
VYSOKÉ UČEŃI TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJŃıHO INŽENÝRSTV́ı

ÚSTAV MATEMATIKY

FACULTY OF MECHANICAL ENGINEERING

INSTITUTE OF MATHEMATICS

TRAFFIC ASSIGNMENT OPTIMIZATION MODELS
MODELY OPTIMALIZACE DOPRAVY

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. JAN HOLEŠOVSKÝ
AUTHOR

VEDOUĆI PRÁCE RNDr. PAVEL POPELA, Ph.D.
SUPERVISOR

BRNO 2012

Vysoké učení technické v Brně, Fakulta strojního inženýrství

Ústav matematiky
Akademický rok: 2011/2012

ZADÁNÍ DIPLOMOVÉ PRÁCE

student(ka): Bc. Jan Holešovský

který/která studuje v magisterském navazujícím studijním programu

obor: Matematické inženýrství (3901T021)

Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a
zkušebním řádem VUT v Brně určuje následující téma diplomové práce:

Modely optimalizace dopravy

v anglickém jazyce:

Traffic assignment optimization models

Stručná charakteristika problematiky úkolu:

Student se seznámí s problematikou úloh dvoustupňového a dvouúrovňového programování
včetně úloh stochastické optimalizace. Zvláštní pozornost bude věnovat dopravním úlohám a
přístupům podobným úloze "network interdiction". Bude se zabývat modifikací modelů, studiem
jejich vlastností, jejich transformacemi a algoritmy jejich řešení.

Cíle diplomové práce:

Modifikace a řešení vybraných dopravních problémů pomocí modelů matematické optimalizace,
studium jejich vlastností a jejich aplikace na "traffic assignment problem" (TAP).

Seznam odborné literatury:

Shapiro, A. et al.: Handbook of Stochastic Programming, Elsevier 2002.
Kall, P., Wallace, S. W.: Stochastic Programming, Wiley, 1994.
Beckmann, M., et al.: Studies in the Economics of Transportation, New Haven 1956.
Patriksson, M.: The Traffic Assignment Problem - Models and Methods, VSP 1994.

Vedoucí diplomové práce: RNDr. Pavel Popela, Ph.D.

Termín odevzdání diplomové práce je stanoven časovým plánem akademického roku 2011/2012.

V Brně, dne 26.10.2010

L.S.

_______________________________ _______________________________
prof. RNDr. Josef Šlapal, CSc. prof. RNDr. Miroslav Doupovec, CSc.

Ředitel ústavu Děkan fakulty

Abstrakt
Optimalizace toku v śıti je klasickou aplikaćı matematického programováńı. Tyto modely
maj́ı, mimo jiné, široké uplatněńı také v logistice, kde se tak snaž́ıme doćılit optimálńıho
rozděleńı dopravy, např. vzhledem k maximalizaci zisku, či minimalizaci náklad̊u. Toto
pojet́ı ovšem často problém idealizuje, poněvadž předpokládá existenci jediného rozhodo-
vatele. Takový př́ıstup je možný ve striktně organizovaných śıt́ıch jako např. v logistických
śıt́ıch přepravńıch společnost́ı, železničńıch śıt́ıch či armádńım zásobováńı. Úloha “Traffic
Assignment Problem” (TAP) se zaměřuje na dopady teorie her na optimalizaci toku, tj.
zkoumá vliv v́ıce rozhodovatel̊u na celkové využit́ı śıtě. V práci se zaob́ıráme úlohou TAP
s p̊usobeńım náhodných vliv̊u, k čemuž využ́ıváme metod stochastické a v́ıcestupňové
optimalizace. Dále zkoumáme možnosti zlepšeńı stávaj́ıćıho využit́ı śıtě za rozhodnut́ı
autoritativńıho rozhodovatele, kterému je umožněn zásah do samotné struktury śıtě, k
čemuž využ́ıváme v́ıceúrovňové programováńı.

Summary
The class of network flow problems is one of the traditional applications of mathematical
optimization. Such problems are widely applicable for example in logistics to achieve an
optimal distribution of flow with respect to maximization of profit, or minimization of
costs. This approach often leads to simplified models of real problems as it supposes the
existence of only one decision maker. Such approach is possible in centralised networks,
where an authority exists (such as railway network, military supply, or logistic network
used by any company). The Traffic Assignment Problem (TAP) deals with impact of
game theory to the network flow problem. Hence, we assume multiple decision makers,
where each one of them wants to find his optimal behaviour. In this thesis, we focus
on stochastic influences in TAP, for which we use methods of stochastic and multi-stage
programming. Further, we concentrate on improvement options for the utilization of the
system. Hereby, we consider possible actions of the master decision maker, and discuss
them by the presence of multi-level mathematical programming.

Kĺıčová slova
dopravńı problém, toky v śıt́ıch, stochastické programováńı, dvoustupňová optimalizace,
dvouúrovňová optimalizace

Keywords
traffic assignment, network flows, stochastic programming, two-stage optimization, bilevel
optimization

HOLEŠOVSKÝ, J.Traffic assignment optimization models. Brno: Brno University of Tech-
nology, Faculty of Mechanical Engineering, 2012. 82 s. Supervisor RNDr. Pavel Popela,
Ph.D.

I declare that I have written the master thesis Traffic assignment optimization models
on my own according to the instruction of my supervisor RNDr. Pavel Popela, Ph.D., and
using the sources listed in references.

May 15, 2012 Bc. Jan Holešovský

I would like to thank my supervisor RNDr. Pavel Popela, Ph.D., for valuable ideas on
my work, for his comments and suggestions on improving my thesis.

Bc. Jan Holešovský

CONTENTS

Contents

1 Introduction 13

2 Basics of the Graph Theory 15
2.1 Definition of a Graph . 15
2.2 Walk, Path and Simple Path . 17
2.3 Weighted Graph and Network . 18
2.4 Incidence Matrix of a Graph . 19

3 Mathematical Programming 21
3.1 Linear Programming . 21
3.2 Integer Programming . 26
3.3 Nonlinear Programming . 28

4 Network Flow 31
4.1 Minimal Cost Network Flow . 31
4.2 Multicommodity Minimal Cost Network Flow 33
4.3 Traffic Assignment Problem . 33
4.4 Static Traffic Assignment Problem . 35
4.5 Example of Static TAP in GAMS . 39

5 Improved TAP 43
5.1 Stochastic Programming . 43
5.2 Stochastic TAP . 45

6 Network Design 53
6.1 Braess Paradox and Related Problems . 53
6.2 Bilevel Programming . 56
6.3 Bilevel Reformulation of R-closure . 57
6.4 Street Cleaning Problem . 59

Conclusion 69

References 71

List of used symbols 73

A Game Theory Background 75

B GAMS 77

C What is on CD 81

11

CONTENTS

12

1. INTRODUCTION

1. Introduction
Network flow problems are widely studied patterns that have numbers of applicati-

ons in real life. For many of these problems, useful algorithms are known that guarantee
different accuracy. Recall some of them: Shortest Path Problem, Travelling Salesman Pro-
blem, Maximal Flow, or Minimal Cost Network Flow. In this thesis, the last one and its
derivatives are our objectives to study.

In the first chapter (2), we define basic notions from graph theory which are further
used in the thesis. Hereby, we standardize our understanding of a network, and state
assumptions that follow us further in other parts on. Moreover, we try to pull the reader
in the rigorousness of our conventions to avoid later misunderstandings. An important
concepts are primarily definition of flow, elements of graph such as path and chain, or
incidence matrix.

A short introduction to mathematical programming and its properties is made in the
next chapter 3. These results are widely used in following parts in order to find a solution
of a problem, or to discuss significant attributes which lead to simplification. To preface
Minimal Cost Network Flow problem (MCF) closely solved in chapter 4, we show basic
ideas of linear mathematical programming (LP). Due to application of MCF in logistics,
we present some results linked with integral conditions. Last part of chapter 3 precedes
derivatives of MCF, which we focus on immediately.

A minimal cost network flow is task to find, for a given amount of goods, the chea-
pest way to traverse through a graph. Typically, since each undirected or mixed graph
can be transformed into directed one, we consider digraphs. The use of the shortest path
is limited, as in praxis, by capacity constraints. This assumption comes true especially
in logistic networks, where capacity plays a significant role. This can be caused by the
nature of network, like transport over sea or usage of ferries. Some problems can rise up
within the high volume of transported goods, etc. Introduction into network problematic
focused on MCF is made in the third chapter. As a generalisation, we consider MCF with
multiple “commodities” (so-called Multicommodity Flow), i.e. with multiple sort of goods.

Traffic Assignment Problem (TAP), the aim of our thesis, is presented right after. It is
a variation of MCF, or rather of Multicommodity Flow problem (MF), where we suppose
more decision makers. It is important to highlight, that in a common MCF we consider
only one decision maker. This can be a boss of a logistic company, commander responsible
for military supply, railway schedule planner, etc. The question being opened in TAP is
as follows: What if there are more decision makers? Moreover, what if each peace of
transported goods can make its own decision? Although this seem to be awesome image,
most of us meet this problem every day on the streets. Here, each driver is considered
as rational decision maker, and in collaboration with game theory are defined two main
perspectives: system-optimal point of view, and a group of uncoordinated users.

Moreover, in TAP we suppose cost of flow as time needed to traverse a path, which, in
order to simulate the real traffic in a network, depends on the flow volume. Such reasona-
ble requirement makes problem much more complex and leads to mixed integer nonlinear
programming. Since more decision makers negatively influence the solution of minimal
cost, we discuss possible bound on this degradation.

13

Chapter 5 is focused on various changes in TAP, especially effect of randomness in cost
of flow or number of users in the network. Here, we use results observed from stochastic
programming, and solve TAP by building deterministic reformulations of problems. We
can, for example, express a stochastic problem as a two-stage programming problem with
recourse. All reached knowledges are tested on simple network, for which we used software
GAMS. GAMS is powerful optimization tool that allows us to solve such complicated
problems as presented.

Network Design is the aim of the last part of the thesis, the chapter 6. We deal with
task to decide about structure of the network in order to improve the utilization of the
system. Braess in his article [5] first presented existence of so-called Braess paradox, that
may occur with adding a new arc in the network. This paradox may occur in any network,
and it negatively influences the utilization and the cost of a solution. Discussion is made,
where we think about limitations or improving algorithms of the Braess paradox. Prove
that such thing may appear in praxis, is represented by The New York Times article [26].

In the last sections, we transform the Braess paradox problematic into a new problem
called Street Cleaning Problem (SCP). This is a variation of typical Network Design task.
The objective of SCP is to decide about the best sequence of roads that need to be closed.
We show solution of this problem which is presented as bilevel program. After conside-
ration of randomness in the volume of drivers, we get various deterministic reformulations
of SCP, for example SCP as two-stage bilevel problem with recourse.

All discussed problems were implemented in software GAMS, and we present our
results in corresponding parts of the text. To the thesis are enclosed two main parts at
the end. One treating with the GAMS programming language and a structure of problem
solvable by GAMS. The latter presents one of the most important theorems from the
game theory. This, along with chapter 4, gives the reader closer insight to the relation
between TAP and existence of an equilibrium.

14

2. BASICS OF THE GRAPH THEORY

2. Basics of the Graph Theory
In this chapter, we shortly describe graph in the meaning of graph theory, define some

basic concepts and show important properties of graphs. As we will see in the following
chapters, many applications of mathematical programming are based on the graph theory.
We assume, that the reader has already met some parts of the theory and therefore some
concepts are introduced in comments instead of definitions, moreover some of them that
are not further needed are skipped.

Our short resume is primarily based on [17] and on books written by Bazaraa, Jarvis
[2] and Dantzig, Thapa [9].

2.1. Definition of a Graph

A graph, in the meaning of the graph theory, is an object consisting of nodes (or vertices)
and links between them, so called edges (or arcs).

Definition 2.1 (Simple undirected graph).
A simple undirected graph (also an ordinary graph or a simple graph) is a pair G = (N,E)
where N is a finite set of nodes and E = {{u, v}|u, v ∈ N, u 6= v} is a finite set of
(undirected) edges. We say that an edge e = {u, v} is incident on nodes u and v, or that
nodes u and v are incident on edge e.

Definition 2.2 (Simple directed graph).
A simple directed graph (or simple digraph) is a pair G = (N,A) where N is a finite set of
nodes and A = {(u, v)|u, v ∈ N, u 6= v} is a finite set of directed edges (or arcs). We say
that an arc a = (u, v) is incident on nodes u and v, or that nodes u and v are incident
on arc a. Often, we say that u is the tail and v is the head.

As we can see, an edge is a link between two nodes, while an arc is a directed link.
Thus, arc may represent an flow in the graph, or better in the network. 1 Graphs are
commonly drawn in graphical way: nodes are displayed as points or circles, linked by
edges (lines) or arcs (arrows directed from tail to head node). We can also say that an arc
(u, v) connects u to v, and that an edge connects u and v.

There can be found an definition of mixed graph in some books, i.e. graph containing
both edges and arc. Graph of this type can be usually transformed by edges directing or
arcs symmetrizing to directed or undirected graph. More often are mixed graphs conside-
red as a little bit more complicated directed graphs, and this is exactly the way we will
understand these graphs.

Definition 2.3 (Multigraph or Graph).
Multigraph (or graph) is a triple G = (N,E, ε) where N is a finite set of nodes, E is a
finite set of edges and ε is mapping assigning to each edge one- or two-element set of
nodes.

1In some books, the term graph and network are used as synonyms, while sometime the meanings are
different. We will define the term of network later.

15

2.1. DEFINITION OF A GRAPH

Definition 2.4 (Directed graph).
Directed graph (or digraph) is a triple G = (N,A, ε) where N is a finite set of nodes, A is
a finite set of arcs and ε : A→ N ×N is a mapping assigning to each arc an ordered pair
of nodes.

Multigraph or digraph, are just generalization of simple graphs where two nodes are
connected with at most one link (edge or arc). In a multigraph or a digraph, the number
of links is arbitrary. Moreover, no one of all definition restricts so called self-loops, which
are sometimes not taken into account.

A graph A digraph

Definition 2.5 (Subgraph).
If G′ = (N ′, E ′) and G = (N,E) are ordinary graphs, we say that G′ is subgraph of G, if
N ′ ⊆ N and E ′ ⊆ E. Moreover, G′ is called subgraph of G induced by its nodes, if

(u, v ∈ N ′, {u, v} ∈ E ′)⇒ {u, v} ∈ E.

Definition 2.6 (Node degree).
Let G = (N,E, ε) be a graph and u ∈ N a node. We define the degree of the node u as
integer number

deg(u) = |{e ∈ E|ε(e) = {u, v}, v ∈ N}|.

Definition 2.7.
Let G = (N,A, ε) be a digraph. For a node u ∈ N we define the degree of the node u as
integer number

deg(u) = |{a ∈ A|ε(a) = (u, v) ∧ ε(a) = (v, u), v ∈ N}|.

Further, we define number of arcs leading from node u as the indegree deg+(u) = |{a ∈
A|ε(a) = (u, v), v ∈ N}|, and number of arcs that leading to node u as the outdegree
deg−(u) = |{a ∈ A|ε(a) = (v, u), v ∈ N}|. Thus

deg(u) = deg+(u) + deg−(u).

For both, graph and digraph, the degree gives the number of links incident on a specific
node. In the case of digraph, we can divide the set of incident arcs into two parts: directed
in and directed out of node.

Definition 2.8 (Bipartite graph).
A graph G = (N,E) is called bipartite graph if its nodes can be divided in two disjoint
sets N1, N2, such that this relation holds: {u, v} ∈ E ⇒ u ∈ N1, v ∈ N2.

16

2. BASICS OF THE GRAPH THEORY

It is easy to see, that a graph G is bipartite if and only if G contains no circles of odd
length.

2.2. Walk, Path and Simple Path

Definition 2.9 (Walk).
In a graph G = (N,E, ε) we define a walk between nodes u, v ∈ N of length n as a sequence
(u = w0, e1, w1, e2, . . . , en, wn = v), such that for all i = 0, 1, . . . , n and all j = 1, 2, . . . , n,
following properties hold

wi ∈ N, ej ∈ E, ε(ej) = {wj−1, wj}.

Thus in a walk the nodes and edges may repeat.

Definition 2.10 (Path).
In a graph G = (N,E, ε) we define a path between nodes u, v ∈ N of length n as a walk
(u = w0, e1, w1, e2, . . . , en, wn = v), such that i 6= j ⇒ ei 6= ej, 1 ≤ i, j ≤ n.

Definition 2.11 (Simple path).
In a graph G = (N,E, ε) we define a simple path between nodes u, v ∈ N of length n as
a walk (u = w0, e1, w1, e2, . . . , en, wn = v), such that i 6= j ⇒ wi 6= wj, 0 ≤ i, j ≤ n.

Definition 2.12 (Path and chain in a digraph).
In a digraph, we distinguish two cases: a path is a sequence of arcs ((w0, w1), (w1, w2), . . . ,
(wn−1, wn)), in which the initial node of each arc is the same as the terminal node of the
preceding arc in the sequence (thus all arcs are directed from w0 toward wn). A chain is
similar to a path, except that not all arcs need to be directed toward wn.

A path in a digraph A chain in a digraph

In a path nodes may repeat, but all edges must be different. Simple path is a walk,
where nodes may not repeat. Obviously, in graph there is a simple path between u and
v if there is a walk between u and v. In a similar way we may define a simple path or
simple chain in a digraph.

Definition 2.13 (Circle, Cycle).
Let G = (N,E, ε) be a graph. A walk (u = w0, e1, w1, e2, . . . , en, wn = v), such that
i 6= j ⇒ wi 6= wj, 0 ≤ i, j ≤ n− 1, w0 = wn, is called a circle.

Circle is thus a walk in which all the nodes are different except the first and the last
one. Directed circle is called a cycle.

17

2.3. WEIGHTED GRAPH AND NETWORK

Definition 2.14 (Connected graph).
A graph G = (N,E, ε) is called connected graph if for any pair of nodes u, v ∈ N there is
a walk between u and v.

