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Abstract

In quantum optics, the main object of interest is the individual energy quanta of light, photons.
Every modern quantum photonics experiment hinges on the ability to generate, detect, and manip-
ulate the states of light at the single-photon level. One of the most essential questions is unveiling
the nature of light from the perspective of its statistical properties. Photon statistics characteriza-
tion relies on the capability to distinguish, detect, and count individual photons. As a consequence,
the scientific community has devoted significant effort to accomplishing photon-number resolution
by various detection approaches employing different physical phenomena. Nowadays, photon-
number-resolving detectors represent the rapid advancement of the field of light detection with
tremendous interdisciplinary application potential.

The aim of this dissertation is to design and experimentally develop an ultra-precise detec-
tion technique for measuring the photon statistics of an unknown optical signal and its statistical
correlations. Developed measurement workflow free of systematic errors consists of a reconfigur-
able photon-number-resolving detector, custom electronic circuitry, and a novel data processing
algorithm. The result opens new paths for optical technologies by providing access to the photon-
number information without the necessity of full detector tomography. It also aims to directly
evaluate key quantities such as correlation functions and nonclassicality metrics rather than full
tomography of the photon statistics.

Furthermore, the Thesis presents the application of the precise measurement of photon stat-
istics to characterize the physical processes that generate the optical signal, modify the statistical
properties of quantum states of light, and characterize single-photon detectors. It was possible
to successfully detect chaotic, classical, nonclassical, non-Gaussian, and negative-Wigner-function
light. Modifying the statistical properties of light was achieved by subtracting individual photons
from the thermal states of light. The thesis also presents methods of conditional and deterministic
preparation of classical states of light out of thermal equilibrium, which can be employed as useful
sources for future experiments in the field of quantum thermodynamics. Finally, a method for cer-
tifying two highly non-classical properties of quantum detectors - quantum non-Gaussianity and
negativity of the Wigner function - is presented. In this approach, the role of measurement and
state is reversed with respect to the standard certification of the quantum non-Gaussian character
of quantum states.

Keywords: Photon; statistics of light; counting statistics; single-photon detector; photon-number-
resolving detector; photon subtraction; quantum non-Gaussianity.
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Anotace

Hlavnim objektem zajmu v kvantové optice jsou jednotliva energeticka kvanta elektromagnet-
ického zafeni, fotony. Moderni kvantova fotonika stoji na experimentalnich technikach generace,
detekce a manipulace se stavy svétla na Grovni jednotlivych fotonl. Jednou z nejvyznamnéjsich
charakteriza¢nich metod je zkoumani svétla z hlediska jeho statistickych vlastnosti. Méfeni fo-
tonové statistiky libovolného stavu svétla se opira o schopnost rozlisovat mezi jednotlivymi fotony
a urcovat jejich pocet. Védecka komunita vénovala mnoho Gsili, aby dosahla rozliseni poctu fotoni
pomoci rozli¢nych detekénich pFistupt. Detektory s rozlisenim poctu fotont posouvaji hranice v
oblasti pokrocilé detekce svétla a se svym velkym mezioborovym aplika¢nim potenciilem se staly
technologickou $pickou.

Cilém disertacni prace je navrh a experimentalni realizace ultrapfesné detekéni techniky méfeni
statistiky poctu fotond neznamého optického signalu a jeho korelacnich vlastnosti. Vyvinuta de-
tekéni technika je nezkreslena systematickymi chybami, coZ je revoluéni vlastnost, jiz nedosahuji
ani kryogenické detektory na bazi supravodivého pfechodu. Detekéni technika byla ovéfena exper-
imentalné pro desitky ruznych statistik svétla véetné neklasickych zdroji a vypocetné pro desetit-
isice numericky simulovanych optickych signali. Metoda je skalovatelna a nevyzaduje naro¢nou
charakterizaci detektoru nebo korekce nedokonalosti detektoru, coz fesi dlouhodobé existujici pro-
blém detekce statistiky svétla nezavislé na detekénim zafizeni.

Precizni méfeni statistiky poétu fotont se v predlozené praci vyuziva k charakterizaci typu
procesu generace svétla, k cilené modifikace statistickych vlastnosti kvantovych stavii svétla a
k charakterizaci jednofotonovych detektort. Podafilo se Gspésné kvantifikovat svételné zdroje
chaotického, klasického, neklasického a negaussovského svétla. Modifikace statistickych vlastnosti
svétla bylo docileno subtrakei jednotlivych fotoni z termalnich stava svétla. Prace uvadi metody
podminéné a deterministické pfipravy klasickych stavi svétla mimo termodynamickou rovnovahu
za Ucelem demonstrace kvantovych termodynamickych jevii. Déle je prezentovana metoda certi-
fikace dvou vysoce neklasickych vlastnosti jednofotonovych detektort - kvantové negaussovosti a
negativity Wignerovi funkce. V diskutovaném pfistupu je role méfeni a stavu obracena s ohledem
na bézné testovani negaussovského charakteru kvantovych stavi.

Klicova slova: foton, statistické vlastnosti svétla, detekéni statistika, jednofotonovy detektor, jed-
nofotonovy detektor s ¢aste¢nym rozlisenim poctu fotont, subtrakce fotont, kvantova negaussov-
ost
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Preface

My interest in optics goes back to my high school years. In the early stage of my bachelor’s studies,
I have joined the research group Quantum Optics Lab Olomouc, especially the photonic sources
& detectors team. Under the co-supervision of Miroslav Jezek, I have actively participated in re-
search projects of the lab. I started working on experimental research in the field of detection of
single photons, photon-number-resolving techniques, and characterization of sources of light at the
single-photon level. Our scientific efforts resulted in the development of an efficient workflow for
photon-number detection of arbitrary optical signals with unprecedented accuracy (fidelity > 0.999)
and a dynamic range of photon-number resolution up to 50. We also developed a method for direct
verification of the highly nonclassical features of optical quantum measurements, such as quantum
non-Gaussianity and the negativity of the Wigner function. Simultaneously, this experimental dir-
ection has been supported by my collaborations in quantum optics theory with supervisor Radim
Filip and Jaromir Fiurasek.

This Thesis comprehensively presents mostly experimental outcomes based on the results a-
chieved during my post-graduate studies at the Department of Optics, Faculty of Science, Palacky
University, Olomouc. All of the results presented henceforth was conducted in the Quantum Optics
Lab Olomouc. The presented Thesis is based on five published publications denoted in List of
publications under [A1-A3, C1, C2]. The Thesis also uses other results achieved in ongoing projects
whose manuscripts [P1, P2] are in preparation at the time of writing.

To bring the reader closer to the contribution of the presented experimental work, I aim to give
a review of the experimental implementations and applications of single-photon detection and
resolving the number of photons. I believe this Thesis will be of broad interest primarily to scient-
ists working in the fields of quantum foundations, quantum information processing and quantum
communication. Presented detection workflow can also be directly translated to other experimental
platforms like emerging biomedical imaging and particle-tracking techniques. Moreover, the com-
munity dealing with a conditioned modification in photon statistics to achieve the required prop-
erties of measured light should appreciate the contribution of the presented results.

Olomouc Josef Hlousek

December 2022 hlousek@optics.upol.cz
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Chapter 1

Introduction

In recent decades, a large part of the quantum optics community has focused on developing and
characterizing single-photon light sources and detectors. It has been almost 90 years since the
demonstration of the devices exhibiting single-photon sensitivity [1-3]. This major breakthrough
initiated a multitude of new developments and technical improvements in single-photon technolo-
gies [B1-B5, 4-12]. Specifically, it includes quantum photonics technologies for single-photon gen-
eration [13-25], manipulation [26-36], and detection [37-74]. Appropriate detection techniques
are necessary to determine the quality of the methods for generating quantum states of light. The
generation of single photons goes hand in hand with their accurate detection, and technological
progress in one of these disciplines will inevitably contribute to innovation in the other.

In general, single-photon detector (SPD) approaches are based on a proportional conversion
of absorbed photons to current or voltage pulses, which are amplified and measured. These well-
defined detector output signals “clicks” are collected and processed by electronic counting devices
whose functionality solely depends on the used application. The growth of the optical network
complexity in photon-consuming applications, such as multi-photon boson sampling [75-79], high-
dimensional entanglement [80-85], and multi-photon qubits quantum information processing [86—
88], motivates the research for detection technology improvements to process a high number of
photons in the explored signal. Nowadays, highly efficient low-noise single-photon detectors are
still merging as important devices for realizing many photonic applications [33, 89-101], both clas-
sical and quantum. However, studying and exploiting quantum properties of light rely on precise
measurement and manipulation of light at the single-photon level. One of the critical requirements
allowing this research area is the capability to detect and count individual photons. Of particular
interest are the advanced detection techniques that make possible to distinguish the exact number
of photons arriving at the detector. As indicated, the growing demand in modern quantum physics
experiments for this type of information about the statistical properties of light drives the current
effort to improve these advanced detection technologies.

Conventional single-photon detection concepts are primarily sensitive to the presence of light
without any information about the number of input photons [B2, B4, B5, 5, 6, 8-12, 102]. Nev-
ertheless, even these detection devices can be employed in a temporal or spatial configuration to
obtain photon-number resolution [50, 64, 103-109]. In addition, the development of a new class of
detectors based on superconducting materials has demonstrated inherent sensitivity to individual
numbers of photons [B2, 38, B6]. These devices significantly outperform all existing single-photon
detectors in detection efficiency and timing jitter. Advanced photon-number-resolving detectors
(PNRDs) found their broadwise applicability in modern optical experiments benefits from the count-
ing individual photons of the optical signal. The knowledge of photon-number statistics allows for



2 OUTLINE

exploring the statistical properties of an unknown state of light required for the complete classific-
ation of optical sources. Photon-number resolution is a pivotal problem of quantum technology,
impacting quantum metrology [110, 111], information processing [86-88, 112], and imaging [113].
The measurement of the statistical properties of light is a condition of secure communication [114]
and quantum simulation. Furthermore, novel super-resolving emitter counting techniques will in-
corporate quantum statistics and correlations into classical super-resolving imaging. The recent
progress in integrated photonics transforms SPDs and PNRDs into feasible technology for integ-
rated quantum photonic systems [21, 22, 52, 58, 59, 62, 63, 65, 69, 71, 112, 115-120]

1.1 OQOutline

This Thesis covers most of the experiments and results of scientific research, which were realized
during my Ph.D. study. My research is primarily focused on the precise measurement and condi-
tional and deterministic modulation of quantum statistics of light using a photon-number resolving
detector. Additionally, this type of detection device is employed in a novel direct experimental cer-
tification of the non-Gaussianity of the quantum optical detectors, namely single-photon avalanche
diodes.The Thesis has in total five chapters organized as follows.

First, I start with the key goals and objectives of the presented research (Section 1.2), its chal-
lenges, further improvements, and its applicability in modern quantum experiments. Special em-
phasis is given to provide adequate information about the study area for the readers to analyze and
evaluate proposed research in the context of the state-of-the-art methods in the field of photonic
detection techniques and requisite complex signal processing (Section 1.3). I give details about
basic properties and measurement metrics that are generally accepted for the characterization of
the quantum state. Notably, key insights into different aspects of modern approaches of photon-
number-resolving detectors are reviewed.

In Chapter 2 I give a brief account of experimental methods that are used in disertation. The
key theoretical and experimental terminology is introduced and explained. The subject of Section
2.11is the statistical properties of light, namely: definition in Fock basis and phase space, and how it
can be obtained. Section 2.2 introduces several parameters associated with photon statistics which
are commonly used to characterize quantum states of light. Furthemore, the various techniques to
generate different quantum states of light are described (Section 2.3). Section 2.4 reviews one of
today’s most used single-photon detectors in optical laboratories: single-photon avalanche diode.
In Section 2.5, the spatial multiplexed detection technique is fully discussed. In addition, the meth-
ods to reconstruct the photon statistics from the measured click statistics such as direct inversion
and maximum-likelihood strategies are analyzed (Section 2.6).

In Chapter 3, an accurate detection technique is proposed that can distinguish between num-
ber of photons to achieve photon statistics and statistical correlations of the unknown state of
light. Section 3.2 provides the description of the experimental implementation of the developed
detection method based on a complex detector capable of partial photon-number resolution com-
posed of several multiplexed single-photon avalanche photodiodes. Section 3.3 treats the problem
of the electronic signal processing. Section 3.4 focuses on numerical simulations of the photon
statistics retrieval processes in order to compare several algorithms in terms of accuracy and con-
vergence speed. Experimental demonstration of the detection approach to access photon statistics
is presented in Section 3.5. Various light sources were used to test the response of the detector:
stabilized laser, quasi-thermal light, and heralded single-photon source based on spontaneous para-
metric down conversion. Finally, I discuss the future challenges of technological development and
photon-statistics retrieval required to bring the presented PNRD configuration even further (Sec-
tion 3.6).
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Chapter 4 extends the arbitrary photon statistics detection concept to modify the statistical
properties of light. Single-shot photon counting is used for conditional subtraction of the exact
number of photons from the pseudo-thermal light to increase the mean photon number of the
output state of light (Section 4.2). Furthermore, it is shown that these out-of-equilibrium states of
light are useful for many applications in quantum information and thermodynamics. In Section 4.3
I discuss results of a custom-built source of arbitrary super-Poissonian statistics based on [-photon
subtraction and active feedforward control and swapping. This experimental approach allows for
deterministic generation of light states with super-Poissonian statistics created by mixing thermal
state with the [-photon subtracted thermal state. Subsequently, the thermodynamics analysis of a
quantum bosonic Maxwell’s demon is presented.

Chapter 5 introduces a novel method to experimentally certify the quantum non-Gaussian char-
acter (Section 5.2) and Wigner-function negativity (Section 5.3) of the quantum photonic detect-
ors. The presented technique builds on previous works focused on certification of quantum non-
Gaussian character of quantum states and extends it to the detectors. Regularization of the detector
POVM elements is done by using noiseless attenuation, which can be experimentally implemen-
ted by specific probe states: a vacuum state and two thermal states with different mean photon
numbers.

Finally, the main results of the Thesis are reviewed in Chapter 6. I summarize our particular
results and findings (Section 6.1). In Section 6.2 I also give the overview of problems and possible
extensions of the developed methods.

1.2 Goals of the Thesis

The quantum properties of light are determined by its statistical properties. The knowledge of
photon statistics can facilitate many applications not only in photonic quantum technology [86—
88, 112] but also in quantum imaging [113], quantum metrology [110, 111], and many other fields.
However, accurate detection of arbitrary photon statistics is still challenging mainly due to finite
dynamic range of existing photon-number-resolving detectors. The chief goal of this Thesis is to
advance scalable detection method of ultra weak photonic signals and remove some drawbacks
of current analyzers of quantum statistics to achieve unprecedented accuracy of photon-number
resolution without the necessity of detector tomography. We dealt with experimental development
and characterization of a measurement workflow free of systematic errors consisting of a complex
reconfigurable partial photon-number-resolving detector, custom electronic circuitry, and novel
data processing algorithm.

Particularly, we have developed a complex single-photon detector capable of photon-number
resolution with a fully tunable number of input channels, optimized efficiency, and time response.
Presented detector is based on multiplexing of binary single-photon detectors. The tunability of the
developed detector enables us to easily change the number of constituent single-photon detectors.
Optical signal under test can be analyzed by one detector, two detectors (Hanbury-Brown and
Twiss measurement), three detectors, and so on. This reconfigurability is useful for direct tests of
nonclassical features of various physical systems, as it was later demonstrated.

The large number of output channels represents a challenge to subsequent data processing.
Coincidence counters need to register single-detection events in all the output channels as well as
all the possible coincidence events between the channels. The real-time processing of coincidence
events becomes essential in the large-scale modern quantum photonics experiments, where the
total number of events is too large to be stored and post-processed. Taking these requirements
into account, we developed an ultra-fast multi-channel coincidence system with ten picosecond
jitter allowing sub-nanosecond coincidence windows and dead time smaller than recovery time



4 GOALS OF THE THESIS

of the used single-photon detectors. The coincidence unit was designed for counting coincidence
events from singles to 16-fold coincidences with the full channel-number resolution.

Employing the advanced quantum reconstruction algorithms we have compensated for imper-
fections of detection process to estimate the photon statistics from the measured counting dis-
tribution. In addition, the photon statistics retrieval method has to cope with incomplete data
which is the a typical problem of the channel-limited photon counting measurement. We have
solved the inverse task of photon statistics retrieval by developing efficient algorithm based on the
maximization-expectation method weakly-regularized by maximum-entropy principle which sig-
nificantly improved the precision of the photon statistics measurement proposed so far. It breaks
the finite-multiplexing limit and achieves unprecedented accuracy of photon-number resolution
demonstrated for various photonic signals, including highly non-classical states, which surpasses
even bleeding-edge cryogenic detectors.

Afterwards, employing a developed detector we have performed the measurement of quantum
statistics of light from various sources. We also aim for direct evaluation of key statistical quantities,
such as moments, Fano factor, entropy, g2 (r) and other correlation parameters. Additionally, the
non-classicality of multi-photon states of light was discerned. Experimental data confirmed the
numerical simulations and quantified the developed method as a plausible characterization of the
statistical properties of unknown states of light.

Furthermore, the developed detector enabled the realization of projects investigating condi-
tional and deterministic modification of quantum statistics of light. Knowledge of the statistical
properties of light allowed us to prepare states of light with super-Poissonian statistics. First, the
conditional subtraction of I single photons from the thermal states of light results in a I-photon
subtracted thermal states exhibiting super-Poissonian statistics with a [-times larger mean photon
number than of the original thermal state. However, the photon correlation decreases closer to
Poissonian light, and the mean photon number grows faster than its standard deviation. We per-
formed this experiment to simulate thermodynamic processes, namely the dissipation of the en-
ergy of a quantum oscillator into a cold reservoir to produce energy that can be used to do work or
transfer information. Afterwards, we used experimental experience with the generation of out-of-
equilibrium states to design and implement a more advanced method to deterministically modify
the statistical properties of light. By exploiting this technique, a complex triggering, controlling,
and fast optical switching between states of light employing the novel fast photonic switch based
on Mach-Zehnder interferometer, we have experimentally generated and characterized determin-
istic out-of-equilibrium states. As a result, other thermodynamic simulations were performed to
analyze bosonic Maxwell’s demon in the quantum regime.

The final goal of the work was to develop a new characterization method for photonic de-
tectors. The presented approach requires only three probe states without any need for complex
tomographic data processing. Accurate detection of photon statistics has application potential in
the precise preparation of these probe states of the light, namely vacuum state and two thermal
states with different mean photon numbers. Our efficient scheme allows the direct certification
of quantum non-Gaussianity [121] or Wigner function negativity [122] of the optical quantum de-
tector while avoiding all potential complications of quantum detector tomography. The results
shown that this detector benchmarking technique can lead to further insight on the capabilities
and limitations of quantum detectors.

In the future, our results could pave the way for precise verification and benchmarking of vari-
ous photonic sources, a key requirement for their applications in diverse fields. It includes the
characterization of statistics of single-photon and entangled sources with imminent applications
in quantum communications. Future development of the presented detector will tackle the problem
of super-resolution and counting of emitters with different brightness, blurred due to diffraction,
and buried in excess noise. Also, the developed detection workflow allows for a single shot measure-
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ment, as required for conditional state preparation [123], linear-optics quantum computing [124],
quantum repeaters [125] and etc.

1.3 Contemporary state of research

In this part of the Thesis, I provide a brief overview and an assessment of the contemporary state
of research in photon-number-resolving detection and related fields. I aim to present the most
current research questions, problems, and perspectives that has not been explored yet. outlook on
the previously conducted researches related to the main theme of this dissertation to help readers
Also, it is addressed here why the proposed research is crucial in the context of modern quantum
photonics and technology.

Characterization of quantum states of light

The detection method used for the quantum state characterization essentially affects how we de-
scribe these photonic states of light. In other words, wave-particle dualism also manifests itself in
the task of detecting the properties of light in terms of its intensity. Generally, there currently exist
two quantum detection approaches: optical homodyne detection and photon counting at single-
photon level.

Continuous-variable (CV) homodyne tomography method is based on continuous quantum
variables, the quadrature amplitudes of the electromagnetic field [126-132]. The method of op-
tical homodyne tomography allows to measure phase sensitive properties of light and is suited to
full tomographic reconstruction [B1]. Quadrature operators in a phase space representation are
closely related to the wave nature of light. Optical homodyne detection uses interference between
the investigated state and an intense reference laser beam (called local oscillator) at a balanced
beam splitter. There were intensive research to develop methods to fully, or partially, reconstruct
density matrix of the quantum state [132, B7]. Naive linear reconstruction methods usually fail as
they lead to a rapid increase of noise. This can be resolved by using more advanced and robust
statistical reconstruction methods such as the maximum-likelihood estimation method [133-137].
Nevertheless, the noise in the data still needs to be small (i.e. the number of measurements large)
to obtain sufficient statistics and good reconstruction. It raises the question, what is the efficient
tomographically complete set of measurements. Quantum homodyne tomography of an optical
state is also the competing technique for determining the photon-number distributions (diagonal
elements of the density matrix) but there are several disadvantages that one should be aware of. The
implementation of homodyne detection needs the appropriate mode matching of the signal with
a suitable local oscillator. Local oscillator mode has to overlap spatially and spectrally with the
signal. Any imperfections in mode mismatch translate into losses that prevent accurate estimation
of the overall detection efficiency.

Alternatively, instead of full tomographic characterization of the optical state under test, only
a statistical characteristics, such as moments, Fano factor, entropy, g(z) and other correlation para-
meters can be extracted from measurements of photon statistics [A2, 138-150]. The discreteness
of the allowed energies (due to particle nature of light) is reflected in this photon counting meas-
urements [B1, B4, B8]. To cope with the quantum state characterization at the single-photon level,
photon-number-resolving detection techniques are required to reveal information about the photon
statistics of investigated light. Photon statistics measurement by photon counting is less demand-
ing than full quantum homodyne tomography but still seriously limited in its dynamic range. As
with all quantum detectors, photon-number-resolving detectors yield a finite-sized data, which bear
a non-trivial relation to the input photon statistics. Retrieving the photon statistics from the raw
data output of such detectors represents an open problem. To be more precise, the question is how
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far we can improve the photon statistics retrieval accuracy given by the limited dynamic range,
noise performance, crosstalk effect, and non-unity efficiency of the photon-number-resolving de-
tector. The extreme difficulty here lies in improving the dynamical range and solving the ill-posed
photon-statistics retrieval problem [B7, B9, 151].

Additionally, one can combine the advantages of the coherent detection scheme and photon-
number-resolving detectors in a hybrid photodetection scheme [152-156]. Interferometric scheme
of homodyne-like detectors can be extended by using SPDs or PNRDs instead of conventional pho-
todiodes. This detection configuration allows getting more information about the unknown input
state, which conditions the realization of new states or operations. The interferometric part yields
phase-sensitive information, and PNRDs classify the statistical properties of photons to assess the
quantumness of the output signals. This type of hybrid detection scheme paves the way to the
implementation of continuous-variable communication schemes.

Single-photon detectors

This Subsection is written for the purpose of providing an insight into the background of single-
photon detection technology. I describe briefly the major issues of the single-photon detectors. A
detailed review can be found in the following references: Enss [B2], Silberhorn [5], Eisaman et al.
[8], Natarajan et al. [9], Migdall et al. [B4], Chunnilall et al. [10], Hadfield [B5], Osellame et al.
[11], and Zwiller et al. [12].

In general, single-photon detector is a device capable of registering the presence of photons.
With the increase in interest in single-photon technologies, SPDs have become crucial for many ap-
plications which benefit from single-photon sensitivity. Continuous improvement of their perform-
ances rapidly expands the range of applications in various branches of industry, applied research,
material science, and many other fields based on technologies capable of measuring ultra-weak
optical signals. With the advent of ultra-sensitive detectors and quantum-enhanced metrology, we
tend to perform measurements at the ultimate sensitivity levels dictated by the laws of physics [94,
95]. The goal is to reach the quantum advantage to improve the sensitivity of a measurement bey-
ond the shot-noise limit, or to relax the requirements of the measurement, such as the minimum re-
quired detection efficiency. Optical transmittance measurement assisted by correlated photons and
single-photon detectors can serve as a prominent example of a quantum-enhanced measurement
scheme [97, 100, 157]. Single-photon detectors allow deeper insights into the quantum light sources
characterization [C1, 158], non-classical light manipulation [159, 160], and modification of the stat-
istical properties of light [28, 30, 161, 162]. As enabling the mass-manufactured devices, they are
the most commonly used to read out the quantum information in quantum communication, com-
puting, simulation, and cryptography [33, 89, 92, 99, 101, 163-167]. Using these devices, large-scale
quantum photonics experiments such as Boson sampling [77, 78] were realized to demonstrate a
advantage of quantum computing over the conventional supercomputers. Single-photon detectors
have also found broad range of applications in biological and medical diagnostic procedures such as
diffuse optical tomography [91], positron emission tomography [168], DNA sequencing [169-172],
bioluminescence characterization [173], single-molecule detection and spectroscopy [90, 174-178],
fluorescence microscopy and life-time measurement [96, 146, 179-181], and imaging and particle-
tracking techniques [182-184]. Another single-photon detector starved applications are fiber-link
characterization employing optical time-domain reflectometry (OTDR) [93, 105, 185-188], and the
interaction of light with materials analysis [98, 189]. The preceding list of single-photon detector
applications serves only as an example of their ultra-wide use. Many other applications can be
found in the recommended literature listed above.

