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Objectives of thesis
Hypothesis and aim:

The aim of the thesis is to map oak dieback using Plant Phenology Index (PPI), a specific vegetation index
obtained from remote sensed satellite data. The Plant Phenology Index is derived from the radiative
transfer equation, and it has a linear relationship with the Leaf Area Index (LAI). It was introduced in 2014
by Jin and Eklundh and it is available in the High‐Resolution Vegetation Phenology and Productivity
(HR‐VPP) product suite as part of the European Space Agency’s Copernicus Land Monitoring Service
(CLMS) program, provided by the Sentinel 2 satellite constellation. Plant phenology is provided for 13
parameters, up to two growing seasons, with high spatial resolution. The hypothesis of this thesis is that
PPI can be used as a predictor of present tree mortality and as an early warning indicator for the
identification of areas where cork oak dieback might occur in the future. The practical application of the
findings of this thesis could also be used as a pipeline for future predictions of tree decline processes in
other areas, using the same remotely sensed data with similar field datasets.

Summary:

Vegetation indices have long been used in land use and land cover change identification. A commonly
used vegetation index is the Normalized Vegetation Index (NDVI), but numerous others have been
introduced and used in the past. The Plant Phenology Index (PPI), one of the many vegetation indices,
was introduced in 2014 to overcome the limitations of other indices when used, for example, with
evergreen vegetation or with vegetation affected by snow cover. It is a physically based vegetation index;
it is derived from the radiative transfer equation and has a linear connection to the Leaf Area Index (LAI).
Tree mortality changes land cover, and has been affecting themontado, a silvo‐pastoral agroforestry
system, of mainland Portugal for decades. Dead tree data was collected in Companhia das Lezírias,
a state‐owned property with high proportion ofmontado (dominated by Quercus suber – cork oak), from
2014 to 2019. This dataset, in conjunction with the High Resolution Vegetation Phenology and
Productivity (HR‐VPP) remote sensing product, was used in this thesis to determine a relationship
between phenological patterns (PPI) and tree mortality. The modelling of the relationship between tree
mortality and tree phenology will be done with one‐class Support Vector Machine (SVM) models,
because of the nature of the field dataset. SVMs are supervised learning models that are frequently used

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha ‐ Suchdol



for classification tasks. The choice for using a one‐class classifier was made because the dataset contains
only dead tree observations.

Rationale:

Cork oak (Quercus suber) is highly regarded in Portugal, both economically and culturally. It is a protected
tree and it serves as the primary source for cork production on a global scale. Tree mortality has been
affecting cork oak, not only in Portugal, but in the Iberian Peninsula for decades. Finding an early warning
indicator would be highly useful in determining areas where oak decline might occur in the future. This
could be applicable to other dryland agroforestry systems.

Justification:

Tree mortality has been a problem for decades in Portugal and the work done in this thesis tries to
address this issue. Since the Plant Phenology Index is a rather novel vegetation index, its applications are
yet to be explored more in detail. The aim of the work is to find an application of the Plant Phenology
Index in areas affected by tree dieback, which later can be used to predict such events in other sites.

Methodology

Study area:

The study area is in Companhia das Lezírias, Central Portugal, in the NUTS3 region of the Alentejo region,
Lezíria do Tejo.

Data collection:

The dead tree data was recorded by workers in the field, who selected the trees with complete loss of
leaves. Each cork oak tree was identified, and its geographical position was recorded using a handheld GPS
(Etrex Garmin). The datapoints were stored in a single shapefile, representing all the surveyed dead trees
as point features. The original dataset contained more than 27000 datapoints after completion. Duplicate
points were removed from the dataset as part of the data cleaning process.

The remotely sensed phenology dataset was part of a larger data acquisition process using the Copernicus
WEkEO portal, acquiring data for the entire continental territory of Portugal. The country is covered by
17 mosaics, out of which only one – 29SND – was used for the writing of this thesis, with phenology data
spanning over six years (from 2017 to 2022), with thirteen variables in high spatial resolution (10m x 10m).
The initial data acquisition of the Sentinel 2 HR‐VPP data, due to its large size, was done through theWEkEO
portal’s Harmonized Data Access REST‐based API.

Data analysis:

The dead tree dataset was divided into individual years, based on the date of collection, using QuantumGIS
(QGIS) in the form of point shape files. Raster data, for all thirteen phenological variables, was extracted for
each of the point locations using the Rasterio library from Python and saved into yearly data frames using
GeoPandas. The extracted data serves as the basis for creating machine learning models using a special,
one‐class classification Support Vector Machine algorithm (OCSVM) from the scikit‐learn Python library.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha ‐ Suchdol



Data analysis and cleaning was done using the Pandas and numpy libraries, while data visualization was
done using the matplotlib library and QGIS software for mapping outputs.

For the validation of the machine learning models, points of live trees are to be used. These were acquired
through visual identification based on images fromGoogle Earth Pro, with the help of professionals familiar
with the composition of the study area.
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Abstract 

Vegetation indices have long been used in land use and land cover change 

monitoring. The Plant Phenology Index (PPI), one of the many vegetation indices, was 

introduced in 2014 to overcome the limitations of other indices when used for phenology, 

for example, with evergreen vegetation or with vegetation affected by snow cover. It is a 

physically based vegetation index; it is derived from the radiative transfer equation and 

has a linear connection to the Leaf Area Index (LAI). Tree mortality changes land cover, 

and has been affecting the montado, a silvo-pastoral agroforestry system, of mainland 

Portugal for decades. Dead tree data was collected in Companhia das Lezírias, a state-

owned property with high proportion of montado (dominated by Quercus suber - cork 

oak), from 2014 to 2019. This dataset, in conjunction with the High-Resolution 

Vegetation Phenology and Productivity (HR-VPP) remote sensing product with thirteen 

yearly phenology parameters, was used in this thesis to determine a relationship between 

phenological patterns (PPI) and tree mortality. The modelling of the relationship between 

tree mortality and tree phenology was done with one-class Support Vector Machine 

(SVM) models, because of the nature of the field dataset. SVMs are supervised learning 

models that are frequently used for classification tasks. However, the choice for using a 

one-class classifier was made, which is an unsupervised classification algorithm for 

outlier detection, because the dataset contained only dead tree observations. The initial 

dead tree dataset was divided on a yearly basis, including only the ones that overlapped 

with the HR-VPP product, 2017 and onwards. To validate our models, a dataset was 

created through visual observations using Google Earth Pro imagery in Quantum GIS. 

Before creating our final models, experimentation was done using different tools for 

hyperparameter search and for feature selection. After this experimentation process, to 

reduce complexity and to retrieve continuous values from the decision boundaries of the 

classifiers, pairs of phenology parameters were created, models were trained and tested 

with them using different sets of hyperparameters. We found that certain combination of 

hyperparameters and phenology parameters, especially ones that indicate the start and the 

end of the vegetation season, as features, were able to perform classification of dead trees 

and outliers with convincing accuracy for one-class classification. 

Key words: One-Class Classification, Support Vector Machines, Sentinel 2 – HR-VPP, 

Oak Decline, Montado, Remote Sensing, Plant Phenology 
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2. Introduction and Literature Review 

2.1. Introduction 

Vegetation indices, such as the normalized vegetation index (NDVI), or the 

enhanced vegetation index (EVI) have long been in use in different fields, such as forestry 

and ecology, to monitor changes in the state of vegetation [1]. These indices are relatively 

easy to calculate based on remote sensed data, but have their limitations, when applied 

for certain landcover types with evergreen vegetation (such as boreal forests) or when the 

vegetation is affected, for example, by snow cover [2]. The use of remote sensing as a 

tool for vegetation monitoring (i.e., changes in the vegetation cover in a certain area) is a 

well-established practice not only among forestry professionals, but professionals from a 

broad spectrum of scientific fields such as geography, ecology, as well as other disciplines 

related to vegetation mapping. In ecology, remote sensing technologies have been 

implemented for decades now, with a wide variety of uses such as land use and land cover 

change, integrated ecosystem measurements and change detection (i.e., climate change, 

habitat loss etc.) [3]. The use of remote sensing can provide information and can be 

converted to estimates with ease across entire ecosystems. The plant phenology index 

(PPI) is a novel vegetation index aimed to overcome these limitations. It was proposed 

by Lin and Eklundh in 2014 2 to improve the effectiveness of monitoring plant phenology. 

It is a physically based index and has a linear relationship with the leaf area index (LAI). 

