
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF CIVIL ENGINEERING
FAKULTA STAVEBNÍ

INSTITUTE OF STRUCTURAL MECHANICS
ÚSTAV STAVEBNÍ MECHANIKY

THE EXPLOITATION OF PARALLELIZATION TO
NUMERICAL SOLUTIONS REGARDING PROBLEMS IN
NONLINEAR DYNAMICS
VYUŽITÍ PARALELIZACE PŘI NUMERICKÉM ŘEŠENÍ ÚLOH NELINEÁRNÍ DYNAMIKY

DOCTORAL THESIS
DIZERTAČNÍ PRÁCE

AUTHOR Ing. Václav Rek
AUTOR PRÁCE

SUPERVISOR doc. Ing. Ivan Němec, CSc.
VEDOUCÍ PRÁCE

BRNO 2018

Abstract
The main aim of this thesis is the exploration of the potential use of the parallelism of
numerical computations in the field of nonlinear dynamics. In the last decade the dra-
matic onset of multicore and multi-processor systems in combination with the possibilities
which now provide modern computer networks has risen. The complexity and size of the
investigated models are constantly increasing due to the high computational complexity of
computational tasks in dynamics and statics of structures, mainly because of the nonlinear
character of the solved models. Any possibility to speed up such calculation procedures
is more than desirable. This is a relatively new branch of science, therefore specific al-
gorithms and parallel implementation are still in the stage of research and development
which is attributed to the latest advances in computer hardware, which is growing rapidly.
More questions are raised on how best to utilize the available computing power. The pro-
posed parallel model is based on the explicit form of the finite element method, which
naturaly provides the possibility of efficient parallelization. The possibilities of multicore
processors, as well as parallel hybrid model combining both the possibilities of multicore
processors, and the form of the parallelism on a computer network are investigated. The
designed approaches are then examined in addressing of the numerical analysis regarding
contact/impact phenomena of shell structures.

Abstrakt
Hlavním cílem této práce je prozkoumání možností využití paralelizace v numerických
výpočtech nelineární dynamiky. V poslední dekádě došlo k dramatickému nástupu více-
jádrových a výceprocesorových systému v kombinaci s možnostmi, které nyní poskytují
moderní počítačové sítě. Komplexnost a velikost řešených modelů se neustále zvyšuje
a díky vysoké výpočetní náročnosti úloh dynamiky a statiky konstrukcí, a to především
kvůli jejich často nelineárnímu charakteru, je jakákoliv možnost urychlení výpočetních
procedur více než žádoucí. Jelikož se jedná o relativně nové odvětví, řada algoritmů a kon-
krétních paralelních implementací je stále ve stádiu vývoje a výzkumu, a to i proto, že
pokroky v oblasti počítačového hardwaru rapidně vzrůstají a s tím vznikají další otáz-
ky, jak nejlépe využít dostupný výpočetní výkon. Navržený paralelní model je založený
na explicitní formě metodě konečných prvků, která ze své podstaty poskytuje možnost
efektivní paralelizace. Zkoumány jsou pak možnosti využití vícejádrovch procesorů, ale
i hybridního paralelního modelu kombinujícího možnosti vícejádrových procesorů a pa-
ralelní formy na počítačové síti. Navržené přístupy jsou pak testovány při numerickém
řešení kontaktní/impaktní úlohy skořepinových konstrukcí.

Keywords
FEM, Explicit Form of FEM, FDM, Dynamics of Structures, Parallel Computing, GPGPU,
NVIDIA CUDA, Computer Network, TCP/IP, .NET, C/C++, C#

Klíčová slova
MKP, explicitní forma MKP, MKD, dynamika konstrukcí, paralelní výpočty, GPGPU,
NVIDIA CUDA, počítačové sítě, TCP/IP, .NET, C/C++, C#

REK, Václav. The Exploitation of Parallelization to Numerical Solutions Regarding Prob-
lems in Nonlinear Dynamics. Brno, 2018. 223 p. Doctoral thesis. Brno University of
Technology. Faculty of Civil Engineering. Supervisor Ivan NĚMEC.

I declare that I have written my doctoral thesis on the theme of ”The Exploitation of
Parallelization to Numerical Solutions Regarding Problems in Nonlinear Dynamics” inde-
pendently, under the guidance of the supervisor and using the technical literature and
other sources of information which are all quoted in the thesis.

Brno .
(author’s signature)

First of all, I would like to express my gratitude to my dissertation thesis supervisor,
Assoc. Prof. Ivan Němec. He has been a constant source of encouragement and insight
during my research and helped me with numerous problems and professional advance-
ments.
It is an honor for me that I could become a part of the famous Brno school of the fi-
nite element method, whose founders are great persons, headed by Prof. Vladimír Kolář,
Prof. Jiří Kratochvíl, Prof. Miloš Zlámal, Prof. Alexander Ženíšek and others.
I would also like to acknowledge academician Prof. Jiří Spurný from the Faculty of Math-
ematics and Physics of the Charles University and Prof. Jiří Vala from the Faculty of
Civil Engineering of the Brno University of Technology for their valuable advice on the
theory of nonlinear functional analysis, finite element method and also on related topics
of mathematical physics. I would also like to acknowledge software architects Mgr. Ján
Naď and to my colleague Ing. Martin Neborák for their valuable advice in the field of IT
technologies for the composition of enterprise network systems, GPGPU technology and
theoretical computer science, to my friend Dr. Pavel Gruber for his valuable advice in the
field of mechanics of materials and sometimes endless discussions on general issues of the
mechanics.
I would also like to express my gratitude to CADTeam s.r.o. company, especially to its
owner, theoretical physicist Dr. Petr Lorenc for providing his private local area computer
network for the testing purposes of the of hybrid-parallel FEM solver, and also to my
colleague, system engineer Josef Dvořák for his help related to the computer network
configuration.
This work would never have originated without the support of my beloved family, notably
the support of my mother Ivana, my wife Kateřina and my daughter Leontýnka, and also
without the support of all my dear friends.

Ing. Václav Rek

Brno University of Technology
Faculty of Civil Engineering

Institute of Structural Mechanics

The Exploitation of Parallelization to Numerical Solutions
Regarding Problems in Nonlinear Dynamics

by

Václav Rek

A doctoral thesis submitted to
the Faculty of Civil Engineering, Brno University of Technology,

in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

Doctoral degree study programme: Structures and Traffic Constructions

Brno, July 2018

Supervisor:
Ivan Němec
Institute of Structural Mechanics
Faculty of Civil Engineering
Brno University of Technology
Veveří 331/95
602 00 Brno
Czech Republic

Copyright c© 2018 Václav Rek

ii

Dedication

With an honor to the memory of Professor Vladimír Kolář for inspiring my curiosity.

iii

Contents

Introduction 1

Aims of the Thesis 3

1 State of the Art 5
1.1 Brief History Review of Dynamics . 5
1.2 Brief History Review of Computer Science 11

1.2.1 Scientific Computing in Computational Mechanics 16
1.2.2 Multiprocessor and Multicore Technologies in Scientific Programming 19

1.3 Summary of Chapter . 23

2 Dynamics of Structures in the Language of Continuum Mechanics 25
2.1 Continuum Kinematics . 26
2.2 Stress Measure . 31
2.3 Governing Equations of Structural Dynamics 32
2.4 Constitutive Equations . 35

2.4.1 Generalized Standard Materials . 35
2.4.2 Thermodynamics of (Hyper-) Elastic Materials 36
2.4.3 Simplified Saint Venant–Kirchhoff Material Model 38

2.5 Nonlinear Boundary Conditions . 40
2.6 Summary of Chapter . 44

3 Mathematical Modeling 45
3.1 Brief Introduction to Mathematical Theory of Variational Calculus 46
3.2 Variational Formulation of an Inertial Problem 49
3.3 The Finite Element Method . 52
3.4 Numerical Threatment of Solution to Problems in Structural Dynamics . . 54

3.4.1 Numerical Solution to a Set of Semidiscrete Nonlinear Orinary Dif-
ferential Equations of the Second Order 55

iv

Contents

3.4.2 A C0 Triangular Shell Finite Element with Corotational Coordinates 57
3.4.3 Numerics of Applied Contact Conditions 63

3.5 The Explicit Time Integration Algorithm 65
3.6 Numerical Stability . 66
3.7 Summary of Chapter . 70

4 Searching in the Euclidean Space 71
4.1 Nearest Neighbor Searching . 72
4.2 Range Searching in the d-dimensional Space Using the kd-tree Data Structure 74
4.3 Summary of Chapter . 79

5 Analysis of the Macro Entity Interaction Multigraph 81
5.1 The Graph Theory . 82
5.2 The Data Distribution Algorithm . 86
5.3 Summary of Chapter . 90

6 Massive Parallel Computing 91
6.1 Theoretical Performance Analysis . 92
6.2 Distributed and Cloud Computing . 93

6.2.1 Utilization of CPU Cores . 95
6.2.2 Network Based Parellel Computing 98

6.3 Introduction of the Hybrid Parallel Testing Solver FEXP 100
6.3.1 Applied Software Architecture . 101
6.3.2 The Parallel Hybrid Model . 101

6.4 Description of the FEXP Parts . 103
6.4.1 Preprocessing . 106
6.4.2 Preprocessing-Structure Model Input Data 107
6.4.3 Preprocessing-Solver Setting Input Data 114
6.4.4 Finite Element Model Assembly . 119
6.4.5 FEXP Computational Parts . 128
6.4.6 Post Procesing-Output Data . 139
6.4.7 FEXP Solver Manager . 147
6.4.8 Client-Server based Network Distributed Computation 158

6.5 Summary of Chapter . 188

7 Results of Simulation Test 189
7.1 Summary of Chapter . 195

8 Conclusions 197
8.1 Contributions of the Doctoral Thesis . 200
8.2 Future Work . 201

List of Abbreviations 203

v

Contents

Bibliography 207

List of Tables 217

List of Figures 219

Attachments 223

vi

Introduction

Thanks to rapid advances during the last decade in computer technology, in the field of
multicore and multiprocessor technology, a lot of attention has been devoted to the parallel
processing of data in many scientific and industrial sectors. This is in great contrast to
previous decades when an increase in computing power, especially in personal computers,
was achieved by increasing the clock speed of processors and has resulted in increase in
energy consumption and thus energy inefficiency. This type of technological evolution
has its limitations compared to multi-processors and multi-core computer architectures
respectively. Multi-processor platforms are the oldest way how to distribute time intensive
computations.

A technology which is completely separate from the previously mentioned technologies is
the technology of quantum computers which promises to solve problems that are intractable
on digital computers.

Now it is quite common to use a CPU (Central Processing Unit) for the parallel run
of computational time-consuming tasks in synchronous and asynchronous order. Paral-
lel programming is especially supported by the software libraries OpenMP (Open Multi-
Processing, the oldest multi-platform shared memory multiprocessing programming based
on compiler’s special directives, see https://msdn.microsoft.com/en-us//library/tt
15eb9t.aspx),
MPI (Message Passing Interface, developed and maintained by a consortium of academic,
research, and industry partners, see http://www.mpi-forum.org/, [36]), API (Application
Programming Interface) of UNIX-like operating systems (POSIX - Portable Operating
System Interface, see http://standards.ieee.org/develop/wg/POSIX.html), Microsoft
Windows (Windows API, see https://msdn.microsoft.com/en-us/library/windows/d
esktop/ff818516(v=vs.85).aspx, [42]) operating systems or the other OS. Nowadays it
is also possible to use native threads in C++ standard libraries (since its version 11, see
https://isocpp.org/wiki/faq/cpp11#cpp11-what). The aforementioned technlogies are
focused mainly on usage of C and C++ programming language. In some form they are
also accessible even for the historically most widely used scientific programming language
Fortran (see http://www.tutorialspoint.com/fortran/). Especially this programming

1

https://msdn.microsoft.com/en-us//library/tt15eb9t.aspx
https://msdn.microsoft.com/en-us//library/tt15eb9t.aspx
http://www.mpi-forum.org/
http://standards.ieee.org/develop/wg/POSIX.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx
https://isocpp.org/wiki/faq/cpp11#cpp11-what
http://www.tutorialspoint.com/fortran/

Contents

language is in the interest of analyses in connection with the implementation of new tech-
nologies due to a number of scientific code, occurring in analytical programs, especially in
the commercial sector.

Many other compiled or interpreted programming languages just like C# (see https:
//msdn.microsoft.com/en-us/library/618ayhy6.aspx), Java (see https://www.java.c
om/en/about/), Python (see https://www.python.org/) or Matlab
(see http://www.mathworks.com/products/matlab/) etc. contain libraries which support
in some form the parallel run of computing tasks. These libraries, especially MPI, are very
well known to interested researchers for the parallel run of a variety of computations in
computational mechanics, particularly for the domain decomposition method.

Since the year 2007, when the CUDA (Compute Unified Device Architecture, see
http://www.nvidia.com/object/cuda_home_new.html) was introduced by NVIDIA com-
pany, it has led to significant increases in the possibilities for the utilization of high-
performance multi-core graphical chips not only for computer visualization purposes for
2D and 3D computer graphics. CUDA and related technologies like OpenCL (Open Com-
puting Language, free standard for cross-platform, parallel programming of modern pro-
cessors, see https://www.khronos.org/opencl/, [33]) and Microsoft DirectCompute (sup-
ports general-purpose computing on graphics processing units on Microsoft’s operating
systems since Windows Vista OS, see https://channel9.msdn.com/Tags/directcomput
e-lecture-series) are currently being investigated by many researchers. Their applic-
ations occur in research involved mainly in information technologies, in algorithms for
artificial intelligence (diagnosis and synthesis of voice, image recognition, etc.).

Numerical methods which were used in the past due to their inefficiency at the mere
periphery of scientific interest, due to the current technological advances have become more
attractive. This involves mainly explicit numerical methods used in computational mech-
anics. Especially it concerns the explicit method used in dynamics, statics of structures
and fluid dynamics respectively.

Explicit algoritms are highly suitable for a solution of short time highly non-linear
computations mainly for numerical simulation of the processes of forming casts or the
simulation of crash tests in the automotive and aviation industry or for shape finding
of thin membranes in civil engineering etc. This method facilitates the consideration of
a variety of nonlinearities in an easy and explicit manner. Based on the core of explicit
dynamic numerical methods is also the dynamic relaxation numerical method which is used
for static numerical analysis of civil and mechanical structures. The conditional stability
character of explicit methods leads, in some cases, to the necessity to use an exceptionaly
small integration step. As a consequence, explicit methods are time consuming. The
availability of a huge number of parallel threads directly implemented in hardware enabled
their effective usage (see [104]).

2

https://msdn.microsoft.com/en-us/library/618ayhy6.aspx
https://msdn.microsoft.com/en-us/library/618ayhy6.aspx
https://www.java.com/en/about/
https://www.java.com/en/about/
https://www.python.org/
http://www.mathworks.com/products/matlab/
http://www.nvidia.com/object/cuda_home_new.html
https://www.khronos.org/opencl/
https://channel9.msdn.com/Tags/directcompute-lecture-series
https://channel9.msdn.com/Tags/directcompute-lecture-series

Aims of the Thesis

The view is focused on both the various types of hardware and computer networks, resect-
ively. Today’s development tools then enable their effective combination and usage. This
concerns primarily to the parallelization on graphic processors due to the GPGPU techno-
logy and multicore CPUs. Computer networks then allow another level of parallelization
of already parallel models, which are applied on the local machine. This is particularly
relevant to the issue of so-called the Big Data.

The field of challenging numerical computations of a crash test simulations in the
automotive and aerospace industries seems to be a relevant application area. The highly
geometrically non-linear behavior of the shell structures of car and aircraft bodies in the
respective dynamic processes requires the most effective way of dealing, and parallelism
here is more than desirable.

The rapid availability of results from numerical simulations allows more efficient design
of the relevant constructions. In the case of transport constructions it is primarily for the
purpose of simulation to estimate the indices of impact severity under the conditions of
EN 1317 and also other than those. European Norm EN 1317 defines common testing and
certification procedures for a road restraint systems. Thus the aims of the thesis can be
summarized into two points, as follows:

(i) The main benefit should be to explore the possibilities of computations of parallel-
ism for the use in computations of statics and dynamics of structures within the
framework of an explicit numerical methods applied in scope of the Finite Element
Analysis (FEA). Based on an analysis of the current hardware and software oppor-
tunities, design a parallel approach to enable their efficient utilization.

(ii) Perform numerical simulations of nonlinear dynamics using the explicit form of FEM
for appropriate structures with the help of designed software solution.

3

Chapter 1
State of the Art

This section briefly deals with the history and advances of science in the field of dynamics,
as well as the field of scientific computing.

In the field of dynamics, it deals with its origins dating back to Ancient Greece, up to the
modern approaches for solving problems of continuum and quantum mechanics. Considered
to be a much younger field of science, computer science on began its growth in recent
decades. In this conjunction important persons and inventions behind such developments,
especially in the field of computational mechanics are discussed. Finally, it deals with
an area of parallelization in scientific computing, which in light of recent developments
appears to be the focus of an intensive research.

1.1 Brief History Review of Dynamics

The general study of the dynamics date to the time of Ancient Greece, it can possibly be
dated to an even later period of the first ancient Mesopotamian civilization of Sumerians
and civilization of Egyptians.

In the case of Ancient Greece, it can be dated from the work of Thales of Miletus (∗624
B.D., †548 B.D.), who is considered as the founder of Greek philosophy. Since philosophy
in the early days contained all sciences, both the natural as well as social science, it is
considered an important period as Aristotle (∗384 B.D., †322 B.D.) and Archimedes (∗287
B.D., †212 B.D.) put forward intriguing ideas at the time.

Aristotle, in his thinking about motion, stemmed on a faulty concept of classical ele-
ments (fire, air, water and earth). In context of advances in his era it is understandable. By
these elements he tried to describe the processes which occur naturally. In brief it is good
to mention eg. processes where air an bubble breathed underwater floats to the surface
or a rock thrown upwards falls back to the Earth. Aristotle’s conclusions are described in
[109] as follows:

Aristotle concluded that heavier objects fall faster than light objects, and
that this fall–rate is proportional to their weights: an object twice as heavy falls

5

1. State of the Art

twice as fast. He also reasoned that the speed of progression through a medium
was inversely proportional to the density of that medium. This reasoning implied
that the speed of progression in the void would be in-finite; thus he concluded
that the very existence of a void was impossible. In the same section, he wrote
that if a void were to exist, heavy objects would fall at the same rate as light
ones ("Therefore all will possess equal velocities. But this is impossible."). He
used this supposed equality of fall rates to then say by modus tollens that a void
cannot exist. He further wrote that, in a void, there would be no reason for a
body to stay in one place or move to another, and so motion would continue
forever. It is often said, based on this statement, that he enunciated or foresaw
a principle of inertia, but this is only possible by a selective reading of his works.

Other important ideas described by Aristotle are described in his work Physics (see [3]).

Figure 11: Probable look of Aristotle.

Another important philosopher later on was Alexandrian philosopher, John Philoponus
(∗490, †570), who dealt critically with Aristotle’s work.

The subsequent period of the early Middle Ages after the fall of the Western Roman
Empire in the year 476 consisted of both science and society in Europe’s Dark Age. Science
was grown rather in the Middle East and in Asia. With respect to this era, we should
mention mainly Arabic-Andalusian philosopher Ibn Bajjah and Ibn Rushd (∗1095, †1138),
who is known as Avempace. He dealt with Aristotle’s ideas.

Science began to develop again during the Renaissance era, which meant a return to
the ideals of the ancient world and a deviation from an ecclesiastical dogmas in terms of
general view of human life and knowledge, when free thinking was labeled as heresy. A fresh
wind blowing into society was caused mainly by Church reformers like eg. John Wycliffe
(∗1330, †1384) in the Kingdom of England, Jan Hus (∗1370, †1415) in the Czech Kingdom
or Martin Luther (∗1483, †1546) in the Holy Roman Empire of the German Nation.

Certain departures from the Aristotelian dogma at the end of the 13th century meant
a harbinger of changes to the view of the kinematics. This then led to further define the
mean-speed theorem, which is attributed to the English philosopher William of Heytesbury
(∗1313, †1373). An important achievement in this field then was the work of French
philosopher Jean Buridan (∗1300, †1358), which deeply engaged Aristotle’s writings and
laid down the basic concept of the idea of inertia. His view on the motion would be similar
to Newton’s first law of motion in today’s view.

6

1.1. Brief History Review of Dynamics

The personality, which today we can call the founder of modern dynamics is the Italian
philosopher and physicist Galileo Galilei (∗1564, †1642). Galileo extended principles from
static into dynamic concepts, where he took behaviour of bodies and their natural positions
of rest, described by Archimedes, and applied it to bodies in motion. Although his greatest
contribution is in the field of kinematics, his work in dynamics influenced many of his
successors.

Very important personalities in the field of mechanics at that time was a Dutch physicist
and mathematician Christiaan Huygens (∗1629, †1695), who first explained the oscillation
of the final pendulum. In this context discreet systems and their interactions were also
dealt with.

The most prominent person in dynamics, and we could say, even of classical physics, as
the mastermind of the fundamental laws of motion is the English physicist and mathem-
atician Isaac Newton (∗1643, †1728). It is necessary to mention the publication Philosophæ
Naturalis Principia Mathematica in the year 1687, where he published his thoughts regard-
ing the fundamental laws of motion. The whole is divided into three books, namely the first
two have the title Of the Motion of Bodies, and the third is The System of the World. He
explained that the laws that are applied to the motion of the planets in universe are gener-
ally valid even in conditions of the processes on Earth. His conclusions had a fundamental
influence and have become a milestone in physics in general.

Newton also developed the calculus of mathematics, and the "changes" expressed in
the second law are most accurately defined in differential forms. Calculus can also be used
to determine the velocity and location variations experienced by an object subjected to an
external force.

Figure 12: Sir Isaac Newton.

It should be mentioned that the case of angular momentum, as one of the cornerstones
of mechanics, Newton did not explain. This is a natural consequence of linear momentum.
Newton used the third law to derive the law of the conservation of momentum. From a
deeper perspective, the conservation of momentum is the more fundamental idea derived via
theorem derived by German mathematician Emmy Noether’s (∗1882, †1935) from Galilean
invariance, and holds in cases where Newton’s third law appears to fail, eg. when force
fields as well as particles carry momentum, and in quantum mechanics.

German mathematician Gottfried Wilhelm Leibniz (∗1646, †1716), who was a contem-
porary of Newton, proposed another quantity the vis viva (living force). It is a theory
which served as an elementary and limited early formulation of the principle of conserva-
tion of energy. His living force has the dimension of energy and is scalar in nature. In this

7

1. State of the Art

approach, referred to as analytical mechanics, the laws of mechanics are expressed in terms
of work done and energy expended. Very significant contributions to the further develop-
ment of mechanics laid mathematicians and physicists namely Swiss Leonhard Paul Euler
(∗1707, †1783) and Frenchmen Joseph Louis Lagrange (∗1736, †1813) and Jean Le Rond
d’Alembert (∗1717, †1783). In later time the Irish physicist William Rowan Hamilton
(∗1805, †1865) expressed the laws of mechanics using the variational statement. Newton’s
and Hamilton’s statements are equivalent, they differ in the sense that while the formers
are in the form of cause and effect relationships at each instant of time, the latters is in
the form of extremum conditions of a functional over an arbitrary period of time.

This concerned mainly solving the problems of flexible bodies such as vibrating string
or catenary curve. Newton tried to deal with these problems, but apparatus that was
available to him was not sufficient. Further contributions to the development of mechanics
were made by German mathematician Carl Gustav Jacob Jacobi (∗1804, †1851) and in
more recent times by Albert Einstein (∗1879, †1955), who, in his Theory of Relativity (or
Theory of Invariance), brought the concepts of length, time and simultaneity of events
under critic review (see [124]).

Since the primary concern of this work is the field of mechanics of continua, so it is
also needed to mention some important milestones that are related to this theme. In
order to describe continuum it is therefore necessary to use instruments of mathematical
analysis, mainly differential and integral calculus. This analysis has however, been focused
for a long period on functions of only one variable which in a general consideration of three-
dimensional space together with the time, was no longer adequate. As a result, the concept
of partial derivatives was introduced. This we essentially owe to the Bernoulli’s—John
(∗1667, †1748) and Daniel (∗1700, †1782), John’s son—and Jean Le Rond d’Alembert.

Jean Le Rond d’Alembert formulated the first equation of wave motion—a second-order
partial differential equation of the so-called hyperbolic type (finite velocity of propaga-
tion)—with its paradigmatic solution. It should be mentioned that this work is in its basis
strongly tied with the works of Leonhard Paul Euler, Joseph Louis Lagrange and French
mathematician Augustin Louis Cauchy (∗1789, †1857). The aforementioned scientists then
were able to formulate the standard theory of perfect fluids and perfectly elastic solids, two
cases in which ideal descriptions cope with what we now call nondissipative behaviours.

One of the most essential results of this period was the formulation of variational prin-
ciples. At the beginning there was a person of French mathematician Pierre de Fermat
(∗1601, †1665), who studied law of reflection and the refraction of light. It was previ-
ously formulated by the Dutch mathematician Willebrord Snellius (∗1580, †1626) based
on experimental observations in 1621. Fermat used rigorous mathematical methods for
analysis by minimizing the path of the light compared to Snellius’s experimental approach.
In this context it is necessary to mention the fact that the use of the calculus of variation
in mechanics has its basis in a solution of problems of dynamics. The first person to use
it was a French mathematician Pierre Louis Moreau de Maupertui (∗1698, †1759) in 1744
when he enunciated the principle of least action for an analysis of the collision of elastic
balls. It was later published in his Essai de cosmologie in 1750.

Later it were Euler and Lagrange, with the work on variational calulus culminating in

8

1.1. Brief History Review of Dynamics

Lagrange’s book Méchanique analitiqu (published in 1788). It provided an essential tool
in the general field theory developed by William Rowan Hamilton and others, and also it
introduced the necessary physical basis of methods such as the FEM for solving partial
differential equations in Sobolev spaces (a special class of Hilbert spaces), usually used in
engineering applications of fluid dynamics and with macroscopic structural problems. The
"imperfect" cases developed mainly in the second half of the 20th century, which are related
to the theory of thermodynamically irreversible behaviours (fluid viscosity, visco-elasticity
of solids, plasticity of solids, etc.) cannot, in principle, be deduced from a variational for-
mulation in the manner of Lagrange and Hamilton. Euler and Lagrange are also considered
responsible for the kinematic descriptions of continua called Eulerian and Lagrangian.

Then the next important result was the introduction of the notion of stress tensor by
Cauchy in his first theory of continua (1822, published in 1828).

Figure 13: Leonhard P. Euler, Joseph L. Lagrange, Jean L. R. d’Alembert, Augustin L.
Cauchy and William R. Hamilton.

It is also necessary to mention advances of nonlinear dynamics in continuum that relate
to the late 19th and early 20th century. These include, primarily, the German mathem-
atician Georg Bernhard Riemann (∗1826, †1866), Scottish mechanical engineer William
John Macquorn Rankine (∗1820, †1872), French mathematician and physicist Pierre Henri
Hugoniot (∗1815, †1887), and French engineer Jacques Charles Émile Jouguet (∗1871,
†1943). They proved the existence and propagation of shock and detonation waves. French
physicist Pierre Duhem (∗1861, †1916) also had a significant influence mainly dealing with
the wave propagation in nonlinear elasticity.

As already mentioned earlier, dynamics, but also physics in general underwent a radical
change in view on the fundamental laws that until then relied heavily on Newtonian physics.
A new perspective on the laws of physics, which came with Albert Einstein in his Theory of
Relativity published in two forms, namely, Special Theory of Relativity (published in 1905)
and General Theory of Relativity (published in 1915, focused on the origin and description
of gravity) meant a change of view also with respect to mechanics continua in general.
Albert Einstein later realized (letter to E. Zschimmer, 30 September 1921), that the name
of his first work was unfortunate and suggested the new name the Invariantheorie. He
failed to do so due to the strong rooting of the original name among physicists and also
the general public.

The mathematical description of spacetime significantly helped German-Polish math-
ematician and Enstein’s professor of mathematical analysis Hermann Minkowski (∗1864,
†1909) with the introduction of the four-dimensional version of special relativity and that
of energy-moment tensor, to which must be added the fact that general relativity is per se

9

1. State of the Art

a continuum theory so there was need for a true relativistic theory of the continuum. This
area relates mainly to particle physics and the fundamentals laws of thermodynamics. Due
to this modern trend it led to a reassessment of classical continuum mechanics, i.e. primar-
ily in the axiomatic field and the construct of relativistic elasticity, and its generalization
to more complex thermomechanical schemes.

With Enstein’s theory as a revolutionary idea also linked to it is the so-called Quantum
Theory. For the "father" of this theory can be regarded the German physicist Max Karl
Ernst Ludwig Planck (∗1858, †1947), who was the first to introduce it into the notation of
physics and quantum of energy. Today, this theory provides a deep insight into the stuc-
ture of atoms and atomic nuclei as well as that of bodies of sizes familiar to our everyday
experience. This revolutionary theory is not still incomplete, particularly with regard to
interconnection with the Theory of Relativity and the problem of elementary particles be-
ing stalled by tremendous difficulties encountered on the way toward further development.
In this context it is also necessary to mention the next pioneers of quantum theory, namely,
the Danish physicist Niels Henrik David Bohr (∗1885, †1962), who extended Planck’s idea
of the quantization of radiant energy to the description of mechanical energy of electrons
within an atom. He introduced the specific "quantization rules" for the mechanical sys-
tems of atomic sizes and achieved a logical interpretation of the New Zealand physicist
Ernest Rutherford’s (∗1871, †1937) planetary model of an atom, which rested on a solid
basis but on the other hand stood in sharp contradiction to all the fundamental concepts
of classical physics. As another scientist it is important to mention the Austrian physicist
Erwin Schrödinger (∗1887, †1961), who extended the ideas of French physicist Louis Vic-
tor Pierre Raymond de Broglie (∗1892, †1987) about the driven motion of electrons called
pilot waves into a more exact mathematical form, the so-called Schrödinger’s Equations.
His theory became known as Wave Mechanics. In fact, wave mechanics provided a com-
plete and perfectly self-consistent theory of all atomic phenomena, and could also explain
the phenomena of radiactive decay and artifical nuclear transformations. Schrödinger’s
wave mechanics explained all the atomic phenomena for which Bohr’s theory failed, and
in addition predicted some new phenomena which had not even been dreamed of, either
in classical physics or in Planck-Bohr quantum theory. We should also mention the Ger-
man physicist Werner Karl Heisenberg (∗1901, †1976) and his very important Principle of
Uncertainty (published in 1927).

Figure 14: Albert Einstein, Max K. E. L. Planck, Niels H. D. Bohr, Erwin Schrödinger.

These modern theories affect not only the view of dynamics in its general form, but
also computer science, especially considering the revolutionary technology of quantum

10

1.2. Brief History Review of Computer Science

computers as a next level of thinking about parallelism, which is considered further. Form
more see [82] and [32].

1.2 Brief History Review of Computer Science

It is difficult to precisely date the efforts of people who tried to automate various tasks
occuring in human activities.

Among the first predecessors of modern computer techniques belongs French mathem-
atician and physicist Blaise Pascal (∗1623, †1662) with his mechanical calculator, which
was constructed in the 17th century (1642) and later Charles Babbage (∗1791, †1871). He
was Lucasian Chair of Mathematics at University of Cambridge with Isaac Newton being
before him.

Probably the first known attempt to organize information processing on a large scale
using human computers was the production of mathematical tables, such as logarithmic
and trigonometric tables. Logarithmic tables revolutionized mathematical computation in
the 16th and 17th centuries by enabling time-consuming arithmetic operations, such as
multiplication and division and the extraction of roots, to be performed using only the
simple operations of addition and subtraction.

During the 19th century, the English mathematician and engineer Charles Babbage
dealt with these issues. Babbage came up with the idea to build a programmable computer
machine. He composed a computer machine named a Difference Engine, because it used
the same method of differences that Gaspard de Prony (∗1755, †1839, interested in the task
of producing logarithmic and trigonometric tables for the French Cadastre) and others used
in table making.

Figure 15: Charles Babbage.

The difficulties Charles Babbage encountered during the development are as follows
(see [69]):

Unfortunately, the engineering was more complicated than the conceptualiz-
ation. Babbage completely underestimated the financial and technical resources
he would need to build his engine. While building the Difference Engine in the
1820s was not in any sense impossible, Babbage was paying the price of being
a first mover; it was rather like building the first computers in the mid-1940s:

11

1. State of the Art

difficult and extremely expensive. In the London Science Museum today, one
can see evidence of this complexity in hundreds of Babbage’s machine drawings
for the engines and in thousands of pages of his notebooks.

Figure 16: Babbage’s Difference Engine (Niagara College Canada).

Due to the huge population expansion in the United States of America (USA) during
the second half of the 19th century, the problem of how to evaluate large amounts of
report tables arose. One person who was acutely aware of the census problem was a
remarkable young engineer by the name of Herman Hollerith (∗1859, †1929). He later
developed a mechanical system for census data processing, commercialized his invention
by establishing the Tabulating Machine Company in 1896, and laid the foundations of the
IBM (abbreviation of the International Business Machines corporation) company.

A breakthrough period in this branch was the period during the Second World War
and the subsequent epoch that followed it. World War II was a scientific war: its outcome
was determined largely by the effective deployment of scientific research and technical
developments. The best known wartime scientific programs were the Manhattan Project at
Los Alamos to develop the atomic bomb, and the program of developing radar mainly at the
Radiation Laboratory at MIT (abbreviation of the Massachusetts Institute of Technology).

Emphasis on these major programs overshadowed the rich tapestry of the scientific war
effort. One of the threads running through this tapestry was the need for mathematical
computation. For the atomic bomb, for example, massive computations had to be per-
formed to perfect the explosive lens that assembled a critical mass of plutonium. At the
outbreak of war, the only computing technologies available were analogue machines such as
differential analyzers, primitive digital technologies such as punched-card installations, and
teams of human computers equipped with desktop calculating machines. Even relatively
slow one-of-a-kind mechanical computers such as the Harvard Mark I lay some years in the
future.

12

1.2. Brief History Review of Computer Science

A milestone work in this area became the labor of English mathematician Alan Turing
(∗1912, †1954) and John von Neumann (∗1903, †1957). Alan Turing attempted to decipher
the German code of Enigma and on the basis of his theories an electrical computer called
Colossus was created. John von Neumann was the youngest member of the Institute for
Advanced Study in Princeton, where he was a colleague of Albert Einstein and other em-
inent mathematicians and physicists. Unlike most of the other people involved in the early
development of computers, von Neumann had already established a world-class scientific
reputation (for providing the mathematical foundations of quantum mechanics and other
mathematical studies) and strongly influenced the work of Alan Turing, whose work in
theoretical developments of mathematical logic later had a major impact on the progress
of computer science as an academic discipline.

Figure 17: John von Neumann and Alan Turing.

In this period the first electronic computer ENIAC (abbreviation of the Electronic
Numerical Integrator And Computer) was invented, developed in the period 1943 - 1946
for general computing based on Turing’s theory. It was later used in the development
of thermonuclear bomb (respective period of the level and state of the development in
computer technology can now be likened to recent developments, which relates to the
technology of quantum computers).

Figure 18: The ENIAC computer.

This powerful new technology of electronic computers strongly influenced the defeat of
Nazi Germany, shortened the hardships of the World War II, laid down the foundations

13

1. State of the Art

of today’s digital computers and also began to realize a great boom in computer science
as well as the newly established science of cybernetics, whose founder was the American
mathematician Norbert Wiener (∗1894, †1964). This work was especially groundbreaking
as it laid down the foundations of Cybernetics [130].

In this new field, IBM began to be the most active, primarily in the USA, and inven-
ted the first high-level programming language, FORTRAN (abbreviation of the FORmula
TRANslator), which was released in 1957 [49]. Until that time, machine or assembly
language were used for computer programming.

Figure 19: FORTRAN code for punch cards.

The next epoch of the development of operating systems [69] is described as follows:

By the end of the 1960s a new set of concerns had emerged about soft-
ware and software development, to the point that many industry observers were
talking openly about a looming "software crisis" that threatened the future of
the entire computer industry. For the next several decades, the language of the
"software crisis" would shape many of the key developments—technological, eco-
nomic, and managerial—within electronic computing. One obvious explanation
for the burgeoning software crisis was that the power and size of computers were
growing much faster than the capability of software designers to exploit them. If
the 1960s was the decade of the software debacle, the biggest debacle of all was
IBM’s operating system OS/360. The "operating system" was the raft of sup-
porting software that all the mainframe manufacturers were supplying with their
computers by the late 1950s. It included all the software, apart from program-
ming languages, that the programmer needed to develop applications programs
and run them on the computer. One component of the operating system, for
example, was the input/output subroutines, which enabled the user to organ-
ize files of data on magnetic tapes and disk drives. The programming of these

14

1.2. Brief History Review of Computer Science

peripheral devices at the primitive physical level was very complex—involving
programmer-years of effort— but the operating system enabled the user to deal
not with physical items, such as the specific location of bits of data on a mag-
netic disk, but with logical data, such as a file of employee records. Another
operating system component was known as a "monitor" or "supervisor," which
organized the flow of work through the computer.

In context, the development of operating systems had begun, especially with the advent
of personal computers, which were the consequence of the progress in the technology of
semiconductors and miniaturization. Until the 70’s, it was customary to write operating
systems in assembly language, mainly due to having maximum control over the operating
system and also due to the inability of programming languages at that time to support the
programming of the hardware equipment at the lowest level. Due to this fact, operating
systems were unduly linked with the underlying hardware for which they were written to
operate on.

Then, a major event was the introduction of the C programming language (published in
1978, [60]), whose authors were Brian W. Kernighan (∗1942) and Dennis M. Ritchie (∗1941,
†2011) from Bell’s laboratories. They also deserve to rewrite the UNIX (originally project
Unics, abbreviation the Unary Information and Computing Service) operating system,
which was originally released in the year 1969. It subsequently became the first modern
portable operating system written using high-level programming language (C programming
language for system programming) compared to the commonly used assembly programming
language.

Figure 110: Brian W. Kernighan and Dennis M. Ritchie.

It was followed by the DOS (abbreviation of the Disk Operating System) operating
system and later MS-DOS, of the newly emerging company Microsoft, which had became
the base of the Windows OS in the 90s. It later became the most used operating system
on personal computers worldwide.

In the 70’s and subsequent years many software companies were created, which led to
the significant development of computer networks. Access to the UNIX operating system’s
source codes has provided significant information relating to the design principles of oper-
ating systems to a broad scientific community. On the basis of the UNIX operating system,
a Finnish student of computer science, Linus Torvalds (∗1969), had composed the kernel
of the operating system Linux (abbreviation of the Linus Is Not UniX). It has become a
freely available operating system. Since the turn of the millennium it has become the most
widely used operating system worldwide, mainly due to mobile devices of various types.

15

1. State of the Art

Today the core of the Linux operating system is presented in many versions (Android OS,
Ubuntu, Red Hat and Fedora, etc.).

Figure 111: Creator of Linux OS kernel Linus Torvalds.

1.2.1 Scientific Computing in Computational Mechanics

During the 60’s of the 20th century a variety of programs began to appear, especially in the
military field for the US space program and applications, which were focused on a solution
to a number of tasks for stress analysis in the mechanics of structures and the dynamics
of fluids, as well as automatic control. The American National Aeronautics and Space
Administration (NASA) began with the development of the now well-known commercial
program NASTRAN (abbreviation of the NAsa STRucture ANalysis, developed by the
Computer Sciences Corporation) for its space program, based on FEM, which at that time
began to experience a great boom just because of the development of computer technology.
The period of the 60’s of the 20th century can be considered as one of the most important
periods in modern society. Czechoslovakia in this development played a significant role,
mainly due to the people working around the Brno University of Technology.

At this time, research institutes in the USA and Europe began to persue the develop-
ment of FEM and its computer realization. In this regard, the global development centers of
FEM belonged the Swansea University (Prof. Olgierd C. Zienkiewicz, ∗1921, †2009) in the
United Kingdom, the University of Stuttgart (Prof. John H. Argyris, ∗1913, †2004) in Ger-
many and Brno University of Technology (Prof. Vladimír Kolář (∗1928, †2000), Prof. Miloš
Zlámal (∗1924, †1997), Assoc. Prof. Ivan Němec (∗1945) and Prof. Jiří Kratochvíl (∗1929))
in Czechoslovakia. Later, other prominent scientists joined, mainly researchers from the
University of California, Berkeley (Prof. Robert L. Taylor) and MIT (Prof. Klaus-Jürgen
Bathe, ∗1943), both from the USA.

Figure 112: Prof. Olgierd C. Zienkiewicz, Prof. John H. Argyris and Prof. Miloš Zlámal.

As a pioneer in the development of the world’s first FEM programs was Prof. Edward L.
Wilson (∗1931) from University of California, Berkeley. His first programs had no name,

16

1.2. Brief History Review of Computer Science

later they were transformed into the system under the name SAP (abbreviation of the
Structural Analysis Program) and NONSAP (abbreviation of the NONlinear Structural
Analysis Program). As the first commercial FEM software for solving nonlinear problems
can be considered program MARC developed by the Marc Analysis Research Corporation
named after its creator Pedro V. Marcal from Brown University.

With regard to the explicit computational form of the FEM, it is necessary to remember
the program SADCAT, which was developed in the early 1970s at Argonne as one of the
first three-dimensional structural dynamics programs which employed explicit time integ-
ration to achieve great efficiency for the computational simulation of impulsively loaded
shells. This program closely relates to the work of Prof. Ted Bohdan Belytschko (∗1943,
†2014) from the Northwestern University, who focused on the development of effective fi-
nite elements for transient nonlinear dynamics. It is important to note his effective C0

triangular shell finite element, which is used in numerical simulations in this thesis (see
[136]).

Figure 113: Professor Ted Bohdan Belytschko.

For completeness, it is necessary to mention the well-known programs based on FEM,
which at that time and some years later began to emerge. It is a group of programs e.g.
ABAQUS, ANSYS (founded by John A. Swanson), ADINA see http://www.adina.com/i
ndex.shtml (founded by Prof. Klaus-Jürgen Bathe), and especially software DYTRAN for
explicit dynamics and fluid structure interaction (see http://www.mscsoftware.com/pro
duct/dytran).

From a national perspective, it is necessary to acknowledge the work of Prof. Vladimír
Kolář and Assoc. Prof. Ivan Němec, who began with the development of software tools for
a solution to civil and mechanical structures by FEM.

The NE-XX system (NE means initial letters of the author’s surname Němec, see
http://www.fem.cz/historie/?lang=en) became a widespread computational analytical
tool based on FEM, both in Europe and now around the world. The NE-XX system is
now the numerical computational core of the commercial program RFEM (see https:
//www.dlubal.com/en/rfem-5xx.aspx) of the German company Dlubal Software and the
Scia Engineer (see http://www.scia.net/en/software/product-selection/scia-engi
neer) of the Belgian company Nemetschek Scia which occupy an important position in the
European marketplace with this type of software.

Professor Vladimír Kolář belongs among the pioneers of FEM. He was persecuted and
removed from academic life during the totalitarian communist regime after the Soviet

17

http://www.adina.com/index.shtml
http://www.adina.com/index.shtml
http://www.mscsoftware.com/product/dytran
http://www.mscsoftware.com/product/dytran
http://www.fem.cz/historie/?lang=en
https://www.dlubal.com/en/rfem-5xx.aspx
https://www.dlubal.com/en/rfem-5xx.aspx
http://www.scia.net/en/software/product-selection/scia-engineer
http://www.scia.net/en/software/product-selection/scia-engineer

1. State of the Art

invasion in the year 1968. The publication of his books and articles were prohibited.
Despite all the hardships he had educated many of their successors through the secret

lectures. He founded the famous Brno school of FEM which has gone on to become
top class. In the time of freedom, his name, legacy and glory live on again, without
persecution of the totalitarian regime. A team of academicians from the Brno University of
Technology, which was built around his person, significantly contributed to the theoretical
and a practical development of FEM in a global context.

t.i

Figure 114: Professor Vladimír Kolář in 1976.

In connection with Prof. Vladimír Kolář acknowledgement also need to be given to the
work of Prof. Ivo Babuška (∗1926) from the University of Texas, Austin and Prof. Jindřich
Nečas (∗1929, †2002) from the Faculty of Mathematics and Physics of Charles University.

Prof. Ivo Babuška is still active today and his most recent major achievement is laying
down the foundations of the XFEM method (shortcut of the eXtended Finite Element
Method, see [61]) primarily used for a numerical solution of problems containing discon-
tinuous fields of primary variables (see [85]) applied primarily to the field of Fracture
Mechanics.

Prof. Jindřich Nečas then significantly contributed in the field of partial differential
equations (see mainly [90]) and nonlinear functional analysis (see [45]) in a global context,
i.e. in the fields strongly related to the development of FEM.

It is also necessary to mention the development of software tools at the Czech Tech-
nical University in Prague (CTU in Prague) in the Department of Mechanics, Faculty of
Civil Engineering. These are primarily general analytical software tools OOFEM (abbre-
viation of the Object Oriented Finite Element solver, see http://www.oofem.org, [98])
developed by Prof. Bořek Patzák and SIFEL (abbreviation of the SImple Finite ELements,
see http://mech.fsv.cvut.cz/~sifel/) developed by Prof. Jaroslav Kruis. Especially, it
is necessary to mention the work of Prof. Jaroslav Kruis focused on the parallelization using
the FETI based method (abbreviation of the Finite Element Tearing and Interconnecting,
[63]). Also worth mentioning is the project MuPIF (abbreviation of the Multi-Physics
Integration Framework) for implementation of multi-physics and multi-level simulations
assembled from independently developed applications components (see [99]).

Among the international open source projects it is necessary to mention the project
Kratos (see [68], [53] atc., http://www.cimne.com/kratos/), which is a framework for
building multi-disciplinary finite element programs. It is free multi-physic FEM C++ open

18

http://www.oofem.org
http://mech.fsv.cvut.cz/~sifel/
http://www.cimne.com/kratos/

1.2. Brief History Review of Computer Science

source code. Kratos is parallelized for Shared Memory Machines (SMMs) and Distributed
Memory Machines (DMMs).

Kratos is being developed within the framework of the international project CIMNE
(The International Center for Numerical Methods in Engineering, research organization
created in 1987 at the heart of the prestigious Technical University of Catalonia (UPC)
and a Partnership Between the Government of Catalonia and the UPC; see www.cimne.com).
The aim of CIMNE is the development of numerical methods and computational techniques
for advancing knowledge and technology in engineering and applied sciences.

From the point of view of the utilization of the GPGPU for numerical computations,
it is necessary to mention the open-source finite element toolkit NiftySim (see https://
sourceforge.net/projects/niftysim/). The toolkit is founded on the total Lagrangian
explicit dynamics (TLEDs) algorithm. Total Lagrangian explicit dynamics is an efficient
and accurate approach for simulation of soft tissues in biomedical applications (see [56])
as well as for the contact/impact simulations of various structures. Another open-source
finite element toolkit based on explicit dynamics is project Impact (see http://www.impac
t-fem.org/).

1.2.2 Multiprocessor and Multicore Technologies in Scientific Pro-
gramming

At first, it is necessary to mention supercomputers based on the multiprocessor architec-
ture, and currently even in combination with the multicore processor technology. These
include supercomputer ILLIAC IV as a first massively parallel computer (University of
Illinois, [16]); The UNIVAC division of Sperry Rand Corporation delivered the first multi-
processor 1108 containing up to 3 CPUs and EXEC 8 OS supporting multithread program
execution for respective hardware [38]; PEPE (shortcut of the Parallel Element Processing
Ensemble) developed for the ballistic missile defense environment [22]; The Connection Ma-
chine [44] as a series of supercomputers that grew out of Danny Hillis’s doctoral research at
MIT in the early 1980s; BBN Butterfly built by Bolt, Beranek and Newman [74] in the late
1980s; Evans and Sutherland who came up with the world’s first general supercomputer
machine (ES-1) on market in 1989 [117]; Intel iPSC (Intel Personal SuperComputer) [25];
etc.

Figure 115: The world’s fastest and most powerful digital supercomputer Tianhe - 2.

19

www.cimne.com
https://sourceforge.net/projects/niftysim/
https://sourceforge.net/projects/niftysim/
http://www.impact-fem.org/
http://www.impact-fem.org/

1. State of the Art

Currently, the most powerful computers belong to Titan-Cray XK7 (built by Cray
at Oak Ridge National Laboratory in the USA), which is designed for various physical
simulations (modeling global atmospheric phenomena, nuclear physics, etc.) and the most
powerful supercomputer Tianhe-2 (MilkyWay-2) in China.

On the other side stands the technology of quantum computers [67] in comparison to
the already mentioned computer technology. Respective technology is built principally
on a different basis than the current digital computers. The first such commercially used
quantum computer is D-Wave of the world’s first quantum computing company D-Wave
Systems in Canada. Their systems are being used by world-class organizations and institu-
tions including Lockheed-Martin (first customer), Google, NASA, and USRA (abbreviation
of the Universities Space Research Association).

Figure 116: Quantum computer D-Wave.

The original idea came in the year 1982 from American physicist Richard Feynmann
(∗1918, †1988). He proposed using a quantum system to simulate the other one. The
reason was the difficulty of simulations of quantum systems with standard digital com-
puters. Simulation algorithms of quantum systems have huge memory requirements (stor-
ing information about the quantum states of particles) and non-polynomial computational
complexity of the quantum system’s time evolution. Quantum computing is absolutely a
breakthrough technology that is capable of performing amazing computations, unthink-
able with current digital computers. The computer D-Wave is currently not a device for
a general-purpose application as is the case of supercomputers Tianhe-2 and the others.
Due to the high complexity of such devices, they are designed to solve specific optimization
problems where they effectively use the main idea of quantum theory.

The effectivity of quantum computers lies in the concept of q-bits and quantum paral-
lelism. It concerns effects of the so-called quantum interconnection and quantum tunneling
[57]. Despite all the difficulties, it seems that this trend in hardware development is the
right one, especially due to the incredible speed doing while specific computations. It is

20

1.2. Brief History Review of Computer Science

therefore expectable that further development will go in such a direction. It is especially
about the development of new algorithms suitable for this type of hardware.

In contrast with the above, the most advanced technologies for parallel data processing
are personal computers (PC) that had been built for many years on a single core CPU
and single processor architecture. Thus a large part of the development of the FE tools
had been primarily concentrated on the sequential code execution. Multiprocessor systems
have existed for decades, but until recently they were mostly found only in supercomputers
and in large server systems. Multicore desktop computers, and even multicore embedded
devices, are now increasingly prevalent. Until the advent of multicore processors in the
first decade after the year 2000, it was not possible to use the real parallelism on common
PCs.

The only one way to make an application run parallel was by using a so-called pseudo
parallelism. However it does not cause an increase in the rate of data processing. Such
a type of parallelism (it is concurrency, more precisly) is used to improve the program
responsiveness, especially in programs with graphical UI. It then stays active even during
the concurently running time-consuming background tasks. This applies to accessing the
databases, data in networks and all other purposes where it is necessary to manage time-
consuming processes. These days things have changed and programmers must take heed,
and those who have hitherto ignored the theme of concurently running code within the
programs, must add such programming skills into their toolbox. Herb Sutter (prominent
C++ expert, who served for a decade as chair of the ISO C++ standards committee) aptly
captured the situation by his quote "The free lunch is over!".

The first attempt to parallelize finite element computations was the project Finite Ele-
ment Machine at NASA in the late 70s and 80s which contained 32 16-bit processors [122].
Despite the mentioned attempt, the vast majority of codes were written for the sequential
running of computing tasks. Then a big breakthrough was the advent of multicore pro-
cessors in the first decade of the new millennium. In the previous years, many algorithms
had begun to be developed which allowed parallel processing of computational tasks. These
are primarily domain-decomposition methods, which mainly relate to graph partitioning
of the finite element mesh (see below [59], [11], [126]).

An important numerical method related to a domain decomposition, it is the FETI
method for the numerical solution of a large linear systems arising in linearized engineering
problems, which in the early 90s developed C. Farhat and F.X. Roux [29]. The FETI
method was originally proposed as a dual discrete nonoverlapping domain decomposition
method for the parallel finite element solution of static equilibrium equations. Later arose
its various modifications as TFETI (abbreviation of the Total FETI; see [23]) or HTFETI
(abbreviation of the Hybrid Total FETI; see [110]). These are the computations performed
solely on the CPU (MPI, OpenMP, etc.). Later, the FETI method was used for the other
purposes than only for a parallel solution of a finite element models. These are primarily
the work of scientists from CTU in Prague, namely the teams around Prof. Jaroslav Kruis
and Prof. Zdeněk Bittnar (see [63], [64], [37]).

With the advent of technologies supporting general computation on graphic cards (GP-
GPU), the development of algorithms has began for image processing (see [51], [100]),

21

1. State of the Art

algorithms for numerical mathematics and linear algebra (see [76], [96], [88] [2], [19]). An-
other field of application are numerical solvers for partial differential equations (see [26],
[128], [119]). A high degree of importance is put on software applications for CFD, where
the demanding requirements for the sparsity of the finite volume of finite element mesh
and thus the high requirements for numerical processing of the problem (see [127], [75],
[55], [111], [101]). Another field of application relates to the particle dynamics in many
branches of physics (see [78], [73], [107]). Last but not least, inventions in the field of a
code transfer between various software technologies and their combinations, is needed to
be cited (see [24], [35]).

22

1.3. Summary of Chapter

1.3 Summary of Chapter

In this chapter the view was focused to the issues concerning both the pillars of dynamics
and computer science, respectively. A considerable part of this chapter is devoted to
prominent scientists from the field of mathematical physics, whose work is often intertwined
with each other or upon each other they directly depend. Interweaving the different areas of
physics enabled so marked development in the 20th century. A reminder of some historical
causalities then provides insight into the often complex beginnings.

It is hard to imagine how the world would look today if Euler, Lagrange, Cauchy, and
the others lost their lifes in the difficult revolutionary years, from which came most of
their work. Mainly with consideration of the fact they themselves were often politically
engaged. The same also applies to the first half of the 20th century. The era suffered under
the weight of two cruel world wars, especially under the second one. It relates primarily
to scientists of Jewish origin, of whom a significant number perished in Nazi concentration
camps.

Today’s technological advances still accelerate and it puts pressure on the education of
a broad and deep scope. Things become more complex and often further progress based on
a creative approach to find interconnections which were previously almost unimaginable.
Such an example is the scientific field belonging to quantum computers and their possible
future usage in everyday life, i.e. the generalization of its functionality, development of al-
gorithms, etc. Associated with such possibilities is the development of a more sophisticated
models of thermodynamics and material models, which due to their current computational
cost remain with its usage, rather in academia.

Personally, I hope such a comprehensive survey correctly creates the impression of
complexity, scope, advances and future direction of the special interdisciplinary science
represented by the name Computational Mechanics. It should also provide the proper
introduction to further reading.

23

Chapter 2
Dynamics of Structures in the

Language of Continuum Mechanics

Material or matter is composed of discrete molecules, which in turn are made up of atoms.
An atom consists of negatively charged electrons, positively charged protons, and neutrons.
Electrons form chemical bonds. The study of matter at molecular or atomistic levels is
very useful for understanding a variety of phenomena, but studies of these scales are not
useful to solve common engineering problems. Continuum mechanics is concerned with
the study of various forms of matter at the macroscopic level. It studies motion of a
medium that consists of matter subjected to forces. Traditionally, continuum mechanics
has been divided into two groups: solids and fluids (liquids and gases), but the fundamental
equations of continuum mechanics are the same for both of these. For many decades, solid
and fluid mechanics have been treated independently from each other.

Central to this study is the assumption that the discrete nature of matter can be
overlooked, provided the length scales of interest are large compared to the length scales of
discrete molecular structures. Thus, matter at sufficiently large length scales can be treated
as a continuum, which means a differentiable manifold with a boundary. Inherent in this
assumption is that material particles that are neighbors will remain neighbors during the
motion.

In the continuum representation of a physical system we can assume that although
the material bodies through which fluids percolate, heat conduction takes place, chemicals
diffuse, waves propagate, etc., it possess an affine structure. Quantities of interest such
as density, temperature, concentration, displacements, internal forces, etc., can be defined
in relation to the abstract mathematical concept of a point within the medium. The
spatial and time derivatives are continuously differentiable almost everywhere and they are
assumed to exist up to any required order. Thus a systematic study of the mathematical
and computational properties of a given class of problems leads to a formal treatment that
is more abstract then the treatment of a specific problem.

Nowadays it is necessary to simulate more complex materials, that have characteristics
of solids and fluids simultaneously. These materials obeying the constitutive law for solids,

25

2. Dynamics of Structures in the Language of Continuum Mechanics

and also exhibit characteristics of fluids due to their viscosity. Next branch of continuum
mechanics has emerged, which is related to multiphysics problems, characterized by phase
change.

Continuum mechanics, based on certain principles, attempts to formulate the equa-
tions that govern given physical problems by means of partial differential equations. To
these it is necessary to add the boundary and initial conditions in order to guarantee the
uniqueness of the problem. This set of partial differential equations and the boundary
initial conditions make up the Initial Boundary Value Problem (IBVP). In the case of the
solution of dynamics and statics of structures by the explicit form of FEM, IBVP is a
shared formulation. The aim of this chapter is to give a brief overview of the continuum
mechanical background of the thesis and to introduce used notation.