Detecting a light signal at the single-photon level is a difficult task. These days, a host of pho-
todetector technologies built on various device structures, materials, and non-trivial physical phe-
nomena have been realized to achieve single-photon sensitivity. These devices very often work
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in the critical mode of operation; a single photon is able to induce macroscopic changes in the
state of an electrical circuit, which are further amplified to be easily measurable. Specifically, a
single-photon detector outputs an electronic pulse when a single or more photons are detected. A
complex electronic circuitry is incorporated into each single-photon detector to register the elec-
trical response corresponding to the optical detection. The number of the output electronic events
in a given time duration (typically per second) is termed the detection rate; it is given in units of
counts/s, or simply Hz.

Unfortunately, SPDs suffer from multiple undesirable features [B4, 5, 7] such as saturation
effects and noise that complicate their electrical output. The measurement precision at the single-
photon level is severely affected by the nonlinearity of the employed photonic detectors [190, 191].
The reason is that the other systematic errors need to be eliminated to reach the quantum regime,
while the single-photon detectors themselves maintain strong inherent nonlinearity. Specifically,
sometimes the detector outputs a pulse even when no photon is detected due to various noise con-
tributions (i.e. dark counts [42, 192]) or as a result of previous detection (afterpulses [193-199] or
twilight pulses [200-202]). Furthermore, the detector occasionally fails to detect photons because
it is not ready to do so after the previous detection event, such as during recovery time, latching
[9] etc. One can observe a complex interplay of detector-specific phenomena, such as dark counts,
dead time, recovery transition, multi-photon response, and latching. These detection imperfections
cause highly nontrivial nonlinear behaviour that is much stronger compared to classical photodi-
odes used for a high-intensity light. Notably, they are specific to a particular single-photon detector
due to their different operational principles and prevent us from reaching the ultimate precision of
quantum-enhanced measurements. Thus, characterization of single-photon detectors has become
an important task in order to compare and select detector with the best parameters for specific
applications. With this goal in mind, it is of paramount importance to improve our knowledge of
single-photon detector behaviour and performance parameters. A perfect single-photon detector
should meet several requirements such as high detection efficiency, the largest possible detection
bandwidth, low noise, large dynamic range, and linear response. There exist significant interplay
between detection efficiency, dark counts, operating temperature, etc. In most applications, how-
ever, only one or two parameters is critical and others are often compromised.

In the following, I give an brief overview of the single-photon detectors. The discovery of
the photoelectric effect initiated the invention of the first single-photon detector, photomultiplier
tube (PMT) [1]. This device was first used to detect single photons approximately 90 years ago.
Nowadays, the efficiency of PMTs is rather small, typically in the range of 10% to 50%, and therefore
unsuitable for modern quantum experiments. Currently, single-photon avalanche diode (SPAD) is
probably the most used photodetectors optimized for single-photon detection that works at room
temperature or slightly below. The sensitivity to single photons is based on a negative biased p-n
junction above the breakdown voltage where electron-hole pair can trigger an avalanche multi-
plication process of free charge carriers (Figure 1.1(a)). The photon-count conversion process is
controlled by an electronic circuit that performs the following operations: (1) detects the leading
edge of the avalanche current corresponding to the avalanche breakdown, (2) generates and stand-
ards an output electric pulse, (3) lowers the applied bias voltage to the breakdown voltage, thus
starting the avalanche quenching process, and (4) restores the photodiode voltage to the operating
value at which the photodiode is capable of further detection. Avalanche photodiode (APD) op-
erating in this so called Geiger mode [102], discriminates only between ,zero photons® and ,one
photon or more® without further photon-number resolution. Their robustness, compactness, and
relatively high quantum efficiency in the near infrared region has led to massive use in a pleth-
ora of applications. As of today, SPADs keep proving their prominent role in quantum photonics
experiments especially when polarization insensitivity or a wide active area of the detector is re-
quired. Another example of practical applications of SPADs are experimental setups that do not
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allow the use of a cryostat. I give a detailed review of the SPAD fundamentals and of the relevant
characteristics of its operation in Section 2.4.
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Figure 1.1: Single-photon detection: (a) single-photon avalanche photodiode, and (b) superconducting
nanowires single-photon detector.
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Since the first demonstration of single-photon detection with superconductors [41], intensive
research to effort technical improvements in superconducting-based technology has started [44, 55,
69, 203-206]. Current state-of-the-art technological platform for single-photon detection based on
superconducting materials combines a high efficiency, low timing jitter, relatively short recovery
time, and negligible dark counts. However, these types of materials need to be cooled down to
cryogenic temperature [B2, B5, B6]. Here is a list of superconducting devices: superconducting
quantum interference device (SQUID) [207], hot electron bolometer, transition edge sensor (TES)
[B6], and superconducting nanowire single-photon detector (SNSPD) [12]. Here I focus mainly
on the SNSPD and TES as an established technology with remarkable performance up to date.
TES, in addition to single-photon sensitivity, provides a photon-number resolution, hence they are
described in more detail in the following Subsection Photon-number-resolving detectors. Detailed
information about other cryogenic detectors can be found in the references mentioned above.

SNSPDs usually have a nanowire/nanostrip structure with a nanoscale active area and operates
significantly below room temperature, typically in the range of 1 - 4 K. When a photon is absorbed
by the current-biased SNSPD, a local resistive domain can be observed, resulting in a voltage pulse,
which indicates a detection event. The absorption of a photon in a superconducting nanowire pro-
duces a growing hotspot self-heated by Joule heating (Figure 1.1(b)). Thus, the recovery circuit
returns the optimal current to the nanowire and cool down the system. However, the operation of
SNSPD suffers from the latching behaviour. It means that the detector is not able to detect incid-
ent photons because the cooling process of the hotspots (created by previous photon absorption)
becomes slower than the electrical response of readout and recovery circuits. Even if we set the
electrical response time longer enough to avoid this latching effect, detector recovery speed is still
limited by the thermal response of the superconducting materials itself. SNSPDs reach quantum
efficiency above 95% [208, 209], low dark counts (0.01 Hz) [66], and timing jitter down to 2.6 ps. It
is important to stress that these properties have never been achieved in the same device due to lim-
its of detector subtleties and technological trade-offs [9, 55]. The prevalent designs of SNSPD are
based on the nanowires yielding the efficiency depending on the polarization of light, which limits
their applications in polarization-based experiments. However, a SNSPD development driven by
applications requirements resulted in the demonstration of the polarization independent detection
devices employing various different approaches [47, 54, 57, 67, 210-212].

Furthermore, several types of single-photon detectors, including SPADs, SNSPDs, and TESs,
have been successfully integrated into waveguides [52, 58, 65, 69, 71, 116—120, 213-215] and cavities
[59, 62] with the aim to increase the detection probability. These successful integration processes
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also initiated the integration of modern quantum photonic technologies to build fully integrated
quantum systems where generation, manipulation, and detection are all included on the same chip.
Integrated quantum photonic circuits have emerged as a compact and scalable platform for mod-
ern complex quantum information science technologies and applications [112] such as quantum
key distribution, random number generator, quantum information processing, multi-photon inter-
ference, boson sampling, and quantum walks. However, despite partial successes in integrating
SNSPD with quantum circuits [116, 117] or photon sources [21, 22] so far, integration of all com-
ponents in one chip has not yet been realized. Further pioneering investigations in the field of
integrated quantum photonics have to be done to overcome all remaining challenges.

To conclude, the indisputable advantage of SPADs is that the detection process is immune to
magnetic fields, insensitive to polarization of the light, and operates without cryogens. SNSPDs as
low-temperature single-photon detectors with leading performances such as high efficiency, low
noise, and excellent timing resolution set new benchmarks in the field of single-photon detection.
TESs are also powerful single-photon detectors with high efficiency and low dark counts. In addi-
tion, they are energy-resolving detectors of single photons with, unfortunately, limited dynamic
range.

Photon-number-resolving detectors

A photon-number-resolving detector, in general, is defined as a detector that can determine the
number of photons in an input optical signal. In other words, it is a photon detector combining
single-photon sensitivity with a linear response — its electronic output is proportional to the photon
number. Four aspects are typically discussed in connection with these detectors; namely, the resol-
ution of individual photons, the dynamic range given by the maximum detectable photon number,
overall efficiency, and the detector speed given by the maximum repetition frequency. In the fol-
lowing, let me introduce the most promising photon-number-resolving approaches up to date and
review the operating principles and the latest advances in the performance of various methods and
PNRD configurations. In particular, the trade-offs and limits of these devices are compared and
discussed.

A range of important quantum photonics experiments exploits the unique capabilities of PNRD.
Photon-number resolution brings detection to the next level and enables fundamental advances in
almost every light-detection application. Obviously, efficient detection with the full photon resol-
ution dramatically reduces errors in a host of research fields focusing on quantum measurements.
PNRD architectures cope with the incoming photon-number statistics measurement and charac-
terization of quantum states [143, 145, 147-150, 216-222]. They can determine whether a state of
light is classical or non-classical [118, 143, 145, 147, 223-226]. PNRDs also found their applications
in particle physics to detect Cherenkov photons [227] or positrons [228]. Furthermore, the precise
knowledge of the statistical properties of light is required to prepare the conditional states of light
whose quality of preparation significantly depends on the ability to resolve the photon number.
Specifically, PNRDs give rise to the development of optical sources of single-photon [23, 24] and
clusters of N single-photon states or multi-photon Fock states [20, 25, 229-234], non-Gaussian
quantum states [123, 235], and NOON states [236, 237]. PNRDs are needed in the fields of the
quantum communication, quantum computing, and quantum information processing [33, 88, 124,
238-243]. PNRDs have also demonstrated their application potential in quantum metrology [94,
110], sub-wavelength interferometry [244], and the ultimate phase estimation [245-247]. Applica-
tions of the PNRDs have been extended to modern sensing and imaging technology [248] applicable
in biomedical and biophotonics research [106, 113, 146, 249, 250]. Another potential application of
PNRDs was recently highlighted in improvements of the signal-to-noise-ratio in laser-based radar
(LIDAR) systems [251, 252] by thresholding the photon number instead of directly detecting intens-

ity.
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Figure 1.2: Photon-number-resolving detectors: (a) spatially-multiplexed optical network, (b) time-
multiplexed optical network, (c) multi-pixel detector, and (d) transition edge sensor.
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To this date, many various technological approaches to reach the photon-number resolution
have been designed and experimentally verified (Figure 1.2). These approaches can be divided into
two categories: inherent photon-number-resolution [B5, B6] and multiplexing/multipixeling detec-
tion scheme [5, 8, 10, 12]. The former, single-photon detectors with inherent photon-number resol-
ution, intrinsically produce an electronic output proportional to the number of absorbed photons.
Such inherent energy/quanta resolution was obtained for a family of cryogenic devices, namely
visible-light photon counters (VLPC) and TES [B5, B6].

One of the first realizations of a photon-number-resolving detector was the visible-light photon
counter. VLCPs are semiconductor-based photon-number-resolving detectors offering high detec-
tion efficiency (over the 90% at maximum) from visible wavelengths up to 1 pym [253]. These de-
tectors operate at the temperature around 6 K. In principle, VLPC outputs a voltage pulse which
is proportional to the number of simultaneously absorbed photons. However, as the number of
photons increases, the distinguishability between the corresponding voltage pulses decreases dra-
matically. As of today, the photon-number detection with the resolution of up to 5 photons was
performed [142, 204, 254]. The main disadvantages of VLPC are rather high dark counts of tens
of kHz at maximum, quite large dead time of 100 ns, and a low max count rate of approximately
100 kHz.

Another type of single-photon detectors with photon-number-resolving capability whose op-
eration relies on low-temperature superconducting materials is TES (Figure 1.2(d)). These versatile
energy resolving detectors of single photons are highly sensitive microcalorimeters operating near
thermal equilibrium [38]. The operating temperature is below 1 K (typically 100 - 400 mK) that
places significantly higher demands on the experimental techniques and sophisticated laboratory
equipment. However, low operation temperatures imply low thermal noise reflecting in the neg-
ligible dark counts. The absorption of an incident photon heats the superconducting transition
causing a change in resistance to draw a current processed by fast SQUID read-out electronics [53,
60, B6, 255-258]. Transition-edge sensors report the highest detection efficiencies close to 100%
(>98% at 850 nm and >95% at 1550 nm). Nevertheless, these detectors possess a slow response
with the typical recovery time on the order of a few microseconds, limiting the maximum rate
below 1 MHz. They also have a finite energy resolution limit due to crosstalk between detected
photon numbers. TES typically resolves up to 10 or 20 photons, depending on the wavelength. The
latest work pre-published on arXiv even extends the resolving capability of the TES detector to a
maximum of 37 photons [74].

Additionally, contrary to general belief, conventional APDs are partially capable of detecting
the number of photons by precise measuring of the very weak avalanches at the early stage of
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their development [48, 259, 260]. In this sub-saturated mode, the single-photon avalanche diode is
gated by subnanosecond excess bias voltage pulses. To resolve the incident number of photons, the
avalanche current has to be measured shortly after the onset of avalanche build-up and before it
saturates in the device. A special self-differencing electronic circuits [261] eliminating the capacit-
ive response of the APD allows the detection of these unsaturated avalanches, for which the output
voltage scales proportionally with the number of absorbed photons. This type of detection device
is able to resolve avalanches up to four photons so far. Also, the first evidence of multi-photon
resolution using a conventional one-pixel superconducting nanowire single-photon detector was
presented [68]. This is made possible by the photon-number-dependent resistance of the nanowire
during an optical wavepacket detection event. As a result, the generated electronic signals have
different rise times, which can be measured by low-noise read-out circuit. This method indicates
the photon-number resolution of up to four photons so far. Thus, both mentioned photon counting
methods are significantly limited by their low dynamic range.

As an alternative to the mentioned devices inherently resolving the photon numbers, multi-
plexing or multipixeling of binary detectors transforms these ordinary single-photon detectors
into PNR detector architectures. Generally, the indivisibility of single photons allows splitting the
optical signal among a number of on/off detectors forming an optical multiplexing network [103].
There is a long history of the photon-number-resolving detectors using spatial [A2, 50, 64, 105-108,
262, 263] and time-multiplexed [45, 64, 104, 109, 264-267] networks probabilistically splitting the
initial light into multiple number of output modes measured by binary detectors. In a similar man-
ner, individual single-photon detectors can be arranged in an array to create a multi-pixel active
area of the new detector with photon-number resolution [105-108, 113, 262, 263, 268—-272].

Spatial multiplexing is typically formed by beam splitter cascade to divide the optical field into
many spatial modes (Figure 1.2(a)). Such spatially distinguished photons are detected by regular
single-photon detectors conveniently integrated into the multiplexed detector [A2, 64, 144, 218,
273]. There is a considerable interest in modeling a response of spatial multiplexing detection
scheme [23, 103, 268, 274, 275]. These types of PNR detectors can be employed in applications
where time response is crucial. The overall dead time of this architecture is given by the largest
of all dead times of the employed individual detectors. However, the total jitter will scale with the
number of detection channels M as 7,y = V' Mr, where 7 is the jitter of a single constituent detector.
These PNRDs also suffer from dynamic range-versus-scalability compromise.

Another PNRD multiplexing approach is based on measuring temporal modes instead of spa-
tial modes (Figure 1.2(b)). Particularly, an efficient loop-based architecture was experimentally
demonstrated [45, 104, 109, 264-267, 276-278]. Though being economical in respect to the number
of on-off detectors employed, the extreme difficulty with loop-based approaches lies in reaching
a large number of output detection channels in a short period of time, which translates to the re-
quirements of low loss and high extinction ratio of the multiplexed network and, at the same time,
high efficiency and short recovery time of the single-photon detectors employed. Decreasing the
losses and balancing temporal multiplexers require a great deal of optimization [267] or even active
signal switching [279]. Recently, temporal multiplexing with a binary switch was demonstrated to
overcome saturation limitation, and extend the sensitivity of single-photon binary detectors [109].

The last alternative is to divide the active area of the detector into many pixels (Figure 1.2(c)).
Many schemes of multi-pixel photon counters (MPPC) [105-108, 113, 262, 263, 269-272, 280, 281]
have been reported. Recently, integrated superconducting nanowire single-photon detectors ar-
ranged into arrays were developed [63, 69, 115]. This method makes it possible to design a detector
with a large number of detection channels in a small footprint. On the other hand, multi-pixel PN-
RDs typically suffer from strong coupling between different pixels (crosstalk effects) [282-284],
which demands an extensive characterization of the detector [285] and advanced numerical post
processing to correct for the imperfections [270, 281]. Also, the multi-pixel detectors offer very lim-
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ited reconfigurability and complicate channel balancing. Still, a 24-pixel photon-number-resolving
detector based on superconducting nanowires was developed and tested with coherent states [63].

Unfortunately, an ideal unlimited photon-number resolution is practically impossible due to
finite photon number sensitivity, non-unity detection efficiency, and noise performance of the gen-
erally accepted interpretation of photon-number-resolving detection techniques. As the number of
photons increases, the inherent ability of employing materials to distinguish between the photons
decreases. Alternatively, the finite number of channels, pixels, or loops of the detector limits the
achievable dynamic range of photons. Among the approaches proposed so far to photon-number-
resolving detection, TES and VLPC benefit with the inherent capability to discriminate photon
number observing near-unity detection efficiency. Compared to SPAD and SNSPD, TESs exhibit
relatively poor timing performance; a timing jitter in order of ns and a recovery time typically sev-
eral hundreds of ns. In addition, VLCPs are not sensitive at telecommunication wavelengths. Still,
conventional SNSPDs and APDs in sub-saturated mode provide multi-photon detection but very
limited resolution and dynamic range. On the other hand, spatially and time-multiplexed optical
networks promise a wider dynamic range with almost no crosstalk between detection channels.
Time multiplexing of single-photon detectors is easily scalable but suffers from effects of fiber dis-
persion and losses. Or, as is the case with TESs, approaches based on time-multiplexing are plagued
by long dead times [109], complicating their use in telecommunications. Implementing multi-pixel
photon counters, where several APDs or SNSPDs referred to as pixels are embedded into a single
chip, is limited by high dark counts and crosstalk probability. The array of SNSPDs offers a high
detection efficiency. However, the effect of crosstalk between pixels is unique to these detectors
and must be taken into consideration. Recently, inherent photon-number-resolving TES detectors
were spatially multiplexed into a system capable of resolving higher tens of photons in the presence
of not inconsiderable crosstalk [20, 60, 74]. To conclude, it is impossible to highlight only one of
the mentioned photon-number-resolving approaches proposed so far, as neither offers sufficient
PNR detection quality.

Multi-photon coincidence data acquisition and processing

A coincidence counting unit (CCU) is a device that can count the coincidences of two or more elec-
trical inputs. The increasing complexity of the recent scientific experiments challenges developing
efficient multi-channel coincidence counting systems with high-level functionality. The informa-
tion about successful detection events gives rise to a histogram of all possible n-fold coincidences
or can be directly employed as a trigger signal for implementing the real-time feed-forward control
to change the performance of the system or measurement configuration. Also, CCU performance
parameters such as a high number of channels, high counting rate, channel-number resolution, and
on-the-fly analysis of multiple photon coincidences are in demand.

Precise coincidence counting systems are useful tools widely employed in engineering and sci-
ence applications requiring detecting a huge number of photons (or other particles) and processing
the detected signals. Historically, the development of coincidence counting techniques was a ne-
cessary ingredient for a massive boom of discoveries in particle physics [286]. One of the latest
works using coincidence counting electronics is the LHCb experiment at CERN standing behind the
discovery of a new class of particles - a type of four-quark particle [287]. These counting devices
found their application in biochemistry and molecular biology in the field of biomedical imaging
and particle-tracking techniques [96, 250, 288-290]. Modern quantum photonics is advancing a
new trend of experiments with the increasing number of components and complexity [75, 76, 79,
84]. These large-scale photonics systems hinge on the ability to generate, control, and analyze
the multi-photon quantum states [81, 82, 84, 291] frequently used in quantum applications such
as quantum communications [292, 293], quantum computation and simulations [294]. Particularly,
complex coincidence processing has become an integral part of verifying unknown optical states
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detected by photon-number-resolving detectors based on multiplexing [A2, 103, 274]. Verified stat-
istical properties of light are routinely applied to quantify the non-classicality of light [C1, 225, 295-
297]. Alternatively, information about the number of photons could be used in the implementations
of feed-forward control to change the performance of the system or measurement configuration.
The single-run output of the CCU can be used for direct modification of the statistical properties
of the initial light in a way of multi-photon subtraction [35, 298].

Conventional approaches to coincidence evaluation are 1. time to amplitude converter (TAC)
together with a single or multi-channel analyzer, 2. time to digital converter (TDC) followed by
postprocessing, and 3. logic overlap coincidence systems realized with discrete components or us-
ing a field-programmable gate array (FPGA). TAC and TDC both typically offer tens of picosecond
resolution. TACs are not easily scaled up for multi-coincidence systems and possess a consider-
able dead time limiting rate throughput to tens of thousand events per second [299, 300]. TDC
based solutions stream time tags to a computer for further processing. Therefore a large amount of
data is processed offline. Alternatively, TDCs are combined with an FPGA for the subsequent pro-
cessing [301]. Pulse overlap coincidence systems use fast logic gates and multiplexers to capture
detection events and detect coincidences [300]. Coincidence counting and histogramming could
be programmed into a microcontroller (MCU) [302] or an FPGA [303]. Functional blocks such as
internal delay lines, coincidence counter, and processor could be implemented in the same FPGA
chip [304-307]. Lately, multi-channel TDC based coincidence counter architecture in the same
FPGA chip while providing real-time operation was introduced [308].

States of light generated by the controlled photon addition and subtraction

The ability to control physical systems at the quantum level is essential for quantum applications.
The conditional addition and subtraction of single or multiple photons from the light field represent
experimental techniques widely used for modification of statistical properties of quantum states of
light. Designing and realizing the schemes of adding or subtracting a higher number of photons
in the laboratory have been challenging tasks to the researchers. Different measures have been
applied to quantify the effect of subtraction procedures [309-311]. Detailed discussion of these
experimental techniques is presented in [B3].

The excitation of classical states by a single photon was formulated in the early 1990s [312]. A
beam splitter (BS), one of the most commonly used optical components for a optical experiments,
proved to be a suitable experimental device for approximating the creation and annihilation oper-
ator. Employing BS with transmittance close to unity allows preparing conditional output states
by mixing the signal modes while measuring photons in one of the output channels. Conditional
output measurement makes these unique quantum state preparation techniques probabilistic with
a typical low success rate. Additionally, the ability to resolve photon number plays a key role in the
scenario of multiple photons subtraction/addition. In general, the conventional addition and sub-
traction operations are not just a matter of photons. In recent years, single-phonon - a quantum
of vibrational mechanical energy [313] or a quantum of sound energy [314, 315] — addition and
subtraction was experimentally demonstrated.

The addition and subtraction procedures [B3, 26, 28, 30, 32, 161, 316—-318] have shown strong
promise in preparing various quantum states: photon subtracted thermal states [29, 31, 162, 298,
319], photon added thermal states [29, 319-322], and photon added coherent states [27]. Addition-
ally, these procedures transform a classical to a non-classical states [27, 323, 324]. The photon
subtraction can also be employed in entanglement distillation [325-327]. They have been used
for quantum filtering [328], noiseless amplification [329-331], quantum cloning [332], enhanced
interferometry [333], etc. Shaping the statistics of light and using non-classical optical signals as
measurement probes allow for increasing the precision of length measurements [111, 334].



Chapter 2

Methods and tools

In Chapter 2, I briefly summarize all the main theoretical formalism and experimental methods
used in the Thesis. I focus on defining research methodology based on the previous books [B1-B5,
B7-B19] and review articles [5, 8, 10, 11, 112, 311, 335].

First, I discuss light in a sense of photons as quanta of the electromagnetic field and their statist-
ical properties. I give an overlook of the quantum states and their photon statistics that occurred in
the Thesis. The quantum states of light are commonly identified and characterized by several para-
meters related to the statistical properties. The most significant ones are defined below. Following,
I discuss the methods of carrying out research work that explains the techniques used for the gen-
eration of various quantum states of light such as pseudo-thermal light, multi-photon subtracted
states of light, and multi-photon states of light. Furthermore, the applicability, functionality, and
parameters of a single-photon avalanche photodiode are discussed. These single-photon detectors
served as a building block of a spatial multiplexed photon-number resolving detector. I performed
analytical modeling of a balanced spatial multiport to fully describe the transformation of the in-
cident light. Finally, I make a special effort to explain the photon statistics retrieval methods using
different reconstruction algorithms.