The European Space Agency’s (ESA) Copernicus program offers the High-Resolution 

Vegetation Phenology and Productivity (HR-VPP) product suite, leveraging the technical 

abilities of the Sentinel 2 satellite constellation, with thirteen phenological parameters - 

derived from the PPI - in high spatial (10 m × 10 m) and temporal resolution (5 day return 

time) for the entire EEA39 (32 member states of the European Union plus cooperating 

countries). This data is openly available since 2017 [4]. The aim of this thesis was to 

determine the usefulness of the PPI in detecting cork oak decline, which has been 

affecting the montado, an agroforestry system part of the cultural landscape in continental 

Portugal, for decades, in the study area of the state-owned property of Companhia das 

Lezírias. We proposed that the PPI using the data from the HR-VPP product suite can be 

used as a predictor of present tree mortality. We obtained our results using a classification 
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algorithm and plotted the decision boundaries for the separate classes of mortality 

(alive/dead) with pairs of phenological parameters as feature sets. Our results indicate 

that the PPI can be used for such purposes and that the classification algorithm used in 

this thesis was able to differentiate between dead and living trees based on vegetation 

phenology parameters, most importantly the start and the end of the season date values. 

Based on this, we conclude that the PPI can be used for future monitoring and research 

of cork oak tree decline in agroforestry systems.  

2.2. Literature review 

2.2.1. Describing the montado 

The oak dominated agroforestry system called montado has an elevated 

importance in mainland Portugal. It is protected by law [5] and it is part of the cultural 

landscape, predominantly in the southern part of the country. It has important economic 

and biological qualities, through production of goods and provision of ecosystem 

services, it contributes to the maintenance of ecosystem services such as a healthy soil 

ecosystem, which allows functional soil biome and prevents soil erosion, abundant 

pastures with biodiverse plant understory cover that provide habitat for wildlife (such as 

reptiles, birds, mammals, and pollinator insects), its diversified vertical structure of tree 

cover supports the regeneration of oak species, and the preservation and enhancement of 

habitats and landscape elements such as patches of shrubs, riparian galleries, ponds and 

other habitat types [6]. In recent years, the extent of the montado has reduced due to 

numerous factors such as increase of intensive farming, overgrazing and abandonment (a 

prevailing issue in the Portuguese countryside) and shrub encroachment [7]. The montado 

covers about 800,000 ha [8], predominantly in the Southern region of the country, 

Alentejo. It has its equivalent in Spain where it is called dehesa, and as such it is also 

acknowledged for its multifunctional properties, despite originally being valued for cork 

production and animal husbandry. Its savanna-like physiognomy is one of the main 

characteristics of the montado, where two species of oak, cork – Quercus suber and holm 

– Quercus ilex rotundifolia are prevalent – in varying densities – diffused in the landscape 

in a mosaic like fashion. Cork oak (Quercus suber) has been highly regarded for centuries 

in Portugal. According to the National Forest Inventory it is the second most abundant 
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species after eucalyptus covering about 23% of the forested areas of mainland Portugal 

[8]. Its importance has been recognized by law since the 13th century, and it was 

established as Portugal’s national tree in 2011. This can be attributed to its relevance in 

multiple areas, such as social, economic, and environmental. Besides the centuries old 

trade of producing and harvesting cork, which accounts for 54 % of the global mean 

annual cork production, a wide range of other products - such as wood production and 

livestock raising - and ecosystem services are related to this agroforestry system [9]. The 

ecological functions of the montado include soil protection and water regulation mostly 

through vegetation cover (i.e., tree canopy cover), that has multiple roles in the protection 

of the soil and regulation the retention of water and rainfall interception [9]. Besides 

regulation, decomposing organic matter adds to the fertility of the soil. CO2 retention is 

also an important feature of these agroforestry systems, Since the oak species occupying 

this type of system live long, they promote carbon storage over elongated periods of time 

[10]. Another important feat of the montado is the maintenance of biodiversity. According 

to Díaz-Villa et al. [11], about 135 vascular plants per 0.1 hectare can be found in an oak-

savannah grassland like the montado, several of which are under protection. Besides 

plants, the montado system plays an important role in the life of animals, providing refuge 

and habitat, where 28 species have protection status [12].  

2.2.2. Oak decline 

Severe oak decline in the Mediterranean agro-silvopastoral systems have been 

observed since the second half of the 20th century and it has been reported from Portugal 

at least from the 19th century [13]. It has been observed in Spain and Portugal for decades, 

which raises concerns that these systems will not be able to maintain the balance between 

human land use and ecosystem protection in the face of a changing climate [14]. Often 

times this dieback is attributed to different types of pathogens like Phytophtora sp.. 

Although Phytoptora spp. are suspected to be the main culprits of oak decline in Portugal 

as well, there have been several other pathogens and pests associated. Pathogen species 

from different parts of the vegetation have been recovered such as Brenneria quercina, 

Hypoxylon sp. [13]. There are two main types of syndromes that have been associated 

with oak decline that have been observed through the years: (1) Characteristic fast dying 

of the tree crown followed by the sudden death of the tree, which could happen in one or 

two vegetation seasons and (2) a progressive decline, which is first characterized by the 
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dying of the top of the tree and more intense leaf drop. This could affect the whole crown 

or can be restricted to only some of the branches. These mortality events have been 

ascribed to complex events that involve abiotic stress factors related to the properties of 

the soil, but these stress factors might also include drought and inadequate silvicultural 

management practices [13].  

Cork oak has been observed in recent decades to be significantly declining, due to 

numerous factors attributed to climate change and deficient management practices, such 

overgrazing [15]. 

2.2.3. Remote sensing, vegetation Indices, plant phenology and 

productivity 

Vegetation indices are thoroughly used in vegetation monitoring due to their 

relative simplicity and good correlation in changes in the vegetation. Spectral vegetation 

indices (VIs) are established tools to monitor the states of forests and processes in the 

canopy [16]. Vegetation indices respond to upper sunlit leaves more than the lower ones, 

which results in a non-linear relationship with the leaf area index. Depending on the type 

of vegetation (broadleaf versus needleleaf canopy structures), this relationship can further 

vary [1]. These remote sensing derived indices can enhance the estimations of forest 

biophysical properties that are otherwise difficult to sample in situ. The most common 

way to perform vegetation monitoring is through the usage of vegetation indices, such as 

the Normalized Vegetation Index (NDVI) or the Enhanced Vegetation Index (EVI), 

which includes some corrections for atmospheric conditions, but there are many others 

[16]. Although NDVI is one of the most established vegetation indices in plant 

monitoring, it has its limitations. For example, NDVI (and EVI) are not optimal in areas 

where there is change in snow-cover (for example boreal areas) due to their sensitivity to 

such changes. NDVI is also sensitive to other atmospheric conditions such as clouds, 

haze, and aerosols, which might affect the reflectance of light in the visible and near-

infrared (NIR) wavelengths [17]. As a practical application, high resolution remotely 

sensed imagery has been used in conjunction with different vegetation indices and 

machine learning algorithms to investigate the oak tree vitality in the Mediterranean [14].  

In this thesis the Plant Phenology Index (PPI), a novel vegetation index was used 

to obtain relevant information on the change of tree canopies in agroforestry systems, 
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which itself is derived from another index, the leaf area index (LAI). Used in models and 

studies focused on forest processes, LAI is an important forest parameter. It is defined as 

the one-sided area of leaves in a canopy projected onto the ground (m2/m2) [1]. The PPI 

was developed rather recently [2], compared to those used in these previous studies and 

ecological studies in general. In this thesis, an effort was made to combine the novelty of 

the PPI and the HR-VPP Sentinel 2 product, both of which are discussed in depth in 

Chapter 3.  

The definition of phenology, according to the Merriam-Webster dictionary, is “a 

branch of science dealing with relations between climate and periodic biological 

phenomena (such as bird migration or plant flowering)” or more succinctly, the “periodic 

biological phenomena that are correlated with climatic conditions” [18]. There is an 

elaborate interplay between an organism’s genes and a variety of external environmental 

factors. This interplay influences phenological events such as onset of reproduction or 

entry or emergence from hibernation. Environmental factors like temperature and 

precipitation can directly affect the schedule of biological events. These factors can serve 

as cues for the organism’s biological clock [19]. According to Abbe [20], phenology is 

the study of periodical phenomena of different organisms, which depend on the climate. 

Productivity of vegetation can be attributed to the leaf area, which regulates the 

development of plant biomass and the uptake of solar energy in a process of converting 

light into carbon through photosynthesis. Productivity means the growth of vegetation 

and it is often described as gross primary productivity (GPP), which is accumulation of 

biomass due to photosynthetic activity or net primary productivity (NPP), which can be 

formulated as GPP minus the respiration of vegetation, simply the net vegetation growth 

[4]. 

