for annihilation and creation
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operations in Eq. 4.3. In Fig. 4.5, we observe the development of the Fock state
|1⟩ to nearly ideal thermal population distribution (𝑛 = 2.6), however, it is still
far from reaching the limiting Doppler temperature. For the limiting case of
infinite heating time, we except the convergence to the ideal thermal state with
a temperature corresponding to the Doppler cooling limit.

The same measurement results are also plotted in Fig. 4.7 in coordinates
defined with (𝑃𝑛, 𝑃𝑛−1 + 𝑃𝑛+1). Here, the point located in the upper left corner
denotes the initial state, and the heating proceeds towards the bottom right
corner. The green ticks and red crosses denote the area, where the corresponding
quantum states fulfill the GQNG condition, or reject it, respectively. While
probing the state |1⟩, the GQNG threshold is exceeded up to the thermalization
pulse of the length 𝜏 = 2.1 𝜇s, which adds the energy equal to 𝑛 = 0.31 phonons.
For the state |2⟩, the thermal depth of QNG is substantially lower, reaching
𝑛 = 0.13 phonons. The corresponding thermal energies defining the depth of
non-Gaussianity are obtained from a calibration measurement, depicted in Fig.
4.3.

The Fig. 4.8 analyses the exhibition of the genuine 𝑛-phonon QNG using
idealized and measured Fock states (red data points on the top of the plot
range) that are deteriorated by the thermalization process. The presented
simulations signify that the observability of the lowest QNG features (red points)
characterized by rejecting anymixture of |𝜓𝑛⟩ = 𝐷(𝛼)𝑆(𝑟)|0⟩ [21] in the presence
of mechanical heating monotonously decreases with 𝑛 for ideal Fock states. On
the contrary, the generation and observation of genuine QNG properties (blue
points) for high Fock states inside the hierarchy in Eq. 4.1 is challenging and
its sensitivity to imperfections in the state preparation and detection increases
with 𝑛.

The considered ideal thermalization dynamics corresponding to a Gaussian
additive noise can be broadly employed for an estimation of the QNG depth,
analogically, as the damping was used for photonic states [113]. The thermal
depth of presented QNG witnesses has been evaluated as the corresponding
increase of the mean thermal energy ̄𝑛th for the same thermalization strength
applied to the vacuum state. This comparison allows for an experimental
platform-independent comparison of depth of the genuine QNG states in
mechanical systems. In turn, these measurements can be also employed for
testing the quality of the mechanical system or for sensing of the amount of
the inherent thermal noise. The thermal depth of the measured states is much



Quantum enhanced sensing of mechanical force 73

smaller for the genuine QNG hierarchy (Eq. 4.1), in a contrast to the lowest QNG
criteria [21] that actually are less demanding for the higher Fock states. Still,
the measured 10-phonon states conclusively proved the genuine QNG features.
Although the absolute thermal depths shown asmean phonon numbers ̄𝑛th of the
thermalization process decrease both for the genuine QNG features (blue values)
and for the lowest QNG criteria [21](red values), their ratio increases to about an
order of magnitude for 𝑛 = 10.

4.4 Quantum enhanced sensing of mechanical
force

We estimate the possible metrological advantage for phase independent
amplitude sensing of the generated higher order number states. This is donewith
use of the classical Fisher information and Cramér-Rao bound. The following
discussion is directly extracted from our work published in [35].

A mechanical oscillator prepared in a state approaching a Fock state can
be directly used for a phase-insensitive sensing of a mean phonon number
of weak force causing tiny displacement 𝛼 of the mechanical oscillator [24]
with applications in precise measurements of a small radio-frequency noise or
quantum logic spectroscopy [114]. Let the mechanical oscillator be prepared in
an initial state 𝜌 and let 𝐷(𝛼) denote the displacement operator characterizing
evolution that the force induces. The Fisher information for the estimation of
the parameter |𝛼|2 reads

𝐹 =
∞
∑
𝑚=0

1
𝑃𝑚(|𝛼|2)

[ d
d|𝛼|2

𝑃𝑚(|𝛼|2)]
2
, (4.4)

where 𝑃𝑛(|𝛼|2) = ⟨𝑛|𝐷(|𝛼|)𝜌𝐷†(|𝛼|)|𝑛⟩ is the phonon-number distribution on
which the sensing is performed. The Cramér-Rao bound limits the standard
deviation 𝜎 of the force estimation according to 𝜎2 ≥ 1/(𝑁𝐹) with 𝑁 being a
number of sensing runs. We evaluate the 𝜎 saturating the Cramér-Rao bound
for realistic states that perform the sensing. The estimation of metrological
advantage 𝑅𝜌 can be quantified for the state 𝜌 according to

𝑅𝜌(|𝛼|2) =
𝜎
𝜎0
, (4.5)

where 𝜎0 stands for the standard deviation of the displacement measurement for
the mechanical oscillator probe prepared in the motional ground state. For ideal
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Fock states, (4.5) approaches

𝑅|𝑛⟩(|𝛼|2) =
1

√2𝑛 + 1
, (4.6)

which is independent of the estimated parameter |𝛼|2. For more details on this
derivation see the Supplementary information of [35].

If a state 𝜌 achieves 𝑅𝜌(|𝛼|2) < 𝑅|𝑛⟩ for some |𝛼|2, it possesses a capability
to surpass limitation in the sensing given by the Fock state |𝑛⟩. Therefore, the
sequence 𝑅|𝑛⟩ establishes a hierarchy of conditions for the sensing classifying
the states approaching Fock states. Fig. 4.9 presents the metrological potential of
the prepared motional Fock states to pass some of these conditions. Specifically,
the realistic Fock states up to 𝑛 = 10 surpass limits given by the vacuum state
and the prepared state approaching the ideal Fock state |8⟩ presents the capacity
to exceed the Fock state |5⟩. The realized state approaching |10⟩ and all the
higher prepared Fock states do not possess the metrological advantage against
the ideal Fock state |8⟩ mainly due to noise contributions including dominantly
the residual heating during the state preparation sequence.

For sensing of small |𝛼|2, the noise affects how far is a prepared state
approaching |𝑛⟩ from the threshold given by the ideal Fock states |𝑛⟩. The
advantage gets lost when realistic states contain even very small deteriorating
noise which substantially decreases the speed of the sensing in the high |𝑛⟩ limit.
The metrological gain 𝑅𝜌(|𝛼|2) tends to saturate for displacement amplitudes on
the order of 10−2 and approaches the gain expectable for the ideal Fock states.
At the same time, the employment of realistic states with high 𝑛 in the limit
of small displacements seems to be further enhanced by effectively decreasing
dependence of the offset amplitude in 𝑅𝜌(|𝛼|2) on 𝑛, when compared to ideal
Fock states. This has been confirmed by a numerical simulation considering
sensing with states resulting from idealized thermalization of Fock states and is
in agreement with the approximate formula 𝑅𝜌(|𝛼|2) for |𝛼|2 ≪ 1 that follows
from the approximate expression for 𝜎 in (4.5).
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Figure 4.3: Calibration of the rate of laser induced thermalization on measurement for
initial ground state on axial mode. Blue bars correspond to measured data, black bars
show the thermal distribution corresponding to the added mean energy 𝑛. From the
comparison of measured and theoretical statistic, it is apparent the the heating dynamics
described with Eq. 4.3 clearly leads to generation of the thermal states.
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Figure 4.4: Calibration of thermalization measurement, the amount of thermal energy
Δ𝑛 added to the ground state as a function of a length of the Doppler heating pulse at 397
nm transition. Red points correspond to the measured values (see also previous Fig. 4.3),
and the black dashed line relates to the fitted linear dependence. For the last value of Δ𝑛
at 𝜏 = 12.8 ms, the mean energy already approaches the Doppler limit, which explains
the discrepancy with the linear fit applied to rest of the measured points. In order to
achieve the better fitting accuracy, it would be necessary to perform a better model also
considering the saturation which was measured as 𝑛 = 8.0±1.0. For short time scales at
which the experiments are performed, it appears to be more convenient to describe the
heating as a linear dependence on time. The resulting linear heating rate was estimated
as Δ𝑛 = (115 ± 2) × 103 phonons/s.
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Figure 4.5: Heating dynamics and GQNG depth measured for Fock state |1⟩. States
which are marked with a green tick agree with the definition of the GQNG states (Eq.
2.45). States denoted with the red cross do not exceed the GQNG threshold. The limiting
maximal amount of thermal energy which can be added to the system, and at the same
time it preserves the QNG property, is estimated as Δ𝑛 = 0.31 phonons, corresponding
to 2.1 𝜇s heating pulse.
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Figure 4.6: Measured thermalization dynamics and GQNG depth for Fock state |2⟩.
Similarly to the measurement in Fig. 4.5, the states marked with green tick are probably
genuine QNG, while the states with red cross do not surpass the the GQNG threshold.
The GQNG depth parametrized by the amount of added thermal energy is estimated as
Δ𝑛 = 0.13, which is smaller when compared to Δ𝑛 = 0.31 for a number state |1⟩.
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Figure 4.7: Thermalization dynamics for generated Fock states |1⟩ in a), and |2⟩ in
b). Blue points correspond to measured states, and black line predicts a theoretical
development, which corresponds to the state’s distribution undergoing the addition
of thermal energy according to the calibration measurement on the motional ground
state (see Fig. 4.3). The dynamics progresses from the left upper corner, proceeding
to the bottom right. The GQNG thermal depth for the number state |1⟩ is evaluated as
𝑛th = 0.31 phonons, while for the state |2⟩ this value is substantially lower, equal to
𝑛th = 0.13 phonons.
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Figure 4.8: Characterization of the Fock states of mechanical motion. The red points
in the upper part of the plot represent the measured populations 𝑃𝑛 for experimentally
generated states. The thresholds for a genuine 𝑛-phonon QNG are represented by
blue points. The associated blue numbers quantify the thermal depth of genuine 𝑛-
phonon QNG - a maximal mean number of thermal phonons ̄𝑛th that keeps the measured
states above the genuine 𝑛-phonon QNG thresholds. Similarly, the red points identify
thresholds for observation of the basic QNG aspects [21] and the associated red numbers
determine their thermal depth. The green bars depict the force estimation capability of
a specific model of noisy Fock states, where the probability 𝑃𝑛 exceeding the presented
threshold values certifies a metrological advantage [24] against the previous ideal Fock
state |𝑛−1⟩ in the force estimation, while the corresponding numbers quantify a thermal
depth of this advantage for the measured states.
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Figure 4.9: The estimation of the metrological advantage of experimentally realized
states compared to the ground state for sensing of a small force that exerts motion
on a mechanical oscillator. The horizontal axis quantifies the amplitude in the phase
space that the force causes. The vertical axis shows the minimal standard deviation 𝜎
estimated by optimization of the Fisher information in the Eq. 4.4. The 𝜎 is normalized to
the uncertainty 𝜎0 resulting from the equivalent sensing using a motional ground state.
The black solid lines show 𝜎/𝜎0 for ideal Fock states. The dark yellow, blue, orange,
and green solid lines correspond to the experimentally prepared states approaching the
Fock states |𝑛⟩ = |1⟩, |2⟩, |5⟩, and |8⟩, respectively. The graph displays only the cases
of measured QNG states approaching Fock states |𝑛⟩ which surpass 𝜎/𝜎0 achievable
with ideal Fock states |𝑚⟩ corresponding to any measured 𝑚 < 𝑛. The colored regions
within the borders given by dashed lines correspond to achievable 𝜎/𝜎0 for states with
the phonon-number distributions within the experimental error bars.