2.1 Statistical properties of light

The quantum theory of light via quantization of Maxwell’s equations implies the existence of ele-
mentary excitations of the electromagnetic field - photons. A photon represents the smallest energy
quantum that an electromagnetic field (at a given frequency) can exchange with its surroundings.
The energy of the photon is defined as E = hw, where % is the reduced Planck constant and w
represents frequency. These particles behaves like independent oscillators and thus quantized elec-
tromagnetic field is described by a Hamiltonian

ﬁk = Z hoy (flk + %) s (2.1)
k

where 1y, stands for the operator of number of photons in a mode k. To simplify the notation, let
us discuss a light occupying a single mode with average energy

(n|H|n) = ho (n + %) (2.2)
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The states |n) are called Fock states. The Fock state basis is a convenient description of light fre-
quently used when a statistical features of light are measured. The energy hw/2 is associated with
the vacuum state |0) (there is no photon present: n = 0). The creation @' and annihilation a oper-
ators change the number of photons in the Fock state basis

any =Jynn—1) and afjn) =vn+ 1n+1), (2.3)

where /n and Vn + 1 are proportionality factors coming from the symmetric indistinguishable
nature of bosons. Creation and annihilation operators obey the commutation relation for a bosonic

system [&i, &” = 51-’]-, [&i, &j] = [&IT , &j' ] = 0, where 5l-,j is a Kronecker delta. Fock states form the or-

thonormal basis (nm) = &, ,,. They are also eigenstates of the number operator rijn) = ataln) = njn),
where n is an integer non-negative number indicating the number of photons. Any Fock state |n)
can be obtained by application of the creation operator to the vacuum |0),

In) = %eﬁ"m (2.4)

A generic quantum state of light is fully represented by its density matrix

p= Plyyjl, (2.5)
Lj

where P, ; = (Yl pli/;) and states [1); ;) = 3.,(n[y; ;|n). For a continuous basis, like position eigenbasis,
the summation turns into an integration. The density matrix in the Fock basis can be written as

Prm = Z Py mln)(ml. (2.6)

n,m

In this Fock state representation, the diagonal elements P, ,, indicate the probability of registering
just n photons when measuring the state (2.6)

Pn= <”|/3|n> = Tr[ﬁ|n><n‘] = Pn» (2.7)

obeying Tr[p,,] = Y., pn = 1. The Wigner function is a frequently employed tool for a description
of the quantum states of light [126, 145, 221, 336, 337]. Operators of coordinate X and momentum
p are defined using annihilation and creation operators x = , /% (& + &T) andp = 1, ,%@ (&"L - A),
satisfying the commutation relation [%, p] = i#. The Wigner function of the conjugate variables is
a quasi-probability function introduced by Wigner in 1932 [338],

W (x, p) = ih J dx’eé?X'P (x — x’|plx + x7). (2.8)
7T
Alternatively, Wigner function can be written in terms of density matrix p

1 ’ ’ ’ ’
Wﬁ(xa )= h J'dx e2x P P {x — X" [m) (nlx + x") = § E ,pmnWmn(x: ). (2.9)
m n

For the diagonal elements W,,,(x, p) = W, (x, p) = % f_oooody Un(x = P (x + )P where ;,(x)
is a wave function of the n-th Fock state. The Wigner function can also be achieved directly by
measuring the mean value of parity operator (P) = Y., (—1)"p, since W(0,0) = (P)/x.



16 CHARACTERIZATION OF STATISTICAL PROPERTIES OF LIGHT

2.2 Characterization of statistical properties of light

The various techniques for determining the statistical properties of light are discussed in Section 1.3.
The statistical distribution of the number of photons p, provides fundamental information on the
intrinsic statistical nature of photons in any light source. Specifically, the first and second central
moments are often examined,

(n) = Tr[aTap)] = inpn and  ((An)*) = i (n— )’ py. (2.10)
n=0 n=0

The relation between the first and second moments of photon statistic distribution defines what
kind of light field it is. In general, three different types of photon statistics can be obtained:

Poissonian: ((An)z) = (n),
sub-Poissonian: ((An)z) < (m), (2.11)

super-Poissonian: ((An)z) > (n).

The features crucial for fundamental research as well as many photonic applications are non-
classicality and a deviation from Poisson statistics. Thus, parameters revealing the property of the
state of light related to its statistics is often verified, like the Fano factor, the Mandel parameter, the
binomial parameter, and second order Glauber correlation function. These characteristics depend
on the first two moments of photon statistics, particularly the mean photon number (n) and the
second moment {n?), but behave differently in the presence of losses.

The Fano factor [339], defined as the variance-to-mean ratio of photon number,

Fano = M (2.12)

(m)
is viewed as a noise-to-signal ratio and serves as convenient noise-indicator of a non-classical field
[340]. Following the above remarks, for Fano < 1, the light has photon number noise smaller than
coherent light and is referred to as sub-Poissonian. Coherent light with Poissonian distribution
exhibits Fano = 1. Whereas for Fano > 1, the light is called super-Poissonian. Specifically, for
thermal light Fano = (n) + 1 scales linearly with (n) and approaches unity only for very small mean
photon numbers (n). In a similar manner, the Mandel parameter is defined as a ratio of the first
and the second moments of photon distribution [138],

_ ()~ () _
(n)

This parameter is frequently used for experimental characterization of the departure of the photon
statistics from Poissonian distribution [138, 341]. Poissonian distribution with the mean photon
number (n) = ((An)?) reaches the Mandel parameter Qy = 0. Chaotic thermal light with super-
Poissonian statistics reveals photon bunching and the Mandel parameter Q) = (n). Specifically,
Om = 0 define a boundary between classical and quantum fields [139, 341]. A specific issue that
needs to be addressed is that Qy cannot be measured directly due to the inability to register the
true number of photons in an initial light. Thus, the Mandel parameter can be negative even if
the optical field is completely classical. These false non-classicality certifications are caused due to
the effects of noise and losses. In particular, losses annihilate some photons, and thus the photon
statistics for a small number of counts are affected [274].

Om Fano — 1. (2.13)
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The difficulties associated with the difference of the measured click statistic from the photon
statistics can be partially eliminated by redefining the mentioned parameter [342]. The counting
distribution ¢, of M on-off detector mechanism, namely the first and the second moment of this
probability distribution of the coincidence events, defines the binomial parameter as:

_ (@)
209

where (c) = Z?ﬁo ic;, and ((Ac)?) = Z?ﬁo(i —{c))?;.. The Qy, should converge to Qy for M — co.
Negative values of the binomial parameter Qy, < 0 serve as a witness of the non-classical character
of the initial state of light [342], and non-negative values Qy, > 0 for classical states.

Another quantity depending on the first two moments of photon statistics is the normalized
second-order intensity correlation function g (0), routinely applied to quantify the photon cor-
relations of light [295, 296]. The undeniable advantage is that this parameter does not change with
loss. This non-classicality character quantification is based on examining correlations aspects of
intensity fluctuations. Normalized second-order intensity correlation function for stationary light
is defined as

-1, (2.14)

(@ @®at ¢+nat+na®)
. IRV
<a7L ®)a (t)>
We will discus special case of 7 = 0. Than we can write g(z) in terms of the number operator as

GUOICIOESVY
(A (1))

Focusing on photon statistics p,, the second order Glauber correlation function can be rewritten as

@ (0) = . (2.15)

g?(0) = (2.16)

TrlpiGi- D] _ Toson(=Dpn _n(e-1) _Ou (217)

(2) —
§7(0) = — > = :
(Tr[A]) (5o npn) m*
The light sources exhibit bunching g(z)(O) > g(z)(r # 0) or antibunching g(z)(O) < g(z)(r # 0). The
source with Poissonian statistics has g(z)(f) = 1. One can determine the type of photon statistics
based on the value of g(z) (r)fort =0:

Poissonian : g(z)(o) =1
sub-Poissonian : g(z)(O) <1 (2.18)

super-Poissonian : g(z)(o) > 1.

The super-Poissonian statistics is inherent in both classical and non-classical states of light. How-
ever, only the non-classical states can exhibit sub-Poissonian statistics.

Since g(z) (0), defined using the first and second moments of photon statistics (2.17), cannot be
directly measured, anticorrelation a parameter measurements are performed for a single-photon-
level radiation sources using the Hanbury-Brown-Twiss (HBT) setup (Fig. 2.1(b)):

Py 2 _

=12 - @ (0), (2.19)
PP, p? ¢

where P;, is the probability that both detectors 1 and 2 click, P; is the probability that detector 1
clicks, and P, is the click probability of detector 2. The probabilities p;, p, stand for observing the
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Figure 2.1: (a) Photon bunching (red), random distribution (blue), and photon antibunching (green), (b) a
Hanbury Brown-Twiss arrangement for two-photon coincidence counting, and (c) the normalized second-
order intensity correlation function: thermal state (red), coherent state (blue), and Fock state (green).

single photon and two photon. For single-photon signals with a low detection rate ((n) <« 1 with
P1 > Py > Puso), the approximation works, and the value of the HBT measurement agrees well
with g(z) (0) parameter [343]. Unfortunately, for states with non-negligible multiphoton content,
the HBT fails to produce the correct value of g(z) [344].

2.3 Generation of quantum states of light

In this section, I give a brief overview of the quantum states of light such as coherent state, thermal
state, multi-photon subtracted thermal states, and multi-photon states of light. From an experi-
mental point of view, the corresponding light generation techniques are also discussed. Addition-
ally, a list of applications of these states of light is given.

2.3.1  Coherent light

Coherent light is generated by optical sources of constant optical power (mean photon flux), but the
distribution of photons at the time of their registration by the detector is completely uncorrelated
(Figure 2.1(a)). In other words coherent state |a) is defined as a coherent superposition of pure
states. Such light is generated via a coherent process of stimulated emission in a highly-saturable
laser. The phase reference can be obtained by splitting such intensive light at a beam splitter as it
preserves the Poissonian statistics. The expansion of coherent state in the Fock basis is

1P al
la) =e 217 — |n). (2.20)
2
Photon statistics of coherent state reads
n
2 (m) _
pr° = )" = e, (221)

Since the Poissonian statistics exhibits the variance equal to the mean photon number ((An)z) =
(n), coherent states have Fano = 1, the Mandel parameter Qy; = 0, and g®(0) = 1 proving no
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photon correlations. For large (n), the maximum probability of n photons in a mode corresponds to
the mean photon number (n), and Poissonian statistics approaches the Gaussian distribution with
photon number standard deviation \/@

Coherent states produced by a laser are used as information carriers in optical communications
and quantum key distribution protocols. Non-orthogonality of coherent states guarantees that
they cannot, in general, be discriminated without error. It represents an advantage for quantum
key distribution [345-347]. Coherent states can be used for crosstalk calibration method [284]. In
addition, employing photon addition, the single-photon-added coherent light states were generated
to analyze the evolution of the quantum-to-classical transition [27, 321, 323].

2.3.2 Pseudo-thermal light

Thermal light is an incoherent mixture of different photon number states |n). The thermal equi-
librium condition states that the probability distribution of energy E, in one mode follows the
Boltzmann distribution. Thermal state as a mixed state can be written as sum over all possible

number states 5
—pBE,
. e Phn
pn =), —— In){nl. (2.22)
0

n

where = 1/ (kgT), Zy = 1+7 denotes the partition function, i = 1/ (e#"© 1) is the mean thermal
photon number, E, = hwn is energy of n photons, and w is the optical frequency. Thermal light
exhibits the photon statistics with Bose-Einstein distribution

n

o ;< (n) ) (2.23)

T\ 1

As might be expected, the probability of the number of photons decreases geometrically as the
number of photons increases. Thus, the variance <(An)2> = (n) + (n)? is larger than the mean
photon number (n) for Poissonian statistics of independent photons. Due to this fact, thermal light
obeys the super-Poissonian probability distribution of the photon number. The photon statistics
moments yield Fano = (n) + 1, Qy = (n), and g(z)(O) =2.

Thermal states of light can be directly applied in a broad range of applications including dia-
gnostics of quantum states [148, 216, 219], enhancement of nonlinear effects like optical harmonic
generation [108, 348, 349] and two-photon fluorescence [350], quantum imaging [351-353], quantum
enhanced interferometry [244, 333], generation of nonclassicality [320-322], tests of robustness of
quantum communication protocols and quantum key distribution [354], and ghost imaging [355—
360]. Ideal thermal light statistics is also required for proof-of-principle tests of quantum ther-
modynamics [A1, 361]. However, it is the actual spectral bandwidth which represents a crucial
parameter for potential improvement of waste majority of applications of thermal light.

The real thermal light sources exhibit very short coherence times and low photon number per
mode. Therefore, pseudo-thermal sources are commonly used in optical experiments to obtain
single-mode thermal statistics with larger photon number and sufficient coherence time. In general,
there exists two ways how to obtain thermal light: direct modulation of light intensity or thermal
emission. One of the most widely used methods to generate pseudo-thermal light is the scattering
the coherent light by a moving diffuser, see Figure 2.2. The scattered amplitude of the electric field
is Gaussian distributed and the distribution of the intensity obeys negative exponential statistics,
the same as a real thermal light source. As a diffuser, the ground glass is frequently used [362-365].
A laser beam is focused on the surface of the ground glass by a lens. Passing the light through a
rotating diffuser introduces complex and randomly scattered light. A single-mode optical fiber is
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Figure 2.2: The experimental arrangement for producing pseudo-thermal light: focus lens; rotating ground
glass (RGQG) as a diffuser; single-mode (SM) selection. Bose-Einstein photon number distribution is realized
by intensity modulation via scattering the coherent light by a moving diffuser - rotating ground glass. The
generated pseudo-thermal light is collected by a single-mode optical fiber to select a single spatial mode.

used to collect the scattered light and select a single spatial mode. At the output we obtain a clean
spatial mode with random amplitude and phase yielding narrower linewidth than natural thermal
light. The coherence time can be adjusted by varying the angular velocity of the disk and is limited
to a few Mhz range [366]. A suitable alternative to ground glass was found to be a disordered lattice
[296, 367].

Further, another methods of random switching of intensity levels was developed, using a digital
micromirror device [368], a programmable acousto-optic modulator [369-371], and an integrated
electro-optical Mach-Zehnder modulator driven by an arbitrary signal generator [372]. The major
benefit of these fully programmable modulators is that they allow to produce any classical light
statistics. One can also directly modulate the laser pumping current [373] or couple the laser light
into an optical multimode fiber [374]. Alternatively, thermal states can be observed directly from
the thermal emission. However, it is quite challenging to reach an ideal thermal state. Almost
ideal thermal light can be generated by amplified spontaneous emission [375], dye molecules in
a microcavity [376, 377] and atomic ensembles [C2]. Unfortunately, these methods are more de-
manding on laboratory equipment and experimental skills.

2.3.3  Multi-photon subtracted thermal states of light

The controlled photon subtraction and addition are experimental techniques frequently used in
optical state preparation (see Section 1.3). These light modification procedures have drawn much
attention because of the needs of modern quantum applications. The conditional output states after
application of photon subtraction or addition read

apd i prvi

and  phqq = (2.24)

P Telpwatal Trlpvaat|
In the following, the emphasis is primarily on the photon subtraction. It is important to stress
that the behaviour of the mean number of quanta of the state subjected to the subtraction process
depends on the initial state statistics. The mean energy increases (decreases) when a photon is
subtracted from a super-Poissonian (sub-Poissonian) state [B3, 30, 318]. The subtraction does not
influence a state only governed by Poissonian statistics; coherent state is eigenstate of the annihil-
ation operator.

As already pointed out in Goals of the Thesis 1.2, am interested in the multi-photon subtraction
employed to modify the statistical properties of the initial light, namely single-mode thermal state.
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The density matrix of the multi-photon subtracted single-mode thermal state is defined as

Al A A 1 [ n

ﬁl _ apma B (n+D)! Tth

th — NPT 1 [+n+1
Trlpma’d] =0 ™' (1 4 ng)™"

[n)nl, (2.25)

where [ is the number of subtracted photons and ny, stands for mean photon number of the input
thermal state. The photon statistics of these states is given by the Mandel-Rice distribution

(n+1)! ( ng )”

i nlll \ 1+ny

Pn= (1 + ng)H+1 (2.26)

Additionally, these unique states of light follows normalized i-th order intensity correlation func-
tion

@"'a) _ iy
@y na+n)’

In general, with increasing number of subtractions /, the mean photon number of the conditioned
output state is [-times larger than of the original thermal state and the resulting photon statistics
converges to the Poisson distribution. The transition follows a similar path in (n) vs g(z) and (n) vs
Q diagrams as multi-mode thermal light, however, the multi-photon subtracted thermal states are
single-mode states.

g0 = (2.27)
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Figure 2.3: Multi-photon subtracted single-mode thermal states of light generation. Experimental realization
of the subtraction of I photons from a thermal state consists of pseudo-thermal state preparation, beam splitter
with reflectivity R, reconfigurable multichannel detector for counting reflected photons, and photon-number-
resolving detector (PNRD) for output state analysis.

The subtraction can be successfully performed even under imperfect conditions and by using
inefficient photodetectors with 7 < 1. Experimental realization of the photon subtraction employ-
ing low-reflectivity beam splitter is shown in Figure 2.3. Reflected port is detected by multichannel
detector to distinguish number of subtracted photons. The probability of detecting ! photons with
multichannel detector employing M single-photon detectors follows

1
= M l _ I-j 1
& (l),;(j)( D 1+'7Rnth(1—ﬁ')' (2.28)

Taking into account the reflectivity R of the beam splitter and detection efficiency 7, the density




22 GENERATION OF QUANTUM STATES OF LIGHT

matrix of the output state after the [ photons are successfully detected reads

°° !
4 _1v 1 (M N, w11
P =D, (I)Z(j)( 1) nth(l—R),17+1|n><nl’ (2.29)

n—o P =0

where A; = 1+1/ny4,(1-R)+nR/(1—R)(1—j/M). For the low reflectivity close to zero, equation (2.29)
approaches the density matrix of ideal photon subtraction (2.25).

Multi-photon subtraction processes continuous in time were first analyzed to conditionally
manipulate the statistics and also increase the energy of thermal light [378, 379].The series of
multi-photon subtraction experiments with thermal light also demonstrated a conditional instant-
aneous increase of mean energy by a subtraction of quanta from single-mode thermal state [28, 161,
162]. Recently, we realize two experiments with thermal states after subtraction of [-photons, see
Chapter 4.

2.3.4  Multi-photon states of light

time multiplexing

trigger
) APD
idler
g ignal I
pump signa PNRD
KTP crystal

Figure 2.4: The generation of single-emitter clusters: heralded SPDC using time-multiplexing trigger.

Over the past few years, generation of the higher Fock states of light |n) with a constant num-
ber of n photons [20, 25, 230-233, 380] became of foundational interest with significant practical
impact in quantum technology. It is still experimentally challenging to generate arbitrary multi-
photon Fock states [n). Fortunately, multi-photon states of light can be prepared as a cluster of N

identical single-photon emitters in separate modes |1)®N. The generation of statistics with control-
lable multi-photon content from a well-established photon source based on multiple high-quality
single photons triggered to suppress random noise is depicted in Figure 2.4. The continuous-wave
spontaneous parametric down-conversion (SPDC) is employed to generate sequences of N, heral-
ded single photons that were collectively measured on a multichannel detector. Correlated pairs of
photons generated in parametric down-conversion process are well known and commonly used as
a probabilistic source of very high-quality heralded single-photon states. Instead of conventional
heralding with a single-photon detector, we use an optical time-multiplexing setting that exploits
a parametric down-conversion source for an multi-photon state generation up to nine heralded
photons. This kind of optical source simulates incoherent mixing of signals from a cluster of N,
identical single-photon emitters in a separate modes,

(o8]

PN, = 2, (l\ip)ng_n (1= &) In)nl (2:30)

n=0
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where & represent collection and detection loss. The photon statistics is than

pn’ = (an>§Np_" 1-o" (2.31)
with the first and second moment
(M =(1-HN, and ((An)’) = (1-H)EN,. (2:32)

As indicated in formula (2.31), sub-Poissonian photon statistics is very sensitive to optical losses

and inefficient detection. These exotic states yield Fano = & and Qy; = £ — 1. In contrast, ideal Fock

states have no uncertainty in intensity ((An)2> = 0 with Fano = 0 and Qy; = —1. However, loss

independent second order Glauber correlation function is identical for both, g(z) 0)=1- NL and
P

proves nonclassicality for any N, if the statistical error is small enough.

Nonclassical sources made for quantum technology have properties that cannot be duplicated
using classical sources, but they are difficult to demonstrate experimentally, especially with inef-
ficient detectors. Nonclassical states of light are of fundamental importance in quantum optics,
optical quantum communication, quantum information processing, and quantum metrology. The
nonclassical states of optical fields are commonly defined as those whose Glauber-Sudarshan rep-
resentation [381, 382] does not satisfy properties of an ordinary probability distribution. An im-
portant subclass of nonclassical states is represented by states with negative Wigner function [27,
159, 336, 383-385]. Recently, another interesting sub-class of nonclassical states has been proposed,
termed quantum non-Gaussian states [121]. These states cannot be expressed as a convex mixture
of Gaussian states. Preparation of quantum non-Gaussian states thus requires nonlinear interaction
or detection beyond the class of Gaussian operations that comprise interference in passive linear
optical interferometers, quadrature squeezing, and homodyne detection. While every state with
negative Wigner function is a quantum non-Gaussian state, the class of quantum non-Gaussian
states is strictly larger and contains also states with positive Wigner function. During recent years,
the quantum non-Gaussian states have been the subject of intensive research [C1, 158, 160, 304, 337,
386—-401]. Several criteria and witnesses for detection of quantum non-Gaussian states have been
established [304, 337, 386—-392], and the quantum non-Gaussian character of various sources of non-
classical light has been demonstrated experimentally [C1, 158, 160, 393-396]. The most common
way to generate a quantum non-Gaussian state of light is to first generate a suitable multimode
nonclassical Gaussian state, perform measurements with single-photon detectors on some of its
modes and condition on photon detection [27, 159, 383-385, 393, 394, 396, 402].

2.4 Single-photon avalanche photodiode

Here, I review the fundamental principles of a single-photon avalanche photodiode and its applicab-
ility in a host of branches of industry, applied research, scientific applications and material science.
Nevertheless, the topic of SPADs has been discussed in more detail in the following review articles
and books [B4, 5, 6, 8, 10, 11, 102].

While not achieving as remarkable performance as SNSPDs or TESs, today SPADs still offer a
valid alternative. As compact mass-manufactured commercial devices, SPADs are the most com-
monly used detectors providing the best practical solution for single-photon detection, especially
for their room temperature operation with good performance and low price. One can find them
in every photonics laboratory. These detectors have been widely used and studied since the late
1950s [403]. SPADs can be used either individually for single-photon detection or multi-pixeled
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or multiplexed into an array to offer new ways to measure the statistical properties of light. Cur-
rently, integrated SPADs represent a promising technology in future room-temperature chip-based
quantum photonic applications [65, 119].

Single-photon avalanche diodes are enabling technology frequently used for photon detection
in the field of quantum optics [B4, 10]. This class of single-photon detectors is a very important
tool for the characterization of quantum light sources [14, 159, 160] or modification of statistical
properties of light by photon subtraction and addition [A1, B3, 27, 28, 30, 161, 322, 323]. They
are employed in optical quantum communication technologies [404], quantum random number
generator [101, 163, 166, 167], and quantum cryptography [89, 92, 165]. They found their applic-
ations in metrology [110, 111] and optical time domain reflectometry (OTDR) [93, 185-187, 405].
Their ability to detect low light signal has led to massive use in biomedical science like a fluores-
cence microscopy in a process of mapping and counting single molecules [90, 173, 175, 176, 406].
Consequently, thanks to their broadwise applicability, characterization of SPADs have become an
important task in order to compare and select detector with the best parameters for the specific
application.

2.4.1  Principle of operation

A proportional conversion of photons to electrons must inevitably involve a mechanism that amp-
lifies the energy retrieved from the absorption of photons to the macroscopic level. To reach a
sufficient gain, SPAD operates in a bistable regime (also termed the Geiger mode [102]). Geiger
mode is the most commonly used regime achieved by a reverse bias higher than the breakdown
voltage. In general, there are two modes of operation depending on the desired application. The
first is a free-running mode, where the SPAD is biased above the breakdown voltage to effectively
detect randomly incoming photons [61]. The second mode is designed to detect photons in well-
defined time windows. In this mode, termed a gated mode [72, 83, 407-417], SPAD is usually reverse
biased below its breakdown voltage for a given duration in each gating cycle, see Figure 2.5.

The incoming photon is converted to a free carrier of electric charge, which is amplified by
the avalanche process to produce a macroscopic electric pulse. Photo-excitation of an electron-
hole pair (carrier) triggers carrier multiplication. A cascade of impact ionization events results in
a macroscopic current between the APD electrodes that can be easily detected by an electronic
circuitry and converted to the output signal of the detector. The current continues to flow until
the self-sustaining avalanche is quenched to exit critical mode and prevent the diode from being
destroyed. The detector is not able to respond to the incident photons until the quenching pro-
cess is completed and the reverse bias is restored to its original value. The quenching could be
done passively or actively. Different classes of quenching circuits such as passive quenching [42,
413, 418] and active quenching [61, 419-425] were realized so far. Among ordinary quenching
techniques, a hybrid quenching combines the above-mentioned quenching and resetting circuits
to benefit from the advantages of selected ones [416, 426]. The avalanche-quenching and restoring
circuits [42] dramatically affect the performance of the detector. Generally, employing the passive-
quenching process the detector recovery is substantially extended, typically 1 ps, which limits the
maximum frequency of detection events. Alternatively, active quenching benefits from excellent
performance such as very high dynamic range and short quenching time. On the other hand, if
the recovery time is too short, the effect of afterpulsing increases. The passive quenching with an
active reset circuit [427, 428] was designed to reduce afterpulsing for SPADs. There are many other
quenching and restoring approaches, for example, the gated quenching circuits can be employed
to reduce dark counts; active restoring employing transistor achieves shorter reset time, etc. Ad-
ditionally, it is important to stress that the integration of the quenching circuit directly with the
detector was successfully done [429]. This fact has contributed significantly to the future use of
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this detection technology in modern photonic systems.
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Figure 2.5: Single-photon avalanche diodes principle of operation: (a) photon absorption, (b) generated
electron-hole pair triggers avalanche to create measurable current, (c) quenching reduces bias voltage to pre-
vent destroying photodiode, and (d) resetting bias voltage to prepared photodiode for next photon absorption.