2.1 Continuum Kinematics

ê3, x3, X3

ê2, x2, X2

ê1, x1, X1

P

P ′

Bt0

Bt

XP

xP

u(XP , t)

φB

∂Bσ ∪ ∂BD = ∂Bt0 , ∂Bσ ∩ ∂BD = ∅

O

dX

P

QXQ

XP

dx
P ′

Q′

x′
Q

x′
P

Figure 21: Continuum body B kinematics.

Consider a body B in a three-dimensional Euclidian space E3, which is composed of
an infinite number of material elements X . It is viewed as a compact measurable open set
of particles. Each particle representing a large collection of molecules with a continuous
distribution of matter in space and time. Under the influence of external forces, the body
B will undergo macroscopic geometric changes. If the applied loads are time dependent,
the deformation and geometry of the body B will be a function of time.

A material body B in motion starting from a so-called initial configuration Bt0 at time
t0 and as a time proceed with the application of external forces, the body will occupy a

26

2.1. Continuum Kinematics

different region Bt at time t, which is called current configuration. Particle X of the body
B in initial configuration Bt0 occupies position X(x, t), which is referred to a reference
frame of right-handed, rectangular Cartesian axes Xi at a fixed origin O with orthonormal
basis vectors Êi then X =

∑
iXiÊi.

Deformed configuration is characterized by the mapping, which represents the bijective
function φB : Bt0 → Bt, which is also assumed to be reversible mapping. Mapping φB

takes the position vector X from the reference configuration Bt0 and places the same point
in the deformed configuration, which we can formally characterize as φB(X, t) : X →
x(X, t) = x = φB(X, t) with orthonormal basis vectors êi then we can write x =

∑
i xiê.

Reversible mapping can be defined as φ−1
B (x, t) : x→ X = φ−1

B (x, t).
The classical treatment of motion is in tracking individual particles which is referred to

as the Lagrangian view, where the current coordinates x ∈ B are expressed in terms of the
reference coordinates X ∈ Bt0 , or in watching the motion properties in a fixed space point
of Eulerian view. In an Eulerian view, coordinates x are termed the spatial coordinates.
For a fixed value of x ∈ B, mapping φB gives the value associated with a fixed point x in
a space. It is associated with different material particles X at different times. Thus value
of φB is observed at the same spatial location x ∈ B, but occupied by different material
particle.

In the study of solid bodies, the Eulerian description is not useful because the config-
uration Bt is unknown. It is the preferred description for the study of motion of fluids
where configuration is known and remains unchanged. It is there that changes happen in
the field of fluid velocities, pressure, density, and so on. Thus, in the Eulerian description,
attention is focused on a given region of space instead of a given body of matter.

Motion of a continuous medium is also denoted by deformation, which is characterized
by the rigid body motion, where the original shape of the body after the motion preserving
the distance between particles, and by the motion with deformation, which is characterized
by changes of distance between particles. The last effect is usually accompanied by stresses
that are induced in the body. In general, motion is characterized by deformation and rigid
body motion simultaneously.

For deriving the geometrical relations, so let us consider two neighboring particles in
the reference configuration, which are denoted by P and Q. Let dX be a vector joining two
points P and Q in the reference configuration. After motion, particles P and Q occupy
new positions P ′ and Q′, respectively. In the new configuration, the vector joining the
points P ′ and Q′ is represented by dx. Magnitudes of dX and dx are denoted as follows:

‖PQ‖ = ‖dX‖ = dS, ‖P ′Q′‖ = ‖dx‖ = ds. (2.1)

For the next description it is needed to define another parameters which are related to
the magnitude of line elements. It is about Stretch ratio λ

λ =
‖dx‖
‖dX‖

=
ds

dS
, 0 < λ <∞,

27

2. Dynamics of Structures in the Language of Continuum Mechanics

where λ 6= 0 otherwise two particles would occupy the same place at the same time which
has no physical meaning. Let us define the Unit Extension ε as follows:

ε =
‖dx‖ − ‖dX‖
‖dX‖

=
ds− dS

dS
= λ− 1⇔ ds = (ε+ 1)dS = λdS, (2.2)

which is in range −1 < λ <∞.
To find out the relationship between the line elements ‖dX‖ and ‖dx‖E3 it is necessary

to introduce the concept of a two-point tensor material deformation gradient F. The
deformation gradient represents a linear mapping of infinitesimal line elements dX of the
reference configuration to infinitesimal line elements dx of the actual configuration. It is
based on deformation of a continuum as relative displacements and changes in geometry
under the influence of an action of forces. The displacement of the particle X is defined
by relationship as follows:

XQ = XP + dX, dx = xQ(XQ, t)− xP (XP , t). (2.3)

Then can be observed that xQ(XQ, t) = xP (XP + dX, t) = x(X + dX, t), the vector
field dx in the current configuration becomes:

dx = x(X + dX, t)− x(X, t). (2.4)

By applying Taylor series (higher order terms are discarded) to represent the function
in (2.4) leads to expression:

dx =

(∑
j

∂xi
∂Xj

dXj

)
êi +O(‖dX‖2)

dx = F · dX, (2.5)

which is defined in terms of mapping φB as

F = F(X, t) ≡ ∂XφB = ∂Xx = GradX x. (2.6)

Due to one-to-one mapping, the deformation gradient F is not allowed to be singular
so its inverse is

F−1(X, t) ≡ ∂xX = Gradx X, (2.7)

thus a sufficient condition for the existence of the inverse of F is that the Jacobian J of F
is not equal to zero and with the continuity of the mapping φB

J = det F(X, t) > 0. (2.8)

Similarly as for the transformation of infinitesimal line element, the same applies to the
area and the volume element of the respective continuum subjected by the deformation.
The normal to an infinitesimal material area element dA = N̂ · dA, with the material
unit outward normal vector N̂ are mapped to the normal of an infinitesimal spatial area

28

2.1. Continuum Kinematics

element da = n̂ · da with the spatial unit outward normal vector n̂, via Nanson’s Formula
as follows:

da = JF−T · dA. (2.9)

In the case of a mapping of infinitesimal volume elements, the situation is somewhat
more complicated. It represents mapping of the infinitesimal material and spatial volume
elements dV and dv, respectively. These are defined as triple product of the corresponding
infinitesimal line elements dV = dX1 · (dX2 × dX3) and dv = dx1 · (dx2 × dx3). By the
considering the relation (2.5), it yields to the mapping of an infinitesimal volume elements
as follows (proof of this conclusion is listed in the appendix):

dv = det F · dV = JdV. (2.10)

The deformation gradient can be also expressed in terms of the displacement vector
u = φB(X, t)−X as

F = Grad x = Grad u + I. (2.11)

The change in the squared lengths that occurs as a body deforms from the reference to
the current configuration can be expressed relative to the original length as

(ds)2 − (dS)2 = 2dX · E · dX, (2.12)

where E denotes nonlinear (quadratic) function of deformation. It is named as Green–Lagrange
(Green–St. Venant) symmetric second-order (finite) strain tensor, which is an alternative
to Euler-Almansi strain tensor defined in spatial coordinates of Eulerian description. It
can be expressed as follows:

E(F) = E =
1

2

(
FT · F− I

)
=

1

2

(
(I + Grad u) · (I + Grad u)T − I

)
=

1

2

(
Grad u + (Grad u)T + (Grad u) · (Grad u)T

)
. (2.13)

For the case of specific material location X′, the density of Helmholtz free energy
Ψ ◦ φB(X′) need to reflect the deformation behavior in an infinitesimal neighborhood of
X′. Then is it possible to approximate the deformation map φB using a first-order Taylor
expansion as follows:

φB(X) ≈ φB(X′) +
∂φB

X

∣∣∣∣
X′

(X−X′) = x′ − F(X′) (X −X′)

= x′ − F(X′)X + F(X′)X′

= F′X + t. (2.14)

The respective equation suggests that Ψ ◦φB(X′) is expressible as a function of F′ and
t. These values fully parameterize the local Taylor approximation of φB near X′. Vector t

29

2. Dynamics of Structures in the Language of Continuum Mechanics

indicates deformations that differ only by a constant translation and thus is irrelevant. It
is referred to as rigid transformation. It causes the production the same deformed shape
and the same strain energy. Thus, the energy density function in finite elasticity should
be expressible as a function of the local deformation gradient Ψ ◦ φB(X) = Ψ ◦ F(X).
Expression of the function Ψ(F) is determinated by the specific material model. Finite
elasticity is primarily taken into consideration in this paper.

Thus when a body undergoes rigid body motion (rotated and translated) from its
reference position φB = RX+t without changing its shape (the distance between particles
are constant during motion), which is a specific case of homogenous deformation, then
the Cauchy-Green deformation tensor C = FT · F related to rigid body motion bacome
F = R,RT ·R = I⇒ E = 0. Where R represents rotation matrix.

E(F)|F=R =
1

2
(C− I) =

1

2
(RT ·R︸ ︷︷ ︸

=I

−I) = 0. (2.15)

Non-singular second-order tensor F can be decomposed multiplicatively by means of
the Polar decomposition theorem for a separation of rotating part without deformation
energy which caueses moving of the body B in space only. Polar decomposition has a form
as follows:

F = R ·U︸ ︷︷ ︸
right polar decomposition

= V ·R︸ ︷︷ ︸
left polar decomposition

, (2.16)

where R, as mentioned earlier, is denoted as a proper orthogonal tensor (rotation tensor),
which must meet the characteristics orthogonality

RT ·R = R ·RT = I⇒ RT = R−1, det R = 1. (2.17)

Tensor U is the right stretch tensor (Lagrangian stretch tensor) and V is the left stretch
tensor (Eulerian stretch tensor). Both are the symmetric positive definite tensors. Polar
decomposition is necessary to perform for unisotropic materials.

Complexity of constitutive models that are constructed based on this kind of deform-
ation measure, will lead to discretizations with nodal forces being nonlinear functions of
nodal positions. In an effort to remedy this, it is possible to construct a linear approxima-
tion of equation (2.13) by forming a Taylor expansion around the undeformed configuration
Bt0 without initial stress, where F = I, then

E(F) ≈ lin E ≡ E(I) +
∂E

∂F

∣∣∣∣
F=I

: (F− I) , (2.18)

where
∂FE : δF = δE =

1

2

(
δFTF + FT δF

)
, (2.19)

thus

E(I) +
∂E

∂F

∣∣∣∣
F=I

=
1

2

(
(F− I)T I + IT (F− I)

)
=

1

2

(
F + FT

)
− I = ε. (2.20)

30

2.2. Stress Measure

All displacement gradients are small and the nonlinear terms in the definition of the
Green–Lagrange strain tensor E (2.13) are neglected. This leads to obtaining the linearized
form of Green–Lagrange strain tensor ε (infinitesimal strain tensor)

E ≈ lin E ≡ ε =
1

2

(
grad u + (grad u)T

)
= gradsym u. (2.21)

The displacement gradient tensor can be expressed as the sum of a symmetric tensor
and a skew symmetric tensor. We have

(grad u)T =
1

2

(
(grad u)T + grad u

)
+

1

2

(
(grad u)T − grad u

)
= gradsym u + gradskew u

= ε̃+ Ω; |Grad u| ≈ |grad u| � 1; ΩT = −Ω, (2.22)

where the symmetric part is similar to the infinitesimal strain tensor, and the skew sym-
metric part is infinitesimal rotation (spin) tensor.

2.2 Stress Measure

When an external force is acting on a body B, the atoms or molecules that make up the
continuum are affected and undergo a position change to achieve balance. Resistance to
this movement depends on the characteristics of the atoms or molecules that make up the
continuum. Internal resistance is characterized by internal force, and is usually interpreted
as the average of the interatomic forces of a handful of atoms, thereby characterizing
internal force as a macroscopic variable. The internal force at each material point of
the continuum is represented by the traction vector field, which is the starting point to
establish the stress state at a material point. Stress can be measured per unit deformed
area or undeformed area.

For the further general formulation, it is necessary to consider the stress in the deformed
configuration. Stress at a point in a three-dimensional continuum can be measured in terms
of nine quantities, three per plane, on three mutually perpendicular planes at the point.
These nine quantities may be viewed as the components of a second-order stress tensor.

Consider a body B in the current configuration which has been divided into two parts
by a plane. Plane is defined by point P (x, t) and by the normal (unit vector) n̂ to that
plane, which denote the direction of a plane area. Then the traction vector (stress vector)
has a form defined by the Cauchy’s Fundamental Postulate as t(x, t, n̂). It is defined at
the point P (x, t) where it is associated with the normal vector n̂ to the respective plane.
Then it can be defined as follows:

t(x, t, n̂) = lim
∆a→∞

(
f

∆a

)
, (2.23)

df = t(x, t, n̂) · da. (2.24)

31

2. Dynamics of Structures in the Language of Continuum Mechanics

Result of Cauchy’s fundamental postulate is the Principle of Action and Reaction.
Traction vector on three mutually perpendicular planes passing through the point P (x, t)
can fully describe the stress state at that point. Then it leads to obtaining three traction
vectors associated with each direction by which is defined a symetric second-order Cauchy
stress tensor (called the true stress tensor) σ as

σ = σij (êi ⊗ êj) , σ = σT . (2.25)

The Cauchy stress tensor is the most natural and physical measure of the state of stress
at a point in the deformed configuration Bt of the body B and measured per unit area of
the deformed configuration. Although, for the purposes of solid mechanics the Lagrangian
description is primarily used as it is necessary to define a measure of stress in a deformed
configuration regard to the reference configuration of the body B, which is known prior.

Let us define a stress vector T(X, N̂) over the area element dA with normal N̂ in the
undeformed (reference) configuration such that it result in the same total force as (2.24)

df = T(X, N̂) · dA. (2.26)

The vector T = P · N̂ is known as the pseudo stress vector, measured per unit unde-
formed area dA and it is associated with the first Piola-Kirchhoff stress tensor P, which is
unsymmetric tensor defined as follows:

P · dA = σ · da = Jσ · F−T · dA
P = Jσ · F−T . (2.27)

For practical use in nonlinear mechanics, however, the second Piola-Kirchoff stress is
used, which is associated with the force in the undeformed area dA. It is symetric second-
order tensor defined as follows:

F−1 · df = F−1 · (P · dA) = S · dA

S = F−1 ·P = JF−1 · σ · F−T . (2.28)

2.3 Governing Equations of Structural Dynamics

As already mentioned in the introduction to chapter 2, the pursuit of the most general
formulation of problems in continuum mechanics leads in the case of the dynamics of
deformable bodies to the shared formulation with the dynamics of fluids, which is generally
known by the name of Navier-Stokes equations. This is important due to the physical
similarities between the deformable bodies and liquids. These conclusions are primarily
used in the case of modeling various types of constitutive relations in the modern concept
of continuum mechanics. This observation has also significant influence on the general
view of the problem under the study of the dynamics of structures, mainly in connection
with some generalizations of some of the approaches that are presented in the following
chapters.

32

2.3. Governing Equations of Structural Dynamics

The motion of particles without looking at how the relative motion between particles

changed is described by the material or total time derivative and is denoted as
D

Dt
[•].

Statement in brackets [•] denotes scalar, vector, tensor, atc. function at an arbitrary point
of studied continuum. This description of the motion in general sense is especially import-
ant for the derivation of equations of motion. It is the superset for deriving the geometrical
relations that concerns the deformation as a change in distance between particles. It differs,
however, if it is considered in the Lagrangian or Eulerian meaning. Respective equations of
motion will be listed in both the Eulerian and the Lagrangian framework in order to show
differences between both formulations. In the rest of this paper the Lagrangian formulation
is prioritized.

The difference is presented in the definition of a total time (or material) derivatives as
follows:

1. Eulerian description:

X = X(x, t) = φB(x, t)

D

Dt

[
φB(x, t)

]
= ∂tφB(x, t) +

dx

dt
∂xφB(x, t)

= ∂tφB︸︷︷︸
local rate of change

+ v · grad φB︸ ︷︷ ︸
convective rate of change

.

2. Lagrangian description:

x = x(X, t) = φB(X, t)

D

Dt

[
φB(X, t)

]
= ∂tφB.

Consider the body Bt in motion subjected by the volume forces b(x, t) and the contact
surface traction forces t(x, t), acting on the boundary ∂Bσ of a body, in Eulerian kind of
view. Considering the velocity field v(x, t) let us define the linear momentum p(x, t) of
the body B as follows:

p(x, t) =

∫
Bt

%v(x, t) dt =

∫
Bt

%v dv.

Now let’s consider the Principle of Balance of Linear Momentum, which is based on the
Newton’s second law of motion. This law expresses the meaning that the rate of change of
linear momentum p of an arbitrarily part of a continuum body Bt is proportional to the
sum of volume and surface forces

D

Dt

[∫
Bt

p dv

]
︸ ︷︷ ︸

rate of change of linear momentum

=
D

Dt

[∫
Bt

%v dv

]
=

∫
∂Bσ

t da︸ ︷︷ ︸
traction forces on boundary ∂Bσ

+

∫
Bt

%b dv︸ ︷︷ ︸
volume forces

.

33

2. Dynamics of Structures in the Language of Continuum Mechanics

The rate of change of linear momentum is expressed by the Reynolds transport theorem
as follows:

D

Dt

[∫
Bt

%v dv

]
=

∫
Bt

∂t (%v) dv +

∫
∂Bσ

%v ⊗ (v · n̂) da

=

∫
Bt

(
∂t (%v) + div (%v ⊗ v)

)
dv

=

∫
Bt

% (∂tv + v · grad v) dv

=

∫
Bt

%a dv, (2.29)

where a = a(x, t) is acceleration of the body Bt, % is material density and n̂ is outward
normal to the boundary ∂Bσ. The equation (2.29) can be rewritten to the form:∫

Bt

%a dv =

∫
∂Bσ

t da+

∫
Bt

%b dv,

where ∫
∂Bσ

t da =

∫
∂Bσ

σ · n̂ da =

∫
∂Bσ

n̂ · σT da =

∫
Bt

div σT dv,

then ∫
Bt

(
div σT + %b− %a

)
dv = 0. (2.30)

Equation (2.30) can be expressed in differential form, which is now valid locally

div σT + %b = %a in B × [0, τ] . (2.31)

Equations (2.31) are called Cauchy’s equations of motion with explicitly included forces
from the effects of viscous damping. It is expressed in Eulerian space description and they
are counterpart to Newton’s second law of motion valid in continuum. For the solvability of
these equations it is necessary to prescribe the essential (Dirichlet) and natural (Neumann,
Newton, Robin) boundary conditions and initial condition at time t0

u(x, t) = u on ∂BD × [0, τ], t = σ · n̂ on ∂Bσ × [0, τ], v(t0) = v0 in B, u(t0) = u0 in B.

We have to also consider the Principle of Balance of Angular Momentum. The principle
yields, in the absence of body couples, symmetry of of the Cauchy stress tensor. It is
expressed as ∫

∂Bσ

x× t da+

∫
Bt

x× %b dv =
D

Dt

∫
Bt

x× %v dv, (2.32)

which yields, in view of the equations of motion (2.31), the symmetry of the Cauchy stress
tensor

σ = σT , σij = σji.

34

2.4. Constitutive Equations

The form of the equations of motion with boundary and initial conditions in the Lag-
rangian description a form:

Div PT + %XB = %XA in BX × [0, τ] .

u(X, t) = u on ∂BD×[0, τ], T = P·N̂ on ∂Bσ×[0, τ], V(t0) = V0 in BX, u(t0) = u0 in BX.

2.4 Constitutive Equations

Constitutive equations generally represent different ways of idealizing the response of a
material based on a macroscopic point of view from experimental evidence. Mathemat-
ically, its purpose is to establish connections between kinematic, thermal and mechanical
variables. In mechanics of deformable bodies it is about the bijective relationships between
stress and strain. The equations that relate state functions to state variables are called
the equations of state or constitutive equations and state variables, the selection of which
depends on the respective problem, are those that depend only on themselves.

Strains and temperature are used as independent variables for solids. In thermody-
namics state functions are considered and are determined by the state variables. Let us
consider Helmholtz free energy Ψ, Cauchy stress tensor σ, entropy η, and the heat flux
q. Then a material respond is completely defined by the fields Ψ,σ, η and q. For the
specific occassions it may be more appropriate to use other thermodynamic potentials.
Constitutive equations must also respect some restrictions (see [50]).

2.4.1 Generalized Standard Materials

The so-called Generalized Standard Materials (GStM) is a term for locally valid material
models which are modeled by some differentiable potential; they often depend on a finite
number of parameters (see [120]). The concept of this type of materials was introduced by
Halphen and Nguyen (see [40]). They showed the analogies between the properties of some
workhardening Standard Materials (StM) and those of perfectly plastic or viscoplastic
standard ones. This is mainly due to capturing the multivalued constitutive laws, for
example plastic flow rules, they were extended to GStM modelled by lower-semi-continuous
convex potentials (see [125]). Simply said, the whole problem of specifying a constitutive
law is reduced to specifying two potentials—the elastic energy density (free energy) and
the dissipation potential. A material obeying such a law is called just GStM (see [123],
[86]).

Consider strain-like variable ε ∈ Xε, where Xε is a real Banach space and a stress-like
variable σ ∈ X∗σ, where X∗σ is the continuous dual space, which are subset of linear space
Lσ:ε : X∗σ×Xε, where a respective subset has properties of maximal Lagrangian submanifold
of the Lσ:ε, then there exists a differentiable function Ψ (let us call it Helmholtz free energy
potential), such that

σ = δΨ(ε) . (2.33)

35

2. Dynamics of Structures in the Language of Continuum Mechanics

Just the material model of such a type whose behavior can be described by a differen-
tiable potential is then referred to StM as a subset of GStM. Respective material from this
class is then considered in the thesis.

2.4.2 Thermodynamics of (Hyper-) Elastic Materials

Materials such as elastomers, polymers, or biological matter may be subject to large de-
formations with non-dissipative behaviour R = 0 (dissipative rate), where there is no
entropy and temperature change as a typical characteristic of elastic (reversible) processes.
These materials are not dependent on the history of loading, but only on the current values
of the state variables. This is so called a class of Hyperelastic materials and also known
as Green or nonlinear elasticity materials. These materials belong to the class of StM
described in chapter 2.4.1.

Description of the internal behavior of hyperelastic materials presupposes the existence
of a certain thermodynamic energy potential, which is known as density of Helmholtz free
energy Ψ (strain energy density), which depends only on deformation gradient F

Ψ = Ψ (F) .

Consider a thermodynamic system with known forms of involved energy. Then we can
compose energy bilance, which is known as the first law of thermodynamics. It is the
principle of conservation of energy for continuum thermodynamics, and it is given in the
following form:

D

Dt
(K + U) =W +Q. (2.34)

It express the equality between the rate of change of kinetic K and internal U energy,
and the thermal power done by systemW and added to the system Q. Where the thermal
power W can be rewritten as

W =

∫
BX

%XB ·V dV +

∫
∂BX

T ·V dA =

∫
BX

%XB ·V dV +

∫
∂BX

(N̂ ·PT) ·V dA

=

∫
BX

(
%XB ·V + Div(PT ·V)

)
dV

=

∫
BX

(
(%XB + Div PT) ·V + PT : Grad V

)
dV

=

∫
BX

(
(Div PT) ·V + PT : Grad V + %XB ·V

)
dV, (2.35)

where

PT : Grad V = PT : ∂tF = (S · FT) : ∂tF

36

2.4. Constitutive Equations

and the thermal power Q can be rewritten as

Q =

∫
BX

%Xrh dV −
∫
∂BX

N̂ · qX dA

=

∫
BX

(%Xrh −Div qX) dV, (2.36)

where rh is internal heat generation per unit mass and q is heat flux vector.
By expressing all members of the equation (2.34), where V is considered as velocity

field in Lagrangian description, we get

D

Dt

(∫
BX

1

2
%X(V ·V) dV +

∫
BX

%Xe dV

)
︸ ︷︷ ︸

kinetic K and internal U energy

=

∫
BX

%XB ·V dV +

∫
∂BX

T ·V dA︸ ︷︷ ︸
thermal power W

+

+

∫
BX

%Xrh dV −
∫
∂BX

N̂ · qX dA︸ ︷︷ ︸
thermal power Q

,

then substituting equations (2.35) and (2.36) we get∫
BX

%X∂te dV =

∫
BX

((
(Div PT) ·V + PT : ∂tF + %XB · V

)
+

+ %Xrh −Div qX − %X(V ·A)

)
dV.

Additionally, by rearranging the above equation we obtain∫
BX

%X∂te dV =

∫
BX

(
(Div PT + %XB− %XA)︸ ︷︷ ︸

the equations
of motion ⇒ 0

·V +

+ PT : ∂tF + %Xrh −Div qX

)
dV

The local form of the above equation is known as the energy equation

%X∂te = PT : ∂tF + %Xrh −Div qX. (2.37)

As the next step we consider the second law of thermodynamics (entropy inequality) in
the form:

Γ(t) ≡
∫

BX

%X∂tη dV ≥
∫

BX

θ−1rh dV +

∫
BX

Div
(
θ−1qX

)
dV,

where η is the specific entropy, and θ is the absolute temperature. An alternative form
of entropy inequality is that expressed in terms of the thermodynamic potential per unit
mass, which is known as Helmholtz free energy.

Ψ(F) = %Xψ, ψ = e− θη.

37

2. Dynamics of Structures in the Language of Continuum Mechanics

Then we can write

∂tΨ ≡
D(%Xψ)

Dt
= ψ ∂t%X︸︷︷︸

=0

+%X∂tψ = %X∂tψ

∂tψ = ∂te− η∂tθ − θ∂tη ⇒ θ%X∂tη = %X∂te− %Xη∂tθ − %X∂tψ
= %X∂te− %X(η∂tθ + ∂tψ).

Then by also considering the energy equation in (2.37), we obtain the Clausius-Duhem
inequality in terms of the Helmholtz free energy

PT : ∂tF− %X(η∂tθ + ∂tψ)− θ−1qX ·Grad θ ≥ 0.

If we take into account that the dissipation of energy is equal to zero in a isothermal,
reversible (elastic) process, then from the Clausius-Planck inequality

R ≡ PT : ∂tF− %X(η∂tθ + ∂tψ) ≥ 0⇒ R ≡ PT : ∂tF− %X∂tψ︸ ︷︷ ︸
=∂tΨ(F)

= 0 , (2.38)

where the term ∂tΨ(F) is expressed as follows:

∂tΨ(F) ≡ %X∂tψ = PT : ∂tF,

where ∂tΨ = ∂FΨ : ∂tF
T . Next, by substituting the therm of the ∂tΨ equation into the

internal energy dissipation given by the equation (2.38) we get

PT : ∂tF− ∂FΨ : ∂tF
T = 0⇒ PT : ∂tF = ∂FΨ : ∂tF

T ⇒ P = ∂FΨ . (2.39)

2.4.3 Simplified Saint Venant–Kirchhoff Material Model

The Saint Venant-Kirchhoff material model is the simplest phenomenologically-motivated
compressible material model based on generalized Hooke’s Law, which exhibits nonlin-
ear behaviour due to the dependence on non-linear strain measure. This material model
possesses well-known limitations, particularly some instabilities when subjected to pure
compression (critical compression threshold is reached ≈ 58% of undeformed dimensions,
when compression occurs along a single axis).

It is defined by the strain potential density function, which depends on deformation
gradient only. Its complexity is in contrast with the Neo-Hookean type of materials, which
on the other hand have quite complicated formulations for their compressible type of beha-
viour. The Saint Venant-Kirchhoff material model is characterized by the energy function
given by

Ψ =
λ

2
(tr E)2 + µE : E or more generally Ψ =

1

2%0

(E : Cijkl : E) ,

38

2.4. Constitutive Equations

where λ and µ are Lames’s material constants, Cijkl is the Hooke’s fourth-order constitutive
elastic tensor. Lames’s material constants for a general spatial stress problems are defined
as follows:

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
,

where E is the Young’s modulus as a measure of stretch resistance and ν is the Poisson’s
ratio, which expresses a measure of incompressibility. Respective Hooke’s tensor expressed
in its canonical form using the Kronecker-delta δij is as follows:

Cijkl = λδijδkl + µ (δikδjl + δilδjk) .

The more frequent form of expressing the constitutive Hooke’s tensor is then in its
relation to the Helmholtz’s free energy

Cijkl ≡ ∂2
EΨ = λ(I⊗ I) + 2µIijkl . (2.40)

The first Piola-Kirchhoff stress is a function of the deformation gradient and it is directly
related to Helmholtz free energy via formulas as follows (see terms 2.33 and 2.39):

δΨ = λtr Etr δE + 2µE : δE = F (λtr EI + 2µE)︸ ︷︷ ︸
=∂FΨ

: δF

P = ∂FΨ⇒ ∂Ψ(E ◦ F)

∂F
≡ F (λtr EI + 2µE)

The second Piola-Kirchhoff stress tensor can be obtained by

S = F−1 ·P ≡ ∂EΨ⇒ ∂Ψ(E ◦ F)

∂E
= Cijkl : E . (2.41)

The linearization of the Green-Lagrange strain tensor E in Saint Venant-Kirchhoff
material model provides a linear elastic material model, which is used in the thesis

Ψ(lin E) =
λ

2
(tr ε)2 + µε : ε ⇒ σ ≡ %∂εΨ(ε) = Cijkl : ε, (2.42)

where σ and ε denote Cauchy’s stress tensor and linear (engineering) strain tensor, re-
spectively. The Saint Venant-Kirchhoff material model can be viewed as an improvement
of the linear elasticity model, where infinitesimal strain tensor ε is replaced by rotationally
invariant Green-Lagrange strain tensor E.

39

2. Dynamics of Structures in the Language of Continuum Mechanics

2.5 Nonlinear Boundary Conditions

x2

x̂1

n̂1

B1

B2

ξ1

ξ2

â2,1

â1,1

∂BC,2

∂BC,1

ê3

ê2

ê1

Figure 22: The Normal type of contact between B1 (master body) and B2 (slave body).

Consideration of a nonlinear boundary conditions represented by their change caused
by the contact of surface portion ∂BC of the body B with neighboring barrier or with
the other body and optionally also by contact body B with itself. It is a critical area
in dynamic simulations. The contact causes the formation of additional forces, which at
the time of their creation are suitably applied into the process of numerical integration
of the equations of motion. Here, the problem of general contact is considered, especially
for the purposes of collision with the barrier and subsequent post-critical behavior of the
respective structure.

Methodologies typically utilized for contact interactions are relatively immature in com-
parison to other components of a nonlinear finite element package, such as large deformation
kinematics, inelastic material modeling, nonlinear equation solving, or linear solver tech-
nology. It is the field of contact/impact mechanics or Computational Contact Mechanics
(CCM), which is a critical part of the safety analysis of vehicles or aircrafts. Car, aircraft
impact or steel connections require consideration of inelastic constitutive equations and
sometimes also finite deformations.

In the case of car safety it then leads to the optimization of respective vehicle structure,
which has an effect to lower transmitted forces on the occupant and the design of a less
aggressive restraint system. In civil engineering it also contains the phenomenas of the car
or aircrafts impact against building structures. This is particularly relevant for buildings
of higher importance, such as nuclear power plants, etc.

40

2.5. Nonlinear Boundary Conditions

Computational contact mechanics encompass such topics as tribological complexity,
thermomechanical coupling on interfaces, energy-momentum treatment of transient impact
events, and new techniques for spatial discretization of contact phenomena.

The first mathematical analysis of the problem under the consideration was carried out
by Leonard Paul Euler, who assumed triangular section asperities for the representation of
surface roughness in his articles Sur la diminution de la resistance du frottement and Sur
le frottement des corps solides from 1748. As the first one consideration of the contact in
solid mechanics, the work of Hertz in 1882 (see [43]) can be considered. He applied the
elasticity theory in the contact mechanics, examining the contact of two spheres. On this
basis he was able to derive the pressure distribution in the contact area.

Historically the very important problem for the development of CCM, is the problem
of contact with rigid foundation, the so-called Signorini’s problem from 1933 (see [116]),
where it considers node on the boundary with condition prohibiting penetration the rigid
obstacle.

Consider two points X1 and X2, in the initial configuration of the elastic bodies B1 ⊂ E3

and B2 ⊂ E3 occupying bounded domains, which are distinct and occupy the same position
in the current configuration φB1(X1, t) = φB2(X2, t), where contact comes into play on the
boundaries ∂BC,1 and ∂BC,2.

Due to the applied contact conditions in the thesis, consider normal contact without
friction. For such two bodies in contact, the non-penetration condition is given by

(x2 − x1) · n1 ≥ 0,

where xα, α = 1, 2 denotes the coordinates of the current configuration φBα of body Bα :
xα = Xα+uα, where uα denotes displacement field, n1 is the normal vector associated with
body B1. By assuming that the contact boundary locally describes a convex region, then
relate every point x2 ∈ ∂BC,2 to a point x̂1 = x1(ξ) ∈ ∂BC,1 via the minimum distance
problem for a usage of defining the gap or penetration between the two bodies

∆̂ (ξ1, ξ2) = ‖x2 − x̂1‖ = min
x1⊆∂BC,1

‖x2 − x1(ξ)‖,

where ξ = (ξ1, ξ2) denotes the parameterization of the boundary ∂BC,1 via convective
coordinates. The point x1 is computed from the necessary condition for the minimum of
the distance function

∂ξα∆̂ (ξ1, ξ2) =
x2 − x1 (ξ1, ξ2)

‖x2 − x1 (ξ1, ξ2) ‖
· ∂ξαx1 (ξ1, ξ2) = 0,

where orthogonality of the first and second terms is required, the first term must have the
same direction as the normal vector n1 at the minimum point, ∂ξαx1 (ξ1, ξ2) denotes the
tangent vector aα,1. Then the orthogonal projection of a given slave point x2 onto the
current master surface φB1(∂BC,1, t) is −n1 (ξ1, ξ2) · aα,1 (ξ1, ξ2) = 0. Thus the outward
unit normal on the current master surface at the master point has form as follows:

n̂1 =
â1,1 × â2,1

‖â1,1 × â2,1‖
.

41

2. Dynamics of Structures in the Language of Continuum Mechanics

It can only be used in relation with the penalty method, which is here in the main focus.
Once the point x̂1 is known, the inequality constraint of the non-penetration condition can
be defined as

gN = (x2 − x̂1) · n̂1 ≥ 0, (2.43)

or similarly penetration condition which is important for penalty method has a form:

gN,ε =

{
(x2 − x̂1) · n̂1 if (x2 − x̂1) · n̂1 < 0

0 otherwise.
(2.44)

For the variation of the normal gap it is necesary to take into account the projection of
point x2 onto the master surface parameterized by the convective coordinates, which leads
to the following expression:

δgN = [δx2 − δx1 − ∂ξαx̂1δξα] · n̂1 + [x2 − x̂1] · δn̂1, where ∂ξαx̂1 · n̂1 = n̂1 · δn̂1 = 0

δgN = [δx2 − δx1] · n̂1.

The normal contact pressure cannot be computed from a constitutive equation, but
is then obtained as a reaction in the contact area, and hence can be deduced from the
constraint equations as a classical way to formulate contact constraints. The condition
for non-penetration is stated as gN ≥ 0, which precludes the penetration of body B1 into
body B2. Contact takes place when gN = 0. This leads to conditions providing the basis
to treat frictionless contact problems in the context of constraint optimization known as
Hertz–Signorini–Moreau or Kuhn–Tucker–Karush condition

gN ≥ 0, pN ≤ 0, pNgN = 0, (2.45)

where pN is the the associated normal component of the stress traction vector t = σ · n
in current configuration or T = P · N in reference configuration. The traction vector
t at boundary ∂BC is usually decomposed into contact pressure and tangential traction
components, respectively. Thus, it leads to the term as follows:

t→ tC,1 = pN n̂1 + tτ = pN n̂1 ((((
((((

(
+tξ1τ τ

ξ1
C,1 + tξ2τ τ

ξ2
C,1︸ ︷︷ ︸

tangential traction components are not considered here

.

In order to obtain a contact pressure, it is necessary to include a constitutive equation
that appropriately represents the micromechanical behaviour on the contact surface. The
micromechanical behaviour depends in general upon material parameters like hardness
and also on geometrical parameters like surface roughness. The most commonly used
constitutive equation for a normal contact (see [132]) includes the following term:

pN = cNd
n = cN (ζ − gN)

−1
n ,

where d denotes the distance function defined by equation 2.43 and 2.44, ζ is the initial
mean plane distance in the contact area, then cN and n are constitutive parameters de-
terminated by experiments. Setting of parametrs ζ = 0 and n = −1 leads to a standard
penalty method pN = −cNgN , which is considered in the thesis.

42

2.5. Nonlinear Boundary Conditions

In the view to the definition of the contact constitutive equations and interface model-
ing, it is worth mentioning the work of P. Gruber and J. Zeman (see [137], [65]), focused on
application the FETI method for such a subject. Although this work is rather directed to
the field of fracture mechanics, it is even closely related to the field of contact mechanics.

43

2. Dynamics of Structures in the Language of Continuum Mechanics

2.6 Summary of Chapter

In this chapter the mathematical-physical model of a continua, with which will be worked
with in the implementation of parallel computations was briefly introduced. Discussed will
be equations of motion of a flexible body which undergoes small deformation but large
rotations due to the consideration of the convected coordinates for the nonlinear transient
FEA of shell structures. In the context with the geometrically nonlinear behavior of a solid
continua represented by a large rotational kinematics, nonlinear contact conditions are also
involved for the modeling the contact/impact phenomena represented by the frictionless
normal contact. Other nonlinearities will not be further considered in the thesis.

The Saint Venant-Kirchhoff material model is only described here primarily due to the
generality in its close relation to the small strain linear elasticity as linearized form. Small
strain linear elastic material model is further applied in numerical models.

44

Chapter 3
Mathematical Modeling

The problem being studied of dynamics in general terms of Continuum Mechanics, which
generally contains various possible types of nonlinear behavior, generally leads to the IBVP
as mentioned in the preceeding chapter. Solving such problems therefore requires advanced
tools of mathematical analysis.

First and foremost, it is the study of certain topological-algebraic structures and of the
methods by which knowledge of these structures can be applied to analytical problems. It
deals with large classes of objects such as a function, a measure or operator. Most of the
interesting classes that occur in this way turn out to be vector spaces which are supplied
with metrics, or at least with topologies, that bear some natural relation to the objects of
which the spaces are made up. The simplest and most importatnt way of doing this is to
introduce a norm. The resulting structure is called a normed vector space, or a normed
linear space, or simply a normed space.

This analysis is necessary especially with regard to the numerical solution of IBVP.
These are mainly the finite element method, which is directly related to the issue of the
relationship between a strong solution in terms of a general analytical solution of a partial
differential equations and their solution by a so-called weak formulation. It provides a
formalism for generating discrete algorithms for approximating the solutions of differential
equations. It relates to the concept of generalized functions and the definition of derivative
in the sense of distributions and related topics belonging to the branch of Banach algebra.

In mathematical physics, this type of analysis relates mainly to finding solutions to
some of the functional as its stationary point. This theme is thus closely tied to the
various methods of calculus of variations.

It concerns finding extremes generally nonlinear functionals based on the local linearity
of functions. Functional must satisfy a condition that is weakly lower semicontinuous.
This property plays a fundamental role in calculus of variations. It is derived from the
functional coercivity and convexity of the integrand.

45

3. Mathematical Modeling

3.1 Brief Introduction to Mathematical Theory of Vari-
ational Calculus

The use of variational calculus for the purposes of mechanics is inextricably linked to several
important topics in mathematical analysis, namely to non-linear functional analysis. In
short, it refers to generalized normed vector spaces, functionals, and for vector valued
functions there are two main version of derivatives: Gâteaux (or weak) derivatives and
Fréchet (or strong) derivatives.

The Gâteaux derivative is further used to derive the necessary conditions for a min-
imum of the given functional, which is a generalization of the directional derivative from
differential calculus, where teh Gâteaux derivative depends on an arbitrary function η. In
contrast, the gradient (i.e., the derivative) of an ordinary function does not have such an
arbitrary entity.

Definition 3.1.1. A function ϕ : Rn → R is said to be locally Lipschitz continuous if
∀x ∈ Rn there is a neighborhood X ⊂ Rn of such x, and there is a Lipschitz constant
Lf ≥ 0 such that ‖ϕ(x1)− ϕ(x2)‖ ≤ Lf‖x1 − x2‖, ∀x1, x2 ∈ X.

Proposition 3.1.2. Let X be a Banach space. Suppose that X has a simple Lipschitz
local approximate Fréchet subdifferential sum rule. Then X is Asplund.

It provides the easy direction which essentially says that if an approximate local sum
rule holds in X then X is an Asplund space. The proof of proposition 3.1.2 can be found
in [15].

Theorem 3.1.3. Every real-valued Lipschitz function on an Asplund space has points of
Fréchet differentiability.

Let X, Y be normed linear spaces. The Fréchet derivative of an operator F : X → Y
is the bounded linear operator DFF (x0) : X → Y which satisfies the following relation:

lim
h→0

‖F (x0 + h)− F (x0)− 〈DFF (x0);h〉‖
‖h‖

= 0, (3.1)

where DF is called the Fréchet differential. The Fréchet derivative, as defined in (3.1)
extends concepts of the derivative to operators in general normed spaces, for example,
infinite-dimensional function spaces. To establish the relationship to the Gâteaux differ-
ential, take h = εη. This is of great importance to computational methods for solving
nonlinear operator equations.

Definition 3.1.4. Let X be a Banach space and A be a subset of X (X∗). We say that
A is dentable provided for any ε > 0 there exists x∗ ∈ X∗ (x ∈ X) and α > 0 such that
dim S (x∗, A, α) < ε (dim S (x,A, α) < ε).

Definition 3.1.5. Let X be a Banach space and A be a subset of X. We say A has the
Radon-Nikodym property if every nonempty bounded subset of A is dentable.

46

3.1. Brief Introduction to Mathematical Theory of Variational Calculus

Theorem 3.1.6. Every Lipschitz map from a separable Banach space X into a space Y
with the Radon-Nikodym property is Gâteaux differentiable almost everywhere (except for
a null set).

Consider a function Φ : X → Y , where X, Y ∈ Rn. It maps a Banach space X into a
Banach space Y . The Gâteaux differential GΦ(x(t))(η(t)) of Φ at x(t) ∈ X in the direction
η(t) ∈ X is

GΦ(x(t))(η(t)) ≡ lim
ε→0

Φ(x(t) + εη(t), t)− Φ(x(t), t)

ε
=

d

dε
Φ(x(t) + εη(t), t)|ε=0

= DFΦ(x(t), t) · η(t)

= 〈DFΦ(x(t), t);η(t)〉.

where ε ∈ R.
If the limit exists for all η ∈ X then Φ is called Gâteaux differentiable at the point

x. Gâteaux differentiability does not imply Fréchet differentiability. For the function
Φ : Rn → Rm, n and m ∈ N, the Fréchet derivative DFΦ(x0) is the Jacobian of Φ, a linear
operator which is represented by an m× n matrix as showen bellow

DFΦ(x0) =

∂x1(t)Φ1(x0) · · · ∂xn(t)Φ1(x0)
· · · · · · · · ·

∂x1(t)Φm(x0) · · · ∂xn(t)Φm(x0)

 .
Theorem 3.1.7. The Fréchet derivative exists at x = x0 if all Gâteaux differentials are
continuous functions of x at x = x0.

The Gâteaux differential defines a map GΦ(x(t)) : X → Y , which assigns to each
element η ∈ X a value GΦ(x(t))(η(t)) ∈ Y . Thus, the x in GΦ(x(t)) does not refer to an
independent variable, rather it is a part of the name of the map. The differential is linear,
i.e GΦ(x(t))(αη(t)) = αGΦ(x(t))(η(t)) and GΦ(x(t))(η1(t) + η2(t)) = GΦ(x(t))(η1(t)) +
GΦ(x(t))(η2(t)), differential of a constant is zero Gc = 0.

Furthermore, for a given x0 ∈ X a function Φx0 : X → Y

Φx0(x(t)) = Φ(x0) + GΦ(x0)(x(t)− x0),

which is a linear approximation to Φ in the point x0.

Theorem 3.1.8. Every continuous real-valued function on a compact set attains its ex-
treme values on that set.

Definition 3.1.9. Let X be a normed vector space. The (continuous) dual space X∗ is
defined to be X∗ : X → R if X is a real vector space. Elements of X∗ are known as
continuous linear functionals (or bounded linear functionals) on X.

47

3. Mathematical Modeling

Let Ω ⊂ Rn be an open and bounded set. We consider the integral expressions as
follows:

J(Φ) ≡
∫

Ω

L(x,Φ(x),DFΦ(x)) dx, (3.2)

where we assume Φ ∈ C1(Ω) and DFΦ(x) = (∂x1Φ, . . . , ∂xnΦ) denotes the gradient of Φ.
Here L : Ω×R×Rn → R, (x,Φ, φ) 7→ L(x,Φ, φ) is some given function. The function L is
often called Lagrangian, especially in association with the physics. Associated functional
map J is called action functional.

The main interest is in finding functions Φ(x) that minimize among set C ⊂ C1(Ω) of
admissible functions. Let us process more precise definition:

◦ A subset C ⊂ C1(Ω) is called admissible if for every Φ ∈ C and η ∈ C∞(Ω) there is
some e > 0 such that Φ + εη ∈ C for all ε ∈ (−e, e).

◦ Let C ⊂ C1(Ω) be admissible. Suppose that Φ ∈ C is a (global) minimizer of J in C
if J(Φ) ≤ J(Φ′) for all Φ′ ∈ C . Then suppose that Φ ∈ C is local minimizer of J in
C if there is some δ such that J(Φ) ≤ J(Φ′) for all Φ′ ∈ C with ‖Φ−Φ′‖C1(Ω) ≤ δ. A
global minimizer Φ is automatically a local minimizer, but not vice versa in general.

The main problem of the calculus of variations consists of the task to minimize J(Φ)
among all admissible functions Φ ∈ C . The main difficulty is the fact that we try to min-
imize a functional J(Φ), and not just a function f : Φ ⊂ Rn → R as done in multi-variable
calculus. The set of admissible function C ⊂ C1(Ω) belongs to an infinite-dimensional
Banach space. Bounded and closed set X ⊂ C1(Ω) are not necessarily compact. This com-
plicates the analysis substantially and entirely new methods (weak convergence, refxivity,
lower semicontinuity, Sobolev spaces etc.) have to be developed.

As a first step towards the minimization problem for J(Φ), let us introduce the notion
of a derivative for functionals as follows:

Definition 3.1.10. Let L and Φ be as above. For η ∈ C∞(Ω), define

δJ(Φ)(η) ≡ d

dε
J(Φ + εη)

∣∣∣∣
ε=0

(3.3)

to be the first variation of J(Φ) in the direction given by η ∈ C∞(Ω), provided that the
derivative above exists.

The term δJ(Φ) generalizes the notion of the directional derivative. We suppose that
the space of so-called test functions η ∈ C∞(Ω) is large enough to be capable to use the
fundamental lemma of calculus. Let us derive the necessary condition for local minimizers
(the Principle of Stationary Action):

Theorem 3.1.11. Let F be a map F : X → X∗, where X and X∗ are Banach spaces,
and C ⊂ C1(Ω) admissible. If Φ ∈ C is a local minimizer of J(Φ) in C , then

δJ(Φ)(η) = 0 for all η ∈ C∞(Ω), (3.4)

provided the first variation δJ exists.

48

3.2. Variational Formulation of an Inertial Problem

The disappearance of the first variation δJ(Φ)(η) = 0 for all η ∈ C∞(Ω) is only a
necessary condition for Φ to be a local minimizer. If the respective condition is satisfied,
the function Φ is (weak) critical point or point of stationary action of J(Φ) in C . There
might be stationary points that are neither local minimizers or local minimizers (saddle
point).

Proposition 3.1.12. Let L ∈ C1(Ω × R × Rn) and Φ ∈ C1(Ω). Then the first variation
of J(Φ) exists for any η ∈ C∞(Ω) and it is given by the integral expression

δJ(Φ)(η) =

∫
Ω

(
∂ΦL(x,Φ(x),DFΦ(x))η(x) + ∂DFΦL(x,Φ(x),DFΦ(x)) ·DFη(x)

)
dx.

By combination of the Principle of Stationar Action and the proposition above, then
we obtain

Theorem 3.1.13. Let L ∈ C1(Ω × R × Rn) and C ⊂ C1(Ω) be an admissable set. If
Φ ∈ C is local minimizer of J(Φ) in C , then Φ satisfies the weak Euler-Lagange equation
given by∫

Ω

(
∂ΦL(x,Φ(x),DFΦ(x))η(x) + ∂DFΦL(x,Φ(x),DFΦ(x)) ·DFη(x)

)
dx = 0

for all η ∈ C∞(Ω).

Now let us state the Fundamental Lemma of Calculus of Variations

Lemma 3.1.14. If f ∈ C(Ω) satisfies∫
Ω

Φ(x)η(x) dx = 0 for all η ∈ C∞(Ω),

then Φ ≡ 0 on Ω.

Theorem 3.1.15. Let L ∈ C2(Ω×R×Rn) and Φ ∈ C1(Ω) be an admissable set. If Φ ∈ C
is local minimizer of J(Φ) in C and Φ ∈ C2(Ω), then Φ solves the classical Euler-Lagrange
equation given by

∂ΦL(x,Φ(x),DFΦ(x)) +
d

dx
∂DFΦL(x,Φ(x),DFΦ(x)) = 0

for all x ∈ Ω.

3.2 Variational Formulation of an Inertial Problem

To obtain equations of motion in mechanics of continua the same variational principles
are used as in the case of discrete models. It is about their generalizations to an infinite
dimensional space.

49

3. Mathematical Modeling

First it is necessary to find the first variation of the relevant functional δJ(q(t))

δJ(q(t), t) ≡ (DFJ(q(t), t);η(t)) = GJ(q(t), t)(η(t)) =
d

dε
J(q(t) + εη(t), t)|ε=0,

where εη(t) denotes a variation of the function q(t) and resulting functional gradient is
the first variation of J(q(t), t), where the inner product is the standard L2 inner product
for real functions in Hilbert spaces, (f ; g) =

∫
f(x)g(x) dx.

Theorem 3.2.1. Let q(t) : [t0, t1]→ Rn be a function of class C2[a, b] satisfying the bound-
ary conditions q(t0) = q1,q(t1) = q1. Then the first variation of the functional J(q, t) is
given by the functional gradient, and leads to the form of Euler-Lagrange equations.

δJ(q(t), t) ≡ ∂qL(q(t), ∂tq(t), t)− d

dt
(∂∂tqL(q(t), ∂tq(t), t)) ,

where L(q(t), ∂tq(t), t) ∈ C2[a, b] is the associated Lagrangian.

Proof. Let η(t) ∈ C2[a, b] be a variation of q(t). Then η(t) : [t0, t1] → Rn satisfies the
boundary conditions q0 = q(t0) + εη(t0) and q1 = q(t1) + εη(t1). By definition, the first
variation of J(q(t), t) is given by the inner product

δJ(q(t), t) ≡ (DFJ(q(t), t);η(t)) =
d

dt
J(q(t) + εη(t), t)

∣∣∣∣
ε=0

=
d

dε

(∫ t1

t0

L(q(t) + εη(t), ∂tq(t) + ε∂tη(t), t) dt

) ∣∣∣∣
ε=0

=

∫ t1

t0

d

dε
L(q(t) + εη(t), ∂tq(t) + ε∂tη(t), t)

∣∣∣∣
ε=0

dt

for ε ∈ R. Applying the chain rule and evaluating at ε = 0 it yields

(DFJ(q(t), t);η(t)) =

∫ t1

t0

(
η(t)∂q+εηL(q(t) + εη(t), ∂tq(t) + ε∂tη(t), t) +

+ ∂tη(t)∂∂tq+ε∂tηL(q(t) + εη(t), ∂tq(t) + ε∂tη(t), t)
)∣∣∣∣

ε=0

dt

=

∫ t1

t0

(
η(t)∂qL(q, ∂tq, t) + ∂tη(t)∂∂tqL(q, ∂tq, t)

)
dt,

where∫ t1

t0

∂tη(t)∂∂tq(t)L(q(t), ∂tq(t), t) dt =
(
η(t)L(q(t), ∂tq(t), t)

)∣∣∣∣t1
t0

−

−
∫ t1

t0

η(t)
d

dt

(
∂∂tqL(q(t), ∂tq(t), t)

)
dt.

50

3.2. Variational Formulation of an Inertial Problem

In the equations above q(t) + εη(t) and q(t) satisfy the same boundary conditions
η(t0) = η(t1) = 0. Thus respective inner product leads to

(DFJ(q(t), t);η(t)) =

∫ t1

t0

(
η(t)∂qL(q, ∂tq, t)− η(t)

d

dt

(
∂∂tqL(q(t), ∂tq(t), t)

)
dt

=

∫ t1

t0

η(t)

(
∂qL(q, ∂tq, t)−

d

dt

(
∂∂tqL(q(t), ∂tq(t), t)

))
dt⇒

⇒
∫ t1

t0

η(t)DFJ(q(t), t) =

∫ t1

t0

η(t)

(
∂qL(q, ∂tq, t)−

d

dt

(
∂∂tqL(q(t), ∂tq(t), t)

))
dt.

Respective equality must hold for all choices of η(t). Thus we get

δJ(q(t), t) = ∂qL(q, ∂tq, t)−
d

dt

(
∂∂tqL(q(t), ∂tq(t), t)

)
.

In order to be a critical function, q(t) must satisfy δJ(q(t), t) = 0. The majority
of problems in the calculus of variations involve finding a local minima of functionals,
satisfying Euler-Lagrange equations is a condition which will be required for a solution.

Hamilton’s Variational Principle for Structural Dynamics

Hamilton’s principle and Hamilton’s law of varying action in elastodynamics are deduced
from an analogy to the Lagrangian form of D’Alembert’s principle. The analogy in elasto-
dynamics corresponds to the Bubnov Galerkin weighted residual form, which leads to the
principle of virtual work.

It takes a double weighted residual statement in space and time domain. Once dis-
cretization in space is carried out in the sense of Galerkin projection, Hamilton’s principle
or Hamilton’s law of varying action naturally results in a weighted residual form in time,
and the governing equation in time equals the finite element equation of motion. It can be
stated for an arbitrary continuous medium, restricted only by the assumption that it does
not exhibit microstructural effects.

Such a variational principle is one of the most widely used variational techniques in
the dynamics. His formal derivation can be done from the first law of thermodynamics as
its natural consequence. The application of Hamilton’s variational principle is extensively
addressed by A. Bedford in [4] or J. Har and K. Tamma in [41].

In order to obtain a more general variational form for finite element discretization ap-
plicable to a wider group of material models such as viscoelastic or thermoelastic materials,
it is necessary to use the postulate of balance of energy from the first law of thermodynamics
derived in chapter 2.4.2, which says

d

dt

∫
BX

%Xe dV =

∫
BX

S : Ė dV︸ ︷︷ ︸
deformative power

+

∫
BX

%Xrh dV −
∫

BX

Div qX dV,

51

3. Mathematical Modeling

where the last two terms are neglected here. Then Hamilton’s variational principle ex-
pressed in the form of virtual powers leads to the following expression:

δ

∫ τ

τ−∆τ

(KP + UP + UP,C) dτ = 0, (3.5)

where power functional KP : KP → R represents kinetic power and functional UP : UP → R
represents powers of an internal (deformative power) and external forces, UP,C : UP,C → R
represents constraint contact forces, respectively. Variation ofKP and UP have the following
form:

δKP =

∫
BX

%XA · δV dV, δUP =

∮
∂BX

P · N̂ · δV dS +

∫
BX

%XB · δV dV −
∫

BX

S : δĖ dV.

Equation 3.5 can be rewritten to the standard form using Lagrangian LP → R as
follows: ∫ τ

τ−∆τ

δLP dτ = 0, δV(τ −∆τ) = δV(τ) = 0.

Equation 3.6 is then used for finite element discretization, where the test function
representing velocity field is used as δV ∈ C∞ ([τ −∆τ, τ]× Ω;R3). The resulting set of
nonlinear ODE (shortcut of the Ordinary Differential Equations) of the second order is
then used for explicit time integration considered in the thesis.

3.3 The Finite Element Method

Consider the approximation of the geometry of the body B in the initial configuration,
where continuous body is subdivided into ne finite elements in configuration Ωe ⊂ Ω

B ≈ Ω =
ne⋃
e=1

Ωe. (3.6)

The boundary of the region ∂Ω is composed of the curves or areas ∂Ωe of the elements
Ωe : ∂Ω =

⋃nr
e=1 ∂Ωe, which generally approximate the real geometry of the boundary ∂B

without an overlapping of finite elements. Let us define a finite element (see [17]):

Definition 3.3.1. Let

(i) K ⊆ Rn is a bounded closed set with nonempty interior and piecewise smooth bound-
ary (the element domain Ωe),

(ii) P is a finite-dimensional space of functions on K (the space of shape functions) and

(iii) N = {N1,N2, . . . ,Nk} is a basis for P ′ (the set of nodal variables).

Then (K,P ,N) is called a finite element.