Jin and Eklundh introduced a physically based vegetation index [2] to improve the 

effectiveness of monitoring plant phenology, the PPI. It is approximately linear to the 

canopy green LAI. It is derived from the radiative transfer equation, and it is computed 

from red and Near-Infrared (NIR) reflectance. The following formula was conceived for 

the calculation of the Plant Phenology Index [2]:  

𝑃𝑃𝐼 =  −𝐾 ∗ ln(
𝑀 − 𝐷𝑉𝐼

𝑀 − 𝐷𝑉𝐼𝑆
) 
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Where the Difference Vegetation Index (DVI) is the difference between near-

infrared (NIR) and red reflectances (sun-sensor geometry corrected), while DVIS is the 

DVI of the soil. M is a site-specific canopy maximum DVI. This, in principle, could be 

estimated in several ways: 

- Measuring non-sparse vegetation during a longer period (i.e., multiple years). 

- Model simulations of canopy reflectance where the Leaf Area Index (LAI) is 

greater than 8 square meters.  

- From measuring leaf single scattering albedo or absorbtance.  

- From measured red and near infra-red reflectances for a site where the Leaf 

Area Index and the background reflectance is known.  

K is a gain factor which is formulated in the following way: 

𝐾 =   
0.25 cos(𝜃)

(1 − 𝑑𝑐) 𝐺 + 𝑑𝑐  cos(𝜃)
 

1 + 𝑀

1 + 𝑀′
 

Where 𝜃 is a sun zenith angle; 𝑑𝑐 is an instantaneous diffuse fraction of solar 

radiation in case of clear sky and atmosphere (standard), when the sun has the zenith angle 

of 𝜃; 𝐺 is a geometric function of leaf angular distribution and 𝑀 – as stated previously 

– a site specific maximum of DVI [17]. 

The reason to introduce the PPI was to overcome the many problems that beset 

traditional vegetation indices, that hamper the use of these indices, for example in higher 

latitudes and on evergreen vegetation, for example due to snow cover. The authors 

concluded that PPI has superiority to other popularly used vegetation indices such as 

Normalized Vegetation Index (NDVI) and EVI (Enhanced Vegetation Index) in the 

scenarios mentioned above [2]. The novelty of this vegetation index, combined with the 

high resolution of the Sentinel 2 HR-VPP product could be the source of important 

research in the future, although the application of this product is still being assessed. It is 

important to note here that there have already been studies that tried to make use of the 

PPI in situ. According to Goihl [21], vegetation phenology and productivity are not 

tangible values for stakeholders in agriculture such as practitioners and decision makers. 

In this study the author concludes that remote sensing data alone would not be able to 

provide valuable explanations (in this case on drought aid) on a farm level, and further 

data (i.e., ground truth data) is needed for a practical application. Others have found that 

when compared to flux tower observations (i.e. ground observations of plan phenology) 
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in boreal forests, PPI performs significantly better than other indices such as NDVI or 

EVI using remote sensing products with coarser spatial resolution [17]. Tian et. al. [22] 

conclude that the PPI has a higher potential, in conjunction with the capabilities of the 

Sentinel 2 satellite constellation, to monitor phenology on a continental scale at a 10 meter 

spatial resolution. 

2.2.4. Application of machine learning 

The application of machine learning – not just in ecology – came about with the 

growth of computing power, that allows usage of algorithms on machines available for 

larger audiences. During the ‘90s, the first wave of fundamental concepts and algorithms 

emerged (such as boosting, bagging, random forests and shrinkage estimation) that 

challenged for the first time, the supremacy of classical probability-based statistical 

models, used for data analysis and making predictions [23]. In a very simplistic way, we 

can define the objective of machine learning as building a model capable of good 

predictions [23]. This good predictive model means that it performs well on previously 

unseen data. Any algorithm capable of predicting certain tasks can be used for machine 

learning. Based on the nature of the task at hand, we can differentiate supervised and 

unsupervised machine learning tasks [23]. The former includes classification and 

regression tasks, while clustering, dimension reduction and anomaly detection constitute 

the latter. Practical use cases include species distribution modelling, identifying areas for 

conservation or restoration, forest protection, ecosystem service management, invasive 

species risk management, filling knowledge gaps in datasets, plant-pollinator networks 

and many more [23]. Machine learning, has been used to monitor and detect tree mortality 

in previous studies, using remote sensed data [14, 24] or environmental variables [25].  

Support Vector Machines (SVMs) are supervised machine learning algorithms 

and are frequently used for classification problems such as binary or multi-class 

classification. SVMs look for the optimal hyperplane to separate the dataset into classes, 

maximizing the clearance distance between these classes [26]. Support Vector Machines 

use a set of mathematical functions that can be defined as the kernel [26,27]. Generally 

speaking the role of the kernel function is to map the data from a low-dimensional space 

to a space of higher dimension, to facilitate the classification task using linear decision 

surfaces (Figure 1.) [26]. A linear kernel can be used for linearly separable datasets, while 
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the polynomial kernel for data with nonlinear patterns. Figure 8. shows the hyperplane as 

decision boundary for linear SVM: 

 

Figure 1. Data classification in SVMs (Source: Al Mejibli 2020). 

Figure 2. shows an example of how a non-linear kernel to transform the points of 

the dataset into higher dimensional feature space [26]: 

 

Figure 2. Data classification using kernel (Source: Al Mejibli 2020). 

Table 1. shows the different kernel types used with SVMs [28,42]: 
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Table 1. Kernel types in SVMs 

Kernel Type Advantages Disadvantages 

Linear 

Computationally effective - Works 

well for high- 

dimensional data 

Limited to linearly separable 

data - May not  

capture complex relationships 

in nonlinear data 

Radial Basis 

Function (RBF) 

Good for complex nonlinear 

relationships 
Sensitive to overfitting 

Polynomial 

Good for polynomial problems ,can 

also capture nonlinear relationships 

in the  

data 

Prone to overfitting in high-

degree polynomials, Sensitive 

to other parameters such as 

degree 

Sigmoid 

Can be effective in specific 

applications, such as  

neural networks 

Application limited compared 

to other kernels 

Custom Kernels 
Tailored to specific domain or 

problem 

Requires expertise and 

experimentation 

 

When dealing with unbalanced data, or data that contains only one class, such as 

the data recorded in Companhia das Lezírias, a one-class classifier can be applied. These 

algorithms classify one class and look for outliers based on the training data. In this thesis 

a One-Class Support Vector Machine (OCSVM), which is an unsupervised algorithm, 

different from other SVMs, was used for the differentiation of dead trees from ‘anything’ 

else (i.e. possible living trees of the same species). One-Class classification has been used 

for example in species distribution mapping, where it does not make sense to record 

unsuccessful observations of a given species [28], in handwritten number recognition or 

in remote sensing [29]. Likewise, this lack of other labeled categories can be applied to 

other use cases, such as the distribution of sudden oak death [25]. When compared with 

methods that model the presence-only data directly, one-class SVMs have multiple 

advantages. They can represent different data distribution shapes in the feature space 
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using kernels (e.g., banana shapes, spheres, irregular shapes) [25]. Another advantage of 

one-class SVMs is that they aim to find boundaries of the hyperspace containing all or 

most of the training data and because of that, no assumptions on the probability density 

of the data are made [25].  

Based on these use cases mentioned above, the nature of the dataset, and easy 

availability through the Python machine learning ecosystem, we decided to use the One-

Class Support Vector Machine model from the scikit-learn library [28]. Python is the 

lingua franca of data science and machine learning and as such it makes working with 

algorithms such as the OCSVM classifier easier for people not having proper training or 

scientific background in the field of machine learning.  

3. Aims of the Thesis 

The aim of this thesis was to provide a link between the change in phenological 

characteristics of vegetation and the decline of cork oak in the study area, Companhia das 

Lezírias. For that we used PPI as an indicator of annual phenological changes and we 

hypothesized that the PPI could be potentially used as an indicator for evergreen oak 

dieback, due to its better performance on evergreen vegetation compared to more 

commonly used vegetation indices [2,4,22]. Moreover, we expect to understand if the PPI 

could be used as an early warning of oak dieback. To test our hypothesis on the 

applicability of the PPI in relation to oak dieback, a classification machine learning 

problem was solved, using a One-Class Support Vector Machine, to distinguish dead trees 

from living ones. 