5. Deterministic accumulation of
mechanical non-classicality

This Chapter covers the experimental work published in reference [34] devoted
to generation of non-classical motional states from distributions with high initial
thermal energies. We report the acquisition of non-classical features in the
generated state by repetitive application of anti-Jaynes Cummings interaction.
This process is unconditional as it occurs deterministically for any initial
thermal motional distributions without any postselection on the qubit state.
The non-classical nature of outgoing statistical mixtures originates from a
deterministic incoherent modulation of thermal phonon number distribution.
The output state converges towards a state which has a significant overlap with a
particular Fock state population. During such a process, the non-classicality can
be deterministically increased, and manifests a strong quantum non-Gaussian
properties.

The chapter begins with the expansion of the theory of
anti-Jaynes-Cummings interaction, applied on an arbitrarily modulated
state with a diagonal matrix representation. We present and discuss the
employed experimental methods and we compare the resulting motional
population distributions with theoretically predicted values, and evaluate the
additional criteria of non-classicality.

5.1 Modulation of populations by non-linear
interactions

In the following considerations about the non-linear interactions between a
two-level and harmonic oscillator systems, we follow the approach described
in [115] and [116]. Thermal state undergoing the addition or subtraction of
energy by anti-Jaynes-Cummings (AJC), or Jaynes-Cummings (JC) interaction
respectively, can create a statistical mixture of number state populations which
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are non-classical. The non-classicality depends on the parameters of input
thermal state and of the interaction.

We consider the harmonic oscillator to be in thermal motional state with
the Bose-Einstein population distribution, and the two-level system being either
in ground, or excited state. The interaction consists of the free evolution and
interaction parts. We can write Jaynes-Cummings interaction as

𝐻𝐽𝐶 = ℏ𝑔(𝜎+𝑎 + 𝑎†𝜎−), (5.1)

and anti-Jaynes interaction as

𝐻𝐴𝐽𝐶 = ℏ𝑔(𝜎+𝑎† + 𝑎𝜎−), (5.2)

where the phase factors were set to 0 without any loss of generality of this
description. These operations can be considered to implement the phonon
absorption (for 𝑎 operator) or emission (for 𝑎†).

For the case of J-C interaction, the evolution of the initial state can be
described with an unitary operator 𝑈𝐽𝐶 = exp(− 𝑖ℏ𝐻𝐽𝐶

ℏ
), which can be also

expressed in the qubit eigenbasis as [116]

𝑈𝐽𝐶 = 𝐴𝑔𝑔(𝑡) |𝑔⟩ ⟨𝑔| + 𝐴𝑒𝑒(𝑡) |𝑒⟩ ⟨𝑒| + 𝐴𝑒𝑔(𝑡) |𝑒⟩ ⟨𝑔| + 𝐴𝑔𝑒(𝑡) |𝑔⟩ ⟨𝑒| , (5.3)

with

𝐴𝑔𝑔(𝑡) = cos(𝑔𝑡√𝑛), 𝐴𝑒𝑔(𝑡) = 𝑎sin(𝑔𝑡√𝑛)
√𝑛

,

𝐴𝑒𝑒(𝑡) = cos(𝑔𝑡√𝑛 + 1), 𝐴𝑒𝑔(𝑡) = −𝑎† sin(𝑔𝑡√𝑛 + 1)
√𝑛 + 1

.
(5.4)

Here, n is the operator of number of quanta 𝑛 = 𝑎†𝑎. Next, we will focus on
evolution of oscillator for the initial thermal state of the two-level system, which
can be described with the following density matrix

𝜌𝑒 = 𝑝𝑒 |𝑒⟩ ⟨𝑒| + (1 − 𝑝𝑒) |𝑔⟩ ⟨𝑔| , (5.5)

where 𝑝𝑒 denotes the excited state probability. The dynamics of the state’s
evolution can be calculated by application of a completely positive map
combining the qubit-oscillator state [116]

𝜌out = 𝑝𝑒𝐴𝑒𝑔(𝑡)𝜌𝑡ℎ𝐴†
𝑒𝑔(𝑡) + (1 − 𝑝𝑒)𝐴𝑔𝑔(𝑡)𝜌𝑡ℎ𝐴†

𝑔𝑔(𝑡)+
+𝑝𝑒𝐴𝑒𝑒(𝑡)𝜌𝑡ℎ𝐴†

𝑒𝑒(𝑡) + (1 − 𝑝𝑒)𝐴𝑔𝑒(𝑡)𝜌𝑡ℎ𝐴†
𝑔𝑒(𝑡).

(5.6)
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By placing the formulas of the operators 𝐴𝑔𝑔, 𝐴𝑔𝑒, 𝐴𝑒𝑔, 𝐴𝑒𝑒 into the Eq. 5.6, we
write the final formula modulation of the initial thermal distribution as

𝜌(𝑡) =
∞
∑
𝑛=0

|𝑛⟩ ⟨𝑛| 𝑛𝑛

(1 + 𝑛)𝑛+1×

× 𝑝𝑒 [cos2(𝑔𝑡√𝑛 + 1) + 1 + 𝑛
𝑛 sin2(𝑔𝑡√𝑛)]+

+ (1 − 𝑝𝑒) [cos2(𝑔𝑡√𝑛) +
𝑛

1 + 𝑛 sin2(𝑔𝑡√𝑛 + 1)] . (5.7)

The particular limit of the initial quibit state in a state with minimal thermal
energy corresponding to the ground state further simplifies this equation, so that
𝑝𝑒 = 0 and the second line in the formula 5.7 can be erased completely. The
evolution of the density matrix undergoing the Jaynes-Cummings interaction
can then be described in the final form as:

𝜌abs(𝑡) =
∞
∑
𝑛=0

|𝑛⟩ ⟨𝑛| 𝑛𝑛

(1 + 𝑛)𝑛+1 [cos
2(𝑔𝑡√𝑛) + 𝑛

1 + 𝑛 sin2(𝑔𝑡√𝑛 + 1)] . (5.8)

In a similar way, we may describe the dynamics under the
anti-Jaynes-Cummings interaction. This is driven with the elements in Eq.
5.7 which were previously neglected for the phonon absorption description. We
can finally write [115]

𝜌em(𝑡) =
∞
∑
𝑛=0

|𝑛⟩ ⟨𝑛| 𝑛𝑛

(1 + 𝑛)𝑛+1 [cos
2(𝑔𝑡√𝑛 + 1) + 1 + 𝑛

𝑛 sin2(𝑔𝑡√𝑛)] . (5.9)

The effect of state’s probability modulation by single phonon emission is
simulated and depicted in Fig. 5.1. By changing the pulse area gt of the
applied anti Jaynes-Cummings interaction, we tune the effect of probability
modulation on the final distribution. A special case occurs when 𝑔𝑡 = 𝜋/2,
which corresponds to the addition of a full single quantum at the transition
|𝑔, 0⟩ → |𝑒, 1⟩. For the ion with the maximum of the population in 𝑃0, this
operation generates number state |1⟩. Another special effect occurs when 𝑔𝑡 = 𝜋.
In such a case, the population in |𝑔, 0⟩ undergoes the whole loop between the
states |𝑔, 0⟩ → |𝑒, 1⟩ → |𝑔, 0⟩, so the ground state population 𝑃0 remains
unchanged. The population in the higher energy levels is modulated, creating
superpositions of in the two-level system between the ground and excited levels.
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Figure 5.1: Simulation of thermal distributions undergoing the anti-Jaynes Cummings
interaction, described with the Eq. 5.9. Figures a) and d) show the statistics of initial
thermal states before the interaction, with energies corresponding to a mean phonon
number ̄𝑛th = 0 and ̄𝑛th = 1. Cases depicted in b) and d) show the addition of a single
quantum using a Rabi pulse with the area 𝑔𝑡 = 𝜋/2, which corresponds to the transition
|𝑔, 0⟩ → |𝑒, 1⟩. b) shows a perfect generation of Fock state |1⟩ from groundmotional state.
In d), the whole population of level |0⟩ is shifted to |1⟩, leaving the probability 𝑃0 empty.
A special cases depicted in c) and f) show the resulting populations after application of
𝑔𝑡 = 𝜋. For an initial thermal state close to |0⟩, the population makes a whole cycle
|𝑔, 0⟩ → |𝑒, 1⟩ → |𝑔, 0⟩, leaving the resulting state in the same state as in the beginning.
In part f), the operation gives rise to the modulation of statistics, leading to the state
which is strongly non-classical.
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The origin of the modulation lies in the scaling of the Rabi frequency by factor
√𝑛 + 1 (see Sec. 2.6).