2.4.2 Parameters

Unfortunately, in practice, the response of single-photon detectors can exhibit intriguing nonlin-
ear effects that affect the measurement precision at the single-photon level. Their single-photon
sensitivity is more or less limited by saturation effects and noise performance. One can observe a
complex interplay of detector-specific phenomena, such as dark counts, dead time, recovery trans-
ition, multiphoton response, and latching. Specifically, SPADs suffer from noise production due
to thermal generation of the charge carriers, recovery time losses due to the recharge process of
the quenching system and afterpulsing effect due to the trapped charge carriers created during the
avalanche process [102]. These effects cause highly nontrivial nonlinear behavior that is much
stronger compared to classical photodiodes.
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Figure 2.6: Different detection phenomena related to single-photon avalanche diodes: (a) spectral response,
(b) detection efficiency, (c) jitter, (d) dead time, (e) dark counts, and (f) afterpulses.
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The material from which the detector is made determines its spectral response. It means that
the detector is sensitive only over the limited operating wavelengths (Figure 2.6(a)). Additionally,
a successful detection could only be produced by absorption of an incident photon in its active
area. However, it is not guaranteed that these photons cause the generation of an electron-hole-
pair initiating an avalanche (Figure 2.6(b)). As indicated, detection efficiency is defined as the ratio
of the number of photons resulting in a detection signal to the number of photons incident on the
detector [200, 275]. Ideally, the conversion time of the input optical signal to the output electrical
pulse should be constant. This time interval between the photon absorption and the output electric
pulse generation is termed as timing jitter (Figure 2.6(c)). It is evidence of the random nature of the
physical mechanisms involved in the operation of the detection device. Technically, this parameter
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is defined as the full-width half-maximum (FWHM) of the detector time response function. SPADs
exhibit timing jitter typically on the order of hundreds of picoseconds. Interestingly, timing jitter
is a function of detection rate.

Each detection event is followed by the time interval during which an avalanche is extinguished
(Figure 2.6(d)). During this time, the detector fails to detect photons because it is not ready to do so
after the previous detection event, appearing to be turned off. This time interval called dead time is
fully adjustable by the configuration of the electronic circuitry and is very often artificially extended
to avoid unwanted effects. The dead time is considered to be the main saturation parameter limiting
the maximum detection rate of the detector (Figure 2.7). Today’s commercial SPADs guarantee a
dead time on the order of tens to hundreds of nanoseconds. Furthemore, the time required for the
recovery process to reach full photon detection capability with maximum detection efficiency is
called reset time. We define the recovery time as the sum of the dead time and the reset time.

The real SPAD registers false detection events even when no optical signal is incident on its
active area (Figure 2.6(e)). This effect is caused by random movements of the electric charge carriers
in the semiconductor material of the detector (spontaneous thermal excitation or tunneling effect)
[42, 192, 430, 431]. Such a spurious signal is referred to as dark counts and plays a similar role to
the dark current in classical photodiodes. Dark counts obey Poissonian statistics [430, 431] and are
indistinguishable from photon detection events. Typical values for commercially used SPADs are
tens to thousands of dark counts per second. In a similar manner, afterpulsing behaviour introduces
a positive feedback immediately after detection or even during the recovery process of the detector
(Figure 2.6(f)) [193, 194, 198, 199]. As each avalanche pulse passes through the acceleration region
of a semiconductor device, some charge carriers could be trapped in the imperfections in the crystal
lattice. These carriers remain trapped for some time. After this time, they are subsequently released
due to thermal excitation. If this happens during the recovery process, it can cause the generation
of another avalanche strongly correlated with the previous one during which the charge carriers
were trapped. This phenomenon can cause an increase in false counts and inhibit high frequency
operation of SPADs. It depends on several parameters such as temperature, the total charge that
flows through the device, and trap density of the used material. Also, the recovery process affects
this phenomenon [427]. Alternatively, twilight pulsing are triggered by photons incident during the
reset time [200-202]. The probability of twilight pulses occurrence is proportional to the number
of these photons. These parasitic detection events occur immediately after the recovery time.

As single-photon detectors become a widespread technology, also characterization techniques
come to the fore. As of today, the various performance parameters of the single-photon detectors
have been studied [42, 192-194, 200, 202, 275, 427, 432-436]. Accurate characterization of paramet-
ers of single-photon detectors involves experimental skills in a number of competing techniques.
Common investigation of saturation effects requires time-domain measurement using high resolu-
tion measuring devices and a sub-nanosecond pulsed laser source with controllable repetition rate
[198, 199, 437-439]. There also exist several measurement techniques to obtain the noise perform-
ance analysis [201, 440].

2.4.3 SPAD response model

Let us summarize the fundamentals of single-photon avalanche photodiodes and basic principles
of detection imperfections. SPAD outputs an electronic pulse when one or more photons are detec-
ted [B4, 10]. The detection events (also termed counts or clicks) possess a statistical distribution
given by the detected state and the detector’s response. The detection rate RY¢t is then a nonlinear
function of the incident rate R. Sometimes the detector outputs a pulse even when no photon is
detected due to various background contributions (dark counts - Rp) or as a result of a previous
detection (SPAD afterpulses - (nap)). Furthermore, the detector occasionally fails to detect photons
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because it is not ready to do so after the previous detection event, such as during dead time.

Theoretical models of the SPAD response function

There is a great number of results in modelling the response of SPAD with the ultimate goal of
including all the relevant factors [201, 202, 434-436, 439, 440]. Their accuracy has been limited so
far and many counter-examples exist for which the measured SPAD response differs significantly
from the theoretical model. Consequently, determining the nonlinearity of the SPAD response and
finding the optimum detection rate to access the minimum achievable deviation from the ideal
linear behavior represents a significant challenge.
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Figure 2.7: The detection rate R*" as a function of the incident rate R. Shown are different dead time models:
the NP model (red), the P model (blue), the NP-P model (green), and the P-NP model (yellow). Black solid
line represents response of the linear detector. Shown is an example case of an actively quenched SPAD:
Rp = 100 Hz, and 7 = 25 ns.

The effect of dead time in Geiger-mode SPADs is akin to Geiger-Miiller (GM) counters [B10,
B13, 432, 441, 442, B20, 443-446]. Two basic types of idealized models for dead time have been
defined [B13, 441, B20]. Namely, it is the paralyzable dead time 7p model

R (R) = (R + Rp) exp(— (R + Rp) 7p), (2.33)
and the non-paralyzable dead time myp model

R+RD

R (R) = —————.
NP( ) l+(R+RD)TNp

(2.34)

For the non-paralyzable case, each registered detection is followed by dead time, during which
no further events are registered. In the paralyzable case, dead time follows every detection, even
those that occur within a previous dead time and are not otherwise recorded. This case covers
the fact that secondary detections in GM tubes still require quenching, but are not registered due
to low voltage output. In the case of GM counters, single-parameter dead-time models are just an
approximation. Hybrid models were proposed by combining paralyzable and non-paralyzable dead
times: the NP-P model [447], and the P-NP model [445, 448]. Figure 2.7 shows the effect of the dark
counts and dead time to the detection rate R, Actively quenched SPADs exhibit afterpulsing and
twilight pulsing that affect the mean detection rate [202]. Both effects can be evaluated numerically,
or — if we neglect the temporal distribution of afterpulses — an approximate rate formula can be
used [202],

-1
RiF(R) = [(R +1RD - a) e )+ TNP] ' (239)
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The new parameters are the mean number of afterpulses per detection (nsp), and the twilight-pulse
proportionality constant a. As one would expect, when both of these parameters are zero, the for-
mula (2.35) is reduced to the basic non-paralyzable model (2.34).

Positive-operator valued measure

In quantum physics, characterizing an unknown detector consists of determining its positive-operator-
valued measure operators (POVM). To obtain the corresponding POVM, detector tomography based
on probing with precisely calibrated signals was suggested [190, 449-456]. However, if the tomo-
graphy does not include memory effects, the results can be compromised [457]. In general, POVM
gives the probability of any measurement outcome for arbitrary input state. Given an input state p,
the probability ¢, of obtaining detection outcome m is given by formula Tr([I1,, /], where II,, is the
detector POVM. The POVM satisfies the positivity and semi-definiteness I1,, > 0, and >m I, = 1.
In general, a detector with no phase dependence will be described by POVM elements diagonal
in the Fock basis. POVM elements of the SPAD as a binary detector is given by I1, = [0)(0| and
I1; = 1 —|0)(0], a more realistic detector with efficiency 7

(o8]

o=, (1=n)'In}n| and T = Y [1-(1—n)"lin)nl. (2.36)

n=0 n=0

Eventually, taking into account the probability of dark counts Ry, we can rewrite I1;:

Tspap = Y, [1— (1 = Rp)(1 — n)"] [n)(n]. (2.37)
n=0

Neglecting other saturation effects and noise performance, formula (2.37) is frequently used to
characterize or predict the single-photon avalanche detector response.

2.5 Spatial multiplexed detector

Single-photon detectors can be used as a basic building block in a spatially multiplexed config-
uration. Photon-number resolution is obtained by transforming the incident light into an uni-
form spatial distributions detected by independent detectors. The POVM elements of ideal phase-
insensitive photon-number-resolving detector are the projectors on the Fock states IT,, = |m){m].
Unfortunately, photon-number-resolution is limited due to non-idealities such as the finite num-
ber of detection channels, noise performance, and non-unity detection efficiency. Consequently,
the POVM elements should be defined as I1,, = z;ozo CynIn)(nl, where C,,, = (n[IL,,|n) stands for
conditional probability to obtain m clicks given an impinging Fock state |n).

Here I define analytical model fully characterizing the response of spatial multiplexed detector.
Specifically, we analyze a detector where the input signal is evenly split among M output ports each
terminating with a binary on-off detector that distinguishes the presence and absence of photons
with detection efficiency n and can generate a dark count with probability Rp. In practice, each
of the single-photon detectors will have slightly different detection efficiency »;. This can be com-
pensated for by perfect balancing of the individual detection channels such that in each channel the
product of the corresponding transmittance of the multiplexing optical network and the quantum
detection efficiency of the detector will become a constant. Each incoming photon thus reaches one
of the M output channels with the same probability and is detected in each channel with the same
total detection efficiency 5. The efficiency 7 can be inferred from an independent measurements,
and is assumed to be constant during the PNRD operation. We associate a POVM element II,,, to
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Figure 2.8: The conditional matrix: (a) n = 100%, Ry = 0, (b) 7 = 50%, R, = 0, and (c) n = 50%, Ry, = 1.44x107°.

the event when exactly m out of the M detectors click, irrespective of which set of the detectors
clicked. The probability of observation of such m detected simultaneous clicks conditioned by n
incident photons, G, = 0 for m > n [103, 264, 274] can be expressed as:

cmn:(i‘j)g(—n’ (’7)(1—RD>M‘(’”‘” Rl (238)

In Figure 2.8 the presented conditional probabilities are visualized for several different values.
Consequently, the conditional matrix (2.38) is used for photon statistics retrieval for all the

sources characterized, without the need for a tomographic characterization of the detector [285,

449, 450, 453, 454, 458, 459]. Specifically, the click statistics ¢, is determined by the photon statistics

Dn>

Cm = Tr[ﬁmﬁ] = Z Conn Pn- (2.39)
n=0

The formulation (2.39) is valid for any input state of light. The photon statistics retrieval methods
are treated in more detail in the following Section (2.6).

2.6 Photon statistics retrieval methods

Finding the photon statistics p,, n = 1... 0o, that satisfies the system of equations (2.39) for a par-
ticular measured click statistics d,,,, m = 0... M, represents a core problem of photon statistics
measurement. This inverse problem is ill-posed because 1. it is obviously underdetermined, 2. the
theoretical click probabilities c,, are not available in real measurement as we acquire relative fre-
quencies d, instead, which sample the true probabilities (sampling noise), and 3. for PNRDs that
are not free of systematic errors, other imperfection can be present like imbalance, crosstalk, and
temporal correlations. The PNRD reported here is almost free of these technical imperfections. The
first two issues, however, remain for any PNRD detector, and the photon statistics retrieval has to
take them into account. Fortunately, we have additional information facilitating the retrieval, i.e.
the photon number probabilities are non-negative and normalized. The elements of photon stat-
istics are also typically non negligible only within a finite range of photon numbers. Indeed, the
classical states of light possess a decaying tail, and nonclassical states such as single-photon states
are actually defined on a finite support. There are many techniques for photon statistics retrieval,
direct inversion and maximum-likelihood approach being probably the most frequently employed.
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In what follows we present the basic ideas of these techniques and present a novel method based
on an iteration technique known as expectation-maximization algorithm weakly regularized by
maximum-entropy principle.

2.6.1 Direct inversion

The retrieval technique based on the direct inversion of the system of linear equations (2.39) re-
quires setting a cut-off — the maximum photon number n_,,, typically equal to the number of
PNRD ports. The truncated problem possesses a single solution

M
Pn= . (C . (2.40)
m=0

the non-negativity of which is not guaranteed, hence not representing a physically sound photon
statistics. Here C™! represents the inverse matrix to the conditional matrix C. The solution (2.40)
often reaches negative values and artificial oscillations. These adverse effects are particularly no-
ticeable in the practical case of non-unity efficiency n < 1 with the limited number M of output
ports and the mean photon number of the incident light comparable or higher than M. The non-
negativity constraint can be incorporated using linear programming, for instance, which reduces
the volume of the p, domain by the factor of 2"max. Also, the cut-off can be increased to n,,,, > M
rendering the problem underdetermined. The solution of such a pseudoinverse [B11, B16] often
diverges or, at least, amplifies a sampling noise. Various regularization methods are used to make
these issues less pronounced [B9, 151, 460, 461]. Despite all the mentioned issues the direct inverse
methods are frequently used due to their speed and widespread implementation in many numerical
libraries and computing systems.

2.6.2 Maximum likelihood estimation

Another technique to achieve the inversion of the conditional probability matrix is well known
maximum-likelihood (ML) principle and the expectation-maximization (EM) algorithm, which provides
a robust method for finding a solution (ML estimate) [462, 463]. The likelihood of measuring the
particular data distribution {d,,} given the input photon statistics {p,} and measurement device C

is given by the multinomial distribution, proportional to

M d M /Mmax i
ar =] ( > Cmnpn) , (2.41)
m=0 m=1 \ n=0

which is a convex functional defined on a convex set of {p,} distributions. The maximization of the
likelihood functional yields a single global maximum in the case of n,,, < M or a single plateau
of maxima in the case of underdetermined problems. A logarithm of the likelihood is often used
instead, which does not change the convexity feature. Also, the normalization ), p, = 1 condition
is incorporated with the help of a Lagrange multiplier D,

M Mmax
L{{pa}l = Z dy In Gy — D( Z Pn— 1) : (2.42)
m=0 n=0
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The zero variation is a necessary condition for an extreme of the likelihood functional,

M Mmax Mmax

d,
8L = L[{pn + 6pa3l — L[{pn}] = Z c_m Z ConSpn — D Z Spn =
n=0

m=0 "M n=0

(2.43)
Nmax [ M
Ay
Z Z —Cun—D|6p, =0
n=0 \m=0 m
for each {§p,}, which is equivalent to
L d
Z 2Cpn—D =0, (2.44)

m=0 ‘m

except at the boundary of the domain where p, = 0. To include this boundary condition, the
extremal equation is formulated as

M

d,
Z _mcmnpn = Dpy. (2.45)
m=0 Cm
A summation over n yields
M d Nmax M
D= Z - Z ConPn = Z dm =1, (2.46)
m=0 Cm n=0 m=0

where the constraint ) p, = 1 and the normalization of the click data have been applied. The
functional (2.42) can be maximized over ny,,, + 1 variables using downhill simplex method or other
standard numerical methods [464, 465]. To keep the non-negativity constraint, the variables p,
can be parametrized as R2, the downside of which is even more complicated structure of the log-
likelihood function. This approach is straightforward but numerically demanding as the dimension
of the problem increases. Alternatively, an iterative solution of the extremal equation (2.45), which
is a form of the EM algorithm, can be carried out as was suggested by Banaszek for the first time
[216, 266, 466],

dm
— (k)
=0 (X Cost”)
The iteration process is started with an initial positive statistics, typically chosen as the uniform

distribution, pf,o) = 1/(Npax + 1). Then the kernel Hslo) of the map (2.47) is evaluated for the

initial iteration step, and the first iteration {p,(ll)} is obtained by the application of the kernel on

i = ptY i = Conn- (2.47)

s

the initial statistics. The normalization pﬁl) /> pr(,l) has to be performed if the data {d,,} are not
properly normalized. The iteration process is repeated until the distance between (k + 1)-th and
k-th iteration is smaller than some given value,

\/ > (V- ;7,(1"))2 <e. (2.48)
n

Throughout this work the value € = 1072 is used for all the performed photon statistics retrievals.
When sufficient mathematical conditions are fulfilled, the procedure converges to the fixed point
of the map (2.45), i.e. to the maximum-likelihood estimate of photon statistics [462, 463].
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2.6.3 Expectation-maximization-entropy algorithm

For underdetermined problems, when n,,, > M, the EM algorithm converges to a particular solu-

tion depending on the initial distribution { pr(lo)}. All the possible solutions reache the same value
of the likelihood (given the data d,) and cannot be distinguished by ML principle itself. In such
cases, the common strategy is to allow for some kind of regularization or damping to select the
most “simple” solution from the plateau of all ML solutions or, in other words, to prevent over-
fitting of the data. Entropy characterizes the solution complexity and its maximization reflects
minimum prior information. Entropy maximization is frequently used for regularization of inverse
problems in various applications like image reconstruction, seismology, and electromagnetic the-
ory [B12, B14], and also in machine learning and quantum state estimation [467, 468]. Adopting
this idea, we have applied entropy maximization to EM algorithm to obtain the most-likely estim-
ate of photon statistics with the largest entropy. The resulting strategy not only offers improved
fidelity of the retrieved statistics but also makes the iteration process faster. The derivation of the
expectation-maximization-entropy (EME) algorithm is analogous to derivation (2.42)-(2.47) but the
regularized functional E is used instead of simple log-likelihood,

M Nmax Nmax
E[{pn}]: delncm"‘/lzpnlnpn_D(Z pn_1>- (2-49)
m=0 n=0 n=0

Parameter A scales the entropy regularization relative to the likelihood maximization. Performing
variation of the log-likelihood-entropy functional E, eliminating the Lagrange multiplier D, and
rewriting the extremal equation in the iterative form lead us to the EME algorithm

M
d
mpn” =2 (Inpi” = s®) 5 = i WP = Y
=0 (2 Guity”)

(2.50)
Mmax
50 8% 01 0
n=0
The initial iteration is chosen to contain no prior information about the statistics, pr(lo) = 1/(Npax +

1), and the process is terminated based on the distance (2.48). An implementation of this algorithm
in Python is presented in Ref. [469]. We have performed hundreds of photon statistics retrievals
using measured data and thousands retrievals based on Monte Carlo simulated data with not a
single failure of the EME algorithm convergence. We have also verified that the retrieved photon
statistics does not depend on the initial iteration.



Chapter 3

Accurate detection of arbitrary photon
statistics

Chapter 3 introduces the working principle of the detection-device-independent method for the
photon statistics estimation of any initial photonic state. Photon number resolution is obtained
by splitting an incident light field consisting of many photons in a balanced multiport optical net-
work and measured with multiple single-photon detectors, so called multiplexing scheme. The
technical realization of the developed detector is described in Section 3.2. A multichannel detector
with M-independent electronic output signals from single-photon detectors requires adequate com-
plex processing of these outputs. For this purpose, we have designed and built analog and digital
homemade coincidence counting systems (Section 3.3). To reconstruct the photon statistics from
the multiple coincidences measurement, we apply an expectation-maximization-entropy algorithm
based on entropy regularization of the maximum-likelihood estimation (see Subsection 2.6.3). First,
we did an extensive numerical analysis of the the retrieval algorithms. Numerically simulated click
statistics of various light sources served as input datasets to certificate the speed and accuracy of
the few reconstruction methods (Section 3.4). Afterwards, series of optical measurements were
done to prove the photon-number-resolving capability of the presented detector. We achieved un-
precedentedly accurate measurement of various photon-number distributions going beyond the
number of detection channels, where the error is contributed primarily by the sources themselves.
High-fidelity photon statistics reconstruction is verified for different sources of light including laser
(Subsection 3.5.1), single- and few-mode thermal sources (Subsection 3.5.2), and a set of several
single-photon emitters (Subsection 3.5.3). Finally, I discuss the achieved results, future improve-
ments of the presented detection technique.

Chapter 3 is based on the following publications:

[A2] J. Hlousek, M. Dudka, L. Straka, and M. Jezek, ‘Accurate detection of arbitrary photon statistics’,
Physical Review Letters 123, 153604 (2019).

[P1]]. Hlousek, M. Dudka, J. Grygar, and M. Jezek, ‘High-resolution multi-channel coincidence count-
ing system for large-scale photonic quantum technology’, in preparation.

[C1] L Straka, L. Lachman, J. Hlousek, M. Mikova, M. Jezek, and R. Filip, ‘Quantum non-Gaussian
multiphoton light’, NPJ Quantum Information 4, 4 (2018).

[C2]J. Mika, L. Podhora, L. Lachmann, P. Obsil, J. Hlousek, M. Jezek, R. Filip, and L. Slodi¢ka, ‘Gen-
eration of ideal thermal light in warm atomic vapor’, New Journal of Physics 20, 093002 (2018).
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3.1 Introduction

The one of the key tasks of quantum optics is to study the statistical properties of light. Optical
signals are composed of individual energy excitations — photons. The probability distribution of
the number of photons in an optical mode carries a great deal of information about physical pro-
cesses that generate or transform the optical signal. Along with modal structure and coherence, the
photon statistics provides full description of light. The statistical properties of the photon steam
affect the properties of the resulted optical signal and its interaction with the environment. Gener-
ation of light statistics has been of paramount importance for understanding various phenomena
in statistical and quantum optics since the presentation of pioneering experiments by Hanbury
Brown and Twiss in 1956 [470, 471].

The very first attempt of direct photon statistics detection was performed in 1982 [140]. Since
then, many photon statistics measurements have been made employing various experimental tech-
niques such as optical homodyne detection [127, 472], on/off photodetectors [141, 148, 216-218,
274], silicon photomultiplier [219], and transition edge sensor [147, 220]. Alternatively, homodyne
detection provides full information about quantum state of light, including phase information [132].
Unfortunately, the homodyning requires a proper (frequency adjusted) local oscillator, which is not
accessible in many applications and for many sources like solid-state emitters, biomedical samples,
and generally all multi-mode sources. In general, photon statistics measurement is less demanding
than full quantum tomography but still represents a significant challenge due to limitations in fi-
nite dynamic range of detectors. Also, the non-unity overall detection efficiency, additional losses,
or false detections dramatically invalidate true photon counting. This inability of the measuring
devices to distinguish individual photons leads to a record of so-called click statistics, which in-
dicates the photon statistics of the input state but does not directly match it. Fortunately, photon
statistics can be reconstructed from the click statistics [A2, 141, 143, 144, 217].

Precise characterization of photon statistics is a crucial requirement for many applications
in the field of photonic quantum technology [473] such as quantum metrology [110, 111], non-
classical light preparation [C1, 20], quantum secure communication [474], and photonic quantum
simulations [361, 475]. It is essential in quantum communications, namely in quantum crypto-
graphy, where the security of the transmission is guaranteed only if the carrier signal of proper
statistics is used. In addition, statistics of light plays a vital role in optical communications as it
affects the sensitivity of optical receivers. Measurement of statistical properties and non-classical
features of light also represents enabling technology for many emerging biomedical imaging and
particle-tracking techniques [96, 250, 290]. Statistical correlations are routinely applied to quantify
the non-classicality of light [295, 296]. Photon statistics measurement represents a special case of
the network-assisted tomography with a vast number of practical applications. Photon statistics
provides fundamental information on the nature of optical field and hence to discriminate between
light sources in the classical or non-classical domain, and provides crucial information on the ap-
plicability of optical source such as single-photon sources [13, 220, 476], photon pair sources [14,
17, 477], cavity QED [15, 18], and lasers [19, 478]. Single-photon emitter counting and localizing
are at the heart of modern super-resolution microscopy. Current non-destructive emitter counting
methods are focused on correlation measurements in simple detection networks and comparison
with an ideal noise-free model [96, 290].
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3.2 Experimental implementation of the multiport op-
tical network

This section provides detailed information about the multiport optical network reconfiguring the
number of detection channels, and possible future extensions.

(@) coincidence logic (b) tunable M =2 single-photon

click detectors beam splitter avalanche detectors
optical multiport '&n
network §fﬁﬁ' =) SPADS

input state

data-processing algorithm
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SPADs
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Figure 3.1: (a) The reported measurement workflow of arbitrary photon statistics detection using integrated
quantum photonic elements. Ilustrated are: photon-number resolving detector based on spatial multiplex-
ing scheme; high efficiency single-photon detectors; ultra-fast multichannel coincidence counting unit, and
scheme of photon statistics retrieval. (b) Experimental setup of the PNRD based on a discrete optical network
with full reconfigurability and continuous tunability of splitting ratios using half-wave plate (HWP) and po-
larizing beam splitter (PBS).