Definition 2.15 (Connected digraph).
A digraph G = (N,A) is said to be (weekly) connected digraph if for any pair of nodes
u, v ∈ N there exists in G a chain from u to v. Further, a graph is said to be strongly
connected digraph if for every pair u, v ∈ N there exists a path between u and v.

Definition 2.16 (Components).
For graphs G′ = (N ′, E ′, ε) and G = (N,E, ε) we say that G′ is a component of G, if G′

is connected subgraph of G induced by its nodes, and any subgraph G′′ = (N ′′, E ′′, ε) of
G, such that N ′ ⊂ N ′′, E ′ ⊂ E ′′, is disconnected.

Definition 2.17 (Tree).
Tree is a connected graph with no circles.

Thus, in a tree there is a unique simple path between every pair of nodes.

Definition 2.18 (Spanning tree).
Let G = (N,E) be a ordinary graph. Subgraph T = (N ′, E ′) of G is called a spanning
tree of G, if T is a tree and N ′ = N .

2.3. Weighted Graph and Network

Definition 2.19 (Weighted graph).
Let G = (N,E) be a simple graph. If a mapping w : E → R is given, then the triple
G = (N,E,w) is called a weighted graph. Each edge e ∈ E is assigned a real number w(e),
called the weight of edge e or length of edge e.

For a subgraph G′ = (N ′, E ′) of G, we define the weight of G′ as number w(G′) =∑
e∈E′ w(e).

Definition 2.20 (Network).
A network is quadrupleN = (G,Ns, Nt, c) where G = (N,A) is a simple digraph, Ns, Nt ⊂
N,Ns ∩ Nt = ∅, and c = c((u, v)) ≥ 0 ∀(u, v) ∈ A is capacity. If (u, v) 6∈ A, we put
c((u, v)) = 0. Set Ns is called set of sources and Nt is called set of targets.

We can imagine network as a pipeline starting with node s ∈ Ns and ending with node
t ∈ Nt.

18

2. BASICS OF THE GRAPH THEORY

s1

s2

t1

t2

t3

c1

c2

c3

c4

c5

c6
c7

c10

c11
c8 c14c12

c13

c9

c15

Network with two sources and three targets.

Definition 2.21 (Flow).
Let G = (N,A) be a simple digraph and N = (G,Ns, Nt, c) be a network. Flow in a
network N is a mapping f : N ×N → R, such that

a) f(u, v) ≤ c(u, v) ∀u, v ∈ N,

b) f(u, v) = −f(v, u) ∀u, v ∈ N,

c)
∑

v∈N f(u, v) = 0 ∀u ∈ N − (Ns ∪Nt).

2.4. Incidence Matrix of a Graph

A general graph may be represented in different ways including the enumeration of nodes
and edges. A convenient way to describe a general graph is to use so called incidence
matrix. An incidence matrix is zero-matrix containing nonzero elements reflecting the
relations between nodes and arcs, or between two nodes in such a graph. For a directed
graph typically +1 and −1 elements are used. In a case of a multigraph, these elements
are ones (showing that nodes are incident on an edge).

In this section, we describe only incidence matrices for a digraph, since such a matrix
for a multigraph contains ones at the same places where the previous one contains +1s
and −1s (recall that multigraph can be interpreted as digraph replacing an edge by two
arcs).

Node-arc incidence matrix. Let G = (N,A) be a simple digraph. The node-arc
incidence matrix A of graph G is m×n matrix, such that m = |N | and n = |A|. In A the
nodes correspond to the rows and the arcs correspond to the columns. Since each arc has
a tail and a head, each column of A contains exactly two non-zero coefficients. A column
associated with arc (i, j) ∈ A contains +1 in row i and −1 in row j.

In the undirected case both entries are +1.

Node-node incidence matrix. Let G = (N,A) be a simple digraph. The node-node
incidence matrix A of graph G is a m × m matrix, such that m = |N |. Each node
corresponds to each row and column. The only non-zero entries of matrix A are aij = 1
and aji = −1 for each arc (i, j) ∈ A.

19

2.4. INCIDENCE MATRIX OF A GRAPH

In the undirected case both entries are +1 and matrix A is symmetric.

n1

n2 n4

n3

n5

a1 a2

a3

a6 a5

a4
A =




1 1 0 0 0 −1
−1 0 1 0 0 0
0 0 0 0 −1 1
0 −1 0 1 0 0
0 0 −1 −1 1 0




A node-arc incidence matrix of a graph

In the following text, we understand under incidence matrix the above described node-
arc incidence matrix.

Lemma 2.1 (Rank of the incidence matrix).
The node-arc incidence matrix A of a connected digraph with m ≥ 2 nodes has rank
r(A) = m− 1.

Proof of this useful lemma is shown in [2] or in [9]. Moreover, this result is valid also for
undirected graphs, since all graphs can be represented as “more complicated” digraphs.
Thus, connected graph can be in the light of definition 2.15 understood as connected
digraph.

20

3. MATHEMATICAL PROGRAMMING

3. Mathematical Programming
Mathematical programming, or optimization, is concerned with finding an optimal

solution of given problem, e.g. finding optimal value of a function, with respect to con-
straints, that must be satisfied. These constraints occur as inequalities or equalities. If we
suppose X ⊂ Rn, f : Rn → R, then mathematical program (MP) in its “rough form” can
be written as follows:

Minimize (or maximize) f(x) subject to x ∈ X.

More precisely, as an MP we understand a deterministic MP, where both the function f
and the set X are known, and do not depend on any unknown parameter (like random
variables, etc.). The task of MP is not only to find the minimal value of function f ,
denoted f ∗ = minx f(x), but also to find the set of points x ∈ Rn, in which function f
takes the optimal value. This set is called set of optimal solutions, and will be denoted
X∗ or argminx{f(x)|x ∈ X}.

There are various special cases of mathematical programming, much easier to study
than MPs in general form. Depending on the properties of function to minimize (or ma-
ximize) and set X, we get:

• Linear programming, if the set X is convex polyhedral and function f is linear.

• Nonlinear programming, if either function f is nonlinear, or set X is not polyhedric:

– convex: set X and function f remain convex. For this case, we may use many
reached results.

– nonconvex: either set X, or function f are not convex.

• Integer and mixed integer programming, if set X ⊂ Zn, or X ⊂ Zk×Rn−k, respecti-
vely.

• Binary programming, if set X ⊂ {0, 1}n.

In practical problems, all types of MP are mixed, e.g. we should solve linear program
with integer and binary variables. Then we must combine results reached in all branches
of mathematical programming. The subsequent section is focused on linear programming.
Hereafter, we use abbreviation min (max) instead of minimize (maximize respectively),
and s.t. instead of subject to.

3.1. Linear Programming

A linear program (LP) is a problem of minimizing or maximizing a linear function in the
presence of linear constraints of the inequality and/or the equality type.

21

3.1. LINEAR PROGRAMMING

LP in basic notation. Consider the following linear programming problem:

min c1x1 + c2x2 + . . .+ cnxn
s. t. a11x1 + a12x2 + . . .+ a1nxn ≥ b1

a21x1 + a22x2 + . . .+ a2nxn ≥ b2
...

am1x1 + am2x2 + . . .+ amnxn ≥ bm
x1, x2, . . . , xn ≥ 0

(3.1)

The function z = c1x1 + c2x2 + . . . + cnxn is the objective function to be minimized.
The coefficients c1, c2, . . . , cn are known (they are sometimes called cost coefficients), and
x1, x2, . . . , xn are the variables (or decision variables) to be determined. The inequality∑n

j=1 aijxj ≥ bi denotes the i-th constraint. Coefficients bi on the right-hand side form
the right-hand-side vector b, and represent the minimal requirements to be satisfied.
Coefficients aij form the constraint matrix A given below.

A =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


 .

The constraints x1, x2, . . . , xn ≥ 0 are the nonnegativity constraints, and they often
occur in mathematical programs.

A sequence of variables x1, x2, . . . , xn satisfying all the constraints is called a feasible
vector (or a feasible solution, a feasible point). The set of all these feasible vectors form
feasible region (or feasible space).

LP in matrix notation. We will denote a LP in matrix form, which is much more con-
venient. Denote o = (0, 0, . . . , 0)T the zero vector of an appropriate length, and variables
and coefficients as follows:

x =




x1

x2
...
xn


 , c =




c1

c2
...
cn


 , b =




b1

b2
...
bm


 , A =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


 .

Then the LP problem (3.1) can be written1 as

min cTx
s.t. Ax ≥ b

x ≥ o.
(3.2)

A feasible vector x∗ is called optimal solution of problem (3.1, 3.2), if for all feasible
vectors x in (3.1, 3.2) is satisfied f(x) ≥ f(x∗). For maximization problem the optimality
condition is f(x) ≤ f(x∗). The optimal value of objective function is denoted z∗ := z(x∗).

1Let us understand the inequality Ax ≥ b as inequalities by its components.

22

3. MATHEMATICAL PROGRAMMING

Inequalities and equations. An inequality can be easily transformed into an equation.
Consider the constraint given by

∑n
j=1 aijxj ≥ bi. This constraint can be conversed into

an equation by subtracting a nonnegative slack variable xn+i as follows:

n∑

j=1

aijxj ≥ bi 7−→
n∑

j=1

aijxj − xn+i = bi,

n∑

j=1

aijxj ≤ bi 7−→
n∑

j=1

aijxj + xn+i = bi.

Conversely, an equation
∑n

j=1 aijxj = bi can be transformed into two inequalities∑n
j=1 aijxj ≤ bi and

∑n
j=1 aijxj ≥ bi.

Nonnegativity of the variables. Mostly, we need to express variables in “known”
form of nonnegativity constraints, although they may take any value. Bounded variables
we may transform as follows:

x ≥ l 7−→ x′ = x− l ≥ 0,

x ≤ u 7−→ x′ = u− x ≥ 0.

If variable x is unrestricted (x ∈ R), we may replace it by x = x′ − x′′ where x′, x′′ ≥ 0.

Minimization and maximization problems. Easy conversion between minimization
and maximization problems can be provided in following way:

min cTx = −max(−cTx).

Since, as we can see above, any LP can be rewritten in many equivalent ways, this
might be confusing. In particular, two forms are used: the standard and the canonical
form. A linear program is said to be in standard form if all constraints are equalities
and all variables are nonnegative. This form is used for traditional solution method, the
simplex method, that is designed for LPs in such form.

A minimization problem is said to be in canonical form if all variables are nonnegative
and all constraints are of the type ≥. A maximization problem is in canonical form if all
the variables are nonnegative and all the constraint are of the ≤ type. All transformations
are summarised in Table 1. below.

Minimization Maximization

Standard form
min cTx
s.t. Ax = b

x ≥ o

max cTx
s.t. Ax = b

x ≥ o

Canonical form
min cTx
s.t. Ax ≥ b

x ≥ o

max cTx
s.t. Ax ≤ b

x ≥ o

Table 1.

23

3.1. LINEAR PROGRAMMING

Properties of Linear Programs:

Hereby, we present some results from linear programming. These significant properties of
LPs are based on fundamentals of convex analysis and features of convex functions. For
this reason, we do not prove theorems and lemmas stated below, and we just refer to [3],
[2], [9] and [20].

Definition 3.1 (Convex set).
Let S ⊂ Rn. We call S a convex set if ∀x1,x2 ∈ S and ∀λ ∈ [0, 1] is λx1 + (1− λ)x2 ∈ S.

Definition 3.2 (Convex combination).
Let x,x1, . . . ,xk ∈ Rn. Then x is called a convex combination of x1, . . . ,xk, if it satisfies
x =

∑k
j=1 λjxj where

∑k
j=1 λj = 1 and ∀j ∈ {1, . . . , k} λj ≥ 0.

Definition 3.3 (Convex hull).
Let S ∈ Rn. We say that x ∈ Rn belongs to a convex hull of S, denoted x ∈ convS, if
∃k ∈ N, ∃λ1, . . . , λk ≥ 0,

∑k
j=1 λj = 1 ∃x1, . . . ,xk ∈ S : x =

∑k
j=1 λjxj.

Convex hull of set S is the smallest convex set containing S. Moreover, it is the
intersection of all convex sets containing S.

Definition 3.4 (Hyperplane, Linear halfspace).
Let α ∈ R,p ∈ Rn, and p 6= o. A hyperplane is defined by H = {x ∈ Rn|pTx = α}. The
hyperplane defines two (linear) halfspaces H+ = {x ∈ Rn|pTx ◦ α}, where ◦ denotes a
following relation: a halfspace is called closed halfspace, if ◦ ∈ {≤,≥}, or open halfspace,
if ◦ ∈ {<,>}.

Lemma 3.1 (Convexity of hyperplanes and halfspaces).
Let p ∈ Rn, α ∈ R. Then the hyperplane H = {x ∈ Rn|pTx = α} and the halfspace
H+ = {x ∈ Rn|pTx ◦ α} from the definition above are convex sets.

Lemma 3.2 (Intersection of convex sets).
Intersection of arbitrary many convex sets is convex set.

Definition 3.5 (Polyhedral set).
S ∈ Rn is called a polyhedral set if it is intersection of a finite number of closed halfspaces.

Obviously, a polyhedral set is convex set, and thus feasible region of a linear program
is also convex.

Definition 3.6 (Polytope).
Let k ∈ N, and let x1,x2, . . . ,xk ∈ Rn. Then conv{x1,x2, . . . ,xk} is called a polytope.

Thus, a polytope is polyhedral set, and a bounded polyhedral set is a polytope.

24

3. MATHEMATICAL PROGRAMMING

min 3x1 + 5x2
s.t. x1 + x2 ≤ 5,

x1 ≥ 0,

0 ≤ x2 ≤ 3.

x1

x2

Feasible region of a LP is a polyhedral set.

Definition 3.7 (Extreme point).
Let S ⊂ Rn, S 6= ∅ be a convex set. We call x ∈ S an extreme point (EP) of S, if for all
x1,x2 ∈ S and for all λ ∈ (0, 1) holds

x = λx1 + (1− λ)x2 ⇒ x = x1 = x2.

Hence, no one extreme point can be expressed as strict convex combination of two
distinct point from the set. For a polytope, all vertices are extreme points.

Theorem 3.1 (Existence of an extreme point).
Let S = {x|Ax = b,x ≥ o} be a nonempty set, and matrix A has a full row rank. Then
S has at least one extreme point.

Definition 3.8 (Direction).
Let S ⊂ Rn, S 6= ∅ be a closed convex set. We call d ∈ Rn,d 6= o, a direction, if for all
x ∈ S and for all λ ≥ 0 the point x + λd belongs to set S.

Definition 3.9 (Extreme direction).
A direction d of S is said to be an extreme direction (ED) of S if it cannot be represented
as a positive combination of two distinct directions of the set, i.e. for all directions d1,d2

of S and all λ1, λ2 > 0 holds

d = λ1d1 + λ2d2 ⇒ ∃α > 0 : d1 = αd2.

Obviously, there exists no direction in a bounded set, because the direction gives
“course” where all points belong to the set. It can be easily proven, that the number of
extreme directions is finite.

Moreover, every point of the set S can be represented as nonnegative combination of all
extreme points and extreme directions (see Representations theorem [2]). This important
result is further used to prove following theorems.

Theorem 3.2 (Optimality condition).
Assume, we have a linear program in the standard form. Let S denote the set of feasible
solutions, and D = {cTx|Ax = b,x ≥ o}. The set D 6= ∅ (finite solution exists) if and
only if cdj ≥ 0 for all extreme directions of the set S.

Theorem 3.3.
Any solution of a linear program that is a local minimum solution is also a global minimum
solution.

25

3.2. INTEGER PROGRAMMING

Prove of this theorem follows from the one presented in the section Nonlinear program-
ming. Linear function is from definition as convex so concave, and for the local maximum
holds similar theorem.

Remark. Above presented results just illustrate how important is linear programming.
More about algebraic background, convexity, and feasible region in linear programming
can be found in [2], [9], [20] or [3].

Solution methods. Small problems (with two variables) are solvable in graphical way.
This gives an idea for solving more complex problems. In 1949 George Dantzig published
Simplex method for solving linear programs in standard form. Although we decided not
to describe this method, it is important to mention it, because Simplex method is one of
traditional ways how to solve a linear program. For the algorithm see for example [9], [2]
or [20].

3.2. Integer Programming

Recall the linear program (3.2). In this problem all variables are continuous, i.e. they
may take any real value. Often this is realistic assumption in many applications where we
produce divisible goods. At other times, this assumption is not allowable.

Integer programming is traditionally linked with logistics and network problems. Mostly
in this branches occur integer requirements, since amount of transported units through
networks are often integer numbers (e.g. chairs, barrels, people). In this case, we must
consider an Integer linear program (ILP) as following:

min cTx
s.t. Ax ≥ b

x ≥ o
x ∈ Zn.

(3.3)

If the constraints are of network nature, the integrality restrictions can be often igno-
red, and solving the resulting LP we get solution for previous ILP. For cases when this
is not possible, we consider approaches that have been developed, because there is no
unique technique for solving integer programs. For solving integer programs are usually
used following methods:

i) enumeration techniques, including branch-and-bound method (B & B),

ii) cutting-plane methods.

Definition 3.10 (Integer hull of polytope).
For any polytope P we define integer hull P1 of P as the convex hull of the integral
vectors in P .

Definition 3.11 (Integral polytope).
Let P be a polytope and P1 its integer hull. Then P is called integral polytope, if P1 = P.

In an integral polytope are all extreme points integral.

26

3. MATHEMATICAL PROGRAMMING

Definition 3.12 (Unimodular matrix).
A square matrix A is said to be unimodular if A is integral and det A = ±1.

Definition 3.13 (Totally unimodular matrix).
A matrix A is said to be totally unimodular matrix (TUM) if each subdeterminant of A
is 0,+1, or −1. In particular, each entry of totally unimodular matrix is 0,+1 or −1.

Obviously, each square totally unimodular matrix is unimodular. This relation does
not hold vice versa, but following lemma shows us how to recognize a totally unimodular
matrix.