The Eq. 5.9 describes the addition of single quantum to the thermal initial
distribution. In order to describe multiple repetitive interaction steps, we need
to extend the formula to calculate probability modulation of an arbitrary input
state. The Eq. 5.9 can be also written as [115]

𝜌𝑏(𝑡) =
𝑛𝑚𝑎𝑥

∑
𝑛=0

𝑃𝑛 [cos(𝑔𝑡√𝑛 + 1)]
2
|𝑛⟩ ⟨𝑛| +

+
𝑛𝑚𝑎𝑥

∑
𝑛=0

𝑃𝑛 [sin(𝑔𝑡√𝑛 + 1)]
2
|𝑛 + 1⟩ ⟨𝑛 + 1| . (5.10)

In this formula, the elements of ∑𝑛 𝑃𝑛 may be arbitrarily distributed, unlike
those in the Eq. 5.7, whose population distribution is thermal. The Eq. 5.10 can
be conveniently used to describe the repetitive emission process. At the end of
the interaction, the system is traced over the two electronic state and projected
to the space of the harmonic oscillator.

5.2 Phonon addition in anti-Jaynes-Cummings
interaction

The experiment starts by the addition of the single energy quantum at the
1𝑠𝑡 axial motional sideband into thermal states with various energies. The
outcome of this operation can be calculated from the Eq. 5.9 or Eq. 5.7.

The experimental conditions are similar to those in the experiment
described in Chapter 4. The axial motional mode frequency has been set to
𝜈ax = 1.188 MHz. The carrier Rabi frequency was measured as Ω𝑐 =
2𝜋 × (92 ± 1) kHz and the Lamb - Dicke parameter 𝜂729 = (61.1 ± 0.2) × 10−3
(see Sec. 3.11). The optimized 𝜋 pulse length was measured as 𝜏 = 91 𝜇𝑠.

The experimental sequence follows with sideband-cooling step, where a
variable pulse duration is used to tune the initial thermal energy. In a motional
manipulation step, we apply the single 729 nm pulse with length 𝜏 to the 1𝑠𝑡 blue
motional sideband, which adds the energy given by the pulse area 𝑔𝑡. A short 854
nm reshuffling pulse is applied to transfer the residual D-state population back
to the ground state of a two-level system. The state readout is performed with
the electron shelving method, realizing hundred repetitions of the experimental
sequence. The resulting population distribution is then obtained by a fit of the
blue sideband Rabi oscillations using the Eq. 2.40.
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Figure 5.2: Measured distributions of initial thermal state, undergoing a an addition of
a single quantum at AJC interaction with 𝑔𝑡 = 𝜋/2, which would ideally correspond to
the transformation of the whole population from the state |𝑔, 0⟩ → |𝑒, 1⟩. a) shows the
reconstructed initial thermal states, b) depicts distributions after the addition of a single
motional quantum. The axis denoted with 𝑛𝑡ℎ defines the mean energy of initial thermal
state, axis n points out the population of corresponding number state level.

In the first measurement we prove that, already for an initial state having
a thermal Bose-Einstein population distribution, the incoherent modulation
described with the Eq. 5.10 deterministically results into the non-classical states
even for a broad range of initial thermal energies. The pulse area gt is in this case
set as 𝑔𝑡 = Ω0𝜂𝜏 = 𝜋/2, which is experimentally calibrated at 1𝑠𝑡 blue sideband
excitation of |𝑔, 0⟩ → |𝑒, 1⟩. While varying the initial thermal energy 𝑛, we add
a phonon depending on the chosen gt and input state statistics which leads to a
transfer of a whole population from 𝑃0 to 𝑃1 for an ion prepared initially in the
motional ground state.

The resulting statistics of initial thermal states and resulting distribution
after the phonon addition are depicted in Fig. 5.2. The data measured after the
interaction indeed show the obvious emergence of non-classical statistics with
the benefit of 𝑃1. The state with the lowest thermal energy corresponding to
the ground state of motion was prepared such that 𝑛𝑡ℎ = 0.005 ± 0.005, and
the corresponding population 𝑃0 = (99.5 ± 0.5)%. The single phonon addition
was measured to have an efficiency close to 𝜅 = 97 %, which corresponds to the
maximum of the 1𝑠𝑡 blue sideband Rabi flop between the states |𝑔, 0⟩ → |𝑒, 1⟩,
presented in Fig. 5.3. Additional imperfection in efficiency of the full phonon
addition step arises form the reshuffling and optical pumping steps performed
with 854 nm and 397 nm 𝜎− beams. This leads to approximately (2.9±0.2)% loss
of 𝑃1 population which diffuses through photon recoils towards the neighboring
number states. The quantitative evaluation of this contribution is described in
more detail in Sec. 3.13. The uncertainties of resulting populations are estimated
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with use of the Monte-Carlo routine, where the input uncertainties for each data
point in the Rabi oscillations were sampled according to expected minimal noise
- projection noise.

Next, we evaluate the criteria of non-classicality for different input thermal
states after the single quantum addition. Fig. 5.4 shows results of the
evaluation of Fano factor 𝐹 = ⟨(Δ𝑛)2⟩/⟨𝑛⟩, Klyshko’s criteria for nonclassicality
[71], function at the center of the phase space 𝑊(0, 0), for initial thermal
states undergoing an addition of a single quantum with a BSB pulse area of
𝑔𝑡 = 𝜋/2. The non-classicality is proved by the negativity of measured first
order Klyshko criteria 𝐾1. The measured negative value of Winger function
𝑊(0, 0) < 0 additionally proves the quantum non-Gaussian features for all
the resulting states. Finally, the negative values of Fano factor point out to the
convergence of the resulting statistics towards the sub-Poissonian distributions.
We additionally evaluated the witness of quantum non-Gaussian properties
based on the estimation of only two neighboring phonon number probabilities,
𝑃1 and 𝑃2. It unambiguously witnesses the QNG aspects for all input thermal
states up to mean 𝑛𝑡ℎ = 4.2, where the multi-phonon contributions are already
too high. The measured states which fulfill the quantum non-Gaussian property
are marked with the red tick in Fig. 5.4.

This measurement serves as a proof-of-principle calibration measurement of
the phonon addition on thermal states, where we have shown that the generated
distributions comply with the theory described by Eq. 5.10 and presented in Fig.
5.1.

5.3 Accumulation of motional non-classicality
In Sec. 5.2, we have shown that the non-classical properties emerge
deterministically from initial thermal motional states from a bare single
nonlinear phonon addition. However, some of these features are proven weakly
within the scale of estimated error. In order to enhance the non-classical and
quantum non-Gaussian aspects, we implement the similar process repetitively,
while keeping the interaction pulse area 𝑔𝑡 fixed.

After the re-shuffling and optical pumping step, the resulting state is
considered as an input state for the next step and the addition process is repeated,
as depicted in Fig. 5.5. We denote a variable k to define the number of repetitions
of such addition. After k iterations, the motional populations are measured using
the laser spectroscopy on the blue motional sideband.

Fig. 5.6 shows the results of reconstruction of output phonon number
distributions 𝑃𝑛(𝑘) for of up to 𝑘 = 20 repetitions of the AJC process for an initial
thermal state with amean phonon number 𝑛 = 1.19±0.04. The results have been
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Figure 5.3: Calibration measurement of Rabi oscillations for 1𝑠𝑡 axial blue sideband at
transition |𝑔, 0⟩ → |𝑒, 1⟩. The resulting parameters are Ω0 = 2𝜋 × (92 ± 1) kHz, which
corresponds to the measured length of the 𝜋 pulse 91 𝜇s. The maximal excited state
population was estimated from a fit as 𝑃𝑒 = 97%, which defines the general efficiency of
the addition operation.

reconstructed from the measured Rabi oscillations after each displayed number
of interaction repetitions 𝑘, where the sum maximum defining the truncation of
the oscillator Hilbert space was set as 𝑛max = 7, according to the 1 % rule applied
to the state with highest populations, as described in the section 3.14.1.

The crucial parameter determining the target of the accumulation process lies
in the parameter gt, as originally proposed in pioneering work by Blatt, Zirac and
Zoller [96]. Specifically, the fulfillment of the relation:

𝑔𝑡√𝑛 + 1 = 𝑙𝜋 (5.11)

with 𝑙 = 1, 2, 3... being the whole number coefficient, and n denoting the filter
number state. For a particular setting of gt, we manage to generate a cyclic loop
in a transition between arbitrary motional states as |𝑔, 𝑛⟩ → |𝑒, 𝑛 + 1⟩ → |𝑔, 𝑛⟩.
The transition serves as kind of filter in the Fock state basis, which forbids
the motional population from states with lower energy to propagate into states
that are higher than this particular transition. Such a process leads to the
amplification and enhancement of visibility of resulting non-classical properties,
which we denote as ’accumulation of non-classicality’.