The reported photon-number-resolving detector is based on spatial multiplexing of the input
photonic signal by a reconfigurable optical network as depicted in Figure 3.9. The multiport net-
work consists of cascaded tunable beam splitters composed of a half-wave plate and a polarizing
beam splitter. This high-performance reconfigurability architecture allows for accurate balancing
of the output ports or, if needed, changing their number so there is no need to physically add or
remove detectors. The whole network works as a 1-to-M splitter balanced with the absolute error
below 0.3%. Specifically, it allows setting the configuration to Hanbury-Brown and Twiss measure-
ment [470, 471]. Coupling between M different ports (crosstalk) is impossible, as the individual
ports are completely spatially separated from each other into independent detectors. In this Thesis,
the demand for laboratory equipment, especially single-photon detectors, limits the maximal num-
ber of detection channels to ten. Each of the ten channels is coupled to a multimode fiber and
brought to a single-photon avalanche photodiode (SPAD, Excelitas) with system efficiency ranging
from 60 to 70% at 810 nm, 200-300 ps timing jitter, and 20-30 ns dead time. The dead time of the
presented photon-number-resolving detector is given solely by a dead time of the single constitu-
ent detector. The total jitter scales with the number of detection channels M as 7oy = VMz. In
the worst case scenario, the total jitter ranges from 630 to 950 ps, approximately. Furthermore,
differences in SPAD efficiencies and other optical imperfections or imbalances of the PNRD can be
arbitrarily compensated by adjusting the splitting ratios of the optical network. The splitting ratios
are set so that the detection rate in each channel is the same. As a result, the overall transmittance
of each channel is the same (the product of the optical transmittance of the particular port and the
efficiency of the SPAD sitting in that port). The PNRD then becomes a balanced detection multiplex
with a global efficiency 7 that is a combination of all constituent losses. This means that all system-
atic errors are eliminated either by design or by a sufficiently precise adjustment, independently
of constituent detectors employed. The total detection efficiency of 50(1)% is determined based on
measured transmittance of the network and SPAD efficiencies specified by the manufacturer. For
independent verification of the efficiency an absolute method using correlated photons can be used
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[200, 275]. The non-unity system efficiency is caused by a sequence of five half wave plates and
polarizing beam splitters with the total transmittance of 0.97°, two lenses and two fiber couplings
with the transmittance of 0.88, and the efficiency of SPAD detectors ranging from 0.6 to 0.7 with av-
erage value of 0.65. Hence, 0.97° x 0.88 x 0.65 = 0.49. The efficiency can be improved by employing
low-loss optics (especially polarizing beam splitters), anti-reflection coated fibers (transmittance
99%), and super-conducting nanowire single-photon detectors (system efficiency 90%). The im-
proved efficiency can reach 0.985° x0.96x 0.9 = 0.8. Based on the performed numerical simulations
we expect that the resulting retrieved photon statistics will be nearly identical to the ones retrieved
using the current version of the PNRD detector. The high-efficiency detector would find its ap-
plication mainly in the case of low number of measurement runs and as heralding detector for a
preparation of highly-nonclassical quantum states.

The use of independent detectors and well-balanced coincidence circuitry removes completely
any crosstalk between the histogram channels yielding the perfect energy quanta resolution up
to number of the channels used. Furthermore, the effects of dark counts and afterpulses are vir-
tually eliminated by operating the detector in pulse regime with the repetition rate below approx.
5 MHz [199, 439]. The period between individual measurement runs can be ultimately decreased
to be only slightly longer than the recovery time of the constituent single-photon detectors, as far
as afterpulses are negligible or fast decaying like in the case of superconducting nanowire single-
photon detectors [195-197]. It is important to stress here that the PNRD operates in real time and
yields a result for every single input pulse with a latency (input-output delay) lower than 30 ns in-
cluding the response of the SPADs, which allows its application also as a communication receiver,
quantum discrimination device, or for a feedback operation. The period between individual meas-
urement runs can be ultimately decreased to be only slightly longer than the recovery time of the
constituent single-photon detectors, provided that afterpulsing is low enough.

3.3 A custom coincidence counting system

In order to process the output electronic pulses from a complex optical network of single-photon
detectors, we designed and developed a custom coincidence logic. We have tested two implement-
ations of the coincidence circuit, analog and digital ones.For repeated measurement runs, a simple
summation of synchronized electronic pulses from single-photon detectors allows obtaining a histo-
gram of coincidence events which is a sufficient outcome for the application of the photon statistics
retrieval approach. However, in many modern photonic experiments, more complex processing of
multichannel electronic outputs is required. Therefore, we built a coincidence system that can
distinguish n-fold coincidences with the full detection channel number resolution.

3.3.1 Analog coincidence circuit

The analog solution employs commercial electronic modules, namely 300 MHz discriminators (Phil-
lips Scientific NIM MODEL 708), delay lines (Phillips Scientific NIM MODEL 792), and an array of
250 MHz linear fan-in/out units (Phillips Scientific NIM MODEL 740). The propagation delay is
approximately 10 ns (excluding coaxial patch cords) and the coincidence window should be larger
than 20 ns because of few-nanosecond rise and fall times and time jitter. The bandwidth can be fur-
ther increased utilizing a passive RF summation circuitry (Mini Circuits ZC16PD-252-S+) instead
of the active fan-in units. We verified this option and reached the propagation delay below 5 ns,
coincidence window 10 ns, and sub-ns jitter given mainly by the discriminator. The number of
channels of the PNRD can be increased to several dozens while keeping the same analog electronic
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signal processing technique. Potential disbalance in the summation circuitry can be corrected by
careful adjusting the amplitude of the individual electronic pulses produced by the discriminator.

Figure 3.2: Active summation of detector output signals using fan-in units. Output signals are digitized with
oscilloscope. Shown are: (a) coherent state, and (b) thermal state.

After the analog summation, the output signal is digitized with 20 GSa/s by a 1.5 GHz oscil-
loscope operating in a memory-segmentation regime (Teledyne LeCroy). Each of the thresholded
voltage levels (eleven in our case) corresponds to the particular number of multi-coincidences. Fig-
ures 3.2 and 3.3 show energy quanta resolution for active and passive summation of optical network
outputs. As a result, passive RF summation using a 16-channel power splitter/combiner proved to

Figure 3.3: Passive RF summation of detector output signals. Output signals are digitized with oscilloscope.
Shown are: (a) coherent state, and (b) thermal state.
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Figure 3.4: Pulse-height spectrum of the analog output of the reported PNRD for coherent states of various
mean photon number (n) = 1 (a), 5 (b), and 20 (c).

be the ideal choice for the near-ideal resolution of individual voltages. The pulse-height spectrum
of the resuled analog output of the multiport network is shown in Figure 3.4. The spectra are plot-
ted in log-scale to emphasize the perfect energy resolution and the absence of any crosstalk effects
or background noise.
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3.3.2 Digital coincidence circuit

Alternatively, a fully digital coincidence device can be employed. We developed an ultra-fast elec-
tronic multi-channel coincidence unit based on a custom emitter-coupled logic (ECL) circuit for
counting detection events from singles to 16-fold coincidences with the full channel-number res-
olution. The device performs a real-time classification of all possible detection events in a 2'¢
element histogram with the rate of up to 3 million events per second. The full histogram contains
more information than required for click statistics and is further reduced to just 17 elements — no
detection, singles, two-photon events,... 16-photon events. Alternatively, our coincidence counting
unit (CCU) architecture allows advanced event triggering for the maximum input frequency of up
to 800 Mhz. This trigger mode can be employed in complex photonic systems, e.g. for driving a
feed-forward loop or active subtracting photons. The CCU is operable in the sub-100 ps coincidence
windows regime with less than 10 ps overall jitter; applicable in quantum photonic experiments
employing low-timing jitter photonic sources and single-photon detectors (< 30 ps).

Device design and operation
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Figure 3.5: A functional flow block diagram of the coincidence counting system: (a) the main building blocks:
the pulse reshaping process, coincidence counting and storing, (b) a block diagram of a shaper, and (c) the
operation principle of the signal processing.

Developed ultra-fast electronic multi-channel coincidence unit is based on ECL circuitry con-
sisting of fast comparators, delay lines, and basic gates with fast transition times. The Figure 3.5(a)
shows an overview of the CCU architecture. The coincidence counting system consists of three
main parts: input signal shaper, latch, and data processing. The device accepts 16 data inputs and
a single gate input and yields the complete histogram of 2!¢ multi-coincidences of the inputs con-
cerning the gate signal. Each input channel contains a shaping circuit to detect an input signal edge
and provides the output ECL pulse of a given width and delay. Shaper is a crucial circuit building
block comprised of a fast comparator, multiple delay lines, and basic gates (see Figure 3.5(b)). For
a detailed description of the pulse shaping and processing, see the Figure 3.5(c)). Input electrical
signal is processed by the fast comparator (an adjustable threshold from 1 V to 4 V) to convert it
from the original waveform to a start pulse triggering the first flip-flop circuit. The flip-flop is used
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to store state information and enable the creation of a time window independent of the input signal.
The flip-flop output is split into two signals and modified by parallel delay lines and invertors. The
time window is defined as an output of AND gate that implements the logical conjunction of these
delayed signals. The first/second delay line sets the rising/falling edge of the time window. The
width of the time window is given as the time difference between these two propagation delays.
The time windows of individual channels can be tuned independently. A system of parallel delay
lines automatically compensates for the finer input pulse time alignment. After signal shaping, the
signal and trigger pulse are processed by the latch. The latch composed of 16-input AND gates and
the flip-flop circuits counts all possible coincidences between the rising edge of one exclusive signal
(trigger) and 16 rising edges of the signal time windows and stores information about successful
coincidence events and single-channel pulses. The AND gates generate an output pulse only when
incoming pulses and triggers are received simultaneously. Data from the latch is transferred in the
form of bits.

The information about successful coincidence events can be directly employed as a trigger sig-
nal for implementing the real-time feed-forward control to change the performance of the system
or measurement configuration. The maximum input frequency of advanced event triggering is up
to 800 Mhz. In principle, this gating mode is limited only by the maximum operating frequency of
delay lines.

Alternatively, this data type could give rise to a histogram of detection events. In this paper,
the MCU is used for configuration, monitoring, and data processing and storing in the memory.
The CCU has a USB interface (the RTC+CTS protocol) for communication and data readout with a
10° baud rate.The presented CCU architecture allows us to define the coincidence operational con-
dition and operate in two specific work regimes depending on the complexity of the measurement.
One can store complete information about all possible coincidence events (2! = 65536 kinds of
coincidence events in total), called the ”full histogram” regime, or throw away information about
the number of channels and count only specific coincidences of the same order. For our concrete
technical solution, the maximum processing rate is about 3M events per second for the reduced his-
togram and 2M events for the full histogram. This difference between maximum operating rates is
caused by more complex data processing.

Furthermore, the CCU is also operable in a self-calibrating regime. The system of the two paral-
lel delay lines in each counting channel primarily allows precisely setting the coincidence channels
parameters. Additionally, a fine-time resolution delay line step guarantees efficient measurement
of produced coincidence window.

Coincidence unit performance

To characterize the performance and capabilities of the presented device, we have chosen these
figures of merit: (1) the minimum and maximum coincidence window length, (2) timing granular-
ity, (3) jitter, (4) higher-order coincidence failure probability, and (5) the maximum detection rate.
Employed high-speed ECL components with fast transition times such as comparators, D flip-flops,
precision programmable delay lines, and differential AND gates guarantee short propagation delay
below 5 ns. We could not examine the jitter of the CCU directly, because all time discrepances are
under the resolution of our 1.5 GHz oscilloscope. However, it can be stated that the overall jitter
of the presented CCU architecture is less than 10 ps.

The complete coincidence window characterization is performed by CCU itself. The fine-time
resolution of the delay-lines system allows us to scan individual coincidence windows. Each delay
line has 1024 discrete steps with a different propagation delay dependent on the temperature. The
average discrete delay-line step is 9(1) ps. We analyzed the coincidence window’s width and rising
and falling edges. The whole measurement is based on changing the mutual position of the trigger
and channel pulse. As a result, we got the number of coincidence events as a function of time
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Figure 3.6: Full scan of the coincidence window of (a) sub—100 ps (b) 700 ps and (c) 3 ns width.

delay. The minimum and maximum width of the coincidence window are sub-100 ps and 20 ns,
respectively. The main limitation of the maximum coincidence window width is a fixed range of
delays from 2.2 up to 14.8 ns for the used configuration. The results show that the coincidence
windows are well defined in time, and they are almost perfectly rectangular with sharp edges with
a value typically around 18(5) ps for all channels (see Figure 3.6 and 3.7(a)).
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Figure 3.7: (a) The typical achieved width of the rising and falling edge (10 — 90%) of the coincidence windows
(Shown is the coincidence window whose width is 1 ns). (b) Analysis of the coincidence error probability of the
individual n-fold coincidences for several different widths of the coincidence windows: 1.5 ns, 3.0 ns, 10 ns,
and 20 ns. Presented values are calculated as the average over the 250 measurement runs. The error bars
represent one standard deviation.

Presented CCU meets the conditions of a high-resolution coincidence system with the same
probability of occurring for all orders of coincidence events, see main text. We have analyzed the
precision of counting coincidences for several configurations of coincidence window width from
1.5 up to 20 ns. A homemade multi-channel pulse generator with a repetition rate from 0.2 to
10 MHz was used as an input electrical signal. The signal is generated by a relaxation oscillator
whose output is delayed by an RC low pass network and fast inverter with Schmitt trigger inputs
(74ACT14T). This generator was developed to simulate the typical output signals from SPADs. The
jitter of the individual channels is less than 10 ps instead of the typical 250 ps SPAD jitter. To eval-
uate the counting error of the number of coincidence events, the detection channels were turned
off one by one. The figure 3.7(b) shows the analysis of counting coincidences precision for several
configurations of coincidence window width from 1.5 up to 20 ns. All coincidence errors across all
tested coincidence windows are lower than 1 x 1077, It means that all coincidences have the same
probability, which indicates ultra-low losses of events during electrical signal processing. These
negligible detection losses are initiated by resetting the latches, most probably caused by back re-
flections via imperfect impedance matching.
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3.3.3 Discussion

With better programmability, readout speed, and the ability to read multi-coincidence events with
full channel resolution, we have come to prefer the digital version of the coincident unit. The
architecture of the CCU based on fast positive ECL circuits benefits from high-resolution coincid-
ence counting. The CCU provides a fine-tunable coincidence window within a range of sub-100 ps
- 20 ns with 10 ps resolution and 10 ps overall jitter. These allow recording ultra-low overlap
between the input pulses and the gate signal down to a few dozen picoseconds, guaranteeing al-
most no losses of coincidence events across all coincidence orders. The overall coincidence error
probability is below 10~ percent. The presented CCU design can be easily scaled up to a few dozen
input channels and can be considered as a practical counting device for multiple-output applica-
tions.

Ref. [479] | [308] | [307] | [306] | [305] | [304] | CCU
Number of channels 20 8 32 8 48 8 16
Measurable coinc. folds 20 8 8 8 6 8 16
Max. input frequency [MHz] | 400 40 80 50 76 163 800
Min. coinc. window [ns] 0.46 - 0.39 10 0.3 0.47 | <0.1
Max. coinc. window [ns] 10 - - 70 1.9 13.22 20

Table 3.1: Performance parameters comparison of proposed coincidence counting device and different coin-
cidence counter approaches.

In Table 3.1, the performance summarization of the various CCU approaches is shown. Des-
pite a large number of FPGA-based CCU channels, a relatively small number of these channels
is employed in coincidence counting mode. Nevertheless, the device in Ref. [479] can detect up
to twentyfold coincidences. Coincidence counting devices typically provide a minimum coincid-
ence window in the sub-nanosecond range. Another critical parameter is the maximum input
frequency ranging from several dozen to a few hundred MHz. Comparing these CCU approaches,
the developed CCU offers high n-fold coincidences counting (n > 8), the shortest well-defined sub—
100 ps coincidence windows with 10 ps overall jitter, and the highest maximum input frequency of
800 MHz.

The functionality of the presented device can be further extended and some of the character-
istics can be improved. Coincidence counting and histogramming are programmed into an MCU
(STM32F429), limiting the data processing sequence. Employing FPGA instead of MCU promises
improvement in the speed of large datasets processing by order of magnitude. Additionally, FPGA
can bypass the frequency limitation of CMOS to PECL Translator (800 MHz) and be directly em-
ployed to reset all components at the CMOS level to increase the maximum input frequency up
to 1.5 GHz. If necessary, the range of the coincidence window width can be easily increased by
modifying the distribution process of the trigger signal and the delay line system. It is also possible
to increase the number of input channels and go beyond 16. Further advancing the coincidence
counting and processing to a mesoscopic scale opens the way to ground-breaking applications in
quantum communications, simulations, and boson sampling machines.

3.4 Numerical analysis of photon statistics retrival

We performed a numerical analysis comparing EME to other photon statistics retrieval methods.
We numerically simulated click statistics (using M = 10 and = 0.5) of several known initial states
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and then applied direct inversion (Section 2.6.1), EM algorithm (Section 2.6.2) and EME algorithm
(Section 2.6.3). To quantify the match between the real and estimated photon statistics, we used
total variation distance and fidelity. Furthemore, we focused on the reconstruction accuracy and
convergence speed of individual photon statistics retrieval methods.

3.4.1 Expectation-maximization-entropy algorithm

Here we present an expectation-maximization-entropy method, based on an expectation-maximization
iterative algorithm weakly regularized by a maximum-entropy principle. The initial zeroth itera-
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Here the superscript (k) denotes k-th iteration. Each iteration is evaluated for n = 1, ..., ny,. The

2") is a function of the measured click statistics c,, and the efficiency n determined by a separate
measurement. The click statistics ¢, is determined by the photon statistics ¢,, = Y., Gunpn [103,
264, 274], where C,,, gives the probability of m channels clicking upon the arrival of n photons
(see Section 2.5), and S&) is a negative von Neumann entropy. The parameter A scales the entropy
regularization relative to the likelihood maximization. The process is stopped when two subsequent
iterations are practically identical. The retrieved statistics does not change for different initial

iterations. The derivation of the algorithm is given in Section 2.6.3.

3.4.2 Reconstruction accuracy

The direct inversion method proved to be unsatisfactory, because non-negativity of the result is
not guaranteed and therefore, some results do not represent a valid photon statistics. Those that
do, exhibit the distance 2 x 102, which is close to the results of the EM method. The EM algorithm
guarantees positive-semidefinite results with average fidelity F = 0.997. The total variation dis-
tances are similar to those obtained by direct inversion. An average distance 3x 1072 is reached for
all tested sources. Finally, the presented EME method gives the best match while always maintain-
ing non-negativity. The average fidelity F = 0.9996 and average distance is 4 x 1073, Particularly,
the total variation distance of this method is smaller by an order of magnitude across all states. The
EME therefore significantly improves the results for all kinds of simulated statistics (Figure 3.8).

In Figure 3.9, we show by numerical simulation that the results of the EME algorithm approach
the respective theoretical expectations as more data is acquired. This means that despite a limited
number of channels M = 10, the chief source of error is the statistical/sampling error. We also
verified that A stays the same if both the mean number of photons and the number of channels
are doubled. Therefore, EME scales well to high photon numbers considering limited experimental
resources. In addition, we analyzed the effect of the probability distribution of the zeroth iteration
on the retrieved statistics for several different initial states of light. Achieved results show that the
retrieved photon statistics does not change for different zeroth iterations. To conclude, the EME
algorithm proves to be a robust photon statistics estimator.
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Figure 3.8: Photon statistics retrieval of various different states of light from numerically simulated click
statistics. Each column shows a different retrieval method: direct inversion (Moore-Penrose pseudoinverse),
EM algorithm, and EME algorithm, from left to right. The same amount of data (number of measurement runs)
is used for each retrieval method to facilitate the comparison. The green points represent the corresponding
true photon statistics.

3.4.3 Convergence speed

EME and EM exhibit significantly different convergence behaviour with respect to the iteration cut-
off distance €. For both methods, the inter-step distance decreases with the number of steps. For
EM, the total variation distance to the expected photon statistics is non-monotone and eventually
starts to rise. The result is that for low € the retrieved photon statistics reveals considerable artifacts.
EME does not show this issue. We demonstrate this effect on measured data for a Poissonian signal,
see Figure 3.10. For both methods, the reconstructed photon statistics yield the same click statistics
on the PNRD, but the ill-posed nature of the problem results in overfitting in the case of EM. For
EME, the weak regularization eliminates this issue. We observed that this behaviour is stronger
for smaller data sets. It may seem that using a certain optimal value of € would solve the issue.
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Figure 3.9: A numerical analysis of EME total variation distance A. With more measurement runs R, the
statistical error in the data is lower and the EME result approaches the true photon statistics despite the
limited number of channels M = 10. Here shown for various photon-number distributions and a single value
of A = 107%. Shown are: coherent state with (n) = 10 (blue triangle up), thermal state with (n) = 5 (red circle),
N,-photon cluster with N, = 1 (green square), and N, = 9 (green rhombus). The gray area illustrates the
observed scaling (0.25/vR to 14/vR.)
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Figure 3.10: Poisson statistics (n) = 4.95 reconstructed by EME (top row) and EM (bottom row) as a function
of the iteration cut-off distance €. All distributions are obtained from the same collection of 10 data sets,
each containing 10° measurement runs. Inset numbers (top right) denote total variation distances to the ideal
Poisson distribution.

Unfortunately, the optimal value depends on the photon statistics. When measuring an unknown
distribution, the value of € cannot be set beforehand, because no expected distribution is available.

The convergence speed analysis of the retrieval methods with respect to the measured data is
shown in Figure 3.11. We compare the convergence of EM and EME in the case of a coherent state, a
thermal state, a two photon-subtracted thermal state and a single-photon emitter. Figure 3.11 shows
that EME converges faster by orders of magnitude than EM. Only for a single-photon emitter, both
methods are on par (the green lines overlap). While EM usually requires at least 10° iterations,
EME can do with less than 10%.



NUMERICAL ANALYSIS OF PHOTON STATISTICS RETRIVAL 45

10-2 P

iy
o

IS
i

10t NN

108 b

and k-th iteration

the distance between (k+1)-th

10710 ¢ i

I
10° 10* 10°
number of iterations

10—12
10°

Figure 3.11: Photon statistics retrieval convergence demonstration of selected states: coherent state (blue),
thermal state (red), 2-photon subtracted thermal state (black), and single-photon emitter (green). Shown are
results for EM iterative process (full lines) based on Eq. (2.47) and for EME algorithm (dashed lines) based on
Eq. (2.50). For each state five runs of individual retrievals were done.
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Figure 3.12: Accuracy and speed of photon statistics retrieval using EME algorithm versus the strength
of entropy regularization characterized by the parameter A. The total variation distance A characterizing
the accuracy (black) and the number of EME iterations required (blue) are plotted for four different photon
statistics. Shown are: (a) coherent state with (n) = 5, (b) thermal state with (n) = 2, (c) single-photon emitter
(N, = 1), and (d) multi-mode thermal states with M,, = 2. The data are simulated numerically (from true
photon statistics) using Monte Carlo approach. For each value of A the statistics retrieval is performed several
times for different data sets to evaluate the repeatability, which is represented by error bars of A.

3.4.4 The strength of entropy regularization

Furthermore, we have performed a detailed analysis of accuracy and convergence speed as a func-
tions of the regularization parameter A for various photon statistics including strongly non-classical
sub-Poissonian states. In case of small values of A the EME approaches the common EM algorithm
and the accuracy and repeatability of the solution decrease. For large A the entropy regularization
prevails and the solution is less likely to reproduce the data - the accuracy drops. Numerical simula-
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tions revealed the dependence of the reconstruction method accuracy on the entropy regularization
parameter (see Figure 3.12). There does not exist the parameter A that is optimal regardless of the
incident state of light and its mean photon number. The optimal value of the regularization para-
meter A depends on the number of runs/data sets (R) and scales approximately as A ~ \/%. In our

experiment, we typically work at the level of R = 10°. Thus, A = 10~ was found to be the best
possible strength of entropy regularization to keep the total variation distance satisfyingly small
for all the performed photon statistics retrievals (for all tested sources).

3.5 Application to quantum state measurement

In our experimental demonstration of photon statistics detection approach, we used a balanced
configuration of the detector described in Section 2.5, and Section 3.2. We analyzed optical states
such as coherent states, single-mode thermal states, multi-mode thermal states, and non-classical
multiphoton states. First, the employed optical sources of various states of light are discussed in
technical details. Subsequently, we processed the raw data from the multi-channel coincidence
measurement to directly characterize the nature of initial states of light [342, 480]. Furthermore,
we employed EME algorithm (see Section 2.6.3) to retrieve the photon statistics from the measured
click statistics. We focus mainly on the discrepancy between the measured and the correspond-
ing ideal photon statistics for dozens of measured photonic sources, characterized by the fidelity
F = Tr[\py, - pide¥']? and the total variation distance A = Y, |p, — pid|/2, both ranging from 0
to 1. Higher fidelity does not necessarily correspond to a stronger non-classical feature so other
characteristics should also be evaluated [481]. Very often only a limited number of characteristics
are evaluated and utilized to witness a particular feature of the source under the test. For each
retrieved photon statistics we computed (n), g(Z), QOu> and Fano. We have varied the mean number
of photons, the number of modes, and the number of superimposed photons. We also identified
non-classicality of the multi-photon states of light by certifying the Wigner function. More details
of these preferred quantities are given in Section 2.2.

3.5.1 Coherent state

As an initial coherent nanosecond pulsed light, we developed sub-ns-pulsed laser diode with vari-
able repetition rates between 50 kHz to 2 Mhz. We employed a technique of gain-switching, fre-
quently used for generating short optical pulses in a laser by modulating the laser gain via the
electrical pulse pumping. We have reached < 1% pulse-to-pulse stability and similar long-term
stability of the mean power by employing custom low-noise low-jitter pulse generator, laser diode
selection, its thermal stabilization, and optimization of driving pulse duration and shape. The laser
diode in constant current mode with the central wavelength of 810 nm is a temperature-stabilized
and biased below the threshold current by a well-stabilized DC current. Periodical modulation of
the laser gain is realized by mixing the ultra-short pumping pulses with the injection DC current at
the bias tee. The applied pump power causes the generation of the optical pulse whenever the in-
jection current rises above the threshold level. As an electrical pump home-made sub-nanosecond
electronic pulse generator with an adjustable pulse width in the range of 0.5 ns to 5 ns was used.
The peak amplitude of the electronic pulse was set to 4 V. The developed generator has two outputs,
one of which serves as a trigger. The time delay between the trigger and pump signal can be set
up to 224 ns to compensate for the different transit time of the optical part of the experiment. The
mean optical power was modified by applying different levels of neutral density filters.
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Figure 3.13: Experimental results of detection of photon statistics. Shown are the measured click statistics
(green bars), retrieved (blue bars), and the corresponding theoretical photon statistics (green dots) of coherent
state for several mean photon numbers (n): (a) (n) = 0.02119(3), (b) (n) = 2.144(3), and (c) (n) = 10.21(1). All
distributions are plotted on a logarithmic scale.