 In many cases, it is hard to find proper environmental data to be used in such 

scenarios, such as high-resolution climatic data, even though many sources are available 

on the internet [30,31]. The work done in this thesis can be used to derive conclusions 

using only the openly available Sentinel 2 phenology data – the HR-VPP product suite - 

provided by the European Space Agency’s (ESA) Copernicus program in high (10 m × 

10 m) spatial resolution. The results of this thesis could be used in later research and 

monitoring efforts for the cork oak decline in the Iberian Peninsula or other areas where 

evergreen oak is affected by dieback. 
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4. Methods 

4.1. Study site and data 

The study area, Companhia das Lezírias is in Southwest Portugal, in the NUTS3 

subregion of the Alentejo region, in Lezíra do Tejo. It is about 11,000 hectares of which 

8,500 hectares are involved in forestry production. 77,2% (6570 hectares) of this area is 

covered by cork oak, the rest is covered by other species such as maritime pine, stone 

pine and eucalyptus [32,33]. Figure 3. shows the location of the study area in continental 

Portugal and in the Lezíria de Tejo region:  

 

Figure 3. The location of the study area in continental Portugal. 

Cork oak mortality in the study area was recorded from 2014 to 2019 after the dry 

season (i.e., from September to January) for the whole study area. The data were recorded 

by workers in the field, who selected the trees with complete loss of leaves even in the 

most remote places of the study area. Each cork oak tree was identified, and its 

geographical position was recorded using a handheld GPS (Etrex Garmin). The datapoints 

were stored in a single shapefile, representing all the surveyed dead trees as point features. 

The original database contained more than 27,000 observations. This number was later 
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reduced as the result of clipping the point dataset with the study area. This was done 

because the original dataset contained several points outside the study area boundaries. A 

yearly summary of dead trees recorded in Companhia das Lezírias is summarized in Table 

2.: 

Table 2. The summary of yearly recorded dead tree observations at Companhia das Lezírias 

Year  No. Dead Trees Recorded  

2014  1246  

2015  8648  

2016  2171  

2017  6390  

2018  3323  

2019  4228  

Total  26,006  

 

To monitor the seasonal changes that take place in the study area, and to better 

understand the relation between tree mortality and plant phenology, the HR-VPP, a novel 

remote sensing product was used. The product used in this thesis is part of the European 

Union’s Earth Observation program, also known as Copernicus Sentinel 2 [34]. The data 

is freely and openly available and accessible through the six different thematic 

Copernicus services. The High-Resolution Vegetation Phenology and Productivity 

product suite (HR-VPP) is provided by the Copernicus Land Monitoring Service (CLMS) 

as part of the Pan-European component at a high spatial (10 m × 10 m) and temporal (5-

day revisit time) resolution. The HR-VPP product suite is derived from the Sentinel-2 

satellite constellation (Sentinel-2A and Sentinel-2B). Products are generated for the entire 

EEA39, which includes the 32 member states of the European Union, the United 

Kingdom and 6 cooperating countries in the Western Balkans. The data is available from 

January 1, 2017, and onwards with different frequencies: daily, 10-daily and yearly [4].  

The HR-VPP suite contains 3 product groups, 31 product types and 1522 files in 

more than 900,000 tiles per year. This amounts to more than 80 terra bytes of data each 
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year. These product groups include the raw Vegetation Indices (the VIs), which are 

generated near real-time, providing the status of the vegetation vigor for every pixel. The 

group includes three VIs: the Leaf Area Index (LAI), Fraction of Absorbed 

Photosynthetically Active Radiation (FAPAR), the Normalized Vegetation Index (NDVI) 

and the Plan Phenology Index (PPI). The second group contains the Seasonal Trajectories 

(STs). These products are provided yearly, after the end of each growing season, derived 

from the raw Plant Phenology Index by fitting a smoothing and gap filling function to it. 

Figure 4. shows the schematic representation of the HR-VPP product suite: 

 

Figure 4. Overview of HR-VPP product collections (Source: HR-VPP User Manual) 

The Vegetation Phenology Parameters are derived using the seasonal trajectories 

of the Plant Phenology Index. They are provided for up to two growing seasons, for such 

parameters as the start day and the end day of the vegetation season (with pertaining 

vegetation index values), length of the vegetation season, seasonal and total productivity, 

slope of the greenup and greendown periods, vegetation index maximum and minimum 

values with the day of the maximum and the minimum. For this thesis, data was extracted 

from the products available yearly, focusing on the first growing season, because of its 

length and significance. Table 3. lists the phenological parameters available in the 

phenology product group including some of their attributes [4]:   
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Table 3. HR-VPP phenology parameters 

File_ID  File_ID description  Unit  Digital Range  

No 

value  

SOSD  Day of start-of-season  day-of-

year  

 Format: YYDOY. E.g.,  

18030: DOY 30 in year 

2018  

16001 - 65365  

0  

EOSD  Day of end-of-season  

MAXD  Day of maximum-of-season  

SOSV  Vegetation index value at SOSD  PPI  see ST-PPI  

0 to 3 physical range  

0 to 30000 digital range  

-32768  

EOSV  Vegetation index value at EOSD  

MINV  Average vegetation index value of 

minima on left and right sides of 

each season  

MAXV  Vegetation index value at MAXD  

AMPL  Season amplitude (MAXV – 

MINV)  

LENGTH  Length of Season (number of 

days between start and end)  

day  1 to 1096  0  

LSLOPE   Slope of the greenup period   PPI × 

day-1  

0.01 to 0.5 physical 

range  

100 to 5000 digital range  

-32768  

RSLOPE  Slope of the greendown period  

SPROD  Seasonal productivity. The 

growing season integral computed 

as the sum of all daily values 

between SOSD and EOSD  

PPI × 

day  

0 to +1095 physical 

range  

0 to 10950 digital range  

65535  

TPROD  Total productivity. The growing 

season integral computed as sum 

of all daily values minus their base 

level value. 
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Figure 5. shows a schematic representation of the HR-VPP product bundle and 

aids the understanding of the phenology parameters and their values: 

 

Figure 5. Schematic representation of the HR-VPP product bundle. Vegetation Phenology and Productivity 

parameters (VPPs) are: (a) start of season (date and PPI value), (f) amplitude, (g) small integrated value, 

(g+h) large integrated value. (Source: HR-VPP user manual) 

The dataset was part of a larger data acquisition process using the Copernicus 

WEkEO portal [35], acquiring data for the entire continental territory of Portugal. The 

country is covered by 17 mosaics, out of which only one – 29SND – was used for the 

writing of this thesis, with phenology data spanning over six years (from 2017 to 2022). 

Figures 6., 7., and 8. show the distribution of the dead tree datapoints for the years 

overlapping with the Sentinel 2 HR-VPP data: 
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Figure 6. Distribution of dead tree datapoints for the base year - 2017 
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Figure 7. Distribution of the dead tree datapoints for validation dataset #1 - 2018 
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Figure 8. Distribution of the dead tree datapoints for validation dataset #2 - 2019 

Living tree data was generated based on visual observations and manual 

digitalization of living trees using images from Google Earth Pro as a WMS layer in 
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Quantum GIS (QGIS). This dataset was used for testing our models trained and validated 

on the dead tree datasets obtained in situ. Other studies have used similar sources for 

model testing, such as Microsoft Bing satellite images, for visually identifying trees in 

similar agroforestry systems [14]. This was done based on a one tree per pixel basis, 

meaning that the point of reference for selecting the reference data was the pixel grid of 

the HR-VPP raster data. This grid was made in delineated areas, well known by people 

working on previous projects in Companhia das Lezírias, using the ‘Create Grid’ Vector 

Research tool in QGIS. The area was used based on previous knowledge of contributors 

and where it was possible to identify trees with a high accuracy. 

Distribution of these points can be seen in Figure 9. below, with indication to the 

year of the phenology parameters used: 
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Figure 9. Distribution of datapoints for test dataset generated using Google Earth Pro - 2022 
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We chose 2022 as the year used for the Google Earth Pro observations, because it 

was the closest in time to the present-day observations in those images. 

For data exploration, data processing, data analysis and visualization, various 

software products were used according to the task at hand. For partial data analysis and 

extraction, visualization and mapping, QGIS was used. For data extraction, data analysis, 

model training and predictions and data visualization the Python programming language 

was used with appropriate libraries such as GeoPandas, NumPy, Rasterio, seaborn, 

Matplotlib, scikit-learn among others. Table 4 shows the various software products and 

their applications: 

Table 4. Software used in the making of this thesis. 