52

3.3. The Finite Element Method

It is implicitly assumed that the nodal variables, Ni, lie in the dual space of some larger
function space, e.g., a Sobolev space.

Definition 3.3.2. Let (K,P ,N) be a finite element. The basis {ψ1, ψ2, . . . , ψk} of P dual
to N (i.e., Ni(ψj) = δij) is called the nodal basis of P .

Lemma 3.3.3. Let P be a d-dimensional vector space and let {N1,N2, . . . ,Nd} be a subset
of the dual space P ′. Then the following two statements are equivalent.

(a) {N1,N2, . . . ,Nd} is a basis for P ′.

(b) Given v ∈ P with Niv = 0 for i = 1, 2, . . . , d, then v = 0.

Proof. Let {ψ1, . . . , ψd} be some basis for P . {N1, . . . ,Nd} is a basis for P ′ if given any L
in P ′,

L = α1N1 + · · ·+ αdNd, d = dim P = dim P ′.

This equation is equivalent to

yi ≡ L(ψi) = α1N1(ψi) + · · ·+ αdNd(ψi), i = 1, . . . , d.

Let B = (Nj(ψi)), i, j = 1, . . . , d. Thus (a) is equivalent to Bα = y is always solvable,
which is the same as B being invertible.

Given any v ∈ P , we can write v = β1ψ1 + · · ·+ βdψd. Niv = 0 means that β1Ni(ψ1) +
· · ·+ βdNi(ψd) = 0. Therefore, (b) is equivalent to

β1Ni(ψ1) + · · ·+ βdNi(ψd) = 0, for i = 1, . . . , d⇒ β1 = · · · = βd = 0.

Let C = (Ni(ψj)), i, j = 1, . . . , d. Then (b) is equivalent to Cx = 0 only has trivial
solutions, which is the same as C being invertible. But C = BT . Therefore, (a) is
equivalent to (b).

Definition 3.3.4. We say that N determines P if ψ ∈ P with N(ψ) = 0 ∀N ∈ N implies
that ψ = 0.

Lemma 3.3.5. Let P be a polynomial of degree d ≤ 1 that vanishes on a hyperplane L
(x : L(x) = 0, where L is a non-degenerate linear function). Then we can write P = LQ,
where Q is a polynomial of degree (d− 1).

Using the basic paradigm of the FEM leads to the selection of such interpolation func-
tions in order to approximate the primary field of variables, namely the displacement field
in deformation variant of FEM. Hence the exact solution of the mathematical model is
approximated within one finite element by

u(X) ≈ u(X) =
n∑
i=1

Ni(X)ui, (3.7)

53

3. Mathematical Modeling

where X denotes the position vector with respect to the initial configuration in Ωe, Ni(X)
are the shape functions which are defined in Ωe and the unknown nodal quantities of the
primary variable are represented by ui.

The basic requirement for the choice of the approximation uh is the convergence of the
finite element solution to the true solution of the underlying partial differential equation.
For convergence reasons, these functions have to be completed up to the approximation
order. From the perspective of application to nonlinear problems and widespread in engin-
eering practice the isoparametric finite elements are considered. Interpolation of geometry
and of the kinematic variables is performed in the classical concept of the natural coordin-
ate as follows:

Xe =
n∑
i=1

Ni(ξ)Xi, xe =
n∑
i=1

Ni(ξ)xi. (3.8)

The mapping of an element from the initial configuration Ωe to the current configura-
tion φB(Ωe) is performed using the approximate deformation map φΩ which is described
by φB,e to show its relation to a specific finite element Ωe. For the mapping, the deforma-
tions gradient Fe related to the element as a discrete version of the continuum mechanical
description is required

Fe = jeJ
−1
e and Je = det Fe =

det je
det Je

. (3.9)

The deformation gradient Fe is defined by the isoparametric mapping from reference
configuration to the initial configuration Ωe and to the current configuration φB(Ωe), thus

je = Gradξ xe = ∂ξx =
n∑
i=1

Ni,ξ(ξ)xi ⊗ Eξ,

Je = Gradξ Xe = ∂ξX =
n∑
i=1

Ni,ξ(ξ)Xi ⊗ Eξ (3.10)

3.4 Numerical Threatment of Solution to Problems in
Structural Dynamics

Obtaining an analytical solution of IBVP is very difficult or even impossible due to the
complexity of the respective problem, but in simple cases it provides a good tool for the
verification and validation of the numerical model, which comes from the numerical ap-
proximation by means of suitable numerical methods.

In the field of statics and dynamics of structures it mostly concerns to FEM for dis-
cretization of the space domain into the FE subdomains and the Finite Difference Method
(FDM), which is frequently used for discretization in the domain of time. The technique
when the spatial discretization using FEM is performed as first and discretization of time
domain by FDM is performed subsequently is called the Method of Lines, which oppose to
the Method of Rothe. The method of lines is considered.

54

3.4. Numerical Threatment of Solution to Problems in Structural Dynamics

3.4.1 Numerical Solution to a Set of Semidiscrete Nonlinear Orin-
ary Differential Equations of the Second Order

Cauchy’s equations of motion represent a dynamic equilibrium in the current configuration
of a body Bt. Respective body Bt is represented by the domain of its finite element
discretization Ω. If the given equations of motion are nonlinear, then the resulting form
of semidiscrete nonlinear ordinary differential equations (ODE) of the second order is thus
the following:

Mü + f int(u) = fext(u) ∈ Ω. (3.11)

Integration methods are classified according to the structure of the time difference
equation. The difference equations for first and second derivatives, respectively, can be
written in the general functional expressions (see [7])

m∑
i=0

(
αiu

m−i −∆tβiu̇
m−i) = 0,

m∑
i=0

(
αiu

m−i −∆t2βiü
m−i) = 0,

where m is the number of steps in the difference equation. The difference formulas for the
first or second derivatives are called explicit if β0 = β0 = 0. Thus a difference formula is
called explicit if the equation for the function at time step m involves only the derivatives
at previous time steps. In the explicit central difference formula for the second derivative
β0 = β2 = 0 and β1 = 1, respectively.

Incremental form of 3.11 is obtained by subtracting two equations 3.11 expressed for
the two subsequent time levels τ and τ −∆τ , respectively. It leads to the following form:

M∆ü + ∆f int −∆fext = ∆f ∈ Ω. (3.12)

The nonlinear behaviour of the body from a global view is expressed through the
residual forces ∆f|Ω, which are produced by the imbalance between the internal forces
f int|Ω, forces induced by the mass fmass|Ω = Mü and external forces fext|Ω, respectively.
This imbalance at time τ can be eliminated by linearizing of these residual forces around
the current equilibrium state, where suitable norm of residual forces is less than or equal
to some tolerance ‖∆f|Ω‖ ≤ ε.

The linearization is carried out by the expansion of the Taylor’s polynomial considering
the first variation only. It can be expressed in the following compact form using the
tangential operators (see [93]):

i+1[∆f]τΩ ≈ i[∆f]τΩ +
i[JT

]τ
Ω
· i+1[∆u]τΩ

≈ i[∆f]τΩ +

iM∂uü︸ ︷︷ ︸
M∆ü

+KT + DT∂uu̇︸ ︷︷ ︸
∆fint

− FT︸︷︷︸
∆fext

τ
Ω

·
[
i+1u− iu

]τ
Ω
,

where KT
Ω = ∂uf int represents the tangent stiffness matrix, DT

Ω = ∂u̇f int is the tangent
damping matrix related to the structural damping represented by the viscous part in

55

3. Mathematical Modeling

appropriate material model, FT
Ω = ∂ufext is the tangent operator representing the effect

of the change of position of the external forces and JT
Ω is the compact Jacobian tangent

operator
i[JT

]τ
Ω
≡ i[∂u∆f]τΩ =

i[M∂uü + KT + DT∂uu̇− FT
]τ

Ω
.

The acceleration and the velocity must be expressed through a linear approximation
in finite differences. The approach above is focused on common solution by the implicit
direct numerical time integration methods of equations of motion. This applies especially
to the methods such as Newmark-β method, Houbolt’s method, Wilson-θ method, or other
implicit methods. The linearization of residual forces by tangential operators is used by
the diverse numerical methods for a solution of nonlinear algebraic equations, which are
generated by the mentined methods.

The situation gets easier when using one of the available explicit time integration al-
gorithms. The difference formula is called explicit if the equation for the function at time
step m involves only the derivatives at previous time steps.

It concerns primarily the central differential method and to the explicit form of the
Newmark-β method. In this algorithm, the size of increment in deflections is explicitly
composed, hence the deformation gradient. It is further used for a strain and stress tensor
composition. The major phase in an explicit time integration algorithm of equations of
motion is an integration of an internal forces in each time increment, where assembly of
an expensive tangential operators coming from the linearized form of energetic functionals
is not required compared to the implicit time integration algorithms.

The explicit time integration algorithm in this case uses a member of the first law of
thermodynamics (conservation of energy) that expresses the deformation power for de-
termination of the internal forces. It is a rate of change of the strain energy written as (see
[133], [7])

Ė ≡
∫

BX

PT : L dV =

∫
BX

PT : Grad V dV =

∫
BX

S : Ė dV. (3.13)

Then the increment in the strain energy ∆E for a time interval [τ −∆τ, τ], where
Eτ = Eτ−∆τ + ∆E gets the form ∆E = Eτ −Eτ−∆τ ≡

∫ τ
τ−∆τ

(∫
BX

Sτ : Ė dV
)

dt. Thus the
following term expresses the rules for a gaining of an internal forces in na explicit approach
as time τ proceed

Eτ = Eτ−∆τ +

∫
BX

Sτ : ∆E dV, Sτ = %X∂EτΨ (Eτ) . (3.14)

In the case of small strain linear elastic material model considered in the thesis, the
term 3.14 gets the following form:

Eτ = Eτ−∆τ +

∫
BX

στ : ∆ε dV, στ = %∂ετΨ (ετ) = Cijkl : ετ , (3.15)

56

3.4. Numerical Threatment of Solution to Problems in Structural Dynamics

where σ and ε represents corotated Cauchy’s stress tensor and corotated small strain
tensor, respectively. Respective tensors are composed in Eulerian coordinates as updated
Lagrangian formulation suggest. The rest of the used explicit time integration algorithm
is presented in chapter 3.5.

In an explicit approach, mass matrix M must be considered in its diagonalized form
(ie. lumped mass matrix). The update of the nodal velocities and nodal displacements can
then be accomplished without solving any equations provided that the mentioned mass
matrix M is diagonal.

3.4.2 A C0 Triangular Shell Finite Element with Corotational Co-
ordinates

For the purpose of designing and testing a hybrid-parallel computing model of an expli-
cit numerical solver related to the problem solution of nonlinear dynamics using FEM,
an effective triangular shell finite element developed and published by T. Belytschko, H.
Stolarski and N. Carpenter in 1984 (see [8]) as complement to the Belytskchko-Lin-Tsay
quadrilateral shell element (see [6]) is applied with corotational coordinates for small strain
and large rotation kinematics (see [58], [5]).

It is a plate element of the Reissner-Mindlin type (see [103]), which uses linear fields
for rotations and transverse deflections. The element only requires a single quadrature
point which reduces the number of computations, which is very attractive for non-linear
analysis which is here in the main focus with respect to explicit dynamics. The accuracy
is similar to the 4-node bilinear Mindlin plate and its rate of convergence is approximately
of quadratic order as noted in [8].

Ωe

1

2

3

L1 = 0.8
L1 = 0.6

L1 = 0.4
L1 = 0.2

L1 = 1.0

a1

h1
h11

L1

L1 = 0.0
1

Ωe

η

ξ

2(1, 0)

3(0, 1)

1(0, 0)

Figure 31: Area and natural coordinates of Lagrangian triangular 3-noded element.

57

3. Mathematical Modeling

The respective triangular finite element is also implemented, e.g. in commercial FEM
software LS-DYNA or in free and open-source software project Impact. The respective
element represents the Lagrangian triangular element. As a basis of this element is a
standard triangular three-node isoparametric finite element with a linear approximation
polynom is used (see [136]). The process of deriving the base functions of respective element
is thus straightforward. The area coordinates for FE nodes are as follows:

Li =
hi
hii

=
1
2
hiai

1
2
hiiai

=
Ai
A
,

3∑
i=1

Li = 1, x =
3∑
i=1

xiLi, y =
3∑
i=1

yiLi. (3.16)

The statement 3.16 is then rewritten to the following form to get inverse mapping: 1
x
y

 =

 1 1 1
x1 x2 x3

y1 y2 y3

 ·
 L1

L2

L3

→
 L1

L2

L3

 =
1

2A

x2y3 − x3y2 y2 − y3 x3 − x2

x3y1 − x1y3 y3 − y1 x1 − x3

x1y2 − x2y1 y1 − y2 x2 − x1

 ·
 1

x
y

 .
The base functions Ni◦ξ(ξ, η) are obtained by simple translation from Li(x→ ξ, y→ η)

to Ni(ξ) with a simple change of coordinates

L1(ξ, η)→ N1(ξ) = 1− ξ − η, L2(ξ, η)→ N2(ξ) = ξ, L3(ξ, η)→ N3(ξ) = η.

Base e of corotated coordinate frame of triangular finite element is obtained as follows:

ex̂ = X2,1 − X1,1, eŷ′ = X3,2 − X1,2, eẑ = ex̂ × eŷ′ ,

where Xi,j denotes j-th coordinate of coordinate vector X of a finite element node i in a
global reference frame defined by the base E. The respective base vectors are normalized
as follows:

êẑ =
eẑ
‖eẑ‖

, êx̂ =
ex̂
‖ex̂‖

, êŷ = êẑ × êx̂.

Pursuant the obtained base of the corotated coordinate system, a transition (trans-
formation) matrix from base ê to base E can be assembled Te = [êx̂|êŷ|êẑ]. Transition
matrix is then used to transform all vectors from global coordinate system to corotated
coordinate system of the respective element. This mainly applies to the position vector
x̂i = TeXi, velocity vector v̂i = TeVi and angular velocity vector θ̂i = TeΘi of all element
nodes i. Jacobian is defined as follows:

je = Gradξ xe = ∂ξx =
n∑
i=1

Ni,ξ(ξ)x̂i ⊗ êξ,

thus

je =

[
∂ξx1 ∂ηx1

∂ξx2 ∂ηx2

]
=

[
x̂2 − x̂1 x̂3 − x̂1

ŷ2 − ŷ1 ŷ3 − ŷ1

]
,

det je = 2A = (x̂2 − x̂1)(ŷ3 − ŷ1)− (x̂3 − x̂1)(ŷ2 − ŷ1),

j−1
e =

[
∂x1ξ ∂x2ξ
∂x1η ∂x2η

]
=

1

det je

[
∂ηx2 −∂ηx1

−∂ξx2 ∂ξx1

]
=

1

det je

[
ŷ3 − ŷ1 x̂1 − x̂3

ŷ1 − ŷ2 x̂2 − x̂1

]
.

58

3.4. Numerical Threatment of Solution to Problems in Structural Dynamics

Considering a simple way of defining the local system of triangular element proposed
by Belytschko et al. (see [8]), where x̂1 = ŷ1 = ŷ2 = 0, and based on the previous relations,
it is possible to express and quantify the derivatives of the element shape functions as
follows:

∂x1Ni(ξ) = ∂ξNi∂x1ξ + ∂ηNi∂x1η =
1

x̂3ŷ3

[
−ŷ3 ŷ3 0

]T
,

∂x2Ni(ξ) = ∂ξNi∂x2ξ + ∂ηNi∂x2η =
1

x̂3ŷ3

[
x̂3 − x̂2 −x̂3 x̂2

]T
.

The nodal degrees of freedom of the respective finite element are velocities of the
midplane v̂xm, v̂ym, v̂zm and angular velocities θ̂x, θ̂y, θ̂z. Then the rate forms of the strain-
displacement equations are then as follows:

ε̇x = ∂xv̂
m
x + z∂xθ̂y, ε̇y = ∂yv̂

m
y − z∂yθ̂x,

2ε̇xy = ∂yv̂
m
x + ∂xv̂

m
y + z (∂yv̂y − ∂xv̂x) , 2ε̇xz = ∂xv̂

m
z + θ̂y, 2ε̇yz = ∂yv̂

m
z − θ̂x.

Here ε̇α,β denotes the rate of deformation (strain rate). Strain rates ε̇x, ε̇y and ε̇xy are
in-plane strains and arise from bending and stretching of the shell element. Strains ε̇xz
and ε̇yz denote transverse shear strains, then ε̇ = Bv̂, where B and v̂ denote derivatives
of the nodal interpolation functions and nodal velocities, respectively. Strain rates are
partitioned into membrane and bending. The membrane contributions ε̇m = Bmv̂ are
given by as follows:

 ε̇mx
ε̇my

2ε̇mxy

 =
1

x̂2ŷ3

 ŷ3 0 ŷ3 0 0 0
0 x̂3 − x̂2 0 −x̂3 0 x̂2

x̂3 − x̂2 −ŷ3 −x̂3 ŷ3 x̂2 0

 ·

v̂x̂1

v̂ŷ1

v̂x̂2

v̂ŷ2

v̂x̂3

v̂ŷ3

 ,

and bending contributions κ̇ = Bbθ̂
def

are given as follows:

 κ̇x
κ̇y

2κ̇xy

 =
−1

x̂2ŷ3

 0 −ŷ3 0 ŷ3 0 0
x̂3 − x̂2 0 x̂3 0 −x̂2 0

ŷ3 x̂3 − x̂2 −ŷ3 −x̂3 0 x̂2

 ·

θ̂defx̂1

θ̂defŷ1

θ̂defx̂2

θ̂defŷ2

θ̂defx̂3

θ̂defŷ3

,

Then the local element strain rates ε̇ = ε̇m − zκ̇ are then obtained by combining the
above two relation ε̇x

ε̇y
2ε̇xy

 =

 ε̇mx
ε̇my

2ε̇mxy

− z
 κ̇x

κ̇y
2κ̇xy

 .
59

3. Mathematical Modeling

The remaining transverse shear strain rates ε̂s = Bsθ̂
def

are given as follows:[
2ε̇xz
2ε̇yz

]
=

1

6x̂2ŷ3[
−ŷ2

3 ŷ3 (2x̂2 + x̂3) ŷ2
3 ŷ3 (3x̂2 − x̂3) 0 x̂2ŷ3

ŷ3 (x̂2 − 2x̂2) x̂2
2 − x̂2

3 −ŷ2
3 (x̂2 + x̂3) x̂3 (x̂3 − 2x̂2) −3x̂2ŷ3 x̂2 (2x̂3 − x̂2)

]
·

·
[
θ̂defx̂1

θ̂defŷ1
θ̂defx̂2

θ̂defŷ2
θ̂defx̂3

θ̂defŷ3

]T
.

Angular velocities θ̂
def

= θ̂ − θ̂rig are the deformation components of the angular
velocity θ̂, which is obtained by subtracting the rigid body rotations θ̂

rig
.

The key feature here, providing numerous simplifications, is the use of corotational
coordinate system in each element. The corotational coordinate system is embedded in
the element so that it rotates with the element. The coordinates remain embedded in this
manner throughout the deformation of the elements, so that they rotate but do not deform
with the elements. This type of formulation can accurately handle any magnitude of rigid
body rotations and very large extensional strains.

The nodal coordinates Xt+∆t of the deformed body Bt can be calculated from those of
the undeformed state X0 of the body Bt0 . This is achieved by adding the displacements
Xt+∆t = X0 + ut+∆t.

The calculation of the deformatoric displacements udef,t+∆t is sufficient to transform
the coordinates into a rotated system parallel to the element coordinate system with origin
in global origin udef,t+∆t = TXt+∆t − T0X0.

In the sense of the corotational formulation the relation between strain and nodal
displacements has become non-linear, small strains in the discretized form are defined as
follows:

εt+∆t = Blinu
def,t+∆t = Blin

[
T(ut+∆t)(X0 + ut+∆t)− T0X0

]
.

The general form of the the matrix B is obtained as the derivative of the strain with
respect to the global nodal displacements

B = ∂ut+∆tεt+∆t = ∂ut+∆t

[
Blin

(
T(ut+∆t)(X0 + ut+∆t)− T0X0

)]
= Blin

[
∂ut+∆tT(X0 + ut+∆t) + T(ut+∆t)

]
.

Based on the variational form of the Cauchy’s equations of motion, the energy functional
related to the internal nodal forces in the global system can be written in its discretized
form as follows:

ft+∆t
int =

∫
Ωe

BTσt+∆t dv =

∫
Ωe

[
∂ut+∆tT(X0 + ut+∆t) + T(u)

]T
BT
linσ

t+∆t dv

ft+∆t
int =

∫
Ωe

[
(X0 + ut+∆t)T∂ut+∆t,TTT + TT

]
BT
linDBlin

[
T(X0 + ut+∆t)− T0X0

]
dv

ft+∆t
int =

[
(X0 + ut+∆t)T∂ut+∆t,TTT + TT

] ∫
Ωe

BT
linσ

t+∆t dv. (3.17)

60

3.4. Numerical Threatment of Solution to Problems in Structural Dynamics

In an explicit form of FEM, where the new displacements are assembled on the basis of
an explicit integration algorithm of the equations of motion from the internal, external and
contact forces from the preceeding time step t −∆t, computation of the strain rates, the
nodal rotations must be converted to deformation nodal rotations. The calculation of the
rigid body rotation can be obtained on the basis of the Kirchhoff structure in the following
formulas:

2ε̇yz ≡ ∂ŷv̂
m
z − θ̂x = 0 ⇒ θ̂x = ∂ŷv̂

m
z ,

2ε̇xz ≡ ∂x̂v̂
m
z + θ̂y = 0 ⇒ θ̂y = −∂x̂v̂mz ,

then the approximation has the following form:

θ̂rig = ∂x̂N(ξ)v̂ =
n∑
i=1

Ni,ξ(ξ)v̂i ⊗ êξ ⇒

⇒

[
θ̂rigx̂
θ̂rigŷ

]
=

[
∂x̂1N1(ξ) ∂x̂1N2(ξ) ∂x̂1N3(ξ)
∂x̂2N1(ξ) ∂x̂2N2(ξ) ∂x̂2N3(ξ)

]
·

v̂ẑ1

v̂ẑ2

v̂ẑ3

 . (3.18)

From 3.18 imply the following formulas expressing the rigid body rotations:

θ̂rigx̂ =
1

x̂2ŷ3

(
(v̂ẑ3 − v̂ẑ1) x̂2 − (v̂ẑ2 − v̂ẑ1) x̂3

)
, θ̂rigŷ =

1

x̂2

(v̂ẑ1 − v̂ẑ2) . (3.19)

These are constants and considered properties of the C0 triangular element. These
relations hold true for the corresponding velocity terms (see [136]). Equation 3.17 is there-
fore considerably simplified in terms of the explicit integration algorithm of equations of
motion as follows:

ft+∆t
int =

∫
Ωe

udef,t+∆t,TBTDBudef,t+∆t dv,

where udef,t+∆t = ut+∆t − urig,t+∆t, and B is assembled in corotated coordinate system.
The LS-DYNA theoretical manual (see [39]) provides an alternative approach for ob-

taining formula of rigid body rotation θ̂rigx which is shown in the Fig. 32. The resulting
formulas for θ̂rigx and θ̂rigŷ are then the same as in 3.19. This approach for obtaining θ̂rigx̂
contemplates the determination of a rigid body rotation around the x̂-axis based on the
linear interpolation between the two utmost locations of element node 3

θ̂rigmin x̂ =
1

ŷ3

(v̂ẑ3 − v̂ẑ1) , θ̂rigmax x =
1

ŷ3

(v̂ẑ3 − v̂ẑ2) ,

θ̂rigx̂ = θ̂rigmin x̂

(
1− x̂3

x̂2

)
+ θ̂rigmax x̂

x̂3

x̂2

.

The last part is the determination of the shell strains εt+∆t, appropriate Cauchy’s
stresses σt+∆t, updated shell thickness ht+∆t and an integration of respective internal forces

61

3. Mathematical Modeling

1

2

3

1

2

3Ωe

Ωe

x̂

ŷ
ẑ

x̂

ŷ
ẑ

Figure 32: Element configuration for obtaining formula of rigid body rotation θ̂rigx .

n and m. Cauchy’s stresses are computed in the local (corotated) coordinate system

εt+∆t = εt +

∫ t+∆t

t

ε̇
(
udef,t

)
dt = εt + ∆ε,

σt+∆t = %∂εt+∆tΨ
(
εt+∆t

)
= Cijkl : εt+∆t,∫ t+∆t

t

(∫
Ωe

tr ε̇ dv

)
dt→ ht+∆t = ht +

∫ z

0

ν

E

(
σt+∆t
x + σt+∆t

y

)
dz

= ht
(

1 +
−ν

1− ν
(εt+∆t
x + εt+∆t

y)

)
,

where the constitutive matrix Dij related to Hooke’s constitutive elasticity tensor Cijkl for
homogeneous isotropic linearly elastic material, where Poisson’s ratio ν for most common
materials falls into the range (0, 0.5). Due to the symmetries Cijkl = Cklij = Cijlk = Cjilk,
constitutive matrix Dij has the following form:

Cij�kl → Dij =
E

1− ν2

1 ν 0 0 0
ν 1 0 0 0

0 0
1− ν

2
0 0

0 0 0
5

12
(1− ν) 0

0 0 0 0
5

12
(1− ν)

.

The internal forces n andm are the integrated from the appropriate stresses in t+ ∆t.
Respective integration is expressed by the following formal form:

nx =

∫ h
2

−h
2

σx dz, ny =

∫ h
2

−h
2

σy dz, nxy =

∫ h
2

−h
2

σxy dz, nxz = hσxz, nyz = hσyz,

mx = −
∫ h

2

−h
2

zσx dz, my = −
∫ h

2

−h
2

zσy dz, mxy = −
∫ h

2

−h
2

zσxy dz.

62

3.4. Numerical Threatment of Solution to Problems in Structural Dynamics

Resultant element-centered forces are related to the local nodal forces through the
principle of virtual power by performing one-point quadrature f̂ = ABT

mn̂m and m̂ =
A
[
BT
mm̂ + BT

s n̂s
]
, thus[

f̂x̂1 f̂ŷ1 f̂x̂2 f̂ŷ2 f̂x̂3 f̂ŷ3

]T
= ABT

m

[
n̂x̂ n̂ŷ n̂x̂ŷ

]T
,[

m̂x̂1 m̂ŷ1 m̂x̂2 m̂ŷ2 m̂x̂3 m̂ŷ3

]T
= ABT

m

[
m̂x̂ m̂ŷ m̂x̂ŷ

]T
+ ABT

s

[
n̂x̂ẑ n̂ŷẑ

]T
.

The remaining ẑ components of nodal forces f̂ i are determinated by the equilibrium
equations representing moment equilibrium about the local x̂-axis equilibrium about the
local ŷ-axis, and force equilibrium in the local ẑ-direction as follows:

m̂x̂1 + m̂x̂2 + m̂x̂3 + ŷ3f̂ẑ3 = 0,

m̂ŷ1 + m̂ŷ2 + m̂ŷ3 − x̂3f̂ẑ3 − x̂2f̂ẑ2 = 0,

f̂ẑ1 + f̂ẑ2 + f̂ẑ3 = 0.

3.4.3 Numerics of Applied Contact Conditions

Among the first contributors who attempted to solve the contact phenomena using FEM
were E.A. Wilson and B. Parsons (see [131], [97]). Later, the first implementation of contact
conditions in numerical solvers was carried out. Among the first of them were DYNA2D
and DYNA3D, using such an explicit approach for the direct integration of equations of
motion, which is the main focus of this study.

In this context since the year 1990 a realistic adequate set of tools to address predictive
vehicle safety design improvements has become available. The two main types of contacts
are generally used for modeling vehicle safety structures. These are component contacts,
such as node-to-panel contacts as well as tied contacts (see [52]).

Node-to-panel contacts are used in connection with crash analysis to ensure that New-
ton’s third law of motion is not violated. Tied contacts are generally used to represent
mechanical connections such as spot welds. Such numerics of the node-to-panel type of
contact is considered here.

Frictionless normal contact constraints are imposed in the variational form of equations
of motion throught the power of contact forces containing constitutive term related to
equation 2.46

δUP,C = δ

(∫
∂BC

εNg(t)2
N dA

)
=

∫
∂BC

εNg(t)Nδg(t)N dA, (3.20)

where εN , εN > 0 denotes penalty parameter related to the constitutive parameter cN in
equation 2.46, and gN(t) denotes time dependent normal gap from equation 2.44

gN(t) =

{
(x2(t)− x̂1(t)) · n̂1 if (x2(t)− x̂1(t)) · n̂1 < 0

0 otherwise.
(3.21)

63

3. Mathematical Modeling

The resulting contact forces are then obtained by integrating the semidiscrete equation
on the time interval [τ −∆τ, τ] as follows:

fcnt|Ωe =

∫ τ

τ−∆τ

εNgN(t) dτ.

64

3.5. The Explicit Time Integration Algorithm

3.5 The Explicit Time Integration Algorithm

Initial conditions for v0,u0,σ0 ∈ Ω, initial
the rest of material state variables and
initialize control variables t and n.

For each integration finite element quadrature node ξQ compute the
rate of strains, stresses and integrate internal forces:
Ln− 1

2 (ξQ),Fn(ξQ),En(ξQ), Sn = %∂Ψ (En, . . .), fn
int|Ωe

← fn
int|Ωe

+ BTSnwQJ.

Conputation of an external forces fn
ext|Ωe,

contact forces fn
cnt|Ωe and resulting forces:

fn|Ωe
= [fint + fext + fcnt]nΩe

→ fn|Ω.

Compute critical time step for each element of
domain Ω and select minimum:
∆te → ∆tmax = γ min {∆te, e = 1, . . . , N}.

Compute acceleration for each node of domain Ω
apply acceleration constrains i on boundary Γaij for
element nodes j:
an = M−1

(
fn − Cvn− 1

2

)
, Γaij

: an
ij = aij (xj , t

n).

Compute time increments required for integration:
tn+ 1

2 = 1
2

(
∆tn + ∆tn+1)

.

Compute nodal velocities, displacements and
update geometry:
vn+ 1

2 = vn− 1
2 + ∆tnan, un+1 = un + ∆tn+ 1

2 vn+ 1
2 ,

Xn+1 = X0 + un+1.

Apply velocity constrains i on boundary Γvij
for

element nodes j:
Γvij

: vn+ 1
2

ij = vij

(
xj , t

n+ 1
2

)
.

Control of energy balance:
|Wkin +Wint −Wext −Wcnt| ≤ ε‖W‖.

Increment step counter n and
time of simulation t:
tn+1 = tn + ∆tn.

Figure 33: Flowchart of an explicit time integration algorithm.

65

3. Mathematical Modeling

The explicit form of the time integration algorithm has developed into a useful tool in
nonlinear problems of transient dynamics. It does not require he construction of expensive
tangential operators as noted in chapter 3.4.1. Thus, it allows a simple treatment of the
different kind of nonlinearities. In the thesis, it involves the consideration of contacts and
large rotating kinematics.

A distinct advantage is the fact that it does not require a large memory storage com-
pared to the implicit time integration methods. On the other hand, a major disadvantage
is then the need for a very small time increment, which makes the solution of a very large
time domains harder. This is the reason why an explicit and implicit approach is often
combined, where a fast, highly nonlinear phenomenon is solved by an explicit algorithm and
consequently an implicit algorithm is used. However, this combination (explicit-implicit
approach) is not considered in the thesis.

Explicit time integration algorithms state the equilibrium at time tn and the displace-
ment in the next step is obtained depending on the velocity and displacement of the
previous step. The time integration of the discrete momentum equations does not require
the solution of any equations.

In this work it is considered that the central difference method with variable time step
as a popular method in computational mechanics. It is used for discretization velocities
and accelerations in the terms of Lagrangian meshes (see [7], [83], [39]). In respective
time integration algorithm it is necessary to control stable time step as the mesh deforms
and the wave speed changes due to the stress. Respective algorithm is shown on Fig. 33,
where the term Cvn− 1

2 represents additional damping forces explicitly included in equations
of motion. Such an expression would be important in the dynamic relaxation numerical
method introduced in 1965 by A.S. Day [21], where the expected result is a steady state
of a structure. In such a method accelerations and velocities are included for numerical
reasons only. This even applies to mass coefficients represented by the mass M and also to
damping coefficients represented by the damping C, which have no physical meaning.

In selection of a mass and damping, it is necessary to ensure resulting transient char-
acteristic of the structure to be close to the criticle damped system. Otherwise in the
dissipative systems, the resulting steady state would not meet the result coming from a
common implicit solution in statics of structures.

The member representing damping forces in numerical solver developed for a solution
of problems in structural dynamics, is not considered. However, including the damping
member in the developed solver is simply possible.

3.6 Numerical Stability

The control of numerical stability in the process of solving a set of non-linear second order
ordinary differential equations by the explicit numerical integration algorithm represents
a critical step due to its conditionally stable character. Possible instability then obviously
leads to an exponential growth of the solution.

66

3.6. Numerical Stability

The large set of ordinary differential equations which are dealt and their strongly non-
linear character disqualify a standard approach through the spectral analysis of the res-
ulting sparse set of simultaneous equations to determine the critical integration time step
except approach which is also used here.

For the previously mentioned reseasons, a simplified approach is used to estimate the
upper bound of the integration time step value, which is based on the acoustic wave
propagation process through an isotropic homogeneous elastic medium. This phenomenon
is generally formulated by the wave equation. The resulting condition is generally known
as Courant-Friedrichson-Lewy condition of stability (see [20]).

%ü = div σ, σ = λ (tr[ε])2 + 2µε, ε =
1

2

(
grad u + (grad u)T

)
,

where σ is Cauchy’s stress, λ and µ (represents the shear modulus of elasticity) are Lamé’s
constants. The resulting equation is then known as a Navier equation whose compact
write has the following form written in index notation (grad f = ∇f = ∇if = ∂if ,
div f = ∇ · f = ∇if = ∂if , curl f = ∇ × f = εijk∇jfk = εijk∂jfk, εijk is Levi-Civita
symbol):

%ü = (λ+ µ)∂i(∂iui) + µ∂i∂iu. (3.22)

If the field of displacements u meets the Helmholtz theorem assumptions, then u can
be decomposed into the sum of a gradient of a scalar potential φ and rotation of a vector
potential ψ

u = ∂iφ+ εijk∂jψk. (3.23)

By the subsequent substitution of 3.23 to 3.22 it leads to the following equation

%∂tt (∂iφ+ εijk∂jψk) = (λ+ µ)∂i

(
∂i (∂iφ+ εijk∂jψk)

)
i
+ µ∂i∂i(∂iφ+ εijk∂jψk) =

= (λ+ µ)

(
∂i

(
∂i(∂iφ)i

)
+ ∂i

(
∂i(εijk∂jψk)i

))
+ µ∂i∂i(∂iφ) + µ∂i∂i(εijk∂jψk) =

= (λ+ µ)∂i(∂i∂iφ) + µ∂i(∂i∂iφ) + µεijk∂j(∂i∂iψ)k =

= ∂i

(
(λ+ 2µ)∂i∂iφ− %φ̈

)
+ εijk∂j

(
µ∂i∂iψ − %ψ̈

)
k

= 0.

The given equation makes sense if both its members are equal to zero

∂i

(
(λ+ 2µ)∂i∂iφ− %φ̈

)
︸ ︷︷ ︸

=0

+εijk∂j

(
µ∂i∂iψ − %ψ̈

)
k︸ ︷︷ ︸

=0

= 0,

therefore we get the two following equations

(λ+ 2µ)∂i∂iφ− %φ̈ = 0⇒ φ̈ =
(λ+ 2µ)

%
∂i∂iφ = c2

l ∂i∂iφ

µ∂i∂iψ − %ψ̈ = 0⇒ ψ̈ =
µ

%
∂i∂iψ = c2

s∂i∂iψ,

67

3. Mathematical Modeling

where cl and cs are longitudinal (compression) and shear waves respectively. Resulting
expressions are

cl =

√
λ+ 2µ

%
and cs =

√
µ

%
.

Let us consider an isotropic homogeneous elastic medium for which we can state the
velocity of longitudinal wave propagation for a plane stress state as follows:

µ =
E(1− ν)

2(1− ν2)
, λ =

Eν

(1− ν2)
,

cl =

√
E

% (1− ν2)

where E is Young’s modulus of elasticity, % is a material density and ν is the Poisson’s
ratio respectively.

As the next step let us consider the length l that characterizes the observed dimension
of respective matter, then from the velocity of the longitudinal wave cl the time of wave
propagation through the respective distance can be simply computed as follows:

t =
l

cl
.

For the purpose of estimation of a stable time step, the approach from [58] is also
incorporated, where detailed derivation of the resulting formulas can be found in appendix
B of respective article. Estimation of the maximum stable time step is based on the
calculation of the maximum eigen-frequencies of the element

ω2
S =

1

M

(
cSa1

A
+
cSA

4α

)
, ω2

B =
D

4αMA

(
R1 +

√
R2

1 − 4 (1− ν2)R2
2

)
, ω2

M =
12αω2

B

h2
,

The parameters used in calculation of eigen-frequencies are defined as follows:

G =
E

2 (1 + ν)

cS = κSGh

R1 = y2
24 + y2

31 + x2
24 + x2

31, R2 = y31x24 − y24x31 = 2A,R3 =
√
R2

1 − 4R2
2

a1 =
1

4
%Ah

D =
Eh3

12 (1− ν2)

α =
1

12

(
h2 + A

)
xij = xi − xj, yij = yi − yj,

68

3.6. Numerical Stability

where h is element thickness, A is element area and κS is shear correction factor. Then the
final value of the eigen-frequency for selected element is obtained according to the following
formula

ω = min {ωS, ωB, ωM}, ωmax = max {ωe, e = 1 . . . N}.

To determine the value of the maximum (critical) time integration step ∆tmax it is
necessary to select the element with the smallest characteristic dimension lmin or maximu
eigen-frequency ωmax, then

∆t ≤ ∆tmax = γ
lmin

cl
= γ

2

ωmax

,

where γ denotes a safety factor, typically with value from interval [0.7, 0.9] and ωmax denotes
the highest eigen-frequency ωmax.

In numerical model with various types of finite elements the critical time step ∆t is
computed separately for each element type. The value of ∆t is calculated either based on
the longitudinal wave propagation or derived eigen-frequency of the finite element as in
the previous case for a C0 triangular finite element. Subsequently the smallest value of
∆t is selected, then ∆tmax = γ min {∆te, e = 1 . . . N}. The calculation of a critical time
step ∆tmax is repeated during the time integration process to ensure numerical stability of
respective dynamic simulation.

In connection with the above, M.N. Neal and T. Belytschko in [89] proposed an ad-
ditional stability control mechanism for nonlinear problems based on an energy balance
check. This concerns primarily to the problems with a dissipative character. Since mater-
ial model used does not provide such characteristic, thus a simple energy balance control
is additionaly used only.

W
n+ 1

2
kin =

1

2

(
vT,n+ 1

2Mvn+ 1
2

)
W n
kin =

1

2

(
W

n+ 1
2

kin +W
n− 1

2
kin

)
W n
ext = W n−1

ext +
∆tnmax

2
vT,n+ 1

2

(
fnext − fn−1

ext

)
W n
int =

∫
Ωe

σn : εn dV

W n
cnt = W n−1

cnt +
∆tnmax

2
vT,n+ 1

2

(
fncnt − fn−1

cnt

)
,

where W n
kin is the current kinetic energy of the system, W n

ext is a current external work
performed on the system, W n

int is the current internal energy for an element and W n
cnt is

the current work of contact forces, respectively. Then an energy balance control has the
form

|Wkin +Wint −Wext −Wcnt| ≤ ε‖W‖,

where and ‖W‖ is a measure of the total energy of the system and ε is a suitable tolerance.

69

3. Mathematical Modeling

3.7 Summary of Chapter

In this chapter the numerical model which is being worked with is introduced. It also inclues
the rough theory of variational calculus, which is critical for the FEM based application to
a numerical solution of problems in the field of structural dynamics. The approach to the
model’s numerics contains a certain amount of generality in some of formulations used.

The introduced effective one-point quadrature C0 triangular shell finite element of
Reissner-Mindlin type and the algorithm for explicit numerical integration of equations
of motion is implemented in a numerical hybrid-parallel testing solver, which will be fur-
ther presented in a later chapters.

70

Chapter 4
Searching in the Euclidean Space

For the purpose of finding a solution to many problems within the scope of computer
science, the respective problem can often be transformed into the task of searching in an
appropriate mathematical space. It often leads to a searching in a trees or graphs that
can be simply assembled and searched due to the discrete character of the data whose
bindings they represent. If these data come from the space of real numbers R, then such
the problem of serching is somewhat more complicated. One of the application areas in
the CM that requires an effective way of searching in such a space of real numbers is the
CCM.

Effective contact implementation requires algorithmic strategy dependent on a complex
knowledge from both an analysis of the relevant mathematical-physical structure of a
problem and an algorithmic maturity of the FEA software developer, as is often the case
in CM.

Due to the considerated generality of a model of contact, the algorithm used must be
applied to all the FE nodes of the FE model, which is the most computationally demanding
process. Due to the rapid improvement of modern computer technology, one can today
apply the tools of computational mechanics to simulate contact/impact mechanisms nu-
merically. Numerical simulation of the Euro NCAP frontal impact of a car with an initial
speed of 64 km/h against a deformable barrier, human joints or implantation of teeth in
biomechanics are examples of the application of non-linear boundary conditions. More
than any of the areas of CM, contact problem is the most closely related to the field of
theoretical computer science through the branch of computational geometry.

The solution to such a problem originates from the philosophy of modern database
software systems that currently allow us to collect huge amounts of data such as images,
music or videos (eg social networks as Facebook, Twitter, atc.), personal data in banking
systems, data from government administration, medical or astronomical data (e.g. SETI,
abbreviation of the Search for Extra-Terrestrial Intelligence), data from other enterprise
software systems (e.g. PDM, abbreviation of the Product Data Management) or for graph-
ical (gaming) engines with the focus on the organization of geometrical data structures.

As a critical task of managing any huge datasets, we can then designate a search of

71

4. Searching in the Euclidean Space

a set of such data that meets our specific requirements. Here, it is important to realize
the fact that such a dataset may contain billions of items that incessantly grows (e.g.
social networks or banking software systems, etc.). Thus, data addition and removal is
also inherently associated with this issue.

A naive way to perform contact detection is an exhaustive check of each body against all
the others without taking advantage of available information about the spatial distribution
of the bodies. Such a computational procedure has very expensive time complexity O(n2),
where n denotes items in dataset. For the 106 of finite element nodes it would mean 1012

of contact checking operations per each integration time step ∆t in the worst case, which
is unuseful.

Here we get to the requirement that any action that we would perform over such a
data structure would be done in logarithmic O(log n) or polynomial O(P (n)), preferably
in linear O(n) or constant O(1) time complexity. The last type of time complexity of
algorithm is practically inaccessible for such search problems under the consideration, and
the penultimate one only with a number of restrictions, those however, limit the generality
of the algorithm. The search algorithm used here is a logarithmic type of time complexity.

The solution to the problem of contact of solids then theoretically falls within the area
of a so-called nearest neighbor (NN) search. The core of such an algorith is here defined
as a collection of n objects (FE nodes) that build a data structure, which provides objects
(FE nodes, FEs, etc.) in the time as fast as possible based on the NN query.

4.1 Nearest Neighbor Searching

The NN problem is of major importance in a number application areas, including data
compression, databases and data mining, information retrieval, searching image datasets,
machine learning, pattern recognition, statistics, and also data analysis.

Given a set S of points in a high-dimensional space, construct a data structure which
given any query point q finds the point in S closest to q. Generally the dimensionality
of the points is usually large as well. The NN problem is an example of a large class of
proximity problems. Problems whose definitions involve the notion of distance between the
input points. Many of these problems were among the first investigated in the branch of
computational geometry mentioned before.

The NN problem can be solved with O(log n) time per query, using only O(n) storage.
However, the growing dimension of the problem leads to growth of algorithm inefficiency.
More specifically, their space or time requirements grow exponentially in the dimension.
The NN problem has a solution with O(dO(1) log n) query time using nO(d) storage space.

The lack of success in removing the exponential dependence on the dimension d led
to conjecture that no efficient solutions exists for these problems when the dimension is
sufficiently large. Removing the exponential dependence on the problem dimension resulted
in its approximation, which, at the end, is the best explanation of the core of NN search
algorithm. The algorithm is allowed to report any point within distance (1 + ε) times the
distance from q to point p.

72

4.1. Nearest Neighbor Searching

The subset of the NN searching problem is the range-searching problem, which is one
of the central problems in the computational geometry. Let S be a set of n points in Rd,
and let R (ranges) be a family of subsets of Rd. The target is to preprocess S into a data
structure, so that for a query range γ, the points in S ∩ γ can be reported or counted
efficiently. Range counting and range reporting are just two instances of range-searching
queries.

For each point p ∈ S, we assign a weight w(p) ∈ S, where (S,⊕) is a commutative
semigroup, w : S → S. For any subset S ′ ⊆ S, let w(S ′) =

∑
p∈S′ w(S). Addition is taken

over the semigroup S. For a query range γ ∈ R, let compute w(S ∩ γ).
Geometric range-searching data structures are constructed by subdividing space into

several regions with some properties and recursively constructing a data structure for each
such region. Range queries are answered with such a data structure by performing a depth-
first search through the resulting recursive space partition. Most of the range-searching
data structures are based on the general scheme, where for the given a point set S the
structure precomputes a family F = F(S) of canonical subsets of S and store the weight
w(C) =

∑
p∈C w(p) of each canonical subset C ∈ F. Then for a query range γ, the query

procedure determines a partition Cγ = C(S, γ) ⊆ F of S ∩ γ and adds the weights of the
subsets in Cγ to compute w(S∩γ). It is a decomposition scheme of a such data structures.
Each canonical subset C = {pi|i ∈ I} ∈ F, where I ⊆ {1, . . . , n}, corresponds to the
generator

∑
i∈I xi. Computation of Cγ and storage of the weights of canonical subsets

depends on the model of computation and on the specific range-searching problem.
In practice, linear-size data structures are predominantly used for these purposes, in-

cluding mainly B-trees and their variants for answering one-dimensional range queries. For
high-dimensional range queries, recursive partitioning into the specific spaces is used. As
a typical example of that spaces in a plane are rectangles, which are used to build a tree.
Example of some the simplest data structures are Quadtree (2D mapping) or Octree (3D
mapping), which are shown in the Fig. 41.

Figure 41: Examples of the Quadtree and Octree map.

Here we are getting to the data structure that is primarily used in this work and it is

73

4. Searching in the Euclidean Space

described later. These are kd-trees that oppose the quadtree. It partitions the enclosing
rectangle into two rectangles drawing a horizontal or vertical line and partitioning each of
the two rectangles independently.

The performance of an appropriate data structure is measured by the time spent in
answering a query, called the query time, by the size of the data structure, and by the
time constructed in the data structure, called the preprocessing time. The respective data
structure is usually constructed only once. However, the situation changes dramatically
when the entire data changes dynamically. This behavior is typical for the numerical
solution using FEM in the case of an analysis of geometrically nonlinear behavior of a solid
structure, where contact can take a place in a completely general form.

4.2 Range Searching in the d-dimensional Space Using
the kd-tree Data Structure

The first such data structure, called kd-trees (d-dimensional tree or dd-tree) was introduced
by J. Bentley from Stanford University CA in 1975 [9] as a powerful extension of one-
dimensional trees. Since then, many other multidimensional data structures have been
developed. It mainly includes R-trees and its various mutations used preferably in spatial
databases (see [80]).

Figure 42: Example of the kd-tree map.

The letter k in the name of data structure denotes the dimensionality of the space being
represented. The kd-tree is a binary tree where the underlying space is partitioned on the
basis of the value of just one attribute at each level of the tree instead of on the basis of
the values of all d attributes, thereby making d tests at each level, as is the case for the
quadtree. The distinction from the quadtree is that, in the kd-tree, only one attribute value
is tested when determining the direction in which a branch is to be made.

Theoretical description

This structure is theoretically well described by K. Mehlhorn in [84]. At every level of
a kd-tree we split the set according to one of the coordinates, where we go through in a
cyclic order. Let Ui, 0 ≤ i < d, be an ordered set and let U = {U0 × · · · × Ud−1}. An

74

4.2. Range Searching in the d-dimensional Space Using the kd-tree Data Structure

element px = {x0, . . . , xd−1} ∈ U is also called point (in geometry) or record (in database).
Components xi are called coordinates or attributes.

The region searching problem is specified by a set Γ ⊆ 2U of regions in U . Four types
of region searching are usually used. Here we use the orthogonal range querie, where Γ is
the set of hypercubes (in general) in U

Γ = {R;R = [`0, h0]× [`1, h1]× · · · × [`d−1, hd−1] where `i, hi ∈ Ui and `i ≤ hi}.

Definition 4.2.1. Let S ⊆ {U0 × · · · × Ud−1} , |S| = n. A kd-tree for S (starting at
coordinate i) is defined as follows

1. If d = n = 1 then it consists of a single leaf labelled by the unique element x ∈ S.

2. If d > 1 or n > 1 then it consists of a root labelled by some element di ∈ Ui and three
subtrees T<, T= and T>. Here T< is a kd-tree starting at coordinate (i + 1) mod d
for set S< = {px ∈ S; px = (x0, . . . , xd−1) and xi < di}, T> is a kd-tree starting at
coordinate (i+ 1) mod d for set S> = {px ∈ S; px = (x0, . . . , xd−1) and xi > di} and
T= is a (d− 1)d-tree starting at coordinate i mod (d− 1) for set S= = {px ∈ S; px =
(x0, . . . , xi−1, xi+1, . . . , xd−1); px = (x0, . . . , xi−1, di, xi+1, . . . , xd) ∈ S}.

Definition 4.2.2.

(i) Let T be a kd-tree and let v be a node of T . Then S(v) is a set of leaves in the
subtree with root vr, d(v) is the depth of node v, and sd(v), the number of pointers
ptr<− and ptr>− on the path from the root vr to v, is the strong depth of v. Node x
is the proper son of node v if it is son via a ptr<− or ptr>− pointer.

(ii) A kd-tree is ideal if |S(x)| ≤ |S(v)|
2

for every node v and all proper sons x of v.

Ideal kd-tree are a generalization of perfectly balanced 1d-trees.

Lemma 4.2.3. Let T is an ideal kd-tree for set S, |S| = n.

(i) d(v) ≤ d+ log n for every node v of T .

(ii) sd(v) ≤ log n for every node v of T .

Proof. (i) follows from (ii) and the fact that at most d ptr=− can be on the path to any
node v. Part (ii) is immediate from the definition of ideal tree.

Theorem 4.2.4. Let S ⊆ U = {U0 × · · · × Ud−1}, |S| = n.

(i) An exact match query in an ideal kd-tree for S takes time complexity O(d+ log n).

(ii) An ideal kd-tree for S can be constructed in time complexity O(n(d+ log n)).

Proof.

75

4. Searching in the Euclidean Space

(i) Immediate from lemma 4.2.3/(i).

(ii) We describe a procedure which constructs ideal kd-tree in time complexity O(n(d+
log n)). Let S0 = {x0; (x0 . . . , xd−1) ∈ S} is the multi-set of 0-th coordinates of S. We
use the linear time median algorithm to find the median d0 of S0. d0 will be the label

of the root. Then clearly |S<| ≤
|S|
2

and |S>| >
|S|
2

where |S<| = {px ∈ S;x0 < d0}
and |S>| = {px ∈ S;x0 > d0}. We use the same algorithm recursively to construct
kd-tree for S< and S> (starting at coordinate 1) and a (d − 1)d-tree for S=. This
algorithm will clearly construct an ideal kd-tree T for S. The bound on the running
time can be seen as follows. In every node v of T we spend O(|S|) steps to compute
the median of a set of size |S(v)|. Furthermore, S(v)∩S(w) 6= ∅ if v and w are nodes
of the same depth and hence

∑
d(v)=l |S(v)| ≤ n for every l, 0 ≤ l ≤ d + log n. Thus

the running time is bounded by

∑
v∈T

O(|S(v)|) = O

 ∑
0≤l≤d+logn

∑
d(v)=l

|S(v)|

 = O(n(d+ log n)).

76

4.2. Range Searching in the d-dimensional Space Using the kd-tree Data Structure

kd-tree Algorithms for Building and Searching

For the purpose of contact detection, the two algorithms are considered to work with the
kd-tree data structure. It consists of its assembly and the subsequent usage to obtain a
set of nodes falling within the respective searching range query γ of the examined node
belonging to that appropriate finite element.

The first part consists of an assembly of the kd-tree map T from the set of nodes Sp,
which in its general form for the d-dimensions represents the following pseudocode.

Algorithm 1: Pseudocode of a building the kd-tree map.
Input : Sp; level ∈ {0, . . . , d− 1}, level, d ∈ N is used to partition Sp
Output: vpx ∈ T

1 Function build_kd_tree(Sp, level)
2 S< = S> = ∅;
3 for px,i in px,i = (xi,0, . . . , xi,d−1) ∈ Sp do
4 µ =

∑
px,i∈Sp

xi,k
|Sp|

, k ∈ {0, . . . , d− 1};

5 if xi,0 ≤ µ then
6 S< ∪ {px,i};
7 else
8 S> ∪ {px,i};
9 end

10 end
11 Make vptr<− left the left child of v, and make vptr>− right the right child of v.;
12 vptr<− ← build_kd_tree(S<, (level + 1) mod d);
13 vptr>− ← build_kd_tree(S>, (level + 1) mod d);
14 return vpx ;

Since the overall contact detection algorithm considers the topology mapping of the
discretized model that takes place at each integration time step, deletion of nodes algorithm
and tree balancing algorithm are not needed. The only other one algorithm is the algorithm
of an application of the range-searching query γ to the kd-tree map. In the algorithm we
traverse the kd-tree, but visit only nodes whose region is intersected by the query rectangle.
When a region is fully contained in the query rectangle, we can report all the points stored
in its subtree. When the traversal reaches a leaf, we have to check whether the point stored
at the leaf is contained in the query region and, if so, report it (see [10]). Range-searching
in a kd-tree map represents the following last pseudocode.

77

4. Searching in the Euclidean Space

Algorithm 2: Pseudocode of a range-searching in the kd-tree map.
Input : v ∈ T root node; γ ∈ R range-searching query region
Output: Cγ ⊆ F subset of nodes meeting the query γ, which means points at

leaves below v ⊆ (γ ∩ Sp)
1 Function search_kd_tree(v, γ)
2 if v is a leaf then
3 Report the point px ∈ v if v ⊆ γ;
4 return Cγ ∪ {px} ∈ Sp;
5 else if reg(vptr<−) ⊆ γ then
6 Reports all the points from the subtree rooted at leaves vptr<− ;
7 return Cγ ∪ (T<(vptr<−)→ {px,i} ∈ Sp);
8 else if (reg(vptr<−) ∩ γ) 6= ∅ then
9 return Cγ∪ search_kd_tree(vptr<− , γ) → {px,i} ∈ Sp;

10 else if reg(vptr>−) ⊆ γ then
11 Reports all the points from the subtree rooted at leaves vptr>− ;
12 return Cγ ∪ (T>(vptr>−)→ {px,i} ∈ Sp);
13 else if (reg(vptr>−) ∩ γ) 6= ∅ then
14 return Cγ∪ search_kd_tree(vptr>− , γ) → {px,i} ∈ Sp;
15 return Cγ ∪ ∅;

78

4.3. Summary of Chapter

4.3 Summary of Chapter

In this chapter an algorithm for consideration of non-linear boundary conditions represen-
ted by the contact phenomena is introduced.

Compared with older algorithms for a solution of contact problem, the proposed al-
gorithm uses topology mapping based on the kd-tree data structure applied in database
software systems or graphical engines for quick processing of the range-searching query
over the d-dimensional data. The developed contact detection algorithm is useful not only
in such problems under the consideration but also in many other application areas that in-
volve contact detection between parts of the system that is simulated such as path planning
in robotics, in molecular dynamics or in phenomenas in astrophysics, etc.

Subsequent post-processing represented by the computation and application of induced
contact forces within the explicit integration algorithm meets the standard approach usu-
ally applied in a number of commercial software packages for the numerical simulation of
crash tests by FEA in the automotive and aviation industries, and also in traffic structure
engineering for the design of a road restraint systems.

79

Chapter 5
Analysis of the Macro Entity

Interaction Multigraph

Bα

Bγ

Bβ

Bounding Boxα

Bounding Boxβ

Bounding Boxγ

Figure 51: The Macro Entity Interaction Multigraph (macro body contact interaction).

The proposed algorithm for the purpose of hybrid-parallel computational processing
strongly relates to the analysis of the motion the individual macro elements in a space
representing the structures interacting with each other through the contact forces.

Nonlinear dynamics is often externally demonstrated by the chaotic behavior providing
the so-called strange attractors. As the source of chaotic behaviour, is here, provided
by mutually interacting deformable bodies, which generate special types of combinatorial
sequences. Such a combinatorial sequence can be defined by so-called unoriented multi-
graph. The topology of such a multigraph can be defined by the spatial distribution of
the interacting bodies. The original spatial multigraph can be isomorfly mapped into a
arbitrary planar form. The nodes in the multi-graph represent all the contained bodies

81

5. Analysis of the Macro Entity Interaction Multigraph

(macro entities) and the graph edges represent contact interaction between the bodies. For
the purpose of further analysis of such a problem for parallel computing, the term Macro
Entity Interaction Multigraph (MEIM) is introduced. The related study of multigraphs
has not been treated as extensively as simple graphs in the literature.