Lemma 3.3 ([20]).
Total unimodularity of a matrix is preserved under following operations:

(i) permuting rows or columns,

(ii) taking the transposition,

(iii) multiplying a row or column by −1,

(iv) repeating a row or column,

(v) adding an all-zero row or column, or adding a row or column with one nonzero,
being ±1.

Lemma 3.4 ([1]).
Let A be a matrix with entries 0,+1 or −1. Then A is TUM if it contains no more than
one +1 and no more than one −1 in each column.

Theorem 3.4 (Bipartite graph, [20]).
Let G = (N,E) be a simple graph, m = |N |, n = |E|, and let A be the m × n node-arc
incidence matrix of G. Then A is TUM if and only if G is bipartite.

Theorem 3.5 (Digraphs).
Let G = (N,A) be a digraph, m = |N |, n = |A|, and let A be the m×n node-arc incidence
matrix of G. Then A is TUM.

Proof. Denote Bt a t×t square submatrix of A. Foregoing theorem is provable by induction
on t: Since A is a incidence matrix, the case of t = 1 is trivial. Let us suppose, that all
submatrices Bt are TUM. Then for a matrix Bt+1 may occur one of three possible cases:

(i) If Bt+1 contains a zero column, then automatically det Bt+1 = 0.

(ii) If Bt+1 contains a column with exactly one nonzero element (being ±1), then cal-
culate det Bt+1 using this column. Since the corresponding submatrix of size t × t
is TUM, easily det Bt+1 ∈ {−1, 0,+1}.

(iii) If Bt+1 contains only columns with exactly two nonzero elements (being +1 and
−1), then replace the last row with sum of all rows. This adjustment does not affect
the value of determinant. Now, since the last row contains only zeros, det Bt+1 = 0.

�

27

3.3. NONLINEAR PROGRAMMING

Theorem 3.6 ([20]).
Let A be an integral matrix. Then the following are equivalent:

(i) A is unimodular,

(ii) for each integral vector b, the polytope {x|Ax = b,x ≥ o} is integral,

(iii) for each integral vector c, the polytope {y|ATy ≥ c} is integral.

Theorem 3.7 (Hoffman-Kruskal theorem, [20]).
Let A be a matrix with 0,+1 and −1 entries. Then the following are equivalent:

(i) A is TUM,

(ii) for each integral vector b, the polytope {x|Ax ≤ b,x ≥ o} is integral,

(iii) for all integral vectors a,b, l,u, the polytope {x|a ≤ Ax ≤ b, l ≤ x ≤ u} is integral,

(iv) for all integral vectors b,u, the polytope {x|Ax = b,o ≤ x ≤ u} is integral.

3.3. Nonlinear Programming

Ahead of section 4.3, where we deal with nonlinear MPs, we shortly discuss this specific
class of optimization problems. These nonlinearities may appear as in objective function
as in constraints.

Let f : Rn → R be the objective function, and constraints are given by function
g : Rn → R. Let X ⊆ R be a set, and denote ◦ ∈ {≤,=,≥}. A nonlinear (mathematical)
program (NLP) is called the following MP

min f(x)
s.t. g(x) ◦ o

x ∈ X.
(3.4)

Recall, that function f : S → R is said to be convex on S, if S ⊆ Rn is convex set,
and for all x1,x2 ∈ S, λ ∈ (0, 1) holds

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2). (3.5)

Following theorem describes preserving of convexity under composition.

Theorem 3.8 (Composition of convex functions.).
Let f1(x), . . . , fk(x) be convex function on an set S. Then the following holds true:

(i) The composition
k∑
j=1

αjfj(x) is convex on S, if αj > 0 for j = 1, . . . , k.

(ii) The function f(x) = max{f1(x), . . . , fk(x)} is convex on S.

28

3. MATHEMATICAL PROGRAMMING

Proof. Let S be a subset of Rn, x1,x2 ∈ S, and λ ∈ (0, 1). Consider functions f1(x), . . . , fk(x)
which are convex on S.

(i) Denote f(x) =
∑k

j=1 αjfj(x). Then we may rewrite

f(λx1 + (1− λ)x2) =
k∑

j=1

αjfj(λx1 + (1− λ)x2)

λf(x1) + (1− λ)f(x2) = λ
k∑

j=1

αjfj(x1) + (1− λ)
k∑

j=1

αjfj(x2)

Because of the convexity of functions fj, from relation 3.5 we have

fj(λx1 + (1− λ)x2) ≤ λfj(x1) + (1− λ)fj(x2) ∀j = 1, . . . , k.

Clearly, if αj > 0 for each j = 1, . . . , k, this relation remains the same after sum,
i.e.

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

(ii) Denote f(x) = maxj∈J{fj(x)}, where J = {1, . . . , k}. Then

f(λx1 + (1− λ)x2) = max
j∈J
{fj(λx1 + (1− λ)x2)}

λf(x1) + (1− λ)f(x2) = λmax
j∈J
{fj(x1)}+ (1− λ) max

j∈J
{fj(x2)} =

= max
j∈J
{λfj(x1) + (1− λ)fj(x2)}

Since the inequality 3.5 is true for each function fj, j ∈ J , the maximum preserves
this property. Thus

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

�

The existence and uniqueness of an extreme (minimum or maximum) in nonlinear
programming is guaranteed by Weierstrass theorem, and other fundamental theorems,
which we give below. For proves and context within convex analysis see [3], [20], and [9].

Theorem 3.9 (Weierstrass).
Let S ⊆ Rn is a compact set (i.e. closed and bounded), and f : S → R a continuous
function on S. Then function f(x) attains on S its minimum and maximum value.

Weierstrass theorem ensures, that under some conditions the minimum (or maximum)
always exists. This classical result from real-valued analysis is always applicable to de-
termine, if a objective function achieves an extreme value. More complicate is the task
to find that value, or to find the optimal point x. For a special cases of the objective
function, this problem becomes easier.

Theorem 3.10 (Convexity and global optimum).
Let S ⊂ Rn, S 6= ∅ be a convex set, and f(x) be a convex function on S. If in x̄ ∈ S
is achieved local minimum of function f , then in x̄ is also achieved global minimum of
function f. Moreover, if f(x̄) is a strict local minimum, or f is strictly convex on S, then
f(x̄) is a unique global minimum of f on S.

29

3.3. NONLINEAR PROGRAMMING

Theorem 3.11.
Let S ⊂ Rn, S 6= ∅ be a compact polyhedral set, and f : Rn → R be a convex function on
S. Then there exists x̄ ∈ S such that f(x̄) is a local minimum and x̄ is an extreme point
of S.

Theorem 3.12.
Let S ⊂ Rn be a nonempty convex set, and f : Rn → R be a convex and differentiable
function. Then x∗ ∈ S is a global minimum if and only if for all x ∈ S holds

∇f(x∗)T (x− x∗) ≥ 0.

30

4. NETWORK FLOW

4. Network Flow
There are many various problems on graphs solvable with mathematical programming.

One of the traditional, the transportation problem, deals with optimization of transpor-
tation in a network. A given amount of goods should be shipped from origins to desti-
nations with respect to minimal transportation costs. Such problems are considered on
bipartite graphs. A similar problem on an arbitrary digraph will be described in following
section. In the section Minimal Cost Network Flow, we follow the book [2] inspired by
the notation from [22], in section Multicommodity Minimal Cost Network Flow we cite
the well known transportation model from [2], [9].

4.1. Minimal Cost Network Flow

Let us assume an arbitrary connected digraph G = (N,A) with n nodes and m arcs. For
every node i ∈ N , let us denote Aout(i) the set of arcs directed out of a node i, and Ain(i)
the set of nodes directed into node i. The objective is to find an optimal way, how to
transport available supply through the network with set of sources and targets.

With each node i in G we associate a number bi. Thus, node i may represents the
source (bi > 0), the target (bi < 0), or an intermediate node (bi = 0). Let us denote xa
a flow through an arc a ∈ A, and ca its cost per unit. We further assume that the total
supply equals the total demand, i.e.

∑n
i=1 bi = 0. If this is not the case, the problem can

be always transformed to balanced one.

Definition 4.1 (MCF).
Consider all variables and coefficients as described above. The Minimal Cost Network
Flow problem (MCF) is then defined as following linear program:

min
∑
a∈A

caxa

s.t.
∑

a∈Aout(i)

xa −
∑

a∈Ain(i)

xa = bi ∀i ∈ N,

la ≤ xa ≤ ua ∀a ∈ A.

(4.1)

The conditions
∑

a∈Aout(i) xa−
∑

a∈Ain(i) xa = bi are called flow conservation. Numbers
la, ua are lower and upper restrictions on flow in arcs, and are usually set to la = 0 and
ua ≥ 0. Constraint of the type 0 ≤ xa ≤ ua is called capacity constraint.

If the transported supply are not arbitrarily divisible, we add the integrity constraint
∀a ∈ A : xa ∈ Z.

In the following, let us consider the problem mentioned above with the capacity con-
straints. Let us denote x the vector of flows, and let c,b,u be vectors of corresponding
coefficients. The MCF can be rewritten using the node-arc incidence matrix A of the
digraph1:

min cTx
s.t. Ax = b,

o ≤ x ≤ u.
(4.2)

1Remember, that the columns in A and corresponding cells in all vectors are ordered in a same way
to preserve the meaning of above described problem (4.1).

31

4.1. MINIMAL COST NETWORK FLOW

Thinking about the capacity constraints. It is useful to realize the following: Let
us suppose, we should solve the MCF problem without any capacity constraints, with
only one source s ∈ N and one target t ∈ N . Obviously, the solution of this problem is
given by solution of Shortest path problem from s to t (for the Shortest Path Problem
see [2]). In opposite, solution of the problem (4.2), where for the upper bound u of the
flow holds ∀a ∈ A : ua < ∞, does not have to use the shortest path at all. This can be
easily seen in the example below.

Example 4.1.
Let the capacity of each arc be 0 < u <∞, and we need to ship 2u units form source to
target. As we see, the shortest path remains unused.

16

16

5 510

8

8

If half of the shipment uses the shortest path and the rest an other
path, the cost is 44u, although the minimal cost is 42u

Network simplex method. Minimal Cost Network Flow (and other optimization pro-
blems on graphs) is just a special form of linear programming problem. Hereby, it is no
surprise, that there exists a special form of simplex method for network problems, which
uses specific features of these LPs. We just mention this method without concentrating
us on it.

Nonlinearities in MCF. In a classical MCF pattern, the costs vector is constant,
and does not depend on real flow in an arc. The flow is just bounded by the capacity
constraint. This is not the right assumption in many branches of the humans actuation.
For example, if the cost represents travelling time. It may take one car 20 minutes to go
from one side of the town to the other, but the time surely increases if each driver decides
to use the same way. For a hundred cars the cost may change to 40 minutes, etc.

Thus, the original MCF model must be redefined. A good way to describe such model
similar to MCF is to express the traversing costs as a function of flow in an arc. In such
model, the boundary is often not necessary, and the flow will be bounded by itself (or by
the increasing costs). Outgoing from the original MCF, let us formulate this new nl-MCF
model:

min cT (x)x
s.t. Ax = b,

x ≥ o.
(4.3)

Such model, where the costs explicitly depend on the flow, is a non-linear mathematical
program.

32

4. NETWORK FLOW

4.2. Multicommodity Minimal Cost Network Flow

The Multicommodity Minimal Cost Network Flow, abbreviated Multicommodity Flow
(MF), is optimization problem appearing in transportation branches. The MF problem
can be viewed as generalization of the Minimal Cost Network Flow. Hence, the object
of MF is to minimize the cost of the flow for multiple commodities going from a specific
source to a specific target.

In a graph G, we should transport different commodities, whose set will be denoted
C. For each commodity i ∈ C, denote xi the flow vector, ci the cost of flow, bi the supply
vector, and ui the upper bound on flow of i in arcs of the graph. The graph is given by
its node-arc incidence matrix A, and every commodity can use all arcs (with respect to
its capacity ui). Moreover, assume that each arc has its maximal capacity on flow. Thus,
denote u the upper bound on the sum of flow of all commodities.

Definition 4.2.
With respect to assumptions we made in this section so far, Multicommodity Flow will
denote the following linear program:

min
∑
i∈C

cTi xi

s.t.
∑
i∈C

xi ≤ u,

Axi = bi ∀i ∈ C,
o ≤ xi ≤ ui ∀i ∈ C.

(4.4)

Nonlinearities in MF. As in the MCF model, cost function in MF can be for special
cases transformed to a non-linear one, explicitly depending on the total flow x in arcs.
Such models are considered in section 4.3 below.

4.3. Traffic Assignment Problem

The Traffic Assignment Problem (TAP) is a network flow problem focused on finding
an optimal distribution of flow in a given network. A typical object of study are traffic
networks where the minimal cost flow is affected by interests of all user of the network.
Here, a particular user is looking for minimization of his costs, and the goal of TAP is to
determine the effectiveness of this behaviour.

Example 4.2 (One simple model).
Let us consider a small network consisting of only four nodes and seven arcs. Assume, that
drivers are divided into two groups depending on their starting and terminating node.

direction number of drivers
1 (n1, n4) 8
2 (n2, n3) 4

Denote set of this groups by C. Let xai be the flow through arc a of drivers belonging
to i ∈ C. Because the capacity of all roads is not quite sufficient (not every road is a
highway), the time ca of going the road a fully depends on its utilization, on the total
flow fa =

∑
i∈C xai. The sum over all arcs represents the total time spend in the system.

Thus z =
∑

a ca(fa)fa is the objective function to be minimized.

33

4.3. TRAFFIC ASSIGNMENT PROBLEM

n1

n2

n3

n4

#1

#1#2

#2

c1 c2

c3

c4

c5

c6 c7

One simple model

Note, that for travel times

c1 = 8 + 3f1, c2 = 8 + 4x2, c3 = 10 + 2x3, c4 = 2 + 5x4,
c5 = 6 + 4f5, c6 = 2 + 5x6, c7 = 3 + 4x7,

the flow f in arcs is (3, 2, 4, 3, 5, 5, 2), which is feasible, and the total travel time is z = 493.
Moreover, it is easy to see, that no one of the vehicles can decrease its travel time by

choosing the other road. (For example, costs of all paths for the 1st group are 43, 44, 45
minutes.) Although no one driver can improve his state, this flow is not the “minimal cost
flow” since the flow f̃ = (4, 3, 4, 3, 5, 4, 1) achieves the total cost z = 488. �

System optimum. As we see, in traffic models we must distinguish two approaches,
which have in general different optimal solutions. With system optimum (SO) we mean
finding the solution that minimizes the total flow-cost in the network. This concept corre-
sponds to MCF or MF described in sections above. Instances of such class of problems are
networks where the flow is controlled by some central authority, for example in railway
networks, military supplies, or flight control.

User equilibrium. An other approach to the flow problematic is given by using prin-
ciples of the game theory. We suppose, that all users in the network want to minimize
their own costs, subject to every other user doing the same. (Under an user, so far we
understand an “infinitesimal user”, so that flow through arcs can take any real value.)
Obviously, users try to find less utilized paths, and thus they equilibrate the costs. If no
user can decrease his cost by choosing another path, we call this state user equilibrium
(UE), or also Wardrop equilibrium. UE is the main objective of TAP, capturing more
realistic behaviour of users.

Wardrop [21] formulated in 1952 two alternative criteria of the optimal traffic flow.
One of these approaches described above rises up from the game theory aspects. (For
a short comparison between user equilibrium and Nash equilibrium in game theory see
appendix A.) We cite [21, page 344.]:

First Wardrop’s principle - UE.
The journey times on all the routes actually used are equal, and less than those which
would be experienced by a single vehicle on any unused route.

Second Wardrop’s principle - SO.
At equilibrium the average journey time is a minimum.

34

4. NETWORK FLOW

The first one corresponds to user equilibrium. If UE is achieved, no user can improve his
cost by choosing other path. The second principle refers to system optimum, minimization
of the total travel time, and thus to the best utilization of the system.

4.4. Static Traffic Assignment Problem

The goal of a TAP is to allocate all users with fixed origin-destination pairs to arcs in
a graph, in order to attain SO or UE. In the case of static TAP, all parameters of the
network remain without any change. Thus in this sense, in static TAP no randomness
appears, and the traffic flow is usually restricted to a specific time period (e.g. in the rush
hour) due to omit changes in the flow.

We consider a network flow problem on a graph G = (N,A). Each user of the network
can be represented as a pair of origin and destination (si, ti), which we understand as
particular commodity. As in the previous section, we denote the set of commodities by
C. Further, denote Pi the set of all simple si − ti paths (see definition 2.12). We always
assume ∀i ∈ C Pi 6= ∅.

For a given commodity i ∈ C, we denote by xi = (xi1, . . . , xin) the flow-vector of i.
The state of the network is characterized by the vector of (total) flow f = (fa)a∈A, where
fa =

∑
i∈C xia is the total flow of all commodities in arc a. Suppose, cost of traversing an

arc a ∈ A is given by the cost function ca(fa). As mentioned in example above, the cost
of a flow C(f) is achieved by the function of following form

C(f) =
∑

a∈A

ca(fa)fa.

This is the price for units travelling through arcs, with cost dependent on the flow. Minimi-
zation of this function leads to SO, exactly according to the Second Wardrop’s principle.
Ahead to define the UE, for a specific flow f term the restriction of the cost C(f) to the
path P

CP (f) =
∑

a∈A,a∈P

ca(fa)fa.

Definition 4.3 ([19]).
Let f be a feasible flow of a network flow problem. Flow f is a user equilibrium (UE) if,
for every commodity i ∈ C and every pair of paths P, P ′ ∈ Pi, the following holds

CP (f) ≤ CP ′(f).

In other words, all paths of given commodity used by a user equilibrium have equal
cost.

Theorem 4.1.
Assume a network flow problem on a graph G with cost functions ca(fa). Then:

(i) There exists at least one user equilibrium.

(ii) If f and f′ are user equilibria, then ca(fa) = ca(f
′
a) for every arc a.