As for an example, let us theoretically demonstrate this effect for an
interaction area 𝑔𝑡 = 𝜋/2. Substituting this to the Eq. 5.11 and putting 𝑙 = 1, we
arrive to the value of 𝑛 = 3. The transition |𝑔, 3⟩ → |𝑒, 4⟩ → |𝑔, 3⟩ will undergo
full period in the two-level system, so the population in the state |𝑔, 3⟩ is not
depopulated upon AJC pulse. Instead, populations in the lower energy levels
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Figure 5.4: The results of evaluation of nonclassicality for the measured phonon
number distributions after single nonlinear anti Jaynes-Cummings interaction of atomic
mechanical oscillator prepared in thermal state. The Fano factors evaluated for initial
and generated phonon populations demonstrate the conversion to sub-Poissonian
statistics for states with low initial thermal energy 𝑛th. The evaluated negative Klyshko’s
criteria 𝐾1 for each output distribution unambiguously confirm a strong nonclassicality
of the generated states for a broad range of initial thermal energies 𝑛th. In addition,
the observed negative values of the Wigner quasi-distribution 𝑊(0, 0) suggest that the
generated state is always non-Gaussian. Moreover, quantum non-Gaussianity criteria
(QNG) [22] show impact of multi-phonon contributions. The measures evaluated from
the experimental data are displayed as full circles with error bars corresponding to
three standard deviations. The solid lines correspond to theoretical predictions for AJC
interaction described with Eq. 5.10 with a 𝑔𝑡 = 𝜋/2 and for given 𝑛th with no free fitting
parameters.
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Figure 5.5: A simplified experimental sequence for an unconditional generation of
nonclassical states from initially classical thermal population of atomic motion. At the
beginning, the two-level system is in the ground state, and the oscillator in thermal
state. The nonlinear AJC coupling is followed by a re-initialization of internal atomic
population to the |𝑆⟩ level. This process is repeated 𝑘-times, leading to the accumulation
of motional population in a discrete energy level |𝑛⟩, depending on the value of 𝑔𝑡. The
final distribution is read out by measurement of the blue motional sideband with a probe
of Rabi oscillation.

will be gradually transferred into 𝑃3. In the theoretical limit of infinite phonon
addition steps, the population∑𝑛=3

𝑛=0 will accumulate in 𝑃3, while the higher levels
will arrive to 𝑃15, which is an additional discrete solution of Eq. 5.11 resulting for
l = 2 and 𝑔𝑡 = 𝜋/2.

In the similar way, we may derive the limiting populations for other pulse
areas 𝑔𝑡. For 𝑔𝑡 = 𝜋/√3, we produce a mixture of states with 𝑛 = 2, 11, 47,
for 𝑔𝑡 = 𝜋/√5, we will have 𝑛 = 4, 19, 79 with coefficients 𝑙 = 1, 2, 3. With
𝑔𝑡 = 𝜋/√4 = 𝜋/2 we obtain accumulation at 𝑛 = 3, 15, 35 with 𝑙 = 1, 2, 3.
Theoretically, with implementation of the particular value of 𝑔𝑡, it is possible to
engineer any number state filter of interest.

The accumulation is performed for up to k = 20 repetitions of the
anti-Jaynes-Cummings process, for initial thermal state with 𝑛 = 1.19±0.04. We
choose to demonstrate the accumulation for three pulse areas, which were set as
𝑔𝑡 = 𝜋/2 = 91 𝜇s, 𝑔𝑡 = 0.9𝜋/2 ≈ 𝜋/√5 = 80 𝜇s and 𝑔𝑡 = 1.1𝜋/2 ≈ 𝜋/√3 =
100 𝜇s. The lengths of the corresponding applied laser pulses were chosen with
respect to the measured duration of the transition between |𝑔, 0⟩ → |𝑒, 1⟩.

The resulting statistics, including the evaluated non-classical features are
shown in Fig. 5.6. The measured statistics show the convergence of motional
population to 𝑃4, 𝑃3 and 𝑃2, respectively. Inf Fig. 5.6 b) corresponding to 𝑔𝑡 = 𝜋/2,
the population converges to 𝑃3 = 0.52 ± 0.01 after 20 accumulation steps.
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According to theoretical prediction from the Eq. 5.10, the population should
ideally converge to to 𝑃3 = 0.63 after 20 accumulation steps. The discrepancy
between the measured result and theory can be attributed to a residual offset in
an experimental setting of the pulse area 𝑔𝑡. With use of 𝑔𝑡 = 1.026 𝜋 in Eq.
5.10, the ideal population after 20 repetitions would be 𝑃3 = 0.54, which is in
very good agreement with the measured value. Additional limitation is the finite
contrast of the applied𝜋-pulse which defines the overall efficiency of the phonon
addition operation. The contrast was estimated as 𝑃𝑒 = 0.97 from measured Rabi
oscillations on the ground motional state. The discrepancy between the theory
andmeasurement can be also attributed to the motional heating originating from
the potentials at trap electrodes, and also to heating induced by random photon
recoils in the process of the reshuffling of the excited state population after
each anti-JC pulse. These two effects are also the main reason for occupation
of higher motional states and cannot be fully avoided in most experimental
scenarios. However, improving the contrast of the 𝜋-pulse is feasible and in
case of 𝜅 = 1, the motional state 𝑃3 = 0.66 could be deterministically generated
after 40 repetition steps. Theoretical estimation with an ideal 𝜋-pulse contrast
and no effects of recoil heating would result in the ideal population 𝑃3 = 0.88
after 20 repetition steps and 𝑃3 = 0.91 after 43 steps.

The non-classical aspects of generated states are further evidenced in the
non-classicality measures, which are displayed in Fig. 5.6 parts d) - f). The
figure part d) shows the evolution of mean energy 𝑛 of states generated
after k iterations. A decrease of the state’s variance with respect to the
total energy is evident from the comparison of the evaluated mean energy
and Fano factor and provides a complementary signature of convergence
towards the energy-localized phonon number state. Fig. 5.6 e) shows the
intersection of the Wigner function 𝑊(𝑥, 0), which has been evaluated from
the measured populations 𝑃𝑛, by considering incoherent sum of partial Wigner
quasi-distributions corresponding to the mixed state 𝜌k = ∑7

𝑛=1 𝑃k(𝑛) |𝑛⟩ ⟨𝑛|.
The calculation returns a prediction of the quasi-probability distribution, which
would result from a measurement by implementation of random phase shifts of
the local oscillator in the reconstruction process. In our considerations, we are
interested in the possible observable amount of negative dips in the distribution,
which proves that the quasi-probability distribution cannot be expressed as any
mixture of the Gaussian states. The verification of the hierarchy of quantum
non-Gaussianity criteria is depicted in the inset, where the fully colored squares
point to the criteria of selected order, as a function of iterations k. Evaluation
within such parameterization suggests that the non-Gaussian properties are
indeed amplified for increasing number of iterations.

Finally, we evaluate the entanglement potential EP defined in Eq. 2.51 and
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Figure 5.6: Measurement results for nonclassicality accumulation by repetitive
application of the nonlinear AJC coupling. Here, 𝑘 = 0 to 20 denotes number
of repetitions, applied to the thermal motional state with mean number of phonons
𝑛th = 1.19 ± 0.04. The parts a), b) and c) correspond to the generated accumulated
statistical distributions for 𝑔𝑡 = 0.9 × 𝜋/2, 𝑔𝑡 = 𝜋/2 and 𝑔𝑡 = 1.1 × 𝜋/2. d) shows
the evolution of mean energy and Fano factor, where the decrease for the Fano factor
proves the convergence to the number state. Graph e) depicts the intersection of Wigner
function 𝑊(𝑥, 0), evaluated as a weighted sum of Wigner functions corresponding to
ideal number states. The full squares in the inset show the fulfillment of the quantum
non-Gaussianity criteria, proving also the accumulation of the non-Gaussian properties
with the increasing number of operations. f) shows the increase of entanglement
potential calculated from Eq. 2.51 with the number of iterations k.
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quantify it using the logarithmic negativity. We can see, that even though
the increase of non-classicality sensed in this way is highest for the first step
of accumulation, it still monotonically increases with a number of repetitions.
Importantly, this effect can be seen even though the measurements include
a random and unavoidable diffusion of phonon number statistics due to the
excitation and decay on the reshuffling transition with finite Lamb–Dicke
parameters. The accumulation process is apparently robust against experimental
imperfections and can be applied also to states with high thermal energy
resulting from a simple Doppler cooling process, irrespective of additional
heating caused by the resetting of electronic state.



6. Non-classical motional states from
Jaynes-Cummings interaction

Demonstrated experimental control of the motional state with use of
the anti-Jaynes-Cummings interaction led to deterministic generation of
non-classicality from thermal states. In this way, high fidelity number states of
motion can be generated without the need to fully suppress the thermal energy
of the initial state. Implementation of the contrary process corresponding to the
phonon absorption has been shown to not just share these deterministic positive
quantum aspects, but in addition, it is expected to counter-intuitively benefit
from the thermal energy of the initial oscillator state [115].

In the following we describe the initial experimental observations of these
aspects by implementation of the repeated phonon absorption on the thermal
motional state of a single 40Ca+ ion. We remind that, when comparing to the
phonon annihilation on the photonic mode, the absorption of quanta does not
provide any nonclassicality. However, the phonon subtraction can not be viewed
as a linear absorption, but instead it serves as a direct source of the modulation
of population distribution elements in the Jaynes-Cummings interaction (J-C).

In many ways, the experimental approach is similar as the one described
in Chapter 5. However, the populations of generated motional states are
fundamentally different. Generally, the states with lower mean energies
are created, while having the similar or even slightly improved measures of
non-classicality and quantum non-Gaussianity.

6.1 J-C dynamics of accumulation process
In order to theoretically describe the modulation process of motional states’
probabilities, we refer to the similar description as the one described in Sec. 5.1.
in Eq. 5.7 and Eq. 5.8. A generalized form of the J-C coupling on the arbitrary
incoherent mixture of phonon number states distribution can be defined as [115,
116]
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𝜌𝑟(𝑡) =
𝑛𝑚𝑎𝑥

∑
𝑛=0

𝑃(𝑛) [cos(𝑔𝑡√𝑛)]
2
|𝑛⟩ ⟨𝑛| +

+
𝑛𝑚𝑎𝑥

∑
𝑛=0

𝑃(𝑛) [sin(𝑔𝑡√𝑛)]
2
|𝑛 − 1⟩ ⟨𝑛 − 1| . (6.1)

Here, the crucial property to form the non-classical modulation lies again in the
pulse area gt.