The MEIM assembly is performed through the range searching queries to the kd-tree
data structure used for mapping the spatial data as presented in chapter 4. The MEIM
analysis itself is further based on the depth-first search (DFS) algorithm to find connected
subgraphs representing individual clusters of touching bodies.

A technique of DFS has been widely used for finding solutions to problems in combin-
atorial theory as well as in the other fields especially related to computer science. The
DFS algorithm has been known since the nineteenth century as a technique for threading
mazes (see [79]). Later, e.g. the paper of Hopcroft and Tarjan (see [47]) recognized DFS
as a powerful technique for solving various graph problems.

The assembly and analysis of the MEIM is only required while performing a numerical
simulation in the scope of a computer network where it is no longer possible to take ad-
vantage of the shared memory address space. Another problem is the time latency caused
by remote network communication, which is considerably longer than the same one within
one workstation. Therefore, it is necessary to limit the data flows to the minimum and to
ensure the maximum computational utilization of individual workstations within the com-
puter network. A similar approach uses various methods of domain decomposition such
as the FETI based methods for solving large numerical models. However, the proposed
approach does not require additional expensive algorithms for domain decomposition, and
it is also designed to address impact problems within the framework of explicit dynam-
ics. As a result, the entire computational process is not so error prone compared to the
computational process requiring the utilization of an additional complex algorithms.

5.1 The Graph Theory

For the purpose of the applied algorithm, it is first necessary to define the relational
structure representing the MEIM. The general definition of the unoriented graph as follows
(see [13])

Definition 5.1.1. The (general unoriented) graph G is an ordered triple of disjoint sets
G = (V,E, ψ) consisting of a nonempty set V of vertices, a set E, disjoint from V , of edges,
and an incidence function ψG that associates with each edge of G an unordered pair of
vertices of G. If ε is an edge and u and v are vertices such that ψG(e) = (u, v), the e is
said to join u and v. The vertices u and v are called the ends of e. The sum of edges is
denoted

∑
e∈G e = ε and sum of vertices is denoted

∑
v∈G v = ν.

Definition 5.1.2. To any graph G corresponds a ν× ε matrix called the incidence matrix
of G. The incidence matrix of G is the matrix M = [mij], where mij : mij ∈ N is the
number of times that vi and ej are incident.

82

5.1. The Graph Theory

The DFS algorithm requires to have a graph in the form of a so-called adjacency matrix
(map) as a very basic and very common graph representation. It is always a symmetric
square matrix with entries 0 and 1, with 0s on the main diagonal.

Definition 5.1.3. Let G = (V,E, ψ) be a graph with ν vertices. Denote the vertices by
v1, v2, . . . , vn. The adjacency matrix of G, with respect to the chosen vertex numbering, is
an ν × ν matrix A = [aij] defined by the following rule:

aij =

{
1 if ψG(ek) = (vi, vj) ∈ E
0 otherwise (5.1)

Since the case of MEIM structure relates to the multigraph, so the appropriate definition
of multigraph is as follows:

Definition 5.1.4. A multigraph is a set of vertices V , a set of edges E, and function
f : E → {ψG(e) = (u, v) ∈ V ∧ u 6= v}. If e1, e2 ∈ E are such that ψG(e1) = ψG(e2), then
e1 and e2 are parallel (multiple) edges.

A multigraph (multiple or multivariate graph) consists of a set of bodies (vertices),
and a collection of contact relations (edges) that specify how bodies contact each other.
Multigraph data structures can be observed directly and are common in contexts where
several edges can be mapped on the same vertex pair. From the nature of the problem
being dealt with, where the edges between the nodes represent the contact relationship
between the individual bodies in the 3D space, it is suitable to map such multigraph into
the 2D plane. It is related to the isomorphic mapping of a graph as follows:

Definition 5.1.5. Graphs G3D and G2D are isomorphic G3D
∼= G2D if there is a one-one

correspondence between the vertices of G3D and those of G2D such that the number of edges
joining any two vertices of G3D is equal to the number of edges joining the corresponding
vertices of G2D. The graphs G3D and G2D are isomorphic if there exists a bijection f :
V3D → V2D and g : E3D → E2D such that ψG3D

(e) = (u, v) if and only if ψG2D
◦ g(e) =

(f(u), f(v)). Such a pair (f, g) of mappings is called an isomorphism between G3D and
G2D. For all v1, v2 ∈ V3D, v1 and v2 are adjacent in G3D if and only if f (v1) and f (v2) are
adjacent in G2D.

Then the isomorfismus between the spatial and planar multigraph can be defined as
follows:

Definition 5.1.6. if β is a bijection in terms of definition 5.1.5, then β is called an
isomorphism between G3D and G2D, thus β : G3D → G2D.

The MEIM needs to be further simplified to a so-called simple graph, where multiple
contact between individual macro elements represented by the multiple edges connecting
the same pairs of vertices in MEIM. Such multiple edges are simplified to the one edge
only. By deleting from multigraph all loops and, for every pair of adjacent vertices, all but

83

5. Analysis of the Macro Entity Interaction Multigraph

Figure 52: Example of underlying simple graph of multigraph.

one link joining them, then a simple spanning subgraph is obtained. It is called underlying
simple graph. It is required for the purpose of domain decomposition.

For the further ability to solve numerical models on computer networks, the defini-
tion of the subgraph (underlying simple graph) is important with respect to the domain
decomposition in terms of MEIM. The subgraph definition is as follows:

Definition 5.1.7. Let G and G′ be a graphs. Graph G′ is a subgraph of G (written G′ ⊆ G)
if V (G′) ⊆ V (G) and E(G′) ⊆ E(G).

In the context of MEIM analysis, the definition of a subgraph can be interpreted so that
all the subgraphs from one multigraph arise based on the finding of such graphs that do not
share any node and edge. Thus, all the subgraphs must satisfy the so-called connectedness.
Thus, the subgraphs must satisfy the so-called connectedness, which says that a graph G
is connected if for any two vertices u, v ∈ V (G), G contains a path from u to v.

Subsequent definition leads to the importatnt multigraph property, namely to the defin-
ition of the degree of a vertex. This property plays an important role primarily because of
the reason of finding the separate macro models that are not in contact interaction with
the others. Respective definition is as follows:

Definition 5.1.8. The degree degG v of a vertex v ∈ V is the number of edges of G
incident with v, each loop counting as two edges, degG v, degG v = |{e; e ∈ E ∧ v ∈ e}|.

Theorem 5.1.9.
∑

v∈V degG v = 2ε.

Proof. Consider the incidence matrix M. The sum of the entries in the row corresponding
to vertex v is precisely degG v, and therefore

∑
v∈V degG v is just the sum of all entries in

M. But this sum is also 2ε, since each of the ε column sums of M is 2.

As mentioned before, the DFS algorithm is applied to find connected subgraphs. The
DFS algorithm can be considered in both the recursive and non-recursive form, respectively.
The non-recursive form of the algorithm is safer with respect to overflow of application

84

5.1. The Graph Theory

stack. Thus, the use of a data structure to simulate a an application stack is expected.
Such a data structure uses important functions, namely the function PUSH for adding new
element and the POP function for obtaining current element, respectively.

Thus, the required algorithm for the purpose of domain decomposition is represented
primarily by the DFT algorithm for finding connected subgraphs. The non-recursive form
of the DFS algorithm represents the pseudocode 3.

Algorithm 3: Pseudocode of a non-recursive form of the DFS algorithm.
Input: V (G) vertices ; ADJ adjacency map; π map of connected simple subgraphs

Gi; i ∈ N\{0} subgraph id generator
1 Subroutine dfs_non_recursive(V (G), ADJ, π)
2 vstack ← ∅;
3 for v ← ∀v ∈ V (G), i← i+ 1 do
4 PUSH(vstack, v);
5 while vstack 6= ∅ do
6 vt ← POP(vstack);
7 if (try_color(vt, π, i) ∩{False}) 6= ∅ then
8 continue;
9 end

10 for vadj ← ∀vadj ∈ ADJ [vt] ⊆ V (G) do
11 PUSH(vstack, vadj);
12 end
13 end
14 end

Algorithm 4: Pseudocode of function for coloring explored graph nodes.
Input : v ∈ V (G) vertex ; π map of connected simple subgraphs Gi; CLR map of

explored colored vertices ; i ∈ N\{0} subgraph id generator
Output: {True} or {False} Boolean value indicating whether vertex has been

explored
1 Function try_color(v, π, CLR, i)
2 if ({v} ∩ CLR) = ∅ then
3 return {False};
4 end
5 if ({i} ∩ π) 6= ∅ then
6 π[i]← ∅;
7 end
8 π ← π[i] ∪ {v};
9 CLR ∪ {v};

10 return {True};

85

5. Analysis of the Macro Entity Interaction Multigraph

5.2 The Data Distribution Algorithm

The algorithm for the data distribution within a computer network starts primarily from
the basic DFS analysis of the MEIM. Based on the DFS algorithm, all connected subgraphs
are obtained, even if they represent isolated nodes only. As an input to the analysis is
therefore a map of connected subgraphs π. It contains a set of nodes belonging to each
subgraph. For the best understanding of the algorithm, it is appropriate to simulate it on
a simple model example. Let us therefore consider the MEIM relationship shown in the
Fig. 53.

m1

m2

m4

m5

m7

m8

c2

g2

g1

c3

c4

m3

c5

c1

g3

m6

m9

g4

Figure 53: The MEIM model example, where ci ∈ C,mj ∈M and gk ∈ G.

Definition 5.2.1. Let π and S be a two sets. Mapping f from the set π to the set S is
relationship f ⊆ π×S. Mapping must satisfy the condition, where for each element pi ∈ π
there exists just the one element si ∈ S such that (pi, si) ∈ f , thus f : π → S.

Based on the definition 5.2.1 of a given mapping f , it is possible to assemble the
contents of the respective sets π and S (see Tab. 51) shown as an arranged pair relationship
((graph,vertex) and (vertex,graph)), respectively. The set π is a source set coming from
the DFS analysis.

The MEIM shown in the Fig. 53 represents the binary relations. Binary relations are
generally defined as follows:

Definition 5.2.2. Given set X and Y , a relation from X to Y is a subset R of X × Y .
When (x, y) ∈ R, we say that x is related to y(by R) and write xRy. Similarly, (x, y) /∈ R
is denoted by x��Ry.

86

5.2. The Data Distribution Algorithm

Table 51: Result of mapping f : π → S for model example.

Set Content

π (g1,m1), (g1,m2), (g1,m3), (g1,m4), (g1,m5), (g1,m9), (g2,m7), (g2,m8), (g3,m6), (g4,m9)

S (m1, g1), (m1, g2), (m1, g3), (m1, g4), (m1, g5), (m1, g9), (m2, g7), (m2, g8), (m3, g6), (m9, g4)

From the definition 5.2.2, the relations of the sets can be generally defined. Such
relations then closely refer to the MEIM. Thus C, M and G be a sets representing com-
puters, model macro entity and simple connected graphs, respectively. Let R be a relation
from C to M and let S be a relation from M to G. That is R is a subset of C × M
and S is a subset of M × G. Then R and S give rise to relation from C to G denoted
by R ◦ S and defined by c (R ◦ S) g if for some m ∈ M we have cRm and mSg. Thus
R ◦ S = {(c, g) |∃m ∈ M for which (c,m) ∈ R and (m, g) ∈ S}. The relation R ◦ S is
composition of R and S (denoted RS).

In connection with the example shown in the Fig. 53, the content of the set C is
ci ∈ C, i ∈ {1, . . . , 5} ∈ N, M is mj ∈ M, j ∈ {1, . . . , 8} ∈ N and G is gk ∈ G, k ∈
{1, . . . , 3} ∈ N, respectively. The given relations of sets C,M and G are then appropriately
represented in the Fig. 54. It is need to note, that there do not exist the binary relations
C × C, M ×M and G×G.

c1

c2

c3

c4

c5

m3

m4

m5

m6

m7

m2

m1

m8

m9

g1

g2

g3

g4

R S

ci ∈ C

mj ∈ M

gk ∈ G

Figure 54: Relations of sets C, M and G.

Based on relations shown in the Fig. 54, the following general theorem could be for-
mulated.

Theorem 5.2.3. Let A, B, C and D be sets. Suppose R is a relation from A to B, S is
a relation from B to C, and T is a relation from C to D. Then (R ◦ S) ◦ T = R ◦ (S ◦ T).

87

5. Analysis of the Macro Entity Interaction Multigraph

For the purpose of the data distribution algorithm, it is appropriate to represent the
respective relations using the matrices. In the case of the example shown in the Fig. 53
and Fig. 54, the given matrixes have the following form:

MR =

0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1
0 0 0 1 1 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

MT
S =

1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

 ,
where relations R and S are represented by a zero-one matrixes MR and MS, respectively.
Each of the entries within the respective matrixes is either 0 or 1. The rows of matrixesMR

and MS are labeled by the elements of C and M , respectively. The columns of matrixes
MR and MS are labeled by the elements of M and G, respectively.

From those represented relations, the information required for the given data distribu-
tion algorithm could be obtained. It involves finding a sequence of numbers reprezenting
the occupancy of the given workstations (computers) by the number of amount of model
macro entities within each connected simple graph. Such a sequence then also represents
a new relation. As such the new relation T is obtained by the multiplication of matrixes
MR and MS, MT = MR◦S = MR �MR. Thus, with respect to the example which is solved
here, the matrix MT has the following form:

MT =

0 1 1 0
0 1 0 1
2 0 0 0
3 0 0 0
0 0 0 0

 .
Matrix MT represents relation T = R ◦ S. It is the relation from set C to set G. Now,

the matrix contains valuable information about the number of a model’s macro entities
that the appropriate relational pair (c, g) ∈ T contains. Such a relation T can be drawn
as a forest, which is a set of k > 0 disjoint trees, where the appropriate root of each tree
represents separate interaction graph gk ∈ G. The forest representing relation T of the
solved example is shown in the Fig 55, where the dotted line represents a single workstation
ci ∈ C containing multiple disjoint simple connected interaction graphs gk ∈ G.

The dashed line in the Fig. 55 represents the direction for data transfer in the first
phase. Due to the workloads of individual workstations within the computer network, it is
necessary to sort them according to the amount of models’s macro entities they currently
contain. Thus the respective criterion is the maximum value of a tree edge. Individual
trees can also be understood as a directed graph with the rated edges where the maximum

88

5.2. The Data Distribution Algorithm

g1 g2 g3 g4

c3 c4 c1 c2 c1 c2

2 3 1 1 1 1

c5

ci ∈ C

gk ∈ G

T

Figure 55: Forest (the set of disjoint trees) from solved example.

value from all graph edges represents the direction from g to c and the rest of the other
edges in a graph the direction from c to g. The second phase of the algorithm represents
a uniform distribution, as far as possible, of the remaining graph data across individual
workstations. The data distribution within the example being solved then represents the
Tab. 52. Here the individual graphs gk ∈ G represent the relational sets composed from
the elements mj of the set M .

Table 52: Phases of algorithm for a model’s macro entities fluctuation in a scope of the
single data transfer within the computer network (model example).

Algorithm phase Workstation Workstations content

c1 {m7} ∈ g2, {m6} ∈ g3

c2 {m8} ∈ g2, {m9} ∈ g4

0 (initial state) c3 {m4,m5} ∈ g1

c4 {m1,m2,m3} ∈ g1

c5 ∅
c1 {m7,m8} ∈ g2, {m6} ∈ g3

c2 {m9} ∈ g4

1 c3 ∅
c4 {m1,m2,m3,m4,m5} ∈ g1

c5 ∅
c1 {m7,m8} ∈ g2

c2 {m9} ∈ g4

2 c3 {m6} ∈ g3

c4 {m1,m2,m3,m4,m5} ∈ g1

c5 ∅

89

5. Analysis of the Macro Entity Interaction Multigraph

5.3 Summary of Chapter

In this chapter, important algorithms for domain decomposition of a numerical model for
the purpose of numerical simulation in terms of a hybrid-parallel computer solver running
in the scope of computer network were introduced. For the mentioned subject, algorithms
from graph theory had to be applied. These concern both the search problem in an Euc-
lidean space and also to a search in general graphs containing discrete values. In the end,
the heuristics for specific data exchange within a computer network were introduced. The
data distribution algorithm was presented on a specific example simulating the specific
state of the MEIM. The newly invented term MEIM will be further used in subsequent
chapters dedicated to the implementation of already presented approaches.

90

Chapter 6
Massive Parallel Computing

Advent of multi-core and multiprocessor systems into personal computers in the aftermath
of the millennium has changed many approaches in software engineering.

For decades, the vast majority of software applications contained algorithms used for
sequential execution of instructions only. Multi-process and asynchronous approaches in
programming were generally considered primarily by system engineers for designing oper-
ating systems or special applications focused on network resource utilization. To a large
extent, however, it was related to a pseudo concurrency (or parallelism) of applications, as
the instructions were performed sequentially on a single processor core thread. The impres-
sion of concurrency is caused by the rapid alternation of running of the different processes
in successive time. For such reason, the division of processor time did not provide any
advantage in terms of processing more data, but vice versa. Thus, a large number of
software applications for scientific-technical computations have been focused on what they
solved rather than how they solved it. Insomuch as it relied heavily on the progressive
growth of single CPU performance, there was almost no effort to think about the issues of
parallelism and appropriate algorithmization. This was largely due to the purchase price
of such computer technology, the limited amount and complexity of software technologies
focused on handling such computer systems, and the lack of qualified professionals on the
labor market or in academia.

Nowadays, multi-core and multiprocessor computing systems or access to computer
networks are an absolute must for everyday life. Therefore, it is an attempt to maximize
the usage of such computer performance through applications that are capable of doing
so. The reasons are primarily of economic nature, this concerns an increase of a labor
productivity and progress in advancement of a developing new technologies for commercial
usage.

In conditions of computational mechanics, this concerns mainly analytical software sys-
tems using the FEM, finite difference method, finite volume method or their combination
to a numerical solution of a set of integral-differential equations often with a nonlinear
character. Since many of these software systems have been developed over the decades
since the 1960’s, thus they contain a large amount of program code with a considerable

91

6. Massive Parallel Computing

amount of tuned functionality. The implementation of new approaches related to the par-
allelization of respective computations requires considerable expert analysis of existing and
new algorithms. The same applies to the analysis of suitable hardware and software tech-
nologies. Here, it is also necessary to realize the fact, software and hardware technologies
are closely interlinked, so the algorithms used must respect all of the technological con-
straints in order to optimize their effective usage. The parallel approach has not always
been an effective way in effort to improve the performance of affected operations, so the
process of searching for opportunities for parallelization is equally important.

At this time, the technologies of multi-core CPU processors, programmable graph-
ical multi-core GPU processors, as well as their combinations, are commonly available on
the market. Also due to the affordability of solid computer assemblies, the next level of
parallelism is an interconnection of such parallel machines (CPU+GPU) in a generally
heterogeneous computer cluster through the computer network. All of the mentioned op-
portunities and limitations then create huge demands on the complex expert maturity of
the responsible person. The situation gets easier if the expertise can be distributed through
a team of experts, but it is often not the case, mainly due to the lack of experts on the
labor market (situation in the Czech Republic at the time of composing the thesis).

The description of the FEXP solver software architecture and the technologies used are
included in the following chapters.

6.1 Theoretical Performance Analysis

In the context of data parallelization, which here is the main focus, it is necessary to
mention Amdahl’s law as a theoretical estimation of application performance. In Amdahl’s
law, computational workload W is fixed while the number of processors that can work on
W can be increased. The execution time of the given work by N processors is then

τN =
W1

v1

+
WN

vN
, $ =

τ1

τN
,

then it leads to the following final form

$A =
W

ξW + (1− ξ)WN−1
⇒ N

(
1 + ξ (N − 1)

)−1
, (6.1)

where $A ∈ R denotes speedup by Amdahl, τN denotes execution time given by work of
N processors, vi is the rate of execution of i-th processor i ∈ N[1,N], ξW is the portion of
work belonging to the sequential running part of a code Wi = 0 for ∀i ∈ N[1,N]\{1, N} and
ξ ∈ R[0,1] is the fraction ratio, respectively.

Another law dealing with the estimation of speed up is Gustafson’s law, which says that
an increase in problem size for large machines can retain scalability with respect to the
number of processors. The execution workload of the whole task before the improvement of
the resources of the system is denoted W , and execution workload after the improvement

92

6.2. Distributed and Cloud Computing

of the resources is denoted W (N), thus the theoretical Gustafson’s speedup $G has the
following form

$G =
W (N)

W
=
ξW + (1− ξ)NW
ξW + (1− ξ)W

⇒ ξ + (1− ξ)N. (6.2)

Respective law says that the true parallel power of a large multiprocessor system is
only achievable when a large parallel problem is applied.

As the last theoretical model of performance evaluation, let us mention Su-Ni’s law.
This is referred to as a memory bound model. It turns out that when the speedup is
computed by the problem size limited by the available memory in n-processor system, it
leads to a generalization of Amdahl’s and Gustafson’s law.

6.2 Distributed and Cloud Computing

Here it is needed to start with the simplest domain unit called thread, used for concurrency
or data parallelism regardless of whether it is a thread running on a CPU, GPU, or some
its hybrid mutation in terms of the system virtualization.

With the parallelization on OS process level by threads is closely related the process-
level parallelization. In such a case, it is a much more complicated approach, primarily due
to a separate memory space compared to the shared memory space between the threads in
one process. Process synchronization and general data exchange between processes is thus
an extensively more challenging task.

The standard relationship between the thread and OS process is many-to-one. However,
other types of arrangements exist so that e.g. one-to-many and many-to-many are also valid
and currently being investigated. It concerns the clustering for massive parallelism. Such
an approach requires a special type of OS so-called the cloud distributed operating system.
The TRIX research operating system at MIT’s Laboratory for Computer Science is one
such type of OS. Single user activity represented by a thread can be performed on multiple
domains, where the system scheduler can migrate threads between CPUs in order to keep
all processors busy. This system represents many-to-many relationship.

The cloud solution represents the highest degree of virtualization when it groups mul-
tiple computer clusters under one solid model. It is in relation to computer cluster architec-
ture, where a collection of interconnected stand-alone computers can work together collect-
ively and cooperatively as a single integrated computing resource pool as a hybrid system
for massive paralellization. In general, it is a dynamically changing system. These node
machines are interconnected through hierarchical construction using a SAN (abbreviation
of the Storage Area Network, e.g. Myrinet), LAN (e.g., Ethernet), or WAN (abbreviation
of the Wide Area Network). Contained cluster is connected to the Internet via a virtual
private network (VPN) gateway, where the gateway IP address locates the cluster. All
resources of a server node are managed by their own OS. Thus, most clusters have multiple
system images as a result of having many autonomous nodes under different OS control.
Cluster designers desire a cluster OS or some middleware to support SSI (shortcut of the

93

6. Massive Parallel Computing

Single System Image) at various levels, including the sharing of CPUs, memory, and I/O
across all cluster nodes. An SSI is an illusion created by software or hardware that presents
a collection of resources as one integrated, powerful resource. SSI makes the cluster appear
like a single machine to the user. A cluster with multiple system images is nothing but a
collection of independent computers. This relates to cloud computing defined by IBM as
follows: "A cloud is a pool of virtualized computer resources. A cloud can host a variety
of different workloads, including batch-style backend jobs and interactive and user-facing
applications."

Figure 61: Cloud computing.

Overall, it leads to the idea of using computing resources in a way other than usual in
the past, so that working with large data sets in future will mean sending the computations
to the data in large data centers provisioning of software, hardware and data as a service,
rather than copying the data to the workstations. Cloud and underlying computer clusters
are related to a number of technologies, notably the already mentioned systems for the
virtualization of computing resources and the SOA (abbreviation of the Service Oriented
Architecture) paradigm for accessing data by users (often using the SOAP, abbreviation
of the Simple Object Access Protocol).

The later presented solver model is focused on the utilization of heterogeneous clusters
interconnected by high-speed network links over selected resource sites. It is also so-
called Computational Grids (CG). It handles the grid nodes represented by the single
workstations interkonected within the LAN. The communication between grid nodes is
then secured by a low-level TCP/IP connection protocol (abbreviation of the Transmission

94

6.2. Distributed and Cloud Computing

Control Protocol/Internet Protocol). The individual nodes of CG can then use multicore
processor services for local data parallelization within the explicit integration of equations
of motion. The solution also necessarily includes a solution for network resource workload
balancing that can be dynamically changed during the computations. It concerns, in
particular, the number of workstations connected to the CG. Such an applied method
solves the virtualization of the CG without the use of the common way of virtualization
through the distributed OS or without the use of other high-level middleware.

6.2.1 Utilization of CPU Cores

Considered here is parallelization represented by running threads distributed to the physical
cores of the respective processor. The considered technology refers to the architecture of
superscalar or multi-core processors, where program instructions are lunched by two or
more execution pipelines, making it possible for two instructions to be in the execution
stage at the same time (for more see [54]). Parallelization using SIMD (shortcut of the
Single Instruction Multiple Data) technology, represented primarily by GPGPU, can be
additionally implemented for specific parts of computations.

For the purposes of data parallelismus on a local machine the approach to the utilization
of CPU threads based on the number of physical CPU cores was chosen. CPUs with Hyper-
threading (Intel technology) support cause an increase in the number of available hardware
threads. It means virtual division of each CPU core to two virtual cores. This does not
lead to an increase of performance in parallel computations.

An important note then relates to the way threads are made. Some libraries are capable
of creating threads without OS awareness of their existence. This involves division into
the user-level and kernel-level types of CPU threads.

In the case of user-level threads, creating a thread switching between threads and
synchronization between threads can be done without OS kernel intervention. Thread
switching is not much more expensive than a procedure call. This applies to the OS that
does not support threads. In a pure user-level thread strategy, a multithreaded application
cannot take advantage of multiprocessing.

On the other hand, strategy based on the kernel-level thread facility, all of the work
of thread management is done by kernel. It means no thread management code in the
application level of OS. Windows OS is an example of this approach. The OS kernel
maintains context information for the process as a whole and for individual threads within
the process. This approach has one important benefit, namely the fact that the OS kernel
can simultaneously schedule multiple threads from the same process on multiple processors
(CPU cores). Thus, an application can benefit from true parallelism versus user-level thread
strategy. Such an approach is used in the thesis for data parallelization on an application
level. A disadvantage over the user-level thread strategy is the transfer of control from one
thread to another within the same process, which requires an expensive mode switch to
the kernel. A higher number of threads used than accessible physical cores would cause
performance decreasement.

95

6. Massive Parallel Computing

All modern OSs create an effective abstract layer between user application and underly-
ing powerful harware. This applies primarily to UNIX like OSs and Windows OS (current
version 10). In the case of UNIX like OS, this concerns the functionality provided by the
POSIX programming interface. For the Windows OS, the situation is somewhat more
specific due to a non-open source character compared to Linux, inasmuch as Windows OS
is specifically developed by one vendor.

Windows OS for a native accessing to its functionality provides Win32 API represented
by the dynamically linked ntdll.dll library (see Fig. 62). Since the Win32 API is also
referred to as a 64-bit platform, the number 32 in Win32 API is somewhat misleading.
Such a label is used for historical reasons, primarily due to the old Windows 95 OS, which
meant a breakthrough event in the development of operating systems. For such a reason,
all references to Win32 API in the text of thesis will include functionality for both 32 and
64-bit platforms.

Figure 62: Windows OS (Vista) software architecture.

In a view of the recent extension of a native C++ (since version 11, for ISO/IEC
14882:2011 see https://www.iso.org/standard/50372.html) programming language to
the ability to run asynchronous and parallel operations, it is no longer necessary to target
multicore computers using OS facilities (Win32 API on Windows or pthreads on UNIX
like systems) or special third-party libraries like OpenMP and MPI.

96

https://www.iso.org/standard/50372.html

6.2. Distributed and Cloud Computing

The code can be transferred between the different platforms without any probems
thanks to the portability a native C++ programming language. The current C++ ISO/IEC
14882:2017 standard (so called C++ 17) can be purchased and subsequuently downloaded
from the web of International Organization for Standardization (https://www.iso.org/s
tandard/68564.html).

A large part of the new libraries was defined in the document C++ Standards Com-
mittee’s Library Technical Report ISO/IEC TR 19768, C++ Library Extensions (TR1,
published in 2005) as shown in the Fig. 63.

Figure 63: C++ revision timeline.

The previouly mentioned functionality has already been supported by the Boost library
(see http://www.boost.org/) as a source for the eventual standardization for extensions
of C++ programming language. Ten Boost libraries are included in the C++ Standards
Committee’s Library Technical Report (TR1) and in the new C++11 standard including
support of thread and related libraries for thread synchronization. Many new features of
C++ 11, including of some features from C++ versions 14 and 17, are used in the FEXP
source codes.

97

https://www.iso.org/standard/68564.html
https://www.iso.org/standard/68564.html
http://www.boost.org/

6. Massive Parallel Computing

6.2.2 Network Based Parellel Computing

In this section it is necessary to restrict the view to the smaller LAN networks with regard
to the deployed networking solution in terms of FEXP solver. The main reason for the
use of such a solution is the frequent situation in engineering design studios especially of
a small and middle extend companies. Such a small LAN network is simply described in
the Fig. 64 as a small amount of workstations connected to the server.

Figure 64: Local Area Network (LAN).

With regard to the use of the proposed network solution and its future expansion, not
only for the purposes of explicit dynamics, it is also necessary to consider groups of LANs.
Achieving such a goal can then be best done through appropriate middleware like in the
case of the Cloud solution, that would take care of the virtualization.

One of the interesting opportunities is approach of the open-source project SoftEther
VPN (see https://www.softether.org/, University of Tsukuba), which can provide virtu-
alization of Ethernet devices. This software virtualizes Ethernet devices in order to realize
a flexible virtual private network (VPN) for both remote-access VPN and site-to-site VPN
through the Virtual Network Adapter program as a software-emulated traditional Ethernet
network adapter. Communication between individual workstations from different LANs is
carried out through the VPN communication tunnel, which means mutual communica-
tion through the IP routing enabled VPN. When a computer from one LAN attempts to
communicate with a host on another LAN it will automatically do so through the VPN.
A detailed description of the implementation details and provided possible network con-
figurations for building such groups using the SoftEther VPN software can be found on
web https://www.softether.org/4-docs/1-manual. Some examples of building VPN
networks considered in an open-source free cross-platform multi-protocol VPN program
SoftEther VPN are shown in the Fig. 65.

For the network data interchange between individual worstations in the scope of respect-
ive LAN, the SOA-based paradigm high-level technologies such as Microsoft .NET/WCF
(abbreviation of the Windows Communication Foundation) or JEE (abbreviation of the
Java Enterprise Edition) and similar could be used. For the cross-platform applicability,

98

https://www.softether.org/
https://www.softether.org/4-docs/1-manual

6.2. Distributed and Cloud Computing

Figure 65: Examples of possible VPN configurations (SoftEther VPN).

such technologies use HTTP (abbreviation of the Hypertext Transfer Protocol), XML (ab-
breviation of the eXtensible Markup Language), SOAP, and UDDI (abbreviation of the
Universal Description, Discovery, and Integration) high-level communication protocols.

All of the mentioned technologies are then built on the shared core, which is based on
the lower-level protocols of the transport layer, network layer and the link layer respect-
ively. For the purpose of the network solution within the FEXP solver, the TCP protocol
of transport layer is the most important. The rest of underlying low-level protocols is
implicitly included, such as IP protocol of network layer (IPv4 or IPv6). The process of
data transport across individual network layers is shown in the Fig. 66.

Network communication within the FEXP solver is performed over the opened low-level
network socket by TCP transport protocol against to delivery unsafe UDP protocol. The
Windows Sockets from Win32 API library (is not strictly part of it) are used to create
communication. They are almost the same as, and interoperable with, Berkeley Sockets,
and de facto industry standard. It extends the Berkeley Sockets API into the Windows
environment. It then allows it to exploit higher-level protocols and applications, all of
which provide different, and higher-level, models for standard, interoperable, networked

99

6. Massive Parallel Computing

Figure 66: Example of sending and receiving data across TCP/IP network.

interprocess communication.
With respect to future revisions of the C++ programming language, socket implement-

ation within the FEXP solver will be complemented by the portable form of network com-
munication using the standard libraries. Currently, this possibility supports the Boost.Asio
(see http://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio.html) library, which
would now require to be extra added to the FEXP project binaries as a third-party lib-
rary. It is a cross-platform C++ library for network and low-level I/O programming that
provides developers with a consistent asynchronous model. This library is expected to
become a part of C++ standard libraries, as in the case of multithreaded programming
support, as mentioned earlier.

Specific implementation details of a network solution within the FEXP solver are
presented in the following chapters dealing with the architecture of the program.

6.3 Introduction of the Hybrid Parallel Testing Solver
FEXP

Since the implementation of the discussed algorithms and technologies in existing open-
source projects mentioned earlier would require considerable time for their own analysis, a
hybrid-parallel numerical testing solver called FEXP (abbreviation of the Finite [E]lement
[E]XPlicit solver) was composed. The solver has a testing purpose, which means testing
the effectiveness of both the algorithms and the technologies used.

This thesis is focused on the usage of parallelization for numerical computations in
nonlinear dynamics, when an explicit approach to the direct time integration of equations
of motion was chosen as a natural source of opportunity to an effective usage in paraleliz-
ation of a numerical computations. The physics of the considered models and numerical
algorithms were presented in the previous chapters.

The FEXP solver for parallelization of computations combines the possibility of using
multi-core processors (CPU) with the possibility of parallelization in computer heterogen-

100

http://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio.html

6.3. Introduction of the Hybrid Parallel Testing Solver FEXP

eous cluster interconnected in a LAN. With respect to generality, availability and support
of a wide range of software technologies and software modularity, the programming lan-
guage C++ in current version 14 was chosen as the main programming language for the
composition of FEXP solver. As a development environment, the Windows OS was chosen,
primarily due to the availability of advanced development tools required to develop such ap-
plications. Thus for the project management and code compilation, IDE Microsoft Visual
Studio 2015/2017 Community was used. For the purpose of easier user control over the
FEXP solver, the windows based application FEXP Solver Manager was designed and pro-
grammed using Microsoft .NET/C# programming language requiring .NET Framework
4.6 (C# 6.0) or later versions.

6.3.1 Applied Software Architecture

A well-chosen software architecture is especially important because of the possible later
seamless expansion of both new functionality and new technologies. The current trend is
to compose software using installable libraries (plugins) that modify or complement func-
tionality of a more generally designed software core, which provides specific interface. This
type of customization is provided by enterprise systems, e.g. products of SAP company
(see https://www.sap.com/products.html) or PDM (abbreviation of the Product Data
Management, see Smap3D http://www.smap3d.com/PDM/en/pdm-cad-concept.html) and
ERP (abbreviation of the Enterprise Resource Planning) software solutions from the other
vendors.

The good modularity of the program primarily enable good maintance of the respect-
ive software project, which is the critical part in terms of smooth further development
and subsequent profit of the respective software company and their custommers, who can
quickly use stable and flexible software for their business. In this context, a great deal
of contained functionality has been designed modularly using a template approach as a
modern object oriented programming paradigm. A similar approach is applied in the Mi-
crosoft ATL library (abbreviation of the Active Template Library) to simplify programming
of COM (abbreviation of the Component Object Model) objects, ActiveX members and
Win32 applications.

6.3.2 The Parallel Hybrid Model

For the purpose of paralelization of numerical computations, a combination of a local par-
allelization on a single workstation with the possibility of interconnecting multiple such
workstations within a computer network (LAN) was chosen. In the case of a local worksta-
tion within the LAN, it concerns the use of multicore CPUs and the later possible usage of
GPGPU technology Nvidia CUDA or OpenCL refering to the use of Graphics Processing
Units (GPU) for some parts of the computations.

For the mentioned reasons, the FEXP solver is divided into two main parts from an
external viewpoint. To the parts refering to the functionality running on a single worksta-

101

https://www.sap.com/products.html
http://www.smap3d.com/PDM/en/pdm-cad-concept.html

6. Massive Parallel Computing

tion and the part of the networking extension. This model is illustratively shown in the
Figure 67.

Figure 67: Simplified representation of designed parallel model of the FEXP solver.

From the Fig. 67, it is noticeable that the major part of all computations is done on
the single workstation. The server computer then works primarily as a final assembler and
distributor of a overall work. From this perspective, the FEXP model is comparable to
the massive parallel processing model used in the LS-DYNA under the ANSYS LS-DYNA
Parallel license (see https://www.ansys.com/products/platform/ansys-high-performa
nce-computing). However, this approach requires third-party MPI software support be
correctly installed (see https://www.ibm.com/us-en/marketplace/spectrum-mpi or ht
tps://software.intel.com/en-us/articles/intel-mpi-library-documentation/).

The parallel model of FEXP is designed somewhat more generally in this case, ini-
tially with greater emphasis on efficient utilization for explicit impact dynamics. Unlike
LS-DYNA, it does not have to use the demanding methods of domain decomposition. The
critical part of the LS-DYNA parallel model is based on a domain decomposition (de-
composition of meshes) using METIS (Serial Graph Partitioning and Fill-reducing Mat-
rix Ordering, see http://glaros.dtc.umn.edu/gkhome/metis/metis/overview) similarly
as a free open-source finite element program SIFEL that uses the open source library
HPMESHDECOMP based on METIS (see http://mech.fsv.cvut.cz/~sifel/TOOLS/mes

102

https://www.ansys.com/products/platform/ansys-high-performance-computing
https://www.ansys.com/products/platform/ansys-high-performance-computing
https://www.ibm.com/us-en/marketplace/spectrum-mpi
https://software.intel.com/en-us/articles/intel-mpi-library-documentation/
https://software.intel.com/en-us/articles/intel-mpi-library-documentation/
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://mech.fsv.cvut.cz/~sifel/TOOLS/meshdecomp.html
http://mech.fsv.cvut.cz/~sifel/TOOLS/meshdecomp.html
http://mech.fsv.cvut.cz/~sifel/TOOLS/meshdecomp.html

6.4. Description of the FEXP Parts

hdecomp.html). In the case of program SIFEL, the FETI method is then applied on de-
composed model.

The parallel FEXP model is based on a physically logical decomposition according to
the specific nature of the addressed impact problem. This approach is applicable primarily
to the simulation of the impact tasks of a wider group of separate entities interacting with
each other through contact forces. As an example in this context, collision of many vehicles
on the highway could be mentioned. Throughout the addresed models, the critical part
of an effective contact detection must be considered. This of course also applies to the
so-called self-contact problem. For such a reason, an algorithm for the so-called nearest
neighbor searching is applied.

Since the parallel hybrid model is based on the interaction of distinct entities, so for
the purpose of computation on the computer network, it was necessary to design a heur-
istic approach for computer network balancing based on an analysis of the macro entity
interaction multigraph (MEIM). An analysis of the MEIM provides a scope for future op-
timization, both in terms of the quantity and character of the data being considered, as well
as different types of heuristics such as their popular subset of the so-called metaheuristics,
often used in soft computing. The applied algorithm for the MEIM analysis will then be
further presented in subsequent chapters as well as the algorithm for self-contact and also
for macro body contact detection.

6.4 Description of the FEXP Parts

In this chapter, the individual parts of the FEXP solver are presented in a more detailed
form. Since the total number of source code lines is currently somewhere around the number
20,000, only some snippets of code parts are directly listed here. An overal description of
the individual parts of the source code can be found in the attachment of the thesis, in the
documentation generated by the program Doxygen (see http://www.stack.nl/~dimitri/d
oxygen/) usually used in software engineering for the creation of program documentation.

For the purpose of program describtion, the specific parts were selected in such a way
which enables an unfamiliar developer to easily penetrate to the logic of program assembly.
It is primarily due to the needs of further development that could be expected like it is
suggested in the final conclusion of the thesis.

The FEXP solver architecture is presented in the Fig. 68 in its simplified form. It
schematically describes main thematic blocs contained in the program. As shown the FEXP
solver is modularly composed from the separate parts meeting the required functionality
explicitly defined by a specific interface for each such part. For better understanding of
the FEXP solver software architecture, a rough explanation of an individual parts then
follows.

◦ Common and Concurency libraries include both the functionality generally used
throughout the FEXP solver, as well as functionality related to the work with threads
and asynchronous operations. It also includes resources for safe management with

103

http://mech.fsv.cvut.cz/~sifel/TOOLS/meshdecomp.html
http://mech.fsv.cvut.cz/~sifel/TOOLS/meshdecomp.html
http://mech.fsv.cvut.cz/~sifel/TOOLS/meshdecomp.html
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/

6. Massive Parallel Computing

FEXP

File handling,
Input and

output data

Network com-
munication,
Network ser-
ver, Analysis

of MEIM

Euklidian
space

searching,
Graph

searching

FEXP Solver
Manager

Solver

Finite
elements

Triangular
C0 shell

FE

Explicit
FEA

Dynamic
Rela-

xation

Explicit
Dyna-
mics

Common and
Concurency

Figure 68: Composition of the FEXP solver.

the dynamically allocated memory, it relates especially to the usage of so-called smart
pointers.

◦ File handling, Input and output data libraries includes both the functionality focused
on handling with input and output files (preprocessing and post processing) and
important part related to data tables assembly.

◦ Network communication, Network server, Analysis of MEIM libraries include both
inter-process communication functionality for the scope of the computer network and
the analysis-related functionality required for the data exchange within the considered
computer network. It is based on the analysis of a non-oriented graph representing
the interaction of individual bodies (MEIM) during the numerical simulation. Here,
it is necessary to also include the implementation of the network server.

◦ Euklidian space searching, Graph searching libraries include both the basic algorithms

104

6.4. Description of the FEXP Parts

required for the general solution of the nonlinear contact problem, as well as al-
gorithms required for the representation of the non-oriented interaction multigraph
and the basic algorithms for their analysis.

◦ Solver includes the functionality required for the numerical simulation of dynamic
processes. It concerns in particular the library containing functionality for the integ-
ration of specific FEs, as well as the functionality that controls the process of explicit
numerical integration of equations of motion in terms of the FEA. It includes the
parts designed purely for the calculation in a single workstation, as well as the part
concerning the computations within a computer cluster.

◦ FEXP Solver Manager is an external graphical UI based application written in the
C# programming language. It is not a necessary part of the FEXP solver solution. It
is intended mainly for simplifying the work with the FEXP solver and for presentation
purposes.

The listing above contains a basic view of the FEXP solver software solution. It is
only a simplified look into the entire designed software solution, especially due to its huge
overall size. However, despite considerable simplification, it is possible to subsequently
identify and understand the individual parts of the source code.

The following text of this chapter is focused primarily on those parts that are important
to understand the entire FEXP software solution. The first part deals with the definition
of the type and the character of the input data, the next part relates to the numerical
simulation itself, and the final part deals with the presentation of the results. The numerical
simulation section is then described in a more detailed fashion, all with regard to parallel
data processing. A significant part is then devoted primarily to the hybrid-parallel form of
the FEXP solver. It deals with numerical computations within the heterogeneous computer
cluster. The FEXP Solver Manager section is appropriately included throughout the text
as suggests its purpose.

Where appropriate, the source code fragments are included in each section to give better
insight into the implementation of the particular portion involved. With respect to the
considerable amount of a source code lines. An effort is made to highlight only those parts
of the source code representing an important point for the programmer’s orientation. The
relational UML diagram is then presented at the beginning of given sections to present the
object relationships of an appropriate program section. For the purpose of assembly UML
diagrams, the program tool Visual Paradigm (https://www.visual-paradigm.com/) was
used. The given program is a commonly used tool for object oriented design purposes
while software solution designing process.

105

https://www.visual-paradigm.com/

6. Massive Parallel Computing

6.4.1 Preprocessing

Figure 69: UML diagram of designed file reader.

The processing of the input file text stream is performed by the template class CFEX-
PFileReader through the interface defined by abstract class ICFEXPFileReaderIntf
whose structure is shown in the Fig. 69. Such functionality occupied the source file
FEXPFileHendler.h. As a result the appropriate input data container is filled, as shown
in the following fragment of source code.
/∗∗ @br ie f I t reads content o f t ex t f i l e .
∗/
template<typename TINContainer>
void CFEXPFileReader<TINContainer , typename std : : enab le_i f
<std : : is_base_of<ICFEXPInpDataContBase , TINContainer >: : value >: : type >: :Read ()
{

i f (_data_processed)
re turn ;

// read f i l e and f i l l content vec to r
i f (_content−>empty ())

ReadFileAndGetContent (_inputpath , ∗_content . get ()) ;
// c r e a t e data
_container−>Proces sL ines (∗_content . get ()) ;
// mark data as a l r eady proce s sed
_data_processed = true ;

}

Such a functionality is used to handle all types of input data files that are utilized in
the FEXP solver. The processing of input files at the startup of the FEXP solver on a
separated workstation presents the following fragment of a source code.
/∗∗ @br ie f Main func t i on (s i n g l e workstat ion) .
∗/
auto __cdecl main (i n t argv , char ∗ argc []) −> in t
{
. . .

// read s o l v e r s e t t i n g
auto reader = CFEXPDataManager<CFEXPFileReader<CFEXPInpDataContainer>>

: : Sa f eA l l o c In s t anc e (config_path ,
CFEXPSolverInpDataAssemblyFactory : : INP_FILE_BLOCK_CLS_MAP) ;

i f (! reader−>ReadProgress ())

106

6.4. Description of the FEXP Parts

{
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "Error : ␣Problem␣with␣ c on f i gu r a t i on ␣ f i l e ! ") ;
FEXPCOMMON_CONSOLE_PAUSE(std : : get<FEXPCOMMON_CMD_MANAGER_INDEX>(cmd)) ;
r e turn EXIT_FAILURE;

}

. . .

// s o l v e r c on f i g u r a t i on s e t t i n g
auto so l v e r_con f i g_se t t ing = FEXPCOMMON_DYNCAST(ICFEXPModelDataIntf ,

CFEXPSolverConfigSetting , bu i lde r−>GetModelContainer()−>GetModelElement (
ICFEXPSetting : : ESettingType : : eSo lver , ESystemElementType : : eS e t t i ng)) ;

// input data f i l e paths
std : : map<std : : s t r i ng , std : : s t r i ng> input_model_file_map ;
FEXPCOMMON_FOREACH_ITER(so lve r_con f i g_se t t ing−>GetFi lePaths ())

input_model_file_map . i n s e r t (
MAP_PAIR(CFEXPBaseConvers : : NumberToString (IT−>f i r s t) , IT−>second)) ;

// input data f i l e r eader
std : : map<std : : s t r i ng , Ptr<ICFEXPFileReaderIntf>> file_reader_map ;
// read input f i l e and c r e a t e map o f input f i l e c on ta i n e r s
auto read_succ = true ;
FEXPCOMMON_FOREACH_ITER(input_model_file_map)
{

auto key = IT−>f i r s t ;
auto pth = IT−>second ;
fi le_reader_map . i n s e r t (MAP_PAIR(key ,

CFEXPDataManager<CFEXPFileReader<CFEXPInpDataContainer>>:: Sa f eA l l o c In s t anc e (
pth , CFEXPInpDataModelAssemblyFactory : : INP_FILE_BLOCK_CLS_MAP))) ;

i f (f i le_reader_map [key]−>ReadProgress ())
cont inue ;

read_succ = f a l s e ;
break ;

}

. . .
}

6.4.2 Preprocessing-Structure Model Input Data

For the purpose of model assembly an approach through the structured text files based
on [*.csv] file format with the semicolon character as a delimiter was chosen. This type
of structured file is supported by spreadsheet programs such as Microsoft Office Excel,
OpenOffice Calc or LibreOffice Calc. Thus it enables their easy creation and especially
editing. Therefore all input data defining the respective model are formatted by well-
arranged tables in thematic blocks. For the mentioned reasons, a new input file type
with extension [*.fexin] was designed. A description of the individual input file blocks is
contained in the following text.

File Block—#CALCULATION.dynamic

This block contains general data for the control of a numerical simulation. These are
the data representing the beginning and the end of the dynamic process, the initial time
step, an output data storing frequency, type of solver, and the number of threads used. It

107

6. Massive Parallel Computing

occupies the input table with the name $TAB_D1. A formal representation of the table
$TAB_D1 with the illustrative values is shown in the Tab. 61.

Table 61: Table $TAB_D1.

start [s] stop [s] step [s] print [−] solver [−] threads [−]
0.0 2.0 1.578609007956055E-4 10 1 0

Table 62: Description of the table $TAB_D1.

Column Name Description Value

start Start time of simulation. F+
d

stop End time of simulation. F+
d , start ≤ stop

step Initial time step. F+
d , step ≥ stop− start

print Result data storing fre-
quency. It denotes the num-
ber ot time steps to be taken
between individual exports
of results.

S\{0}

solver Value indicates the kind of
solver to use.

{0, 1, 2} ∈ S, 0—sequen-
tial solver, 1—parallel
solver, 2—hybrid solver
(network+CPU (+GPU)
parallel, it requires special
treatment!)

threads Value indicates the numeber
of threads to use for paral-
lel computation. Value is ig-
nored for sequential type of
solver.

S (the number 0 has the spe-
cial meaning for solver type
1 and 2, which means auto-
matic determination of the
number of threads)

A description of the individual columns of table $TAB_D1 is contained in the Tab.
62. An example of a respective block in an input text file, currently with only one table
$TAB_D1 has the formatted form shown in the Fig. 610.

File Block—#CALCULATION.material

This block contains the definition of the materials used. Homogenuous isotropic linearly
elastic materials can only be currently considered. It occupies the input table with the
name $TAB_M1. A formal representation of the table $TAB_M1 with the illustrative
values is shown in the Tab. 63.

108

6.4. Description of the FEXP Parts

#CALCULATION.dynamic
$TAB_D1;start;stop;step;print;solver;threads
0.0;2.0;1.578609007956055E-4;10;1;0

Figure 610: Example of the $TAB_D1 table in block #CALCULATION.dynamic.

Table 63: Table $TAB_M1.

id [−] rho [kg m−3] E [kg m−1s−2] nu [−]
1 7800 210E9 0.3
2 2500 35E9 0.3
. . .

Table 64: Description of the table $TAB_M1.

Column Name Description Value

id Material identifier number. S\{0}
rho Material density. F+

d

E Young’s elasticity modulus. F+
d

nu Poisson’s ratio. F(0,0.5)
d

Descriptions of the individual columns of table $TAB_M1 are contained in the Tab.
64. An example of a respective block in an input text file, currently with only one table
$TAB_M1 has the formatted form shown in the Fig. 611.

#CALCULATION.material
$TAB_M1;id;rho;E;nu
1;7800;210E9;0.3
2;2500;35E9;0.3
...

Figure 611: Example of the $TAB_M1 table in block #CALCULATION.material.

File Block—#CALCULATION.constrains

This block contains the definition of constraint conditions related to velocities and accel-
erations of finite element nodes which were used. The velocity and acceleration constrains
occupies the input tables with the name $TAB_CSTR_V and $TAB_CSTR_A respect-

109

6. Massive Parallel Computing

ively. A formal representation of the tables $TAB_CSTR_V and $TAB_CSTR_A with
the illustrative values are shown in the Tab. 65.

Table 65: Table $TAB_CSTR_V/$TAB_CSTR_A.

id [−] time [s] val_x st_x [−] val_y st_y [−] val_z
1/2 0/0 0/0 1/1 0/0 1/1 0/0
. . .

st_z [−] val_rx st_rx [−] val_ry st_ry [−] val_rz st_rz [−]
1/1 0/0 1/1 0/0 1/1 0/0 1/1
. . .

Table 66: Description of the table $TAB_CSTR_V/$TAB_CSTR_A.

Column Name Description Value

id Load identifier number. S\{0}
time Corresponding time. F+

d

val_[α] Value associated with dis-
placements, α ∈ {x, y, z}.

Fd

st_[α] State of constrain associated
with displacements in cor-
responding time and axis
α ∈ {x, y, z}, respectively.

{0, 1} ∈ S (respective values
have a meaning 0—Off and
1—On)

val_r[α] Value associated with rota-
tions, α ∈ {x, y, z}.

Fd

st_r[α] State of constrain associ-
ated with rotations in cor-
responding time and axis
α ∈ {x, y, z}, respectively.

{0, 1} ∈ S (respective values
have a meaning 0—Off and
1—On)

Descriptions of individual columns of the tables $TAB_CSTR_V and $TAB_CSTR_A,
respectively, are contained in the Tab. 66. Corresponding units for velocities are [ms−1]
and [rad s−1] (rotational velocity), and for acceleration is applied [ms−2] and [rad s−2]
(rotational acceleration), respectively. An example of respective block in an input text file
both with tables $TAB_CSTR_V and $TAB_CSTR_A has the formatted form shown
in the Fig. 612.

110

6.4. Description of the FEXP Parts

#CALCULATION.constrains
$TAB_CSTR_V;id;time;val_x;st_x;val_y;st_y;val_z;st_z;val_rx;st_rx;val_ry;
1;0;0;1;0;1;0;1;0;1;0;
...
$TAB_CSTR_A;id;time;val_x;st_x;val_y;st_y;val_z;st_z;val_rx;st_rx;val_ry;
2;0;0;1;0;1;0;1;0;1;0;
...

st_ry;val_rz;st_rz
1;0;1
...
st_ry;val_rz;st_rz
1;0;1
...

Figure 612: Example of the tables $TAB_CSTR_V and $TAB_CSTR_A in block #CAL-
CULATION.constrains.

File Block—#CALCULATION.loads

This block contains a load definition represented by the nodal force load table and dir-
ectly by the nodal acceleration load table. The nodal force load and nodal acceleration
load occupies the input tables with the names $TAB_LOAD_A and $TAB_LOAD_F, re-
spectively. A formal representation of the tables $TAB_LOAD_A and $TAB_LOAD_F
with the illustrative values are shown in the Tab. 67.

Table 67: Table $TAB_LOAD_A/$TAB_LOAD_F.

id [−] time [s] val_x st_x [−] val_y st_y [−] val_z
1/2 0/0 0/0 0/0 0/0 -9.81/0 1/0
. . .

st_z [−] val_rx st_rx [−] val_ry st_ry [−] val_rz st_rz [−]
0/0 0/0 0/0 0/0 0/0 0/0 0/0
. . .

Descriptions of the individual columns of the tables $TAB_LOAD_A and $TAB_LOAD_F,
respectively, are contained in the Tab. 68. Corresponding units for velocities are [ms−1]
and [rad s−1] (rotational load), and for acceleration is applied [ms−2] and [rad s−2] (rota-
tional acceleration), respectively. An example of respective block in an input text file both

111

6. Massive Parallel Computing

Table 68: Description of the table $TAB_LOAD_A/$TAB_LOAD_F.

Column Name Description Value

id Load identifier number. S\{0}
time Corresponding time. F+

d

val_[α] Value associated with dis-
placements, α ∈ {x, y, z}.

Fd

st_[α] State of load associated
with displacements in cor-
responding time and axis
α ∈ {x, y, z}, respectively.

{0, 1} ∈ S (respective values
have a meaning 0—Off and
1—On)

val_r[α] Value associated with rota-
tions, α ∈ {x, y, z}.

Fd

st_r[α] State of load associated with
rotations in corresponding
time and axis α ∈ {x, y, z},
respectively.

{0, 1} ∈ S (respective values
have a meaning 0—Off and
1—On)

with tables $TAB_LOAD_A and $TAB_LOAD_F has the formatted form shown in the
Fig. 613.

#CALCULATION.loads
$TAB_LOAD_A;id;time;val_x;st_x;val_y;st_y;val_z;st_z;val_rx;st_rx;val_ry;
1;0;0;0;0;0;-9.81;1;0;0;0;0;0;0
...
$TAB_LOAD_F;id;time;val_x;st_x;val_y;st_y;val_z;st_z;val_rx;st_rx;val_ry;
2;0;0;0;0;0;0;0;0;0;0;
...

st_ry;val_rz;st_rz
0;0;0
...
st_ry;val_rz;st_rz
0;0;0
...

Figure 613: Example of the tables $TAB_LOAD_A and $TAB_LOAD_F in block
#CALCULATION.loads.

112

6.4. Description of the FEXP Parts

File Block—#GEOMETRY.nodes

This block contains all data related to the finite element nodes. It occupies the input
table with the name $TAB_D1. A formal representation of the table $TAB_ND1 with
the illustrative values is shown in the Tab. 69.

Table 69: Table $TAB_ND1.

id [−] x [m] y [m] z [m] constrain_v_id [−] constrain_a_id [−] load_id [−]
1 0 0 0 0 0 1
2 2 0 0 1 0 0
. . .

Table 610: Description of the table $TAB_ND1.

Column Name Description Value

id Node identifier number. S\{0}
x Node coordinate on X-axis. Fd
y Node coordinate on Y-axis. Fd
z Node coordinate on Z-axis. Fd
constrain_v_id Velocity constrain identifier. S
constrain_a_id Velocity constrain identifier. S
load_id Load identifier. S

Descriptions of the individual columns of table $TAB_ND1 are contained in the Tab.
610. An example of respective block in an input text file with table $TAB_ND1 has the
formatted form shown in the Fig. 614.