35

4.4. STATIC TRAFFIC ASSIGNMENT PROBLEM

Prove of foregoing theorem can be found in Beckmann, McGuire, and Winsten [4].
They also showed, using the Karush-Kuhn-Tucker conditions (see [3]), that the UE are
precisely the flows that minimize the function z̄ = z̄(f)

z̄ =
∑

a∈A

fa∫

0

ca(s) ds. (4.5)

Beckmann’s model. Commonly used is so-called Beckmann’s model [4], where the
travel time for a ∈ A only depends on the flow. Beckmann, McGuire and Winsten for-
mulated a TAP, where the cost functions ca(fa) (called latency functions2) are arbitrary
functions, which are convex, continuous, nonnegative, and nondecreasing. Capacity con-
straints are not taken into account, and the violation of capacity is penalized by the cost
function itself. Note, that this allows solutions, where capacity constraints are exceeded.
Other variant of TAP with cost function developed by Nesterov & de Palma can be found
on the page 39.

Typical latency functions are the BPR-functions (developed in 1964 by Bureau of
Public Road) with two parameters α, β ≥ 0. To each arc is assigned its capacity ua
(vehicles per hour) and a nonnegative number called free travel time, denoted t0a. For
simulating the real road congestions, parameters α, β are usually set to 0.15 and 4.

ca(fa) = t0a

(
1 + α

(
fa
ua

)β)
.

500 1000 1500 2000 2500

2

4

6

8

10

12

14

2400

2000

1600

BPR latency functions for different capacities

According to MCF and MF network problems, for a given commodity i ∈ C, bi =
(bi1, bi2, . . . , bim) corresponds to the number of users travelling during a given period
through the network (4.2, 4.4). The vector bi must be balanced, i.e.

∑
j∈N bij = 0. The

topology of the graph is expressed by node-arc incidence matrix A.

2Although the latency function is in literature often denoted by l = l(fa), we continue with our
notation to keep the continuity between preceding chapters.

36

4. NETWORK FLOW

Definition 4.4 (B-SO).
With respect to the First Wardrop’s principle, a SO in the Beckmann’s model is the
solution of the following optimization problem

minf
∑
a∈A

ca(fa)fa

s.t. fa =
∑
i∈C

xia ∀a ∈ A,
Axi = bi ∀i ∈ C,
xi ≥ o ∀i ∈ C.

(4.6)

According to result of Beckmann et al. from page 36 (equation 4.5), as also to [4,
chapter 4.] and [6], the “oposite” of (B-SO) may be stated in a following way.

Lemma 4.1 (B-UE).
Under Beckmann’s assumptions, user equilibrium is solution of the following optimization
problem

minf
∑
a∈A

fa∫
0

ca(s) ds

s.t. fa =
∑
i∈C

xia ∀a ∈ A,
Axi = bi ∀i ∈ C,
xi ≥ o ∀i ∈ C.

(4.7)

For the proof see [4]. UE and SO as solutions of (4.6, 4.7) always exist as long as the
set {(xi)i∈C|Axi = bi,xi ≥ o ∀i ∈ C} is nonempty (see theorem 4.1).

Notation. Further, we denote the objective function of (B-SO) by z = z(f). Obviously,
the cost of the flow equals to value of this objective function, i.e. C(f) = z(f), while for
objective function z̄ of (B-UE) this equality does not have to come true.

Beckmann’s model viewed as MF. Obviously, the Beckmann’s model corresponds
to Multicommodity flow problem with nonlinear objective function without any capacity
constraints (for one commodity is related to Minimal Cost Network Flow). Variable fa is
redundant, just used like abbreviation for the first constraint. The two latter constraints
are taken from Multicommodity Flow, expressing the properties of the flow. For the
comparison, see below

(MF)

min
∑
i∈C

cTi xi

s.t.
∑
i∈C

xi ≤ u,

Axi = bi ∀i ∈ C,
o ≤ xi ≤ ui ∀i ∈ C.

(B-SO)

minf
∑
a∈A

ca(fa)fa

s.t. fa =
∑
i∈C

xia ∀a ∈ A,
Axi = bi ∀i ∈ C,
xi ≥ o ∀i ∈ C.

The objective function for MF can be in nonvector form written as

∑

i∈C

cTi xi =
∑

i∈C

∑

a∈A

ciaxia.

37

4.4. STATIC TRAFFIC ASSIGNMENT PROBLEM

In MF, we usually assume the costs are the same for all commodities, and thus cia =
ca ∀i ∈ C. If we appoint the substitution for total flow in an arc fa, for the Beckmann’s
model we get following objective function

∑

a∈A

ca(
∑

i∈C

xia)
∑

i∈C

xia =
∑

a∈A

∑

i∈C

ca(
∑

i∈C

xia)xia.

From the theorem 3.5 follows, that matrix A is totally unimodular matrix, and the
theorem 3.6 implies that the polytope defined by the last two constraints is integral for
every commodity i ∈ C. This is exactly the same as in MF, except to nonlinear cost
functions, that lead in generality to nonintegral solution.

Price of anarchy. To measure differences between UE and SO, in order to determine
the usefulness of the network, the price of anarchy is defined.

Definition 4.5 (Price of anarchy).
Suppose a network consisting of graph G = (N,A), cost functions (ca)a∈A, and demand
vectors bi for all occurring commodities in the set C. Let f∗ be the solution of (B-SO),
and f̄

∗
the solution of (B-UE). We define the price of anarchy ρ = ρ(G, (bi)i∈C, (ca)a∈A)

as the following ratio

ρ =
C (̄f

∗
)

C(f∗)
.

Price of anarchy measures “how far” is an UE from the best utilization of the system.
Since f∗SO is the best usage of the system, we can easily show that ρ ≥ 1 always holds.

Let F denote a nonempty set of cost functions. Roughgarden in his work [19] showed,
that if F is a set of polynomial cost functions with nonnegative coefficients and degree at
most p, the price of anarchy ρ is bounded from above by Pigou bound α(F)

α(F) =
(
1− p(p+ 1)−(p+1)/p

)−1
.

Thus, for linear cost functions, the upper bound is 4/3, and for BPR-functions with β = 4,
the bound is approximately 2.15.

Criticism to Beckmann’s model. Some authors highlight the imperfection of the
model, referring to unconstrained capacity violation. Since the static TAP supposes model
of the traffic flow in a time period, the overflow of capacity implies in reality, that some
part of the flow will have to move to following period. Because of this, the initiative rose
up, to develop more adaptable model. This led for example to Nesterov and de Palma’s
model decsribed in below.

One way how to avoid some problem with capacity violation is an extension of the
original Beckmann’s model. We add a bunch of new constraints

gj(f) ≤ 0 ∀j ∈ J, (4.8)

where the function gj is convex and continuous differential function, and the set J can
be a subset of sets A, C, or N . Hereby, we may consider a special case of the capacity
constraint ga(f) = fa − ua. Further, we denote a mathematical program (B-SO), (B-UE)
with these additional constraints as (B-SOext), (B-UEext), respectively.

38

4. NETWORK FLOW

Another Variants of TAP Model

Nesterov & de Palma’s model. Sometimes, the commonly used Beckmann’s model
is in TAP models replaced by the model formulated by Nesterov and de Palma. Here, the
capacity ua of an arc cannot be exceeded, and the tightness to the capacity is penalised
only if this is achieved. Mathematically described, Nesterov and de Palma developed cost
functions t(f) = (ta)a∈A with following property:

ta =

{
ta = t0a if fa < ua,
ta ≥ t0a if fa = ua.

The total travel time is defined as
∑
a∈A

fata = tT f.

Nesterov and de Palma’s cost function

Nesterov and de Palma discussed some weaknesses of Beckmann’s model with respect
to TAP fundamentals. Since every TAP is usually restricted to a state of network in a
specific time period, if there is a congestion of a road, users may leave the road in a
following period. This fact is by Beckmann’s model not token into account. On the other
hand, Nesterov and de Palma use function, which can be discontinuous at the point of
capacity.

In our text, we do not consider TAP according to that one defined by Nesterov & de
Palma, but still we find it useful to mention it as another variant to Beckmann’s model.
A particular comparison of Nesterov & de Palma’s and Beckmann’s model was done in
[6].

4.5. Example of Static TAP in GAMS

To show, that results in Example 4.2 correspond to (B-SO) and (B-UE) stated above,
we demonstrate the two above declared mathematical programs in software GAMS (for
short introduction to GAMS see appendix). Further, we consider in our text Beckmann’s
models of TAP (most often with BPR-functions). Moreover, the costs in Example 4.2
respond to special case of BRP-function, to linear functions with unit arc capacity.

In software GAMS the problem is described as follows:

sets I set of arcs /arc1*arc7/

N set of nodes /node1*node4/

39

4.5. EXAMPLE OF STATIC TAP IN GAMS

J set of commodities /com1,com2/;

table Demand(N,J) demand at node n of commodity j

com1 com2

node1 8

node2 4

node3 -4

node4 -8 ;

table A(N,I) incidence matrix

arc1 arc2 arc3 arc4 arc5 arc6 arc7

node1 1 -1 1 1

node2 -1 1 1

node3 -1 -1 1 -1

node4 -1 -1 1 ;

parameter FreeTime(I) free travel time of arc i

/arc1 8, arc2 8, arc3 10, arc4 2, arc5 6, arc6 2, arc7 3/;

parameter Beta(I) multiplication coeficient of arc i

/arc1 3, arc2 4, arc3 2, arc4 5, arc5 4, arc6 5, arc7 4/;

parameters zzUE cost of UE flow

poa price of anarchy

xprint(I,J) x variable for output;

variables x(I,J) flow through arc i of com. j

zSO SO-total time cost

zUE UE-total time cost

fSO(I) OS flow through arc i

fUE(I) UE flow through arc i;

integer variable x;

equations costSO SO-objective function

costUE UE-objective function

flowCon(N,J) flow conservation constraints

flowSO(I) OS flow definition

flowUE(I) UE flow definition;

flowSO(I).. fSO(I) =e= sum(J, x(I,J));

flowUE(I).. fUE(I) =e= sum(J, x(I,J));

costSO.. zSO =e= sum(I,(FreeTime(I)+Beta(I)*fSO(I))*fSO(I));

costUE.. zUE =e= sum(I,(FreeTime(I)+Beta(I)*fUE(I)/2)*fUE(I));

flowCon(N,J).. sum(I,A(N,I)*x(I,J)) =e= Demand(N,J);

model tapOS /costSO, flowSO, flowCon/;

model tapUE /costUE, flowUE, flowCon/;

solve tapOS using minlp minimizing zSO ;

display x.l,zSO.l;

xprint(I,J)=x.l(I,J);

solve tapUE using minlp minimizing zUE ;

zzUE=sum(I,(FreeTime(I)+Beta(I)*fUE.l(I))*fUE.l(I));

40

4. NETWORK FLOW

display x.l,zUE.l,zzUE;

poa=zzUE/zSO.l;

display poa;

display fSO.l,fUE.l;

This model is attached to this text on the CD under name myTAP1.gms. Using solver
for mixed integer nonlinear programming (see BARON, DICOPT, and ALPHAECP in
appendix B), we get exactly the result as presented before:

----------------------Traffic Assignment Problem: myTAP1----------------------

The Flow

-----------system optimum----------- ------------user equilibrium-----------

com1 com2 total flow | com1 com2 total flow

|

arc1 4.00 0.00 4.00 |arc1 3.00 0.00 3.00

arc2 0.00 3.00 3.00 |arc2 0.00 2.00 2.00

arc3 4.00 0.00 4.00 |arc3 2.00 2.00 4.00

arc4 0.00 3.00 3.00 |arc4 3.00 0.00 3.00

arc5 4.00 1.00 5.00 |arc5 3.00 2.00 5.00

arc6 4.00 0.00 4.00 |arc6 5.00 0.00 5.00

arc7 0.00 1.00 1.00 |arc7 0.00 2.00 2.00

Cost of the Flow:

cost zSO = 488.00 cost zzUE = 493.00

(cost zUE = 312.50)

Price of Anarchy:

poa = 1.01025

Whenever the cost of OS solution is z∗OS = 488, the cost of user equilibrium is z∗UE =
493, and thus the price of anarchy ρ ≈ 1.01.

41

5. IMPROVED TAP

5. Improved TAP

5.1. Stochastic Programming

So far, we have discussed a deterministic mathematical programs and deterministic mo-
dels. But in a more realistic models, some parameters of the network problems can be
“unknown”, or the users of the network may have incomplete information about the ne-
twork in the time they should decide. This variability of the problem can be modelled as
mathematical program in the presence of a randomness. We call this branch Stochastic
(mathematical) programming, and a corresponding model a stochastic program, which we
here define:

Definition 5.1 (Stochastic program).
Let Ω,S, P be a probability space, and ξ : Ω → RK a random vector. The following
problem is said to be a stochastic (mathematical) program (SP)

min
x

f(x, ξ) s.t. x ∈ X(ξ). (5.1)

Compare this definition with deterministic MP, page 21. Since the interpretation of SP
in not clear before knowing the realisation of ξ, the problem 5.1 is not well defined. Usually,
the stochastic programs are reformulated into a deterministic equivalents that correctly
interpret random variables. We further assume, that the objective function is measurable,
and the expectation Ef(x, ξ) exists for all x. As ξ is an S-measurable mapping, it induces
a probability distribution on RK . In a SP we assume, that the distribution of ξ is known.
For further purposes, denote support of ξ as Ξ ⊂ Ω.

Next, we introduce two main principles, how to deal with stochastic programs. Further
we use the following notation: if the realisation of the random vector ξ is known, we denote
this value ξs. The two principles of solving stochastic programs are based on different
approaches:

• either the realisation ξs precedes the decision of x,

• or the decision of x precedes the realisation ξs.

Remark. Recall, we distinguish two types of random variables: discrete and continuous.
For the first case, if the number of realisations is finite (|Ξ| <∞), we denote these by S
and talk about a scenarios of ξ.

Wait-and-see Approach (WS)

When a decision x is made after observing the realisation of the random vector ξ, we call
this approach wait-and-see. WS models are solved with respect to variable x, considering a
random vector as a parameter. The solution x and the objective function z are functions of
ξ, x = x(ξ) and z = z(ξ), and thus a random vectors (variables). An interesting question
to ask is about the distributions of x(ξ) and z(ξ). This has to be determined, because
since now we deal with variables as with random variables, etc.

43

5.1. STOCHASTIC PROGRAMMING

WS deterministic reformulation. Let the SP be given as 5.1. We define its wait-
and-see (WS) deterministic reformulation as

min
x(ξ)

f(x(ξ), ξ) s.t. x(ξ) ∈ X(ξ). (5.2)

We denote the minimal objective function value as z∗WS and minimum as x∗WS. Note, that
still we have z∗WS = z∗WS(ξ) and x∗WS(ξ). Thus, for every realisation ξ we get solution of
5.2, and we can deal with the set of all solution for every realisation ξ as with statistical
data set.

Here-and-now Approach (HN)

If we must make the decision before the observation of ξ, we call this case here-and-now
(HN) approach. The decision x is then the same for all possible future realisations of the
randomness. SP primarily deals with HN approach, because the typical decision situation
is described by the lack of observations.

EV deterministic reformulation. Let the SP be given as 5.1. We define its here-and-
now expected value (EV) deterministic reformulation as

min
x

f(x, Eξ) s.t. x ∈ X(Eξ), (5.3)

where Eξ is the expected value of ξ. We denote the minimal objective function value as
z∗EV and minimum as x∗EV .

Remark. Note, that for EV we can solve MP with replacing random vector with values,
that may appear with zero probability. (Especially with expected value of discrete random
vector.) Although this fact, EV model is reasonable.

EO deterministic reformulation. Let the SP be given as 5.1. We define its here-and-
now expected objective (EO) deterministic reformulation as

min
x

E [f(x, ξ)] s.t. x ∈ X, (5.4)

We denote the minimal objective function value by z∗EO and the minimum as x∗EO.

Remark. According to results reached in stochastic programming, we must state, that
with larger variance of random vector, the solution z∗EV becomes more optimistic than
z∗EO.

The outcome of EV and EO are solutions x∗ which are used for every realisation of the
randomness. Thus, for ”fixed”solution x∗ and all random vectors ξ we get set of result,
which we can eventually compare with WS approach.

Remark. Note, that due to implementation of all following stochastic problems in GAMS
software, the number of scenarios is always finite. Hereby, we replace the expected values
Eξ by weighted sum ∑

s∈S

psξ
s

44

5. IMPROVED TAP

where ps is the probability of the realisation ξs. This sum simplifies for uniform distribu-
tion into 1

|S|
∑

s∈S ξ
s. Although we further write Eξ in general, we implement it as the

weighted sum.

5.2. Stochastic TAP

In this section, we consider, that not all parameters are known in our TAP model, and
we discuss the problems form different approaches. The randomness may appear as in the
cost function ca(fa, ξ) as on the other places, i.e. in constraint, etc.

Randomness in the Objective Function

First we suppose, that the random vector can appear in our cost functions, i.e. each arc is
affected by some unknown phenomenon (z = z(f, ξ) and z̄ = z̄(f, ξ)). Imagine, although
each user driving through the network has an idea about the distance and congestion
on each road, one can never predict concrete situation. There may happen an accident
slowing the traffic, or on the other hand the flow of user can be must faster than predicted.

Assume, each cost function ca depends now on random vector ξ, i.e. ca = ca(fa, ξa).
Looking back to Beckmann’s model, now we suppose the cost functions as BPR-functions
in the form

ca(fa, ξa) = ka + qa(fa)
p + ξa, p ≥ 0.

For all mathematical programs solving the user-equilibrium-related flow, we use a simple
reformulation of the objective function, consequently the cost functions. Since they are
easy integrable, we lie the objective function z̄ in a following form

z̄ =
∑

a∈A

∫ fa

0

ca(s, ξa) ds =
∑

a∈A

(ka +
qa

p+ 1
(fa)

p + ξa)fa

Since, we have no additional information about the distribution of ξ, we will usually
consider uniform distribution with expected value Eξ equal to zero.

WS. For all ξs ∈ Ξ we get a deterministic reformulation of (B-SO) and (B-UE)

zWS(f, ξs) =
∑

a∈A

(ka + qa(fa)
p + ξsa)fa,

z̄WS(f, ξs) =
∑

a∈A

fa∫

0

(ka + qat
p + ξsa) dt.