Role Software 

Data cleaning QGIS 

Jupyter Notebooks 

Data analysis Python 

Jupyter Notebooks 

Visualization QGIS (for mapping) 

Python (for plotting results) 

Code development Visual Studio Code 

Python 

 

Jupyter Notebook was chosen as a tool for data exploration and data analysis 

because it offers a flexible and ideal way to manage the iterative nature of both processes. 

Later, the code was re-organized into multiple Python files in Visual Studio Code. 
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4.2. Workflow 

4.2.1. Data analysis 

To use the recorded tree mortality dataset in a meaningful way and to test the 

applicability of the PPI as we hypothesized, a classification problem [36] was solved, 

where dead trees were differentiated from everything else, based on a set of phenology 

variables as the feature set. The largest of the dead tree subset (year 2017) was used for 

training the classifier. Two other datasets (2018 and 2019) were used as validation 

datasets for the detection of dead trees based on the phenology traits. This allocation of 

the sub-datasets to different parts of the process was based on the number of records they 

contained. Since they only stored dead tree observations data and lacked any information 

on individual trees or environmental data, the logic was to use as many datapoints as 

possible for the model training. Due to the vast number of points – more than 13,000 

points for the training and validation datasets – visual selection of training and validation 

data based on tree size was not considered as an option. The dead tree dataset was divided 

into individual years, based on the date of collection, in the form of point shape files. 

Raster data, for all thirteen phenological variables, was extracted for each of the point 

locations using the Rasterio Python library and saved into yearly data frames using 

GeoPandas, which is built upon the pandas and NumPy libraries. ‘PROD_DIFF’ was 

introduced as an extra parameter as the difference between total productivity (‘TPROD’) 

and seasonal productivity (‘SPROD’) and can be considered the baseline PPI value for 

seasonal productivity (i.e. values pertaining to the area designated as ‘h’ in Figure 3.). 

After data extraction, values were not normalized. We made this decision for a better 

practical application of the raster data and the interpretation of the results. All seasonal 

dates pertaining to certain phenological events, such as starting day of the phenological 

season, day of maximum value in the season and the day of the end of the phenological 

season were formatted for all datasets. 0 values indicate the beginning of the year in 

question (for which the phenology parameters were extracted). Minus values indicate that 

the phenological season started before the start of the year in question.  

The number of records for each dataset after performing the data cleaning steps is 

summarized in Table 5.: 
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Table 5. Number of points after data cleaning 

Dataset No. Points 

2017 6377 

2018 3322 

2019 4219 

Google Earth Pro 498 

 

4.2.2. Selection and tuning of hyperparameters 

Before the application of a model on unseen data for any selected machine 

learning task, there is an important procedure where a special group of parameters, called 

hyperparameters are selected, tested, and tuned. Hyperparameters are not directly related 

to the data on which the model is trained, although they have a direct influence on 

accuracy of the chosen model and they specify the details of the learning process, such as 

the learning rate of the choice of the optimizer [37]. At first model training of One-Class 

SVMs might seem easy to perform and can be solved with numerous different 

approaches, but it is not self-explanatory even if there is previous knowledge regarding 

machine learning and the different steps that lead the eventual model training and later 

application (30). Because of this, hyperparameter selection and tuning is crucial since it 

affects the performance of the model. Another issue with hyperparameters is their co-

dependency, meaning that some parameters will simply not work with other parameters. 

Due to the lack of a concrete methodology, consensus systematic framework and 

experience, this part of the machine learning task can be rather ad hoc [37].  

Using 2017 as a base year (the training data for the classifier), the classification 

was performed using the other two years with overlapping data – 2018 and 2019 – as 

validation datasets. The data was first used to generate a set of models, with different 

hyperparameters, based on the predefined parameter matrix as part of the hyperparameter 

tuning. This parameter matrix was defined during the preliminary data analysis phase 

with the aid of the pertaining part of the scikit-learn documentation of the classifier [28]. 

A brief description of the hyperparameters used in this thesis can be found in Table 6.: 
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Table 6. Hyperparameters and their description (from the scikit-learn documentation) 

Hyperparameters    

Parameter  Description  

kernel  {‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’} or callable, 

default=’rbf’  

Specifies the kernel type to be used in the algorithm. If none is given, 

‘rbf’ will be used. If a callable is given it is used to precompute the kernel 

matrix.  

gamma  {‘scale’, ‘auto’} or float, default=’scale’  

Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’.  

  

- if gamma='scale' (default) is passed then it uses 1 / (n_features * X.var()) 

as value of gamma,  

- if ‘auto’, uses 1 / n_features  

- if float, must be non-negative.  

nu  float, default=0.5  

An upper bound on the fraction of training errors and a lower bound of 

the fraction of support vectors. Should be in the interval (0, 1]. By default, 

0.5 will be taken.  

 

Table 7. shows the initial parameter matrix used for the experimentation phase of 

the thesis: 

Table 7. Initial hyperparameters 

gamma  kernel  nu  

scale  linear  0.01  

auto  poly  0.25  

0.5  rbf  0.5  

2.5  sigmoid  0.75  
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5.0  precomputed  0.99  

 

Based on our experiences during manual experimentation and model testing we 

decided, for the sake of simplicity, to reduce the size of the original hyperparameter 

matrix. This reduced matrix is presented in the Chapter 4 as part of our results.  

In order to obtain the best set of hyperparameters we used the GridSearchCV class 

from the scikit-learn library [38]. The GridSearchCV class performs an exhaustive search 

over specified parameter values for an estimator and returns the best possible combination 

of hyperparameters for the model. This process of cross-validation helps evaluate how 

well the model generalizes to unseen data and it reduces the risk of overfitting to a single 

train-test split. In the case of this thesis, the data was split manually (to individual years), 

while in machine learning practice it is common to randomly split your data into training 

and testing sets using a designated function [39]. Despite having separate datasets for 

training, validation and testing and not using a split function we still used this method to 

search for hyperparameters, because we wanted to see which hyperparameters affected 

the model predictions the most for the different datasets. The hyperparameter search was 

also done for comparison, on the Google Earth Pro observations. We used these results 

as indications on what parameters could work for classification of the different datasets 

and what could be a common ground in terms of classification accuracy for both living 

and dead trees. This part of the process also helped reduce the range of values used for 

different hyperparameters. 

4.2.3. Feature selection 

After we selected multiple sets of hyperparameters, models were then evaluated 

on the validation datasets in the next step, where feature importance scores were ranked 

and saved using the SelectKBest class from the same scikit-learn library to see which 

features are the most important in the classification of dead trees and to see which features 

made a difference when distinguishing dead trees from the live ones. For each model, 

feature importance was evaluated. Two functions from the feature_selection module of 

the scikit-learn library was used to report the feature importance scores: ‘f_classif’ and 

‘mutual_info_classif’, both of which are used in classification tasks. The ‘f-classif’ 

function returns the ANOVA F-value while the ‘mutual_info_classif’ function returns the 
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mutual information (MI) between two random variables [40]. The F-value is the value 

used in the analysis of variance (ANOVA). It is calculated by dividing two mean squares. 

This calculation determines the ratio of explained variance to unexplained variance [41], 

which is a non-negative value, that measures the dependency between the variables. It is 

equal to zero if two random variables are independent, while higher values mean higher 

dependency. Because of the nature of the data analysis and to simplify our methodology, 

after thorough experimentation we decided to pair the phenology parameters in the form 

of sets (to avoid repetition). The pairs were made with the use of the ‘itertools’ python 

library using the ‘combinations’ class. These phenology parameter pairs were then used 

to subset the initial datasets and we used the 2017 data for these parameter pairs as training 

set, - in the fashion described earlier – 2018 and 2019 data for validation and on Google 

Earth Pro for testing. These pairs yielded the results that are presented in Chapter 4. 

4.2.4. Decision boundaries 

After conceiving the phenology parameter pairs in the manner described above, 

we used them with the selected hyperparameters to plot decision boundaries for each pair 

possible combination of phenology parameters and hyperparameters. These decision 

boundaries are technically the hyperplanes we described in the literature review section 

of the thesis. Classification algorithms separate the data based on these hyperplanes. We 

presented our findings in Chapter 4, where we further elaborated on them. 

To automate workflow and the output generation, a python script was written. The 

script was divided into three files, containing the functions, the settings and a main 

function that runs the actual analysis respectively.  

The visual summary of the workflow can be seen in Figure 10: 
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Figure 1. Summary of data analysis workflow 
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5. Results 

5.1. The importance of hyperparameter tuning 

The variety of hyperparameters to choose from, the range of their values, and the 

difficulty of selecting the appropriate phenology parameters made the process of 

hyperparameter tuning, feature selection and thus model selection and evaluation difficult 

and time consuming. The lack of exact, scientifically based method to tune 

hyperparameters also made this process rather experimental and heuristic [29]. Yet, it 

could not be avoided, since it affects model accuracy and applicability greatly. 