#GEOMETRY.nodes
$TAB_ND1;id;x;y;z;constrain_v_id;constrain_a_id;load_id
1;0;0;0;0;0;1
2;2;0;0;1;0;0
...

Figure 614: Example of the table $TAB_ND1 in block #GEOMETRY.nodes.

File Block—#GEOMETRY.elements

This block contains all data related to the finite elements. It occupies the input table
with the name $TAB_EL1. Triangular 3-noded shell finite element described in chapter

113

6. Massive Parallel Computing

3.4.2 is currently applied only. A formal representation of the table $TAB_EL1 with the
illustrative values is shown in the Tab. 611.

Table 611: Table $TAB_EL1.

id [−] type [−] nid1 [−] nid2 [−] nid3 [−] material [−] t [m]

1 1 1 2 8 1 0.001
2 1 8 7 1 1 0.001
. . .

Table 612: Description of the table $TAB_EL1.

Column Name Description Value

id Element identifier number. S\{0}
type Element type. Currently {1} ∈ S only
nid1 First node identifier number. S\{0}
nid2 Second node identifier num-

ber.
S\{0}

nid3 Third node identifier num-
ber.

S\{0}

material Material identifier number. S (0—for rigid body)
t Element thickness. F+

d

Descriptions of the individual columns of table $TAB_EL1 are contained in the Tab.
612. An example of a respective block in an input text file with table $TAB_EL1 has the
formatted form shown in the Fig. 615.

#GEOMETRY.elements
$TAB_EL1;id;type;nid1;nid2;nid3;material;t
1;1;1;2;8;1;0.001
2;1;8;7;1;1;0.001
...

Figure 615: Example of the table $TAB_EL1 in block #GEOMETRY.elements.

6.4.3 Preprocessing-Solver Setting Input Data

All required solver configuration data are stored in the file with the extension [*.fexcfg].
The formatting style of the file is the same as in the [*.fexin] file. The considered data

114

6.4. Description of the FEXP Parts

content varies according to the type of the solver. The input configuration data for the
network solver contains additional data related to the initialization and configuration of
the computer network. Other data not contained in the input files come into the FEXP
solver start process as a command line arguments and they are explained as last.

File Block—#SERVER.init

This block is used to initialize the network server for the hybrid parallel type of FEXP
solver. Currently it contains one table only, namely $TAB_IPS. Table $TAB_IPS contains
the initial number of network-client nodes except that server. A formal representation of
the table $TAB_IPS with the illustrative values is shown in the Tab. 613.

Table 613: Table $TAB_IPS.

id [−] ip_address [−]
1 127.0.0.1
2 127.0.0.1
. . .

Table 614: Description of the table $TAB_IPS.

Column Name Description Value

id Serial number of the
network-client node.

S\{0}

ip_address IP address of network-client
node.

Valid IPv4 address

Descriptions of an individual columns of table $TAB_IPS are contained in the Tab.
614. An example of a respective block in an input text file with table $TAB_IPS has the
formatted form shown in the Fig. 616.

#SERVER.init
$TAB_IPS;id;ip_address
1;127.0.0.1
2;127.0.0.1
...

Figure 616: Example of the table $TAB_IPS in block #SERVER.init.

115

6. Massive Parallel Computing

File Block—#SOLVER.input_files

This block contains the list of input files containing separated macro model data. Mul-
tiple files representing individual macro model data relate primarily to the hybrid parallel
mutation of the FEXP solver. In the case of a workstation out of network cluster of the
FEXP solver, the form of structural input data is arbitrary. A formal representation of the
table $TAB_FLS with the illustrative values is shown in the Tab. 615.

Table 615: Table $TAB_FLS.

id [−] path [−]
1 C:\...\macro_1.fexin
2 C:\...\macro_2.fexin
. . .

Table 616: Description of the table $TAB_FLS.

Column Name Description Value

id Structural model identifier
number.

S\{0}

path Structural model (macro)
input data file.

Valid Windows OP file path

The respective block contains one more table, namely $TAB_FLS_DFLT, which con-
cerns to the hybrid form of the FEXP solver. Such a referenced file is sent to the network
client-node when it is dynamically initialized. Its definition is contained in the Tab. 617.

Table 617: Table $TAB_FLS_DFLT.

path [−]
C:\...\default_file_1.fexin

Table 618: Description of the table $TAB_FLS_DFLT.

Column Name Description Value

path Structural model (macro)
input data file.

Valid Windows OS file path

116

6.4. Description of the FEXP Parts

Descriptions of the individual columns of the tables are contained in Tab. 616 and
Tab. 618, respectively. An example of a respective block in an input text file with tables
$TAB_FLS and $TAB_FLS_DFLT has the formatted form shown in the Fig. 617.

#SOLVER.input_files
$TAB_FLS;id;path
1;C:\...\macro_1.fexin
2;C:\...\macro_1.fexin
...
\$TAB_FLS_DFLT;path
C:\...\default_file_1.fexin

Figure 617: Example of tables $TAB_FLS and $TAB_FLS_DFLT in block
#SOLVER.input_files.

File Block—#SOLVER.calc_behaviour

This block contains settings related to the computation result data output. This concerns
both the exporting of the detailed simulation results and the observation of the computation
behaviour for the selected degree of freedom of a some FE node. A formal representation
of the table $TAB_CALC with the illustrative values is shown in the Tab. 619.

Table 619: Table $TAB_CALC.

nid [−] dof [−] text_out [−] res_name [−] res_dir [−]
1 3 1 result C:\...\RESULTS\

Table 620: Description of the table $TAB_CALC.

Column Name Description Value

nid FE node identifier number. S\{0} ∈ id
dof Nodal degree of freedom. S ∈ {1, . . . , 6}.
text_out Runtime degree of freedom

value behaviour.
S\{0}, 1—on, 0—off

res_name Name of results. Valid Windows OS file name
without file an extension

res_dir Results directory path. Valid Windows OS directory
path

117

6. Massive Parallel Computing

Descriptions of the individual columns of table are contained in the Tab. 620, respect-
ively. An example of a respective block in an input text file with table $TAB_CALC has
the formatted form shown in the Fig. 618.

#SOLVER.calc_behaviour
$TAB_CALC;nid;dof;text_out;res_name;res_dir
1;3;1;result;C:\...\RESULTS\

Figure 618: Example of the table $TAB_CALC in block #SOLVER.calc_behaviour.

118

6.4. Description of the FEXP Parts

6.4.4 Finite Element Model Assembly

The data structures used and the process of an FE model assembly are described. The
data model assembly for an explicit numerical method is somewhat different from the
standard approach of implicit numerical methods. In the implicit approach, it is necessary
to assemble a global stiffness matrix not always symmetric. It requires the application of a
special data structures capable of efficiently handling these sparse matrices that generally
arise in the FEM. The problem becomes more complicated when it is necessary to use such
a data structure for parallel computations, when the assembly of a global stiffness matrix
becomes a narrow throat of an entire computation.

Between the already developed such a data structures capable of doing the aforemen-
tioned onerous task by an efficient way belongs a data structure based on the algorithm
developed by D. Langr et al. (see [70], [71]) from the Faculty of Information Technology
of the CTU in Prague. The commonly used data structures for sparse matrix storage in-
clude those contained in library LAPACK (abbreviation of the Linear Algebra PACKage,
see http://www.netlib.org/lapack/) or BLAS (see https://software.intel.com/en-us
/mkl-developer-reference-c-overview) in the commercial library Intel R©Math Kernel
Library (MKL).

The explicit method does not require the use of these special data structures, so for the
purpose of data storage it is sufficient to use the standard data structures as arrays, vectors
or maps. These data structures are often already included in the standard libraries of a
particular programming language. In the case of C++ programming language, a number
of such data structures are contained in the STL (abbreviation of the Standard Template
Library, see http://www.cplusplus.com/reference/stl/) library.

However, an important requirement for the functionality of these data structures is
their thread safety while attempting to read data from them from a more than one thread.
The requirement for the thread safety of the read operation is met in the case of used data
containers from the STL library. In the parts where is a need to change their contents,
the write operation is secured using the appropriate logical structure of the program and
by using of some synchronization operations, which are currently a part of standard C++
libraries. Since the entire FEXP solver and the other supporting programs use the asyn-
chronous approach to process many types of computing operations, a lot of different types
of synchronization operations in many representations are applied.

Due to the trend in computer technology, which is going to a lot of effort to increase
the number of processor cores rather than to increase processor performance through its
clock frequency, software support for multithreaded control has increased, thus so much
required functionality no longer has to be complicatedly programmed.

The most used synchronization in the FEXP solver involves synchronizing threads
by the thread barrier. Such synchronization procedures for CPU threads is described
in detail in article of V. Rek and I. Němec (see [105]). For the data synchronization during
write operation, the so-called critical sections (CS) are used. Unfortunately, however, all
synchronization procedures reduce the performance of the parallel application and must
be considered as a sequential running code in the performance analysis (see [28]).

119

http://www.netlib.org/lapack/
https://software.intel.com/en-us/mkl-developer-reference-c-overview
https://software.intel.com/en-us/mkl-developer-reference-c-overview
http://www.cplusplus.com/reference/stl/

6. Massive Parallel Computing

Data Containers

Figure 619: UML diagram of designed container classes.

120

6.4. Description of the FEXP Parts

For the model data storage purpose, a data container system has been designed. The
current structure of the used data containers is presented in the Fig. 619, and a short
description of their purpose is listed in the Tab. 621.

Table 621: Description of the container classes.

Class Name Purpose

CFEXPFiniteElementNodeContainer It keeps all the FE nodes.
CFEXPFiniteElementContainer It keeps all the FEs.
CFEXPMaterialContainer It keeps all defined materials.
CFEXPSettingContainer It keeps all solver settings except special set-

ting for the network server.
CFEXPFiniteElementNodeConstrainContainer It keeps all defined nodal constrains.
CFEXPFiniteElementNodeLoadContainer It keeps all defined nodal loads.
CFEXPMainDataContainer It is a central repository for accessing model

data.

Adding individual elements to the container storage while the model assembly process
is performed through the interface represented by the abstract class ICFEXPDataMod-
elContIntf, which is implemented by all data storage containers in the FEXP solver. The
central data repository is represented by the class CFEXPMainDataContainer, which
encapsulates all the other data containers to which it facilitates the access. Instance as-
sembly of this container class presents the following fragment of the respective source code
(class constructor from the source code file FEXPDataContainer.cpp)
CFEXPMainDataContainer : : CFEXPMainDataContainer ()
{

// conta ine r f o r s e t t i n g s
_model_container [ESystemElementType : : eS e t t i ng] =
FEXPCOMMON_STACAST(t_STTContainer , ICFEXPDataModelContIntf ,
CFEXPDataManager<t_STTContainer >: : Sa f eA l l o c In s t anc e ()) ;

. . .

// conta ine r f o r f i n i t e element nodes
_model_container [ESystemElementType : : eNode] =
FEXPCOMMON_STACAST(t_FENContainer , ICFEXPDataModelContIntf ,

CFEXPDataManager<t_FENContainer >: : Sa f eA l l o c In s t anc e ()) ;
// conta ine r f o r f i n i t e e lements
_model_container [ESystemElementType : : eElement] =
FEXPCOMMON_STACAST(t_FEContainer , ICFEXPDataModelContIntf ,

CFEXPDataManager<t_FEContainer >: : Sa f eA l l o c In s t anc e ()) ;

. . .
}

The next functionality related to parallel data processing is explained in the section
describing the individual parts of the process of numerical computations.

121

6. Massive Parallel Computing

Process of Data Model Assembly

Figure 620: UML diagram of designed structure for tabulated I/O data.

122

6.4. Description of the FEXP Parts

For the general data model assembly in the FEXP solver, a multi-level system of in-
put tables processing was designed with the final composition of a computing data. The
Fig. 620 presents the current structure state of tables containing data from rough deser-
ilation/serialization of files. It is based on the predefined structure of table columns in
the FEXP source code file FEXPSerialization.cpp. A fragment of source code for table
columns definition (base solver setting, isotropic linearly elastic material) is as follows
// St ruc ture o f t ab l e s in model data input f i l e
NmspcFileModelData : : CFEXPDataTables : : t_TableMap
NmspcFileModelData : : CFEXPDataTables : :TABLE_MAP =
{

{ INP_FILE_STRUCT_BLCS[NmspcFileModelData : : EFi leBlocks : : eBl1] ,
{

{ INP_FILE_STRUCT_TABS[NmspcFileModelData : : EFileTab : : eTD1] ,
{{ " s t a r t " , FEXPCOMMON_CLCFLT_TYPE_NAME } ,
{ " stop " , FEXPCOMMON_CLCFLT_TYPE_NAME } ,
{ " step " , FEXPCOMMON_CLCFLT_TYPE_NAME } ,
{ " p r i n t " , FEXPCOMMON_SIZE_T_TYPE_NAME } ,
{ " s o l v e r " , FEXPCOMMON_SIZE_T_TYPE_NAME } ,
{ " threads " , FEXPCOMMON_SIZE_T_TYPE_NAME }}}

}
} ,
{ INP_FILE_STRUCT_BLCS[NmspcFileModelData : : EFi leBlocks : : eBl2] ,

{
{ INP_FILE_STRUCT_TABS[NmspcFileModelData : : EFileTab : : eTM1] ,

{{ " id " , FEXPCOMMON_SIZE_T_TYPE_NAME } ,
{ " rho" , FEXPCOMMON_CLCFLT_TYPE_NAME } ,
{ "E" , FEXPCOMMON_CLCFLT_TYPE_NAME } ,
{ "nu" , FEXPCOMMON_CLCFLT_TYPE_NAME }}}

}
} ,

. . .
}

From the sample of a source code it is obvious that the table columns definition consists
of an appropriate name and the data type to be used for text parsing. The data type names
definition constants contains source code file FEXPCommon.h, and is follows:
////−−> Float ing po int data type f o r computations
us ing t_fexpcommon_ct = double ;

. . .

////−−> Pr imi t ive data types
#de f i n e FEXPCOMMON_DATA_TYPE(type) std : : type_index (type id (type))
#de f i n e FEXPCOMMON_DATA_TYPE_NAME(type) FEXPCOMMON_DATA_TYPE(type) . name ()
// type index o f common types
#de f i n e FEXPCOMMON_CLCFLT_TYPE FEXPCOMMON_DATA_TYPE(t_fexpcommon_ct)
#de f i n e FEXPCOMMON_SIZE_T_TYPE FEXPCOMMON_DATA_TYPE(s i ze_t)
#de f i n e FEXPCOMMON_STRING_TYPE FEXPCOMMON_DATA_TYPE(std : : s t r i n g)
// data type r ep r e s an ta t i on o f used types
#de f i n e FEXPCOMMON_CLCFLT_TYPE_NAME FEXPCOMMON_DATA_TYPE_NAME(t_fexpcommon_ct)
#de f i n e FEXPCOMMON_SIZE_T_TYPE_NAME FEXPCOMMON_DATA_TYPE_NAME(s i ze_t)
#de f i n e FEXPCOMMON_STRING_TYPE_NAME FEXPCOMMON_DATA_TYPE_NAME(std : : s t r i n g)

. . .

For the tabular data launching process, a more general system of working with spread-
sheets was designed based on their respective defined structure. Such functionality contains
abstract class ICFEXPSerialDataTableBase in source files FEXPSerializeDataTables.h

123

6. Massive Parallel Computing

and FEXPSerializeDataTables.cpp, respectively. It provides a common interface of an
input tables containing rough parsed data as their base class. Parsing of individual input
data tables with a validity check is performed using the following source code
void ICFEXPSerialDataTableBase : : set_data_values (
const std : : vector<std : : s t r i ng> & tab_def , const std : : vector<std : : s t r i ng> & tab_data ,
TABLE_LAMBDA_AFTRCL lambda_rw_set)
{
#de f i n e ERROR_WRONG_COL_COUNT "@Error : ␣ Input ␣ tab l e ␣has␣wrong␣number␣ o f ␣columns : ␣\""

auto tab l e = get_table_def () ;
auto c r r s z = tab_def . s i z e () ;
i f (t ab l e . s i z e () != c r r s z)
{

std : : s t r i n g e r r o r = ERROR_WRONG_COL_COUNT + GetKey () + "\"␣−−>␣\"" ;
e r r o r += CFEXPBaseConvers : : NumberToString (c r r s z) + " \" : " ;
e r r o r += "\"" ;
e r r o r += FEXPCOMMON_NEW_LINE;
FEXPCOMMON_FOREACH_ITER_FNC(tab_def , { e r r o r += IT + FEXPCOMMON_DELIMITER; }) ;
e r r o r += " \ " ! ! ! " + std : : s t r i n g (FEXPCOMMON_NEW_LINE) ;
e r r o r += "−−>␣Right␣ co l . ␣num . : ␣\""

+ CFEXPBaseConvers : : NumberToString (t ab l e . s i z e ()) + "\"␣−−>␣\"" ;
FEXPCOMMON_FOREACH_ITER_FNC(table , { e r r o r += IT . f i r s t + FEXPCOMMON_DELIMITER; }) ;
e r r o r += " \" . " ;
FEXPCOMMON_EXCEPTION(e r r o r) ;

}

#de f i n e ERROR_WRONG_COL_RUNTIME "Error : ␣Table␣does ␣not␣ conta in ␣ c o l . ␣ de f : ␣\""
FEXPCOMMON_FOREACH_ITER(tab_data)
{

s i ze_t counter = FEXPCOMMON_DEFAULT_VALUE;
auto st r_va lues = CFEXPBaseConvers : : S p l i t S t r i n g (∗ IT , FEXPCOMMON_DELIMITER) ;
FEXPCOMMON_FOREACH_ITER_FNC(tab_def ,

{
i f (! _data_setter . count (IT))
FEXPCOMMON_EXCEPTION(ERROR_WRONG_COL_RUNTIME + GetKey ()

+ "\"␣−−>␣\"" + IT + " \ " ! ! ! ") ;
_data_setter [IT] (s t r_va lues [counter ++]);

}) ;
// c a l l a f t e r one row data s e t
lambda_rw_set () ;

}
}

This code uses the inner functionality of the classes representing the input data tables
to assembly those specific data as follows (table for model structure materials, class CF-
EXPInpTable_TAB_M1)
CFEXPInpTable_TAB_M1 : : CFEXPInpTable_TAB_M1()

: ICFEXPSerialDataTableBase (INP_FILE_STRUCT_TABS[ID] ,
INP_FILE_TAB(INP_FILE_STRUCT_BLCS[NmspcFileModelData : : EFi leBlocks : : eBl2] , ID))

{
set_data_setter (" id " , FEXPCOMMON_SIZE_T_TYPE, DATA_TO_SET_LAMBDA_BODY(
{ _id_rnt = CFEXPBaseConvers : : StringToNumber<size_t> (txt) ; })) ;
set_data_setter (" rho" , FEXPCOMMON_CLCFLT_TYPE, DATA_TO_SET_LAMBDA_BODY(
{ _rho_rnt = CFEXPBaseConvers : : StringToNumber<t_fexpcommon_ct>(txt) ; })) ;
set_data_setter ("E" , FEXPCOMMON_CLCFLT_TYPE, DATA_TO_SET_LAMBDA_BODY(
{ _E_rnt = CFEXPBaseConvers : : StringToNumber<t_fexpcommon_ct>(txt) ; })) ;
set_data_setter ("nu" , FEXPCOMMON_CLCFLT_TYPE, DATA_TO_SET_LAMBDA_BODY(
{ _nu_rnt = CFEXPBaseConvers : : StringToNumber<t_fexpcommon_ct>(txt) ; })) ;

}

It should be noted that the order of the table columns can be arbitrary, amount of each
table columns, column’s names and the data type must match their definition. The list of

124

6.4. Description of the FEXP Parts

classes with a rough description is in the Tab. 622 representing the individual tables for
the structure model input data described in chapter 6.4.2.

Table 622: Description of the classes for the tabulated structural input data.

Class Name Purpose

CFEXPInpTable_TAB_D1 Data for the control of numerical simulation.
CFEXPInpTable_TAB_M1 Data for the homogenuous isotropic linerly

elastic materials.
CFEXPInpTable_TAB_CSTR_V Data for the velocity constrain conditions.
CFEXPInpTable_TAB_CSTR_A Data for the acceleration constrain condi-

tions.
CFEXPInpTable_TAB_LOAD_F Data for the nodal force loads.
CFEXPInpTable_TAB_LOAD_A Data for the nodal acceleration loads.
CFEXPInpTable_TAB_ND1 Data for the FE nodes.
CFEXPInpTable_TAB_EL1 Data for the triangular 3-noded shell FE.

The system of described table classes represents the lowest layer of input data launching
process. For the computing data model assembly, a special class which uses an asynchron-
ous paradigm to perform such a task was designed (see Fig. 621).

Figure 621: UML diagram of model builder template classes.

The class CFEXPModelBuilder also provides central access to the possibility of the
reconfiguration of a numerical model situated on a single workstation. This option applies
mainly to the computation of large models composed from many separate structural macro
parts. It also provides access to serialization/deserialization of a computational model data
at runtime for the network transfers and also provides the possibility of re-scheduling used
threads after network data transfer. The primary purpose is to assemble a data model that
represents the following fragment of a source code

125

6. Massive Parallel Computing

/∗∗ @br ie f Main func t i on (s i n g l e workstat ion) .
∗/
auto __cdecl main (i n t argv , char ∗ argc []) −> in t
{
. . .

// bu i l d e r i n s t ance
Ptr<ICFEXPModelBuilderBase> bu i l d e r = CFEXPDataManager<

CFEXPModelBuilder<ICFEXPDataContIntf , CFEXPMainDataContainer>>
: : Sa f eA l l o c In s t anc e (

"Bui ld ing ␣ f i n i t e ␣ element ␣model" ,
"Removing␣ f i n i t e ␣ element ␣model" ,
" Schedul ing ␣ o f ␣ threads ") ;

. . .

// bu i ld FE data model
auto bui ld_succ = true ;
FEXPCOMMON_FOREACH_ITER(fi le_reader_map)
{

i f (bu i lde r−>BuildModelProgress (IT−>f i r s t , IT−>second−>GetFileContent () ,
FEXPCOMMON_DYNCAST(CFEXPFEInpContBase , ICFEXPDataContIntf ,

IT−>second−>GetInputContainer ())))
cont inue ;

bui ld_succ = f a l s e ;
break ;

}

. . .
}

The specific functionality for the final composition of the FE model data is contained
in class CFEXPInpDataModelAssemblyFactory. The input data file for the FEXP
solver configuration is processed by a similar class named class CFEXPSolverInp-
DataAssemblyFactory in source files FEXPSerializeData.h and FEXPSerializeData.cpp,
respectively. The input table processing for assembling a specific type of material contains
the following source code fragment
void CFEXPInpDataModelAssemblyFactory : : AssemblyMater ia ls (
Ptr<ICFEXPDataModelContIntf> & model_cont , CFEXPInpDataContainer & incont)
{
#de f i n e WARNING_MATERIAL "Warning : ␣Dupl icated ␣mate r i a l ␣ID␣ in ␣ input ␣data" . . .
" (the ␣ o ld ␣one␣ w i l l ␣be␣ cons ide r ed) : ␣"
auto block = incont . GetData<CFEXPCalcMaterial >() ;
i f (! b lock)

re turn ;
auto tab l e = block−>GetTableData<CFEXPInpTable_TAB_M1>() ;
i f (t ab l e)
{

FEXPCOMMON_FOREACH_ITER_FNC(table−>GetData () ,
{

// check unique mate r i a l id
auto mat_to_add = FEXPCOMMON_STACAST(CFEXPSimpleElasticMaterial ,
ICFEXPModelDataIntf , CFEXPDataManager<CFEXPSimpleElasticMaterial>

: : Sa f eA l l o c In s t anc e (IT−>_id , IT−>_rho , IT−>_E, IT−>_nu)) ;
i f (model_cont−>ContainsKey (mat_to_add−>GetId () , mat_to_add−>GetType ()))
{

CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + WARNING_MATERIAL) ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "−−>␣" +

CFEXPBaseConvers : : NumberToString<size_t >(mat_to_add−>GetId ())) ;
r e turn ;

}
// add mate r i a l to conta ine r

126

6.4. Description of the FEXP Parts

model_cont−>AddModelElement (mat_to_add , mat_to_add−>GetType ()) ;
}) ;

}

// add r i g i d d e f au l t mate r i a l
auto r ig_mater ia l = FEXPCOMMON_STACAST(CFEXPRigidMaterial , ICFEXPModelDataIntf ,

CFEXPDataManager<CFEXPRigidMaterial >: : Sa f eA l l o c In s t anc e (
FEXPCOMMON_DEFAULT_VALUE, FEXPCOMMON_DEFAULT_VALUE,
FEXPCOMMON_DEFAULT_VALUE, FEXPCOMMON_DEFAULT_VALUE)) ;

model_cont−>AddModelElement (r ig_mater ia l , r ig_mater ia l−>GetType ()) ;
}

The given functionality for assembly the specific data model is invoked for the particular
type of container that stores the data. It presents the following source code from source
file FEXPModelBuilder.h:
template<typename TInCont , typename TMoCont>
bool CFEXPModelBuilder<TInCont , TMoCont ,
typename std : : enab le_i f
<
std : : is_base_of<ICFEXPDataContIntf , TInCont >: : va lue &&
std : : is_base_of<ICFEXPDataModelContIntf , TMoCont>: : value >: : type
>
: : BuildModel (const std : : s t r i n g & key ,
Ptr<std : : vector<std : : s t r i ng>> fcontent , Ptr<TInCont> data)
{

i f (_in_contr_map . count (key))
re turn f a l s e ;

_in_contr_map . i n s e r t (MAP_PAIR(key ,
CFEXPDataManager<input_data >: : Sa f eA l l o c In s t anc e (f content , data))) ;

data−>SetData (FEXPCOMMON_STACAST(TMoCont , ICFEXPDataModelContIntf , _mo_container) , key) ;
r e turn true ;

}

After the whole model has been assembled and before the start of computation, the
last part comes into play, which takes care of scheduling of the FE model to the planned
amount of the used threads for parallel computation. As mentioned earlier, such activity
is turned on from the outside using the class CFEXPModelBuilder instance and is
represented by the following fragment of source code:
/∗∗ @br ie f Main func t i on (s i n g l e workstat ion) .
∗/
auto __cdecl main (i n t argv , char ∗ argc []) −> in t
{
. . .

i f (! bui ld_succ)
{

FEXPCOMMON_CONSOLE_PAUSE(std : : get<FEXPCOMMON_CMD_MANAGER_INDEX>(cmd)) ;
r e turn EXIT_FAILURE;

}

// thread schedu l ing o f FE nodes and FEs
bu i lde r−>ScheduleThreadsProgress (ESystemElementType : : eNode) ;
bu i lde r−>ScheduleThreadsProgress (ESystemElementType : : eElement) ;

. . .
}

Thread scheduling to finite element nodes and also to finite elements of mesh is per-
formed by the following code contained in the source file FEXPDataContainer.cpp:

127

6. Massive Parallel Computing

void CFEXPModelContainerBase : : ScheduleThreads (s i ze_t opt_id)
{

auto element_count = get_conta iner () . s i z e () ;
i f (! element_count)
{

_thread_mapper . c l e a r () ;
r e turn ;

}
// thread schedu l ing
auto counter = s ize_t (FEXPCOMMON_DEFAULT_VALUE) ; _thread_mapper . c l e a r () ;
CFEXPModelContainerBase : : IterateModElems ([th i s , element_count , &counter] (auto item)

{
auto thread id = CFEXPConcurencyTools : : GetCpuThreadIdToItem (

counter++, item−>GetThreadNumber () , element_count) ;
item−>SetThreadId (thread id) ;
// map item to thread
i f (thread id)

add_new_thread_item(item−>GetThreadId () , item−>GetId ()) ;
r e turn true ;

} , FEXPCOMMON_DEFAULT_VALUE) ;
}

6.4.5 FEXP Computational Parts

In this chapter, the FEXP solver part belonging to the numerical computation is dealt.
This such part consists of three levels that relate to the interfaces that trigger the whole
computation, the level that takes care of the sequence of an individual computational steps
like computation represented by the integration of internal forces and direct integration
of equtions of motion, and the most bottom level directly focused on the pure numerics
of the mentioned integrations. The relevant numerical background of related numerical
computations is described in chapter 3.

Here, the composition of an explicit computation and required synchronization blocks
are described. The type of FEXP solver, which is designed for computation in the scope
of a computer network, is covered here only partially. A detailed description is contained
in chapter 6.4.8. Specific numerical integrations are included in the respective implement-
ation of the finite elements. In the FE nodes an integration of the equations of motion
is performed, which is based on the already integrated internal and external forces from
the FEs connected to the respective FE node. This section is presented in an indicative
manner only. In the case of implementation of the other FE types in the near future, it
offers the possibility of optimization using some of the GPGPU technology for selected
matrix operations, even for the entire force integration process as described in the article
of V. Rek and I. Němec (see [104]).

128

6.4. Description of the FEXP Parts

Type of Solvers

Figure 622: UML diagram of classes for solver types.

This part represents the highest layer of the object oriented design of the FEXP software
solution regarding a numerical computations. Especially for the testing purposes, three
main types of solvers were designed. The implementation of the appropriate classes is
found in the source code files FEXPSolver.h and FEXPSolver.cpp, respectively. Classes
are the following

0. Sequential solver is represented by the class CFEXPSequentialSolver.

1. Parallel solver is represented by the class CFEXPParallelSolver.

2. Hybrid parallel solver is represented by the class CFEXPHybridParallelSolver.

Sequential type of FEXP solver was designed primarily for the purpose of analyzing the
effectiveness of individual solutions as a source of reference value. Its secondary purpose is
to debug the numerical computation with respect to the validity of numerical simulation
results. The sequential type of the FEXP solver contains the basic form of an explicit

129

6. Massive Parallel Computing

numerical computation control. Thus, such a form as the numerical computation control
is represented by the following source code:
template<typename TExpCalc>
void CFEXPSequentialSolver<TExpCalc ,
typename std : : enab le_i f
<
std : : is_base_of<ICFEXPExplicitCalcBase , TExpCalc >: : va lue
>:: type >: : S ta r t ()
{

t ry
{

auto resu l t_saved = f a l s e ;
// Check s imu la t i on end
whi le (t rue)
{

// 1 . Step : Check end o f c a l c u l a t i o n
i f (_ca lcu lator−>CheckEnd(FEXPCOMMON_DEFAULT_VALUE))
{

i f (! resu l t_saved)
_calcu lator−>TrySaveResults (FEXPCOMMON_DEFAULT_VALUE, t rue) ;

break ;
}
// 2 . Step : Time increment con s i s t ency
_calcu lator−>SimulationTimeIncrement (FEXPCOMMON_DEFAULT_VALUE) ;
// 3 . Step : Prepare data f o r new time l e v e l
_ca lcu lator−>PrepareDataForNewTimeLevel (FEXPCOMMON_DEFAULT_VALUE) ;
// 4 . Step : Update mapping o f f e nodes f o r contact s ea r ch ing
_calcu lator−>UpdateModelMapping (FEXPCOMMON_DEFAULT_VALUE) ;
// 5 . Step : Transform po s i t i o n and v e l o c i t i e s to l o c a l coo rd inate system
_calcu lator−>GlobalToLocalTransformation (FEXPCOMMON_DEFAULT_VALUE) ;
// 6 . Step : I n t e g r a t i on o f i n t e rna l , e x t e rna l and contact f o r c e s
_ca lcu lator−>Calcu la teForce s (FEXPCOMMON_DEFAULT_VALUE) ;
// 7 . Step : Ca l cu la t e new di sp lacemnets based on e x p l i c i t i n t e g r . o f EOM
_calcu lator−>CalculateNewGeometry (FEXPCOMMON_DEFAULT_VALUE) ;
// 8 . Step : Save c a l c u l a t i o n r e s u l t s
resu l t_saved = _calcu lator−>TrySaveResults (FEXPCOMMON_DEFAULT_VALUE) ;
// 9 . Step : Pr int out r e s u l t s
_ca lcu lator−>PrintOutResults (FEXPCOMMON_DEFAULT_VALUE) ;
// c l e a r a l l r e s u l t s −−> data space opt imiza t i on
_calcu lator−>ClearResu l t s (FEXPCOMMON_DEFAULT_VALUE) ;
// 10 . Step : Control o f numerica l s t a b i l i t y
_calcu lator−>Stab i l i t yCon t r o l (FEXPCOMMON_DEFAULT_VALUE) ;
// 11 . Step : Update time step dt
_calcu lator−>SetNewTimeStep (_calcu lator−>GetCalculatedCrit icTimeStep ()) ;

}
}
catch (const std : : except ion & ex)
{

CFEXPLog : : WriteLine () ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT +

"Error : ␣Computation␣ended␣ be f o r e ␣ the ␣ s imu la t i on ␣end . ") ;
// p r i n t out the problem o f except ion
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "An␣ except ion ␣ occurred : ") ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "−−>␣" + ex . what ()) ;

}
}

The entire process of sequential computation is commenced up by the following snippet
of a source code:
/∗∗ @br ie f Main func t i on (s i n g l e workstat ion) .
∗/
auto __cdecl main (i n t argv , char ∗ argc []) −> in t
{

130

6.4. Description of the FEXP Parts

. . .

switch (s e t t i ng−>GetSolver ())
{
case CFEXPBaseSetting : : EFEXPSolverType : : eSequent i a l : // s e qu en t i a l type o f s o l v e r

CFEXPDataManager<CFEXPSequentialSolver<CFEXPCalculation>>
: : Sa f eA l l o c In s t anc e (bu i lde r , r e su l t_expor t e r)−>Star t () ;

break ;

. . .

d e f au l t : FEXPCOMMON_EXCEPTION("Error : ␣Unknown␣ type␣ o f ␣a␣ s o l v e r ! ") ;
}

. . .
}

The next type of FEXP solver already uses a parallel run with utilization of CPU cores.
Its structure is much more complex than in the case of the sequential solver type. Here
it is necessary to ensure the data synchronization, as well as the synchronization of the
sequences refering to the individual steps of numerical computations. The approach to the
synchronization between the individual steps of a numerical computations was chosen to be
identical to the approach originally designed to the use of NVIDIA R©CUDA R© technology
for GPGPU from the article of V. Rek and I. Němec (see [104]).

As mentioned earlier, synchronization of the thread progression between the individual
steps of the numerical computations is carried out by means of thread barriers. Thus,
the internal structure of the FEXP parallel solver representing the execution and syn-
chronization of the individual computational phases is presented by the following source
code:
template<typename TExpCalc , typename TThreadData , typename TThread , typename Tbarr ier>
void CFEXPParallelSolver<TExpCalc , TThreadData , TThread , Tbarr ier , typename std : : enab le_i f
<
std : : is_base_of<ICFEXPExplicitCalcBase , TExpCalc >:: va lue &&
std : : is_base_of<ICFEXPThreadDataBase , TThreadData >: : va lue &&
std : : is_base_of<ICFEXPThreadBase , TThread >:: va lue &&
std : : is_base_of<ICFEXPSynchrThreadBarrier , Tbarr i e r >:: va lue
>:: type>
: : thread_Calculat ion_funct ion (s i ze_t thread_id , Ptr<TThreadData> data)
{

t ry
{

bool ca lcu lat ion_end = f a l s e ; auto c a l c u l a t o r = ge t_ca l cu l a to r (thread_id) ;
whi l e (t rue)
{

// 1 . Step : Set time con s i s t en cy
data−>SetCalcTimeIncrement (thread_id ,

c a l cu l a t o r−>SimulationTimeIncrement (thread_id)) ;
Synchronize (ESynchronizat ion : : eSync1) ;
// 2 . Step : Check i f time i s the same f o r a l l threads
// t h i s r e qu i r e only one thread to do t h i s a c t i on
check_time_synchronization (data) ;
// check end o f c a l c u l a t i o n −−> wait f o r thread sav ing r e s u l t s
ca lcu lat ion_end = check_calculat ion_end (data , thread_id) ;
Synchronize (ESynchronizat ion : : eSync2) ;
// 3 . Step : Check end o f computation
i f (ca lcu lat ion_end)

break ;
Synchronize (ESynchronizat ion : : eSync3) ;

131

6. Massive Parallel Computing

// 4 . Step : Prepare data f o r new time l e v e l
c a l cu l a t o r−>PrepareDataForNewTimeLevel (thread_id) ;
// 5 . Step : Update mapping o f f e nodes f o r contact search
// t h i s r e qu i r e only one thread to do t h i s a c t i on
update_model_mapping (thread_id) ;
// 6 . Step : Transform po s i t i o n and v e l o c i t i e s to l o c a l coo rd ina te system
ca l cu l a t o r−>GlobalToLocalTransformation (thread_id) ;
Synchronize (ESynchronizat ion : : eSync4) ;
// 7 . Step : I n t e g r a t i on o f i n t e rna l , e x t e rna l and contact f o r c e s
c a l cu l a t o r−>Calcu la teForce s (thread_id) ;
Synchronize (ESynchronizat ion : : eSync5) ;
// 8 . Step : Compute new di sp lacements based on e x p l i c i t i n t e g r a t i o n o f EM
ca l cu l a t o r−>CalculateNewGeometry (thread_id) ;
Synchronize (ESynchronizat ion : : eSync6) ;
// 9 . 1 . Step : Export r e s u l t s
t ry_expor t_ca l cu la t i on_resu l t s (data , thread_id) ;
// 9 . 2 . Step : Pr int out r e s u l t s
c a l cu l a t o r−>PrintOutResults (thread_id) ;
Synchronize (ESynchronizat ion : : eSync7) ;
// 10 . Step : Control o f numerica l s t a b i l i t y
c a l cu l a t o r−>Stab i l i t yCon t r o l (thread_id) ;
data−>SetTimeStep (thread_id , c a l cu l a t o r−>GetCalculatedCrit icTimeStep ()) ;
Synchronize (ESynchronizat ion : : eSync8) ;
// 11 . Step : Update time step dt
// t h i s r e qu i r e only one thread to do t h i s a c t i on
update_time_step (data) ;
// 12 . Step : Synchronize be f o r new loop
Synchronize (ESynchronizat ion : : eSync9) ;

}
}
catch (const std : : except ion & ex)
{

CFEXPLog : : WriteLine () ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT +

"Error : ␣ Ca l cu l a t i on ␣ended␣ be f o r e ␣ s imu la t i on ␣end . ") ;
// p r i n t problem o f except ion
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "An␣ except ion ␣ occurred : ") ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "−−>␣" + ex . what ()) ;

}
}

Similarly as in the case of sequential type of FEXP solver, the entire process of parallel
computation is started up by the following snippet of source code:
/∗∗ @br ie f Main func t i on (s i n g l e workstat ion) .
∗/
auto __cdecl main (i n t argv , char ∗ argc []) −> in t
{
. . .

switch (s e t t i ng−>GetSolver ())
{

. . .

case CFEXPBaseSetting : : EFEXPSolverType : : ePara l l e lCpu : // p a r a l l e l type o f s o l v e r
CFEXPDataManager<SIMPLE_PARALLEL_SOLVER>

: : Sa f eA l l o c In s t anc e (bu i lde r , r e su l t_expor t e r)−>Star t () ;
break ;

. . .

d e f au l t : FEXPCOMMON_EXCEPTION("Error : ␣Unknown␣ type␣ o f ␣a␣ s o l v e r ! ") ;
}

132

6.4. Description of the FEXP Parts

. . .
}

The last type of the FEXP solver is a hybrid-parallel solver running on a computer
network. Compared to the previously mentioned two types of FEXP solvers, it absolutely
requires special handling. Parallelization is based on a hybrid form of domain decompos-
ition that uses a parallel processing approach identical to those on a single workstation,
with the approach based on the data migration of macro entities between the individual
workstations of the considered computer network. For the given reason, an executable
program for one workstation was partitioned into a part belonging to a single worksta-
tion out of the cooperating workstations connected to the computer cluster, and a portion
dedicated to one cooperative workstation within the computer cluster.

As a result, this type of FEXP solver is not considered to run in the same way as the
previous two solvers. It represents the following snippet of a source code:
/∗∗ @br ie f Main func t i on (s i n g l e workstat ion) .
∗/
auto __cdecl main (i n t argv , char ∗ argc []) −> in t
{
. . .

switch (s e t t i ng−>GetSolver ())
{

. . .

case CFEXPBaseSetting : : EFEXPSolverType : : eHybrid :
FEXPCOMMON_EXCEPTION("Error : ␣Hybrid␣ s o l v e r ␣ i s ␣not␣ a l lowed ␣ here ! ") ;

d e f au l t : FEXPCOMMON_EXCEPTION("Error : ␣Unknown␣ type␣ o f ␣a␣ s o l v e r ! ") ;
}

. . .
}

Thanks to the already mentined reasons and many others, such a type of the FEXP
solver is devoted to the entire chapter dealing with the proposed solution for dynamic
simulation on a computer network.

133

6. Massive Parallel Computing

Explicit Numerical Computations

Figure 623: UML diagram of class for explicit computation.

134

6.4. Description of the FEXP Parts

Full control and triggering of the individual computational steps is performed by the
appropriate type of solver described in previous text. The individual steps of an expli-
cit numerical computation, its behaviour control, and the data export are included in
the class CFEXPCalculation contained in the source files FEXPCalculation.h and
FEXPCalculation.cpp, respectively. It is presented to the outside through the imple-
mentation of the interface the abstract class ICFEXPExplicitCalcBase as showen in
the Fig. 623. The numerical computations within are performed on the data elements
stored in the central storage represented by the class CFEXPMathModelElement-
Container as shown in the Fig. ??. Triggering of a numerical computation an internal
and contact forces represents the following snippet of the source code:
/∗∗ @br ie f I t computes f o r c e s (i n t e rna l , ex te rna l , contact) .
∗/
void CFEXPCalculation : : Ca l cu la t eForce s (s i ze_t thread_id)
{

// compute ex t e rna l and i n t e r n a l f o r c e s
get_model()−>IterateModElems ([t h i s] (auto item)

{
auto element = FEXPCOMMON_STACAST(ICFEXPModelDataIntf , ICFEXPElementBase , item) ;
// 1 . s t r e s s e s
element−>Ca l cS t r e s s (_time_step_dt) ;
// 2 . i n t e r n a l f o r c e s
element−>CalcIntForce () ;
// 3 . contact f o r c e s
std : : map<size_t , Ptr<ICFEXPElementNodeBase>> element_nodes_map ;
auto nodes = element−>GetNodes () ;
FEXPCOMMON_FOREACH_ITER(nodes)

element_nodes_map . i n s e r t (MAP_PAIR(IT−>lock ()−>GetId () , IT−>lock ())) ;
// FE bounding boxes
auto bbounds = ∗ element−>GetBoundingBoxBounds () . get () ;
auto boundary_max = std : : vector<t_fexpcommon_ct>
{

bbounds [CFEXGeomTools : : EBoundingBox : : eMax]−>
GetCoordinate (FEXPFEGeom : : EFEXPFECoordinates : : eC_x) ,

bbounds [CFEXGeomTools : : EBoundingBox : : eMax]−>
GetCoordinate (FEXPFEGeom : : EFEXPFECoordinates : : eC_y) ,

bbounds [CFEXGeomTools : : EBoundingBox : : eMax]−>
GetCoordinate (FEXPFEGeom : : EFEXPFECoordinates : : eC_z)

} ;
auto boundary_min = std : : vector<t_fexpcommon_ct>
{

bbounds [CFEXGeomTools : : EBoundingBox : : eMin]−>
GetCoordinate (FEXPFEGeom : : EFEXPFECoordinates : : eC_x) ,

bbounds [CFEXGeomTools : : EBoundingBox : : eMin]−>
GetCoordinate (FEXPFEGeom : : EFEXPFECoordinates : : eC_y) ,

bbounds [CFEXGeomTools : : EBoundingBox : : eMin]−>
GetCoordinate (FEXPFEGeom : : EFEXPFECoordinates : : eC_z)

} ;
auto found_nodes = search_close_nodes (boundary_min , boundary_max) ;
i f (found_nodes)

element−>CalcConForce (∗ found_nodes . get ()) ;
r e turn true ;

} , ESystemElementType : : eElement , thread_id) ; // loop through FEs
}

The given source code represents a unified approach to performing the computations,
which is common for both sequencing and parallel computing on a single workstation, and
for a hybrid parallel computation performed on a computer network as well. In the case of
a parallel computation, the loop through the individual model elements is performed with

135

6. Massive Parallel Computing

the help of their mapping to individual threads. It applies for both FE nodes also FEs,
respectively. Loop over the individual elements mapped to the specific threads is provided
by the following source code:
void CFEXPModelContainerBase : : IterateModElems (t_IterFunc funct ion ,
s i ze_t opt_id , s i ze_t thread_id)
{

i f (! thread_id)
{

IterateModElems (funct ion , opt_id) ;
r e turn ;

}
i f (_thread_mapper . empty ())

re turn ;
FEXPCOMMON_FOREACH_ITER(_thread_mapper [thread_id])
{

i f (! f unc t i on (GetData (IT−>f i r s t)))
r e turn ;

} ;
}

Due to the evolutionary character of a computation, that is, the interdependence of
each solution over time to proceed, it is necessary to ensure synchronization of the time
between the individual threads. In the case of a computation in a computer network it
gets high importance.

The part dealing with general contact detection is important to mention. The al-
gorithm for the range searching in the Euclidean space based on the use of the kd-tree
data structure is described in detail in chapter 4. The given functionality is represented by
the class CFEXPTopologieKDTree in the source files FEXPTopologieKDTree.h and
FEXPTopologieKDTree.cpp, respectively. In the case of a parallel type of the FEXP solver
(hybrid, single workstation), such a step is always processed only by the thread that reaches
this level as first. This represents the following source code fragment:
template<typename TExpCalc , typename TThreadData , typename TThread , typename Tbarr ier>
void CFEXPParallelSolver<TExpCalc , TThreadData , TThread , Tbarr ier , typename std : : enab le_i f
<
std : : is_base_of<ICFEXPExplicitCalcBase , TExpCalc >:: va lue &&
std : : is_base_of<ICFEXPThreadDataBase , TThreadData >: : va lue &&
std : : is_base_of<ICFEXPThreadBase , TThread >:: va lue &&
std : : is_base_of<ICFEXPSynchrThreadBarrier , Tbarr i e r >:: va lue
>:: type>
: : thread_Calculat ion_funct ion (s i ze_t thread_id , Ptr<TThreadData> data)
{

t ry
{

bool ca lcu lat ion_end = f a l s e ; auto c a l c u l a t o r = ge t_ca l cu l a to r (thread_id) ;
whi l e (t rue)
{

. . .

// 5 . Step : Update mapping o f f e nodes f o r contact search
// t h i s r e qu i r e only one thread to do t h i s a c t i on
update_model_mapping (thread_id) ;

. . .
}

}
catch (const std : : except ion & ex)
{

136

6.4. Description of the FEXP Parts

. . .

}
}

where for this purpose, the critical section is used for a data synchronization as suggested
the following source code:
template<typename TExpCalc , typename TThreadData , typename TThread , typename Tbarr ier>
void CFEXPParallelSolver<TExpCalc , TThreadData , TThread , Tbarr ier , typename std : : enab le_i f
<
std : : is_base_of<ICFEXPExplicitCalcBase , TExpCalc >:: va lue &&
std : : is_base_of<ICFEXPThreadDataBase , TThreadData >: : va lue &&
std : : is_base_of<ICFEXPThreadBase , TThread >:: va lue &&
std : : is_base_of<ICFEXPSynchrThreadBarrier , Tbarr i e r >:: va lue
>:: type>
: : update_model_mapping (s i ze_t thread_id)
{

// c r i t i c a l s e c t i o n f o r model mapping update
std : : unique_lock<std : : mutex> lock (_mtx_stuct_map_update , s td : : de fe r_lock) ;
l o ck . l o ck () ;
++_thread_counter_stuct_map_update ; // increment thread counter
i f (_thread_counter_stuct_map_update == THREAD_COUNT_UPDATER)

ge t_ca l cu l a to r (thread_id)−>UpdateModelMapping (thread_id) ;
i f (_thread_counter_stuct_map_update == _threads)

_thread_counter_stuct_map_update = FEXPCOMMON_DEFAULT_VALUE;
lock . unlock () ;

}

The final filling the data structure with all the FE nodes is performed at each simulation
time step using the following function from a source code:
void ICFEXPSolverBase : : update_topology_map_for_contact ()
{

_kd_tree_map = CFEXPDataManager<
CFEXPTopologieKDTree<ICFEXPElementNodeBase , t_fexpcommon_ct>>

: : Sa f eA l l o c In s t anc e (FEXPFEGeom : : EFEXPFECoordinates : : eC_Count) ;
_kd_tree_map−>CreateTopologyTree (_builder−>GetModelContainer () ,

ESystemElementType : : eNode) ;
}

On the kd-tree data structure side, the following function from the source code takes
care of filling the data:
template<typename TData , typename TValue>
void CFEXPTopologieKDTree<TData , TValue>
: : CreateTopologyTree (Ptr<ICFEXPDataModelContIntf> conta iner , s i ze_t opt_id)
{

conta iner−>IterateModElems ([t h i s] (auto item)
{

InsertData (FEXPCOMMON_DYNCAST(ICFEXPModelDataIntf , TData , item)) ;
r e turn true ;

} , opt_id) ;
}

The final step is to find all the FE nodes that fall into the so-called bounding box
of the respective finite element to check their possible penetration into the respective
shell FE thickness. The nodes of the FE being examined are always filtered out of the
resulting node set coming from the range searching query. This process is carried out

137

6. Massive Parallel Computing

within the computation of the internal, external and contact forces respectively as suggest
the following snippet of a source code:
/∗∗ @br ie f I t computes f o r c e s (i n t e rna l , ex te rna l , contact) .
∗/
void CFEXPCalculation : : Ca l cu la t eForce s (s i ze_t thread_id)
{

// compute ex t e rna l and i n t e r n a l f o r c e s
get_model()−>IterateModElems ([t h i s] (auto item)

{
. . .

// 3 . contact f o r c e s
std : : map<size_t , Ptr<ICFEXPElementNodeBase>> element_nodes_map ;
auto nodes = element−>GetNodes () ;
FEXPCOMMON_FOREACH_ITER(nodes)

element_nodes_map . i n s e r t (MAP_PAIR(IT−>lock ()−>GetId () , IT−>lock ())) ;
// FE bounding boxes
auto bbounds = ∗ element−>GetBoundingBoxBounds () . get () ;
auto boundary_max = std : : vector<t_fexpcommon_ct>
{

bbounds [CFEXGeomTools : : EBoundingBox : : eMax]−>
GetCoordinate (FEXPFEGeom : : EFEXPFECoordinates : : eC_x) ,

bbounds [CFEXGeomTools : : EBoundingBox : : eMax]−>
GetCoordinate (FEXPFEGeom : : EFEXPFECoordinates : : eC_y) ,

bbounds [CFEXGeomTools : : EBoundingBox : : eMax]−>
GetCoordinate (FEXPFEGeom : : EFEXPFECoordinates : : eC_z)

} ;
auto boundary_min = std : : vector<t_fexpcommon_ct>
{

bbounds [CFEXGeomTools : : EBoundingBox : : eMin]−>
GetCoordinate (FEXPFEGeom : : EFEXPFECoordinates : : eC_x) ,

bbounds [CFEXGeomTools : : EBoundingBox : : eMin]−>
GetCoordinate (FEXPFEGeom : : EFEXPFECoordinates : : eC_y) ,

bbounds [CFEXGeomTools : : EBoundingBox : : eMin]−>
GetCoordinate (FEXPFEGeom : : EFEXPFECoordinates : : eC_z)

} ;
auto found_nodes = search_close_nodes (boundary_min , boundary_max) ;
i f (found_nodes)

element−>CalcConForce (∗ found_nodes . get ()) ;
r e turn true ;

} , ESystemElementType : : eElement , thread_id) ; // loop through FEs
}

It is important to note that the searching process can be performed in parallel for each
set of FEs belonging to an appropriate thread. Optimization can go even further, due to
the use of parallelization in the kd-tree data structure algorithm. Here is mentioned the
possibility of using the GPGPU technology (see [138], [113] or for Octree-based structure
see [31]).

Finally, chapter 5 describes how the kd-tree data structure is used for the purpose of
the MEIM assembly in terms of the hybrid-parallel FEXP solver described further.

138

6.4. Description of the FEXP Parts

6.4.6 Post Procesing-Output Data

Figure 624: UML diagram of classes for export of results to VTU file for ParaView.

139

6. Massive Parallel Computing

Any analysis does not dispense without the results visualization. In the case of dynamic
analysis of a contact/impact mechanics of a flexible bodies this is an absolute necessity as
well as in a standard static stress state analysis. The vast majority of a programs dealing
with the such a type of numerical analyzes contain their own advanced graphical interface
for result handling. Such a user-friendly program is undoubtedly the RFEM program
from Dlubal company (see https://www.dlubal.com/en/products/rfem-fea-software
/what-is-rfem).

However, the development of such an advanced graphical software tool is a rather
complicated and expensive task, so many companies use external configurable graphical
software tools developed for such purposes of data preprocessing and post processing.
Perhaps the most widely used advanced graphical software tools in this context are GID
(https://www.gidhome.com/) and free open-source program SALOME (http://www.sal
ome-platform.org/). Their disadvantage is their complexity given by their generality and
possibility of customization. Of course, the disadvantage is related to the short-term usage.

In the context of the testing solver, it was necessary to provide graphical visualization
of the resulting data from the numerical simulation in the simplest and most efficient way.
For such reasons, the ParaView vizualization free open-source software tool was chosen for
the presentation of results from the numerical simulations (https://www.paraview.org/).
It is also does advanced graphical visualization tool that supports a large number of file
formats and also provides a programmable interface. For simplicity, a VTK (abbreviation
of the Visualization ToolKit, it is an open-source, freely available software system for 3D
computer graphics, image processing, and visualization) text file format was chosen (see
https://www.vtk.org/, https://www.vtk.org/wp-content/uploads/2015/04/file-for
mats.pdf). Visual presentation of numerical results is also possible in smartphones running
on the Google Android OS or iPhone OS environments using the application KiwiViewer
(see http://www.kiwiviewer.org/).

The structure of the VTK file format is applied in a form based on the XML format.
Appropriate results from the specific time steps of numerical simulation are stored in the
files with the extension [*.vtu]. An example of the structure of such a file is shown in List.
6.1.

Listing 6.1: Example of result file content for ParaView vizualization.
<!−− TimeStep 1055 Computed Mon Mar 26 08 : 1 5 : 0 7 2018
−−>

<VTKFile type="UnstructuredGrid " ve r s i on=" 0 .1 " byte_order=" Li t t l eEnd ian ">
<UnstructuredGrid>
<Piece NumberOfPoints="10" NumberOfCells = "6">
<Points>
<DataArray type="Float64 " NumberOfComponents="3" format=" a s c i i ">
0.000000000000000 e+00 0.000000000000000 e+00 0.000000000000000 e+00
0.000000000000000 e+00 1.000000000000000 e+00 0.000000000000000 e+00
1.005321119818887 e+00 9.576152776164464 e−01 −1.514586728668224e−01
9.998500810750470 e−01 −1.932467268182697e−02 −8.318050736105997e−02
2.000000000000000 e+00 0.000000000000000 e+00 0.000000000000000 e+00
1.988359493183459 e+00 9.517658223691466 e−01 −8.382451735676008e−02
1.795716129044378 e+00 6.750442893077370 e−01 −4.756455804170117 e+00
1.830061054668710 e+00 6.880499608200705 e−01 −5.005210120675233 e+00
1.500000000000000 e+00 1.500000000000002 e+00 −5.329123199502698 e+00
1.800000000000000 e+00 1.499999999999999 e+00 −5.329123199502698 e+00

140

https://www.dlubal.com/en/products/rfem-fea-software/what-is-rfem
https://www.dlubal.com/en/products/rfem-fea-software/what-is-rfem
https://www.gidhome.com/
http://www.salome-platform.org/
http://www.salome-platform.org/
https://www.paraview.org/
https://www.vtk.org/
https://www.vtk.org/wp-content/uploads/2015/04/file-formats.pdf
https://www.vtk.org/wp-content/uploads/2015/04/file-formats.pdf
http://www.kiwiviewer.org/

6.4. Description of the FEXP Parts

</DataArray>
</Points>
<Ce l l s>
<DataArray type=" Int32 " Name=" conne c t i v i t y " format=" a s c i i ">
0 1 2
0 2 3
2 3 5
3 5 4
6 7 9
6 8 9
</DataArray>
<DataArray type=" Int32 " Name=" o f f s e t s " format=" a s c i i ">
3
6
9
12
15
18
</DataArray>
<DataArray type="UInt8" Name=" types " format=" a s c i i ">
5
5
5
5
5
5
</DataArray>
</Ce l l s>
<PointData Sca l a r s="" Vectors="FEXP:␣Displacement ␣u [m] " Tensors="" >
<DataArray type="Float64 " Name="FEXP:␣Displacement ␣u [m] " NumberOfComponents="3"
format=" a s c i i ">
0.000000000000000 e+00 0.000000000000000 e+00 0.000000000000000 e+00
0.000000000000000 e+00 0.000000000000000 e+00 0.000000000000000 e+00
5.321119818886758 e−03 −4.238472238355365e−02 −1.514586728668224e−01
−1.499189249529957e−04 −1.932467268182697e−02 −8.318050736105997e−02
0.000000000000000 e+00 0.000000000000000 e+00 0.000000000000000 e+00
−1.164050681654076e−02 −4.823417763085340e−02 −8.382451735676008e−02
2.957161290443777 e−01 1.750442893077369 e−01 −5.256455804170117 e+00
3.006105466871013 e−02 1.880499608200706 e−01 −5.505210120675233 e+00
−5.342708603934427e−16 2.064401470719396 e−15 −5.829123199502698 e+00
−7.988911667531997e−17 −1.256564195232448e−15 −5.829123199502698 e+00
</DataArray>
</PointData>
<CellData Sca l a r s="" Vectors="" Tensors="">
</CellData>
</Piece>
</UnstructuredGrid>
</VTKFile>

The sequence of individual result files corresponding to the individual simulation time
steps is then written into the next text file with the extension [*.pvd], whose fragment
presents the List. 6.2.