EV and EO. Note, that function ca(fa, ξa) is linear in variable ξa. Hence, as EV so
EO deterministic reformulations result in the same MP for both problems (B-SO) and
(B-UE). See the short derivation of objective functions z, z̄ modifications

zEO(f) = E
∑

a∈A

(ka + qa(fa)
p + ξa)fa =

∑

a∈A

[(ka + qa(fa)
p)fa + faEξa] = zEV (f)

z̄EO(f) = E
∑

a∈A

fa∫

0

(ka + qat
p + ξa) dt =

∑

a∈A

fa∫

0

(ka + qat
p + Eξa) dt = z̄EV (f).

45

5.2. STOCHASTIC TAP

Example 5.1 (Comparison of WS and HN results).
We used software GAMS as a computing tool to compare the prices of anarchy of WS and
HN approaches. We based the following model on the preceding “One Simple Model” from
page 39, considering a random vector uniformly distributed between values −2 and 2, i.e.
ξ ∼ U(−2, 2). For a 200 realisations of random vector ξ we counted the price of anarchy
for HN model, and compared it with the expected value of prices of anarchy reaching
from WS models. Folder containing this model is included under the name myTAP2. We
present just the main part of our results, which are attached in the file OUT.txt.

We generated |S| = 200 realisations of random vector, i.e. table over R|S|×|A|, where
|A| = 7 is number of arc in the network. The vector of expected values is as follows

Expected Value Vector: Exi(I) = (-0.03,-0.07,-0.06,0.054,0.000,0.051,-0.20)

In the case of here-and-now approach (as we derived earlier) the randomness should
affect both SPs only through expected value in the objective function. For random vector
with Eξ = 0, the price of anarchy ρHN converges to original value ρ ≈ 1.0102 for a big
number of realisations. Comparing prices ρHN for all realisations of vector ξ with fixed
flow-results from HN approach, we got a data set to deal with. This data show, that there
is a relative small variance.

here-and-now

Cost of the Flow: zSO_HN = 487.574

zzUE_HN = 505.644

HN Price of Anarchy: PoA = 1.03706

Variance of PoA for all realisations of xi:

var_xi(PoA) = 0.00004

Although ρHN draws near to ρ for big |S|, the price of anarchy ρWS given by WS approach
is already much better estimation of ρ for a small number of realisations. While having
higher variance, the mean ρWS is much better estimation of original price of anarchy ρ.
See below and compare

wait-and-see

Expected value of OS solutions: 487.79

Expected value of UE solutions: 494.54

Expected value of PoA: 1.01381

Variance of PoA: 0.00014

Randomness in the Constraints

Suppose, for example, that a given network is just a part of a huge network. At nodes,
where our network is connected to the rest part, it may occur a random number of arrival
for those users, that want to continue in their way (like a real life situation from a small
town in a densely populated area). We state the problem (see models 4.6, 4.7) with the
following type of constraints

Axi = bi(ξ) ∀i ∈ C,

46

5. IMPROVED TAP

where always for set of nodes N and for all commodities
∑

j∈N bij(ξ
s) = 0 (thus the flow

conservation is ensured). This can be interpreted as uncertainty in the quantity of drivers
representing each commodity. Due to the meaningfulness, we will consider the right-hand
side vector b(ξ) in following special form

bij(ξj) =

{
bij ± ξj if bij > 0 or bij < 0,
0 else.

(5.5)

So the intermediate nodes remain preserved as same as all commodity-flows directions.
According to sense of our model, we naturally assume ξ having discrete uniform dis-
tribution. Since each commodity is represented by its source si and target ti, the flow
conservation constraint forces the volume of user to be equal at the beginning and at
the end. Thus, if randomness results in decrease of drivers coming in, there must be the
same declination of drivers going out. (Hence, the only unknown is the volume of drivers
representing the commodity.)

WS. The wait-and-see deterministic reformulation of TAP problems (B-SO) and (B-
UE), where vector b(ξ) is defined by the relation 5.5, is written below. Note, that since
the right-hand-side vector depends on ξ, it implies the feasible flow f, and thus the optimal
solution. In WS approach, we wait for the realisation of randomness first, after which we
determine the optimal flow. Hence, in this reformulation, we get the feasible set restricted
by following constraints for every possible realisation ξs as follows

fa =
∑
i∈C

xia ∀a ∈ A,
Axi = bi(ξ

s) ∀i ∈ C,
xi ≥ o ∀i ∈ C.

(5.6)

Results taking into account this approach are presented later (with a given distribution
of random vector), and compared with here-and-now EV reformulation.

EV. Since the realisation of random vector ξ is unknown in the moment of taking
decision, the solution can be “worse” or “better” if we take the decision before. Easily, we
use the here-and-now expected value deterministic reformulation by replacing the random
vector ξ by its expected value Eξ. Then the TAP-constraints are in this deterministic
form

fa =
∑
i∈C

xia ∀a ∈ A,
Axi = bi(Eξ) ∀i ∈ C,
xi ≥ o ∀i ∈ C.

(5.7)

Note, that the expected value Eξ does not have to be an integer number, and thus the
equation cannot be achieved with a integer decision variable. This special case can be
solved by rounding the expected value, or taking the smallest integer number not less
then the expected value.

Example 5.2 (Comparison of WS and EV results).
Recall the basic TAP problem “One Simple Model” (example 4.2). We consider the ran-
domness appearing in the right-hand-side vector, and in this part we compare WS and

47

5.2. STOCHASTIC TAP

EV approaches. Model solved in GAMS is included in the folder myTAP3. Let us just
present important results from the attached file OUT.txt.

Because of the effect described in foregoing paragraph, and since we have no additional
information about the network, we consider a discrete uniformly distributed random vector
ξ with expected value Eξ = 0 (i.e. Eξ ∈ Z). From a practical point of view, we generate a
number of scenarios ξs and compute the expected value as a weighted average (with equal
weights for uniform distribution). However, this value Eξ can only rarely be an integer
number, we consider in our model the mean as dEξe instead.

The right-hand-side vector b will be affected by random vector (ξ1, ξ2) such that for
commodity i ∈ C the demand is bij ± ξi for nonzero bij, where i ∈ C, j ∈ N . See the
difference between the original deterministic model and stochastic alteration

b1 = (8, 0, 0,−8), b2 = (0, 4,−4, 0),
b1(ξ) = (8 + ξ1, 0, 0,−8− ξ1), b2(ξ) = (0, 4 + ξ2,−4− ξ2, 0).

In fact, if we denote li = maxj∈N bij, vector bi(ξ) can be rewritten as

bi(dEξe) = bi +
dEξie
l

bi.

Results presented later are for discrete random vector ξ ∼ Ud(−3, 3) (i.e. S = {−3,−2,
. . . , 3}). After generating 200 scenarios, we got these expected values over all scenarios
for each commodity

Expected Value for commodities in J: Exi(J) = (-0.290, -0.225)

Expected Value ceiling: ceil(Exi(J)) = (0.000, 0.000)

Recall output from the original problem without randomness with optimal flows f∗ for
(B-SO) and f̄

∗
for (B-UE), respectively.

C(f∗) = z∗ = 488, C (̄f
∗
) = 493, ρ = 1.01025.

See below, that the EV reformulation gives in our model exactly the same solution as the
original problem. This is because of distribution with zero mean and a small variance.
Look above to compare, that the “real” expected value is zero for neither the first, nor
the second commodity. This is enhanced by the revaluation to an integer number. The
meaning of zzUE_EV is the same as in previous models, the cost of UE-solution.

here-and-now EV

Cost of the Flow: zSO_EV = 488.000

zzUE_EV = 493.000

HN Price of Anarchy: PoA = 1.01025

In opposite to EV, WS approach computes the model again for all different realisations
of the random vector. Expected value of price of anarchy ρWS, and its variation follow

48

5. IMPROVED TAP

wait-and-see

Expected value of OS solutions: 478.54

Expected value of UE solutions: 483.37

Expected value of PoA: 1.01250

Variance of PoA: 0.00031

More details are shown in output file included to the related model in myTAP3 folder.

Here-and-now recourse formulation (RF). The variation of right-hand side can
be modelled by modifying the objective function. We add new members expressing the
deviation from an “expected solution”, and we build so-called recourse model.

The recourse model uses so-called soft constraints. It accepts the violation of constra-
int, but the cost of violation will influence cost of the original solution. The randomness
in the constraints can be expressed via new nonnegative variables y+

i (ξ), y−i (ξ) that catch
out the deviation from the original value bi.

Since the values of variables y+
i , y

−
i depend on realisation of the random vector, we get

a two-stage program given by the following scheme of decision and observation steps

decision x

↓
observation ξs

↓
decision y

In order to declare the recourse deterministic reformulation of our stochastic progra-
mming problem, denote by βi the following vector

βi =
1

max
n∈N

bin
bi,

Such vector βi is just modified right-hand-side vector bi that expresses the unit demand.
For further, we call it a commodity direction. Hence, its components are zero with excep-
tion of that one, which correspond to the source and target (these are +1 and −1).

Example 5.3.
For clearness, we present a small example. Suppose demand vector b1 from our simple
example. Then its random variant and implied commodity direction are in the form

b1(ξ) =




8 + ξ
0
0

−8− ξ


 , β1 =




1
0
0
−1


 .

Let say, we expect Axi users of the commodity i ∈ C. The number y+
i plays the role of

number of users, that came more than expected, i.e. the overflow. (Similarly y−i expresses

49

5.2. STOCHASTIC TAP

the number of cars less than expected - the lack of users.) Because of the balance constraint
in the model, it must hold the more drivers come in the network, the more must go out
at their origin point.

From this point of view, the relaxed constraints are derived as follows

Axi + y+
i (ξ)βi − y−i (ξ)βi = bi(ξ)

where vector bi(ξ) is given same as above (5.5)

bi(ξ) := bi + ξβi.

For abbreviation, denote q the vector (qT+, q
T
−), and yi(ξ) the vector (y+

i (ξ), y−i (ξ)).
The RF approach corresponds to a two-stage program with recourse (5.8)

min
f,x

z(f) + EξQ(x, ξ)),

where Q(x, ξ) = min
y(ξ)

∑
i∈C

qTyi(ξ)

s.t. Wyi(ξ) [βi,βi] = bi(ξ)−Axi ∀i ∈ C
yi(ξ) ≥ o ∀i ∈ C

(5.8)

In the simplest case, we may just penalise the deviation in the constraints by penalty
coefficients q+, q−, which are constant. The model (5.8) is said to be with simple recourse,
if the matrix W is in the form (I,−I). Such simple recourse we will take into account in
our next considerations, i.e. W = diag(1,−1).

In fact, we want to do a decision at the beginning, that will be at least penalised
after the observation of the random vector ξ. In other words, we want to minimize the
deviation from original right-hand-side vector bi.

Then the deterministic reformulation of SO two-stage program with recourse is as
follows

min
∑
a∈A

ca(fa)fa +
∑
s∈S

ps
∑
i∈C

qTyi(ξ
s)

s.t. fa =
∑
i∈C

xia ∀a ∈ A
y+
i (ξs)βi − y−i (ξs)βi = bi(ξ

s)−Axi ∀i ∈ C
yi(ξ

s) ≥ o ∀i ∈ C
xi ≥ o ∀i ∈ C

(5.9)

In our model implemented in GAMS (see document myTAP4.gms) we used different
penalisation coefficients q+, q−. Since the values y+

i , y
−
i express how many more, respecti-

vely how many less drivers came than expected, we may set the penalisation q− to zero,
or to negative number. Meaning of this assumption results from nature: less drivers make
the system better, but more drivers congest the traffic, and this should be penalised.

A primal approximation of price per each extra user was done by the average travel cost
of one unit from the original deterministic example 4.2, i.e. ≈ 488

12
. Since cost function are

increasing and nonlinear, we may involve additional costs higher that expected. Hereby,
q+ = 70 and q− = −20 are conservative estimates.

50

5. IMPROVED TAP

===

= Recourse coefficients:

= qplus = 70.0 , qminus = -20.0

===

SO Optimal flow x: UE Optimal flow x:

------------------ ------------------

com1 com2 | com1 com2

|

arc1 3.00 0.00 | arc1 3.00 0.00

arc2 0.00 2.00 | arc2 0.00 3.00

arc3 3.00 0.00 | arc3 4.00 0.00

arc4 0.00 2.00 | arc4 0.00 3.00

arc5 3.00 1.00 | arc5 3.00 2.00

arc6 3.00 0.00 | arc6 4.00 0.00

arc7 0.00 1.00 | arc7 0.00 2.00

|

SO Solution: | UE Solution:

------------ | ------------

obj. function zSO_min = 477.70 | obj.function zUE_min = 349.20

cost of flow zzSO = 301.00 | cost of flow zzUE = 474.00

Price of Anarchy:

poa = 1.574751

In RF model, we can easily change penalisation to achieve solution with different
interpretations. By setting the price for overloading the network much higher (than for
underloading), we almost simulate the “worst case” scenario. The behaviour of the mathe-
matical program is shown below. Hence, our stochastic TAP finds more efficient to expect
traffic on higher volume.

===

= Recourse coefficients:

= qplus = 200.0 , qminus = -20.0

===

SO Optimal flow x: UE Optimal flow x:

------------------ ------------------

com1 com2 | com1 com2

|

arc1 4.00 0.00 | arc1 4.00 0.00

arc2 0.00 3.00 | arc2 0.00 4.00

arc3 4.00 0.00 | arc3 5.00 0.00

arc4 0.00 3.00 | arc4 0.00 4.00

arc5 4.00 2.00 | arc5 4.00 2.00

arc6 4.00 0.00 | arc6 5.00 0.00

arc7 0.00 2.00 | arc7 0.00 2.00

|

|

51

5.2. STOCHASTIC TAP

SO Solution: | UE Solution:

------------ | ------------

obj. function zSO_min = 666.20 | obj.function zUE_min = 415.30

cost of flow zzSO = 553.00 | cost of flow zzUE = 701.00

Price of Anarchy:

poa = 1.267631

52

6. NETWORK DESIGN

6. Network Design

6.1. Braess Paradox and Related Problems

One can presume, that the flow becomes more efficient if more arcs are added in the
network. Braess [5] discovered in 1968 an example, where this is denied. Since the time
the example was presented, many interesting results were reached in this part. In this
section we introduce a few of them, and show how difficult is to find such paradox in a
given network.

Example 6.1 (Braess).
In 1968 Braess presented a simple example of network with four nodes, where the cost
of UE-flow becomes worse, when a new arc is added (see the network instance below).
Suppose, there are 10 drivers travelling between two nodes s and t. In the first case, both
paths have identical cost functions and the flow is uniformly divided into two possible
directions. The second network describes the effect of Braess paradox - noncooperative
behaviour of the users makes the total cost higher. Although in first graph, both SO-

s t

x

x10

10

arc1

arc3

arc2

arc4

Network without Braess paradox

s t

x

x10

10

arc1

arc3

arc2

arc4

arc5

0

Network affected by paradox

and UE-flows are equal f = (5, 5, 5, 5), by connecting two intermediate nodes with a
zero cost arc, the system optimum remains the same while user equilibrium moves to
f̄ = (10, 0, 0, 10, 10). (Compare particular paths to prove.) Easily, by adding a new arc,
the cost C(f) = 150 increased to C (̄f) = 200.

Braess ratio. Roughgarden [19] in his paper proved results, that throw the problem in
complete another light. We try to summarize the most important of them.

Definition 6.1 (Braess ratio).
Suppose a single-commodity TAP on a graph G = (N,A), with demand vector b and
cost functions (ca)a∈A. The Braess ratio β = β(G,b, (ca)a∈A) of a single-commodity TAP
is defined by

β = max
H⊆G

C(f)

C(fH)
,

where H is a subgraph of graph G that contains an s − t path, and f and fH are user
equilibria on G and H, respectively.

There are various ways how to define the Braess ratio for a multicommodity networks.
This will not be necessary for us now, because it makes things much more complicated.

53

6.1. BRAESS PARADOX AND RELATED PROBLEMS

Roughgarden proved a condition for boundary of the Braess ratio in a single-commodity
network.

Lemma 6.1 ([19]).
For every single commodity TAP the following holds

β ≤ ρ.

In Braess’s example, the Braess ratio is 4
3
. In a preceding section, we showed, that the

upper bound for price ρ is given by the Pigou bound α, which is for linear cost functions
also 4

3
. Since β = α, this Pigou bound is tight.

Lemma 6.2 ([19]).
For every single-commodity TAP with n ≥ 2 nodes, the Braess ratio is limited by following
boundary

β ≤
⌊n

2

⌋
.

One naturally asks: given a network, is it affected by Braess paradox? If so, how to
detect it? A big progress in this uncertain question was made for linear cost function,
which usually illustrate “the simplest case”. The task can be also formulated as follows:
Given a single-commodity TAP with linear cost functions, find a subgraph, that minimizes
the cost of user equilibrium. In literature is this problem usually called Linear Network
Design (LND).

The situation is well expressed through following theorem. Denote a γ-approximation
algorithm an algorithm, that returns in polynomial time a solution no more than γ times
as costly as an optimal solution. An algorithm that for a network G returns the whole
network is called trivial algorithm. As we showed above, the trivial algorithm in LND is
4
3
-approximation algorithm.

Theorem 6.1 ([19]).
For every ε > 0 there exists no

(
4
3
− ε
)
-approximation algorithm for Linear Network

Design.

A similar theorem can be proved for a General Network Design problem, and thus
finding the Braess paradox in a general network is not solvable without using full enume-
ration method.

R-closure of the Network

Recall, we used to write argminx{f(x)|x ∈ X} in the meaning of set of all optimal
solutions x ∈ X, that minimize the objective function f(x) (see chapter 3).

The main point of TAP problem can be also stated as finding the minimum of price
of anarchy ρ. Denote f∗, f̄

∗
the optimal flows solving the (B-SO) and (B-UE), respectively.