The resulting coherent pulses measured by the PNRD detector display virtually perfect Pois-
sonian statistics (see Figure 3.13). Retrieved photon statistics reaches fidelities F > 0.9997 (Fig-
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Figure 3.14: The discrepancy between the measured and the corresponding ideal photon statistics of coherent
states characterized by (a) fidelity F, and (b) the total variation distance A.

ure 3.14(a)) and total variation distances A < 102 (Figure 3.14(b)) for all measured coherent states.
Evidence of ideal Poisson statistics is also provided by the values of the evaluated parameters associ-
ated with the statistical properties of light. Figure 3.15(a) shows classical behaviour of Qy, parameter,
as expected for coherent state (Q;, = 0). The binomial parameter of the measured click statistics
reaches low values close to zero, even negative ones caused mainly by fluctuations of the laser
source. The Mandel parameter as a function of mean photon number of initial state is shown in
Figure 3.15(b). We measured coherent states with Poissonian statistics with Mandel parameter Qy
ranging from —1 x 1072 to 0.012 and the mean photon number exceeding (n) = 19.84(2). Achieved
results show that the Mandel parameter is more sensitive to the mean number of photons of the
incident radiation. As the mean number of photons approaches the number of detection channels,
the value of the Mandel parameter deteriorates, moving away from the ideal value for Poisson light
(Om = 0). As one might expect, the correlation function reaches g(z) (0) = 1 (Figure 3.15(c)) and
Fano factor Fano = 1 (Figure 3.15(d)).
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Figure 3.15: Characteristics of measured photon statistics of coherent states: (a) the binomial parameter, (b)
the Mandel parameter, (c) g2(0) function, and (d) Fano factor. Solid curves represent theoretical models.

3.5.2 Thermal state
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Figure 3.16: Experimental results of detection of photon statistics. Shown are the measured click statistics
(green bars), retrieved (blue bars), and the corresponding theoretical photon statistics (green dots) of thermal
state for several mean photon numbers (n): (a) (n) = 0.00949(5), (b) (n) = 1.993(1), and (c) (n) = 8.41(3). All
distributions are plotted on a logarithmic scale.

Thermal states are generated by temporal intensity modulation of the initial coherent light by
rotating diffuser with a random spatial distribution of speckles [362-365]. As a diffuser we em-
ployed 1500 grit N-BK7 ground glass disk (Thorlabs DG 20-1500-H2). The disk is attached to a
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miniature DC motor with operating range from 3 up to 6 V (Multicomp MM28). The rotating speed
of the disk at a constant current of 1 A (3 V) is 8000 rounds per minute, as given in the manufac-
turer’s datasheet. The coherent pulsed light is focused on the diffuser surface by a high-precision
aspheric lens with a focal length of 18.4 mm and numerical aperture of 0.15 (Thorlabs C280TM-B).
We have measured the corresponding photon statistics to be nearly ideal Bose-Einstein distribu-
tion. In the initial stage of our experiment, we observed a discrepancy between measured photon
statistics of RGG modulated light and the ideal Bose-Einstein statistics. It appeared later that the
error was caused by a small inhomogeneity of the RGG disk. More consistent results can be at-
tained using a direct programmable modulation of light intensity, which allows for preparation of
near-ideal thermal state and also an arbitrary photon statistics, see Section 2.3.2.
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Figure 3.17: The discrepancy between the measured and the corresponding ideal photon statistics of thermal
states characterized by (a) fidelity F, and (b) the total variation distance A.
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Figure 3.18: Characteristics of measured photon statistics of thermal light: (a) the binomial parameter, (b)
the Mandel parameter, (c) g?(0) function, and (d) Fano factor. Solid curves represent theoretical models.

Figure 3.16 shows retrieved photon statistics of thermal states for several different mean photon
numbers. Photon statistics are plotted on a logarithmic scale to better present a high accuracy of
the retrieval process. The retrieved photon statistics reach F > 0.9994 and A < 1.5 x 1072 for all
measured thermal states (Figure 3.17). Measured thermal states cover values of mean number of
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clicks (c) up to 2.944(2) corresponding to (n) = 8.41(1). Just like ideal thermal light, generated
pseudo-thermal light exhibits Qy = (M — 1) / (M /{(n) + 2) (Figure 3.18(a)), where M is the number
of detectors, Qp = (n) (Figure 3.18(b)), g(z) (0) = 2 (Figure 3.18(c)), and Fano = (n) + 1 (Fig-
ure 3.18(d)).

Multi-mode pseudo-thermal light

Multi-mode thermal states were generated by selecting M}, thermal modes with the same over-
all mean photon number (n) = np, Min = ny, but different temporal modulation. We have altered
the effective number M, of thermal modes by changing the size of the speckles collected via single-
mode fiber. This was achieved by changing the diameter of the laser spot on the RGG disk and the
distance between the disk and the fiber tip. The resulting Mandel-Rice statistics changes from
Bose-Einstein to Poisson distribution with increasing number of modes (see Figure 3.21(c)). The
multi-mode thermal state shows the largest discrepancy between the measured photon statistics
and the corresponding ideal one, which is caused by its relatively complicated preparation. The
intensity of the initial coherent state, its focusing on the RGG, and the fiber coupling are changed
to simultaneously reach the required mean photon number and the variance compatible with the
2My+1

Mandel-Rice statistics, basically verifying g(z) = — 1, where My, is number of modes. Also,

the used RGG has to be checked first for its roughnests homogeneity by producing the ideal chaotic
light with the Bose-Einstein photon statistics. If the RGG allows generating a super-chaotic stat-
istics for any combination of the mentioned hardware parameters, it cannot be straightforwardly
used to produce a proper transition from Bose-Einstein to Poisson statistics via the multi-mode
Mandel-Rice statistics.
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Figure 3.19: Experimental results of detection of photon statistics. Shown are the measured click statistics
(green bars), retrieved (blue bars), and the corresponding theoretical photon statistics (green dots) of multi-
mode thermal state for several number of modes My,: (a) My, = 1.95(3), (b) M, = 5.19(2), and (c) My, = 13.9(2).
All distributions are plotted on a logarithmic scale.

The retrieved photon statistics of the prepared multi-mode thermal states with number of
modes up to 14 are depicted in Figure 3.19. Due to the difficulty in preparing these states of light,
the fidelity and total variation distance are the worst of all the measurements made, as shown in
Figure 3.20. We experimentally demonstrated multi-mode thermal states from 1 up to 14 modes,
specifically My, = 1.95(3),5.19(2), and 13.9(2). For the multi-mode thermal light, the variance con-

)’

verges to the mean photon number with increasing number of modes ((An)z) =(n)+ 21 Keeping
th
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Figure 3.20: The discrepancy between the measured and the corresponding ideal photon statistics of multi-
mode pseudo-thermal light characterized by (a) fidelity F, and (b) the total variation distance A.
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Figure 3.21: Characteristics of measured photon statistics of multi-mode pseudo-thermal light: (a) the bi-
nomial parameter, (b) the Mandel parameter, (c) g?(0) function, and (d) Fano factor. Solid curves represent
theoretical models. Color coding stays for different mean photon number ny, : 2.38(4) (red), 1.13(4) (blue),
0.424(3) (green), and 0.155(4) (yellow).

the overall mean photon number the same for all states, the mean photon number of initial modes
are nyg, = 2.38(4),1.13(4), 0.424(3), and 0.155(4). For prepared multi-mode thermal states, we ob-
tained the binomial parameter Qy, ranging from 0.046(2) to 0.83(2). The measured values of the
Mandel parameter follows theoretical prediction Qy = nyy, (Figure 3.21(b)). Also, the Fano factor
depends on the number of modes and yields the Fano = ny;, + 1 (Figure 3.21(d)). In a similar
manner, the second order correlation function decreases with increasing number of modes My,
g® (0) = B

+1 .
Pl 1 (Figure 3.21(c)).

Ideal thermal light generated in warm atomic vapor
Here we introduce the experimental generation of light close-to-ideal thermal statistical prop-
erties by a natural physical mechanism. The thermal light state is prepared using a spontaneous

Raman emission in a warm atomic vapor. The experimental realization employs 8’Rb energy level
scheme. Ensemble of warm 8’Rb atoms are excited by frequency stabilized laser diode. The combin-
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ation of a Glan-Thompson polarizer, Fabry-Pérot resonator and single-mode fiber is used to collect
the emission. For more detailed information see Mika et al. [C2]. Within the chosen temporal mode
width of 648 ps it would be practically negligible to observe four-coincidence events even on the
measurement time scales of days. This allows us to employ only a three-detector scheme. The
photon number probability distribution is estimated from the measured rates of singles, two-fold
and three-fold coincidences using EME algorithm without any detection efficiency corrections.
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Figure 3.22: Experimental results of (a) measured click statistics and (b) retrieved photon statistics. The es-
timated photon statistics (black points) with the yellow and blue bars corresponding to the theoretical photon
number distributions for ideal thermal and coherent light fields with the same mean photon number. Error
bars correspond to estimated single standard deviations, which are for the first three bars (n = 0, 1, 2) smaller
than the data point.

The estimated photon statistics corresponds to the ideal single-mode thermal light within stat-
istical measurement errors (see Figure 3.22), which certifies the unambiguous preparation of the
ideal thermal light statistics. To illustrate the significance of an ideal thermal statistics generation at
such a low mean photon number of (n) = 1.64(1) x 10~%, we compared our results with the ideal co-
herent state with same mean photon number (Figure 3.22(b)). The accuracy of the retrieval process
is demonstrated by F = 0.9999999999998(1) and A = 9(5) x 10!, We also evaluated several para-
meters related to the photon statistics, see Table 3.2. The presented data are in a good agreement
with the theoretically expected values. To characterize the quality of observed Bose-Einstein stat-

) Om §°(0) S
data | 1.089(4)x 10~% | 1.64(1) x 10~* | 2.00(1) | 1.81175(4) x 1073
model | 1.101x107% 1.64x 1077 2.00 1.81175x 1073

Table 3.2: Characteristics of measured photon statistics. Shown are: binomial parameter, Mandel parameter,
£%(0), and Shannon entropy. The uncertainties of the evaluated parameters have been estimated using the
Monte Carlo routine from the uncertainties of the measured numbers of photon clicks. The results suggests
the almost ideal thermal light generation.

istics, we employ the fundamental definition of the thermal light: it is light with maximum Shannon
entropy S = —220:0 pnlog p,, see Table 3.2. The actual distance between the ideal Bose—Einstein
distribution and the measured one can be quantified by evaluation of the relative entropy. The
relative Shannon entropy (Kullback-Leibler divergence) between the measured statistics and the

reference probabilistic distribution is defined as S(py,| p,rlef )= Yoo Palnpy— Yoo puln p;ef . The
evaluated relative Shannon entropies for the measured statistics with respect to ideal thermal and
coherent state with the same mean photon numbers are S(p,| p,tf’) = 2(2) x 107 and S(p,| p,c,"h) =
516(1) x 10711, Our results certify the relative thermodynamical closeness of the generated state to
the ideal thermal state compared to a coherent state with the same energy.
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3.5.3 Multi-photon states of light

Furthermore, we generate multi-photon states by mixing N,, single-photon states incoherently, us-
ing the process of continuous-wave spontaneous parametric down-conversion in a PPKTP crystal
and time multiplexing. We took N, successive time windows, when a single photon was heralded,
and joined them into a single temporal detection mode. The resulting photon statistics measured
for these highly-nonclassical multi-photon states corresponds extremely well with the ideal attenu-
ated N,-photon states up to N,, = 9. The measured mean photon number is lower than the number
of superimposed photons due to non-unity efficiency of the source, nyoyce = 55%, which is con-
tributed the efficiency of the heralding detector (65%), single-mode-fiber collection efficiency (90%),
and spectral filter transmission and other inefficiencies (94%).
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Figure 3.23: Experimental results of detection of photon statistics. Shown are the retrieved (blue bars) and
corresponding theoretical photon statistics (green dots) of N,-photon clusters: (a) N, = 1, (b) N, = 2, (¢)
N,=3.@N, =4 N, =5 0N, =6 N, =7. (1) N, =8 () N, =o.

We have performed approximately 3 x 10° measurement runs to build a click statistics for clas-
sical photon states. The measurement uncertainty has been evaluated by repeating the full acquis-
ition ten times. For non-classical multi-photon states, we have performed the single acquisition
with 10! measurement runs and use Monte Carlo simulation for uncertainty evaluation. Monte
Carlo method has also been used to quantify the statistical errors of retrieved photon statistics
(Figure 3.23), fidelities(Figure 3.24(a)), and other parameters of interest (Figure 3.25).

One might conclude from the N,- g(z) diagram shown in Figure 3.25 that non-classicality of
the multi-photon state is reduced with the increasing number of photons superimposed. Photon
statistics of these states are very close to a binomial distribution for all N, and so they are strongly
non-classical and non-Gaussian, as displayed by the Mandel Qy; parameter (Figure 3.25) or other
advanced criteria [C1, 158, 229]. The normalized second-order correlation is completely loss in-
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Figure 3.24: The discrepancy between the measured and the corresponding ideal photon statistics character-
ized by (a) fidelity F, and (b) the total variation distance A.
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Figure 3.25: Characteristics of measured photon statistics: (a) the binomial parameter, (b) the Mandel para-
meter, (c) g%(0) function, and (d) Fano factor. Solid lines represent theoretical model (Equation (2.31)).

dependent while the Mandel Qy; parameter changes with the applied losses. As an example, the
multi-photon states emitted by clusters of single-photon emitters would ideally display Oy = —1,
however, the real sources with limited collection efficiency show the value closer to zero. In our
case of the emission emulated by merging of several heralded photons from parametric down-
conversion process, the measured value Qy; = —0.548(2) is given by the heralding efficiency of the
source.

The retrieved photon statistics allows evaluating the Wigner function (see Section 2.1). In Fig-
ure 3.26 the Wigner function W (x, 0) of single-photon state is depicted. To certify nonclassical
character of this states, we also evaluated the value of the Wigner function in the region of x = 0,
p = 0. We obtained the negative reaching Wy, (0,0) = —0.033682(1). Having the full photon
statistics retrieved, we can also apply quantum non-Gaussian tests based on state properties in
phase space [304, 337, 390, 391]. We proved quantum non-Gaussian character of the measured
multi-photon states up to nine photons [C1] applying recently devised click-based quantum non-
Gaussianity criteria [389].
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Figure 3.26: Wigner function W (x,0) calculated from the retrieved photon statistics of N, = 1.

3.5.4 Summary of experimental results

To demonstrate the accuracy and wide applicability of the PNRD, we plotted g(z) parameter com-
puted from the measured photon statistics and from the corresponding ideal statistics for 75 various
optical signals (Figure 3.27(a)). Mean numbers of photons cover values up to 30 and faithful autocor-
relation measurements range from g(z) = 6x 1073 to 2. We demonstrate a similar characterization
utilizing the Mandel Qy; parameter (Figure 3.27(b)). We can see the exceptionally accurate experi-
mental characterization of the deviation from Poissonian statistics with the Mandel Qy; parameter
ranging from -0.55 to 9 and the mean photon number exceeding 29.6(2). Furthermore, we show all
the mentioned moments, non-classicality parameters, and Wigner-function-negativity character-
istics for five selected photonic signals, see Table 3.3.
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Figure 3.27: Characteristics of measured photon statistics for selected states. (a) The autocorrelation g®
evaluated from the measured photon statistics (solid marker) and the corresponding ideal statistics (empty
marker) of various optical signals with mean photon number (n). Shown are: coherent states with g» = 1
(blue triangle up), thermal states (also termed chaotic light) with g® = 2 (red circle), and M,,-mode thermal
states with My, = 1.01(1), 1.95(3), 5.19(2), 13.9(2) (violet triangle down). The cases of My, = 1.01(1) coincide
with thermal state. Furthermore, the emission from a cluster of N, single-photon emitters is shown for N, =
1..9withg® =1-1/ N, (green square). (b) The Mandel O parameter evaluated from the measured photon
statistics of the same optical signals with the same marker/color coding. Coherent states are compatible
with Poisson statistics Qy; = 0, thermal states show super-Poissonian statistics with Qy; = (n), multi-mode
thermal states converges to Poisson distribution with increased number of modes. Highly nonclassical N,-
photon states reach Qy; = —0.55 given by the limited efficiency of the single-photon source employed for their
generation. The error bars are typically smaller than the symbol size.

Let me briefly summarize individual photon statistics measurements which were done. The
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coherent state was prepared by using a gain-switched laser diode at 810 nm. The initial coherent

pulses measured by the PNRD show almost perfect Poissonian statistics with E(z) =1.001(4) up to

(n) = 19.56(2) with average fidelity F = 0.9997(1) and total variation distance A = 3.1(3) x 1073.
The thermal state was generated by temporal intensity modulation of the initial coherent light

by a rotating ground glass. The scattered light is collected using a single-mode optical fiber. We

measured almost ideal Bose-Einstein photon statistics depicted in Figure 3.16 with 5(2) = 2.00(1)

up to (n) = 8.41(1), (An?) = 83.5(3) with F = 0.9998(1) and A = 5.1(2) x 103, We also analyzed
light close-to-ideal thermal statistical properties generated in warm vapor. This quantum states,
with smallest mean photon number we have measured so far (n) = 1.64(1) x 10~%, achieved the
best fidelity F = 0.9999999999998(1) and total variation distance A = 9(5)x 10~!!. Additionally, we
varied the number of the collected thermal modes, which yielded a signal governed by Mandel-Rice
statistics, going from Bose-Einstein to Poisson distribution as the number of modes increased. We
have managed to prepare and subsequently characterize thermal states with the number of modes
from 1 up to 14. Furthermore, we generated multi-photon states by mixing incoherently several
single-photon states from spontaneous parametric down-conversion using time multiplexing. N,
successive time windows, where a single photon was heralded, were merged into a single temporal
detection mode. This source emulates the collective emission from identical independent single
emitters [C1, 96, 250]. The resulting photon statistics measured for these highly nonclassical multi-
photon states corresponds extremely well to the ideal attenuated N,-photon states: for N, = 1 and

9 with F = 0.9990(2) and A = 3.7(4) x 1073, Also the g(z) parameter computed from the measured
photon statistics perfectly agrees with the theoretical model 1 — 1/N,, see Figure 3.27(a).

coherent thermal single photon 9-photon cluster
data model data model data model data model
(n) 4.95(2) 4.95 493(4) | 493 | 0.554675(2) 0.55 5.00786(2) | 4.95
((An)®) | 4.99(5) 4.95 29.4(5) | 29.24 | 0.2487836(3) | 0.2475 | 2.27821(7) | 2.2275
g@ | 1.0023) 1.0 2.01(1) | 2.00 | 0.0057627(9) 0 0.891156(3) | 0.8889
0 0.01(1) 0.0 497(7) | 493 | -0.551478(2) | -0.55 | -0.54507(1) | -0.55
(Py [ -0.003(8) | 5x107%2 | 0.089(7) | 0.092 | -0.105814(4) | -0.1 - -
Ww(0,0) | -0.001(3) | 2x 10 2% | 0.028(2) | 0.029 | -0.033682(1) | -0.03184 - -

Table 3.3: Characteristics of measured photon statistics for selected states: coherent state, thermal state,
1-photon state, and 9-photon mixture. Standard deviations are evaluated by repeating ten times the whole
process of the PNRD measurement, photon statistics retrieval, and characteristics evaluation. The amount of
data acquired for single-emitter clusters were several orders of magnitude larger that for other states, which
yields the corresponding error bars much smaller.

We utilize fidelity and total variation distance to compare the measured distribution with the
ideal one. The worst and the best fidelities F = 0.992 and 0.9999 are reached across all the tested
sources with average fidelity being F = 0.9996(3). The average distance is A = 4.0(1) x 10> for
all the tested sources. For detailed data and comparison to plain EM, see Table 3.4. For a further
detailed discussion of analysis of photon statistics retrieval methods, see Section 3.4. The errors of
EME are caused by slight imbalances of splitting ratios in the PNRD, variations in PNRD efficiency
1, and imperfections of the tested sources, which renders the actual accuracy of the PNRD even
higher. Particularly, accurate preparation and characterization of thermal and super-chaotic states
are highly nontrivial tasks subject to further research [C2, 108, 296].
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coherent thermal single photon 9-photon cluster
EM EME EM EME EM EME EM EME
F | 0.6(1) | 0.9984(9) | 0.69(2) | 0.9978(5) | 0.99394(2) | 0.99912(1) | 0.5467(2) | 0.99930(2)
A [ 0.5009) | 0.002(9) | 0.35(1) | 0.033(3) | 0.07424(1) | 0.00088(1) | 0.1752(5) | 0.00407(1)

Table 3.4: The comparison of EM and EME results for the measured data. Coherent state (n) = 4.95(2),
thermal state (n) = 4.93(4), single photon state N, = 1, and 9-photon cluster N, = 9. Both fidelity F and total
variation distance A are shown. Standard deviations are evaluated by repeating the measurement and data
processing ten times. The large distances observed for EM stem from overfitting the ill-posed problem. This
is discussed in Section 3.4.

3.5.5 Discussion

A prominent feature of our detection of the photon statistics approach is its unprecedented accuracy.
The detector measures photon statistics up to 30 photons with an average fidelity of 0.9993(3).
We successfully detected dozens of various photonic sources ranging from highly non-classical
quantum states of light to chaotic optical signals: chaotic, classical, nonclassical, non-Gaussian,
and negative-Wigner-function light, such as photon-number states containing a single photon or a
cluster of single photons. The results were obtained from raw data with no other processing than
EME, and without any demanding detector characterization. Despite uncorrected systematic errors
and significant variability of the input signal, our approach shows superior fidelity across the board
with typical values exceeding 99.9% for mean photon numbers up to 29.6(2) and the g(z) parameter
reaching down to a fraction of a percent. A specific issue that needs to be addressed is that the
presented measurements have been performed with PNRD detector not optimized for detection
efficiency. The overall system efficiency is estimated to be 49(1)%. The efficiency parameter 5
incorporated in photon statistics retrieval is chosen to be 0.5 to assure that the efficiency of the
PNRD model is the same or higher than of the actual PNRD detector used. The same value of the
efficiency is used throughout this Thesis for all the performed photon statistics retrievals (for all
tested sources).

3.6 Summary and outlook

To conclude, we have reported a fully reconfigurable near-ideal photon-number-resolving detec-
tion scheme with custom electronic processing and EME photon statistics retrieval method. The
PNRD design is free of systematic errors such as the channel crosstalk and temporal correlations,
which are either negligible or can be arbitrarily decreased by the user. We have demonstrated excep-
tional accuracy of detected photon statistics that goes beyond the conventional limit of the number
of PNRD channels. The presented approach to process data from photon-number-resolving detect-
ors based on optical networks significantly improved the precision of the photon statistics meas-
urement. It breaks the finite-multiplexing limit and achieves unprecedented accuracy of photon-
number resolution demonstrated for various photonic signals, including highly non-classical states,
which surpasses even bleeding-edge cryogenic detectors. The result opens new paths for optical
technologies by providing access to the photon-number information without the necessity of de-
tector tomography. There are, however, open questions regarding the scalability of the approach.
We introduced two different techniques to count and store the multi-coincidence events, a typ-
ical output from the complex multi-channel detection scheme. Developed digital coincidence unit
based on ECL circuitry is high-performace counting device recording histograms of coincidence
events with full channel resolution. However, used MCU limits the data processing sequence to
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400 ns, approximately. In the future, using FPGA instead of MCU promisses improvement in the
speed of processing of a large datasets by order of magnitude to tens of picoseconds.

Though having been demonstrated with common single-photon avalanche diodes, the repor-
ted measurement workflow is independent of the detection technology and can accommodate any
on-off detectors. Furthermore, the multi-channel scheme allows for straightforward on-chip integ-
ration. Therefore, further improvements in speed, efficiency and compactness can be expected us-
ing superconducting single-photon detectors [49, 63, 69] coupled with waveguide technology [115,
118, 120, 197]. The discrete optical network employed in the reported PNRD features full reconfig-
urability and continuous tunability of splitting ratios, but extends over dozens square decimeters
and limits the overall efficiency of the PNRD. There are other ways of producing multiple beams
of uniform intensity: diffraction gratings (diffractive beam splitter) [482, 483], multiple-beam plate
splitters [484], and M x M fiber splitters and fan-outs. These solutions possess limited efficiency
and no tunability and reconfigurability. On-chip integration offers a significant reduction in size
[118], however, the limited transmittance of a waveguide network and input/output coupling losses
represent an issue. The tunability can be reached using interferometer networks with adjustable
phase shifters [80, 451, 485, 486].