Hyperparameter selection affected the model predictions and the results regarding the 

decision boundaries (presented below) and classification accuracy and in the following 

section we elaborated on our findings when faced with this part of the machine learning 

task at hand, and we shared our experiences with different hyperparameters for our One-

Class SVM. 

The main difference between model accuracy between the two types of datasets 

was mainly caused by two hyperparameters: ‘kernel’ and ‘nu’. These parameters define 

the decision function of the classifier and the boundaries set for the fraction of the support 

machines respectively. The ‘nu’ parameter sets the threshold for how many of the training 

samples can be classified erroneously and how many of the datapoints can be used as 

support vectors. Support vectors are the data points that are closer to the hyperplane (i.e. 

the decision boundary) and help to determine its position and orientation. A higher ‘nu’ 

value allowed more trees to be misclassified, which in turn reduced model accuracy for 

the validation datasets (for the 2018 dataset, especially for the models chosen as final 

ones) but allowed more ‘freedom’ for outlier/novelty detection (i.e. classification of 

living trees). It the training and validation datasets themselves (i.e., the phenological data 

pertaining to the year the dead tree data was recorded) affected the accuracy of the 

classifier, despite using the same hyperparameters. Although hyperparameters are 

technically independent from the data (they influence the performance of the model), they 

affect the overall accuracy of the model used for the specific task on specific data. As a 

result, we saw, that different sets of hyperparameters yielded higher classification 

accuracy for different datasets. When using the entire dataset of 13 + 1 variables, the 
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models with the highest accuracy, according to the results of the grid search, were the 

ones using a ‘linear’ kernel and a low value of the ‘nu’ parameter (0.01). These models 

were discarded as not appropriate for application on unseen data for two reasons: we did 

not assume that a linear delineation of the data (whole or subset) was possible and the 

fact that a very low ‘nu’ value does not allow a lot of room for the algorithm to properly 

differentiate dead trees from outliers. Using such a low value for ‘nu’ allowed no 

misclassification based on the training dataset and everything was classified as dead by 

the algorithm. For similar reasons, a very high ‘nu’ (0.5 and above), did not yield 

meaningful results on unseen data. Because of this, different kernels were used instead of 

‘linear’, and more manual experimentation was done for a better approximation of the 

‘nu’ value.   

Model sensitivity to the kernel hyperparameter should not come as a surprise, 

since SVMs are very kernel dependent when making predictions [23]. When using all 

phenology parameters, the dead tree data was more responsive to ‘linear’ and ‘sigmoid’ 

or even ‘poly’ (polynomial) kernels and yielded better classification accuracy, while the 

living trees was more responsive to ‘sigmoid’ and ‘rbf’ (radial basis function) kernels 

after manual experimentation. This does not mean that the classifier did not perform well 

on the dead datasets with the latter two types of kernels, but that better results were 

obtained using the former two on the training and validation sets. The ‘sigmoid’ kernel, 

with the proper ‘nu’ values seemed to be a proper middle ground, but the nature of the 

decision boundary made it less applicable for result interpretation.  In finding the 

imperfect classifier (i.e. one with lower accuracy for an undifferentiated training and 

validation datasets) for the dead trees, precision on living trees was considered crucial, as 

it determines future applicability of the developed methodology. We assumed that the 

relationship between these phenology parameters is non-linear (the decision plane cannot 

be separated by a linear line). Dropping the ‘poly’ kernel had two reasons: (1) other 

kernels had higher accuracy when tested on the Google Earth Pro data, (2) since we did 

not know the degree of the data, experimenting with it was time consuming and 

computationally heavy. We found that the Google Earth Pro data responded better to 

kernels ‘rbf’ and ‘sigmoid’ – which also worked well for our training data according to 

GridSearchCV – and a higher value of the ‘nu’ parameter (<0.20). After removing ‘linear’ 

and ‘poly’ kernels, ‘rbf’ seemed to be a good candidate to produce meaningful results 

from the data, because of the nature of our datasets and the good preliminary results 
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obtained from manual experimentation. The ‘rbf’ kernel is used for data where prior 

knowledge on the data is not available and it can be used to capture complex relationships 

between the data [42] and it is the default parameter for the OCSVM classifier. 

Hyperparameter ‘gamma’ determines the influence the individual datapoints have 

on the decision boundary, defining the width or slope of the kernel function. When the 

value for gamma is low, the decision boundary's curve becomes very low, making the 

decision region broad. Conversely, when set for higher values, the curve of the decision 

boundary becomes high, which creates island of decision boundaries around the 

datapoints [26]. For the sake of simplicity, only two values were used ‘auto’ and ‘scale’, 

and although numerical values were used in the initial phase of the development of the 

code but were later removed. We found that in contrast to Probst et. al [37], who – along 

with the ‘kernel’ – found this parameter the most tuneable, the value of ‘gamma’ did not 

influence our results significantly, but a more rigorous approach should be devised to 

ascertain this. 

After manually experimenting with different parameter ranges, a subset of the 

original hyperparameters was created. This simplified matrix, seen in Table 8, only 

contained parameters that provided meaningful results for both types of datasets, using 

different pairs of phenology parameters: 

Table 8. Simplified hyperparameter matrix 

gamma  kernel  nu  

scale  rbf  0.15  

scale  rbf  0.16  

auto  sigmoid  0.19  

 

 

5.2. Notes on feature selection 

For the ease of interpretation and to map decision boundaries for presenting results 

and to retrieve continuous values from the classifiers, we settled for using every 
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phenological parameter in combinations of two and train new classifiers using only these 

combinations instead of the whole set of 13 + 1 variables. Experimenting with feature 

selection and reduction, hyperparameter search and tuning, our results gravitated towards 

a set of phenology parameter pairs with a set of model hyperparameters with acceptable 

prediction accuracy for all the datasets. It is important to note that for solely predicting 

dead trees, productivity parameters were considered more important by the functions used 

for feature importance scoring, than for example the onset of seasonal phenological 

events, although these parameters are inevitably interrelated with one another. After 

trying multiple approaches to subset features based on their importance, we decided to 

use all phenology parameters in the manner described in the workflow. The main reason 

behind this was that feature importance scores depended on the hyperparameters and 

dataset, so in the end we decided to use all features in the manner described in the 

workflow part of this thesis. 

5.3. Final models 

During the evaluation of the different models produced by the workflow presented 

in Chapter 2 and the final python script, only accuracy was used as a metric of model 

accuracy. This ratio was the number of correct classifications divided by the total number 

of datapoints. In our case this could be either 1, meaning dead tree or –1, meaning 

everything else. In our case –1 was the desired output for the presumed live point dataset 

described later in this section. The choice was made for this evaluation because the 

number of correct predictions (for the ‘dead’ and ‘other’ classes) was already given, so 

we found that there was no need for further elaboration. Accuracy measures the frequency 

of how often the model correctly predicts the outcome. It is calculated by dividing the 

number of correct predictions and the total number of predictions [43]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐴𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

I the end we found that the classifier was able to make classifications with decent 

accuracies despite the undifferentiated nature of the dead tree datasets. 
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Table 9. shows our finding that the phenology parameters ‘SOSD’ – start of season 

day and ‘MAXD’ – day of maximum for the PPI - were the best for the model to determine 

the difference between dead trees and outliers with the highest accuracy: 

Table 9. Results - SOSD - MAXD 

SOSD - MAXD ACCURACY (%) 

gamma  kernel  nu  2018  2019  Google Earth Pro  

scale  rbf  0.15  77.00  91.32  90.16  

scale  rbf  0.16  76.22  90,66  91.97  

 

Another pair of phenology parameters with the same hyperparameter set was the 

‘EOSD’ – end of season day and ‘SOSD’, producing slightly lower accuracies for all 

datasets, summarized in Table 12.: 

Table 10. Results - SOSD - EOSD 

SOSD - EOSD ACCURACY (%) 

gamma  kernel  nu  2018  2019  Google Earth Pro  

scale  rbf  0.15  74.95  88.01  86.14  

scale  rbf  0.16  73.90  87.39  87.15  

 

A third combination of phenology parameters with the same hyperparameter set 

was found with ‘PROD_DIFF’ as the second phenology parameter. As stated previously, 

‘PROD_DIFF’ is the difference of total productivity (‘TPROD’) and seasonal 

productivity (‘SPROD’). The accuracies for these models can be found in Table 13.: 

Table 1. Results - SOSD -PROD_DIFF 

SOSD – PROD_DIFF ACCURACY (%) 

gamma  kernel  nu  2018  2019  Google Earth Pro  

scale  rbf  0.15  82.30  91.30 81.93 

scale  rbf  0.16  81.22  90.02 82.93 
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The accuracy in the case of 2018 and 2019 signified how many of the trees were 

considered dead by the pertaining model and for the Google Earth Pro data, it showed the 

percentage of the trees classified as outliers (i.e. not dead). As seen in the tables above, a 

slight change in the ‘nu’ parameter affected accuracy of the model predictions, and a 

slightly higher value worked better for the Google Earth Pro dataset in terms of prediction 

accuracy. For the size of each dataset please see Table 4.  