For a given network (with fixed nodes and arcs), the minimization of price of anarchy is
the same as the minimization of the cost of the flow f̄

∗

min ρ = min
¯f
∗

C (̄f
∗
)

C(f∗)
⇐⇒ minC (̄f

∗
).

54

6. NETWORK DESIGN

Note, that the cost of UE solution for a flow f̄
∗

= (f̄ ∗a)a∈A is computed by

C (̄f
∗
) =

∑
a∈A

ca(f̄
∗
a)f̄ ∗a

where f̄
∗ ∈ argmin¯f

∑
a∈A

∫ f̄a
0
ca(s) ds

f̄a =
∑
i∈C

xia ∀a ∈ A,
Axi = bi ∀i ∈ C,
xi ≥ o ∀i ∈ C.

(6.1)

Thus, for a fixed network, there is no variable to minimize, because the user equilibrium
always exists and is unique (see theorem 4.1).

As we have seen, the way how to find the Braess paradox in a general network is
very difficult - the only possible way is full enumeration of all solutions. In order to avoid
these trouble, we formulate an another pattern. While, solving the Braess paradox may
generally lead to removing one, two, or arbitrary many arcs from the graph, we try to
deal with a fixed number of arcs that should be “deleted” from the network.

Let say, we add a new constraint, that guarantees us how many arcs should be token
away. Denote the required number of removed arcs by R. We call this additional condition
theR-closure of the network. The task to minimize the price of anarchy, means to minimize
the flow cost, where the UE-flow is constrained by additional constraints on R-closure

min
δ,

¯f C (̄f)

s.t. f̄a ≤ δaM ∀a ∈ A,∑
a∈A (1− δa) = R,

δa ∈ {0, 1} ∀a ∈ A.
(6.2)

Here, δa is a binary variable, that takes the value 0 if arc a is removed, and value
1 if not. Since flow through removed arc must be zero, this is achieved with the first
constraint, where M is a “big number” (with respect to all possible flows). The sum over
all closed arcs must be equal to R ∈ Z+, because of the R-closure.

The symbol min
δ,

¯f denotes in fact minδ min¯f. But since in the cost C (̄f) there is no one

member containing δ-variables explicitly, we understand this as a minimizing only over
the flow f̄. Thus, the resulting flow is a function of δ = (δa)a∈A, and we want to find that
one with minimum objective function value. We perform a simple example of 1-closure
below.

Demonstration of the R-closure

Example 6.2.
Consider the Braess example of a simple network presented in the beginning of these
section, with four nodes and five arcs. Let us compute the optimal solution in such network
with 1-closure (i.e. removing exactly one arc from the network). By closing one arc, we
get solutions as follows:

Obviously, closing the arc5 makes the cost the lowest possible, and thus this is the
solution we get.

55

6.2. BILEVEL PROGRAMMING

s t

x10

10

arc3

arc2

arc4

arc5

0

δ = (1, 0, 0, 0, 0)
f̄
∗
= (0, 0, 0, 10, 10),

C (̄f
∗
) = 200.

s t

x

x10

arc1

arc3
arc4

arc5

0

δ = (0, 1, 0, 0, 0)
f̄
∗
= (10, 0, 0, 10, 10),

C (̄f
∗
) = 200.

s t

x

x

10

arc1
arc2

arc4

arc5

0

δ = (0, 0, 1, 0, 0)
f̄
∗
= (10, 0, 0, 10, 10),

C (̄f
∗
) = 200.

s t

x

10

10

arc1

arc3

arc2

arc5

0

δ = (0, 0, 0, 1, 0)
f̄
∗
= (10, 10, 0, 0, 0),

C (̄f
∗
) = 200.

s t

x

x10

10

arc1

arc3

arc2

arc4

δ = (0, 0, 0, 0, 1)
f̄
∗
= (5, 5, 5, 5, 0),

C (̄f
∗
) = 150.

6.2. Bilevel Programming

Bilevel programming problems (BP) are mathematical programs, where some of the deci-
sion variables are solutions of another mathematical programs. The applications can be
found in many branches dealing with optimization, like economy, game theory, or other
hierarchical optimization opportunities.

Bilevel programming problem is hierarchical, which means that its constraints are
defined in part by a second optimization problem.

Let us first introduce the follower’s (or lower) problem. This is an mathematical
program in a form

minx f(x, y)
s.t. g(x, y) ≤ o

h(x, y) = o
(6.3)

where all f,g,h are vector functions. Let us denote Ψ(y) the solution of problem (6.3) for
a fixed y ∈ Rp.

The leader’s (or upper) problem is defined as follows

miny F (x(y), y)
s.t. G(x(y), y) ≤ 0

H(x(y), y) = 0
x(y) ∈ Ψ(y)

(6.4)

All functions that occur in the leader’s problem (6.4) are said to be upper functions
(upper obj. function, upper constraints), and functions from the follower’s problem (6.3)
are said to be lower functions.

As we see, the follower’s problem solution is given by variable x, which is function of
the second variable, i.e. x = x(y). The “inner” problem is in fact parametric mathema-
tical program, where x(y) ∈ Ψ(y) and Ψ(y) denotes the solution of the problem with a
parameter y, i.e. Ψ(y) = argminz{f(z, y)|g(z, y) ≤ 0, h(z, y) = 0}.

56

6. NETWORK DESIGN

The aim of BP is to minimize the lower objective function over the feasible set, after
that the upper problem is solved over the resulting set of optimal solutions. Many authors
have proved the NP-hardness of bilevel programming. Moreover, in an arbitrary bilevel
programming problem the solution existence cannot be guaranteed even if all function are
continuous and bounded.

Solution methods. One possible way how to deal with a BP is to derive the description
of the function x(y), which can be inserted into the upper problem. Second often used
approach is to replace the lower problem by Karush-Kuhn-Tucker optimality conditions
(see [3]). This results in a one-level mathematical program with equilibrium constraints
(MPEC). Several other approaches are possible, and some of them can be found in [11].

6.3. Bilevel Reformulation of R-closure

As presented in the section 6, we developed a new mathematical programming problem
(6.2) solving the optimal R-closure of the network. This problem is in fact a bilevel
program in the following form

minδ

∑
a∈A

ca(f
∗
a (δa))f

∗
a (δa)

s.t. f ∗a (δa) ∈ argminfa
∑
a∈A

fa∫
0

ca(s) ds

fa =
∑
i∈C

xia ∀a ∈ A,
Axi = bi ∀i ∈ C,
xi ≥ o ∀i ∈ C,∑

a∈A (1− δa) = R,
fa ≤ δaM ∀a ∈ A,
δa ∈ {0, 1} ∀a ∈ A.

(6.5)

The simplest way to solve such problem is a full enumeration of all results (if this is
possible with respect to variable types). We used this approach just to compare further
solutions. Results reached by full enumeration of 1- and 2-closure in the example 4.2 are
as follows (see included file myTAP5 enumer.gms)

----------------------Traffic Assignment Problem: myTAP5 enumer---------------

Cost of the Flow:

closed arc

1 objout = 635.00 (objin = 372.00)

2 objout = 575.00 (objin = 343.50)

3 objout = 594.00 (objin = 352.00)

4 objout = 534.00 (objin = 346.00)

5 objout = 735.00 (objin = 431.50)

6 objout = 708.00 (objin = 438.00)

7 objout = 503.00 (objin = 327.50)

closed arcs

57

6.3. BILEVEL REFORMULATION OF R-CLOSURE

1, 2 objout = 651.00 (objin = 379.50)

1, 3 objout = 836.00 (objin = 452.00)

1, 4 objout = 708.00 (objin = 420.00)

1, 5 objout = 735.00 (objin = 431.50)

1, 6 objout = 735.00 (objin = 431.50)

1, 7 objout = 735.00 (objin = 431.50)

2, 3 objout = 635.00 (objin = 366.50)

2, 4 objout = 600.00 (objin = 369.00)

2, 5 objout = 600.00 (objin = 369.00)

2, 6 objout = 980.00 (objin = 564.00)

2, 7 objout = 980.00 (objin = 564.00)

3, 4 objout = 980.00 (objin = 564.00)

3, 5 objout = 1176.00 (objin = 624.00)

3, 6 objout = 744.00 (objin = 448.00)

3, 7 objout = 651.00 (objin = 386.50)

4, 5 objout = 840.00 (objin = 504.00)

4, 6 objout = 728.00 (objin = 456.00)

4, 7 objout = 560.00 (objin = 368.00)

5, 6 objout = 560.00 (objin = 368.00)

5, 7 objout = 735.00 (objin = 431.50)

6, 7 objout = 708.00 (objin = 438.00)

.

.

.

etc.

Since the bilevel program (6.5) is a very special mathematical problem, we get the
solution by a tricky adjustments. From the nature of problem, we can reformulate finding
the R-closure in a network to a sequence of subproblems solving much easier tasks.

The leader wants to minimize the cost of a flow, and thus to find one of possible
solution closest to the SO-optimal one. Obviously, a pair (f∗, δ∗) is a solution to program
(6.5) if and only if δ∗ is the solution to (B-SO) with a R-closure constraints. For a given
δ∗, users in the network spread to all remaining arcs to follow their UE-solution. Hence

1. for a given R, find the best R-closure δ∗ of the (B-SO) problem,

2. for δ∗ given by 1., decide the flow f∗ solving the UE follower’s problem,

3. compute the cost C(f∗).

Compare results from full enumeration showed above and R-closures found by de-
scribed algorithm. Problem implemented in GAMS software is to be found under name
myTAP5. See the output file for R = 1, 2, 3, 4 below (for R > 4 the problem becomes
infeasible because of not existing path from origin to destination)

58

6. NETWORK DESIGN

----------------------Traffic Assignment Problem: myTAP5----------------------

Cost of the Flow:

R = 1

objout = 503.00

objin = 327.50

delta(I) = (1, 1, 1, 1, 1, 1, 0)

R = 2

objout = 560.00

objin = 368.00

delta(I) = (1, 1, 1, 0, 1, 1, 0)

R = 3

objout = 708.00

objin = 420.00

delta(I) = (0, 0, 1, 0, 1, 1, 1)

R = 4

objout = 840.00

objin = 504.00

delta(I) = (0, 1, 1, 0, 0, 1, 0)

6.4. Street Cleaning Problem

Having solved the problem of optimal closure of the network, we may formulate a more
complete pattern with working title Street Cleaning Problem (SCP).

Suppose, there are available R street cleaning vehicles, which clean the streets of our
network. They do it every day unless all streets have not been cleaned. If a street (or an
arc) is cleaned, the traffic must deflected to the other streets. Since static TAP itself is
linked to a specific time period in which the number of drivers is constant, we suppose
that one cleaning vehicle takes it exactly one period to clean one street.

The objective of SCP is to find the right schedule of street cleaning, such that we use
the given number of cleaning vehicles and the total time is minimized. Hereby we mean,
find a sequence of R-closures, such that at the end each arc has been closed exactly once,
and the sum of cost of all flows is minimized.

As a simplification, we consider that |A| = τR, where τ ∈ Z, τ ≥ 2, and where |A|
denotes the number of arcs in a network. Further, we must take into account, that for
each closure of the optimal sequence the flow must be feasible, i.e. for each commodity
there must always exist a path from its source to its target. Cases of 1- and |A|-closures
are trivial1, and we will not consider it.

1For a solution of SCP within 1-closures we must close exactly one arc in |A| periods. On the other
hand, |A|-closure is never feasible, because there exists no path between origin and destination.

59

6.4. STREET CLEANING PROBLEM

Greedy approach. One of possible solution methods is “greedy algorithm”, i.e. com-
pute the R-closure with the least cost, then find the cheapest R-closure for δa that has
not been used yet, etc. Although such algorithm seems to be reasonable, none algorithm
of the huge class of greedy algorithm needs to achieve the optimal value. On the other
hand, due to its simplicity, its computing demands are much lower than for its “precise”
version shown further.

Bilevel formulation of SCP. With respect to our assumption, denote T the set of all
time periods, i.e. T = {1, . . . , τ}. SCP in symbolic form written as a bilevel programming
problem is the following integer mathematical program with binary variables

minδ

∑
t∈T

∑
a∈A

ca(f
∗
ta(δta))f

∗
ta(δta)

s.t. f ∗ta(δta) ∈ argminfta
∑
a∈A

fta∫
0

ca(s) ds

fta =
∑
i∈C

xtia ∀a ∈ A,∀t ∈ T,
Axti = bti ∀i ∈ C, ∀t ∈ T,
xti ≥ o ∀i ∈ C, ∀t ∈ T,∑

a∈A (1− δta) = R ∀t ∈ T,
fta ≤ δtaM ∀a ∈ A,∀t ∈ T,
δta ∈ {0, 1} ∀a ∈ A,∀t ∈ T.
δTt δr = |A| − 2R ∀t, r ∈ T, t 6= r

(6.6)

The last condition ensures us the disparity of all R-closures, and thus the desired
property is ensured, that none street can be cleaned more times.

With respect to solution concept mentioned already in the previous section, we may
divide this huge bilevel problem into smaller NLP subproblems, that lead to finding a
best sequence of R-closures with respect to system optimum. Hence, we first concentrate
on finding the best sequence of closures for system optimum problem. According to page
58, now we solve the following mathematical program

minδ

∑
t∈T

∑
a∈A

ca(fta(δta))fta(δta)

s.t. fta =
∑
i∈C

xtia ∀a ∈ A,∀t ∈ T,
Axti = bti ∀i ∈ C,∀t ∈ T,
xti ≥ o ∀i ∈ C,∀t ∈ T,∑

a∈A (1− δta) = R ∀t ∈ T,
fta ≤ δtaM ∀a ∈ A,∀t ∈ T,
δta ∈ {0, 1} ∀a ∈ A,∀t ∈ T.
δTt δr = |A| − 2R ∀t, r ∈ T, t 6= r

(6.7)

The searched sequence of closures we observe as solution of (6.7).

Example 6.3.
As we mentioned above, the case of 1-closures is trivial, and we will concentrate on less
clear tasks. In order to keep the verity of equality |A| = τR = |T |R also for other closures,
we cannot show the SCP solution on our simple example with 7 arcs. Due to this fact, we

60

6. NETWORK DESIGN

consider a new graph given as below. Same as before, we suppose linear cost functions.
Concrete values and functions are given as follows

c1 = 8 + 3f1 c2 = 8 + 4f2 c3 = 10 + 2f3

c4 = 2 + 5f4 c5 = 6 + 4f5 c6 = 2 + 5f6

We assume the number of 20 drivers travelling from node n1 to n2.

c1 c2

c3 c4

c5 c6

n1

n3

n4

n5

n2

An SCP model

Obviously, in this special graph the solution of 2-closures sequence will always include
such closures of arcs, that compose a path. Truthfulness of this statement is supported by
our results. Problem implemented in GAMS is attached as myTAP6 scp, we just present
our output file containing all important solutions.

------------------Traffic Assignment Problem: myTAP6 SCP---------------------

t = 1 delta(I) = (0, 0, 1, 1, 1, 1)

t = 2 delta(I) = (1, 1, 1, 1, 0, 0)

t = 3 delta(I) = (1, 1, 0, 0, 1, 1)

Solution:

objout = 5284.00

objin = 3008.00

As mentioned, another approach is to use an greedy algorithm. By full enumeration
we get following results for any 2-closures (see folder myTAP6 scp enumeration for closer
view)

----------------------Traffic Assignment Problem: myTAP6 SCP enumer----------

Full enumeration:

closed arcs

1, 2 objout = 1780.0

1, 3 objout = 3760.0

1, 4 objout = 3760.0

1, 5 objout = 3040.0

1, 6 objout = 3040.0

2, 3 objout = 3760.0

61

6.4. STREET CLEANING PROBLEM

2, 4 objout = 3760.0

2, 5 objout = 3040.0

2, 6 objout = 3040.0

3, 4 objout = 1824.0

3, 5 objout = 3120.0

3, 6 objout = 3120.0

4, 5 objout = 3120.0

4, 6 objout = 3120.0

5, 6 objout = 1680.0

First, choose the cheapest closure, i.e. the closure (5,6). After that, find the second
cheapest closure. If it contains already used arc, then discard it. The second cheapest is
closure (1,2), and this forces the choice of the last one (3,4) irrespective of its cost. Total
cost of all flows in the sequence is 5284 as before. Thus in this case, our greedy algorithm
has found optimal solution, which is not always guaranteed.

Stochastic Street Cleaning Problem

Realize, that solution found in example 6.3 will remain optimal for any permutation of
closures. As we said, SCP (as multiple TAP problem) is linked to specific time period in
which the traffic volume remains constant. So far, primal assumption of problem 6.6 is,
that the vector bi has to be the same for every commodity in all period.

Now, we allow deviation in the number of drivers, which corresponds to stochastic
SCP formulation. In order to simulate a real situation, let the deviation be expressed by
a randomness. Moreover, let random vector ξt be associated to a specific time interval in
which we assume constant flow. Hereby, we can model the changes of flow in time, such
as rush hour or common traffic.

Let random vector ξt has known probability distribution for every t ∈ T . As before,
we suppose |A| = |T |R. Stochastic SCP with randomness appearing in right-hand-side
vector is formally written as following stochastic program

minδ

∑
t∈T

∑
a∈A

ca(f
∗
ta(δta))f

∗
ta(δta)

s.t. f ∗ta(δta) ∈ argminfta
∑
a∈A

fta∫
0

ca(s) ds

fta =
∑
i∈C

xtia ∀a ∈ A,∀t ∈ T,
Axti = bti(ξt) ∀i ∈ C,∀t ∈ T,
xti ≥ o ∀i ∈ C,∀t ∈ T,∑

a∈A (1− δta) = R ∀t ∈ T,
fta ≤ δtaM ∀a ∈ A,∀t ∈ T,
δta ∈ {0, 1} ∀a ∈ A,∀t ∈ T.
δTt δr = |A| − 2R ∀t, r ∈ T, t 6= r

(6.8)

As presented in chapter 5, we may reformulate this problem in various ways. Differences
between here-and-now and wait-and-see reformulations are given below.

Remark. Note, that for a specific random vectors ξt, t ∈ T, solution of problem 6.8 will
be unique for any permutation, and hereby closures must be made in a given order.