Listing 6.2: Example of the list of resulting simulation files for ParaView vizualization.
<?xml ve r s i on=" 1 .0 "?>
<VTKFile type=" Co l l e c t i on " ve r s i on=" 0 .1 ">
<Co l l e c t i o n>

. . .

<DataSet t imestep="211" group = "" part = "" f i l e = " r e s u l t . out .m0. 1 0 5 5 . vtu"/>

. . .

141

6. Massive Parallel Computing

</Co l l e c t i o n>
</VTKFile>

An example of a ParaView main frame window with a loaded model is presented in the
Fig. 625.

Figure 625: ParaView main frame window presenting the loaded result data from the
numerical simulation.

The export of numerical simulation results to the VTK file format ensures the class
CFEXPResultExportToVTU implementing the interface represented by the abstract
class ICFEXPResultExport contained in the source files FEXPResultExport.h and
FEXPResultExport.cpp. The export of results is in the diction of an appropriate type of
FEXP solver. This represents the following source code fragment:
template<typename TExpCalc , typename TThreadData , typename TThread , typename Tbarr ier>
void CFEXPParallelSolver<TExpCalc , TThreadData , TThread , Tbarr ier , typename std : : enab le_i f
<
std : : is_base_of<ICFEXPExplicitCalcBase , TExpCalc >:: va lue &&
std : : is_base_of<ICFEXPThreadDataBase , TThreadData >: : va lue &&
std : : is_base_of<ICFEXPThreadBase , TThread >:: va lue &&
std : : is_base_of<ICFEXPSynchrThreadBarrier , Tbarr i e r >:: value >: : type
>
: : thread_Calculat ion_funct ion (s i ze_t thread_id , Ptr<TThreadData> data)
{

t ry
{

bool ca lcu lat ion_end = f a l s e ; auto c a l c u l a t o r = ge t_ca l cu l a to r (thread_id) ;
whi l e (t rue)
{

. . .

142

6.4. Description of the FEXP Parts

// 9 . 1 . Step : Export r e s u l t s
t ry_expor t_ca l cu la t i on_resu l t s (data , thread_id) ;
// 9 . 2 . Step : Pr int out r e s u l t s
c a l cu l a t o r−>PrintOutResults (thread_id) ;

. . .
}

}
catch (const std : : except ion & ex)
{

. . .

}
}

The given fragment of a source code shows both the attempt to export the results to the
[*.vtu] text file and the attempt to send data about the behaviour of computational process.
The frequency of printing out the results of a numerical simulation into an appropriate file
determines the settings of the FEXP solver contained in the input data file as described
in chapter 6.4.2. The export of results is always provided by one thread only, namely by
the thread that reached the given block first. The following source code represents such
an effort:
template<typename TExpCalc , typename TThreadData , typename TThread , typename Tbarr ier>
void CFEXPParallelSolver<TExpCalc , TThreadData , TThread , Tbarr ier , typename std : : enab le_i f
<
std : : is_base_of<ICFEXPExplicitCalcBase , TExpCalc >:: va lue &&
std : : is_base_of<ICFEXPThreadDataBase , TThreadData >: : va lue &&
std : : is_base_of<ICFEXPThreadBase , TThread >:: va lue &&
std : : is_base_of<ICFEXPSynchrThreadBarrier , Tbarr i e r >:: va lue
>:: type>
: : t ry_expor t_ca l cu la t i on_resu l t s (Ptr<TThreadData> data , s i ze_t thread_id)
{

// c r i t i c a l s e c t i o n f o r export o f r e s u l t s from numerica l s imu la t i on
std : : unique_lock<std : : mutex> lock (_mtx_save_res_synchr , std : : de fe r_lock) ;
l o ck . l o ck () ;
++_thread_counter_save_res_synchr ; // increment thread counter
i f (_thread_counter_save_res_synchr == THREAD_COUNT_UPDATER)
{

auto c a l c u l a t o r = ge t_ca l cu l a to r (thread_id) ;
_result_saved . s t o r e (c a l cu l a t o r−>SaveResults (FEXPCOMMON_DEFAULT_VALUE)) ;
// c l e a r a l l r e s u l t s −−> data space opt imiza t i on
ca l cu l a t o r−>ClearResu l t s (FEXPCOMMON_DEFAULT_VALUE) ;

}
i f (_thread_counter_save_res_synchr == _threads)

_thread_counter_save_res_synchr = FEXPCOMMON_DEFAULT_VALUE;
lock . unlock () ;

}

Whether to save or not to save the results of a numerical simulation controls the class
managing the individual operations of an explicit computation described in chapter 6.4.5.
It represents the following part of the source code:
/∗∗ @br ie f I t saves the r e s u l t i n g s imu la t i on data f o r the cur rent s imu la t i on time .
∗/
bool CFEXPCalculation : : TrySaveResults (s i ze_t thread_id , bool f o r c ed /∗= f a l s e ∗/)
{

auto i s_pr in t = fo r c ed ; auto model = get_model () ;
// check s imu la t i on end

143

6. Massive Parallel Computing

i f (! i s_pr in t)
{

model−>IterateModElems ([th i s , &i s_pr in t] (auto item)
{

i f (!FEXPCOMMON_STACAST(ICFEXPModelDataIntf , ICFEXPElementNodeBase , item)−>
GetIsTimeToSaveRes ())

{
i s_pr in t = f a l s e ;
r e turn i s_pr in t ;

}
e l s e

i s_pr in t = true ;
// to check a l l nodes −−> return true
re turn f a l s e ;

} , ESystemElementType : : eNode , thread_id) ; // loop through FE nodes
}
// save r e s u l t s i f need , not f o r hybrid−p a r a l l e l s o l v e r (−−> network computation)
i f (i s_pr in t)

save_results_and_export (thread_id , model) ;
r e turn i s_pr in t ;

}

The collection of appropriate data for the saving of results is then performed in a
manner that represents the following source code listing:
void CFEXPCalculation
: : save_results_and_export (s i ze_t thread_id , Ptr<ICFEXPDataModelContIntf> re s l t_cont)
{

// 1 . save node r e s u l t s and check time step con s i s t ency
auto current_time_counter = s ize_t (FEXPCOMMON_DEFAULT_VALUE) ; auto model = get_model () ;
model−>IterateModElems ([th i s , re s l t_cont , ¤t_time_counter] (auto item)

{
auto time = save_node_result (FEXPCOMMON_STACAST(

ICFEXPModelDataIntf , ICFEXPElementNodeBase , item) , r e s l t_cont) ;
i f (current_time_counter == FEXPCOMMON_DEFAULT_VALUE)

current_time_counter = time ;
i f (current_time_counter != time)
FEXPCOMMON_EXCEPTION("Error : ␣Time␣ step ␣ i n c on s i s t e n cy ! ! ! ") ;

r e turn true ;
} , ESystemElementType : : eNode , thread_id) ; // loop through FE nodes

// 2 . save element c onne c t i v i t y
model−>IterateModElems ([th i s , r e s l t_cont] (auto item)

{
save_elem_connct (
FEXPCOMMON_STACAST(ICFEXPModelDataIntf , ICFEXPElementBase , item) , r e s l t_cont) ;

r e turn true ;
} , ESystemElementType : : eElement , thread_id) ; // loop through FEs

// 3 . c a l l expor te r to save r e s u l t s
auto expor te r = get_resu l t_exporter () ;
i f (! expor te r)

re turn ;
exporter−>Write (FEXPCOMMON_DYNCAST(ICFEXPModelDataIntf , CFEXPCalculationModelNodeResult ,

re s l t_cont−>GetModelElement (current_time_counter , ESystemElementType : : eResu l t))) ;
}

The final result data storage is provided by a particular export class. Here it is represen-
ted by the class CFEXPResultExportToVTU. It ensures the correct data formatting
into the resulting text file [*.vtu] and also ensures additional file management. Keep in
mind that the printing of the file is a blocking operation performed here sequentially. Of-
ten it is performed through the asynchronous type of operation. The following source code
fragment shows the part of the result data formatting to [*.vtu] file:

144

6.4. Description of the FEXP Parts

void CFEXPResultExportToVTU : : Write (Ptr<CFEXPCalculationModelNodeResult> r e s u l t)
{

i f (! r e s u l t)
r e turn ;

// cur rent time o f r e s u l t wr i t e
auto cnt_tm = std : : time (nu l l p t r) ;
auto dttime = std : : s t r i n g (std : : ct ime(&cnt_tm)) ;
// increment f i l e number
++_fi l e_counter ;

// add new f i l e to map
auto f i lename_out = _filename + " . out .m0. " +

CFEXPBaseConvers : : NumberToString (r e su l t−>GetId ()) + " . " + FILE_EXTENSION1;
auto fi lename_pth = _directory_path + fi lename_out ;
_file_path_map . i n s e r t (MAP_PAIR(_fi le_counter , f i lename_out)) ;
// c r e a t e f i l e
_vtu_file_ostream . open (f i lename_pth) ;
i f (! s td : : exper imenta l : : f i l e s y s t em : : e x i s t s (f i lename_pth))
FEXPCOMMON_EXCEPTION("Error : ␣ F i l e ␣path␣ f o r ␣ export ␣ o f ␣ r e s u l t s ␣ i s ␣ i n c o r r e c t ! ") ;

// s t a r t wr i t e to f i l e

. . .

// 1 . −−−>
// wr i t e node coo rd ina t e s
_vtu_file_ostream
<<

"<DataArray␣ type=\"Float64 \"␣NumberOfComponents=\"3\"␣ format=\" a s c i i \">"
<< std : : endl ;
FEXPCOMMON_FOREACH_ITER_FNC(r e su l t−>GetNodeResults () ,

{
_vtu_file_ostream << CFEXPBaseConvers : : NumberToString (IT−>_cx) + FEXPCOMMON_EMCHR_STRING

+ CFEXPBaseConvers : : NumberToString (IT−>_cy) + FEXPCOMMON_EMCHR_STRING
+ CFEXPBaseConvers : : NumberToString (IT−>_cz) << std : : endl ;

}) ;
_vtu_file_ostream << "</DataArray>" << std : : endl ;
_vtu_file_ostream << "</Points>" << std : : endl ;
_vtu_file_ostream << "<Cel l s>" << std : : endl ;

. . .

// c l o s e f i l e
_vtu_file_ostream . c l o s e () ;

}

The instancioning of the class for export of results is provided to the FEXP solver
from the outside where its explicit initialization and finalization is also performed. It is
represented by the following source code fragment:
/∗∗ @br ie f Main func t i on (s i n g l e workstat ion) .
∗/
auto __cdecl main (i n t argv , char ∗ argc []) −> in t
{

. . .

// c r e a t e r e s u l t expor te r f o r Paraview and i n i t i a l i z e i t
Ptr<ICFEXPResultExport> re su l t_expor t e r = CFEXPDataManager<CFEXPResultExportToVTU>

: : Sa f eA l l o c In s t anc e (so lve r_con f i g_se t t ing−>GetResultDirPath () ,
so lve r_con f i g_se t t ing−>GetResultName ()) ;

r e su l t_exporte r−>I n i t i a l i z e () ;
t ry
{

145

6. Massive Parallel Computing

switch (s e t t i ng−>GetSolver ())
{
case CFEXPBaseSetting : : EFEXPSolverType : : eSequent i a l : // s e qu en t i a l type o f s o l v e r

CFEXPDataManager<CFEXPSequentialSolver<CFEXPCalculation>>
: : Sa f eA l l o c In s t anc e (bu i lde r , r e su l t_expor t e r)−>Star t () ;

break ;
case CFEXPBaseSetting : : EFEXPSolverType : : ePara l l e lCpu : // p a r a l l e l type o f s o l v e r

CFEXPDataManager<SIMPLE_PARALLEL_SOLVER>
: : Sa f eA l l o c In s t anc e (bu i lde r , r e su l t_expor t e r)−>Star t () ;

break ;

. . .

}
}
catch (const std : : except ion & ex)
{

. . .

}
// f i n a l i z e a c t i n s o f expor te r
re su l t_exporte r−>F ina l i z e () ;

. . .
}

In the export finalization phase, a list of names of formatted [*.vtu] files is collected to
the [*.pvd] file, which is then used as an input to the ParaView tool to visualize the results
of numerical simulation. It provides the folowing source code:
void CFEXPResultExportToVTU : : F i n a l i z e ()
{

i f (_file_path_map . empty ())
re turn ;

_pvd_file_ostream . open (_directory_path + _filename + " . main . out .m0. " + FILE_EXTENSION2) ;
_pvd_file_ostream << "<?xml␣ ve r s i on =\"1.0\"?>" << std : : endl ;
_pvd_file_ostream << "<VTKFile␣ type=\"Co l l e c t i o n \"␣ ve r s i on =\"0.1\">" << std : : endl ;
_pvd_file_ostream << "<Co l l e c t i on >\n" ;

// wr i t e out a l l f i l e s with time r e s u l t s
s i ze_t idx ;
FEXPCOMMON_FOREACH(FEXPCOMMON_DEFAULT_VALUE + 1 , _file_path_map . s i z e () , idx)

_pvd_file_ostream << "<DataSet␣ t imestep=\""
+ CFEXPBaseConvers : : NumberToString (idx)
+ "\"␣group␣=␣\"\"␣ part ␣=␣\"\"␣ f i l e ␣=␣\""
+ _file_path_map [idx]
+ "\"/>" << std : : endl ;

_pvd_file_ostream << "</Co l l e c t i on>" << std : : endl ;
_pvd_file_ostream << "</VTKFile>" << std : : endl ;
_pvd_file_ostream . c l o s e () ;
// r e s e t f i l e counter
_f i l e_counter = FEXPCOMMON_DEFAULT_VALUE;

}

Deliberately, the solution for the network form of the FEXP solver is not dealt with,
mainly due to its many specific features. Not only these specifics but also many others are
described in more detail in chapter 6.4.8. The part concerning the export of partial results
at runtime during the computation is discussed in more detail in chapter 6.4.7 dealing with
the FEXP Solver Manager application.

146

6.4. Description of the FEXP Parts

6.4.7 FEXP Solver Manager

All complex equipment should be delivered with an interface that makes working with
it easier. In terms of software equipment, such an approach mainly applies to attitudes
towards customers of commercially-produced software systems where a user-friendly work-
ing environment of the given product is one of the attributes of success represented by
larger product expansion. Configuration, control, and also monitoring of a given software
equipment often require asynchronous processing of various data, especially with respect
to time demanding operations. Appropriate commands are often provided through the use
a graphical user interface (GUI) that must remain responsive even during more challenging
operations. Such an approach is critical in the case of enterprise software systems (PDM,
ERP, etc.) connecting a number of users through the computer network, where a more
time-consuming response happens caused by mutual communications over the computer
network. Due to these reasons, a software tool providing easier handling with the FEXP
solver was designed and programmed. This is an application that communicates with the
user through the GUI.

There are a number of libraries providing the possibility to design and program the
GUI under the Windows OS. The most well-known libraries for GUI programming in nat-
ive C++ programming language include Qt (originally provided and developed by Nokia
company for the Symbian OS programming, see https://www.qt.io/) and MFC (abbrevi-
ation of the Microsoft Foundation Class).

Due to the complexity and complicated character of the C++ programming language,
the development of simpler programming languages has risen since the turn of the mil-
lenium. They are now able to support not only the possibilities of object oriented program-
ming (OOP), but they also support a modern functional programming approach compared
to the usual imperative way. Programming languages such as Microsoft .NET/C# or Scala
(built on Java programming language) currently belong among the modern object-oriented
programming languages supporting the functional paradigm of programming. With respect
to the Windows OS target platform and the use of a variety of its development tools, the
Microsoft .NET/C# programming language was chosen with the libraries .NET WinForms
for the GUI designing and programming. For the programming of a large number of func-
tionalities, the modern object-oriented and functional approach were applied with maximal
utilization of asynchronous type programming.

Asynchronous programming under the Windows OS is already supported in the Win32
API library using the so-called callback function. It is invoked after the end of the given
operation. Due to such an approach, the given asynchronous operation does not block the
invoking thread, which can continue to launch the following operations after such a call.
An asynchronous execution of operations in this fashion originally has taken over the C#
programming language since .NET Framework 3.5. The definition of such an asynchron-
ous operation required two specially designed functions that defined one asynchronous
function. This approach was mainly adopted by .NET/WCF technology for programming
service-oriented applications. With .NET Framework 4.0, a significant improvement in
thread creation by so-called tasks representing a non-blocking operation running in a new

147

https://www.qt.io/

6. Massive Parallel Computing

thread. However the disadvantage was dealing with the complicated callback function,
which had to be properly treated for the correct behaviour of the program. It can be said
that a revolutionary event was the arrival of the .NET Framework 4.5, which introduced
new constructions of the C# programming language, which significantly simplified asyn-
chronous programming (see [12]). This applies to the new pattern the async - await. The
modern asynchronous approach represented by the last asynchronous constructions of the
C# programming language is widely used in the FEXP Solver Manager for managing a
large number of originally blocking operations.

Editing Table Data

The table data format introduced in chapter 6.4.2 can be read and edited using the FEXP
Solver Manager. For testing purposes of the FEXP solver, it has been included into the
application for easier editation and validity check of model input data. The feature is
located in the tab named "Input Files" of the main application window. Here, using the
button named "Add Input File", text files containing the spreadsheet data can be loaded.
It is illustratively shown in the Fig. 626.

Figure 626: The listing of a model input data files.

Adding files to an application worksheet is provided by the following functions from
the source code representing the event for button click

/// <summary>
/// Event is invoked for adding new row into (input file) the respective spreadsheet.
/// </summary>
private void OnAddInputFileClickEvent(object sender, EventArgs e)
{
// set up columns in input data file grid
var paths = FEXPCommonFunctions.GetFileToOpen("Select Input File", "fexin", true);

148

6.4. Description of the FEXP Parts

if (!paths.AnyEx())
return;

if (InFileGridController == null)
{
InFileGridController = new FEXPDataGridController<InFileCellData>(
_input_files_grid, DataGridViewSelectionMode.FullRowSelect,
InFileGridCols.Select(pcol => Tuple.Create(pcol.Key.GetDescription(),

pcol.Value.Item1)));
InFileGridController.OnCellClickEvent += OnInFileGridOnCellClickEvent;

}

var progress = new FEXPProgress2Dlg();
progress.Text = "Loading items to spreadsheet";
progress.NameOfProgressAction = "Loading";
progress.LongLastingActionAsync = async (indicator) =>
{
// compose row data for spreadsheet
var rows = new List<GridRowData<InFileCellData>>();
paths.ForEach(path =>
{

if (_input_data_change_map.ContainsKey(path))
return;

var row = new GridRowData<InFileCellData>();
var dta = new InFileCellData(path);
InFileGridCols.ForEach(pcol => row.Add(pcol.Key.GetDescription(), dta));
rows.Add(row);
_input_data_change_map[path] = false;

});
// load rows into the spreadsheet
await InFileGridController.LoadDataAsync(rows, indicator).ConfigureAwait(false);

};
progress.ShowDialog();

}

For each listed file in spreadsheet it is possible to show its structure consisting of blocks
and corresponding tables as shown in the Fig. 627. The display of the respective table for
editing in the spreadsheet is invoked by double-clicking on the appropriate table from an
input file block in the Input File Data Structure dialog.

Spreadsheets are designed to be capable of arbitrarily editing the data. The resulting
changes can be saved to the appropriate file. For the given purpose, a spreadsheet control
controller has been designed to use asynchronous operations, especially for a data loading
operation. It applies primarily to a big model data load. Data loading into the spreadsheet
represents listing of a source code related to the spreadsheet controller

public async Task LoadDataAsync(IEnumerable<GridRowData<TData>> data, IProgress<int>
progress)

{
if (data == null || !data.Any())
return;

if (Grid.Columns.Count == 0)

149

6. Massive Parallel Computing

SetUpGridColumns(GridColumns.ToList());
var rows = data.ToArray();
await Task.Run(() =>
{
var step = FEXPProgress2Dlg.GetProgressStep(rows.Count()); var counter = 0;
for (int indx = 0; indx < rows.Length; ++indx)
{
// update progress
if ((++counter % step.Item2) == 0)
progress?.Report((int)(counter / step.Item1));

var temp_row = new DataGridViewRow();
var row_item = rows[indx];
GridColumns.ForEach(col =>
{
var value = row_item.ContainsKey(col.Item1) ? row_item[col.Item1] : null;
var cell_data = new GridCellDataWrapper<TData>(col.Item1, value);
DataGridViewCell cell;
switch(col.Item2)
{
case ECellEditor.eButton:
cell = new DataGridViewButtonCell();
break;

case ECellEditor.eCheckBox:
cell = new DataGridViewCheckBoxCell();
break;

default:
cell = new DataGridViewTextBoxCell();
break;

}
// associate value
cell.Value = cell_data.ToString();
cell.Tag = cell_data;
cell.ToolTipText = value.ToolTip;
// add cell to row
temp_row.Cells.Add(cell);
cell.ReadOnly = !value.IsEditable;

});
// add row
Grid.MyInvoke(() => Grid.Rows.Add(temp_row));
temp_row.Tag = row_item;

}

// time consumption operation --> update cells
var progress1 = new FEXPProgress1Dlg();
progress1.Text = "Spreadsheet update";
progress1.NameOfProgressAction = "Updating ...";
// auto resize columns based on the spreadsheet content
progress1.LongLastingActionAsync = async () =>
await Task.Run(() => Grid.MyInvoke(() =>

Grid.AutoResizeColumns(DataGridViewAutoSizeColumnsMode.AllCells)));

150

6.4. Description of the FEXP Parts

progress1.ShowDialog();
}).ConfigureAwait(false);

}

Figure 627: Loaded input file structure.

The FEXP Solver Setting Assembly

A configuration setting file is required to start up the FEXP solver with the specific com-
mand line arguments. These arguments depend on the type of the used FEXP solver, and
whether the solver is started up and monitored by the FEXP Solver Manager application.

In order to create a solver configuration file, the type of FEXP solver must be selected
in the tab "Solver". If the target is the network form of FEXP solver, it is necessary
to check-on the checkbox named "Network Solver" and fill in the data concerning the
IP address and the port of the server where it will listen for a connection of the client’s
workstation to start the solution process. The steps to create the configuration file are
basically arbitrary, except the step where it is necessary to choose the type of FEXP

151

6. Massive Parallel Computing

solver. Based on such an option, another tab has been added in the main window of FEXP
Solver Manager which refers to the assignment of individual workstations required to start
the process of numerical computation on the computer network. The corresponding text
editation fields in the tab "Solver" are a pre-filled by IP address of localhost and the port
number corresponding to the randomly selected number in the allowed range is shown in
the Fig. 628.

Figure 628: Setting of the FEXP solver type, and setting of the solver behaviour monitor-
ing.

The next step in the configuration process is the selection of files containing model data
with the selection of a file so-called the default (network solution) as shown in the Fig.
629.

Figure 629: Listing a model input files.

152

6.4. Description of the FEXP Parts

If the network form of the FEXP solver has been selected, it is necessary to list the
required number of connected workstations required to start up the numerical simulation.
Each workstation is identified by its IP address as shown in the Fig. 630.

Figure 630: Listing of the network initialization workstations.

The FEXP Solver Process Control

With respect to the control of long-lasting process behaviour of explicit numerical compu-
tations, and also due to the control over the computational details, an appropriate monitor
was designed.

The behaviour of designed FEXP solver monitor was inspired by the same monitor
used in the RFEM program, but in a simpler form. The respective FEXP solver monitor
is based on hooking the events fired by flushing the data buffer of the standard output
stream at runtime. This is usually one of the simplest ways used for inter-process commu-
nication. The particular functionality of the FEXP solver monitor is implemented in the
class FEXPSolverMonitorDlg from the source code file FEXPSolverMonitorDlg.cs.
Here the FEXP solver as an external native application is started up with the appropriate
settings enabling the previously mentioned monitoring.

For the successful start of the process, the full path to the executable file [*.exe] of
the appropriate FEXP solver must be known before the process start up. The path to
the executable file must be typed in the appropriate text edit field in the FEXP Solver
Manager tab named "Solver". Together with the specified path of the executable file, it is
also necessary to provide additional settings for the monitor and thus also the FEXP solver
itself. The FEXP solver acquires the given setting through the configuration file and the
command line arguments discussed before. The necessary settings are shown in the Fig.
628. Creation of the FEXP solver process then presents the following part of the source
code

153

6. Massive Parallel Computing

/// <summary>
/// It creates instance of the FEXP solver process.
/// </summary>
/// <returns>Process</returns>
private Process CreateProcess()
{
var process = new Process();
process.StartInfo.FileName = SolverSetting.SolverExecutablePath;
var input = new StringBuilder();
if(string.IsNullOrEmpty(SolverSetting.ServerIP) ||

string.IsNullOrEmpty(SolverSetting.ServerPort))
input.Append("1");

else
input.Append("1"
+ " " + SolverSetting.ServerIP
+ " " + SolverSetting.ServerPort);

process.StartInfo.Arguments = input.ToString();
process.StartInfo.Verb = "runas";
process.StartInfo.UseShellExecute = false;
process.StartInfo.RedirectStandardOutput = true;
process.StartInfo.CreateNoWindow = true;
process.OutputDataReceived += OnProcessOutputDataReceived;
return process;

}

...

/// <summary>
/// Event is invoked as reaction to flushing the std output buffer by
/// the FEXP solver process.
/// </summary>
private void OnProcessOutputDataReceived(object sender, DataReceivedEventArgs e)
{
// checking cancel request --> stop the process
if (_token.IsCancellationRequested)
{
StopProcess();
return;

}
if (string.IsNullOrEmpty(e.Data))
return;

// line number to each line of the output.
_progress?.Report(_lineCount++);
// try print data
PrintRealTimeValues(e.Data, e.Data.Split(LINE_DELIMITER));

}

Running the process itself by using the mouse to click the button named "Start Solver"
performs the following functions from the source code

/// <summary>

154

6.4. Description of the FEXP Parts

/// It starts the FEXP solver process and waits for its end.
/// </summary>
private async Task StartProcessAsync()
{
await Task.Run(() =>
{
_process.Start();
_processName = _process.ProcessName;
_process.BeginOutputReadLine();
_process.WaitForExit();
_process.Close();
_process.Dispose();

}).ConfigureAwait(false); SetChartToDefault();
}

In the case of the selection of the option managing the computational process behaviour
of the selected node, the required data are sent from the FEXP solver to the standard
output stream. Such data are subsequently parsed by the FEXP Solver Manager and
conveniently displayed in the appropriate dialog box. The mapping of the FEXP solver
result behaviour from the console window (standard output stream) to the output in the
FEXP Solver Manager is shown in the Fig. 631.

Figure 631: Result behaviour in a console window vs. FEXP Solver Manager.

155

6. Massive Parallel Computing

The printing out of the results on the solver side manages the function represented by
the following part of the C++ source code

/∗∗ @br ie f I t p r i n t s out appropr ia te r e s u l t data from numerica l s imu la t i on to conso l e window .
∗/
void CFEXPCalculation : : Pr intOutResults (s i z e_t thread_id)
{

// s e t t i n g from the s o l v e r c on f i g f i l e
auto con f i g_se t t i ng = FEXPCOMMON_DYNCAST(ICFEXPModelDataIntf , CFEXPSolverConfigSetting ,

get_model()−>GetModelElement (
ICFEXPSetting : : ESettingType : : eSo lver , ESystemElementType : : eS e t t i ng)) ;

i f (! con f i g_se t t ing−>ShowCalcOutput ())
re turn ;

// format text to p r i n t out
auto text = GetCalcBehavOutString (FEXPCOMMON_STACAST(

ICFEXPModelDataIntf , ICFEXPElementNodeBase ,
get_model()−>GetModelElement (con f i g_se t t ing−>NodeIdToShow ()
ESystemElementType : : eNode , thread_id)) , con f i g_se t t ing−>NodeDofToShow ()) ;

i f (t ex t == FEXPCOMMON_EMPTY_STRING)
return ;

CFEXPLog : : WriteLine (t ex t) ;
}

The output in the FEXP Solver Manager dialog box is then provided by the following
C# code

/// <summary>
/// It prints out the data at runtime.
/// </summary>
private int PrintRealTimeValues(string data, string[] items)
{
var tuple = GetValueForChart(items);
// invoking printing of solver output to text area
if (ShowCalcOutput || tuple.Item1 < I_DEFAULT_VALUE)
{
if(tuple.Item1 <= I_DEFAULT_VALUE)
{
if(data?.StartsWith("@") == true)

_console_manager.WriteLine(items[items.Length - 1]);
}
else if(ShowCalcOutput)
{
if (!string.IsNullOrEmpty(tuple.Item3))
_console_manager.WriteLine(tuple.Item3);

}
}
// invoking print to chart control
if (ShowRealTimeChart && tuple.Item1 >= I_DEFAULT_VALUE)
_realTimeChart.MyInvoke(() => AddDataToChart(tuple.Item1, tuple.Item2));

return tuple.Item1;
}

The content of the previous C# code statements also includes a feature that provides a
graphical presentation of the progress of the monitored FE node variable at runtime. The
chart is optionally displayed in the FEXP Solver Manager dialog box (see Fig. 631). The

156

6.4. Description of the FEXP Parts

presentation of the chart is available through the option placed in the main window of the
FEXP Solver Manager (see Fig. 629).

The computational process can be arbitrarily stopped at any time using the "Stop Cal-
culation" button (see Fig. 631) and subsequent execution of the related event reprezented
by the following source code

/// <summary>
/// Event is invoked as reaction to the user action to stop
/// the running FEXP solver process.
/// </summary>
private void OnStopCalcClickEvent(object sender, EventArgs e)
{
if (_token == null)
return;

var diagres = MessageBox.Show(this, "Do you want to kill the process?", "Stop
Calculation", MessageBoxButtons.OKCancel, MessageBoxIcon.Question);

if (diagres == DialogResult.Cancel)
return;

if (!IsProcessExits())
return;

if (_processCallTimeSpan.Seconds < _processMaxResponseSeconds)
_token.Cancel();

else
StopProcess();

_isKill = true;
_buttonStopCalc.Enabled = false;
_buttonCloseWindow.Enabled = false;

}

157

6. Massive Parallel Computing

6.4.8 Client-Server based Network Distributed Computation

As mentioned earlier, this section deals with a purely hybrid-parallel (network) form of the
FEXP solver (see Fig. 622). The solver considers a computer’s interconnection within a
LAN or VPN based on a client-server architecture through the TCP/IP communication
protocol of transport layer. The communication of the central server workstation with a
connected client workstation is illustratively shown in the Fig. 632. In the case of a FEXP
solver, the server takes care of secure connection and disconnection of the individual client
workstations, it synchronizes the time during numerical computation, and it also takes
care of right data exchanging between the individual workstations and exporting the model
simulation results.

Figure 632: Client-server architecture using TCP/IP network.

In terms of object oriented design, such a type of FEXP solver is an extension of a
parallel type of FEXP solver focused only on an individual workstation as shown in the

158

6.4. Description of the FEXP Parts

Fig. 622. As opposed to the locally parallel running computation, the hybrid type of
FEXP solver includes a functionality that takes care of network load balance if possible.
It depends on the analysis of the MEIM, which is composed based on the current state of
the numerically simulated dynamic model at runtime, as described in chapter 5.

A large number of chaotically interacting structures spatially defined by a dense meshes
of finite elements are those macro entities that can move freely on a computer network.
The data distribution itself is based on the current contact state of a spatial entities. Each
step of the explicit time integration of equations of motion requires assembly of MEIM.
The MEIM must be analyzed for the subsequent network computing balance and solution
of micro details relating to the integration of internal forces.

While designing this part of the server, the possibility of the application the FETI
method was taken into account for the next FEXP solver development. The approach de-
veloped for the presented purpose of explicit numerical simulations of a structural dynamic
phenomenas then appears to be as the next alternative of application of existing solutions
applied in terms of the FETI method exclusively based on the MPI technology.

Due to the applied management algorithm for each connection, it is necessary to have
a server located on a powerful workstation. This primarily applies to larger computer
networks dealing with challenging and extensive models. The given server workstation
performance requirements are otherwise common for all distributed software applications
based on the dealt with network architecture containing the central server. Otherwise,
insufficient server performance would have a significant impact on the whole process of
numerical solution.

In order to run the numerical simulation, it is necessary to ensure the correct sequence
of start ups of the individual applications. Here, it is important to note that it does not
matter whether it is performed through the graphical UI represented by the FEXP Solver
manager or whether it is about the startup of the native FEXP solver executables. There
are two steps that are as follows:

1. As first, the FEXP server must be started. It then automatically starts listening
to the network socket for the possible further connections of client computers. All
the required information for a successful startup is contained in the configuration file
described earlier.

2. If the server startup is successful, as the second step, it is necessary to run execut-
ables belonging to the individual client workstations within the computer network
establishing the computer cluster. As soon as the number of connected client work-
stations reaches those defined in the configuration input setting file, the FEXP server
automatically starts up the numerical simulation process.

Socket Based Network Communnication

As mentioned earlier, the network communication is secured through a low-level connection
via the socket provided by the Windows OS interface. Compared to common enterprise
software systems, the hybrid-parallel FEXP solver is not the SOA paradigm reliant. Some

159

6. Massive Parallel Computing

of the SOA based technologies were briefly dealt with in the previous chapters devoted to
cloud solutions. Advanced high-level technologies such as .NET/WCF are usually used for
distributed enterprise software systems, and they use the socket form of communication,
but on the lowest layers of their architecture. It is obviously hidden from the software
developer. In the current development phase, the FEXP solver application is Windows OS
dependant due to the usage of a Win32 API library for the network communication. The
use of portable Boost.Asio library is still in the testing phase.

For network communication, available protocols of a network transport layer are in par-
ticular a delivery secured TCP protocol or delivery not secured UDP protocol. However,
the UDP protocol is used primarily for network broadcasting or multimedia communic-
ations where partial data loss is not critical. For example, it is worthwhile to mention
Microsoft Skype, which uses UDP communication protocol. However, a number of secur-
ity risks are associated with UDP protocol. Its use is often blocked by a system firewall. As
a result, a number of professional interventions are required to ensure the communication
tunnel through a system firewall to provide secure communication. For the mentioned reas-
ons and many others, the TCP protocol has been selected, thus the hybrid-parallel FEXP
solver uses communication supported by opening a low-level network TCP/IP socket using
a specific protocol for subsequent communication designed exclusively for the purpose of
FEXP solver.

Within the hybrid-parallel FEXP solver, the macro entity model data transfer over the
computer network managed by the analysis of MEIM often occurs. The transfer of such a
data file between the server and the client workstation within the computer network using
the TCP/IP protocol is illustrated in the Fig. 633.

Figure 633: Example of data file sending using TCP/IP packets in client-server architec-
ture.

160

6.4. Description of the FEXP Parts

For the purposes of reading and writing to the Windows socket, the class CFEX-
PNETWinMessage functionality is used. The class definition contains the following
code from the source file FEXPNetworkWinSocket.h.
#de f i n e MAX_MSG_IN_LEN 0x1000 // 1 x 4096 [B]
#de f i n e MAX_MSG_OT_LEN 0x1000 // 1 x 4096 [B]
/∗∗ @br ie f Communication message .
∗/
c l a s s CFEXPNETWinMessage
{
pub l i c :

/∗∗ @br ie f Content o f r eque s t message .
∗/
us ing REQUEST =

s t ru c t rqs_msg
{

char record [MAX_MSG_IN_LEN] ; // message content
rqs_msg () { set_to_default () ; }
void set_to_default ()
{

memset ((void∗)&record , FEXPCOMMON_ZERO_END_CHAR, s i z e o f (r ecord)) ;
}
void set_data_to_send (const std : : s t r i n g & data)
{

set_to_default () ;
data . copy ((char ∗) record , MAX_MSG_IN_LEN) ;

}
} ;
/∗∗ @br ie f Content o f re sponse message .
∗/
us ing RESPONSE =

s t ru c t rsp_msg
{

char record [MAX_MSG_OT_LEN] ; // message content
rsp_msg () { set_to_default () ; }
void set_to_default ()
{

memset ((void∗)&record , FEXPCOMMON_ZERO_END_CHAR, s i z e o f (r ecord)) ;
}
std : : s t r i n g get_send_data ()
{

re turn CFEXPBaseConvers : : StrTrim (std : : s t r i n g ((char ∗) r ecord)) ;
}

} ;

// f o r win socket communication
s t a t i c t_ENetMessage WinSocketDataRead (SOCKET socket , CFEXPNETWinMessage : :REQUEST & request ,

CFEXPNETWinMessage : :RESPONSE & response , t_ModelData & data) ;
s t a t i c void WinSocketDataWrite (SOCKET socket , CFEXPNETWinMessage : :REQUEST & request ,

CFEXPNETWinMessage : :RESPONSE & response , t_ModelData & data , t_ENetMessage message) ;
p ro tec t ed :

// f o r win socket communication
s t a t i c bool win_write_to_socket (REQUEST & reques t ,
SOCKET socket , const std : : s t r i n g & send_data) ;

s t a t i c t_ENetMessage win_read_from_Socket (RESPONSE & response ,
SOCKET socket , s td : : vector<std : : s t r i ng> & read_data) ;

p r i va t e :
// [no p r i va t e members] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

} ;

The appropriate socket write/read functions includes the following code listing from
the source file FEXPNetworkWinSocket.cpp.
bool CFEXPNETWinMessage : : win_write_to_socket (REQUEST & request , SOCKET socket ,

161

6. Massive Parallel Computing

const std : : s t r i n g & send_data)
{

auto r e s u l t = true ;
t ry
{

r eque s t . set_data_to_send (send_data) ;
auto r e s u l t = send (socket , (const char ∗) r eque s t . record ,
MAX_MSG_OT_LEN, FEXPCOMMON_DEFAULT_VALUE) ;

i f (r e s u l t != MAX_MSG_OT_LEN)
FEXPCOMMON_EXCEPTION("Error : ␣Sent␣ l e s s ␣data␣than␣ bu f f e r ␣ s i z e : ␣"

+ CFEXPBaseConvers : : NumberToString (r e s u l t) + " ! ! ! ") ;
}
catch (const std : : except ion & ex)
{

CFEXPLog : : WriteLine () ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "An␣ except ion ␣ occurred : ") ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "−−>␣" + ex . what ()) ;
r e s u l t = f a l s e ;

}
re turn r e s u l t ;

}

t_ENetMessage CFEXPNETWinMessage : : win_read_from_Socket (RESPONSE & response , SOCKET socket ,
s td : : vector<std : : s t r i ng> & read_data)

{
auto mssg = t_ENetMessage : : eError ;
t ry
{

// get and send data
s i ze_t recv_len = FEXPCOMMON_DEFAULT_VALUE; std : : s t r i n g recv_message ;
do
{

response . set_to_default () ;
auto r e s u l t = recv (socket , (char ∗) r e sponse . record ,
MAX_MSG_OT_LEN, FEXPCOMMON_DEFAULT_VALUE) ;

i f (r e s u l t == FEXPCOMMON_DEFAULT_VALUE)
FEXPCOMMON_EXCEPTION("Error : ␣ Socket ␣ c l o s ed ␣ (t ry ␣ read ing) ! ! ! ") ;

i f (r e s u l t == SOCKET_ERROR)
FEXPCOMMON_EXCEPTION("Error : ␣ Socket ␣ e r r o r ␣ read ing ! ! ! ") ;

recv_len += r e s u l t ;
recv_message += response . get_send_data () ;

} whi l e (recv_len != MAX_MSG_OT_LEN) ; // check r e c e i v ed message l ength

// try get message
mssg = CEFEXPNETProtocol : : GetNetMessage (recv_message) ;
i f (mssg == t_ENetMessage : : eMessageCount)

read_data . push_back (recv_message) ;
}
catch (const std : : except ion & ex)
{

CFEXPLog : : WriteLine () ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "An␣ except ion ␣ occurred : ") ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "−−>␣" + ex . what ()) ;

}
re turn mssg ;

}

The listed functions already assume the connection has already been established and
nothing prevents network communication otherwise the system generates an appropriate
error message. The communication settings are performed both on the server side and
on the client side, respectively. On the side of network server, the particular settings are
represented by the following code from the source file FEXPNetworkServer.h. The listening

162

6.4. Description of the FEXP Parts

to the socket is set to be in blocking form, the setting for a non-blocking form of socket is
commented on in the code for testing purposes.
template<typename TTClientRunner , typename TClientThread , typename Tbarr ier>
void CFEXPNetServer
<TTClientRunner , TClientThread , Tbarr ier ,

typename std : : enab le_i f
<
std : : is_base_of<ICFEXPThreadBase , TClientThread >: : va lue &&
std : : is_base_of<ICFEXPSynchrThreadBarrier , Tbarr i e r >:: value >: : type
>
: : c reate_socket ()

{
#de f i n e ERROR_SERVER_SOCKET_CREATION "Error : ␣Cannot␣ c r e a t e ␣ socke t ␣ (s e r v e r) : ␣\n"

// in fo rmat ion about the Windows Sockets implementation
WSADATA socket_in fo ;
// i n i t i a t e s use o f the Winsock DLL by a proce s s
auto r e s u l t = WSAStartup(WINSOCKET, &socket_in fo) ;
i f (CONNECTION_ERRORS_1. count (r e s u l t))
FEXPCOMMON_EXCEPTION(ERROR_SERVER_SOCKET_CREATION + CONNECTION_ERRORS_1[r e s u l t]) ;

// f i l l s e r v e r i n f o f o r connect ion
memset(&_socket_server_adress , FEXPCOMMON_DEFAULT_VALUE, s i z e o f (_socket_server_adress)) ;
_socket_server_adress . s in_fami ly = WINNETWRK;
_socket_server_adress . sin_addr . s_addr = WINANYADR;
_socket_server_adress . s in_port = htons ((u_short)GetCommPort ()) ;
// c r e a t e s e r v e r socket
_socket_server = socket (WINNETWRK, WINSCTYPE, WINPR_TCP/∗WINPR_DMY∗/) ;
i f (CONNECTION_ERRORS_2. count (r e s u l t))
FEXPCOMMON_EXCEPTION(ERROR_SERVER_SOCKET_CREATION + CONNECTION_ERRORS_2[r e s u l t]) ;

// a s s o c i a t i n g a l o c a l address with a socket .
r e s u l t = bind (_socket_server , (sockaddr∗)&_socket_server_adress ,

s i z e o f (_socket_server_adress)) ;
i f (CONNECTION_ERRORS_4. count (r e s u l t))
FEXPCOMMON_EXCEPTION(ERROR_SERVER_SOCKET_CREATION + CONNECTION_ERRORS_4[r e s u l t]) ;

/∗// non−b lock ing recv on socke t
s t r u c t t imeva l tv ;
tv . tv_sec = 10 ;
i f (s e t sockopt (_socket_server , SOL_SOCKET, SO_RCVTIMEO, (char ∗)&tv , s i z e o f tv))
; ∗/

}

The creation of a socket on the side of the client workstation provides an instance of
the class CFEXPNetClientWinSocketConnection whose definition and implementa-
tion contain the source files FEXPNetworkWinSocket.h and FEXPNetworkWinSocket.cpp,
respectively. Appropriate settings for the socket creation then contain the following source
code listing.
void CFEXPNetClientWinSocketConnection : : c reate_socket ()
{
#de f i n e ERROR_CLIENT_SOCKET_CREATION "Error : ␣Cannot␣ c r e a t e ␣ socke t ␣ (c l i e n t) : ␣\n"

// in fo rmat ion about the Windows Sockets implementation
WSADATA socket_in fo ;
// i n i t i a t e s use o f the Winsock DLL by a proce s s
auto r e s u l t = WSAStartup(WINSOCKET, &socket_in fo) ;
i f (CONNECTION_ERRORS_1. count (r e s u l t))
FEXPCOMMON_EXCEPTION(ERROR_CLIENT_SOCKET_CREATION + CONNECTION_ERRORS_1[r e s u l t]) ;

// c r e a t e c l i e n t socket
_socket = socket (WINNETWRK, WINSCTYPE, WINPR_TCP) ;
i f (CONNECTION_ERRORS_2. count (r e s u l t))

163

6. Massive Parallel Computing

FEXPCOMMON_EXCEPTION(ERROR_CLIENT_SOCKET_CREATION + CONNECTION_ERRORS_2[r e s u l t]) ;

// s e r v e r IP address
in_addr ip_address ;
memset(&ip_address , FEXPCOMMON_DEFAULT_VALUE, s i z e o f (ip_address)) ;
i f (inet_pton (WINNETWRK, GetServerNodeIP () . c_str () , &ip_address) == WINNONADR)
{

Close () ;
FEXPCOMMON_EXCEPTION(ERROR_CLIENT_SOCKET_CREATION

+ std : : s t r i n g ("Nul l ␣ host ␣ i n f o ␣−−>␣ socket ␣ i s ␣ c l o s ed . ")) ;
}

// f i l l i n f o f o r connect ion
memset(&_sock_server_adress , FEXPCOMMON_DEFAULT_VALUE, s i z e o f (_sock_server_adress)) ;
_sock_server_adress . sin_addr . s_addr = ip_address . S_un . S_addr ;
_sock_server_adress . s in_fami ly = WINNETWRK;
_sock_server_adress . s in_port = htons ((u_short)GetCommPort ()) ;

/∗// non−b lock ing recv on socke t
s t r u c t t imeva l tv ;
tv . tv_sec = 10 ;
i f (s e t sockopt (_socket , SOL_SOCKET, SO_RCVTIMEO, (char ∗)&tv , s i z e o f tv))
; ∗/

}

Both on the server side and on the client side, the appropriate settings for the socket are
performed during the applications startup. The server side then takes care of accepting
the individual client requests for connection. Accepting an individual client connection
is then executed as a non-blocking operation, primarily due to the requirement to not
run a special working thread for such an action. The source code for the connection
accepting operation is contained in the server loop which is presented in further chapters.
The following fragment of a source code from the implementation of the server therefore
represents the specific such functionality.
/∗∗ @br ie f I t s t a r t s the s e r v e r p roce s s .
∗/
template<typename TTClientRunner , typename TClientThread , typename Tbarr ier>
void CFEXPNetServer
<TTClientRunner , TClientThread , Tbarr ier ,

typename std : : enab le_i f
<
std : : is_base_of<ICFEXPThreadBase , TClientThread >: : va lue &&
std : : is_base_of<ICFEXPSynchrThreadBarrier , Tbarr i e r >:: value >: : type
>
: : Run()

{
#de f i n e SERVER_NEW_CLIENT_CONNECT 1

i f (_connect ion_start . load ())
re turn ;

// run s e r v e r thread −− non−b lock ing accept s e r v e r −−> timeout_ptr != nu l l p t r
auto r e s u l t = CFEXPAsyncRunner : : RunProcedureTask ([t h i s]

{

. . .

whi l e (! _f lag_server_close . load () && ! _socket_server_run_and_closed . load ())
{

// network c a l c u l a t i o n synchron i za t i on po in t s
switch (synchronize_stat_id)
{

. . .

164

6.4. Description of the FEXP Parts

case t_ENetSynStgs : : eCl ientUpdate :
{

fd_set read_set ; FD_ZERO(&read_set) ; FD_SET(_socket_server , &read_set) ;
// the maximum time f o r s e l e c t to wait ,
// i t i s provided in the form o f TIMEVAL st ruc t ,
t imeva l t imeout ;
t imeout . tv_sec = FEXPCOMMON_DEFAULT_VALUE;
timeout . tv_usec = FEXPCOMMON_DEFAULT_VALUE;
// s e t the timeout parameter to nu l l p t r f o r b lock ing ope ra t i on s
auto timeout_ptr = &timeout /∗ nu l l p t r ∗/ ;
// new number o f threads f o r update o f thread b a r r i e r
auto new_thr_num = size_t (FEXPCOMMON_DEFAULT_VALUE) ;
// determines the s t a tu s o f one or more sockets , wa i t ing i f necessary ,
// to perform synchronous I /O.
i f (s e l e c t (_socket_server , &read_set , nu l l p t r , nu l lp t r , timeout_ptr)

!= SERVER_NEW_CLIENT_CONNECT)
try_rmv_client_thread () ; // remove ended c l i e n t thread i f i t i s need

e l s e
{

// new c l i e n t node connected
sockaddr_in from ; i n t from_len = s i z e o f (from) ;
new_thrd_id = ++cl i ent_id_generator ;
auto new_client_socket = accept (

_socket_server , (s t r u c t sockaddr∗)&from , &from_len) ;
auto new_client_ip_adr = std : : s t r i n g (inet_ntoa (from . sin_addr)) ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + " In fo : ␣New␣ c l i e n t ␣ connected : ") ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "−−>␣IPv4 : ␣" + new_client_ip_adr) ;
add_new_client_thread (new_thrd_id , new_client_socket , new_client_ip_adr) ;

}
}

// check i f main proce s s can s t a r t
check_main_process_init () ;
// synchron ize and move to new stage
i f (! synchron ize_process (synchronize_stat_id++))

re turn ;
break ;

. . .

}
} , f a l s e , " Server ␣Process " , t rue) ;

. . .

}

The last necessary step required for the seamless functionality of the network-distributed
application is to gracefully disconnect each established connection. This in turn concerns
both the server side and also the client side of an application, respectively. The graceful
termination of the listening to the socket on the side of server (server connection itself
and also server client connection) is represented by the following code from the source files
FEXPNetworkServer.h and FEXPNetworkWinSocket.cpp, respectively.
template<typename TTClientRunner , typename TClientThread , typename Tbarr ier>
void CFEXPNetServer
<TTClientRunner , TClientThread , Tbarr ier ,

typename std : : enab le_i f
<
std : : is_base_of<ICFEXPThreadBase , TClientThread >: : va lue &&
std : : is_base_of<ICFEXPSynchrThreadBarrier , Tbarr i e r >:: value >: : type
>

165

6. Massive Parallel Computing

: : c lose_socket_conn ()
{

i f (_socket_server == WININVSCK)
return ;

c l o s e s o c k e t (_socket_server) ;
WSACleanup () ;
_socket_server = WININVSCK;

}

and
void CFEXPNetServerWinClient : : c lo se_connect ion ()
{

// d i s a l l ow sends and r e c e i v e s
shutdown (_socket , WINSOCSDW) ;
// c l o s e c l i e n t socket
c l o s e s o c k e t (_socket) ;
WSACleanup () ;
_socket = WININVSCK;

}

The same such functionality contains the client side of an application which represents
the following code from the source file FEXPNetworkWinSocket.cpp.
void CFEXPNetClientWinSocketConnection : : Close ()
{
#de f i n e ERROR_SOCKET_CLIENT_CLOSE_CONNECT . . .

"Error : ␣ C l i en t ␣ connect ion ␣has␣ a l r eady ␣been␣ c l o s ed : \ n"
i f (! _connect ion_start)
{

auto e r r o r = ERROR_SOCKET_CLIENT_CLOSE_CONNECT + std : : s t r i n g ("−−>␣Node␣ID␣\"")
+ CFEXPBaseConvers : : NumberToString<size_t >(GetId ()) + " \" . " ;

FEXPCOMMON_EXCEPTION(e r r o r) ;
}
i f (_socket == WININVSCK)

return ;
// d i s a l l ow sends and r e c e i v e s
shutdown (_socket , WINSOCSDW) ;
// c l o s e and c l ean up
c l o s e s o c k e t (_socket) ;
WSACleanup () ;
_socket = WININVSCK;
_connect ion_start . s t o r e (f a l s e) ;

}

Server Side of Solver

For the purpose of the hybrid-parallel solution, the FEXP solver is split into a server and
client part of an application represented by two separately compiled executables. The
server side of the hybrid-parallel FEXP solver represents the control part of the entire
solution process. The design of a server is similar to those used in distributed enterprise
systems for transactional operations within the database.

For the purpose of connecting individual client workstations and subsequent server-
client communication, the mechanism for creation, execution and termination of a client
threads on the side of server is applied. The server itself ensures synchronization of cli-
ent threads and consequently the process of numerical simulation as a whole. Another
important activity of the server is the export of simulation results and an analysis of the

166

6.4. Description of the FEXP Parts

numerical model data distribution within the computer network depending on the analysis
of MEIM.

The core of the server functionality is represented by the template class CFEXPNet-
Server whose definition and implementation contains source file FEXPNetworkServer.h.
The creation of an instance respective server class is realised through the design pattern
singleton. Establishing the server instance is represented by the following source code
fragment contained in the source file fexp_net_server_main.cpp
/∗∗ @br ie f Main func t i on o f a s e r v e r node (hybrid−p a r a l l e l FEXP so l v e r) .
∗/
auto __cdecl main (i n t argv , char ∗ argc []) −> in t
{

. . .

i f (. . .) . . .
e l s e
{

. . .

// get i n s t ance o f s e r v e r
auto se rve r_ins tance = CFEXPNetServer<

SERVER_CLIENT_DEFINITION, SERVER_CLIENT_THREAD_DEFINITION, SERVER_THREAD_BARRIER>
: : GetInstance (std : : get<FEXPCOMMON_CMD_SERVER_IP_INDEX>(cmd) ,

std : : get<FEXPCOMMON_CMD_SERVER_PORT_INDEX>(cmd) ,
bu i lde r−>GetModelContainer () , r e su l t_exporte r , data_trans_analyzer) ;

// run s e r v e r in s p e c i a l c on t r o l thread
CFEXPCppThread<void ()> server_contro l_thread ([&] { server_instance−>Run () ; }) ;
server_contro l_thread . StartThread () ;
server_contro l_thread . Detach () ;
// loop con t r o l i n g r eque s t f o r s topping the s e r v e r a c t i v i t y by s p e c i a l f i l e e x i s t e n c e
whi l e (t rue)
{

auto path = std : : exper imenta l : : f i l e s y s t em : : abso lu t e (SERVER_STOP_FILE_NAME) ;
i f (s td : : exper imenta l : : f i l e s y s t em : : e x i s t s (path))

break ;
us ing namespace std : : c h r ono_ l i t e r a l s ;
s td : : th i s_thread : : s l e ep_for (1 s) ;

}

. . .

// c l o s e s e r v e r
server_instance−>Close () ;

}

. . .

}

From the source code listing it is clear that the server is started in the special working
thread, thus the main thread is not blocked. After the server startup, the main thread
proceeds in an infinite loop checking the request from an administrator to suspend the
server’s activity. Stopping the server process is performed externally by the creation of
the special file named stop_fexp_server.stop in the directory path of an application
startup.

The server setting is defined in the configuration file dealt with in chapter 6.4.2. It

167

6. Massive Parallel Computing

concerns the informations about the client workstations required for the startup of the
numerical simulation and the input data of the numerical model. The input data of FE
model must be divided into separate files so that each file contains one structural macro
entity. Model data contained in the input files are used for possible distribution over the
computer network based on an analysis of MEIM. An assembly of settings represents the
following part of the source code
/∗∗ @br ie f Main func t i on o f a s e r v e r node (hybrid−p a r a l l e l FEXP so l v e r) .
∗/
auto __cdecl main (i n t argv , char ∗ argc []) −> in t
{

// s e r v e r network base s e t t i n g (IP , port) , path o f s o l v e r c on f i gu r a t i on f i l e
std : : s t r i n g config_path ; std : : tuple<std : : s t r i ng , s ize_t , std : : s t r i ng , s ize_t> cmd ;
t ry
{

cmd = GetCmdContent (argv , argc) ;
conf ig_path = GetConfigPath (SOLVER_CNFG_FILE_NAME) ;

}
catch (const std : : except ion & ex)
{

CFEXPLog : : WriteLine () ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "An␣ except ion ␣ occurred : ") ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "−−>␣" + ex . what ()) ;
MessageBox (NULL, (LPCWSTR)L"Command␣ l i n e ␣arguments␣ e r r o r ! " ,

(LPCWSTR)L"FEXP␣Cmd␣Error " , MB_OK) ;
re turn EXIT_FAILURE;

}

// read s e r v e r s e t t i n g
auto reader = CFEXPDataManager<CFEXPFileReader<CFEXPServerInpDataContainer>>

: : Sa f eA l l o c In s t anc e (config_path ,
CFEXPSolverInpDataAssemblyFactory : : INP_FILE_BLOCK_CLS_MAP) ;

i f (! reader−>ReadProgress ())
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "Error : ␣Problem␣with␣ c on f i gu r a t i on ␣ f i l e ! ! ! ") ;

e l s e
{

// bu i ld data
Ptr<ICFEXPModelBuilderBase> bu i l d e r = CFEXPDataManager

<CFEXPServerModelBuilder<ICFEXPDataContIntf , CFEXPMainDataContainer>>
: : Sa f eA l l o c In s t anc e () ;

i f (! bu i lde r−>BuildModelProgress (config_path , reader−>GetFileContent () ,
FEXPCOMMON_DYNCAST(CFEXPFEInpContBase ,

ICFEXPDataContIntf , reader−>GetInputContainer ())))
{

FEXPCOMMON_CONSOLE_PAUSE(std : : get<FEXPCOMMON_CMD_MANAGER_INDEX>(cmd)) ;
r e turn EXIT_FAILURE;

}

// s o l v e r s e t t i n g
auto s e t t i n g = FEXPCOMMON_DYNCAST(ICFEXPModelDataIntf , CFEXPSolverConfigSetting ,

bu i lde r−>GetModelContainer()−>GetModelElement (
ICFEXPSetting : : ESettingType : : eSo lver , ESystemElementType : : eS e t t i ng)) ;

. . .