We consider the example of motional state evolution following the Eq. 6.1
on the population being initially in the state |𝑔, 1⟩. The interaction with pulse
area 𝑔𝑡 = 𝜋/2 forms a perfect subtraction of single quantum to the ground
state of motion, so that |𝑔, 1⟩ → |𝑒, 0⟩. A more interesting situation happens
for 𝑔𝑡 = 𝜋. The population undergoes the whole cycle, so that |𝑔, 1⟩ → |𝑒, 0⟩ →
|𝑔, 1⟩, returning the same input state of the operation. For repetitive multiple
operations with fixed 𝑔𝑡 = 𝜋, the population of |𝑔, 1⟩will still remain unchanged.
The population of higher phonon states will gradually converge towards the state
|𝑔, 1⟩. In this way, it becomes possible to engineer the accumulation process
similar with the one described in Chapter 5, where in the limit of high number
of iterations, the population accumulates at the certain energy level 𝑛. Generally,
the condition to engineer the number state ’filter’ can be described with

𝑔𝑡√𝑛 = 𝑙𝜋. (6.2)

where 𝑙 is an integer value. In order to focus the accumulation process on the
number state n, we set the pulse area as 𝑔𝑡 = 𝑙𝜋/√𝑛 and apply the sufficient
amount of repetitive interactions.

The scaling of solution gt from Eq. 6.2 with integer value of 𝑙 leads to the
accumulation also to higher motional states. Also, the solutions may acquire
the similar results for different values of 𝑙 and 𝑛. For the previously discussed
example of 𝑔𝑡 = 𝜋, the solution of Eq. 6.2 returns discrete values of 𝑛 = 1, 4, 9, 16
for 𝑙 = 1, 2, 3, 4. The probability of occupation of these higher order motional
states will rise with the increasing mean energy of the initial thermal state,
because the higher states will be more populated. For states with low mean
energy, the higher contributions can be neglected.

In Fig. 6.1, we depict the simulations of single and repetitive quantum
subtractions with Jaynes-Cummings interactions for 𝑔𝑡 = 𝜋, for two different
initial states. In Fig. 6.1 b) and e), we can see that the single subtraction leads to
the enhancement of the population 𝑃1 at the cost of higher probabilities 𝑃3, 𝑃4.
In the limit of infinite iterations, shown in Fig. 6.1 c), f), the energy levels
𝑃2, 𝑃3 are emptied, and the higher populations converge to 𝑃4, 𝑃9 and 𝑃16. At
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the same time, the population probability 𝑃0 is left untouched, as the coupling
to red sideband does not exist for ground state of motion. We also see that the
amount of population accumulated into the higher order number states increases
with the energy, so that for higher energies, the operation forms a more complex
statistical mixture, also enhancing it’s non-classicality measures, which is proved
in the measurement described in Sec. 6.2.

6.2 Experimental non-classical states in J-C
interaction

We first characterize the state generated with the single subtraction in J-C
interaction. Next, this step is repeated 𝑘-times. We reconstruct the measured
populations of energy levels and compare them to the predicted behavior, which
takes into account thermal energy acquired by the system within the sequence
duration (see Sec. 3.12), the limited operation efficiency, and the heating by
re-shuffling prior to the state readout (see Sec. 3.13).

The experimental sequence starts by preparation of the thermal motional
state with energy 𝑛 = 0.93±0.06. The resulting populations are compared with
ideal Bose-Einstein distribution reconstructed from the measured state’s energy.
The pulse area 𝑔𝑡 = 𝜋 is set by setting the pulse duration to 𝜏 = 272 𝜇s. The
pulse is applied on the 1𝑠𝑡 red motional sideband. The phonon number statistics
is reconstructed from the blue axial sideband with use of the Eq. 2.40. We repeat
the phonon subtraction step up to 𝑘 = 5 iterations, which is already sufficient
for amplification of fundamental positive aspects of initial thermal energy.

For the experiment, ground state Rabi frequency was measured as
Ω0 = 2𝜋 × (60.2 ± 0.1) kHz, Lamb-Dicke parameter 𝜂 = (0.0611 ± 0.0002)
and ground state decay rate 𝛾0 = 0.42±0.06 kHz. A special attention is devoted
for experimental estimation of pulse area 𝑔𝑡, which has to be set to 𝑔𝑡 = 𝜋 with
high accuracy. This value can be theoretically calculated from the measured
Rabi frequency, however, due to the limiting offset in the response of employed
electronic elements, the realistic length of the pulse is longer. Physically, the
pulse area 𝜋 corresponds to the whole period of the population transfer between
the states |𝑔, 1⟩ → |𝑒, 0⟩ → |𝑔, 1⟩ at red sideband, as depicted in Fig. 2.2. As the
anti-Jaynes-Cummings interaction is described with the very same interaction
strength 𝜂Ω0 when starting from the excited state, the similar process with
exactly same interaction times is performed also on blue sideband as a cycle
between the states |𝑔, 0⟩ → |𝑒, 1⟩ → |𝑔, 0⟩. Therefore, the optimal interaction
time 𝜏 = 272 𝜇s corresponding to 𝑔𝑡 = 𝜋 pulse was estimated on the blue
sideband and then applied to red sideband interaction from the state |𝑔, 1⟩.
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Figure 6.1: A simulation of the result of phonon absorption applied to red sideband with
the coupling constant 𝑔𝑡 = 𝜋. a) shows a thermal distribution with 𝑛 = 1. b) plots the
resulting state after the single interaction, showing already a significant enhancement in
𝑃1. c) shows amodulation in limit of infinite accumulation steps, leading to accumulation
of population at states |1⟩ and |4⟩. The similar scenario is shown in the second row,
however now with the initial thermal energy corresponding to 𝑛 = 5, depicted in d).
A single subtraction already returns the highly non-classical modulation with 𝑃1 larger
than 𝑃0, as shown in e). The limiting case f) shows the convergence of populations into
|1⟩ , |4⟩ , |9⟩ , |16⟩ which are the results for indexes 𝑙 = 1, 2, 3, 4 in the Eq. 6.2.
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The probabilities are shown in Fig. 6.2 with blue columns. After the single
interaction step, the process shows a significant enhancement of the population
probability 𝑃1. This effect is further amplified by repetitive interactions. The final
measurement outcome after five iterations shows a clear convergence towards
the states 𝑃1 and 𝑃4, which is in close agreement with a theoretical prediction.
The most significantly populated states had probabilities 𝑃0 = 0.45 ± 0.01, 𝑃1 =
0.43±0.01 and 𝑃4 = 0.08±0.02. The third accumulation maximum, theoretically
predicted at 𝑃9, is not observable in this measurement due to the low initial
energy. The error bars, corresponding to a single standard deviation, were
statistically evaluated from five independent measurements of each state.

The black columns displayed together with themeasured data in Fig. 6.2 refer
to a theoretical prediction of dynamical process for the initial thermal state. The
simulations also contains the known imperfections, describing heating process
and imperfect efficiency corresponding to the limited Rabi flop contrast. The
blue sideband Rabi flop contrast at the 𝜋 pulse duration was measured as 95 %.
In this case, we assume that 95 % of the initial state’s population undergoes
the interaction, while the remaining 5 % remains it’s initial state. We also
estimated that 5.8% of the excited state population undergoes diffusion to the
neighboring motional states due to the photon recoils within the reshuffling
and optical pumping (see Sec. 3.13). Finally, we assume the axial heating
itself, adding the energy of Δ𝑛 = 2.7 phonons/s withing the time passed from
the initialization of the input state. Taking into account all the experimental
imperfections, the predicted evolution corresponds to the measured state on the
scale of approximately 2 - 3 standard deviations, which is a satisfying result if
taking into account the complex nature of the system and the number of free
experimental parameters. The aim of this simulation was to merely confirm
the conceptual behavior of the phonon number distributions rather than provide
their accurate predictions.

The non-classical properties of the generated distributions are characterized
by evaluation of entanglement potential (EP) of the generated states and Klyshko
criteria. The observed clear increase of the EP with the number of appended
accumulation pulses is depicted in Fig. 6.3. The blue points show values resulting
from measurement with error bar corresponding to standard deviation retrieved
from 5 consecutive measurement runs. The black line shows a theoretical
prediction of expected value of EP. The accuracy of the simulation is to some
extent limited with truncation of the distribution sum, which performed over all
populations predicted to havemore than 1 % ofmotional occupation, as described
in Sec. 3.14.1. Theoretically, EP should equal zero for any thermal motional
state, since such a state does not contain any non-classicality. The cut of the
distribution sum at certain maximal level induces a small offset in entanglement
potential.
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Figure 6.2: Reconstructed phonon distributions for initial thermal state with 𝑛 =
0.93 ± 0.06 undergoing repetitive additions of energy 𝑔𝑡 = 𝜋 at red axial sideband.
Here, 𝑛 denotes the population level, 𝑃𝑛 the occupation probability of the corresponding
number state, and 𝑘 describes the number of repetitive additions. Blue bars depict the
measured data, black ones are values resulting from theoretical predictions.

However, the dominant limitation stems from the projection noise resulting
from the finite number of experimental repetitions for estimation of the electron
state population. To quantify this effect, we employ a Monte-Carlo routine to an
ideal population distribution corresponding to thermal state with a given mean
thermal energy, and generate an ideal pattern of Rabi oscillations corresponding
to it’s distribution. We assume that each of the points of this ideal flopping would
be measured from 100 projections of a two-level system. In the next step, we
variate each point of this flop with the Gaussian distribution, where the standard
deviation is defined by the projection noise, similarly as in the experiments
described in Chapter 4 and 5. The simulated Rabi oscillations are also used to
estimate the expected error for the entanglement potential. For each of the 100
simulations, the EP is calculated and the error bars are taken from the minimal
and maximal EP value. These are depicted as gray dashed lines in Fig. 6.3.