62

6. NETWORK DESIGN

Our computation are made on preceding SCP-example with 80 users and following
discrete probability distributions

ξ1 ∼ Ud(−30, 0), ξ2 ∼ Ud(−20, 20), ξ3 ∼ Ud(−40,−10).

WS approach. In wait-and-see deterministic reformulation, we solve problem 6.8 se-
parately for each realisation of randomness. In our case, for every sequence of realisations
(ξs1, . . . , ξ

s
|T |). Hereby, we assume the optimal closure to be function of random vector, i.e.

δ = δ(ξ1, . . . , ξ|T |). Formally rewritten, for a specific realisation, we just replace ξt by ξst
in program 6.8.

According to discussion in section 6.3, solution of 6.8 is given by solution of closure in
the outer problem

minδ

∑
t∈T

∑
a∈A

ca(fta(δta))fta(δta)

s.t. fta =
∑
i∈C

xtia ∀a ∈ A,∀t ∈ T,
Axti = bti(ξ

s
t) ∀i ∈ C,∀t ∈ T,

xti ≥ o ∀i ∈ C,∀t ∈ T,∑
a∈A (1− δta) = R ∀t ∈ T,

fta ≤ δtaM ∀a ∈ A,∀t ∈ T,
δta ∈ {0, 1} ∀a ∈ A,∀t ∈ T.
δTt δr = |A| − 2R ∀t, r ∈ T, t 6= r

(6.9)

Implementation of WS approach on problem 6.8 is attached in folder myTAP7. For
number of scenarios (for each period t ∈ T) we get optimal closures. Wait-and-see is from
the nature the best response to the randomness. We present just optimal solutions for 10
randomly generated scenarios, where objout is the total cost of SCP solution.

----------------------Traffic Assignment Problem: myTAP7-------------------

wait-and-see EV

||No. 1||

t = 1 delta(I) = (1, 1, 0, 0, 1, 1)

t = 2 delta(I) = (1, 1, 1, 1, 0, 0)

t = 3 delta(I) = (0, 0, 1, 1, 1, 1)

objout = 60182.00

objin = 31373.00

||No. 2||

t = 1 delta(I) = (1, 1, 0, 0, 1, 1)

t = 2 delta(I) = (1, 1, 1, 1, 0, 0)

t = 3 delta(I) = (0, 0, 1, 1, 1, 1)

objout = 59327.00

objin = 30971.50

||No. 3||

63

6.4. STREET CLEANING PROBLEM

t = 1 delta(I) = (1, 1, 0, 0, 1, 1)

t = 2 delta(I) = (1, 1, 1, 1, 0, 0)

t = 3 delta(I) = (0, 0, 1, 1, 1, 1)

objout = 63027.00

objin = 32863.50

||No. 4||

t = 1 delta(I) = (1, 1, 0, 0, 1, 1)

t = 2 delta(I) = (1, 1, 1, 1, 0, 0)

t = 3 delta(I) = (0, 0, 1, 1, 1, 1)

objout = 52778.00

objin = 27619.00

||No. 5||

t = 1 delta(I) = (1, 1, 0, 0, 1, 1)

t = 2 delta(I) = (1, 1, 1, 1, 0, 0)

t = 3 delta(I) = (0, 0, 1, 1, 1, 1)

objout = 43986.00

objin = 23111.00

||No. 6||

t = 1 delta(I) = (1, 1, 0, 0, 1, 1)

t = 2 delta(I) = (1, 1, 1, 1, 0, 0)

t = 3 delta(I) = (0, 0, 1, 1, 1, 1)

objout = 57443.00

objin = 30003.50

||No. 7||

t = 1 delta(I) = (1, 1, 0, 0, 1, 1)

t = 2 delta(I) = (1, 1, 1, 1, 0, 0)

t = 3 delta(I) = (0, 0, 1, 1, 1, 1)

objout = 40279.00

objin = 21213.50

||No. 8||

t = 1 delta(I) = (1, 1, 0, 0, 1, 1)

t = 2 delta(I) = (1, 1, 1, 1, 0, 0)

t = 3 delta(I) = (0, 0, 1, 1, 1, 1)

objout = 57018.00

objin = 29759.00

||No. 9||

t = 1 delta(I) = (1, 1, 0, 0, 1, 1)

t = 2 delta(I) = (1, 1, 1, 1, 0, 0)

t = 3 delta(I) = (0, 0, 1, 1, 1, 1)

objout = 55791.00

objin = 29155.50

||No.10||

t = 1 delta(I) = (1, 1, 0, 0, 1, 1)

64

6. NETWORK DESIGN

t = 2 delta(I) = (1, 1, 1, 1, 0, 0)

t = 3 delta(I) = (0, 0, 1, 1, 1, 1)

objout = 49239.00

objin = 25811.50

We see, that in our case for each scenario with known distributions the optimal closure
is the same. This is not a rule, and for an another network the solution may differ within
every scenario.

HN Expected value. As the first here-and-now approach, we conduct the EV approach
already mentioned on page 46. This approach consists in replacing the randomness by its
expected value. Hereby, we make a deterministic reformulation in sense of EV by simple
rewrite the demand condition into

Axti = bti(Eξt) ∀i ∈ C.
Recall, that expected value Eξt is assigned to specific time interval, i.e. to the t-th period.
According to results from the previous part, clearly we can write program solving the best
closure sequence as follows

minδ

∑
t∈T

∑
a∈A

ca(fta(δta))fta(δta)

s.t. fta =
∑
i∈C

xtia ∀a ∈ A,∀t ∈ T,
Axti = bti(Eξt) ∀i ∈ C,∀t ∈ T,
xti ≥ o ∀i ∈ C,∀t ∈ T,∑

a∈A (1− δta) = R ∀t ∈ T,
fta ≤ δtaM ∀a ∈ A,∀t ∈ T,
δta ∈ {0, 1} ∀a ∈ A,∀t ∈ T.
δTt δr = |A| − 2R ∀t, r ∈ T, t 6= r

(6.10)

Similarly to a general TAP reformulation solved in previous parts, the expected value
Eξt does not need to be an integer number. One can round this value, or (as we did) take
the value dEξte. In this way, we suppose “worse case” instead of ordinary rounding.

Solution and implementation in software GAMS is part of file myTAP7.gms. Here
we use the same randomly generated scenarios as in WS approach presented before. See
reached HN optimum below

----------------------Traffic Assignment Problem: myTAP7-------------------

here-and-now EV

Expected values: t1: -17.500, t2: 2.500, t3: -26.800

t = 1 delta(I) = (1, 1, 0, 0, 1, 1)

t = 2 delta(I) = (1, 1, 1, 1, 0, 0)

t = 3 delta(I) = (0, 0, 1, 1, 1, 1)

Solution:

objout = 53726.00

objin = 28111.00

65

6.4. STREET CLEANING PROBLEM

Also for HN EV approach, the sequence of closures is the same as in any WS solu-
tion. The problem of every HN is that we cannot change our mind after observation of
randomness. Thus, if wait-and-see would find a better closures, EV approach will ignore
this. But, take into account, the average of all WS solutions is a bit worse than our result
for HN. This is caused by a small number of scenarios, and by fact that realisations are
mostly symmetrical around the expected value with a big standard deviation.

HN Two-Stage with recourse. As shown in part 5.2, we can reformulate a stochastic
program into its RF deterministic reformulation by relaxing constraints. This relaxation
allows violation, which is penalised after the observation of randomness.

Same as before, we denote βti the direction of commodity i ∈ C in period t ∈ T , and
consider simple recourse. We allow demand deviation from value Axti by new variables
y+
ti and y−ti which are assigned after the realisation of random vector. Penalisation vector

qTt = (qt+, qt−)T may be the same for each period, or it may change during time. Here, pts
denotes probability P (ξt = ξst).

minδ

∑
t∈T

(∑
a∈A

ca(fta(δta))fta(δta) +
∑
s∈S

pts
∑
i∈C

qTt yti(ξ
s
t)

)

s.t. fta =
∑
i∈C

xtia ∀a ∈ A,∀t ∈ T,
y+
ti (ξ

s
t)βti − y−ti (ξst)βti = bti(Eξt)−Axti ∀i ∈ C,∀t ∈ T,

xti ≥ o ∀i ∈ C,∀t ∈ T,
yti(ξ

s) ≥ o ∀i ∈ C,∀t ∈ T,∑
a∈A (1− δta) = R ∀t ∈ T,

fta ≤ δtaM ∀a ∈ A,∀t ∈ T,
δta ∈ {0, 1} ∀a ∈ A,∀t ∈ T.
δTt δr = |A| − 2R ∀t, r ∈ T, t 6= r

(6.11)

Let assume constant penalisation in all periods, namely let qTt = (1000, 0)T for each
period t ∈ T . Hereby we mean “penalise only an overflow of the network.” This approach
should force the system to assume rather more than less drivers.

In such case, the total cost does not express the same value as in WS or HN EV. It
is just “our valuation” of a flow. We present also realisations of random vectors and flow
solution.

----------------------Traffic Assignment Problem: myTAP7 RF--------------

Two-stage with recourse

qplus qminus

t1 1000 0

t2 1000 0

t3 1000 0

Optimal closures:

t1 delta(I) = (0, 0, 1, 1, 1, 1)

t2 delta(I) = (1, 1, 1, 1, 0, 0)

66

6. NETWORK DESIGN

t3 delta(I) = (1, 1, 0, 0, 1, 1)

Solution:

objout = 61006.00

objin = 37525.00

Randomness realisations:

scen 1 t1: -25 t2: 20 t3: -29

scen 2 t1: -4 t2: 3 t3: -30

scen 3 t1: -13 t2: 20 t3: -36

scen 4 t1: -21 t2: 11 t3: -36

scen 5 t1: -21 t2: -15 t3: -22

scen 6 t1: -24 t2: 6 t3: -15

scen 7 t1: -20 t2: -14 t3: -33

scen 8 t1: -4 t2: -10 t3: -20

scen 9 t1: -28 t2: 7 t3: -16

scen10 t1: -15 t2: -3 t3: -31

Flow solution:

t1:

com1

arc1 0

arc2 0

arc3 37

arc4 37

arc5 30

arc6 30

t2:

com1

arc1 43

arc2 43

arc3 44

arc4 44

arc5 0

arc6 0

t3:

com1

arc1 33

arc2 33

arc3 0

arc4 0

arc5 27

arc6 27

67

6.4. STREET CLEANING PROBLEM

Comments on SCP

Simplifications in SCP. In our assumptions, we simplified all models in many respects.
One of this simplification was done by assuming the same probability distribution of
number of drivers for every commodity. We conducted all computations with uniformly
distributed volumes. Both these limitations are violated in real life - one street is blocked in
the morning, while an other all day long. Deviations of the traffic are measured discretely,
and distributions are given empirically, etc. Although all simplifications we made, in a
real-life application the models we presented would change only in details.

Computational demands. For a large scale networks, we should be interested in in-
crease of calculation efficiency. According to book [24], we may rewrite some conditions
to achieve better computational times. For example, following nonlinear condition

δTt δr = |A| − 2R ∀t, r ∈ T, t 6= r, (6.12)

can be linearised at the cost of restrictions grow. This dot product represents sum of |A|
products of type δtaδra. We replace each one of this members with a new binary variable
γta and constraints

δt + δr − γt ≤ 1 ∀t, r ∈ T, t 6= r (6.13)

δs − γt ≥ o ∀s ∈ T (6.14)

Equation 6.13 forces γta to be 1 if δta and δra are both 1. Equation 6.14 forces γta to be 0
if either δta or δra take the value 0. Then the condition 6.12 can be written as

∑

a∈A

γta = |A| − 2R ∀t ∈ T.

In models implemented in GAMS we did not use such linearisation, because of small
instances of networks.

68

6. NETWORK DESIGN

Conclusion
In this thesis, we described the well-known Minimal Cost Network Flow problem

(MCF), which is generalised for multiple commodities. As a special case of this multi-
commodity flow problems, we deal with TAP (Traffic Assignment Problem). TAP is a
real-life application of network flow. It performs a modified variation of Multicommo-
dity Flow problem which is nonlinear. This fact, and the linkage between TAP and game
theory, make this pattern more complicated and complex.

As presented in section 4.3, there are two different points of view how to deal with
such a problem as TAP. One insight is through network flow problems, which leads to
best possible utilization of the system. This means, with respect to the objective of TAP,
the average time driver needs to traverse a network is minimized. Because of the nature of
individualities, drivers are not satisfied with such solution, and disturb the flow by their
own decisions. We concentrate ourself on Beckmann’s model that supposes cost function
to be nondecreasing, continuous, nonnegative, and convex. Section 4.3 is focused on pre-
senting differences between both approaches, and these are shown on a small instance of
a network.

In the main part of the thesis, we focus on improvements of TAP, such as influence
of randomness. We provide deterministic reformulations of given problems, where rando-
mness appears in the cost functions or in the volume of drivers. In the first case, the results
clearly show how good is the solution of here-and-now (HN) approach. Since wait-and-
see (WS) approach is the best response for each realisation of random vector, naturally
we compare HN with WS (see the table below). The comparison tool we use is price of
anarchy ρ coefficient.

Eρ varρ

original task 1.01025 —
here-and-now 1.03706 0.00004
wait-and-see 1.01381 0.00014

We supposed symmetrical probability distribution with expected value equal to zero. The
table shows us, how bad is the solution if we must decide before observing the realisation.
WS exactly answers the observation, and under our assumptions, its expected price of
anarchy converges to that from original problem. This is not the case of HN approach -
price of anarchy is high with a low deviation (i.e. this is relatively precise expectation).

For a randomness in the right-hand-side vector, we use two-stage reformulation of the
problem. Flow conservation is relaxed in order to achieve deterministic program. New
variables are added, which express the violation of the constraint, and this is penalised.
Because of the nature of problem, the lack of drivers in the network does not need to be
penalised at all. We set this penalisation to be negative. Compare result observed solving
task by different reformulations

Eρ

original task 1.01025
here-and-now EV 1.01025

here-and-now TS with recourse 1.574751
wait-and-see 1.01250

69

6.4. STREET CLEANING PROBLEM

Referring to the discussion of recourse model, we present just the first model with
penalisation coefficients q+ = 70, q− = −20. A lower price of anarchy can be achieved
by tightening penalisation conditions. HN approach shows the best expected result. This
conclusion can be vague due to replacement the expected value by the its ceiling value.

In the last part, we shortly discuss result reached by Braess and Roughgarden, and we
focus on Street cleaning problem. We define this task as problem of the best sequence of
closing arcs in the network. This is formally shown to be a bilevel programming problem.
After randomness is applied, we get results for various deterministic reformulations as
follows

total cost

wait-and-see average 53907
here-and-now EV 53726

here-and-now TS with recourse 61006

In fact, recourse reformulation corresponds to two-stage bilevel programming problem,
which is as same as the other SCP task solvable in easier way. Results presented above
show, that the average WS solution is worse than EV. This is not disturbing, since from
the nature WS is the best response to each realisation of randomness. Such a deflection
may be caused by small number of scenarios whose realisations lie symmetrically around
the expected value, but with a relatively high standard deviation.

An interesting result is given by solution of two-stage HN reformulation. Here (see
chapter 6), the optimal sequence of closures differ from WS- or EV-approach, respectively.

Although we present some transformations for linearising nonlinear constraints in SCP,
computational demands may still remain very high. For a future research we recommend
concentration on heuristic algorithms, which may achieve solution near to an optimal in
much shorter time. After that, other additional restrictions may be supposed, and the
computation time will not be so much affected.

70

REFERENCES

References
[1] AKELLA, M. R. Unimodularity and Total Unimodularity. In: [online]. University

of Buffalo, 2001, course materials [cit. 2012-05-01]. Dostupné z: http://www.acsu.
buffalo.edu/~nagi/courses/684/Unimodularity.pdf

[2] BAZARAA, M. S., J. J. JARVIS a H. D. SHERALI. Linear Programming and Ne-
twork Flows. 4th edition. Hoboken, New Jersey: John Wiley, 2010. ISBN 978-0-470-
46272-0.

[3] BAZARAA, M. S., H. D. SHERALI a C. M. SHETTY. Nonlinear Programming:
theory and algorithms. 3rd edition. Hoboken, New Jersey: John Wiley, 2006. ISBN
978-0-471-48600-8.

[4] BECKMANN, M., C. B. McGUIRE a C. B. WINSTEN. Studies in the Economics of
Transportation. [online] Introduction by T.C. Koopmans. New Haven: Yale University
Press, 1956. 232 s. 2011 [cit. 2012-05-01] Dostupné z: http://cowles.econ.yale.
edu/archive/reprints/specpub-BMW.pdf

[5] BRAESS, D. Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung
[online]. 1968, č. 12, s 258-268 [cit. 2012-05-01]. Dostupné z: http://homepage.

ruhr-uni-bochum.de/dietrich.braess/#eng

[6] CHUDAK, F. A., et al. Static Traffic Assignment Problem. A comparison between
Beckmann (1956) and Nesterov & de Palma(1998) models. 7th Swiss Transport Re-
search Conference. Monte Verita/Ascona, 2007.

[7] ČECHOVÁ, D. Network Interdiction. Brno, 2006. Diploma thesis. Brno University
of Technology. Vedoućı práce Pavel Popela.

[8] DAFERMOS, S. C. a F. T. SPARROW. The Traffic Assignment Problem for a
General Network. Journal of Research of the National Bureau of Standards [online].
National Bureau of Standards, 1969, 73B, č. 2, s. 91 [cit. 2012-05-01]. ISSN 0098-
8979. Dostupné z: http://cdm16009.contentdm.oclc.org/cdm/compoundobject/
collection/p13011coll6/id/64392/rec/17

[9] DANTZIG, G. B. a M. N. THAPA. Linear programming: Introduction. New York:
Springer, 1997. ISBN 0-387-94833-3.

[10] DEMEL, J. Grafy a jejich aplikace. Vyd. 1. Praha: Academia, 2002, 257 s. ISBN
80-200-0990-6.