}

. . .

}

Server activity is ensured by a loop taking care of the synchronization of all commu-

168

6.4. Description of the FEXP Parts

nication activities within the computer network. These activities include connecting and
disconnecting individual workstations, the export of results, data analysis, synchronization
of time, and the other auxiliary procedures. The loop contains the following source code

/∗∗ @br ie f I t s t a r t s the s e r v e r p roce s s .
∗/
template<typename TTClientRunner , typename TClientThread , typename Tbarr ier>
void CFEXPNetServer
<TTClientRunner , TClientThread , Tbarr ier ,

typename std : : enab le_i f
<
std : : is_base_of<ICFEXPThreadBase , TClientThread >: : va lue &&
std : : is_base_of<ICFEXPSynchrThreadBarrier , Tbarr i e r >:: value >: : type
>
: : Run()

{
#de f i n e SERVER_NEW_CLIENT_CONNECT 1

i f (_connect ion_start . load ())
re turn ;

// run s e r v e r thread −− non−b lock ing accept s e r v e r −−> timeout_ptr != nu l l p t r
auto r e s u l t = CFEXPAsyncRunner : : RunProcedureTask ([t h i s]

{
// s t a r t l i s t e n n i n g on port
s t a r t_ l i s t e nn i n g () ;
// count connected c l i e n t s −− generate ID
auto c l i ent_id_generator = s ize_t (FEXPCOMMON_DEFAULT_VALUE) ;
auto synchronize_stat_id = s ize_t (t_ENetSynStgs : : eStar tPo int) ;
auto new_thrd_id = s ize_t (FEXPCOMMON_DEFAULT_VALUE) ;
auto in i t_start_c lnts_ok = f a l s e ;
whi l e (! _f lag_server_close . load () && ! _socket_server_run_and_closed . load ())
{

// network c a l c u l a t i o n synchron i za t i on po in t s
switch (synchronize_stat_id)
{
case t_ENetSynStgs : : eStar tPo int :

update_barr ier (t_ENetSynStgs (synchronize_stat_id)) ;
// synchron ize and move to new stage
i f (! synchron ize_process (synchronize_stat_id++))

re turn ;
break ;

case t_ENetSynStgs : : eBeforeCl ientUpdate :
update_barr ier (t_ENetSynStgs (synchronize_stat_id)) ;
// send cur rent data to c l i e n t s
invoke_client_Data () ;
// synchron ize and move to new stage
i f (! synchron ize_process (synchronize_stat_id++))

re turn ;
break ;

case t_ENetSynStgs : : eCl ientUpdate :
{

fd_set read_set ; FD_ZERO(&read_set) ; FD_SET(_socket_server , &read_set) ;
// the maximum time f o r s e l e c t to wait ,
// i t i s provided in the form o f TIMEVAL st ruc t ,
t imeva l t imeout ;
t imeout . tv_sec = FEXPCOMMON_DEFAULT_VALUE;
timeout . tv_usec = FEXPCOMMON_DEFAULT_VALUE;
// s e t the timeout parameter to nu l l p t r f o r b lock ing ope ra t i on s
auto timeout_ptr = &timeout /∗ nu l l p t r ∗/ ;
// new number o f threads f o r update o f thread b a r r i e r
auto new_thr_num = size_t (FEXPCOMMON_DEFAULT_VALUE) ;
// determines the s t a tu s o f one or more sockets , wa i t ing i f necessary ,
// to perform synchronous I /O.
i f (s e l e c t (_socket_server , &read_set , nu l l p t r , nu l lp t r , timeout_ptr)

!= SERVER_NEW_CLIENT_CONNECT)

169

6. Massive Parallel Computing

try_rmv_client_thread () ; // remove ended c l i e n t thread i f i t i s need
e l s e
{

// new c l i e n t node connected
sockaddr_in from ; i n t from_len = s i z e o f (from) ;
new_thrd_id = ++cl i ent_id_generator ;
auto new_client_socket = accept (

_socket_server , (s t r u c t sockaddr∗)&from , &from_len) ;
auto new_client_ip_adr = std : : s t r i n g (inet_ntoa (from . sin_addr)) ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + " In fo : ␣New␣ c l i e n t ␣ connected : ") ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "−−>␣IPv4 : ␣" + new_client_ip_adr) ;
add_new_client_thread (new_thrd_id , new_client_socket , new_client_ip_adr) ;

}
}

// check i f main proce s s can s t a r t
check_main_process_init () ;
// synchron ize and move to new stage
i f (! synchron ize_process (synchronize_stat_id++))

re turn ;
break ;

case t_ENetSynStgs : : eAfterCl ientUpdate :
// synchron ize and move to new stage
i f (! synchron ize_process (synchronize_stat_id++))

re turn ;
break ;

case t_ENetSynStgs : : eEndPoint :
update_barr ier (t_ENetSynStgs (synchronize_stat_id)) ;
// synchron ize and move to new stage
i f (! synchron ize_process (synchronize_stat_id++))

re turn ;
break ;

case t_ENetSynStgs : : eCheckCalcEnd :
update_barr ier (t_ENetSynStgs (synchronize_stat_id)) ;
// r e c e i v e i n f o about c a l c u l a t i o n proce s s
send_msg_and_wait (t_ENetThrdMsg : : eEnd , new_thrd_id) ;
// synchron ize and move to new stage
i f (! synchron ize_process (synchronize_stat_id++))

re turn ;
break ;

case t_ENetSynStgs : : eStartNewTimeStep :
update_barr ier (t_ENetSynStgs (synchronize_stat_id)) ;
// export r e s u l t s −−> send l a s t data to export −−> end proce s s
check_proc_end (new_thrd_id) ;
// synchron ize and move to new stage
i f (! synchron ize_process (synchronize_stat_id++))

re turn ;
break ;

case t_ENetSynStgs : : eResu l t s :
update_barr ier (t_ENetSynStgs (synchronize_stat_id)) ;
// r e c e i v e c a l c u l a t i o n r e s u l t s from c l i e n t s
send_msg_and_wait (t_ENetThrdMsg : : eCalcResults , new_thrd_id) ;
// export r e s u l t s
expor t_re su l t s (new_thrd_id) ;
// synchron ize and move to new stage
i f (! synchron ize_process (synchronize_stat_id++))

re turn ;
break ;

case t_ENetSynStgs : : e S t ab i l i t yCon t r o l :
update_barr ier (t_ENetSynStgs (synchronize_stat_id)) ;
// r e c e i v e s t a b i l time s t ep s from c l i e n t s
send_msg_and_wait (t_ENetThrdMsg : : eStep , new_thrd_id) ;
// s e t g l oba l time step
update_global_t_step (new_thrd_id) ;
// invoke g l oba l time step preparat ion

170

6.4. Description of the FEXP Parts

send_msg_and_wait (t_ENetThrdMsg : : eStep , new_thrd_id) ;
// synchron ize and move to new stage
i f (! synchron ize_process (synchronize_stat_id++))

re turn ;
break ;

case t_ENetSynStgs : : eDataExchange :
update_barr ier (t_ENetSynStgs (synchronize_stat_id)) ;
// r e c e i v e bounding boxes o f macro models
send_msg_and_wait (t_ENetThrdMsg : : eBoundingBox , new_thrd_id) ;
// make ana l y s i s about need o f data network r e c on f i g u r a t i o n
analyze_data_transfer (new_thrd_id) ;
// invoke message again to invoke wai t ing f o r data preparat ion
send_msg_and_wait (t_ENetThrdMsg : : eBoundingBox , new_thrd_id) ;
// −−> 1 . data from c l i e n t s to s e r v e r
send_msg_and_wait (t_ENetThrdMsg : : eBoundingBox , new_thrd_id) ;
// −−> 2 . data from se rv e r to c l i e n t s
// synchron ize and move to new stage
i f (! synchron ize_process (synchronize_stat_id++))

re turn ;
break ;

case t_ENetSynStgs : : eEndLoop :
update_barr ier (t_ENetSynStgs (synchronize_stat_id)) ;
// in common s i t u a t i o n there are no data to exchange
i f (_main_proc_init ia l i ze_contro l && _main_proc_in i t ia l i z e_c l i ent s)
{

// r e s e t data ana lyze r
i f (_trans fer_analyzer)

_transfer_analyzer−>Reset () ;
}
// synchron ize
i f (! synchron ize_process (synchronize_stat_id))

re turn ;
// move to new stage (r e s e t va lue −−> new synchron i za t i on loop)
synchronize_stat_id = s ize_t (t_ENetSynStgs : : eStar tPo int) ;
// r e s e t added l a s t c l i e n t id
new_thrd_id = FEXPCOMMON_DEFAULT_VALUE;
// r e s e t time step value
_stabil_dt_step = GET_MAX_FLT_VAL(t_fexpcommon_ct) ;
break ;

d e f au l t :
FEXPCOMMON_EXCEPTION("Error : ␣Wrong␣ proce s s ␣ synchron i za t i on ␣ s t a t e ! ! ! ") ;

}
}

} , f a l s e , " Server ␣Process " , t rue) ;
// invoke c l o s e s e r v e r
invoke_close () ; _f lag_server_closed . s t o r e (t rue) ;

}

Each connection to the server realized in a scope of considered computer network, is
represented by just one running thread that takes care of network communication with
one connected workstation. Establishing a new service thread for communication with the
remote client is provided by the following source code
template<typename TTClientRunner , typename TClientThread , typename Tbarr ier>
void CFEXPNetServer
<TTClientRunner , TClientThread , Tbarr ier ,

typename std : : enab le_i f
<
std : : is_base_of<ICFEXPThreadBase , TClientThread >: : va lue &&
std : : is_base_of<ICFEXPSynchrThreadBarrier , Tbarr i e r >:: value >: : type
>
: : add_new_client_thread (s i ze_t id , SOCKET c l i ent_socket , s td : : s t r i n g & ip)

{
#de f i n e MAP_THREAD_IDX FEXPCOMMON_DEFAULT_INDX

171

6. Massive Parallel Computing

#de f i n e MAP_THREAD_VALUE_IDX 1
i f (_client_thread_map . count (id))
FEXPCOMMON_EXCEPTION("Error : ␣Try␣add␣new␣ c l i e n t ␣ thread ␣with␣ e x i s t i n g ␣ID ! ! ! ") ;

s td : : unique_lock<std : : mutex> lock (_mtx_client_thread_map_update , s td : : de fe r_lock) ;
l o ck . l o ck () ;
auto cnt_tm = std : : time (nu l l p t r) ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + " In fo : ␣New␣ c l u s t e r ␣node␣ID␣"

+ CFEXPBaseConvers : : NumberToString (id) + " : ") ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "−−>␣Connected␣ at ␣"

+ std : : s t r i n g (std : : ct ime(&cnt_tm))) ;
// c r e a t e new c l i e n t thread data , s t a r t thread and detach
auto server_thread_data = CFEXPDataManager<thread_data>

: : Sa f eA l l o c In s t anc e (id , c reate_c l i ent_thread (id , c l i en t_socket , ip) ,
FEXPCOMMON_DYNCAST(ICFEXPModelDataIntf , CFEXPSolverConfigSetting ,

_model_cont−>GetModelElement (
ICFEXPSetting : : ESettingType : : eSo lver , ESystemElementType : : eS e t t i ng))) ;

// add thread data to map
_client_thread_map . i n s e r t (MAP_PAIR(server_thread_data−>_id , server_thread_data)) ;
// update number o f threads in eStar tPo int b a r r i e r only
// −−> permutation proce s s
_barr ie r [t_ENetSynStgs : : eStar tPo int] =

CFEXPDataManager<Tbarr ier >: : Sa f eA l l o c In s t anc e (_client_thread_map . s i z e () + 1) ;
// s t a r t thread and detach
server_thread_data−>_thread−>StartThread () ;
server_thread_data−>_thread−>Detach () ;
// s e t a c t i v e s t a t e
server_thread_data−>_state = true ;
// i f c a l c u l a t i o n i s running and new c l i e n t i s connected −−> data are r equ i r ed
server_thread_data−>_current_msg_to_send = _main_proc_init ia l i ze_contro l ?

t_ENetThrdMsg : : eRuntimeInit : t_ENetThrdMsg : : eContinueProc ;
// need update b a r r i e r s
_barrier_update = EBarrierUpdate : : eAddUpdate ;
// s e t r eque s t f o r runtime data p r i n t i n g
set_rnt_request () ;
l o ck . unlock () ;

}

The source code from the listing above is focused on adding a new working thread whose
activity will then be subsequently synchronized with the other already running working
threads to ensure the simultaneous sharing of the execution of all the critical actions with
other worskstations within the computer network during a numerical simulation. All the
actions required for communication with the network client node are contained in a special
class CFEXPNetServerWinClient, from the source files FEXPNetworkWinSocket.h
and FEXPNetworkWinSocket.h, respectively. It takes care of the details of the data ex-
change. The communication of the server client working thread with the server thread
is provided by an interface that represents a set of lambda functions entering the class
constructor of a server client thread. Instantiating of this class is secured on the server
side by the following source code
template<typename TTClientRunner , typename TClientThread , typename Tbarr ier>
Ptr<TClientThread> CFEXPNetServer
<TTClientRunner , TClientThread , Tbarr ier ,

typename std : : enab le_i f
<
std : : is_base_of<ICFEXPThreadBase , TClientThread >: : va lue &&
std : : is_base_of<ICFEXPSynchrThreadBarrier , Tbarr i e r >:: value >: : type
>
: : c reate_c l i ent_thread (s i ze_t id , SOCKET c l i ent_socket , s td : : s t r i n g & ip)

{
re turn CFEXPDataManager<TClientThread>

172

6.4. Description of the FEXP Parts

: : S a f eA l l o c In s t anc e ([t h i s] (auto c l i e n t) { c l i e n t−>Run () ; } ,
CFEXPDataManager<TTClientRunner>

: : Sa f eA l l o c In s t anc e (c l i en t_socket , ip , id , GetServerNodeIP () ,
[t h i s] (auto id_from , auto id_to)

{ re turn read_message (id_from , id_to) ; } ,
[t h i s] (auto id_from , auto id_to)

{ re turn lnch_message (id_from , id_to) ; } ,
[t h i s] (auto id_from , auto id_to , auto mssg)

{ send_message (id_from , id_to , mssg) ; } ,
[t h i s] (auto id_from)

{ return get_calc_data (id_from) ; } ,
[t h i s] (auto id_from)

{ set_end_client_thread (id_from) ; } ,
[t h i s] (auto syns ta t)

{ re turn synchron ize_process (syns ta t) ; } ,
[t h i s] (auto id_from , auto dt)

{ set_stabi l_t_step (id_from , dt) ; } ,
[t h i s] (auto id_from , auto bbox , auto mid)

{ add_macro_to_tree (bbox , id_from , mid) ; }
)) ;

}

To begin the numerical computational process over the network, it is necessary to
connect the number of workstations from the computer network that is defined in the set-
ting input file as noted in chapter 6.4.2. In the initial phase, the input data are divided
according to the number of workstations required to start the computation. If the compu-
tation is already running, it is necessary to decide which data from the existing connected
workstations within the computer network should be moved to the newly connected cli-
ent computer. This decision is based on the analysis of MEIM at runtime in a certain
computational stage. The result of such an analysis may also be the decision leading to
the conclusion that the newly connected client workstation will not be loaded by a numer-
ical computation yet. However, in order for such a workstation to be ready for later use,
the so-called default model data are sent and it does not contain any specific FE model,
but only information about the computation settings and the other data relating to e.g.
structural load and constrains, respectively. Data initialization then provides the following
source code on the server side as previously described.
template<typename TTClientRunner , typename TClientThread , typename Tbarr ier>
void CFEXPNetServer
<TTClientRunner , TClientThread , Tbarr ier ,

typename std : : enab le_i f
<
std : : is_base_of<ICFEXPThreadBase , TClientThread >: : va lue &&
std : : is_base_of<ICFEXPSynchrThreadBarrier , Tbarr i e r >:: value >: : type
>
: : invoke_cl ient_data ()

{
Ptr<std : : vector<size_t>> schedu le ; s td : : queue<size_t> init_models ;
s td : : queue<size_t> init_models_schedule ;
FEXPCOMMON_FOREACH_ITER(_client_thread_map)
{

auto key = (∗ IT) . f i r s t ;
auto dta = (∗ IT) . second ;
auto msg = dta−>_current_msg_to_send ;
switch (msg)
{
case t_ENetThrdMsg : : e I n i t :

{

173

6. Massive Parallel Computing

// s e r v e r s e t t i n g
auto s e t t i n g = FEXPCOMMON_DYNCAST(ICFEXPModelDataIntf , CFEXPSolverConfigSetting ,

_model_cont−>GetModelElement (
ICFEXPSetting : : ESettingType : : eSo lver , ESystemElementType : : eS e t t i ng)) ;

i f (! s chedu le)
{

schedu le = se t t i ng−>GetSimpleModelSchedule () ;
// f i l l queue with models
FEXPCOMMON_FOREACH_ITER_FNC(s e t t i ng−>GetFileContent () ,
{ init_models . push (IT . f i r s t) ; }) ;
// f i l l queue with number o f models f o r each c l i e n t
FEXPCOMMON_FOREACH_ITER_FNC(∗ schedu le . get () ,
{ init_models_schedule . push (IT) ; }) ;

}
auto default_model = init_models . empty () ;
auto i f i l e_ c on t e n t = [=] (auto id)

{
re turn (default_model ?

s e t t i ng−>GetFi leContentDefault () :
s e t t i ng−>GetFileContent ()) [id] ;

} ;
// s e t d e f au l t empty data i f no other model i s a v a i l a b l e
i f (default_model)
{

FEXPCOMMON_FOREACH_ITER_FNC(s e t t i ng−>GetFi leContentDefault () ,
{ init_models . push (IT . f i r s t) ; }) ;

in it_models_schedule . push (init_models . s i z e ()) ;
}
// add number o f models f o r each c l i e n t
s i ze_t idx ; s i z e_t mode_count = init_models_schedule . f r on t () ;
FEXPCOMMON_FOREACH(FEXPCOMMON_DEFAULT_VALUE, mode_count − 1 , idx)
{

auto model_id = init_models . f r on t () ;
dta−>_calc_data−>CURRENT_DATA_FOR_SEND. i n s e r t (

MAP_PAIR(CFEXPBaseConvers : : NumberToString (model_id) ,
i f i l e_ c on t e n t (model_id))) ;

in it_models . pop () ;
}
init_models_schedule . pop () ;
// s t a r t c l i e n t i n i t i a l i z e completed
_main_proc_in i t ia l i z e_c l i ent s = true ;

}
break ;

case t_ENetThrdMsg : : eRuntimeInit :
{

// s e r v e r s e t t i n g
auto s e t t i n g = FEXPCOMMON_DYNCAST(ICFEXPModelDataIntf , CFEXPSolverConfigSetting ,

_model_cont−>GetModelElement (
ICFEXPSetting : : ESettingType : : eSo lver , ESystemElementType : : eS e t t i ng)) ;

FEXPCOMMON_FOREACH_ITER_FNC(s e t t i ng−>GetFi leContentDefault () ,
{

// send empty data and l e t c l i e n t wait f o r data exchange event
dta−>_calc_data−>CURRENT_DATA_FOR_SEND. i n s e r t (

MAP_PAIR(CFEXPBaseConvers : : NumberToString (IT . f i r s t) , IT . second)) ;
}) ;

}
break ;

d e f au l t :
msg = t_ENetThrdMsg : : eContinueProc ; // cont inue in proce s s

}
// send message to c l i e n t
send_message (GetId () , key , msg) ;
// r e s e t message
dta−>_current_msg_to_send = t_ENetThrdMsg : : eThrdMsgCount ;

} ;

174

6.4. Description of the FEXP Parts

}

Due to the initialization of the newly connected workstations, but also for the new data
model distribution over the network, an analysis of MEIM is required. For such an analysis,
the server requests the data containing the bounding box of each macro entity occurring
in the numerical simulation. Similarly to the contact solution in the scope of individual
workstations, an analysis of contact or more precisly potentional contact of the macro
entity bounding boxes is performed. Contact is solved using the range searching query to
the kd-tree data structure, but with the difference relating to the amount of data, where
analyzed data are much smaller compared to the detailed data containing the individual
nodes of the FE meshes in the individual workstations. Thus, the MEIM analysis here is
divided into two functions, namely the to function inserting the macro entity bounding box
data into the MEIM analyzer, and then to the function that subsequently obtains the data
required for the network model decomposition from the analyzer. The given functions are
listed bellow.
template<typename TTClientRunner , typename TClientThread , typename Tbarr ier>
void CFEXPNetServer
<TTClientRunner , TClientThread , Tbarr ier ,

typename std : : enab le_i f
<
std : : is_base_of<ICFEXPThreadBase , TClientThread >: : va lue &&
std : : is_base_of<ICFEXPSynchrThreadBarrier , Tbarr i e r >:: value >: : type
>
: : add_macro_to_tree (Ptr<CFEXGeomTools : : t_BoundBox> bbox , s i ze_t thrd_id , s i z e_t macro_id)

{
i f (! _trans fer_analyzer)

re turn ;
std : : unique_lock<std : : mutex> lock (_mtx_kdtree_update , s td : : de fe r_lock) ;
l o ck . l o ck () ;
// add macro bounding box to macro contact ana lyze r
_transfer_analyzer−>AddMacro(bbox , macro_id , thrd_id) ;
l o ck . unlock () ;

}

template<typename TTClientRunner , typename TClientThread , typename Tbarr ier>
void CFEXPNetServer
<TTClientRunner , TClientThread , Tbarr ier ,

typename std : : enab le_i f
<
std : : is_base_of<ICFEXPThreadBase , TClientThread >: : va lue &&
std : : is_base_of<ICFEXPSynchrThreadBarrier , Tbarr i e r >:: value >: : type
>
: : analyze_data_transfer (s i ze_t new_thrd_id)

{
i f (! (_main_proc_init ia l i ze_contro l && _main_proc_in i t ia l i z e_c l i ent s))

re turn ;
++_meim_analysis_counter ;
// c l e a r data from prev ious s e s s i o n
FEXPCOMMON_FOREACH_ITER_FNC(_client_thread_map ,

{
IT . second−>_calc_data−>MODEL_DATA_GET. c l e a r () ;
IT . second−>_calc_data−>MODEL_DATA_SET. c l e a r () ;

}) ;
// ana lyze data t r a n s f e r
i f (! _transfer_analyzer−>Analyze ())

re turn ;
// save data from ana l y s i s f o r data t r a n s f e r
auto data_from = _transfer_analyzer−>GetTransferComputerModelFrom () ;

175

6. Massive Parallel Computing

auto data_to = _transfer_analyzer−>GetTransferComputerModelTo () ;
auto data_assoc = _transfer_analyzer−>GetMacroToComputerAssociation () ;
i f (data_from . empty () && data_to . empty ())

re turn ;
e l s e i f (data_from . empty () | | data_to . empty ())
FEXPCOMMON_EXCEPTION("Error : ␣Wrong␣data␣ t r a n s f e r ␣ an a l y s i s ! ! ! ") ;

CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + " In fo : ␣Trans fe r ␣ o f ␣data␣ r equ i r ed . ") ;
// s t o r e data f o r data t r a n s f e r
FEXPCOMMON_FOREACH_ITER(_client_thread_map)
{

auto t i d = IT−>f i r s t ;
auto dta = IT−>second−>_calc_data ;
i f (data_from . count (t i d))
FEXPCOMMON_FOREACH_ITER_FNC(data_from [t i d] ,
{ dta−>MODEL_DATA_GET. push_back (IT) ; }) ;

i f (data_to . count (t i d))
FEXPCOMMON_FOREACH_ITER_FNC(data_to [t i d] ,
{ dta−>MODEL_DATA_SET. push_back (std : : make_tuple (IT , data_assoc [IT])) ; }) ;

} ;
// t ry to wr i t e cur rent t r a n s f e r data to f i l e
wr i te_out_trans fer () ;

}

The most important step of the entire numerical simulation is the export of the result
data as in the case of a single workstation. Compared to the process running on a single
workstation only, the resulting data from a computer cluster must be merged into one
output file. The following server function takes care of the assembly of such result data.
template<typename TTClientRunner , typename TClientThread , typename Tbarr ier>
bool CFEXPNetServer
<TTClientRunner , TClientThread , Tbarr ier ,

typename std : : enab le_i f
<
std : : is_base_of<ICFEXPThreadBase , TClientThread >: : va lue &&
std : : is_base_of<ICFEXPSynchrThreadBarrier , Tbarr i e r >:: value >: : type
>
: : expor t_re su l t s (s i ze_t new_thrd_id)

{
auto resu l t_exported = f a l s e ;
i f (! (_main_proc_init ia l i ze_contro l && _main_proc_in i t ia l i z e_c l i ent s))

re turn resu l t_exported ;

std : : map<size_t , Ptr<CFEXPCalculationModelNodeResult>> thread_result_map ;
FEXPCOMMON_FOREACH_ITER(_client_thread_map)
{

auto thrd_id = (∗ IT) . f i r s t ;
i f (thrd_id == new_thrd_id)

cont inue ;
auto r e s u l t s = (∗ IT) . second−>_calc_data−>CURRENT_DATA_RECEIVED;
i f (r e s u l t s . empty ())

cont inue ;

// p r i n t out runtime c a l c u l a t i o n data
auto resulto_rows = r e s u l t s [" r so "] ;
i f (resulto_rows && ! resulto_rows−>empty ())
{

auto output = resulto_rows−>at (FEXPCOMMON_DEFAULT_INDX) ;
i f (output != FEXPCOMMON_EMPTY_STRING)
CFEXPLog : : WriteLine (output) ;

}

auto result_rows = r e s u l t s [" r s "] ;
i f (! resu lt_rows | | result_rows−>empty ())

cont inue ;

176

6.4. Description of the FEXP Parts

// read s e r i a l i z e d r e s u l t s
auto reader = CFEXPDataManager<CFEXPFileReader<CFEXResultDataContainer>>

: : Sa f eA l l o c In s t anc e (FEXPCOMMON_EMPTY_STRING, result_rows ,
CFEXPResultDataModelAssemblyFactory : :RES_FILE_BLOCK_CLS_MAP) ;

reader−>Read () ;
// bu i ld r e s u l t i n s t anc e
CFEXPDataManager<CFEXPModelBuilder<ICFEXPDataContIntf , ICFEXPDataModelContIntf>>

: : Sa f eA l l o c In s t anc e (_model_cont , FEXPCOMMON_EMPTY_STRING, FEXPCOMMON_EMPTY_STRING,
FEXPCOMMON_EMPTY_STRING)−>BuildModel (

CFEXPBaseConvers : : NumberToString (thrd_id) , reader−>GetFileContent () ,
FEXPCOMMON_DYNCAST(CFEXPFEInpContBase , ICFEXPDataContIntf ,

reader−>GetInputContainer ())) ;
i f (_model_cont−>ItemCount (ESystemElementType : : eResu l t) > 1)
FEXPCOMMON_EXCEPTION("Error : ␣Data␣ from␣more␣ time␣ l e v e l s ␣ a r r i v ed ! ! ! ") ;

// add to r e s u l t map
_model_cont−>IterateModElems ([& thread_result_map , &thrd_id] (auto item)

{
thread_result_map . i n s e r t (MAP_PAIR(thrd_id ,
FEXPCOMMON_STACAST(ICFEXPModelDataIntf , CFEXPCalculationModelNodeResult , item))) ;

r e turn true ;
} , ESystemElementType : : eResu l t) ;

// c l e a r lunched r e s u l t data
r e s u l t s . c l e a r () ;
// c l e a r r e s u l t s from cur rent c l i e n t and prepare f o r next one
_model_cont−>RemoveAll (ESystemElementType : : eResu l t) ;

}
i f (thread_result_map . empty ())

re turn resu l t_exported ;

Ptr<CFEXPCalculationModelNodeResult> r e s u l t s ;
FEXPCOMMON_FOREACH_ITER(thread_result_map)
{

i f (! r e s u l t s)
{

r e s u l t s = (∗ IT) . second ;
cont inue ;

}
// node r e s u l t s
FEXPCOMMON_FOREACH_ITER_FNC((∗ IT) . second−>GetNodeResults () ,

{ r e s u l t s−>GetNodeResults () . push_back (IT) ; }) ;
// f e c onne c t i v i t y
FEXPCOMMON_FOREACH_ITER_FNC((∗ IT) . second−>GetConnect iv ity () ,

{ r e s u l t s−>GetConnect iv ity () . push_back (IT) ; }) ;
}

// f i n a l export o f r e s u l t s
i f (_result_exporter)

_result_exporter−>Write (r e s u l t s) ;
r e turn ! re su l t_exported ;

}

The server then contains a number of other functions, which are primarily of an auxiliary
character and are related to the control of the overall main functionality. By and large,
the given functionality relates mainly to the synchronization of client threads during I/O
processes in terms of individual computational phases. Specific communication and the
data exchange is primarily performed by running client threads on the side of server. Those
include program logic of the data exchange between the cluster node and the central server.
Such a specific process is then presented in the following part of the chapter.

177

6. Massive Parallel Computing

Client Side of Solver

The client side of the hybrid-parallel FEXP solver represents the specific activity focused
primarily on the numerical computation. Unlike in the case, where all computing processes
run on a single workstation only, in the client side of hybrid-parallel FEXP solver it requires
the additional functionality to process synchronization within the computer cluster. The
class CFEXPHybridParallelSolver contains the mentioned functionality. It inherits
the class class CFEXPParallelSolver, where it overwrites some of the specific parts of
the parent class.

An important difference here is the need to run a special thread instance that primarily
deals with communication with the server. For such a reason, the amount of computational
threads is reduced by one thread. However, the disadvantage of missing one hardware
thread for numerical computation should be compensated by the decomposition of larger
models within the computer cluster. The function that is responsible for the creation of
computational threads and also of one communication thread then contains the following
source code listing.
template<typename TExpCalc , typename TThreadData , typename TThread , typename Tbarr ier>
Ptr<TThread> CFEXPHybridParallelSolver<TExpCalc , TThreadData , TThread , Tbarr ier>

: : get_thread_instance (s i ze_t id , Ptr<TThreadData> data , bool i s_calc_thread)
{

re turn is_calc_thread ?
// c r e a t e c a l c u l a t i o n thread
CFEXPDataManager<TThread>: : Sa f eA l l o c In s t anc e (

[t h i s] (auto i t1 , auto i t 2)
{

CFEXPHybridParallelSolver : : thread_Calculat ion_funct ion (i t1 , i t 2) ;
} , id , data) :

// c r e a t e thread f o r network communication purpose
CFEXPDataManager<TThread>: : Sa f eA l l o c In s t anc e (

[t h i s] (auto i t1 , auto i t 2)
{

CFEXPHybridParallelSolver : : main_loop_net_communication (i t1 , i t 2) ;
} , id , data) ;

}

The function to manage numerical computations are the same as for a single work-
station not linked to a computer cluster. It consists of a few adjustments relating to
synchronization purposes required for network communication. See the following source
code listing for comparison.
template<typename TExpCalc , typename TThreadData , typename TThread , typename Tbarr ier>
void CFEXPHybridParallelSolver<TExpCalc , TThreadData , TThread , Tbarr ier>

: : thread_Calculat ion_funct ion (s i ze_t thread_id , Ptr<TThreadData> data)
{

t ry
{

bool ca lcu lat ion_end = f a l s e ; auto c a l c u l a t o r = ge t_ca l cu l a to r (thread_id) ;
whi l e (! _socket_closed)
{

// 1 . Step : Set time con s i s t en cy
data−>SetCalcTimeIncrement (thread_id ,

c a l cu l a t o r−>SimulationTimeIncrement (thread_id)) ;
Synchronize (ESynchronizat ion : : eSync1) ;
// 2 . Step : Check i f time i s the same f o r a l l threads
// t h i s r e qu i r e only one thread to do t h i s a c t i on
check_time_synchronization (data) ;

178

6.4. Description of the FEXP Parts

// check end o f c a l c u l a t i o n
ca lcu lat ion_end = check_calculat ion_end (data , thread_id) ;
Synchronize (ESynchronizat ion : : eSync2) ;
// 3 . Step : While i s end wait f o r r e s u l t sending
//−−> proce s s non−c a l c thread communicates with s e r v e r
Synchronize (ESynchronizat ion : : eSync3) ;
// 4 . Step : Check end o f c a l c u l a t i o n
i f (ca lcu lat ion_end)

break ;
Synchronize (ESynchronizat ion : : eSync4) ;
// 5 . Step : Prepare data f o r new time l e v e l
c a l cu l a t o r−>PrepareDataForNewTimeLevel (thread_id) ;
// 6 . Step : Update mapping o f f e nodes f o r contact search
// t h i s r e qu i r e only one thread to do t h i s a c t i on
update_model_mapping (thread_id) ;
// 7 . Step : Transform po s i t i o n and v e l o c i t i e s to l o c a l coo rd inate system
ca l cu l a t o r−>GlobalToLocalTransformation (thread_id) ;
Synchronize (ESynchronizat ion : : eSync5) ;
// 8 . Step : I n t e g r a t i on o f i n t e rna l , e x t e rna l and contact f o r c e s
c a l cu l a t o r−>Calcu la teForce s (thread_id) ;
Synchronize (ESynchronizat ion : : eSync6) ;
// 9 . Step : Ca l cu la t e new motion based on e x p l i c i t i n t e g r a t i o n equat ions o f motion
ca l cu l a t o r−>CalculateNewGeometry (thread_id) ;
Synchronize (ESynchronizat ion : : eSync7) ;
// 10 . Step : Save c a l c u l a t i o n r e s u l t s −−> proce s s non−c a l c thread communicates with s e r v e r
Synchronize (ESynchronizat ion : : eSync8) ;
// 11 . Step : Control o f c a l c u l a t i o n s t a b i l i t y
c a l cu l a t o r−>Stab i l i t yCon t r o l (thread_id) ;
data−>SetTimeStep (thread_id , c a l cu l a t o r−>GetCalculatedCrit icTimeStep ()) ;
Synchronize (ESynchronizat ion : : eSync9) ;
// 13 . Step : Synchronize time s t ep s with network c l i e n t s
//−−> proce s s non−c a l c thread communicates with s e r v e r
Synchronize (ESynchronizat ion : : eSync10) ;
// 15 . Step : Network data exchange
//−−> proce s s non−c a l c thread communicates with s e r v e r
Synchronize (ESynchronizat ion : : eSync11) ;

}
}
catch (const std : : except ion & ex)
{

CFEXPLog : : WriteLine () ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT

+ "Error : ␣ Ca l cu l a t i on ␣ended␣ be f o r e ␣ s imu la t i on ␣end . ") ;
// p r i n t problem o f except ion
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "An␣ except ion ␣ occurred : ") ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "−−>␣" + ex . what ()) ;

}
}

The function that takes care of communication with the central server has the following
content
template<typename TExpCalc , typename TThreadData , typename TThread , typename Tbarr ier>
void CFEXPHybridParallelSolver<TExpCalc , TThreadData , TThread , Tbarr ier>

: : main_loop_net_communication (s i ze_t id , Ptr<TThreadData> data)
{

t ry
{

bool ca lcu lat ion_end = f a l s e ;
whi l e (! _socket_closed)
{

Synchronize (ESynchronizat ion : : eSync1) ;
Synchronize (ESynchronizat ion : : eSync2) ;
// check c a l c u l a t i o n end −−> send r e s u t s
ca lcu lat ion_end = end_ca lcu lat ion (data) ;

179

6. Massive Parallel Computing

Synchronize (ESynchronizat ion : : eSync3) ;
// check c a l c u l a t i o n end −−> end o f loop
i f (ca lcu lat ion_end)

break ;
Synchronize (ESynchronizat ion : : eSync4) ;
Synchronize (ESynchronizat ion : : eSync5) ;
Synchronize (ESynchronizat ion : : eSync6) ;
Synchronize (ESynchronizat ion : : eSync7) ;
// export o f r e s u l t s
r e su l t_export (data) ;
Synchronize (ESynchronizat ion : : eSync8) ;
Synchronize (ESynchronizat ion : : eSync9) ;
// s t a b i l i t y −−> time step synchon i za t i on
t ime_step_synchronizat ion (data) ;
Synchronize (ESynchronizat ion : : eSync10) ;
// macro contact −−> data exchange
// 1 . send macro model bounding boxes
macro_model_BB_data_send (data) ;
// 2 . send macro model s e r i a l i z e d c a l c u l a t i o n data
macro_model_calc_data_send (data) ;
// 3 . r e c e i v e macro model input data
macro_model_input_data_recv (data) ;
// 4 . r e c e i v e macro model s e r i a l i z e d c a l c u l a t i o n data
macro_model_calc_data_recv (data) ;
Synchronize (ESynchronizat ion : : eSync11) ;

}
}
catch (const std : : except ion & ex)
{

CFEXPLog : : WriteLine () ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT

+ "Error : ␣ Ca l cu l a t i on ␣ended␣ be f o r e ␣ s imu la t i on ␣end . ") ;
// p r i n t problem o f except ion
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "An␣ except ion ␣ occurred : ") ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "−−>␣" + ex . what ()) ;

}
}

From the listing of the source code it is clear that the data communication consists the
following:

◦ Synchronization of the simulation time, i.e. the size of the time step and the number
of its increment.

◦ Data exchange regarding the current spatial position and shape of a solved macro
entities within the respective computer cluster node.

◦ Depending on the server-side analysis of MEIM, the data exchange of the respective
macro entities is performed. It is either in one or both directions. In the case of
bi-directional data exchange of macro entities, a complete change of the included
solved models can be performed within the corresponding individual workstation in
the scope of the computer cluster.

◦ The last part is the export of the numerical simulation results for the appropriate
simulation time.

The functions from the source code listing above include a large number of function-
ality dealing in detail with the serialization and deserialization of the respective compu-

180

6.4. Description of the FEXP Parts

tational data. Those of the aforementioned functionality relating to the network data
communication symmetrically relate to the server side code. As mentioned earlier, on
the server side, the communication with the corresponding workstation contains the code
in class CFEXPNetServerWinClient in source files FEXPNetworkWinSocket.h and
FEXPNetworkWinSocket.cpp. A communication loop within it continuously runs through
the computing steps as shown in the following source code listing.
void CFEXPNetServerWinClient : : main_loop ()
{

CFEXPNETWinMessage : :REQUEST reques t ;
t ry
{

auto synchron ize_state = s ize_t (t_ENetSynStgs : : eStar tPo int) ;
whi l e (t rue)
{

ThrowIfCancelRequest<SERVER_CLIENT_THREAD_DEFINITION>() ;
// run next s tage
i f (! run_calc_synchr_stage (synchron ize_state++))

break ;
// r e s e t s tage to d e f au l t (the f i r s t s tage)
i f (synchron ize_state == s ize_t (t_ENetSynStgs : : eSynchrCount))

synchron ize_state = s ize_t (t_ENetSynStgs : : eStar tPo int) ;
}

}
catch (const std : : except ion & ex)
{

std : : s t r i n g e r r o r = SERVER_CLIENT_EXCEPTION
+ CFEXPBaseConvers : : NumberToString<size_t >(GetId ())
+ FEXPCOMMON_NEW_LINE + ex . what () ;

CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + er r o r) ;
}
// f i n i s h c l i e n t
c l i e n t_ f i n i s h i n g () ;

}

bool CFEXPNetServerWinClient : : run_calc_synchr_stage (s i ze_t s tage)
{

auto continue_next = true ;
t ry
{

// network c a l c u l a t i o n synchron i za t i on po in t s
switch (s tage)
{
case t_ENetSynStgs : : eStar tPo int :
// synchron ize and move to new stage
continue_next = _thread_synchronizer (s tage) ;
break ;
case t_ENetSynStgs : : eBeforeCl ientUpdate :

load_model_data (get_server_data ()) ;
// synchron ize and move to new stage
continue_next = _thread_synchronizer (s tage) ;
break ;

case t_ENetSynStgs : : eCl ientUpdate :
// synchron ize and move to new stage
continue_next = _thread_synchronizer (s tage) ;
break ;

case t_ENetSynStgs : : eAfterCl ientUpdate :
// synchron ize and move to new stage
continue_next = _thread_synchronizer (s tage) ;
break ;

case t_ENetSynStgs : : eEndPoint :
// synchron ize and move to new stage
continue_next = _thread_synchronizer (s tage) ;

181

6. Massive Parallel Computing

break ;
case t_ENetSynStgs : : eCheckCalcEnd :

i f (_ca l cu la t ion_star ted)
{

CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + " In fo : ␣ C l i en t ␣ID : ␣"
+ CFEXPBaseConvers : : NumberToString (GetId ()) + " , ␣ c a l c u l a t i o n ␣end␣ con t r o l ␣ . . . ␣") ;

ca lcu lat ion_end_contro l (get_server_data (f a l s e)) ;
}
// synchron ize and move to new stage
continue_next = _thread_synchronizer (s tage) ;
break ;

case t_ENetSynStgs : : eStartNewTimeStep :
i f (_ca l cu la t ion_star ted && ! process_cont inue_contro l (get_server_data ()))
{

continue_next = f a l s e ;
break ;

}
// synchron ize and move to new stage
continue_next = _thread_synchronizer (s tage) ;
break ;

case t_ENetSynStgs : : eResu l t s :
i f (_ca l cu la t ion_star ted)
{

CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + " In fo : ␣ C l i en t ␣ID : ␣"
+ CFEXPBaseConvers : : NumberToString (GetId ()) + " , ␣ s imu la t i on ␣ r e s u l t s ␣ . . . ␣") ;

s imu la t i on_re su l t s (get_server_data ()) ;
}
// synchron ize and move to new stage
continue_next = _thread_synchronizer (s tage) ;
break ;

case t_ENetSynStgs : : e S t ab i l i t yCon t r o l :
i f (_ca l cu la t ion_star ted)
{

CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + " In fo : ␣ C l i en t ␣ID : ␣"
+ CFEXPBaseConvers : : NumberToString (GetId ()) + " , ␣ s t a b i l i t y ␣ con t r o l ␣ . . . ␣") ;

s t a b i l i t y_c on t r o l (get_server_data ()) ;
}
// synchron ize and move to new stage
continue_next = _thread_synchronizer (s tage) ;
break ;

case t_ENetSynStgs : : eDataExchange :
i f (_ca l cu la t ion_star ted)
{

CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + " In fo : ␣ C l i en t ␣ID : ␣"
+ CFEXPBaseConvers : : NumberToString (GetId ()) + " , ␣data␣ exchange␣ . . . ␣") ;

data_exchange_control (get_server_data ()) ;
}
// synchron ize and move to new stage
continue_next = _thread_synchronizer (s tage) ;
break ;

case t_ENetSynStgs : : eEndLoop :
// synchron ize and move to new stage
continue_next = _thread_synchronizer (s tage) ;
break ;

d e f au l t :
FEXPCOMMON_EXCEPTION("Error : ␣Wrong␣ proce s s ␣ synchron i za t i on ␣ s t a t e ! ! ! ") ;

}
}
catch (const std : : except ion & ex)
{

std : : s t r i n g e r r o r = SERVER_CLIENT_EXCEPTION
+ CFEXPBaseConvers : : NumberToString<size_t >(GetId ())
+ FEXPCOMMON_DFLT_TXT + FEXPCOMMON_NEW_LINE + ex . what () ;

CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + er r o r) ;
continue_next = f a l s e ;

182

6.4. Description of the FEXP Parts

}
re turn continue_next ;

}

A detailed study of the communication functions content and also all others can then
be done through the study of the respective application’s source files.

Figure 634: Native command line vs. FEXP Solver Manager behaviour of hybrid-parallel
FEXP solver (two connected client workstations to server).

As in the case of FEXP solver not linked to the computer cluster, even in the case
of a hybrid-parallel FEXP solver, the computational process can be controlled through
the FEXP Solver Manager. The FEXP solver configuration setting is similar to those
shown in the Fig. 628, 629 and 630, respectively. An important note here is the type of
setting related to the content of the configuration input file for the hybrid-parallel FEXP
solver. It has to include the definition of the IP address and port of the FEXP server (see

183

6. Massive Parallel Computing

Fig. 628), the list of input files containing the model definitions of the individual macro
entities including the default input file (see Fig. 629), and the list of the IP addresses of
the client workstations whose connection to the server is the signal for the start-up of the
numerical simulation (see Fig. 630). Last but not least, it is necessary to emphasize the
selection of the correct executable [*.exe] related to the FEXP server. The behaviour of
the computation is then similar to those shown in the Fig. 631.

Since the hybrid-parallel FEXP solver is a distributed application type, it is necessary
to divide the FEXP Solver Manager into two parts. The part relating to the FEXP server
as described above, and to the part on the side of individual workstations connected to
the computer cluster. The part on the cluster node side has the sole purpose of execut-
ing the respective executable [*.exe] and tracking its behaviour through a graphical UI,
respectively. The process of monitoring is performed through the instance of the class
FEXPProcessMonitorDlg from source file FEXPProcessMonitorDlg written in the C#
programming language, as in the case of the rest of the source codes belonging to the
FEXP Solver Manager application.

An example of a numerical simulation running in the computer cluster is shown in the
Fig. 634, where it runs within the console, and as a counterpart is shown the same process
but controled by the FEXP Solver Manager with graphical UI for client process control.
Finally, it is need to list the startup C++ code from source file fexp_net_client_main.cpp
on the side of client workstation, which is as follows
/∗∗ @br ie f Main func t i on o f a c l i e n t node (hybrid−p a r a l l e l FEXP so l v e r) .
∗/
auto __cdecl main (i n t argv , char ∗ argc []) −> in t
{

// path o f s o l v e r c on f i g u r a t i on f i l e
std : : tuple<std : : s t r i ng , s ize_t , std : : s t r i ng , s ize_t> cmd ;
t ry
{

cmd = GetCmdContent (argv , argc) ;
}
catch (const std : : except ion & ex)
{

CFEXPLog : : WriteLine () ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "An␣ except ion ␣ occurred : ") ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "−−>␣" + ex . what ()) ;
MessageBox (NULL, (LPCWSTR)L"Command␣ l i n e ␣arguments␣ e r r o r ! " ,

(LPCWSTR)L"FEXP␣Cmd␣Error " , MB_OK) ;
re turn EXIT_FAILURE;

}

// input model data reader
auto lambda =
[] (const std : : s t r i n g & key , Ptr<std : : vector<std : : s t r i ng>> data)

{
re turn CFEXPDataManager<CFEXPFileReader<CFEXPInpDataContainer>>

: : Sa f eA l l o c In s t anc e (key , data ,
CFEXPInpDataModelAssemblyFactory : : INP_FILE_BLOCK_CLS_MAP) ;

} ;
auto r e s u l t = s i ze_t (EXIT_SUCCESS) ;
t ry
{

func t i on_t ra i t s <dec l type (lambda) >: : f_type get_reader_instance = lambda ;
auto c l i e n t = CFEXPDataManager<CFEXPNetClientWinSocketConnection>

: : Sa f eA l l o c In s t anc e (FEXPCOMMON_DEFAULT_VALUE,

184

6.4. Description of the FEXP Parts

std : : get<FEXPCOMMON_CMD_SERVER_IP_INDEX >(cmd) ,
std : : get<FEXPCOMMON_CMD_SERVER_PORT_INDEX>(cmd) ,

[get_reader_instance , cmd , &r e s u l t] (std : : funct ion<void (s i ze_t)> id_sttr ,
ICFEXPNetClientNodeService & s e r v i c e)
{

// i n i t i a l i z e c l i e n t
// 1 . wait f o r model i n i t i a l i z e (model data , c l i e n t ID)
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT +

" 1 . ␣Waiting␣ f o r ␣data␣ a r r i v a l ␣ from␣ s e r v e r ␣ (model␣data , ␣ c l i e n t ␣ID) . ") ;
do
{

auto data = s e r v i c e . ReadInst ruct ion () ;
i f (! data)
FEXPCOMMON_EXCEPTION(

"FEXP␣Clus te r ␣ C l i en t ␣main␣Error : ␣Data␣ i n i t i a l i z a t i o n ␣ f a i l e d ! ! ! ") ;
i f (data−>count (t_ENetMessage : : e I n i t i a l i z e))
{

auto macro = ICFEXPNetClientNodeService
: : GetReadModelData (data , t_ENetMessage : : e I n i t i a l i z e) ;

// add i n i t data to macro model con ta ine r
FEXPCOMMON_FOREACH_ITER_FNC(macro ,

{ s e r v i c e . AddMacroModelData (IT . f i r s t , IT . second) ; }) ;
}
e l s e i f (data−>count (t_ENetMessage : : e I d I n i t))
{

id_st t r ((CFEXPBaseConvers : : StringToNumber<size_t >(
ICFEXPNetClientNodeService

: : GetReadModelData (data , t_ENetMessage : : e I d I n i t)
["ID"]−>at (FEXPCOMMON_DEFAULT_INDX)))) ;

break ;
}
e l s e
FEXPCOMMON_EXCEPTION(

"FEXP␣Clus te r ␣ C l i en t ␣main␣Error : ␣" +
"Unknown␣message , ␣ i n i t i a l i z a t i o n ␣ f a i l e d ! ! ! ") ;

} whi l e (t rue) ;

// 3 . i n i t i a l i z e data by reader
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + " 3 . ␣ I n i t i a l i z a t i o n . ") ;
auto rnt_init_data_key =

CFEXPBaseConvers : : NumberToString (FEXPCOMMON_DEFAULT_VALUE) ;
std : : map<std : : s t r i ng , Ptr<ICFEXPFileReaderIntf>> _file_reader_map ;
auto read_succ = true ;
auto i s_rnt_in i t = f a l s e ;
FEXPCOMMON_FOREACH_ITER(∗ (s e r v i c e . GetMacroModelData ()) . get ())
{

auto key = (∗ IT) . f i r s t ;
i f (! i s_rnt_in i t && key == rnt_init_data_key)

i s_rnt_in i t = true ;
_file_reader_map . i n s e r t (MAP_PAIR(key , get_reader_instance (key , (∗ IT) . second))) ;
i f (_file_reader_map [key]−>ReadProgress ())

cont inue ;
read_succ = f a l s e ;
break ;

}
i f (! read_succ)
{

FEXPCOMMON_CONSOLE_PAUSE(std : : get<FEXPCOMMON_CMD_MANAGER_INDEX>(cmd)) ;
r e s u l t = EXIT_FAILURE;
re turn ;

}

// 4 . bu i ld i n i t i a l fem model
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + " 4 . ␣Bui ld ing ␣FE␣model . ") ;
Ptr<ICFEXPModelBuilderBase> bu i l d e r =

185

6. Massive Parallel Computing

CFEXPDataManager<
CFEXPModelBuilder<ICFEXPDataContIntf , CFEXPMathModelElementContainer>>

: : Sa f eA l l o c In s t anc e (
"Bui ld ing ␣ f i n i t e ␣ element ␣model" ,
"Removing␣ f i n i t e ␣ element ␣model" ,
" Schedul ing ␣ o f ␣ threads ") ;

auto bui ld_succ = true ;
FEXPCOMMON_FOREACH_ITER(_file_reader_map)
{

i f (bu i lde r−>BuildModelProgress ((∗ IT) . f i r s t , (∗ IT) . second−>GetFileContent () ,
FEXPCOMMON_DYNCAST(CFEXPFEInpContBase , ICFEXPDataContIntf ,

(∗ IT) . second−>GetInputContainer ())))
cont inue ;

bui ld_succ = f a l s e ;
break ;

} ;
i f (! read_succ)
{

FEXPCOMMON_CONSOLE_PAUSE(std : : get<FEXPCOMMON_CMD_MANAGER_INDEX>(cmd)) ;
r e s u l t = EXIT_FAILURE;
re turn ;

}

// whi l e runtime i n i t i a l i z a t i o n −−> input macro data remove (dummy macro data)
i f (i s_rnt_in i t)

bu i lde r−>RemoveStructure (rnt_init_data_key) ;

// 5 . c r e a t e and run s o l v e r
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT +

" 5 . ␣Run␣ So lve r ␣ (s t a r t ␣ o f ␣ computation) . ") ;
CFEXPDataManager<HYBRID_PARALLEL_SOLVER>:: Sa f eA l l o c In s t anc e (

[get_reader_instance] (auto key , auto data)
{

auto reader = get_reader_instance (key , data) ;
reader−>Read () ;
r e turn reader−>GetInputContainer () ;

} , bu i lde r ,
[] (auto id) { re turn CFEXPBaseConvers : : NumberToString (id) ; } ,
s e r v i c e)−>Star t () ;

}) ;

// run c l i e n t
c l i e n t−>Run () ;
// c l o s e c l i e n t
c l i e n t−>Close () ;
// end o f computation
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "Computation␣ proce s s ␣ s u c c e s s f u l l y ␣ended . ") ;

}
catch (const std : : except ion & ex)
{

CFEXPLog : : WriteLine () ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "An␣ except ion ␣ occurred : ") ;
CFEXPLog : : WriteLine (FEXPCOMMON_DFLT_TXT + "−−>␣Process ␣ended . ") ;
r e s u l t = EXIT_FAILURE;

}
// wait f o r cmd key i f need
FEXPCOMMON_CONSOLE_PAUSE(std : : get<FEXPCOMMON_CMD_MANAGER_INDEX>(cmd)) ;
r e turn r e s u l t ;

}

In the source code listed above, it is clear to see a complete data initialization procedure
for the client process. In the client initialization phase, data are obtained from the side
of the server. The received data contains the currently-stacked model’s macro entities for

186

6.4. Description of the FEXP Parts

the numerical computation in the respective client workstation of the computer cluster.
After an obtaining the client ID granted by the server, the FE model build process then
continues. The last step is entry to the startup function of the computational procedure.
The given procedures of the initialization and numerical computation startup are triggered
by the following source code
void CFEXPNetClientWinSocketConnection : : Run()
{
#de f i n e ERROR_SOCKET_CLIENT_CONNECT "Error : ␣ C l i en t ␣ cannot ␣ s t a r t : ␣\n"

i f (_connect ion_start . load ())
{

auto e r r o r = ERROR_SOCKET_CLIENT_CONNECT + std : : s t r i n g ("−−>␣Node␣ID␣\"")
+ CFEXPBaseConvers : : NumberToString<size_t >(GetId ()) + " \" :\n"
+ "Socket ␣has␣ a l r eady ␣been␣opened . " ;

FEXPCOMMON_EXCEPTION(e r r o r) ;
}

// c r e a t e socket and connect
create_socket () ;
auto r e s u l t = connect (_socket ,

(sockaddr∗)&_sock_server_adress , s i z e o f (_sock_server_adress)) ;
i f (r e s u l t == SOCKET_ERROR)
{

// throw e r r o r connect ion except ion
auto l a s t e = WSAGetLastError () ;
auto e r r o r = ERROR_SOCKET_CLIENT_CONNECT + std : : s t r i n g ("Node␣ID␣−−>␣") + "\""

+ CFEXPBaseConvers : : NumberToString<size_t >(GetId ()) + " \" :\n" ;
i f (CONNECTION_ERRORS_3. count (l a s t e))

e r r o r += CONNECTION_ERRORS_3[l a s t e] ;
FEXPCOMMON_EXCEPTION(e r r o r) ;

}
// now we are connect to s e r v e r
_connect ion_start . s t o r e (t rue) ;
// s t a r t main c l i e n t p roce s s loop
_main_loop ([t h i s] (auto id) { SetId (id) ; } , ∗ t h i s) ;

}

The first step here is an attempt to establish a connection between the sides of server and
the appropriate client workstation. If the attempt to connect to the server is successful, the
initialization and computational procedures are subsequently started. The final execution
of the mentioned procedures represents the following snippet a source code.
void CFEXPNetClientWinSocketConnection : : Run()
{

. . .

// s t a r t main c l i e n t p roce s s loop
_main_loop ([t h i s] (auto id) { SetId (id) ; } , ∗ t h i s) ;

}

187

6. Massive Parallel Computing

6.5 Summary of Chapter

In this chapter important aspects of the software implementation of the proposed solution
to an explicit numerical integration of equations of motion in terms of the massive parallel
computing were introduced.

Massively parallel calculations today belong to a very large area, including modern
computer networks, operating systems and of course to the area of advanced hardware
devices. For these reasons, a part of the text was also devoted to cloud systems, whose
potential usage in the future is enormous.