The measured data in Fig. 6.4 clearly demonstrate the increase of the EP with



Experimental non-classical states in J-C interaction 101

k

E
P

Figure 6.3: Measured and theoretically simulated value of entanglement potential for
initial thermal state with 𝑛 = 0.93 ± 0.06, undergoing up to 𝑘 = 5 repetitive phonon
subtractions. The measured error bar corresponds to a one standard deviation estimated
from 5 independent measurements. The black line shows the predicted values, the
gray dashed lines depict the lower and upper bound of the standard simulation error
originating from the projection noise (see main text for details).

number of phonon subtractions k applied to the initial thermal state. Wemeasure
the values of EP follow the predicted behavior within one standard deviation.

We probe the possible non-classicality by evaluation of Klyshko’s criteria
of non-classicality, described by an Eq. 2.48 [71]. Such a criteria can form a
hierarchy dependent on 𝑛, where for each 𝑛 exists a specific Klyshko criteria. For
the current measurement, we evaluate the hierarchy up to the order 7, and depict
the result in Fig. 6.4. The values of 𝐾1 and 𝐾4 show a statistically significant
amount of negativity. The negative value is apparent even after the single
phonon subtraction, and gradually increases with the added accumulation steps.
Physically, the negative value points to the fact that the occupation probabilities
𝑃1 and 𝑃4 are significantly larger than at least one of the neighboring oscillator
states. The effect is much more pronounced for 𝐾1, in agreement with the
expectation of the dominant population of 𝑃1 and suppressed population in 𝑃2.
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Figure 6.4: Evaluated hierarchy of Klyshko criteria 𝐾𝑛. The horizontal axis denotes
the order of the Klyshko criteria 𝑛, the vertical line then number of accumulation pulses
increasing from top to bottom. The columns related to 𝑃1 and 𝑃4 prove a clear non-
classical nature of the generated states. The gray squares show the Klyshko parameter
values, where we measured the negative values, but the negativity was smaller than
single standard deviation. The white squares denote positions where the Klyshko
parameter resulted positive.

6.3 Thermally induced non-classical features

We explore the effect of phonon subtraction and accumulation for states with
various initial thermal energies. We prepare five additional thermal states, which
together with the already described measurement (Sec 6.2) form a set of total
six measurements. For each initial thermal state, we perform the sequence
of five repetitive subtractions, which became sufficient for enhancement of
the observability of the target phenomena relevant for thermally stimulated
nonclassicality.

The plot chart in Fig. 6.5 depicts the dynamics for three initial thermal
energies. The rows represent low 𝑛 = 0.14±0.03, intermediate 𝑛 = 2.0±0.1 and
high 𝑛 = 2.9 ± 0.3 initial thermal energy. The first column shows the measured
thermal distributions, the second one states after single interaction, and the third
the distribution after 𝑘 = 5 repetitive interactions. The data processing and
simulations were performed following the recipe described Sec. 6.2.

The overall comparison of dynamics occurring for various energies shows
that the dynamics of accumulation process applied to states with increasing
initial energies leads to generation of number states which correspond to filters
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Figure 6.5: Measurement of the repeated phonon absorption for different input thermal
energies for 𝑔𝑡 = 𝜋. Stateswith increasing energy form amore pronounced non-classical
modulations, where the solutions corresponding to higher multiples of 𝑔𝑡 = 𝑙𝜋 become
evident. The errors correspond to a single standard deviation resulting from statistical
evaluation of five independent measurements. Theoretical simulation including the
simulation of the effect of projection noise is depicted by black bars.
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based on pulse areas gt of higher order multiplies of 𝜋. For the state with a
low initial energy 𝑛 = 0.14 ± 0.03, we see that the effect phonon absorption is
generally very weak, performing in limiting case only around 10 % of population
transfer into the state 𝑃1, while significant part of this can be contributed to
the effect of heating. For both of the additional measurements, initiating from
thermal states 𝑛 = 2.0 ± 0.1 and 𝑛 = 2.9 ± 0.3, we were able to observe the
convergence towards the state 𝑃4 with a significant strength, see Fig. 6.5 f) and
i). Moreover, we can observe a significant enhancement of probability 𝑃1 even
after the single interaction, unlike in case of low initial energy, as depicted in
Fig 6.5 e), h). For the result in Fig. 6.5 f), we measure 𝑃1 = 0.37 ± 0.03 and
𝑃4 = 0.14 ± 0.02, and even the third maximum 𝑃9 = 0.08 ± 0.04. For a highest
initial thermal energy, the state after five iterations shown in Fig. 6.5 i) returns
𝑃1 = 0.33 ± 0.03, 𝑃4 = 0.16 ± 0.03 and 𝑃9 = 0.10 ± 0.05. From the presented
results, it is clearly apparent that the states with high initial thermal energy are
able to form the more complex statistical mixtures than states with low 𝑛.

In order to systematically evaluate the corresponding enhancement of
nonclassical features of generated states, we evaluate the Klyshko hierarchy and
entanglement potential measures. The hierarchy is depicted in the plot matrix
in Fig. 6.6. The horizontal axis defines the order of the Klyshko criteria n which
is under the probe. Vertical axis label refers to the initial thermal state 𝑛th. The
𝑘 = 0 refers to initial thermal states, 𝑘 = 1 corresponds to a single absorption,
and 𝑘 = 5 to five cycles in total. The results show that for the increasing number
of iterations, the negativity in Klyshko parameters 𝐾1 and 𝐾4 increases, pointing
to the increasing non-classicality which is being accumulated in the system. The
accumulation in particular states 𝑃1 and 𝑃4 also complies with the expected trend
of convergence towards solutions of Eq. 6.2 where 𝑔𝑡 = 𝜋.

The estimated entanglement potential is displayed in Fig. 6.7 a). The
results prove both the enhancement by number of accumulation steps and with
increasing thermal energy. The red points in the Fig. 6.7 show the EP for thermal
states, which grows with mean energy due to the finite measurement projection
noise, as described in Sec. 6.2.

We simulate this effect with use of the Monte-Carlo simulation, similarly as
for the previous measurement in Sec. 6.2, and find out that the measured offset
in entanglement potential quantitatively agrees with a theoretical prediction.

The blue and yellow points in Fig 6.7 a) corresponding to states after 𝑘 = 1
and 𝑘 = 5 phonon subtractions, show the measured values of EP well beyond
the numbers corresponding to thermal states. At the same time, estimated
state energy for 𝑘 = 0, 1, 5 iterations remains similar, as depicted in Fig 6.7 b),
proving that the effect of non-classicality enhancement clearly originates from
the performed interactions, and it is thus not an effect of increasing thermal state
energy. Finally, the Fig. 6.7 proves the most crucial aspect, which is a the growth
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n

Figure 6.6: Matrices of estimated Klyshko non-classicality criteria. The vertical axis
denotes the initial thermal energies of states 𝑛𝑡ℎ. The horizontal variable 𝑛 has a
meaning of the Klyshko criteria order. From left to right, the plots show the results for
initial thermal states (𝑘 = 0), distributions undergoing a subtraction of single phonon
(𝑘 = 1), and finally the accumulation of five subtraction processes (𝑘 = 5). The grey
squares show results, where small negative value was evaluated, which did not exceed
the interval of a single standard deviation. For all the employed initial thermal states,
except for the one with lowest energy, we observe the effect of non-classicality growth
as a function o k. The increasing energy contributes especially to enhancement of the
criteria 𝐾4.
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of EP with the increasing thermal energy of the input state. This is manifested
as an increasing delta between measured EP corresponding to 𝑘 = 1 and 𝑘 = 5
datasets. For example, for the state with initial thermal energy 𝑛 = 0.68(7)
the ΔEP = 0.16, but for the state with 𝑛 = 2.9(3) it is already much higher,
ΔEP = 0.42.

We note that, results presented in this Chapter are preliminary, though
sufficient enough to prove the validity of the states generation and it’s usability
to prove the quantum non-Gaussian properties. In order to provide the
satisfactory comparison of the generated states with their theoretical prediction,
the experiment has been currently instantiated with use of the new laser setup
with improved coherence properties, stabilized magnetic field in the trap setup
and other improvements.
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Figure 6.7: a) Entanglement potential and b) mean energies as 𝑛 = ∑𝑛 𝑛𝑃𝑛 of the initial
states (red) undergoing a single (blue) and five phonon absorption cycles (yellow). The
trend in measured EP suggests the enhancement of non-classicality for both increasing
energy and the number of iterations. At the same time, the energy difference between
datasets of 𝑘 = 1 and 𝑘 = 5 (in b)) is relatively small, which proves that the enhancement
of EP shown in a) indeed comes from the phonon subtraction, and it is thus not an artifact
from an increasing Hilbert space size.



7. Conclusions

Further development of quantum technology and its applications depends
on the quality, costs and robustness of experimental resources that must be
conclusively proved. For bosonic implementations of quantum technology,
including mechanical experiments with trapped ions, quantum non-Gaussian
states of phononic oscillators are highly needed as resources. The Fock states
are the most fundamental quantum non-Gaussian elements, challenging for
many bosonic platforms but already providing tools for quantum force sensing
beyond the standard quantum limit. Moreover, they are critical elements for
building Fock state superpositions with much broader applications in quantum
error correction, quantum sensing and interferometry, quantum simulations, and
quantum thermodynamics.

The presented work provides a complex set of experimental measurements
which focuses on generation and characterization of quantum states
implemented on motional degree of freedom of the trapped ion system.
We employed the broadly used method of phonon addition and subtraction at
1𝑠𝑡 motional sidebands [19], and we extended it’s application to create complex
statistical mixtures. We have used the criteria of non-classicality and genuine
quantum non-Gaussianity to characterize the quantum states and analyzed
their robustness to the addition of thermal energy. We have further proved that
initial thermal energy can be beneficial for the observable non-classical features,
which is in contrast with conventional intuition on conditions for sources of
nonclassicality to be well isolated from the surrounding environment.