Building on the achieved results, we will work on future improvements to the used photon stat-
istics retrieval method. The precision of the photon statistics retrieval can be further increased by
optimizing over multiple parameters, such as the strength of regularization parameter A, or itera-
tion cut-off. Eventually, A becomes limited by machine precision and computation time. To further
improve reconstruction accuracy and convergence speed, the analysis of the complex interaction
of these parameters will be the subject of further research. Alternatively, the machine learning
methods can cope with randomness of the detector and incomplete data, and bring a significant
degree of robustness against perturbations and noise. Several metrology tasks mentioned so far
have been boosted by methods of machine learning. Artificial neural networks were exploited for
quantum state tomography by approximating the state wavefunction by a restricted Boltzmann
machine [487-489] and for correcting systematic experimental errors during the reconstruction
[490]. Classification and feature extraction from experimental data can also benefit from machine
learning techniques, e.g. deep neural networks for entanglement witnessing [491] and an adaptive
linear element neuron for identification of light sources based on their statistics [492].



Chapter 4

Controlled modification of statistical
properties of light

The Chapter 4 presents the controlled modification of the statistical properties of light employing
the developed photon statistics detection technique (Chapter 3). The knowledge of the exact num-
ber of photons in an incident light enables complex triggering and more efficient multi-photon
subtraction and addition, which are essential techniques for manipulating states of light (Section
1.3, and Subsection 2.3.3). First, a conditional subtraction of multiple photons from the single-mode
thermal state of light using a beam splitter with high transmission is proposed and experimentally
demonstrated (Section 4.2). Later, achieved results give rise to the development of a scheme for the
deterministic preparation of states with super-Poissonian statistics (Section 4.3). We conceived the
idea of the multiport photonic SWAP gate involving classical feedforward swapping of the input
modes. Multiport optical switchable coupler based on Mach-Zehnder interferometer [34] served for
a fast swapping between high-fidelity single-mode thermal state and I-photon subtracted thermal
states whenever a successful subtraction occurs. To demonstrate its high functionality, numerical
predictions for many modes and subtractions were performed. In the first step, we experimentally
verified one mode scenario with single-photon subtraction. These two advanced light manipulation
approaches are qualified as a useful source for generating these out-of-equilibrium states employed
in experiments with many applications in quantum information and thermodynamics [31, 162, 298,
318, 361, 493, 494]. Here, we experimentally demonstrated the relevance of multi-photon subtrac-
ted thermal states to perform work and carry information (Subsection 4.2.3). Additionally, states
with super-Poissonian statistics can serve for successful information-to-energy conversion (Sub-
section 4.3.3).

Chapter 4 is based on the following publications:

[A1] J. Hlousek, M. Jezek, and R. Filip, ‘Work and information from thermal states after subtraction
of energy quanta’, Scientific Reports 7, 13046 (2017).

[P2] J. Hlousek, T. Denzler, V. Svarc, M. Jezek, Eric Lutz, and R. Filip, ‘Experimental Quantum
Photonic Maxwell Demon’, Submitted (2022).
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4.1 Introduction

Modern quantum applications frequently rely on controlling physical systems by conditionally
adding or subtracting photons. These experimental techniques have been extensively applied to
preparing unique photon added/subtracted quantum states [29, 31, 162, 298, 319-322], distilling
entangled quantum states [325-327], transforming classical states to non-classical ones [27, 323],
etc. Here, we mainly focus on the photon subtraction procedure employed in the generation process
of the quantum states of light out of thermal equilibrium. This procedure applied to classical states
has been used for quantum filtering [328], state preparation [31], noiseless amplification [329],
quantum cloning [332], enhanced interferometry [495, 496] and recently, also to illustrate Maxwell
demon in quantum thermodynamics [361, 497].

In quantum optics, such photodetection processes continuous in time were first discovered to
conditionally manipulate the statistics and also increase the energy of thermal light [378, 379, 498,
499]. A weak dissipation of thermal energy of light to cold reservoir modes allows us to condi-
tionally subtract individual quanta of that thermal energy by measuring the reservoir modes by
quantum detectors. The subtraction procedure uses a basic dissipation mechanism with no other
energy supply and can be successfully performed even under imperfect conditions and by using in-
efficient photodetectors. Over two decades, the continuous-time nonclassical state manipulations
were extensively experimentally developed in cavity quantum electrodynamics [500, 501]. Dur-
ing the same period, the series of multi-photon subtraction experiments with thermal light also
demonstrated a conditional instantaneous increase of mean energy by subtraction of quanta from
single-mode thermal state [28, 161, 162]. Also, different measures have been applied to quantify
the effect of these subtraction procedures [298, 309-311].

Quantum optics has proven to be a suitable experimental platform for proof-of-principle tests of
many quantum physics processes, heavily stimulating other experimental platforms and advancing
novel quantum technologies. Matter and radiation out of thermal equilibrium with an environment
are significant resources of modern physics, information science, and technology. Thermal state
of a cooled system is not in thermal equilibrium with its environment and can be used to perform
work [B21] and carry information [502]. Preparation of the cooled state requires only a connection
to a cold external reservoir where a large part of energy dissipates and, simultaneously, entropy
gradually decreases. Similarly, by thermal heating from an external stochastic hot reservoir, we
can enlarge mean energy, but also the entropy. A high-energy out-of-equilibrium state can also be
prepared by external deterministic force [B17] applied to a thermal state. Such coherent driving
renders the entropy lower than of the initial thermal state. It is the best classical way for the
preparation of states capable of transmitting more information [502] and producing more work
[503-508]. Alternatively, mechanisms that do not require either external heating or driving allow
us to test non-equilibrium quantum thermodynamics merging with information theory [509, 510],
also at currently unexplored experimental platforms.

In addition, energy may be extracted from information by an external controller in a Maxwell de-
mon setting. The experimental realizations of such information-to-energy conversion in a quantum
photonic setup made of two thermal light beams were performed [361, 497]. Feedforward operation
related to successful subtraction on one mode leads to a difference in average energy between these
two modes. This imbalance can be used to charge the capacitor by employing photodiodes [361].
In contrast, the work [497] discusses the implementation of a photonics Maxwell demon acting on
thermal states with low mean photon number. These papers demonstrate the great potential of
photonic experiments in proof-of-principle tests of thermodynamic concepts.
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4.2 Thermal states after subtraction of energy quanta

Here, we propose and experimentally demonstrate an advanced approach, conditionally preparing
more efficient multi-photon subtracted single-mode thermal states only by a weak dissipation, an
inefficient quantum measurement of the dissipated thermal energy, and subsequent triggering of
that states. We verify that the instantaneous subtraction of a number of quanta (photons) from
a thermal state produces out-of-equilibrium states of light with increased average energy. Still,
simultaneously it keeps the Fano factor constant [339]. It means that average energy increases
hand-in-hand with its variance. Photons-subtracted thermal states represent a paramount example
of out-of-equilibrium states that can be obtained without an external coherent deterministic drive
or an additional thermal source of energy. These states can be employed as a useful source for
various future experiments in currently joining fields of information theory and nonequilibrium
quantum thermodynamics. We predict and demonstrate that such out-of-equilibrium states can
provide work and carry information larger than what is available by any dissipative cooling mech-
anism.

To experimentally produce and analyze the out-of-equilibrium state, we follow a stream of
optical experiments [28, 31, 161, 162, 328, 329, 332, 496]. The experimental scheme of photon
subtraction is described in Section 2.3.3. To fully describe the performed [-photon subtraction, a
detailed model has been developed Eq.(2.29). It takes into account actual experimental properties
of the set-up: the beam-splitter reflectivity R, the number M of on-off detectors at the reflected
port, and their detection efficiency. In the limit of R — 0, the full numerical model is equivalent
to an application of I-th power of annihilation operator to the input thermal state, which produces
the ideal statistics Eq.(2.25). The numerical model has been used to evaluate all the parameters
discussed.

4.2.1 Experimental setup
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Figure 4.1: Preparation and characterization of [-photon subtracted single-mode thermal states. The subtrac-
tion of I-photon from the thermal state is implemented using a beam splitter with a tunable reflectivity R. The
reflected port is detected by a multichannel detector formed by M on-off detectors. Coincidence detection
events, when all the M detectors fire, trigger the output and verification stage consisting of a photon-number-
resolving detector.

In our experiment (Figure 4.1), a single-mode thermal state with Bose-Einstein statistics determ-
ined only by the mean number ny, of energy quanta was generated employing a nanosecond pulsed
laser diode (805 nm) in a gain switching regime with a repetition rate of 4 MHz modulated by RGG
technique described in detail in Section 2.3.2. The Glauber second-order correlation function of the
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generated pseudo-thermal state was evaluated, g2 (0) = 2.00 (3), to verify the high quality of the
preparation stage.

Multi-photon subtraction is implemented by splitting the thermal state at a beam splitter, com-
posed of a half-wave plate, followed by a polarizing beam splitter, with a reflectivity R = 5%. In the
first port, the reflected photons were detected via a reconfigurable multi-channel detector with M
commercial on-off single-photon detectors. The maximum number of detectors was set to M = 4.
To measure click statistics of the transmitted pulses, we used a photon-number-resolving detector
(Section 3.2). For this concrete measurement, PNRD was modified to a balanced eight-channel port
with eight single-photon avalanche photodiodes. When a reconfigurable multi-channel detector
detects a (multi)coincidence in the reflected port, the heralded optical signal in the transmitted
port is analyzed by the PNRD. The resulting coincidence statistics was acquired by the PNRD un-
der the condition that exactly [ detection events occurred at the reflected port. We have applied
EME method (Section 2.6.3) to reconstruct resulting photon statistics from the multi-coincidence
measurement.

The coincidence rates increase with increasing mean photon number of the initial thermal state.
However, it is crucial to set the mean photon number low enough to measure a coincidence statistics
of I-photon subtracted thermal state within the range of the PNRD. Mean photon number ny, of
the I-photon subtracted thermal state increases with [ by factor (I + 1)ny,. Taking into account the
number of channels of the PNRD and its efficiency, we can safely set ny, = 2.05(1) for the maximum
number of subtracted photons [ < 3. At the same time, the selected mean photon number is high
enough to keep the measurement time reasonably short.

4.2.2 Results
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Figure 4.2: Experimental results of detection of photon statistics. Shown are the measured click statistics
(green bars), retrieved (blue bars), and the corresponding theoretical photon statistics (green dots) of I-photon
subtracted state for several numbers of subtracted photons I: (a) [ = 1, (b) [ = 2, and (c) [ = 3. All distributions
are plotted on a logarithmic scale.

In our present experiment, we have certified several essential parameters of the prepared I-
photon subtracted thermal light governed by the statistics Eq.(2.29) to assess its performance. Fig-
ure 4.2 shows measured click statistics and retrieved photon statistics of [-photon subtracted states
for several number of subtracted photons I: (a) [ = 1, (b) I = 2, and (c) [ = 3. The similarity of the



THERMAL STATES AFTER SUBTRACTION OF ENERGY QUANTA 63

experimentally reconstructed photon number distribution with a theoretical distribution is quan-
tified by fidelity and total variation distance (Figure 4.3). All photon number distributions exceed
F >0.996 and A > 102, In a similar manner, we evaluate the binomial parameter Qy, and the Man-
del parameter Qy (Figure 4.4). As we might expect, all measured states exhibit super-Poissonian
statistics with Qp > 0 and Qy; > 0.
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Figure 4.3: The discrepancy between the measured and the corresponding ideal photon statistics character-
ized by (a) fidelity F, and (b) the total variation distance A.
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Figure 4.4: Characteristics of measured click and photon statistics: (a) the binomial parameter and (b) the
Mandel parameter. Blue squares stand for theoretical model 2.29. Red line corresponds to input thermal state
P, With the mean photon number ny, = 2.05(1).

As has been already discussed (Section 2.3.3), the photon statistics of I-photon subtracted single
mode thermal states yields a linearly increasing mean number of quanta, (n) = (I + 1)ny,, where
I in a number of conditional detection events. The monotonous increase is shown in Figure 4.5(a)
< at? a2> _
(afa)*

1+ ﬁ for Eq.(2.25) converges to unity, irrespectively to ny,. It is depicted in Figure 4.5(b). However,

for ng, = 2.05(1) set in our measurement. The second-order correlation function g?(0) =

Fano factor Fano = ((An)?)/{n) = 1+ ny, is independent on [ and it approaches unity only for very
small ny, < 1. To reach higher (n), I needs to be higher too, which is increasingly more challen-
ging. Let us note that these results correspond to an instantaneous limit pjt — 0 of the continu-
ous photodetection process, where p is the success probability of I-photon subtraction [379]. For
i = 2.05(1), we experimentally demonstrate in Figure 4.5(c) that the conditional multi-photon sub-
tracted thermal states indeed remain super-Poissonian. However, g(z)(O) is substantially reduced
below 2, which holds for thermal light. Figures. 4.5(a,b,c) also show that the measured statistics
and derived characteristics agree very well with the theoretical model.

Invariance of the Fano factor Fano = 1 + ny, means that the variance ((An)?) increases simul-
taneously with the increase of (n). However, {(An)?) does not grow fast enough to render the state

(2.25) useless. For example, mean-to-standard-deviation ratio MDR = (n)/~/{(An)?) = | %\/ I+1
th

increases monotonously. It means the energy advantageously increases faster than its fluctuations.
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Figure 4.5: Mean number of photons (a), g®(0) function (b), Fano factor (c), and MDR (d) of the thermal (I = 0)
and [-photon subtracted single-mode thermal (I > 0) states. [ stands for the number of subtracted photons.
Experimental results (black), full numerical model (blue), and the simplified model (2.29) (green). Data error
bars show the standard deviation of the measurement, error bars of the models represent the uncertainty of
input parameters, particularly of the mean number of photons determined from the measured initial thermal
statistics.

Moreover, it is already sufficient to use m = 1 and ny, > 1 to obtain MDR > 1 and the mean (n)
increases even faster with [ for larger ny,. Experimental evidence that (n) and MDR increase with
I is shown in Figures. 4.5(a,d). Entropy slowly increases with the increasing number of subtracted
quanta.
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Figure 4.6: (a) Shannon entropy of the conditionally prepared states as a function of subtracted photon num-
ber I. Shown are experimental data (dark gray), full numerical model (blue), and the simplified model (green)
based on Eq. (2.25). (b) Shannon entropy as a function of a number M, of modes of the initial thermal state.
Gray bars stand for the entropy of My,-mode thermal states (I = 0) and yellow bars show the entropy of the
same states after single-photon subtraction (I = 1).

4.2.3 Application

Quantum oscillators prepared out of thermal equilibrium can be used to produce work and trans-
mit information. By intensive cooling of a single oscillator, its thermal energy deterministically
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dissipates to a colder environment, and the oscillator substantially reduces its entropy. This out-
of-equilibrium state allows us to obtain work and carry information. Although it conditionally
subtracts the energy quanta from the oscillator, average energy grows, and the second-order cor-
relation function approaches unity by coherent external driving. On the other hand, the Fano factor
remains constant, and the entropy of the subtracted state increases, which raises doubts about a
possible application of this approach. To resolve it, we predict and experimentally verify that both
available work and transmitted information can be conditionally higher than by arbitrary cooling
or adequate thermal heating up to the same average energy.

The generation starts from a single oscillator represented by a single mode of radiation prepared
in the state pg, = Yoo P n)(n| with thermal Bose-Einstein statistics Eq.(2.23) determined only
by the mean number ny, of energy quanta, where |n) are energy basis states. In our experiment,
thermal light is generated by temporal intensity modulation of a pulsed laser by rotating ground
glass (Section 2.3.2). The thermal state instantaneously dissipates a small part of its energy at the
unbalanced beam splitter to a multimode reservoir Res in vacuum state |0) g,;. The dissipation only
negligibly cools down the thermal mode. Chiefly, it correlates states |n) of the oscillator’s mode
with a global photon number state |k) g, of the reservoir. It is apparent from the transformation

n

Im)nl @ [0)est0] = 3, (1) 51 = p)*FIn =k — K| @ hges(K, (1)
k=0

where p is a survival probability of single quantum in the oscillator. High single quantum survival
probability p; means weak coupling. Product pf(l - ps)”’k stands for the probability that k quanta
will remain in the oscillator and n — k quanta go to the reservoir Res.

This entirely classical correlation between the system and reservoir at a level of individual
quanta is a useful resource. It arises from the classical (first-order) coherence of single-mode
thermal light [B17]. For heavily multimode thermal oscillator (incoherent), the statistics of quanta
over all weakly occupied modes approaches Poissonian, and the dissipative process does not pro-
duce this correlation. It means we cannot modify statistics by any measurement performed on the
reservoir Res. The multimode thermal light establishes an incoherent (classical) limit. To realize
the importance of first-order coherence for the formation of the out-of-equilibrium state, the sub-
traction experiment with multimode thermal states is also performed. M;;, temporal thermal modes
with the same overall mean photon number (n) = ny, are selected to prepare a multimode state.
The effective number of modes My, preparation is described in Section 3.5.2. The partially coherent
Mj,-mode state would produce an interference visibility of 1/M, given by first-order coherence
function g'(0).

Light dissipated to reservoir further scatters to many modes. To detect at least a small fraction of
the dissipated light, we select  modes and detect them by single-photon avalanche diodes (SPADs).
Only when I-fold coincidence is detected, the resulting optical output of the source is transmitted.
The ideal version of this detection can be described by [274]

=)

however, a real measurement collects only a small part of overall thermal energy dissipated into the
reservoir Res. Therefore, we introduce an overall effective collection efficiency 5 by the transforma-
tion |k)(k| — Zf:o (f)r]k”(l —n)'|k—r)(k—r| of the energy states before the detection. Eqgs. (4.1,4.2),
together with the collection efficiency 1, completely describe the instantaneous multiphoton sub-
traction process.
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For a weak dissipative coupling with sufficiently high single-photon survival probability, p; = 1,
the out-of-equilibrium statistics approaches the Mandel-Rice statistics Eq.(2.26) by conditioning on
I detection events. A potentially small 7 < 1 reduces the generation rate, but the prepared out-of-
equilibrium states are very close to the theoretical limit. Importantly, Eq.(2.26) describes a single-
mode light. Its statistics is purely mathematically analogical to the overall statistics of [ + 1-mode
thermal light equally populated in all the modes by an average number ny, of quanta [B15]. In
the case of multimode light, the different I + 1 modes are principally distinguishable, and the light
possesses lower first-order coherence quantified by g'(0) = 1/(I +1). Also, available energy, work,
and information per mode are actually [ + 1 times lower, because the distinguishable modes are
not used efficiently. Consequently, the single-mode state with the statistics Eq.(2.26) produced by
a coherent light source thermodynamically outperforms multimode states with the same statistics
and is better suited to our purpose.

The out-of-equilibrium statistics Eq.(2.25) is similar to the statistics of thermal oscillator co-
herently driven out of thermal equilibrium with mean (n), = ng, + n, and variance {((An)?), =
2n.ny, + ne + ”tzh + ny,, where n; is the mean number of coherent quanta caused by the driving.
Considering n. = gny,, where g is ratio between coherent and incoherent energy, we can see that

both (n). and MDR, = % monotonously increase with g for any ny,, similarly to (n)s,,

and MDRy,;, using the statistics Eq.(2.25) in the case of [-quanta subtraction. However, to reach
MDR, > 1, my, < (n. — 1)n, is necessary and, therefore, small coherent driving out of equilibrium
is not sufficient for large ny,. For small ny, < 1, achievable only by cooling, the mean-to-deviation
ratio reaches MDR, = \/ny,(1 + g), similarly as for MDRg,;, with [ substituted by g. Simultaneously,

the second-order correlation function gﬁz)(o) =1+ 1g2 also does not depend on ny, similarly
1+

1+2g

as for gﬁi{)(o), although it has different dependency on g. Fano factor F, = 1 + ny, + nth% de-

pends on g, whereas Fy}, is principally independent on I. However, for large g, it also does not
converge to F, = 1 and Poissonian statistics. Both statistics converge to the Poissonian limit for
small nyy, < 1. Despite (2.25) is not statistics of thermal state coherently driven out of equilibrium,
it exhibits similar statistical features without any coherent drive.

Work available from out-of-equilibrium state

We predict and measure work available from the out-of-equilibrium state. Available average work
(W)yield» which is performed while the system equilibrates with the environment with temperature
T, is expressed by relative entropy [511-515]

(Wyicla = ksTS (. thllpa”) (4.3)

Here kg is Boltzmann constant and S(py|pn’) = Yomeo PN Pu — Yoo Pn In pn” is relative Shannon
entropy (Kullback-Leibler divergence) between the out-of-equilibrium statistics p, and the distribu-
tion py! of a system in the equilibrium with an environment with temperature T [511]. Differently
from the previous statistical analysis, which takes into account only the system, (W)y;c1q depends
on both the system state and the environment with constant temperature T. The bound (4.3) can
be reached; some specific protocols are already developed [506].

The presented out-of-equilibrium state preparation method actually uses two reservoirs, hot
one (T > 0) and cold auxiliary vacuum reservoir (T = 0), see Figure 4.7. However, the cold reservoir
cannot be used to provide work Eq.(4.3), without heating some of its modes up using an external
source. We can, therefore, consider the hot reservoir at temperature T > 0 and cool one mode to
its ground state by a strong dissipation. The temperature T > 0 of the thermal source is always
constant in the experiment; consequently, the available work can be normalized by kgT. By cooling
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Figure 4.7: Preparation and characterization of out-of-equilibrium states conditionally generated via multiple-
photon subtraction from single-mode thermal light. Thermal light governed by Bose-Einstein statistics dis-
sipates at an unbalanced beam splitter (BS) to the vacuum reservoir modes. A small fraction of light in the
reservoir modes is detected by a multichannel detector formed by M on-off detectors. Coincidence detec-
tion events, when all the M detectors fires, trigger the output and verification stage consisting of a photon-
number-resolving detector. Subsequently, data are processed, and photon statistics of the conditionally pre-
pared out-of-equilibrium state is analyzed. The statistics is evaluated for its capability to provide work and
carry information.

w ie
the oscillator mode to the ground state, normalized work <k>—yT‘1d|0 =1In[1+ ny,] sets a benchmark
B
. . e (W)yiela Wyield
for any useful conditional preparation of out-of-equilibrium state. If T | T o, more
B B

work can be extracted from the state prepared conditionally by the measurement of a small part
of dissipated energy (presented protocol) than by a complete cooling of one of the hot reservoir
modes down. The cooling to ground state can be challenging for many systems such as mechanical
oscillators and, therefore, the conditional procedure may be preferable to achieve more work.

For the statistics Eq.(2.25), we conditionally obtain the normalized available work

(4.4)

(Wyield B 1 i ( ey )” (n+ D! ln[ 1 (n+ l)!]

ksT (14 ng)H! S\ + 1 n!l! (1 +ng) nl!

which increases monotonously with [ for any ny, > 0 without an offset or saturation. We experi-
mentally verified that for ny, = 2, see Figure 4.8(a). The entropy also increases with J, as shown in
Figure 4.6(a). The amount of extractable work decreases for increasing number My, of modes of the
initial thermal state, see Figure 4.8(b). It vanishes completely in the incoherent limit of large Mj,.
It clearly demonstrates that first-order coherence is a resource needed to extract available work
using the instantaneous dissipation and photon measurement.

Despite the increase in entropy, the available work obtained by the subtraction procedure over-

w iel
comes the threshold ¢ k>y 1d
8T

results shown in Figure 4.8(a) demonstrate the violation by 5 standard deviations. Moreover, the
available work also overcomes a threshold set by a thermal state heated to the same mean number
of quanta as reached by the subtraction. The work available by the adequate thermal heating is
illustrated by a light gray area of the bars. Heating or cooling to the ground state — heating/cooling
strategy — represents a joint benchmark here. All experimental results in Figure 4.8(a) agree with

lo given by the complete cooling already for [ = 3. The experimental
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Figure 4.8: (a) The normalized available work as a function of subtracted photon number I. Shown are
experimental data (dark gray), full numerical model (blue dots), and the simplified model (green tiles) based
on Eq. (2.25). The horizontal threshold (solid black line) corresponds to the work available by a cooling of
the oscillator mode to the ground state. Light gray areas represent lower bounds derived for thermal state
heated with the same mean number of photons as the corresponding [-photon subtracted states. (b) The
normalized available work plotted against a number of modes M, for multimode thermal state after single-
photon subtraction (I = 1).

the theory predictions. It opens the possibility to test other thermodynamical quantities and pro-
cesses using the presented experimental photonic approach.
We evaluated the available work Eq.(4.3) that is performed while the oscillator in an initial

thermal state p;lt)h equilibrates with the environment in thermal state pr(,zt)h with temperature T. The
oscillator retains its thermal Bose-Einstein statistics but the mean number of quanta nt(}ll) decreases
to ngﬁ) < ”Ek?' For nt(}zl) > 0, the normalized work reads

(Wyield @@y _ iy @y, 1 iy

T = D(Pn,th”pn,th) =y In E + (1 + iy, )h’l —(1) (45)

Expression Eq.(4.5) represents the lower bound (light gray areas) in Figure 4.8(a). The mean num-
ber difference dny, = ngﬁ) - ng}ll) < 0 corresponds to cooling of the oscillator, where thermal energy
is dissipated to another reservoir at a lower temperature. Positive dny, > 0 means that the sys-
tem has been heated, which requires additional source of thermal energy and therefore this case
is not considered here. The value of beam-splitter reflectivity represents a trade-off between the
subtraction rate (and, consequently, the total measurement time) and the ability of the generated
out-of-equilibrium state to perform work and transfer information. Both these quantities monoton-
ously decrease with increasing reflectivity R (see Figure 4.10 for the three-photon-subtracted state).
We can see that the chosen value of the reflectivity, R = 5%, is close to the maximum possible one,
which outperforms the tightest bound on the available work and information.
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Information carried by out-of-equilibrium state
We complement the measurement of available work by verification that the out-of-equilibrium
distribution Eq.(2.25), as a member of a binary alphabet, can carry information better than initial
thermal distribution pP. Average mutual information given in bits can be determined by the relat-
ive entropy

(Iy = D(pPllp pf) (4.6)

where indices i, j = 0, 1 stand for a single bit at a sender side A and a single bit on a receiver side B,
respectively. p{f}B is a joint (correlated) probability distribution and piA, p]B are marginal probability
distribution at the sender and receiver sides, respectively. In contrast to the average work Eq.(4.3),
average information depends on joint statistics of both communicating parties. Also, it is optimal to
use vacuum state of the cold reservoir for encoding of the symbol ‘0. The ‘1’ can be encoded using
thermal distribution p,tlh, which sets a benchmark (I), for the mutual information, To overcome
the thermal bound, we employ the conditional statistics Eq.(2.25) instead to encode the symbol ‘1.
In this case, the average mutual information reaches (I) = H ((1 - p{;‘)(l - pE)) -(1- p(’)q)H(pE),

where pg = 1/(1 + ng,)'*! is the probability of error (symbol ‘1’ is identified as ‘0°) and H(pg) is a
binary entropy function. The maximum

(Iyiela = max a(1); = log, (1+(1 - PE)PEE/U_FE>) (4.7)

of mutual information (I) over the probability p{' at the sender side is monotonously increasing
with [ for any ny,. The experimental result for ny, = 2 is shown in Figure 4.9(a). It is not critically
sensitive to a number of modes when a multimode thermal state is used instead of the single thermal
mode. For the multimode states, the information gain has to be normalized per mode, because more
modes can carry more information. It vanishes only gradually, as is presented in Figure 4.9(b). The
first-order coherence is a key resource here, same as for the work extraction.