[11] DEMPE, S. Foundations of Bilevel Programming. Dordrecht: Kluwer Academic Pu-
blishers, 2002. Nonconvex Optimization and Its Applications, Vol. 61. ISBN 1-4020-
0631-4

[12] FONIOK, J. Integer programming: course [online]. ETC Zurich, 2010, Chapter
8, 2012 [cit. 2012-05-01]. Dostupné z: http://www.ifor.math.ethz.ch/teaching/
lectures/integer_prog_ss10/

71

http://www.acsu.buffalo.edu/~nagi/courses/684/Unimodularity.pdf
http://www.acsu.buffalo.edu/~nagi/courses/684/Unimodularity.pdf
http://cowles.econ.yale.edu/archive/reprints/specpub-BMW.pdf
http://cowles.econ.yale.edu/archive/reprints/specpub-BMW.pdf
http://homepage.ruhr-uni-bochum.de/dietrich.braess/#eng
http://homepage.ruhr-uni-bochum.de/dietrich.braess/#eng
http://cdm16009.contentdm.oclc.org/cdm/compoundobject/collection/p13011coll6/id/64392/rec/17
http://cdm16009.contentdm.oclc.org/cdm/compoundobject/collection/p13011coll6/id/64392/rec/17
http://www.ifor.math.ethz.ch/teaching/lectures/integer_prog_ss10/
http://www.ifor.math.ethz.ch/teaching/lectures/integer_prog_ss10/

REFERENCES

[13] FUDENBERG, D. a J. TIROLE. Game theory. Cambridge: MIT Press, 1991, 579 s.
ISBN 0-262-06141-4.

[14] GAMS. Solver Descriptions [online]. [cit. 2012-05-01]. Dostupné z: http://www.

gams.com/solvers/solvers.htm

[15] HRABEC, D. Modely stochastického programováńı pro inženýrský návrh. Brno, 2011.
Diplomová práce. Vysoké učeńı technické v Brně. Vedoućı práce Pavel Popela.

[16] KALL, P. a S. W. WALLACE. Stochastic Programming. New York: Wiley, 1995, 307
s. ISBN 0-471-95158-7.

[17] MIKULÁŠEK, K. Grafy a algoritmy: studijńı materiály. In: ÚM FSI VUT v Brně [on-
line]. 2011 [cit. 2012-05-01]. Dostupné z: http://www.math.fme.vutbr.cz/default.
aspx?catalog=3&catsrtext=11&catsrfield=38

[18] ROSENTHAL. GAMS - A User´s Guide [online]. 2008, 2008 [cit. 2012-05-01]. Do-
stupné z: http://www.gams.com/dd/docs/bigdocs/GAMSUsersGuide.pdf

[19] ROUGHGARDEN, T. Selfish Routing and the Price of Anarchy. In: [online]. Stand-
ford University, 2006 [cit. 2012-03-21]. Dostupné z: http://theory.stanford.edu/

~tim/papers/optima.pdf

[20] SCHRIJVER, A. Theory of linear and integer programming. Chichester: Wiley, c1986,
471 s. ISBN 0-471-98232-6.

[21] WARDROP, J. G. Some theoretical aspects of road traffic research. Institute of Civil
Engineers, 1952. Proceedings, Part II, Vol.1, 378 s.

[22] WASHBURN, A. a K. WOOD. Two-person zero-sum games for network interdiction.
Operations Research [online]. 1995, Vol. 43, s. 243-251, 2003 [cit. 2012-05-01]. Do-
stupné z: http://faculty.nps.edu/kwood/docs/WashburnWood.pdf

[23] John Glen Wardrop. In: Wikipedia: the free encyclopedia [online]. San Francisco (CA):
Wikimedia Foundation, 2012 [cit. 2012-05-01]. Dostupné z: http://en.wikipedia.
org/wiki/John_Glen_Wardrop

[24] WILLIAMS, H. P. Logic and Integer Programming. 1st edition. New York: Springer,
2009. ISBN 978-0-387-92279-9.

[25] Fundamentals of Transportation/Route Chioce. In: Wikipedia: the free encyclope-
dia [online]. San Francisco (CA): Wikimedia Foundation, 2012 [cit. 2012-05-01]. Do-
stupné z: http://en.wikibooks.org/wiki/Fundamentals_of_Transportation/

Route_Choice#Example_1

[26] What if They Closed 42d Street and Nobody Noticed?. THE NEW YORK TI-
MES. [online]. [cit. 2012-05-01]. Dostupné z: http://www.nytimes.com/1990/12/

25/health/what-if-they-closed-42d-street-and-nobody-noticed.html

72

http://www.gams.com/solvers/solvers.htm
http://www.gams.com/solvers/solvers.htm
http://www.math.fme.vutbr.cz/default.aspx?catalog=3&catsrtext=11&catsrfield=38
http://www.math.fme.vutbr.cz/default.aspx?catalog=3&catsrtext=11&catsrfield=38
http://www.gams.com/dd/docs/bigdocs/GAMSUsersGuide.pdf
http://theory.stanford.edu/~tim/papers/optima.pdf
http://theory.stanford.edu/~tim/papers/optima.pdf
http://faculty.nps.edu/kwood/docs/WashburnWood.pdf
http://en.wikipedia.org/wiki/John_Glen_Wardrop
http://en.wikipedia.org/wiki/John_Glen_Wardrop
http://en.wikibooks.org/wiki/Fundamentals_of_Transportation/Route_Choice#Example_1
http://en.wikibooks.org/wiki/Fundamentals_of_Transportation/Route_Choice#Example_1
http://www.nytimes.com/1990/12/25/health/what-if-they-closed-42d-street-and-nobody-noticed.html
http://www.nytimes.com/1990/12/25/health/what-if-they-closed-42d-street-and-nobody-noticed.html

REFERENCES

List of used symbols

a, b, c scalars, coefficients
x, y, w variables, unknowns
A,B,C sets
∅ empty set
N,Z,R sets of positive integers, integers, and real numbers
a,b, c column vectors of coefficients
x,y,w column vectors of variables
A,B,C matrices (aij), (bij), (cij) of specified size
I identity matrix
0 zero matrix of specified size
o column zero vector
det A determinant of matrix A
G = (N,E) graph defined by set of nodes and set of edges
G = (N,A) graph defined by set of nodes and set of arcs
s. t. abbreviation for “subject to”
X,X∗ feasible set, set of optimal points
argminx{f(x)|x ∈ X} set of optimal points (other notation)
f ∗ = minx f(x) optimal value of function f
z objective function
z∗,x∗ optimal value of objective function,

optimal point (i.e. x∗ ∈ X∗)
C set of commodities
f, fa flow, flow on arc a
ξ, ξs random vector and its realisation
Ξ support of random vector ξ
S finite set of scenarios (support Ξ with finite cardinality)
Eξ expected value of random vector ξ
varξ variance of random vector ξ

73

A. Game Theory Background
This part presents some main ideas of game theory (see [13]), which are related to the

concept of user equilibrium (UE), or Wardrop equilibrium, discussed in this thesis. The
reader may compare perception of UE existence from different sides - from logical and
native way it is just a conflict between decision makers, but from the game theoretical
point of view, we may see deeper structure of the decision process.

We focus just on one part, where we consider games as normal games of complete
information. Hereby, we presume all users (or players) have full knowledge about the
game situation and about all possible decisions of other users. Moreover, all decision are
made in the same time, or without knowing the actions of the other.

Definition A.1 (Normal-form representation game).
A normal-form game of n-players is defined by three elements: the set of players P (which
we take to be finite set), the set of strategy space Si of i-th player, and set of payoff function
ui(s) of i-th player. The payoff function assigns to each combination s = (s1, s2, . . . , sn)
of strategies si ∈ Si a real number.

Further, we refer to i-th player opponents by denotation −i (i.e. all player except i-th).
To avoid misunderstanding, the aim of each user is not to beat other users. Rather, each
users’ objective is to maximize his payoff.

Definition A.2 (Strictly dominated strategy).
In the normal-form game, let s′i, s

′′
i ∈ Si be strategies for player i. Strategy s′i is strictly

dominated by strategy s′′i if, for each combination of the other players’ strategies, it fulfils

ui(s1, . . . , si−1, s
′
i, si+1, . . . , sn) < ui(s1, . . . , si−1, s

′′
i , si+1, . . . , sn)

Definition A.3 (Mixed strategy).
Suppose a game in normal-form, where Si = {si1, . . . , siK}. The mixed strategy for player
i is a probability distribution pi over all his strategies, i.e. pi = (pi1, . . . , piK) such that
0 ≤ pik ≤ 1, for k = 1, . . . , K, and

∑K
k=1 pik = 1.

A strategy si ∈ Si is mostly called pure strategy. The meaning of a mixed strategy is to
play a pure strategy with a given probability. Combination of mixed strategies (p1, . . . , pn)
of all players is called mixed strategy profile, and we denote it simply by p.

Definition A.4.
A mixed strategy profile p∗ is a Nash equilibrium if, for all players i

ui(p
∗
i , p
∗
−i) ≥ ui(si, p

∗
−i) ∀si ∈ Si.

Thus at Nash equilibrium no player can only make his payoff worse by choosing other
strategy. This equilibrium may be achieved by combination of pure or mixed strategies.

Prove of following theorem can be found for example in [13].

Theorem A.1 (Nash 1950).
In any finite normal-form game there exists at least one Nash equilibrium, possibly invol-
ving mixed strategies.

This key theorem exactly corresponds to user equilibrium used in this thesis. In an UE,
deflecting from an optimal solution results in higher cost, which is the same principle as
here. Its can be shown, that user equilibrium converges to Nash equilibrium for increasing
number of users in a network.

B. GAMS
GAMS (General Algebraic Modeling System) is widely used optimization software,

which solves various types of mathematical programs. It consists of a language compiler
and a stable of integrated high-performance solvers. GAMS is specifically designed for
modelling linear, nonlinear and mixed integer optimization problems. This chapter is
based on [18]. We shortly describe the programming language, solver BARON used to
solve nonlinear integer programs, and some properties to understand all the models used
in the thesis. For this purpose, let us explain the model introduced in section 4.5.

Model Structure in Software GAMS

The basic components of GAMS model are

• Sets

Declaration

Assignment of members

• Data, i.e. Parameters, Tables, Scalar

Declaration

Assignment of values

• Variables

Declaration

Assignment of types

• Assignment of bounds and/or initial values (optional)

• Equations

Declaration

Definition

• Model and Solve statement

• Display statement (optional)

GAMS statements may be laid out typographically in almost any style, including
multiple lines per statement, blank lines, and multiple statements per line. Each statement
should be terminated with a semicolon. The GAMS compiler does not distinguish between
upper- and lowercase letters.

Sets. In the code below, we declare three sets and gave them names I, N and J . This
is followed by the label (optional) and enumeration of the set. Similar as in the further
statements, we may declare one component using the keyword in singular, or multiple
components using plural. Thus, we can write

sets I set of arcs /arc1*arc7/

N set of nodes /node1*node4/

J set of commodities /com1,com2/;

or also

set I set of arcs /arc1*arc7/ ;

set N set of nodes /node1*node4/;

set J set of commodities /com1,com2/ ;

Set J is given by its full enumeration, I contains all members arc1, arc2, . . . , arc7. In
models, that are concerned with interactions of elements within the same set, is useful
to rename an already declared set. We may mark the set I by I ′. This is served by the
statement

Alias (I,Iprime) ;

Data. Data in GAMS are entered by list using Parameters statement, by Tables, or
by direct assignment.

parameter FreeTime(I) free travel time of arc i

/arc1 8, arc2 8, arc3 10, arc4 2, arc5 6, arc6 2, arc7 3/;

parameter Beta(I) multiplication coeficient of arc i

/arc1 3, arc2 4, arc3 2, arc4 5, arc5 4, arc6 5, arc7 4/;

Here data are entered as indexed parameter FreeT ime(I), and values simply are listed.
A particular assignment is separated by comma or newline. Zero is the default value of
all parameters. A scalar is regarded as parameter without any domain. (Since section 4.5
does not contain declaration of scalar, let show an arbitrary example.)

scalar T average time /100/ ;

The effect of a table is to declare a parameter, and to specify its domain as the set of
ordered pairs. The values are given in this statement under the appropriate heading. If
there are blank entries in the table, they are interpreted as zeros.

table A(N,I) incidence matrix

arc1 arc2 arc3 arc4 arc5 arc6 arc7

node1 1 -1 1 1

node2 -1 1 1

node3 -1 -1 1 -1

node4 -1 -1 1 ;

When data values are to be calculated, you first declare the parameter (i.e. give it a
symbol and, optionally, index it), then give its algebraic formulation. GAMS will auto-
matically make the calculations.

parameter 3Beta(I) three times Beta-parameter ;

3Beta(I) = Beta(I) * 3 ;

Variables. The decision variables must be declared within the Variables statement.
Each variable is given a name, a domain if appropriate (never for objective function), and
an optionally text.

variables x(I,J) flow through arc i of com. j

zOS SO-total time cost

zUE UE-total time cost

f(I) total flow through arc i;

integer variable x;

Each variable must be assigned a type: Free, Positive, Negative, Binary, or Integer. The
default is Free.

Equations. Format of the equation declaration is the same as for other GAMS entities.
First comes the Equations statement, followed by the name and the domain, terminated
with optional text.

equations costSO SO-objective function

flowCon(N,J) flow conservation constraint

costUE UE-objective function

flow(I) flow through arc i;

Equations are defined as in the example below. First comes the name of the equation
being defined, its domain, optionally the domain restrictions, and the symbol “..” of two
dots. After that is written the expression: the left-hand side, in/equality relation, and the
right-hand side. Variables can appear on arbitrary side of the equation, or both. GAMS
uses these three relation symbols

≤ . . . =l=

= . . . =e=

≥ . . . =g=

flow(I).. f(I) =e= sum(J, x(I,J));

costSO.. zOS =e= sum(I,(FreeTime(I)+Beta(I)*f(I))*f(I));

costUE.. zUE =e= sum(I,(FreeTime(I)+Beta(I)*f(I)/2)*f(I));

flowCon(N,J).. sum(I,A(N,I)*x(I,J)) =e= Demand(N,J);

Objective function. GAMS has no special entity by default referring to objective
function. The function to be minimized is declared as scalar variable (variable without
any domain), which is free.

Model and Solve statements. The statement Model in principle refers to a set of
equations. Declaration of the model must contain its name and list of equations in slashes.
For including all defined equations, we just type /all/

model tapOS /costSO, flow, flowCon/;

model tapUE /costUE, flow, flowCon/;

Once a model is declared, it can be solved with solve statement. The format of solve is
following

• the keyword solve

• the name of the model to be solved

• the keyword using

• solver to use (lp fo linear programming, nlp for nonlinear prog., mip for mixed
integer prog., minlp for mixed integer nonlinear prog.,etc.)

• the keyword minimizing or maximizing

• the name of the variable to be optimized

solve tapOS using minlp minimizing zOS ;

Display statement. The optimal values of variables can be displayed with the state-
ment display followed by variable.l, variable.m, for primal or dual variables, respectively.

display x.l,zOS.l;

Solvers

BARON Due to typical TAP usage, we have to solve a special mathematical program.
For this task we use in GAMS solver named BARON (The Branch-And-Reduce Optimi-
zation Navigator). BARON is solver for the global solution of nonlinear and mixed-integer
programs , with no starting point needed.

BARON implements algorithms of the branch-and-bound type enhanced with a variety
of constraint propagation and duality techniques for reducing ranges of variables in the
course of the algorithm (see [14]). In addition to multiplication and division, BARON can
handle as exponential, logarithmic, polynomial function, so function of absolute value,
etc.

DICOPT Solver DICOPT uses a standard GAMS MIP and NLP solvers to solve the
MIP and NLP subproblems generated by the algorithm. This means that in order to use
DICOPT we need to use a MIP solver and a NLP solver.

ALPHAECP ALPHAECP is a solver based on the extended cutting plane method.
The solver can be applied to general mixed integer nonlinear programming problems and
global optimal solutions can be ensured for pseudo-convex MINLP problems.

C. What is on CD
All presented problems have been implemented in software GAMS (see appendix B).

Each folder contains an output file, usually called OUT.txt, which summarizes all results.
The appropriate folders containing also code in GAMS are included to this thesis in
following order:

• Jan Holesovsky Masters Thesis 2012.pdf

This thesis in PDF format.

• myTAP1

Implementation of “One simple model” from page 33.

• myTAP2

Implementation of wait-and-see and here-and-now deterministic reformulation
of stochastic programming problem with random vector in objective function (see
subsection 5.2).

• myTAP3

Implementation of wait-and-see and here-and-now deterministic reformulation
of stochastic programming problem with random vector in right-hand-side vector
(see subsection 5.2).

• myTAP4

Stochastic program with randomness in constraint solved as two-stage problem
with recourse.

• myTAP5

Implementation of the R-closure problem from page 55.

• myTAP5 enumeration

The best R-closure problem solved by full enumeration. Folder contains GAMS
file myTAP5 enumer and output in file OUT.txt.

• myTAP scp

Implementation of street cleaning problem (see page 60).

• myTAP scp enumeration

Implementation of street cleaning problem solved by full enumeration.

• myTAP 7

Wait-and-see and here-and-now expected value approaches applied on street
cleaning problem.

• myTAP7 RF

Two-stage deterministic reformulation of stochastic SCP with recourse.

	Introduction
	Basics of the Graph Theory
	Definition of a Graph
	Walk, Path and Simple Path
	Weighted Graph and Network
	Incidence Matrix of a Graph

	Mathematical Programming
	Linear Programming
	Integer Programming
	Nonlinear Programming

	Network Flow
	Minimal Cost Network Flow
	Multicommodity Minimal Cost Network Flow
	Traffic Assignment Problem
	Static Traffic Assignment Problem
	Example of Static TAP in GAMS

	Improved TAP
	Stochastic Programming
	Stochastic TAP

	Network Design
	Braess Paradox and Related Problems
	Bilevel Programming
	Bilevel Reformulation of R-closure
	Street Cleaning Problem

	Conclusion
	References
	List of used symbols
	Game Theory Background
	GAMS
	What is on CD