We have focused on generation of high number states and we probed their
properties while undergoing the controllable thermalization. We have applied
the specifically developed hierarchy of quantum non-Gaussianity criteria [21,
23], which provides a tool to qualitatively express the amount of non-classical
features which are being present in the phonon population distribution. We
measured and evaluated the depth of the quantum non-Gaussian features, which
characterizes the minimal amount of thermal energy added to the system to
destroy the observability of quantum state’s non-Gaussianity. We additionally
performed the controllable experimental heating of ion to precisely calibrate this
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effect on mechanical system. For the most robust state |1⟩, we have measured
the limiting energy preserving the non-Gaussian properties as 𝑛 = 0.31,
while for increasing energy of measured number states, this gradually drops
down to the energy of 0.02 phonons measured for number state |10⟩. Still,
despite the decreasing robustness with respect to the motional heating, we have
estimated by calculation of Fisher information and evaluation of the metrological
advantage, that employment of the higher order number states provides the
potential enhancement of the accuracy of phase insensitive sensing of small
coherent displacement. The highest metrological advantage was evaluated for
the generated state |8⟩, for higher state |10⟩was lost due to the large uncertainty
in population distribution. Together, the presented routine of characterizing the
motional states with genuine QNG criteria hierarchy proves to be a feasible tool
for conclusive, hierarchical and sensitive evaluation of Fock state properties.

The second experiment extends the method of motional engineering
to application of repetitive anti Jaynes-Cummings interactions. We have
implemented the scheme, which was theoretically proposed already in 1995 by
Blatt et. al. [96] and within the best of our knowledge, it was not experimentally
verified up to date. We have shown that the repetitive application of fixed
length pulse on the blue axial sideband leads to the dynamical accumulation of
motional population into a particular number state, which can be controllably
tuned by varying the length gt of the employed interaction pulse. Crucially,
this generation method manages to overcome the fundamental requirement
of majority of other protocols for preparation of Fock states, which is the
minimization of the initial state entropy.

By evaluation of the Klyshko criteria and entanglement potential, we proved
that the capability to detect non-classcial features increase with high energy
of the initial thermal state, which becomes apparent even for the single added
quantum (see Fig. 5.4). We probed the dynamics of repetitive phonon emission
processes, which were measured for various pulse length, where each of the
dynamics shows the convergence towards a different number state, particularly
towards |2⟩ , |3⟩ , |4⟩ for pulse areas 𝑔𝑡 = 0.9 × 𝜋/2, 𝜋/2 and 1.1 × 𝜋/2. We also
proved that the repetitive addition of energy enhances the measured amount of
entanglement potential and the Fano factor which shows the convergence to the
sub-Poissonian, thus non-classical statistics.

In the last presented experiment we demonstrated the accumulation of
non-classicality by addressing the red motional sideband. The point of the
demonstrated physics lies in the possibility to generate a non-classical quantum
state even by the absorption of phonon, which is in striking contrast to photon
annihilation process in photonic quantum systems. We have proved that the
presence of non-classical and quantum non-Gaussian features is directly driven
by increasing energy of initial thermal state. For various thermal distributions at
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input, we estimated the resulting distributions after a single and five repetitive
phonon absorptions, and we proved that estimated entanglement potential
grows with the initial thermal energy. The estimated hierarchy of Klyshko
criteria illustrated increase of non-classicality with thermal energy and number
of iterations, and also shows the convergence of the distribution towards
the number states |1⟩ and |4⟩, which corresponds to a theoretical prediction
calculated for many phonon absorptions.

We foresee the application of the presented results mainly in improvement
of methods used for quantum enhanced sensing [24]. The method of states’s
characterization using the genuine QNG criteria also provides a crucial milestone
of experimental witnessing the intrinsic properties of highly non-classical
states. Such states are broadly applicable in fields of optical frequency
metrology [114, 117], quantum error correction [112] and test of quantum
thermodynamical phenomena [118, 119]. Together with the recently published
work demonstrating the number state generation approaching |100⟩ on the
same experimental platform, [25], the set of here demonstrated genuine QNG
criteria will allow for the optimization and comparison of these quantum
states across different experimental platforms [120, 121]. The realized
experiments involving the motional accumulation by repetitive interactions
demonstrates the unprecedented possibility to deterministically acquire the
quantum non-Gaussian properties in thermal states, and thus promises a feasible
bypass for no-go theorem for Fock states processing [122]. The experimental
routine may be directly extended into non-linear couplings with solid-state
mechanical oscillators [109, 123–125].

A space for potential improvement lies in the possible enhancement of
the set trapping frequencies, which would allow to speed up the stage of the
state preparation. Also, the increase in laser power leading to increase in
Rabi frequency would decrease a period of probed Rabi oscillations. Together,
these two effects would accelerate the motional dynamics, while at the same
time suppressing the diffusion to higher energies induced by a thermal heating
process. A crucial technical issue which limited all experimental processes lied
in non-ideal contrast of the employed Rabi flops, and also in high damping of
the Rabi oscillations under probe. The possible improved electronic intensity
stabilization and the fiber noise cancellation method could reduce this decay,
which could lead to higher flop contrast and thus to more deterministic phonon
gates and also more precise estimation of phonon statistics. Additionally, we
expect that the employment of the passive magnetic shielding in form of the
external box will decrease the externally induced fluctuations of magnetic fields,
which would also result towards increased coherence of the two-level system
probe. During the preparation of the thesis, these improvements were partially
implemented, which already led to improvement of the presented Ramsey
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coherence times on 4S1/2 → 3D5/2 transition to beyond 10 ms.
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Slodička and R. Filip:
‘Nonclassical light from large ensembles of trapped ions’,
Physical review letters 120, 253602 (2018).

81 D. Berkeland, J. Miller, J. C. Bergquist, W. M. Itano and D. J. Wineland:
‘Minimization of ion micromotion in a paul trap’,
Journal of applied physics 83, 5025–5033 (1998).

82 N. Herschbach, K. Pyka, J. Keller and T. E. Mehlstäubler:
‘Linear paul trap design for an optical clock with coulomb crystals’,
Applied Physics B 107, 891–906 (2012).

83 L. A. Zhukas, M. J. Millican, P. Svihra, A. Nomerotski and B. B. Blinov:
‘Direct observation of ion micromotion in a linear paul trap’,
Physical Review A 103, 023105 (2021).

84 J. Keller, H. Partner, T. Burgermeister and T. Mehlstäubler:
‘Precise determination of micromotion for trapped-ion optical clocks’,
Journal of Applied Physics 118, 104501 (2015).

85 R. H. Brown and R. Q. Twiss:
‘Lxxiv. a new type of interferometer for use in radio astronomy’,
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45,
663–682 (1954).

86 G. Cerchiari, G. Araneda, L. Podhora, L. Slodička, Y. Colombe and R. Blatt:
‘Measuring ion oscillations at the quantum level with fluorescence light’,
Physical Review Letters 127, 063603 (2021).

87 G. Cerchiari, L. Dania, D. Bykov, R. Blatt and T. Northup:
‘Position measurement of a dipolar scatterer via self-homodyne detection’,
Physical Review A 104, 053523 (2021).

88 T. Sauter, W. Neuhauser, R. Blatt and P. Toschek:
‘Observation of quantum jumps’,
Physical review letters 57, 1696 (1986).

89 D. Wineland and H. Dehmelt:
‘Proposed 1014𝛿𝜈/𝜈 laser fluorescence spectroscopy on tl+ mono-ion oscillator iii (side
band cooling)’,
Bull. Am. Phys. Soc 20, 637–637 (1975).

90 C. Roos, T. Zeiger, H. Rohde, H. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler
and R. Blatt:
‘Quantum state engineering on an optical transition and decoherence in a paul trap’,
Phys. Rev. Lett. 83, 4713 (1999).

91 G. Morigi, J. Eschner and C. H. Keitel:
‘Ground state laser cooling using electromagnetically induced transparency’,
Physical review letters 85, 4458 (2000).

https://iopscience.iop.org/article/10.1088/1367-2630/ab4081
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.253602
https://aip.scitation.org/doi/abs/10.1063/1.367318?casa_token=XzCGv5eedF4AAAAA:h4nZ18SoFVOQtdKtmYo8oc42_I3L7pXSFxZphX2rckgg6LzxRJWAZ5-m-HlgQYK0GFNYP8LLp0M
https://www.researchgate.net/publication/51940749_Linear_Paul_trap_design_for_an_optical_clock_with_Coulomb_crystals
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.103.023105
https://aip.scitation.org/doi/full/10.1063/1.4930037?casa_token=YpBGJMQ-NJgAAAAA%3AapzadHRjubiW8AhZwEZhK4OXbvkpMci7XZ3FFLGWyKtE0QUzHj6SeUoODiOwsnxGN3NkSU8nJ-4
https://www.tandfonline.com/doi/abs/10.1080/14786440708520475
https://www.tandfonline.com/doi/abs/10.1080/14786440708520475
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.063603
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.104.053523
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.57.1696
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.83.4713
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.85.4458


References 119

92 A. Ritboon, L. Slodička and R. Filip:
‘Sequential phonon measurements of atomic motion’,
Quantum Science and Technology 7, 015023 (2022).

93 F. Diedrich, J. Bergquist, W. M. Itano and D. Wineland:
‘Laser cooling to the zero-point energy of motion’,
Physical review letters 62, 403 (1989).

94 B. Srivathsan, M. Fischer, L. Alber, M. Weber, M. Sondermann and G. Leuchs:
‘Measuring the temperature and heating rate of a single ion by imaging’,
New Journal of Physics 21, 113014 (2019).