For arbitrary small ny, and any [ > 0, average information (I)yielg = (1+Dng, /(e In 2) overcomes
the benchmark (I), for any ny,. The results of experimental verification for ny, = 2 are shown in
Figure 4.9(a). Information gain (I >yield approaches its maximum of 1 bit even faster than for a
thermal state heated to the equivalent mean number of quanta. We reach more than 0.9 bit already
for | = 3. Indeed, the conditionally generated state can carry maximum information despite its
mixedness.
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Figure 4.9: (a) The maximum mutual information per mode against a number of subtracted photons I. Dark
gray bars stand for experimental results, blue dots stand for full numerical model, and green tiles represent the
ideal model based on Eq. (2.25). Light gray areas represent lower bounds derived for thermal state heated with
the same mean number of photons as the corresponding I-photon subtracted states. Solid black line represents
a threshold of maximum mutual information available when encoding ‘1’ using the initial thermal state. (b)
The maximum mutual information per mode as a function of the number of modes M, for multimode thermal
state before and after [-photon subtraction. Colors refer to the value of [, gray: [=0, yellow: I=1.

For two thermal distributions szlt)h with mean number of photons ”t(}? (representing bit 1) and
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pr(lot)h with nt(ﬁ) < nth) (representing bit 0), the optimal measurement strategy distinguishes between

number of quanta less or equal to n, (detection of bit 0) and higher than n,,, (detection of bit 1).
The maximum mutual information Eq.(4.6) over p{' approaches

H(po)—H(p10)

mang;I = logz (1 + 2 1-po1—p10 (p(n) P10

P10
- —H (P10 (4.8)
) 1= po1 — P10 = Po1 — P10 bro
_ Lol . _ ) (1) 14+npa
where and H(x) = —xlog, x—(1—x) log,(1—x) is binary entropy function, py; = 1— (nth /(1 +ny ))

is error probability of sending bit 1 and receiving it as bit 0, and p;y = (ntﬁ) /(1 + n(O))) e is

error probability of sending bit 0 and receiving it as bit 1. To minimize the total error probability it
is necessary to use two states whose distributions have the smallest possible overlap. For thermal
states we can assume ngﬁ) = 0, which yields p;o = 0 and ny,,x = 0. The optimal extraction of in-
formation is then simply the measurement of zero and non-zero energy. In this case, the maximum

mutual information
1)y /(1)
<I>O = maXP(I)A‘I = logz (1 + ntl)(l + T’l(l)) (1+nt}§ )/nl ) (49)

e ¢y

monotonously increases with ny’s linearly as ”th) /(eln 2) for small ny's and slowly saturates at 1 bit.
The benchmark Eq.(4.9) sets a lower bound on mutual information available by using the vacuum
state (bit 0) and a thermal state with the same mean photon number as the prepared I-photon
subtracted state (bit 1). This bound is shown in Figure 4.9(a) by light gray areas for individual /.
The dependence of the maximum mutual information on a beam splitter reflectivity R is depicted
in Figure 4.10(a). Shown are also corresponding benchmarks.
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Figure 4.10: (a) The maximum mutual information (solid green curve) and (b) the available work (solid red
curve) versus the beam-splitter reflectivity R for three-photon-subtracted thermal state (I = 3). Solid black
lines and dashed black lines represent the corresponding benchmarks.

4.2.4 Discussion

We have experimentally produced the conditional out-of-equilibrium state Eq.(2.25) from single-
mode thermal light by a weak dissipation to a reservoir and an inefficient detection of photons
there. We have theoretically and experimentally verified that average work could be extracted from
the conditional out-of-equilibrium state, which outperforms any cooling/heating strategy. Further-
more, this state can also be used to carry more average information (closer to one bit) than for any
state produced by a cooling/heating strategy, despite entropy increase of the conditional state. The
presented procedure does not require any external coherent drive or additional thermal energy. It
only uses energy measurement to reach higher work and information rate conditionally. However,
it conclusively requires the first-order (classical) coherence of the thermal source. Obtained results
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complement the previous experiments demonstrating the applications of the subtraction proced-
ure. The presented method can be translated to other experimental platforms and used for future
experiments in currently merging fields of quantum information and quantum thermodynamics.
It is also stimulating for current optomechanical experiments at single quanta level [516], where a
mechanical oscillator is driven out-of-equilibrium by a weak optical cooling and incoherent photon
detection more efficiently than by a complete cooling or adequate heating.

4.3 Deterministic preparation of
the super-Poissonian statistics

In the Section 4.3, an experimental approach of deterministic modification of statistical properties
of light by incoherent mixing of single-mode thermal state with the [-photon subtracted single-
mode thermal state is presented. We combine weak single-photon measurements akin to photon
subtraction techniques [A1, 28, 35, 159, 161, 298, 314, 384, 493, 494, 496, 517] on the first beam
together with classical feedforward operation, that may swap the two light beams depending on
the measurement outcome, to deterministically increase the mean energy of the beam. The success
rate of photon subtraction determines the ratio of these states in the output state. We examine
in detail the average extracted energy, the extracted energy fluctuations, and the corresponding
mean-to-deviation ratio as well as the second-order photon autocorrelation function of the output
mode [B19]. We show that the purely linear measurement-feedforward protocol effectively reduces
photon correlations and energy fluctuations. At the same time, we find that it is able to enhance the
mean energy as well as the mean-to-deviation ratio, that is, the stability [315, 518, 519], of the output
mode above the thermal limit. Our measurement-feedforward protocol is advantageous from a
thermodynamic point of view since it allows the implementation of the experimental realization
and the thermodynamic analysis of a photonic quantum Maxwell demon.

4.3.1 Experimental setup

The experimental realization of deterministic preparation of the super-Poissonian statistics com-
bines the generation of thermal states of light, photon subtraction, photonic switch, and photon-
number-resolving detector. The scheme of the experimental setup is shown in Figure 4.11. A coher-
ent nanosecond pulsed light is generated by a gain-switched semiconductor laser diode driven by a
sub-nanosecond electronic pulse generator with a repetition rate of 2 MHz. The generated coherent
light is split by a 50:50 beam splitter into two coherent states with the same photon number. The
optical intensity of coherent pulses is temporally modulated by two independent rotating ground
glasses (RGG) with a random spatial distribution of speckles. This method is frequently used to
generate a quasi-thermal light with virtually perfect Bose-Einstein statistics (see Section 2.3.2). A
single spatial mode is selected by collecting the scattered light into the single-mode optical fiber.
As a result, we have two single-mode thermal states. One of the thermal states is modified by the
subtraction of a single photon. When the single-photon detection is successful, the photon statist-
ics of the initial thermal state are modified to create an out-of-equilibrium state with a higher mean
photon number. The second thermal state is left unchanged.

These initial states are coupled into the input ports of the 2 x 2 photonic switch [34]. Fast
switching is performed by a low-latency switchable coupler employing a high-visibility fiber Mach-
Zehnder interferometer (MZI). The optical signals can be switched by changing an optical phase
using an integrated waveguide electro-optic modulator (EOM) driven by optical feedback and feed-
forward circuits using output electronic signal from a single-photon detector. Active phase stabil-
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Figure 4.11: Simplified experimental scheme: Preparation of single-mode thermal states; detection of single-
photon from the thermal state implemented using a beam splitter with a tunable transmitivity T; the photonic
switch based on Mach-Zehnder interferometer (MZI) with phase dispersion compensator (PDC) and fiber
stretcher (FS) used to lock the MZI phase and integrated electro-optic modulator (EOM) controlled by optical
feedback for signal switching. The output signal is detected by PNRD. All detection events are processed by
coincidence logic.

ization is necessary to keep the random phase fluctuation caused by temperature changes, airflow,
and vibrations small enough for advanced long-term measurement. The real-time phase locking is
performed by comparing the output signal to a fixed setpoint and adjusting the phase based on the
error signal. The stabilization technique operating with the strong classical optical reference co-
propagating with the initial signal through the MZI was employed to avoid photo-counting noise.
More technical details about optical switch functionality are described in Svarc et al. [34]. The
resulting output signal was analyzed by a photon-number-resolving detector (see Subsection 3.2).
The probability distribution of the number of photons is evaluated from repeated multi-coincidence
measurements (see Subsection 3.5).

4.3.2 Results

We have successfully implemented deterministic preparation of the super-Poissonian statistics em-
ploying single-photon subtraction. The controlled photon subtraction is treated in more detail in
Section 1.3 and Section 2.3.3. According to the results presented in Section 4.2, we generate photon-
subtracted thermal states by splitting the single-mode thermal state at a fully tunable beam splitter.
We experimentally prepared input thermal states with different mean photon numbers per mode
ng, = 3.94(2) and 7.97(3). The experimental data and theoretical prediction for mean photon num-
ber (n) at the output is shown in Figure 4.12(a) for these initial mean photon numbers, respectively,
and for different scattering ratio R. For the presented experimental procedure, the optimal R was
found far from R « 1, and the protocol is, therefore, different from the photon subtraction [A1].
As ny, increases, optimal R is smaller for the maximum output state mean photon number (n) (see
Figure 4.12(a)). In general, continuous tunability of splitting ratios allows setting a sufficiently
small reflectivity approximating the implementation of the annihilation operator. Alternatively,
the reflectivity can be increased to achieve a higher probability of detecting subtracted photons.
Figure 4.12 (b) shows the probability of subtracted photon detection as a function of reflectivity R.
Furthermore, we investigated the effect of beam splitter reflectivity (ranging from 0.78(3)% up to
27.3(1)%) on the presented statistical modification process in terms of photon statistics character-
istics.
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Figure 4.12: (a) Mean photon number of the output state and (b) probability of one photon detection as a
function of scattering ratio R. Solid dots represent measured data and solid lines correspond to a theoretical
model. Shown are instances of different input thermal states with mean photon number ny, = 3.94(2) (black),
and ny, = 7.97(3) (blue).

We analyzed each optical state by its click and photon statistics. Figure 4.13 illustrates click stat-
istics and photon statistics of the input single-mode thermal state, one-photon-subtracted single-
mode thermal state, and deterministic prepared output state for different mean photon numbers.
Depicted are only results for reflectivity R = 14.33(3)% for ny, = 3.94(2), respectively R = 11.5(1)%
for ny, = 7.97(3). Retrieved photon statistics are in good agreement with the theoretical ones. We
analyzed photon statistics retrieval accuracy evaluating the fidelities and total variation distances
of all initial states (Figure 4.14). The average fidelity of all states is F = 0.997(4).

We also examine in detail other quantities such as the binomial parameter, the Mandel para-
meter, g2(0) function, and the Fano factor of the output beam (Figure 4.15). The values of the
binomial (Figure 4.15(a)) and Mandel (Figure 4.15(b)) parameter declare the classical character of
these non-equilibrium output states. As might be expected, g2(0) function decreases with increas-
ing reflectivity R (Figure 4.15(c)). This effect is more significant for higher mean photon numbers of
the input thermal state. The Fano factor depends on reflectivity R and is not constant anymore (Fig-
ure 4.15(d)). Notably, the output state is more super-Poissonian with an increasing mean photon
number.

Several experimental imperfections cause a discrepancy between theoretical simulations and
measured data. The generation of these states is conditioned by detecting photons on a multi-
channel detector suffering from dark counts. These false detections contribute to the distortion of
photon statistics, leading to an increase in the error of the evaluated parameters. Other possible
causes are low transmittance of the SWAP [34] and the detectors’ non-unity detection efficiency
that are compensated using a retrieved photon statistics algorithm [A2]. Deviation of estimated
system efficiency from the real one may increase the error within a few percentages.

Simulation of multimode scattering of N thermal modes and /-photon subtracted single-
mode thermal states
In the experiment, we employed only single-photon subtraction to demonstrate the deterministic
preparation of the output state, but in general, we can subtract an arbitrary number of photons.
We utilized numerical simulations to predict the complementary strategy of [-photon subtracted
photons for  from 1 up to 4. As aforementioned, the mean photon number of the output state is a
function of the scattering ratio R. As we can see in Figure 4.16, the optimal value of R differs for
the specific number of subtracted photons I. The higher number of [ increases the mean photon
number at the cost of decreasing [-photon detection probability p;(I). However, by increasing the
number of selected thermal modes N we can reduce the effect of decreasing the probability of
I-photon detection and thus gain the advantage of higher photon subtraction.

Figure 4.17 shows the mean photon number, the second-order autocorrelation function, Fano
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Figure 4.13: Experimental results of detection of photon statistics. Shown are the measured click statistics
(green bars), retrieved (blue bars), and the corresponding theoretical photon statistics (green dots) of input

thermal state pt(f ), conditional state pﬁ}ﬁld, and p,,, for several mean photon numbers: (a) ny, = 3.94(2) (R =
14.33(3)%), and (b) ny, = 7.97(3) (R = 11.5(1)%). All distributions are plotted on a logarithmic scale.
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Figure 4.14: The discrepancy between the measured and the corresponding ideal photon statistics character-
ized by (a) fidelity F, and (b) the total variation distance A as a function of reflectivity R. Shown are instances
of different input thermal states with mean photon number ny, = 3.94(2) (black), and ny, = 7.97(3) (blue).
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Figure 4.16: Numerical simulations of a higher number of subtracted photons. Shown is dependence of
mean photon numbers on scattering ratio R for [-subtracted photons from 1 to 4. Subplots present results for
a different mean photon number per mode: (a) ny, = 4, and (b) n,, = 8, and different number of thermal modes
(slopes): N =1, 10%, 10%, and 10°.
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factor, and mean-to-deviation ratio of output state p(()lgt as a function of the number of thermal

modes N. We compared the performed simulations with the results published in the work [A1].
On this basis, we can state that the simulation approaches the conditional [-photon subtraction in
the limit of the large number of thermal modes N. Bounds of maximum capable energy corres-
pond to the mean photon number increased by a factor (I + 1), which is the same factor as for the
conditionally prepared I-photon subtracted thermal state (Figure 4.17(a)). The second-order correl-
ation function converges to unity for the increasing number of subtracted photons and number of
thermal modes (Figure 4.17(b)). Even with the increasing number of subtracted photons, the Fano
factor of these output states remains a constant value close to ny, +1 (Figure 4.17(c)). Figure (4.17)(d)
shows that the energy of output states advantageously increases faster than its fluctuations.
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Figure 4.17: The strategy of energy maximization: scattering ration is set to maximize the energy (mean
photon number) of the output state pf,l\‘l‘}). Numerical simulations are done for different mean photon numbers
per mode: (a) ny, = 4, and (b) ny, = 8, and number of subtracted photons from 1 up to 4. Several parameters
as a function of thermal modes N from 1 up to 10° are shown: mean photon number (n), the second-order

autocorrelation function g, fano factor F, and mean-to-deviation ratio (n)/o.

We mainly focus on the output states with the highest possible energy - mean photon number.
However, another important alternative strategy to maximizing the energy of the output state is
the mean-to-deviation ratio maximization. The parameters of output states prepared by the mean-
to-deviation ratio maximization strategy are depicted in Figure 4.18. As one can see, this strategy
leads to the faster convergence of the second-order autocorrelation function. However, the values
of the fano factor are smaller and much closer to the value corresponding to the coherent state.
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Figure 4.18: Strategy of mean-to-deviation ratio maximization: scattering ration is set to maximize the mean-
to-deviation ratio of the output state pf,l{f{>. Numerical simulations are done for different mean photon number
per mode: (a) ny, = 4, (b) ny, = 8, and number of subtracted photons from 1 up to 4. Several parameters
as a function of thermal modes N from 1 up to 10° are shown: mean photon number (n), the second-order

autocorrelation function g, fano factor F, and mean-to-deviation ratio (n)/o.

4.3.3 Application

Maxwell’s demon thought experiment proposed several decades ago reveals a profound connec-
tion between quantum information processing and thermodynamics. By measuring positions and
velocities of gas particles contained in two neighboring chambers connected by a small aperture,
the demon exploits the acquired information to collect fast (hot) particles in one chamber and slow
(cold) particles in the other [B22, 520, 521]. The resulting temperature difference may then be used
to run a heat engine and perform work by lifting a weight—without the demon investing any work
himself. In order to avoid any apparent violations, the second law has to be generalized to prop-
erly incorporate the information gained through the measurement [522, 523]. Originally a thought
experiment, successful information-to-work conversion has been recently reported in a number of
classical [361, 514, 524-534] and quantum [475, 515, 535-537] systems.

The idea of classical Maxwell’s demon extracting force and work from measuring fluctuations
in the system stimulates modern quantum physics. Quantum demon experiments have so far been
realized with fermionic qubit systems, using nuclear magnetic resonance, superconducting and
cavity QED setups [475, 515, 535-537]. On the other hand, quantum optics deals with bosonic
systems, such as quantized modes of the electromagnetic field [B19]. Bosonic systems have been
extensively studied in the context of quantum information processing [B18]. As a result, numer-
ous theoretical methods, as well as experimental techniques, are available to analyze their quantum
properties [538]. These systems are also advantageous from a thermodynamic point of view since
their unbounded energy spectra allow them to accumulate large numbers of quanta per single
mode, in contrast to systems with finite Hilbert spaces [475, 515, 535-537]. Moreover, surrounding
empty modes naturally act as a zero-temperature quantum environment without the need of any
external cooling [B19]. Thermal multimode light is a natural energy source in photonic Maxwell’s
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demon experiments instead of the thermal Maxwell-Boltzmann velocity distribution of particles.
A classical photonic demon experiment has been implemented lately using intense thermal light
(with a large mean photon number of the order of 108) and post-processing in Ref. [361]. In this
macroscopic limit, the energy statistics of extracted work is practically continuous. After a weak
scattering of such macroscopic light, sensitive microscopic measurements of individual photons
made continuous conditional changes of work averaged in time at a classical battery represented
by a macroscopic capacitor. Recently, the energy/work was extracted from two thermal baths
at equilibrium by gaining information at single-photon-level measurement and applying classical
feedforward control [497]. On a small microscopic scale in a cold environment and with only a few
energy quanta in a mode, the measurement process manifests very differently than on a macro-
scopic scale. This photonic Maxwell’s demon experiment was implemented at the low temperature
of the thermal beams - low photon numbers ny, = 0.151(2). This study primarily focuses on the
effects of correlations between the two input modes in a single-photon regime.

In a similar manner, the super-Poissonian statistics deterministic preparation technique men-
tioned above has enabled an experimental realization of a quantum photonic Maxwell’s demon by
employing two thermal light beams with a small mean photon number per mode (ny, = 3.94(2) and
7.97(3)). In contrast to the approaches of Maxwell’s demon mentioned above, in this microscopic
regime, discrete photon fluctuations dominate. We demonstrate successful information-to-energy
conversion and examine in detail the average extracted energy, the extracted energy fluctuations,
the corresponding mean-to-deviation ratio as well as the second-order photon autocorrelation func-
tion of the output mode [B19]. We show that the purely linear measurement-feedforward protocol
effectively reduces photon correlations and energy fluctuations. At the same time, we find that it
is able to enhance the mean energy as well as the mean-to-deviation ratio, that is, the stability [518,
519, 539], of the output mode above the thermal limit. We further theoretically analyze the char-
ging of a quantum battery consisting of a two-level system resonantly coupled to the output mode.
We show that the excitation probability of the qubit may surpass the thermal bound even though
the photon statistics is super-Poissonian [B19]. We finally derive a quantum fluctuation relation, a
generalization of the second law of thermodynamics that includes information gain [522, 523], and
use it to obtain an upper bound on the stored work.

Experimental realization of a quantum photonic Maxwell’s demon

Our system consists of two (input) thermal light modes at inverse temperature § with density
operator py g, mean photon number ny, and standard deviation 5. These two modes play the role
of the left (L) and right (R) chambers in Maxwell’s thought experiment. Information about the
system is gained by coherently scattering a fraction R of the photons of mode L into empty vacuum
modes and weakly measuring [ scattered photons with multiport single-photon detectors (mode R
is not measured) (Figure 4.19). To that end, we employ a low-reflectivity beam splitter realized
with a half-wave plate followed by a polarizing beam splitter. The reflected photons are detected
via a reconfigurable multichannel detector with commercial on-off single-photon detectors. The
measurement is optimized by varying the reflectivity R.

The probability of detecting ! photons is p(l) = Tr[M(l)S(r)pLS(r)TM T(D)], where S(r) is a unit-
ary beam splitter-like transformation that characterizes the scattering process and M(l) is a positive
operator-valued measure (POVM) that describes the photodetection process. The measurement af-
fects the photon distribution, which becomes nonthermal [16, 28, 159]. When a photon is detected,
the average energy of mode L is enhanced compared to that of mode R; it is otherwise reduced
when no photon is detected. In the limit R < 1, such photon subtraction protocol is known to
conditionally increase the mean photon number of thermal light up to (I + Dny, [A1, 16, 28, 35, 159,
161, 298, 314, 493, 494, 496, 517]. We next implement feedforward control by swapping the two
modes L and R, depending on the measurement outcome, to ensure that the output always has an



DETERMINISTIC PREPARATION OF SUPER-POISSONIAN STATISTICS 79
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Figure 4.19: (a) The experimental setup contains two input thermal light modes L and R with mean photon
number ny,. A low-reflectivity beam splitter, realized with a half-wave plate followed by a polarizing beam
splitter, is employed to weakly measure the photons of mode L by coherently scattering a varying fraction R of
them into vacuum modes. The scattered photons are detected using single-photon avalanche diodes (SPAD).
The measurement may either increase or decrease the energy of the mode. The gained information (I) is
then used to implement a feedforward operation in the form of an optical SWAP that flips either mode L or
mode R to the output mode p,,,, depending on the measurement outcome, so that the energy of the output
mode is deterministically larger than that of the input mode. The click statistics of state p,,, is measured
with a photon-number-resolving detector (PNRD). b) This information-to-work conversion scheme may be
theoretically utilized to resonantly charge a quantum two-level battery and store the amount of work (W ).
The achievable excitation probability p, from the ground state |g) may exceed the thermal bound p, ,.

energy larger than the input mode L. We concretely use a tunable photon routing device [34] to
realize the operation

SWAP] out
SWAPR out

ifl >1

FLr®) = ifl<1

(4.10)

where ’out’ denotes the output mode pgy;.

The experiment was performed with two single-mode (N = 1) thermal input states. In addition,
we simulate the case of a multimode input state p;. Maxwell’s demon measures scattered photons
simultaneously in N thermal modes and swap that mode, where the measurement counted a suffi-
cient number of photons, to the output as depicted in Figure 4.20. If it does not happen, the demon
fills the output with an unmeasured thermal mode A. It keeps the process deterministic with a
maximal increase in the average energy. The remaining unsuccessfully measured modes can be
discarded to a cold environment or thermalized again in the hot thermal bath for the next use.

First, we use N parallel modes of thermal light taken from the multimode hot bath to increase
the probability pg,c of successful I-photon detection according to the formula pg,. = 1—(1—p(D))N.
IfI > Iy, photons are detected at least in one i-th mode, the demon’s measurement is successful, and
the SWAP gate flips that mode to the output. The threshold /;, will be later optimized for a given
R and initial ny, to achieve the best performance for the selected figure-of-merit. If no photon is
detected instead, the demon’s measurement is unsuccessful. In this case, we use the auxiliary mode
R from the same bath with the mean ny, of thermal photons and swap it to the output mode. A
classical SWAP does this feedforward routing for i-th mode

SWAP; out
SWAPR out

if1> Iy,

F (D) =
ir() i1 < Iy,

(4.11)
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where out denotes the output mode. So after applying it, the optical state for i-th mode and the
second mode R may be written as

oy =Y FQ) (M(z)spg)swa)T ® pr) F1 (), (4.12)
I

The output state is obtained by taking the respective partial trace over the modes A
[}
pon) = Try [pilf}lz] : (4.13)
After the whole procedure, we can discard all other unuseful modes and eventually mode R.
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Figure 4.20: Experimental quantum photonic Maxwell’s demon: A multimode scattering of 100 x r[%] of
N modes of thermal light with photon number distribution p, from a hot bath to a zero-temperature bath
(environment) is measured by a multiport detector. Successful detection of at least [ > I;, photons in a k-
th mode controls the SWAP fliping that mode to the output. Otherwise, the demon redirects an auxiliary
thermal mode to the output. The remaining modes are discarded to a cold 