In the following section, the results of the model validation (for 2018 and 2019) 

and testing (GEP) are presented in the form of decision boundaries. The yellow areas 

defined the decision boundaries for the two-parameter subset of the original dataset. 

Yellow circles represented the datapoints that were classified as dead trees, while blue 

ones are the outliers/novelties. The representation of the decision boundary in such 

manner provided a better interpretation and further application of the results. As stated 

previously, the ‘sigmoid’ kernel provided decent accuracies for some of the datasets, but 

we excluded them from the results of this thesis due to inconsistency (i.e. not showing up 

as best results for all datasets) and the difficulty in interpreting the decision boundaries.  

In Figures 13-18 the decision boundaries between the phenology parameters 

‘MAXD’ and ‘SOSD’ when used as feature set for the models above are presented. See 

Appendix 1. for the rest of the decision boundaries for the other phenology parameter 

combinations. As stated in the methodology, date values have been reformatted from the 

original raster values and ‘0’ represents the start of the year in question: 
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Figure 2. Decision boundary for One-Class SVM for feature set of ['SOSD', 'MAXD'], using 

hyperparameters: {'gamma':'scale', 'kernel':'rbf', 'nu':0.15} on validation dataset #1 (2018). ‘1’: dead tree 

prediction, ‘-1’: outlier. Accuracy: 77.00 % 

Figures 11. and 12. show the decision boundaries between dead trees and outliers 

for the phenology parameters start of season day and the maximum day of the PPI value 

for 2018 for 3322 datapoints. The classifier had the following hyperparameters: 

{‘gamma’:’scale’, ‘kernel’:’rbf’, ‘nu’:0.15} and {‘gamma’:’scale’, ‘kernel’:’rbf’, 

‘nu’:0.16} respectively. Out of 3322 datapoints, 2558 and 2532 were classified correctly, 

which gave the models 77.00 % and 76.21 % accuracies. The 2018 dataset lagged behind 

in accuracies when compared to the rest of the data used for validation or testing. This 

could be due to various reasons, on which we elaborated on in the Discussion.  
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Figure 3. Decision boundary for One-Class SVM for feature set of ['SOSD', 'MAXD'], using 

hyperparameters: {'gamma':'scale', 'kernel':'rbf', 'nu':0.16} on validation dataset #1 (2018). ‘1’: dead tree 

prediction, ‘-1’: outlier. Accuracy: 76.21 % 



36 

 

Figure 4. Decision boundary for One-Class SVM for feature set of ['SOSD', 'MAXD'], using 

hyperparameters: {'gamma':'scale', 'kernel':'rbf', 'nu':0.15} on validation dataset #2 (2019). ‘1’: dead tree 

prediction, ‘-1’: outlier. Accuracy: 91.32 % 

Figures 13. and 14. show the decision boundaries between dead trees and outliers 

for the phenology parameters start of season day and the maximum day of the PPI value 

for 2019 for 4219 dead tree observations. The classifier had the following 

hyperparameters: {‘gamma’:’scale’, ‘kernel’:’rbf’, ‘nu’:0.15} and {‘gamma’:’scale’, 

‘kernel’:’rbf’, ‘nu’:0.16} respectively. From the 4219 datapoints, 3853 and 3825 were 

classified correctly, which gave the models 91.32 % and 90.66 % accuracies respectively.  
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Figure 5. Decision boundary for One-Class SVM for feature set of ['SOSD', 'MAXD'], using 

hyperparameters: {'gamma':'scale', 'kernel':'rbf', 'nu':0.16} on validation dataset #2 (2019). ‘1’: dead tree 

prediction, ‘-1’: outlier. Accuracy: 90.66 % 

 

Figure 6. Decision boundary for One-Class SVM for feature set of ['SOSD', 'MAXD'], using 

hyperparameters: {'gamma':'scale', 'kernel':'rbf', 'nu':0.15} on test dataset (GEP - 2022). ‘1’: dead tree 

prediction, ‘-1’: outlier. Accuracy: 90.16 % 



38 

Figures 15. and 16. show the decision boundaries between dead trees and outliers 

for the phenology parameters start of season day and the maximum day of the PPI value 

for the GEP data for 2022 for 498 observations. The classifier had the following 

hyperparameters: {‘gamma’:’scale’, ‘kernel’:’rbf’, ‘nu’:0.15} and {‘gamma’:’scale’, 

‘kernel’:’rbf’, ‘nu’:0.16} respectively. Out of 498 observations, 449 and 458 were 

classified correctly (as outliers or not dead), which gave the models 90.16 % and 91.97 

% classification accuracies respectively. 

 

 

Figure 7. Decision boundary for One-Class SVM for feature set of ['SOSD', 'MAXD'], using 

hyperparameters: {'gamma':'scale', 'kernel':'rbf', 'nu':0.16} on test dataset (GEP - 2022). ‘1’: dead tree 

prediction, ‘-1’: outlier. Accuracy: 91.97 % 

We found it interesting how the observations accumulated in particular areas of 

the decision boundary for the unseen data (GEP) compared to the datasets used for 

validation of the models. In our opinion, these decision boundaries could be further used 

for example in raster reclassification by using range values obtained from these decision 

boundary plots pertaining to these areas. After plotting the decision boundaries their 

values could be saved into variables which we found could be useful in output in potential 

future application of our approach. This could mean using these boundaries in mapping 
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potential areas that are affected by oak decline, making the PPI useful in mapping and 

monitoring oak dieback in the future for agroforestry system such as the montado.  

6. Discussion 

In this thesis we hypothesized that the PPI can be used as an indicator to map cork 

oak decline using data from the HR-VPP remote sensing product suite and a OCSVM 

classifier. We found that the OCSVM classifier of the scikit-learn library was able to 

make classifications with significant predictions when used with different ‘kernel’ and 

‘nu’ hyperparameter values. SVMs are innately kernel dependent, but not all the available 

ones worked well when we tried to differentiate dead trees from living ones with a 

significant accuracy. The results we presented were for the default kernel of the classifier 

(‘rbf’). Other kernels such as ‘sigmoid’ showed promising results, but we excluded it 

from the results, because the results with these models were not as consistent as the ones 

presented for ‘rbf’. Nonetheless, we suggest further experimentation using the ‘sigmoid’ 

kernel as we found it to have good potential when using it for differentiating living 

evergreen oaks from dead ones. 

 Our results showed that the most important phenology features to determine the 

difference between dead and living cork oak trees, when using the dead tree observations 

data are related to the start and the end of season dates. Besides these parameters, the date 

of the PPI maximum day showed useful results (in conjunction with the start of the season 

date). A third pair of parameters included the difference between total and seasonal 

productivity which we named ‘PROD_DIFF’ and represents the baseline signal for the 

PPI with the starting day of the phenology season. We presented two sets of 

hyperparameters that worked well on unseen data. Using these models, we plotted the 

decision boundaries of these phenology parameter pairs. We suggested that using these 

decision boundaries, areas that are potentially affected by oak decline could me mapped 

using range values based on the decision boundaries. The decision boundaries, combined 

with other environmental variables, such as climatic data, could be further improved and 

used for creating maps of areas that are potentially affected by oak dieback. Based on 

these findings we suggested that the PPI, a novel vegetation index could be used to map 

tree mortality in our study area and potentially can be used in similar areas where cork 

oak is also the dominant tree species. 
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Although, the OCSVM classifier was able to make accurate predictions on tree 

mortality, but the value of the classification accuracy had slight changes between years. 