95 K. Vahala, M. Herrmann, S. Knünz, V. Batteiger, G. Saathoff, T. Hänsch and T. Udem:
‘A phonon laser’,
Nature Physics 5, 682–686 (2009).

96 R. Blatt, J. Cirac and P. Zoller:
‘Trapping states of motion with cold ions’,
Physical Review A 52, 518 (1995).

97 D. Kienzler, H.-Y. Lo, V. Negnevitsky, C. Flühmann, M. Marinelli and J. P. Home:
‘Quantum harmonic oscillator state control in a squeezed fock basis’,
Phys. Rev. Lett. 119, 033602 (2017).

98 Q. A. Turchette, B. King, D. Leibfried, D. Meekhof, C. Myatt, M. Rowe, C. Sackett,
C. Wood, W. Itano, C. Monroe et al.:
‘Heating of trapped ions from the quantum ground state’,
Physical Review A 61, 063418 (2000).

99 J. Řeháček, Z. Hradil and M. Ježek:
‘Iterative algorithm for reconstruction of entangled states’,
Physical Review A 63, 040303 (2001).

100 S. Schneider and G. J. Milburn:
‘Decoherence in ion traps due to laser intensity and phase fluctuations’,
Phys. Rev. A 57, 3748 (1998).

101 M. Murao and P. Knight:
‘Decoherence in nonclassical motional states of a trapped ion’,
Phys. Rev. A 58, 663 (1998).

102 A. Budini, R. de Matos Filho and N. Zagury:
‘Localization and dispersivelike decoherence in vibronic states of a trapped ion’,
Phys. Rev. A 65, 041402 (2002).

103 S. Fujiwara and S. Hasegawa:
‘Estimation of the heating rate of ions due to laser fluctuations when implementing
quantum algorithms’,
Quantum Information & Computation 7, 573–583 (2007).

104 L. Lachman:
‘Advanced identification of quantum properties of the light’,
Ph. D. Thesis (2020).

105 D. Meekhof, C. Monroe, B. King, W. M. Itano and D. J. Wineland:
‘Generation of nonclassical motional states of a trapped atom’,
Phys. Rev. Lett. 76, 1796 (1996).

https://iopscience.iop.org/article/10.1088/2058-9565/ac3c52/meta
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.62.403
https://iopscience.iop.org/article/10.1088/1367-2630/ab4f43/meta
https://www.nature.com/articles/nphys1367
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.52.518
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.033602
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.61.063418
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.63.040303
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.57.3748
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.58.663
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.65.041402
https://dl.acm.org/doi/abs/10.5555/2011734.2011735
https://theses.cz/id/lh1jt9/MyThesis_Lachman.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.76.1796


120 References

106 K. Toyoda, R. Hiji, A. Noguchi and S. Urabe:
‘Hong–ou–mandel interference of two phonons in trapped ions’,
Nature 527, 74 (2015).

107 S. Ding, G. Maslennikov, R. Hablützel, H. Loh and D. Matsukevich:
‘Quantum parametric oscillator with trapped ions’,
Phys. Rev. Lett. 119, 150404 (2017).

108 J. Zhang, M. Um, D. Lv, J.-N. Zhang, L.-M. Duan and K. Kim:
‘Noon states of nine quantized vibrations in two radial modes of a trapped ion’,
Phys. Rev. Lett. 121, 160502 (2018).

109 Y. Chu, P. Kharel, T. Yoon, L. Frunzio, P. T. Rakich and R. J. Schoelkopf:
‘Creation and control of multi-phonon fock states in a bulk acoustic-wave resonator’,
Nature 563, 666–670 (2018).

110 K. Duivenvoorden, B. M. Terhal and D. Weigand:
‘Single-mode displacement sensor’,
Physical Review A 95, 012305 (2017).

111 M. Brownnutt, M. Kumph, P. Rabl and R. Blatt:
‘Ion-trap measurements of electric-field noise near surfaces’,
Rev. Mod. Phys. 87, 1419 (2015).

112 B. De Neeve, T.-L. Nguyen, T. Behrle and J. P. Home:
‘Error correction of a logical grid state qubit by dissipative pumping’,
Nature Physics 18, 296–300 (2022).

113 I. Straka, A. Predojević, T. Huber, L. Lachman, L. Butschek, M. Miková, M. Mičuda,
G. S. Solomon, G. Weihs, M. Ježek and R. Filip:
‘Quantum non-gaussian depth of single-photon states’,
Phys. Rev. Lett. 113, 223603 (2014).

114 Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmer-
ling, N. Lörch, K. Hammerer and P. O. Schmidt:
‘Precision spectroscopy by photon-recoil signal amplification’,
Nat. Commun. 5, 1–6 (2014).

115 L. Slodička, P. Marek and R. Filip:
‘Deterministic nonclassicality from thermal states’,
Optics express 24, 7858–7870 (2016).

116 P. Marek, L. Lachman, L. Slodička and R. Filip:
‘Deterministic nonclassicality for quantum-mechanical oscillators in thermal states’,
Physical Review A 94, 013850 (2016).

117 C. Hempel, B. Lanyon, P. Jurcevic, R. Gerritsma, R. Blatt and C. Roos:
‘Entanglement-enhanced detection of single-photon scattering events’,
Nature Photonics 7, 630–633 (2013).

118 M. F. Gely, M. Kounalakis, C. Dickel, J. Dalle, R. Vatré, B. Baker, M. D. Jenkins and
G. A. Steele:
‘Observation and stabilization of photonic fock states in a hot radio-frequency resonator’,
Science 363, 1072–1075 (2019).

https://www.nature.com/articles/nature15735
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.150404
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.160502
https://www.nature.com/articles/s41586-018-0717-7
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.012305
https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.87.1419
https://www.nature.com/articles/s41567-021-01487-7
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.223603
https://www.nature.com/articles/ncomms4096
https://opg.optica.org/oe/fulltext.cfm?uri=oe-24-8-7858&id=338730
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.013850
https://www.nature.com/articles/nphoton.2013.172
https://www.science.org/doi/10.1126/science.aaw3101


References 121

119 D. Gelbwaser-Klimovsky and G. Kurizki:
‘Work extraction from heat-powered quantized optomechanical setups’,
Scientific reports 5, 1–6 (2015).

120 W. Gorecki, S. Zhou, L. Jiang and R. Demkowicz-Dobrzański:
‘Optimal probes and error-correction schemes in multi-parameter quantum metrology’,
Quantum 4, 288 (2020).

121 A. Kubica and R. Demkowicz-Dobrzański:
‘Using quantum metrological bounds in quantum error correction: a simple proof of the
approximate eastin-knill theorem’,
Physical Review Letters 126, 150503 (2021).

122 D. Berry and A. Lvovsky:
‘Linear-optical processing cannot increase photon efficiency’,
Physical review letters 105, 203601 (2010).

123 D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart and H. Wang:
‘Optomechanical quantum control of a nitrogen-vacancy center in diamond’,
Physical review letters 116, 143602 (2016).

124 Y.-I. Sohn, S. Meesala, B. Pingault, H. A. Atikian, J. Holzgrafe, M. Gündoğan, C. Stav-
rakas, M. J. Stanley, A. Sipahigil, J. Choi et al.:
‘Controlling the coherence of a diamond spin qubit through its strain environment’,
Nature communications 9, 1–6 (2018).

125 J. Gieseler, A. Kabcenell, E. Rosenfeld, J. Schaefer, A. Safira, M. J. Schuetz, C.
Gonzalez-Ballestero, C. C. Rusconi, O. Romero-Isart and M. D. Lukin:
‘Single-spin magnetomechanics with levitated micromagnets’,
Physical review letters 124, 163604 (2020).

https://www.nature.com/articles/srep07809
https://quantum-journal.org/papers/q-2020-07-02-288/
https://www.semanticscholar.org/paper/Using-Quantum-Metrological-Bounds-in-Quantum-Error-Kubica-Demkowicz-Dobrza%C5%84ski/90c2eb0b91e756b06886112c4010e48087dcef9a
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.105.203601
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.143602
https://www.nature.com/articles/s41467-018-04340-3
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.163604

	Introduction
	Mechanics with a trapped ion oscillator
	Physical properties of 40Ca+ ion
	Electronic level structure 
	Dipole and quadrupole transitions in 40Ca+ atom
	The two-level approximation
	Motion of ion in a Paul trap
	Single ion as a harmonic oscillator
	Interaction of light with two-level atom in a harmonic potential
	Laser cooling
	Angular momentum and Zeeman splitting
	Coherent interaction on motional sidebands
	Basic definitions of non-classicality in ion's motion
	Estimation of discrete non-classicality on broad phonon number distributions

	Experimental methods to control ion's motion
	Laser manipulation of internal energy level populations
	Compensation of micromotion
	Internal state detection
	Pulsed sequence control
	Optical pumping
	Spectroscopy on the quadrupolar transition
	Laser spectroscopy of secular motion
	Sideband cooling
	Motional state estimation
	Engineering motional quantum states
	Thermal states
	Number states

	Estimation of the Lamb-Dicke parameter
	Motional heating on axial mode
	Heating by random photon recoils
	Approximations for reconstruction of motional population
	Truncation of motional state distribution
	Population normalization and fitting constraints
	Damping in Rabi oscillation
	Estimation of error in probability distributions


	Mechanical Fock states of single  trapped ion
	Realization of the motional states approaching Fock states
	Heating dynamics on ground state of  motion
	Heating dynamics for number states
	Quantum enhanced  sensing of mechanical force

	Deterministic accumulation of  mechanical non-classicality
	Modulation of populations by non-linear interactions
	Phonon addition in anti-Jaynes-Cummings interaction
	Accumulation of motional non-classicality

	Non-classical motional states from Jaynes-Cummings interaction
	J-C dynamics of accumulation process
	Experimental non-classical states in J-C interaction
	Thermally induced non-classical features

	Conclusions
	References