Further studies should include tree mortality data and its relationship with tree size and 

PPI pixel size to understand if there is a relationship between them and how that can affect 

the yearly results of productivity. The makeup of each yearly dataset could vary based on 

the size of the trees, which might cause a difference in classification accuracy, as smaller 

trees cannot be accounted for in the spatial resolution of the HR-VPP product suite. We 

suggest that besides tree size, climatic differences between individual years might have 

also affected the results. The following figure shows the years (datasets) in a coordinate 

system of deviation from average annual temperature and precipitation [44]: 

 

Figure 8. Climatic classification of years in Portugal based on the deviation from annual average 

precipitation and temperature (Source: IPMA [44]) 

Figure 17. suggests that three out of four of our datasets can be considered drier 

and warmer than the average (middle of the figure), while the 2018 dataset is closer to 

the average. These differences found in accuracy related to the 2018 dataset could be 

justified by these climatic differences. 

Defining the starting and ending points of a growing season for the HR-VPP 

product suite was based on the moment in time when the seasonal amplitude exceeds a 

user-defined value. These threshold values, according to Tian et al. [23], are defined as 

25 % and 15 % for start of season and for the end of the vegetation season respectively. 
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We found that the ‘SOSD’ value is one of the best phenology parameters in the 

differentiation of dead trees from living ones. In our view, if the ‘AMPL’ value of a pixel 

exceeds the thresholds discussed above, and the pixel contains a tree with a right size, we 

can use this information to speculate, that the tree is alive, and it is producing biomass. 

Of course, this works only for a certain tree size with a certain size of canopy. Further 

work would need to be done to have a better conclusion, but our findings enforce the 

importance of the choosing dates (datasets) with the same climatic conditions to have 

comparable results.  

The lack of living tree observations or any other type of data further limited the 

usability and application of the recorded data, but our models yielded useful results 

despite this limitation. Because the points for the Google Earth Pro data were identified 

using a grid based on the resolution of the rasters, each datapoints represents a tree that 

fits a 10-meter by 10-meter pixel. On the other hand, the training and validation sets, had 

a more random spatial distribution. Another limitation that can be attributed to the spatial 

resolution of the HR-VPP product is the model’s inability to work with smaller trees and 

woodlands/forests with lower canopy closure.  

As previously discussed, SVMs depend highly on the set of hyperparameters used 

to train the model, especially on the ‘kernel’ and ‘nu’ parameters. This was apparent 

during the parameter tuning process, and the difficulty faced when trying to obtain 

meaningful results, applicable for all types of data used in the thesis. 

7. Conclusions 

In our work we hypothesized that the Plant Phenology Index (PPI) can be used as 

an indicator to map cork oak decline using data from the Copernicus Sentinel 2 High 

Resolution Vegetation Phenology and Productivity remote sensing product suite and a 

One-Class Support Vector Machine classifier. We concluded that the classifier handled 

the classification task of dead and living trees with applicable accuracy, and we presented 

different hyperparameter and phenology parameter pair combinations as our results. We 

concluded that based on these results, the PPI can be used as an indicator of annual 

phenological changes and has a potential as an indicator to cork oak dieback.  
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In our view, the results presented in this thesis could be used in future research 

and monitoring efforts. The models with the given phenology feature combinations could 

yield reasonable classification results when using the HR-VPP product suite for 

classification of evergreen oak dieback based on their remote sensed phenology 

parameters. Using these results and data, the script developed can be a useful tool in 

decision boundary delimitation for data for both living and dead trees. The script, with 

further improvements, can be used to automate the whole process from data acquisition 

– through the WEkEO portal’s REST API – to hyperparameter search, feature importance 

evaluation, decision boundary delineation and producing potential mapping outputs in the 

form of shapefiles or raster reclassification based on decision boundary values at the very 

end of the pipeline. The decision boundary coordinates could be saved into variables and 

returned for further calculations, if necessary, for example in the raster classification 

mentioned above. Such practical application would be useful, especially in the Iberian 

Peninsula, where evergreen oak has been affected by dieback for decades and it is 

expected to worsen due to climate change. 

Besides our results, we also presented the limitations of our work and included 

our comments and suggestions on how to improve and tackle such limitations in the future 

when using these results. Further research is suggested on the usage of different kernel 

types for classification tasks using the PPI. We also suggested taking climatic variables 

into consideration when using the PPI in such manner as in this thesis. 
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9. Appendices 

9.1. Appendix 1. - Decision Boundaries 

The following plots show the decision boundaries between the phenology 

parameters ‘SOSD’ and ‘EOSD’ when used as feature set for the models deemed the best: 

 

Figure A1. 1. Decision boundary for One-Class SVM for feature set of ['SOSD', 'EOSD'], using 

hyperparameters: {'gamma':'scale', 'kernel':'rbf', 'nu':0.15} on validation dataset #1 (2018). ‘1’: dead tree 

prediction, ‘-1’: outlier. Accuracy: 74.95 % 
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Figure A1. 2. Decision boundary for One-Class SVM for feature set of ['SOSD', 'EOSD'], using 

hyperparameters: {'gamma':'scale', 'kernel':'rbf', 'nu':0.16} on validation dataset #1 (2018). ‘1’: dead tree 

prediction, ‘-1’: outlier. Accuracy: 73.90 % 

 

Figure A1. 3. Decision boundary for One-Class SVM for feature set of ['SOSD', 'EOSD'], using 

hyperparameters: {'gamma':'scale', 'kernel':'rbf', 'nu':0.15} on validation dataset #2 (2019). ‘1’: dead tree 

prediction, ‘-1’: outlier. Accuracy: 87.82 % 
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Figure A1. 4. Decision boundary for One-Class SVM for feature set of ['SOSD', 'EOSD'], using 

hyperparameters: {'gamma':'scale', 'kernel':'rbf', 'nu':0.16} on validation dataset #2 (2019). ‘1’: dead tree 

prediction, ‘-1’: outlier. Accuracy: 87.20 % 

 

Figure A1. 5. Decision boundary for One-Class SVM for feature set of ['SOSD', 'EOSD'], using 

hyperparameters: {'gamma':'scale', 'kernel':'rbf', 'nu':0.15} on test dataset (GEP - 2022). ‘1’: dead tree 

prediction, ‘-1’: outlier. Accuracy: 86.14 % 
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Figure A1. 6. Decision boundary for One-Class SVM for feature set of ['SOSD', 'EOSD'], using 

hyperparameters: {'gamma':'scale', 'kernel':'rbf', 'nu':0.16} on test dataset (GEP - 2022). ‘1’: dead tree 

prediction, ‘-1’: outlier. Accuracy: 87.14 % 

The following plots show the decision boundaries between the phenology 

parameters ‘SOSD’ and ‘PROD_DIFF’ when used as feature set for the models deemed 

the best: 
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Figure A1. 7. Decision boundary for One-Class SVM for feature set of ['SOSD', 'PROD_DIFF'], using 

hyperparameters: {'gamma':'scale', 'kernel':'rbf', 'nu':0.15} on validation dataset #1 (2018). Accuracy: ‘1’: 

dead tree prediction, ‘-1’: outlier. 82.30 % 

 

Figure A1. 8. Decision boundary for One-Class SVM for feature set of ['SOSD', 'PROD_DIFF'], using 

hyperparameters: {'gamma':'scale', 'kernel':'rbf', 'nu':0.16} on validation dataset #1 (2018). ‘1’: dead tree 

prediction, ‘-1’: outlier. Accuracy: 81.22 % 

 



VI 

 

Figure A1. 9. Decision boundary for One-Class SVM for feature set of ['SOSD', 'PROD_DIFF'], using 

hyperparameters: {'gamma':'scale', 'kernel':'rbf', 'nu':0.15} on validation dataset #2 (2019). ‘1’: dead tree 

prediction, ‘-1’: outlier. Accuracy: 91.30 % 

 

Figure A1. 10. Decision boundary for One-Class SVM for feature set of ['SOSD', 'PROD_DIFF'], using 

hyperparameters: {'gamma':'scale', 'kernel':'rbf', 'nu':0.16} on validation dataset #2 (2019). ‘1’: dead tree 

prediction, ‘-1’: outlier. Accuracy: 90.02 % 
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Figure A1. 11. Decision boundary for One-Class SVM for feature set of ['SOSD', 'PROD_DIFF'], using 

hyperparameters: {'gamma':'scale', 'kernel':'rbf', 'nu':0.15} on test dataset (GEP - 2022). ‘1’: dead tree 

prediction, ‘-1’: outlier. Accuracy: 81.93 % 

 

 

Figure A1. 12. Decision boundary for One-Class SVM for feature set of ['SOSD', 'PROD_DIFF'], using 

hyperparameters: {'gamma':'scale', 'kernel':'rbf', 'nu':0.16} on test dataset (GEP - 2022). ‘1’: dead tree 

prediction, ‘-1’: outlier. Accuracy: 82.93 % 

 