The great part of the chapter was devoted mainly to the particular description of
important parts of the FEXP solver with the presented fragments of the related source
code. Then the UML diagrams related to the object design should be an aid in the overall
understanding of the application’s composition.

The total amount of source code rows of the FEXP solver and FEXP Solver Manager
applications is enormous with regard to the context of the application purpose as a test
software tool. This is the reason why the program source code could not be presented in
its entire width and depth.

188

Chapter 7
Results of Simulation Test

3.0 [m]

3.0 [m]

3.0 [m]

2.0 [m]

4.0 [m]
Y

Z

X

Bt0,SXY

Bt0,SC

Bt0,SX

Bt0,SY

∂Bt0,SXY

∂Bt0,SC

∂Bt0,SX

∂Bt0,SY

R 1.00 [m]
h 0.20 [m]

R 1.00 [m]
h 0.15 [m]

R 1.00 [m]
h 0.10 [m]

R 1.00 [m]
h 0.30 [m]

Figure 71: Configuration of spheres at time t0.

For the testing purposes of the proposed solution represented by the hybrid-parallel
FEXP solver, the problem of multibody impact was chosen. The geometrical data of the

189

7. Results of Simulation Test

respective bodies of the mathematical-physical model and their initial configurations are
shown in the Fig. 71. This type of example was chosen primarily due to the expected
fluctuation of the individual parts of the model within the simulated computer network
during the solution process.

The model geometry and FE meshes were created in the RFEM program. The trian-
gular FE meshes were then extracted from files [*.XYZ] (coordinates of FE nodes) and
[*.E2D] (connectivity of 2D FE), respectively. The respective files are used by the numer-
ical kernel (the NE-XX solver from the FEM consulting company) of the RFEM program
for the FE model assembly process. The FE statistics are included in the Tab. 71.

Table 71: FE mesh statistics.

Statistics

2D finite elements 768 (≈ 0.016 [m2m−2])
FE mesh nodes 392

The movement of bodies is initiated by the initial conditions represented by the velocity
constraints shown in the Fig. 72, where small velocities in Z direction are introduced
primarily due to the applied type of contact detection algorithm which is represented by
node-to-element contact. This artificial numerical impurity avoids the state represented
by element-to-element contact.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·10−3

0

200

400

600

[5 · 10−3, 400]

[5 · 10−3, 400]

t [s]

v
[m

s−
1]

BSC
velocity constrains

vX,SC

vZ,SC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·10−3

−500

0

[5 · 10−3, −600]

[5 · 10−3, 300]

[5 · 10−3, 20]

t [s]

v
[m

s−
1]

BSX
velocity constrains

vX,SX

vY,SX

vZ,SX

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·10−3

−500

0
[5 · 10−3, 100]

[5 · 10−3, −600]

t [s]

v
[m

s−
1]

BSY
velocity constrains

vX,SY

vY,SY

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·10−3

0

200

400

600

800 [5 · 10−3, 800]

[5 · 10−3, 500]

[0, 15] [5 · 10−3, 10]

t [s]

v
[m

s−
1]

BSXY
velocity constrains

vX,SXY

vY,SXY

vZ,SXY

1Figure 72: Velocity initial conditions of individual macro entities.

190

All velocity constraints are switched off at the time t = 0.0005s, and subsequently, all
of the bodies can move freely based on their inertia. The high initial body velocities are
chosen primarily due to the short duration of the transient dynamic simulation and due to
their higher destructive effect. For all macro entities (bodies) the same type of material is
chosen. The material characteristics are listed in the Tab. 72.

Table 72: Material characteristics.

Characteristics Value Unit

E 210.0 GPa
G 80.8 GPa
ν 0.3 −
% 7850.0 kg m−3

For network type computations, a computer grid consisting of 3 workstations is chosen
for the initiation of the computation. The 4th workstation is connected to the grid during
the computation. The initial configuration of the given computer network is schematically
shown in the Fig. 73. It shows the initial placement of the macro entity data over the
network.

m4 = {Bt0,SXY
}

m2 = {Bt0,SX
}

m1 = {Bt0,SC
}

m3 = {Bt0,SY
}

{m1, m2} ∈ c1

{m4} ∈ c3

{m3} ∈ c2
Central Server

{m4} ∈ g4

{m3} ∈ g1

{m1} ∈ g3

{m2} ∈ g2

Figure 73: Macro entity distribution over the network at time t0.

191

7. Results of Simulation Test

Simultaneously with the parallel processing of tha data over the computer network, the
calculation takes place in parallel even within each individual workstation. The number
of threads is set uniformly to 3 parallel running threads, i.e. 2 threads for computation
and 1 thread for communication with the server. During the calculation, another client
workstation was connected to the server. This workstation acquired the necessary data
(so-called default data) to be ready for its eventual involvement into the computation.

The model data distribution over the network represented by the initial state lasted
until the time step t51, when the first data transfer was initiated based on the analysis of
MEIM. At this time step, the computational data of the m3 model from workstation c2 was
transferred to workstation c1. However, the new data distribution over the network lasted
for only a short time, and at the time step t53 another transfer of model data was initiated
again. At this time step, the computational data of the m4 model from workstation c3 was
transferred to workstation c1. The two previously mentioned data transfers together with
the subsequent new data distribution over the network are represented by the Fig. 74.

m4 = {Bt53,SXY
}

m2 = {Bt,SX
}

m1 = {Bt,SC
}

m3 = {Bt51,SY
}

{m1, m2, m3, m4} ∈ c1

∅ ∈ c3

∅ ∈ c2
Central Server

∅ ∈ c4

{m1, m2, m3, m4} ∈ gt53

Figure 74: Macro entity distribution over the network at times t51 and t53.

After the data transfer from time t53 a longer period of time follows in which there is
a massive mutual contact interaction between all macro entities. During this time when
only one workstation is loaded by numerical computation, all other workstations perform
necessary synchronization procedures only.

192

During the mutual contact interaction of macro entities both a change in their mo-
mentum and direction of movement was caused. Thanks to these changes in motion,
individual macro entities began to move apart. At time t337, based on the analysis of
MEIM, it was assessed that further data transfer is required. In this case, however, it was
the most massive data transfer over the network. It was decided that it is necessary to
transfer the data of macro entities m1, m2 and m3 from the workstation c1 to the work-
stations c2, c3 and c4, respectively. This event, along with the new data distribution over
the network, is presented in the Fig. 75.

m4 = {Bt337,SXY
}

m2 = {Bt337,SX
}

m1 = {Bt337,SC
}

m3 = {Bt337,SY
}

{m4} ∈ c1
{m2} ∈ c3

{m1} ∈ c2
Central Server

{m3} ∈ c4

{m3} ∈ g4

{m4} ∈ g3

{m1} ∈ g2

{m2} ∈ g1

Figure 75: Macro entity distribution over the network at time t337.

The newly acquired state at time t337 then lasted until the end of the numerical simu-
lation, i.e. until the time t429. In conjunction with the given model it can be stated that
≈ 66% of the total time of the numerical simulation was spent on one workstation (c1),
i.e. in the time interval from t53 to t337. It may be naive to say that about ≈ 34% of the
entire computational time has been saved compared to the numerical simulation, which
would take place on one workstation only. Here, of course, it is necessary to include the

193

7. Results of Simulation Test

time spent relating to the data transfers between workstations and the server. However,
it can be concluded that in the case of larger models, lower number of data transfers and
with the better heuristics related to the analysis of MEIM, it is possible to significantly
accelerate the time spent on numerical computations of a similar type of problem.

The input data files for the numerical computation can be found in the attachement of
the thesis. This also applies to the result files for the visualization of the respective dynamic
simulation in the Paraview program. In this context, videos containing the respective
dynamic simulation were created. They are also part of the attachment. Fluctuation of
model’s macro entities within the computer network during the numerical solution process
represents the Tab. 73.

Table 73: Model’s macro entities fluctuation within the computer network (state after
transfer of macro entities).

Time Workstation Workstations content

c1 {m2} ∈ g2, {m1} ∈ g3

t0 c2 {m3} ∈ g1

c3 {m4} ∈ g4

c1 {m1,m2,m3} ∈ g1

c2 ∅
t51 c3 {m4} ∈ g2

c4 ∅
c1 {m1,m2,m3,m4} ∈ g1

c2 ∅
t53 c3 ∅

c4 ∅
c1 {m4} ∈ g3

c2 {m1} ∈ g2

t337 c3 {m2} ∈ g1

c4 {m3} ∈ g4

194

7.1. Summary of Chapter

7.1 Summary of Chapter

This chapter presents the results of the numerical simulation and also provides the results
of the correct functionality of the proposed algorithmic solution. The model for dynamic
simulation was chosen with respect to both the stability of the numerical integration pro-
cess, its time consumption and also to the assumed physical behavior, respectively.

With respect to the stability of the direct numerical integration of equations of motion,
it is necessary to note that this part of the computation is still in the state of development
and therefore it was necessary to take into account the given limitations. During the
selection of the appropriate setup of this model, a number of program bugs were revealed.
The given bugs were subsequently repaired. Therefore, it can be concluded that this type of
model example also provides a suitable environment for further program debugging during
further development.

In the context of further development in the field of material modeling, the further
gradual process of the convergence of numerical simulation results to the real physical be-
havior of the respective structures can be expected. Subsequently, the proposed solution
can be used for the aforementioned demanding numerical simulations in the field of trans-
port safety and vehicle structure or for risk analysis when designing important structures
in civil engineering.

195

Chapter 8
Conclusions

In the dissertation thesis the current issues of the utilization of parallel computations for
the purposes of numerical simulations of dynamic processes for assessment, design and op-
timization of structures in civil and machinery engineering, respectively, are investigated.
In view of the current security requirements concerning e.g. the behavior of road restraint
systems in the event of accidental vehicle collisions, the safety of vehicles regarding both
pedestrian safety and the safety of passengers inside a vehicle in the event of a crash,
the safety of strategically important civil structures (nuclear power plants, water supply-
related strategic structures, etc.) against the deliberate criminal attempt for destruction
related mainly to the problem of world terrorism, thus the numerical simulation of a con-
tact/impact problems became the main interest. Considered type of a numerical algorithm
used for the simulation of contact/impact physical phenomana can also be used for rapid
dynamic simulations used in the development of firearms.

A source model for the proposed software system approach to the parallelization of
numerical computations became the modern way of data processing concerning the so-
called cloud computing, i.e. it is related to the so-called big data. The main problem to
deal with relates to the distribution of a numerical computations within a computer cluster
composed primarily of computer hardware commonly available on the market. It, of course,
often corresponds to the state of computer equipment within a number of engineering design
studios.

Since the recent attention for the big data processing in the field of computational mech-
anics has been pursued to the network and local computer machine based solutions related
primarily to the implicit based numerical methods, e.g. in conjunction with the FETI
family methods, thus the main objective of interest here has become explicit numerical
methods applied in the field of massive paralell computations. Current efforts to paralelize
explicit numerical methods consider local type of parallel processing on appropriate work-
stations requiring the presence of expensive computer hardware. The approach proposed
in the thesis is able to not only exploit the possibilities of expensive high-performance
hardware, but it is also able to distribute the big data of complex numerical models to the
scope of a computer network which further accelerates given numerical computations.

197

8. Conclusions

In the developed code there was no need to use third-party libraries to create an entire
designed parallel model. It concerns to both the commercial and also to freely available
software libraries. However, the use of those libraries is also possible. Since the most
recent revision of C++ programming language now allows a number of required activities
regarded to parallel computing, also with respect to the considerable speed of the res-
ulting compiled code and of course with respect to the generality of such a programming
language even for other purposes of software development, respectively, the mentioned pro-
gramming languge was chosen as the main abstract instrument for the implementation of
the respective algorithms.

During the course of the code development, various types of problems arose. The first
problem which arose was the need to effectively solve the problem of general contact in
an algorithmic way other than than with a native algorithm which exhibits the quadratic
complexity of the algorithm. For the numerical solution of contact of bodies, the data
structure called kd-tree is used. It is based on a range-searching query processed in the
mentioned data structure to obtain the nodes of all the FEs that get too close to the
investigated FE. Whether a given set of FE nodes gets too close to the examined FE
indicates the volume of the block shape surrounding the given FE. The surrounding block
shape is called a bounding box and the bounding box then indicates the range search query.
One searching task is of logarithmic complexity as it is common with binary tree searching
algorithms. The range-searching process is then further parallelized in terms of the set of
FEs.

The second problem surfaced at a later stage of the code development. The prob-
lem relates to the redistribution of the numerical data depending on the current state of
the numerical simulation over the network. In the context of the second problem, a new
term Macro Entity Interaction Multigraph (MEIM) was invented. It relates to the previ-
ously dealt with problem of macro body multi-contact representing closed units of the FE
meshes. The non-oriented multigraph structure is further simplified and analyzed to find
the connected subgraphs representing the bulk of the data units intended to move together
within the range of the considered computer network. An effort is made to provide the
best balanced workload for individual workstations. The standard DFS algorithm is ap-
plied to find connected subgraphs. Multigraph assembly is based on the same principle as
a detailed contact search within one FE, with the difference where the respective bounding
box represents each contained body (macro entity) in the entire model.

For the numerical tests, T. Belytschko’s C0 triangular shell FE containing one integ-
ration node only, is applied. It was preferred for the low computational demands for its
numerical integration, and also for the amount of data required for its definition. As an
another type of nonlinear behavior of structures, including the already mentioned general
contact problem, the corotational formulation for the respective triangular shell FE is con-
sidered as a source of the geometrically nonlinear behavior of structures in the range of
small strains but large rotations. Consideration of geomerically non-linear behavior for
such an FE is so much easier due to its geometrical definition using the first-order polyno-
mial. The simulation results can then be further validated using the commercial software
analytical tool Ansys LS-Dyna, where the respective FE is also implemented.

198

For the purpose of validating and also the purpose of results presentation, the Para-
view software tool is used as it is a popular instrument widespread among the scientific
community but also in an engineering practice. The specific result data export is executed
into the files whose format is defined within the VTK.

The FEXP solver designed to test the functionality mentioned above is divided into two
main parts. The first part concerns computations possible to run on a local workstation
only. It uses the cores of the currently installed processor for its configurable parallel
computation. The computation can also be performed in the sequential manner of an
instruction execution primarily for the debug purpose of numerical computations and for
performance comparison tests. It is represented by one executable only. The second part
concerns the possibility of solving an appropriate numerical model in the scope of the
computer network with local type of parallelization in each of the connected workstations.
Such a type of solver is referred to as a hybrid-parallel FEXP solver in the text of thesis.
The standard client-server software architecture is applied in the hybrid-parallel FEXP
solver. The TCP/IP protocol of the transport/network layer is chosen with conjunction of
Berkeley like network socket type in the Windows OS environment.

Many new features of C++ programming language ver. 14 are considered through-
out the entire FEXP solver software solution. The most important improvements in the
programming language are the possibility of using portable platform-independent native
threads for parallel computations and the specific way of handling dynamically allocated
memory through the so-called smart pointers similarly as in open source high performance
3D graphics toolkit OpenSceneGraph (OSG), e.g. it is used for the topology mapping of a
civil and machinery structures in the already mentioned software tools RFEM and RSTAB
developed by Dlubal Software company. A new way of dealing with the dynamically al-
located memory then increases the program safety and eliminates the problem of memory
leaks. Throughout the entire source code, an emphasis is placed on the general design
of the relevant functionality using templates, primarily due to later scalability for further
functionality and program maintenance.

Finally, the FEXP Solver Manager was designed to simplify manipulation with the
FEXP solver. It gives the ability to set up the solver, edit the solver’s input data, run the
solver and it also enables the monitoring of computation and the controlling of its behaviour
through a graphical user interface (graphical UI or GUI). The functionality of the FEXP
Solver Manager is programmed in the C# programming language using the Microsoft .NET
Framework 4.6. An emphasis is placed on a modern object oriented and functional type
of programming and on the asynchronous execution of a number of complex processes. It
is primarily for the control of ongoing processes and for securing the responsivity of the
graphical UI. The FEXP Solver Manager is ready to manage the work of both the FEXP
solver focused on a single workstation as well as a hybrid-parallel type of the FEXP solver.

Given the long lasting and challenging development of such a distributed software ap-
plication like the FEXP solver, only a few simpler numerical testing models have been
considered. The reasons are the specifics of a multi-process execution control where com-
pletely different types of problems occur often with a random character that is natural for
the such type of applications compared to common sequential running applications. The

199

8. Conclusions

complicated random nature of program errors and the generally time-consuming nature of
numerical simulations involved cause considerable complications in the time consumption
for the development of the respective application.

8.1 Contributions of the Doctoral Thesis

First and foremost the scientific contribution is realted to a somewhat different view of
the distribution of numerical computations in nonlinear dynamics of structures provided
by the explicit integration of equations of motion compared to those commonly applied
approaches in the field of the parallelization of explicit numerical computations primarily
focused on powerful single workstations. This refers to the so-called "big data" in terms of
cloud computing, where ordinary workstations connected to a computer network are used
for the application of parallel algorithms.

With respect to the effectiveness of such a solution, it was necessary to come up with a
parallel algorithm competitive with those normally applied on single powerful workstations.
Therefore, a specific type of domain decomposition of the FE mesh was applied. It considers
those parts of the FE mesh representing the entire integral parts of the numerical model
meaning single bodies (connected subgraphs of the entire FE mesh). Those parts of the
FE mesh can interact with the surrounding structures by means of the contact forces
only. Direct contact interactions of the individual bodies must be solved together in one
of the workstations within the considered computer network. The disadvantage of such
an approach is the state, where all the bodies are in such interaction that it is no longer
possible to use the given domain decomposition method and it is necessary to move all the
data from the workstations within the computer network to a single one.

For the distribution of the respective model data on the network, a specific algorithm has
been proposed. However, it does not consider further metadata relating to the performance
of individual workstations of the heterogeneous computer cluster as well as the speed of
individual connections within the computer network. It is just one of the parts providing a
greater scope for further scientific research. It mainly applies to models containing a large
number of interacting bodies numerically dealt with within large computer networks.

Another benefit is the parallel solution of a contact problem. Here it relates to the
application of the kd-tree data structure used for such purposes. The contact search itself
can then be further parallelized. It then also allows further scientific research. It also
applies to the implementation of other types of searching algorithms and their subsequent
performance analysis, performance tunning and improvements.

The designed architecture of the FEXP solver simply allows the implementation of new
algorithms which are not only related to the themes mentioned above. Thanks to the
clearly defined interface within the FEXP solver, it is possible to change the content of
the individual parts under consideration. It allows the focus to purely be on the details of
the specific problem solution without the need to re-develop the entire software solution.
Compared to other similar software systems, the FEXP solver has been primarily designed

200

8.2. Future Work

from the outset for the purpose of implementing parallel algorithms. Therfore, it should be
able to flexibly respond to the new approaches in the field of massive parallel computing.

8.2 Future Work

Referring to all of the previously mentioned topics, further development of the FEXP
solution can be expected. It concerns both the implementation of new algorithms and
also other hardware and software technologies. In the not too distant future, it can be
assumed that the development of the FEXP solver will most likely get the capability to
numerically solve even other physical phenomenas rather than just the problems related
to the mechanics of solids.

However, with a view to the near future, it is necessary to continue with the imple-
mentation of the above-mentioned topics. Those have been either only partially solved or
they have not already been implemented in the FEXP solver yet. Thus, the author of the
dissertation thesis suggests to explore the following:

◦ Apply all the data structures capable of handling spatial data related to the general
contact handling. This concerns both the octree data structure and the data struc-
tures primarily geared to spatial databases. These are concerned mainly with the
various mutations of the data structure of the so-called R-tree, which are still the
focus of current scientific research.

◦ Apply the NVIDIA CUDA technology in terms of the GPGPU to some parts of
the computations. The first algorithms for the parallel implementation on GPUs
should be algorithms related to the detection of body contacts in a complex structural
environment. It applies to the algorithms mentioned in the previous item. The
framework for connecting the CUDA technology to the FEXP solver is now in the
final stage of completion.

◦ Apply some of the advanced heuristic algorithms to the MEIM analysis. Here, as
a suitable candidate, a group of so-a called meta-heuristic algorithms appears. For
that purpose, it may be necessary to consider additional information related to both
the communication speed within the computer network and the hardware type of the
respective workstations of which they are made up.

◦ Apply into the FEXP solver the Boost.Asio library for the network socket commu-
nication as a portable platform-independent technology. Preparations have already
been made in this context.

◦ Apply into the FEXP solver some type of service oriented technology for netwoirk
communication. As a first suitable candidate, the Microsoft .NET/WCF technology
appears. The given SOA technologies should simplify and also make more robust
and secure an inter-process communication within a computer network. Such an

201

8. Conclusions

SOA solution is then probably the most suitable candidate for the possible further
commercial implementation of the mentioned distributed numerical computations.

◦ Apply into the FEXP solver the further type of finite elements. In particular, the
spatial types of FEs that are computationally demanding in terms of the amount of
the required computational operations. Thus, the spatial types of the FEs represent a
suitable environment requiring the application of parallel algorithms for performance
intensification. In such context, the theoretical preparation for the application of
the theory of large deformations has already been carried out as a further source of
nonlinear behavior of structures including nonlinear contact.

◦ It would be interesting to apply further constitutive material laws. Plasticity in re-
gime of small and large strains in terms of the spatial FE seems to be very interesting
in such a context.

The above listing of the goals to scientific reasearch and their implementation within
the scope of the FEXP solver contains a number of an advanced and often unexplored
topics. The mentioned themes are seen as those at least partially prepared for realization
in the foreseeable future.

202

List of Abbreviations

Number Sets

N Natural numbers set
Z Integer numbers set
R Real numbers set
R[α,ω] Interval of a real numbers set,

R[α,ω] = {x ∈ R | α ≤ x ≤ ω}
S Unsigned integer numbers set,

S ∈ [0, 264] for 64bit platform, S ∈ [0, 232] for 32bit platform
Ft Floating point numbers set with a precision of t
F[α,ω]
t Interval of a floating point numbers set with a precision of t,

F[α,ω]
t = {x ∈ Ft | α ≤ x ≤ ω}

Fd Floating point numbers set with a precision of 15 digits,

Fd → F[−1.7·10308,1.7·10308]
15

F[α,ω]
d Interval of a floating point numbers set,

F
[α,ω]
d → F[α,ω]

15 = {x ∈ F15 | α ≤ x ≤ ω}
F+
d Posive values of a floating point numbers set including zero,

F+
d → F[0,1.7·10308]

d

203

List of Abbreviations

Common Mathematical Functions and Operators
1

b Vector b
bi the i th element of vector b
||b|| Norm of vector b
A Matrix (tenzor) A
aij Element of matrix A at the i th row, and the j th column
A−1 Inverse matrix to matrix A
AT Transposed matrix to matrix A
det A Determinant of matrix A
tr A Trace of matrix A
lin A Linearization of tensor A

∂αf(x) Partial derivative ∂f(x)
∂xα

∂xf(x, y) Partial derivative ∂f(x,y)
∂x

O(x) The big O notation

1 It contains the list of important or frequently used mathematical operators in the text of the disser-
tation thesis. Mathematical functions and operators are always explained in the text, thus the following
list is included here primarily for the purpose of better orientation.

204

Miscellaneous Abbreviations 2

CPU Central Processing Unit
GPU Graphics Processing Unit
GPGPU General-Purpose computing on Graphics Processing Units
OpenMP Open Multi-Processing
MPI Message Passing Interface
Open MPI Open Message Passing Interface
CUDA Compute Unified Device Architecture
OpenCL Open Computing Language
OS Operating System
IPv4 Internet Protocol version 4
TCP Transmission Control Protocol
UDP User Datagram Protocol
LAN Local Area Network
VPN Virtual Private Network
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
XML Extensible Markup Language
UML Unified Modeling Language
WCF Windows Communication Foundation
MFC Microsoft Foundation Class
CSV Comma-Separated Values file format
PDM Product Data Management software system
ERP Enterprise Resource Planning software system
UI/GUI User Interface/Graphical User Interface
IBPV Initial Boundary Value Problem
FEM Finite Element Method
FEA Finite Element Analysis
FE Finite Element
FETI Finite Element Tearing and Interconnecting method
CFD Computational Fluid Dynamics
CM Computational Mechanics
CCM Computational Contact Mechanics
OOFEM Object Oriented Finite Element software tool
SIFEL SImple Finite ELements software tool
FEXP Finite [E]lement [E]XPlicit software tool
MEIM Macro Entity Interaction Multigraph

2 It contains the list of important or frequently used miscellaneous abbreviations in the text of the
dissertation thesis. The abbreviations are always explained in the text, thus the following list is included
here primarily for the purpose of better orientation.

205

Bibliography

[1] Alamatian J.: A new formulation for fictitious mass of the Dynamic Relaxation
method with kinetic damping, Computers & Structures, Vol. 90-91, pp. 42–54, El-
sevier, 2012.

[2] Aliaga J.I., Pérez J., Quintana-Ortí E.S.: Systematic Fusion of CUDA Kernels for
Iterative Sparse Linear System Solvers, Euro-Par 2015: Parallel Processing, 21st
International Conference on Parallel and Distributed Computing, Vienna, Austria,
pp. 675-686, Springer-Verlag Berlin Heidelberg, 2015.

[3] Aristotle: Physics, Kessinger Publishing, LLC, 2004.

[4] Bedford A.: Hamiltons Principle in Continuum Mechanics, John Wiley & Sons, 1986.

[5] Belytschko T., Hsieh B.J.: Nonlinear Transient Finite Element Analysis with Con-
vected Coordinates, International Journal for Numerical Methods in Engineering, Vol.
7(3), pp. 255-271, John Wiley & Sons, 1973.

[6] Belytschko T., Lin J.I., Chen-Shyh Tsay: Explicit algorithms for the nonlinear dy-
namics of shells, Computer Methods in Applied Mechanics and Engineering, Vol.
42(2), pp. 225-251, Elsevier, 1984.

[7] Belytschko T., Liu W.K., Moran B., Elkhodary K.: Nonlinear Finite Elements for
Continua and Structures, John Wiley & Sons, Second Edition, 2014.

[8] Belytschko T., Stolarski H., Carpenter N.: A C0 triangular plate element with one-
point quadrature, International Journal for Numerical Methods in Engineering, Vol.
20(5), pp. 787–802, John Wiley & Sons, 1984.

[9] Bentley J.L.: Multidimensional binary search trees used for associative searching,
Communications of the ACM, Vol. 18(9), pp. 509–517, 1975.

[10] Berg M. de, Cheong O., Kreveld M. van, Overmars M.: Computational Geometry:
Algorithms and Applications, Springer, Third Edition, 2008.

[11] Berger M.J., Bokhari S.H.: A partitioning strategy for nonuniform problems on mul-
tiprocessors, IEEE Transactions on Computers, Vol. C-36, No. 5, pp. 570–580, 1987.

207

Bibliography

[12] Blewett R., Clymer A.: Pro Asynchronous Programming with .NET, Apress, 2015.

[13] Bondy J.A., Murty U.S.R.: Graph Theory With Applications, Elsevier Science
Ltd/North-Holland, 1976.

[14] Borst R.D., Crisfield M.A., Remmers J.J.C, Verhoosel C.V.: Nonlinear Finite Ele-
ment Analysis of Solids and Structures, John Wiley & Sons, Second Edition, 2012.

[15] Borwein J., Zhu Q.: Techniques of Variational Analysis (CMS Books in Mathemat-
ics), Springer, 2005.

[16] Bouknight W.J., Denenberg S.A., McIntyre D.E., Randall J.M, Sameh A.H., Slotnick
D.L.: The Illiac IV System, Proceedings of the IEEE, Vol. 60, No. 4, 1972.

[17] Brenner S., Scott R.: The Mathematical Theory of Finite Element Methods (Texts
in Applied Mathematics), Springer, Third Edition, 2007.

[18] Brio M.: Numerical Time-Dependent Partial Differential Equations for Scientists
and Engineers, Academic Press, 2010.

[19] Buluç A., Gilbert J.R., Budak C.: Solving path problems on the GPU, Parallel Com-
puting, Elsevier, 2010.

[20] Courant R., Fredrichs K.O., Lewy H.: On the partial difference equations of math-
ematical physics, IBM Journal of Research and Development, 11 (2): 215–234, 1967.

[21] Day A.S.: An introduction to dynamic relaxation, The Engineers, Vol. 219, pp. 218-
221, 1965.

[22] Divecchio M.C.: The Design of the Parallel Arithmetic Unit in PEPE, University of
Pennsylvania Department of Computer and Information Science, Technical Report
No. MSCIS-78-22, 1978.

[23] Dostál Z., Horák D., Kučera R.: Total FETI - an easier implementable variant of the
FETI method for numerical solution of elliptic PDE, Communications in Numerical
Methods in Engineering, Vol. 22, No. 6, pp. 1155-1162, 2006.

[24] Du P., Weber R., Luszczek P., Tomov S., Peterson G., Dongarra J.: From CUDA to
OpenCL: Towards a performance-portable solution for multi-platform GPU program-
ming, Parallel Computing, Vol. 38(8), pp. 391–407, Elsevier, 2012.

[25] Dunigan T.H.: Performance of the Intel iPSC/860 and Ncube 6400 hypercubes, Par-
allel Computing, Elsevier, Volume 17, Pages 1285-1302, 1991.

[26] Dziubak T., Matulewski J.: An object-oriented implementation of a solver of the
time-dependent Schrödinger equation using the CUDA technology, Computer Physics
Communications, Vol. 183(3), pp. 800-812, Elsevier, 2012.

[27] Even S.: Graph Algorithms, Cambridge University Press, Second Edition, 2011.

[28] Eyerman S., Eeckhout L.: Modeling critical sections in Amdahl’s law and its implic-
ations for multicore design, ISCA ’10 Proceedings of the 37th annual international
symposium on Computer architecture, pp. 362-370, 2010.

208

Bibliography

[29] Farhat C., Roux F.X.: A method of finite element tearing and interconnecting and
its parallel solution algorithm, International Journal for Numerical Methods in En-
gineering, Vol. 32, No. 6, pp. 1205-1227, John Wiley & Sons, 1991.

[30] Ferland K.: Discrete Mathematics An Introduction to Proofs and Combinatorics,
Houghton Mifflin Company, 2009.

[31] Ferrando N., Gosálvez M.A., Cerdá J., Gadea R., Sato K.: Octree-based, GPU imple-
mentation of a continuous cellular automaton for the simulation of complex, evolving
surfaces, Computer Physics Communications, Vol. 182(3), pp.628-640, Elsevier, 2011.

[32] Gamow G.: Thirty Years that Shook Physics: The Story of Quantum Theory, Dover
Publications, Revised ed. edition, 1985.

[33] Gaster B., Howes L., Kaeli D.R., Mistry P., Schaa D.: Heterogeneous Computing
with OpenCL, Morgan Kaufmann, 2011.

[34] Goldstein H., Poole Ch., Safko J.: Classical Mechanics: Pearson New International
Edition, Pearson Education, Third Edition, 2001.

[35] Gorobets A.V., Trias F.X., Oliva A.: A parallel MPI + OpenMP + OpenCL algorithm
for hybrid supercomputations of incompressible flows, Computers & Fluids, Vol. 88,
pp. 764–772, Elsevier, 2013.

[36] Gropp W., Lusk E., Skjellum A.: Using MPI - 2nd Edition: Portable Parallel Pro-
gramming with the Message Passing Interface (Scientific and Engineering Computa-
tion), The MIT Press, Second edition, 1999.

[37] Gruber P., Zeman J., Kruis J., Šejnoha M.: Homogenization of composites with inter-
facial debonding using duality-based solver and micromechanics, Computer Assisted
Mechanics and Engineering Sciences, 16(1): 59-76, 2009.

[38] Guan Q.: Parallel Algorithms for Geographic Processing, Dissertation, University of
California, Santa Barbara, 2008.

[39] Hallquist J.O.: LS-DYNA Theoretical Manual, Livermore: Livermore Software Tech-
nology Corporation, 1998.

[40] Halphen B., Nguyen Q.S: Sur les matériaux standards généralisés, Journal de Méca-
nique, Vol. 14, pp. 39–63, 1975.

[41] Har J., Tamma K.: Advances in Computational Dynamics of Particles, Materials
and Structures, John Wiley & Sons, 2012.

[42] Hart J. M.: Windows System Programming (Addison-Wesley Microsoft Technology
Series), Addison-Wesley Professional, 2015.

[43] Hertz H.: Über die Berührung fester elastischer Körper, Journal für die Reine und
Angewandte Mathematik, Vol. 29, pp. 156–171, 1882.

[44] Hillis W.D.: The Connection Machine (Mit Press Series in Artificial Intelligence),
The MIT Press, 1986.

209

Bibliography

[45] Hlaváček I., Haslinger J., Nečas J., Lovíšek J.: Solution of Variational Inequalities
in Mechanics (Applied Mathematical Sciences), Springer, 1988.

[46] Holuša L., Kratochvíl J., Křížek M., Marek I. Ženíšek A.: Miloš Zlámal, zakladatel
matematické teorie metody konečných prvků, VUTIUM, 2006.

[47] Hopcroft J., Tarjan R.: Algorithm 447: Efficient algorithms for graph manipulation,
Communications of the ACM, Vol. 16(6), pp. 372-378, ACM, 1973.

[48] Hwang K., Dongarra J., Fox G.C.: Distributed and Cloud Computing: From Parallel
Processing to the Internet of Things, Morgan Kaufmann, 2011.

[49] Chapman S.: Fortran 95/2003 for Scientists and Engineers, McGraw-Hill Education,
Third Edition, 2007.

[50] Chaves E.W.V: Notes on Continuum Mechanics (Lecture Notes on Numerical Meth-
ods in Engineering and Sciences), Springer, 2013.

[51] Chen W., Beister M., Kyriakou Y., Kachelries M.: High performance median filtering
using commodity graphics hardware, Nuclear Science Symposium Conference Record
(NSS/MIC) IEEE, pp. 4142-4147, 2009.

[52] Christensen J., Bastien Ch.: Nonlinear Optimization of Vehicle Safety Structures:
Modeling of Structures Subjected to Large Deformations, Butterworth-Heinemann,
2015.

[53] Idelsohn S.R., Marti J., Becker P., Oñate E.: Analysis of multifluid flows with large
time steps using the particle finite element method, International Journal for Numer-
ical Methods in Fluids, Vol. 75, pp. 621–644, John Wiley & Sons, 2014.

[54] Irvine K.R.: Assembly Language for Intel-Based Computers, Prentice Hall, 2007.

[55] Jacobsen D.A., Senocak I.: Multi-level parallelism for incompressible flow computa-
tions on GPU clusters, Parallel Computing, Vol. 39, pp. 1-20, Elsevier, 2013.

[56] Johnsen S.F., Taylor Z.A., Clarkson M.J., et al.: NiftySim: A GPU-based nonlin-
ear finite element package for simulation of soft tissue biomechanics, International
Journal of Computer Assisted Radiology and Surgery, Vol. 10(7), pp. 1077–1095,
Springer, 2015.

[57] Johnson M.W., Amin M.H.S., Gildert S., Lanting T., Hamze F., Dickson N., Harris
R., Berkley A.J., Johansson J., Bunyk P., Chapple E.M., Enderud C., Hilton J.P.,
Karimi K., Ladizinsky E., Ladizinsky N., Oh T., Perminov I., Rich C., Thom M.C.,
Tolkacheva E., Truncik C.J.S, Uchaikin S., Wang J., Wilson B., at al: Quantum
annealing with manufactured spins, Nature, Volume 473, pp. 194-198, 2011.

[58] Kennedy J.M., Belytschko T., Lin J.I.: Recent developments in explicit finite ele-
ment techniques and their application to reactor structures, Nuclear Engineering and
Design, Vol. 97(1), pp. 1-24, Elsevier, 1986.

[59] Kernighan B.W., Lin S.: An efficient heuristic procedure for partitioning graphs, The
Bell System Technical Journal, Vol. 49, No. 2, pp. 291–307, 1970.

210

Bibliography

[60] Kernighan B.W., Ritchie D.M: The C Programming Language, Prentice-Hall, 1978.

[61] Khoei A.R.: Extended Finite Element Method: Theory and Applications (Wiley
Series in Computational Mechanics), John Wiley & Sons, 2015.

[62] Krause R., Rank E.: A fast algorithm for point-location in a finite element mesh,
Computing, Vol. 57(1), pp. 49-62, Springer-Verlag, 1996.

[63] Kruis J.: Domain Decomposition Methods for Distributed Computing (Saxe-Coburg
Publications on Computational Engineering), Saxe-Coburg Publications, 2007.

[64] Kruis J., Bittnar Z.: Reinforcement-matrix interaction modeled by FETI method,
Domain Decomposition Methods in Science and Engineering XVII, Lecture Notes
in Computational Science and Engineering, Vol. 60, pp. 567-573, Springer Berlin
Heidelberg, 2008.

[65] Kruis J., Zeman J., Gruber P.: Model of Imperfect Interfaces in Composite Materials
and Its Numerical Solution by FETI Method, Lecture Notes in Computational Science
and Engineering, Vol. 91, pp. 337-344, 2013.

[66] Kurose J.F., Ross K.W.: Computer Networking: A Top-Down Approach, Pearson,
Sixth Edition, 2012.

[67] Ladd T.D., Jelezko F., Laflamme R., Nakamura Y., Monroe Ch., O’Brien J.L:
Quantum Computing, Nature, Volume 464, pp. 45-53, 2010.

[68] Lafontaine N.M., Rossi R., Cervera M. et al.: Explicit mixed strain-displacement
finite element for dynamic geometrically non-linear solid mechanics, Computational
Mechanics, Vol. 55, pp. 543–559, Springer Berlin Heidelberg, 2015.

[69] Lamport L.: Computer: A History of the Information Machine (The Sloan Techno-
logy Series), Westview Press, Third Edition, 2013.

[70] Langr D., Tvrdík P., Dytrych T., Draayer J.P.: Algorithm 947: Paraperm - Parallel
Generation of Random Permutations with MPI, ACM Trans. Math. Softw., Vol.
41(1), pp. 5:1-5:26, 2014.

[71] Langr D., Tvrdík P., Šimeček I., Dytrych T.: Downsampling Algorithms for Large
Sparse Matrices, International Journal of Parallel Programming, Vol. 43(5), pp.
679–702, Springer, 2015.

[72] Laursen T.A.: Computational Contact and Impact Mechanics: Fundamentals of Mod-
eling Interfacial Phenomena in Nonlinear Finite Element Analysis, Springer, 2002.

[73] Lea H.P., Cambierb J.-L., Cole L.K.: GPU-based flow simulation with detailed chem-
ical kinetics, Computer Physics Communications, Vol. 184(3), pp. 596–606, Elsevier,
2013.

[74] LeBlanc T.J., Scott M.L., Brown C.M.: Large-Scale Parallel Programming: Experi-
ence with the BBN Butterfly Parallel Processor, Butterfly Project Report, Computer
Science Department, University of Rochester, 1988.

211

Bibliography

[75] Lefebvre M., Guillen P., Le Gouez J.-M., Basdevant C.: Optimizing 2D and 3D
structured Euler CFD solvers on Graphical Processing Units, Computers & Fluids,
Vol. 70, pp. 136-147, Elsevier, 2012.

[76] Li R., Saad Y.: GPU-accelerated preconditioned iterative linear solvers, The Journal
of Supercomputing, Vol. 63, pp. 443-466, Springer US, 2013.

[77] Lipschutz S., Lipson M.: Schaum’s Outline of Discrete Mathematics, McGraw-Hill,
Third Edition, 2007.

[78] Liu W., Schmidt B., Voss G., Müller-Wittig W.: Accelerating molecular dynamics
simulations using Graphics Processing Units with CUDA, Computer Physics Com-
munications, Vol. 179(9), pp. 634–641, Elsevier, 2008.

[79] Lucas É.: Récreations Mathématiques (Vol. I), Paris:Gauthier-Villars, 1882.

[80] Manolopoulos Y., Nanopoulos A., Papadopoulos A.N., Theodoridis Y.: R-
Trees: Theory and Applications, Advanced Information and Knowledge Processing,
Springer, 2006.

[81] Matoušek J., Nešetřil J.: Kapitoly z diskrétní matematiky, Karolinum, 2010.

[82] Maugin G.A.: Continuum Mechanics Through the Twentieth Century: A Concise
Historical Perspective (Solid Mechanics and Its Applications), Springer, 2013.

[83] Maurer D.: Energy Expressions in Explicit Finite-Element Methods, 2003.

[84] Mehlhorn K.: Data Structures and Algorithms 3: Multi-dimensional Searching and
Computational Geometry, Monographs in Theoretical Computer Science. An EATCS
Series, Springer, 1990.

[85] Melenka J.M., Babuška I.: The partition of unity finite element method: Basic theory
and applications, Computer Methods in Applied Mechanics and Engineering, Vol.
139(1-4), pp. 289-314, Elsevier, 1996.

[86] Mielke A.: A Mathematical Framework for Generalized Standard Materials in the
Rate-Independent Case, Lecture Notes in Applied and Computational Mechanics,
Vol. 28, pp. 399-428, 2006.

[87] Nagel Ch., Glynn J.: Professional C# 5.0 and .NET 4.5.1, Wrox, 2014.

[88] Naumov M.: Parallel Solution of Sparse Triangular Linear Systems in the Precon-
ditioned Iterative Methods on the GPU, NVIDIA Technical Report NVR-2011-001,
NVIDIA, 2011.

[89] Neal M.O., Belytschko T.: Explicit-explicit subcycling with non-integer time step
ratios for structural dynamic systems, Computers & Structures, Vol. 31(6), pp. 871-
880, Elsevier, 1989.

[90] Nečas J.: Les methodes directes en theorie des equations elliptiques, Academia, Praha,
and Masson et Cie, Editeurs, Paris, 1967.

212

Bibliography

[91] Němec I., Kolář V., Ševčík I., Vlk Z., Blaauwendraat J., Buček J., Teplý B., Novák D.,
Štembera V.: Finite Element Analysis of Structures, Principles and Praxis, Shaker
Verlag, 2010.

[92] Ng S., Leung K.: Induction of Quadratic Decision Trees using Genetic Algorithms
and k-D Trees, 2003.

[93] Oller S.: Nonlinear Dynamics of Structures (Lecture Notes on Numerical Methods in
Engineering and Sciences), Springer, 2015.

[94] Oñate E.: Structural Analysis with the Finite Element Method. Linear Statics:
Volume 1: Basis and Solids (Lecture Notes on Numerical Methods in Engineering
and Sciences), Springer, 2009.

[95] Oñate E.: Structural Analysis with the Finite Element Method. Linear Statics:
Volume 2: Beams, Plates and Shells (Lecture Notes on Numerical Methods in En-
gineering and Sciences), Springer, 2013.

[96] Oyarzun G., Borrell R., Gorobets A., Oliva A.: MPI-CUDA sparse matrix–vector
multiplication for the conjugate gradient method with an approximate inverse precon-
ditioner, Computers & Fluids, Vol. 90, pp. 244-252, Elsevier, 2013.

[97] Parsons B., Wilson E.A.: A Method for Determining the Surface Contact Stresses
Resulting From Interference Fits, Journal of Engineering for Industry, Vol. 92(1), pp.
208-218, 1970.

[98] Patzák B.: OOFEM - an object-oriented simulation tool for advanced modeling of
materials and structures, Acta Polytechnica, 52(6):59–66, 2012.

[99] Patzák B., Rypl D., Kruis J.: MuPIF – A distributed multi-physics integration tool,
Advances in Engineering Software, Vol. 60-61, pp. 89-97, Elsevier, 2012.

[100] Perrot G., Domas S., Couturier S.: Fine-tuned high speed implementation of a gpu-
based median filter, Journal of Signal Processing Systems, pp. 1-6, 2011.

[101] Pickeringa B.P., Jacksona Ch.W., Scoglandb T.R.W., Wu-Chun Fengb, Roya Ch.J.:
Directive-based GPU programming for computational fluid dynamics, Computers &
Fluids, Vol. 114, pp. 242–253, Elsevier, 2015.

[102] Reddy J.N.: An Introduction to Nonlinear Finite Element Analysis: with applica-
tions to heat transfer, fluid mechanics, and solid mechanics, Oxford University Press,
Second Edition, 2015.

[103] Reissner E.: On transverse bending of plates, including the effect of transverse shear
deformation, International Journal of Solids and Structures, Vol. 11(5), pp. 569-573,
Elsevier, 1975.

[104] Rek V., Němec I.: Parallel Computing Procedure for Dynamic Relaxation Method
on GPU Using NVIDIA’s CUDA, Applied Mechanics and Materials, Vol. 821, pp.
331-337, Trans Tech Publications, 2016.

213

Bibliography

[105] Rek V., Němec I.: Parallel Computation on Multicore Processors Using Explicit Form
of the Finite Element Method and C++ Standard Libraries, Strojnícky casopis –
Journal of Mechanical Engineering, Vol. 66(2), pp. 67-78, De Gruyter, 2016.

[106] Rodriguez J., Rio R., Cadou J.M., Troufflard J.: Numerical study of dynamic relax-
ation with kinetic damping applied to inflatable fabric structures with extensions for
3D solid element and non-linear behavior, Thin-Walled Structures, Vol. 49(11), pp.
1468-1474, Elsevier, 2011.

[107] Rodrígueza M., Blesab F., Barrio R.: OpenCL parallel integration of ordinary differ-
ential equations: Applications in computational dynamics, Computer Physics Com-
munications, Vol. 192, pp. 228–236, Elsevier, 2015.

[108] Rosen K.H.: Handbook of Discrete and Combinatorial Mathematics, Second Edition
(Discrete Mathematics and Its Applications), CRC Press, 2000.

[109] Ross A.: A Rudimentary History of Dynamics, Modeling, Identification and Control,
Vol. 30(4), pp. 223–235, Norwegian Society of Automatic Control, 2009.

[110] Říha L., Brzobohatý T., Markopoulos A., Jarošová M., Kozubek T.: Implementation
of hybrid total FETI (HTFETI) solver for multi-core architectures, AIP Conference
Proceedings, Vol. 1648, American Institute of Physics, 2015.

[111] Salvadorea F., Bernardinib M., Botti M.: GPU accelerated flow solver for direct
numerical simulation of turbulent flows, Journal of Computational Physics, Vol. 235,
pp. 129–142, Elsevier, 2013.

[112] Samet H.: Foundations of Multidimensional and Metric Data Structures, The Mor-
gan Kaufmann Series in Computer Graphics, Morgan Kaufmann, 2006.

[113] Santos A., Teixeira J.M., Farias T., Teichrieb V., Kelner J.: Understanding the
Efficiency of kD-tree Ray-Traversal Techniques over a GPGPU Architecture, Inter-
national Journal of Parallel Programming, Vol. 40(3), pp. 331–352, Springer, 2011.

[114] Sedgewick R., Flajolet P.: An Introduction to the Analysis of Algorithms, Addison-
Wesley Professional, 2013.

[115] Shreiner D., Sellers G., Kessenich J.M., Licea-Kane B.: OpenGL Programming Guide:
The Official Guide to Learning OpenGL, Version 4.3, Addison-Wesley Professional,
Eighth Edition, 2013.

[116] Signorini A.: Sopra alcune questioni di elastostatica, Atti della Societa Italiana per
il Progresso delle Scienze, 1933.

[117] Simon H.D.: Parallel computational fluid dynamics: implementations and results,
Scientific and engineering computation, The MIT Press, Cambridge, MA, 1992.

[118] Skiena S.S.: The Algorithm Design Manual, Springer, 2008.

[119] Sosutha S., Mohana D.: Heterogeneous Parallel Computing Using Cuda for Chemical
Process, Procedia Computer Science, Vol. 47, pp. 237-246, Elsevier, 2015.

214

Bibliography

[120] Souza Neto E.A. de, Peric D., Owen D.R.J.: Computational Methods for Plasticity:
Theory and Applications, John Wiley & Sons, 2008.

[121] Stallings W.: Operating Systems: Internals and Design Principles, Prentice Hall,
Sixth Edition, 2008.

[122] Storaasli O.O., Peebles S.W., Crockett T.W., Knott J.D., Adams L.: The finite
element machine: An experiment in parallel processing, Technical Report, NASA
Langley Research Center; Hampton, VA, United States, 1982.

[123] Strömberg N., Johansson L., Klarbring A.: Derivation and analysis of a generalized
standard model for contact, friction and wear, International Journal of Solids and
Structures, Vol. 33, pp. 1817-1836, 1996.

[124] Tabarrok C., Rimrott F.P.: Variational Methods and Complementary Formulations
in Dynamics (Solid Mechanics and Its Applications), Springer, 1994.

[125] Vallée C., Lerintiu C., Fortuné D., Atchonouglo K, Ban M.: Representing a
non-associated constitutive law by a bipotential issued from a Fitzpatrick sequence,
Archives of Mechanics, Vol. 61, pp. 325-340, 2009.

[126] Walshaw C., Cross M.: JOSTLE: parallel multilevel graph-partitioning software—an
overview, Mesh Partitioning Techniques and Domain Decomposition Techniques, pp.
27–58, Civil-Comp Press, 2007.

[127] Wang Y.-X, Zhang L.-L., Liu W., Che Y.-G., Xu C.-F., Wang Z.-H., Zhuang Y.:
Efficient parallel implementation of large scale 3D structured grid CFD applications
on the Tianhe-1A supercomputer, Computers & Fluids, Vol. 80, pp. 244-250, Elsevier,
2013.

[128] Wei Z., Jang B., Jia Y: A fast and interactive heat conduction simulator on GPUs,
Procedia Computer Science, Vol. 270, pp. 496-505, Elsevier, 2014.

[129] Weller R.: New Geometric Data Structures for Collision Detection and Haptics,
Springer Series on Touch and Haptic Systems, Springer, 2013.

[130] Wiener N.: Cybernetics: or control and communication in the animal and the ma-
chine, The MIT Press, Cambridge, MA, 1948.

[131] Wilson E.A., Parsons B.: Finite element analysis of elastic contact problems using
differential displacement, International Journal for Numerical Methods in Engineer-
ing, Vol. 2(3), pp. 387-395, John Wiley & Sons, 1970.

[132] Wriggers P.: Computational Contact Mechanics, Springer, Second Edition, 2006.

[133] Wriggers P.: Nonlinear Finite Element Methods, Springer, 2008.

[134] Wriggers P., Zavarise G.: A formulation for frictionless contact problems using a
weak form introduced by Nitsche, Computational Mechanics, Vol. 41(3), pp. 407–420,
Springer, 2008.

[135] Wright R.S., Haemel N., Sellers G., Lipchak B.: OpenGL SuperBible: Comprehensive
Tutorial and Reference, Addison-Wesley Professional, Fifth Edition, 2010.

215

Bibliography

[136] Wu S.R., Gu L.: Introduction to the Explicit Finite Element Method for Nonlinear
Transient Dynamics, John Wiley & Sons, 2012.

[137] Zeman J., Gruber P.: Numerical approach to a rate-independent model of decohe-
sion in laminated composites, Programs and Algorithms of Numerical Mathematics,
Proceedings of Seminar, pp. 239-250, Institute of Mathematics AS CR, 2010.

[138] Zhou K., Hou R.Q., Wang B., Guo B.: Real-Time KD-Tree Construction on Graphics
Hardware, ACM Transactions on Graphics (TOG), Vol. 27, pp. 1-11, 2008.

[139] Zlámal M.: On the finite element method, Numerische Mathematik, Vol. 12(5), pp.
394-409, Springer, 1968.

216

List of Tables

51 Result of mapping f : π → S for model example. 87
52 Phases of algorithm for a model’s macro entities fluctuation in a scope of the

single data transfer within the computer network (model example). 89

61 Table $TAB_D1. 108
62 Description of the table $TAB_D1. 108
63 Table $TAB_M1. 109
64 Description of the table $TAB_M1. 109
65 Table $TAB_CSTR_V/$TAB_CSTR_A. 110
66 Description of the table $TAB_CSTR_V/$TAB_CSTR_A. 110
67 Table $TAB_LOAD_A/$TAB_LOAD_F. 111
68 Description of the table $TAB_LOAD_A/$TAB_LOAD_F. 112
69 Table $TAB_ND1. 113
610 Description of the table $TAB_ND1. 113
611 Table $TAB_EL1. 114
612 Description of the table $TAB_EL1. 114
613 Table $TAB_IPS. 115
614 Description of the table $TAB_IPS. 115
615 Table $TAB_FLS. 116
616 Description of the table $TAB_FLS. 116
617 Table $TAB_FLS_DFLT. 116
618 Description of the table $TAB_FLS_DFLT. 116
619 Table $TAB_CALC. 117
620 Description of the table $TAB_CALC. 117
621 Description of the container classes. 121
622 Description of the classes for the tabulated structural input data. 125

71 FE mesh statistics. 190
72 Material characteristics. 191

217

List of Tables

73 Model’s macro entities fluctuation within the computer network (state after
transfer of macro entities). 194

218

List of Figures

11 Probable look of Aristotle, see http://www.ekathimerini.com/210142/arti
cle/ekathimerini/whats-on/the-philosophy-of-aristotle--athens--j
uly-9-15. 6

12 Sir Isaac Newton, see https://fineartamerica.com/featured/6-sir-isaa
c-newton-1643-1727-granger.html. 7

13 Leonhard P. Euler, Joseph L. Lagrange, Jean L. R. d’Alembert, Augustin
L. Cauchy and William R. Hamilton, see https://alchetron.com/Leonhar
d-Euler, https://www.thoughtco.com/joseph-louis-lagrange-biography
-2312398, https://www.shutterstock.com/cs/image-photo/jean-le-rond
-dalembert-17171783-engraved-81842449, https://cs.wikipedia.org/wik
i/Augustin_Louis_Cauchy, https://en.wikipedia.org/wiki/William_Row
an_Hamilton. 9

14 Albert Einstein, Max K.E.L. Planck, Niels H.D. Bohr, Erwin Schrödinger,
see https://cs.wikipedia.org/wiki/Albert_Einstein, https://loff.it/
oops/ciencia-humana/max-planck-energia-humana-159501/, http://www.c
onverter.cz/fyzici/bohr.htm, https://cs.wikipedia.org/wiki/Erwin_Sch
rödinger. 10

15 Charles Babbage, see https://www.cs.auckland.ac.nz/historydisplays/Se
condFloor/CharlesBabbage/CharlesBabbageMain.php. 11

16 Babbage’s Difference Engine (Niagara College Canada), see https://www.bri
tannica.com/technology/Difference-Engine. 12

17 John von Neumann and Alan Turing, see https://cs.wikipedia.org/wiki/
John_von_Neumann, https://www.technickytydenik.cz/rubriky/informac
ni-a-komunikacni-technologie/vedec-vynalezce-inovator-alan-turin
g-1912-1954_41745.html. 13

18 The ENIAC computer, see http://foots.info/1st-computer-eniac/. 13
19 FORTRAN code for punch cards, see http://technicaldifficulties.us/ep

isodes/080-a-history-of-computing. 14

219

http://www.ekathimerini.com/210142/article/ekathimerini/whats-on/the-philosophy-of-aristotle--athens--july-9-15
http://www.ekathimerini.com/210142/article/ekathimerini/whats-on/the-philosophy-of-aristotle--athens--july-9-15
http://www.ekathimerini.com/210142/article/ekathimerini/whats-on/the-philosophy-of-aristotle--athens--july-9-15
https://fineartamerica.com/featured/6-sir-isaac-newton-1643-1727-granger.html
https://fineartamerica.com/featured/6-sir-isaac-newton-1643-1727-granger.html
https://alchetron.com/Leonhard-Euler
https://alchetron.com/Leonhard-Euler
https://www.thoughtco.com/joseph-louis-lagrange-biography-2312398
https://www.thoughtco.com/joseph-louis-lagrange-biography-2312398
https://www.shutterstock.com/cs/image-photo/jean-le-rond-dalembert-17171783-engraved-81842449
https://www.shutterstock.com/cs/image-photo/jean-le-rond-dalembert-17171783-engraved-81842449
https://cs.wikipedia.org/wiki/Augustin_Louis_Cauchy
https://cs.wikipedia.org/wiki/Augustin_Louis_Cauchy
https://en.wikipedia.org/wiki/William_Rowan_Hamilton
https://en.wikipedia.org/wiki/William_Rowan_Hamilton
https://cs.wikipedia.org/wiki/Albert_Einstein
https://loff.it/oops/ciencia-humana/max-planck-energia-humana-159501/
https://loff.it/oops/ciencia-humana/max-planck-energia-humana-159501/
http://www.converter.cz/fyzici/bohr.htm
http://www.converter.cz/fyzici/bohr.htm
https://cs.wikipedia.org/wiki/Erwin_Schr�dinger
https://cs.wikipedia.org/wiki/Erwin_Schr�dinger
https://www.cs.auckland.ac.nz/historydisplays/SecondFloor/CharlesBabbage/CharlesBabbageMain.php
https://www.cs.auckland.ac.nz/historydisplays/SecondFloor/CharlesBabbage/CharlesBabbageMain.php
https://www.britannica.com/technology/Difference-Engine
https://www.britannica.com/technology/Difference-Engine
https://cs.wikipedia.org/wiki/John_von_Neumann
https://cs.wikipedia.org/wiki/John_von_Neumann
https://www.technickytydenik.cz/rubriky/informacni-a-komunikacni-technologie/vedec-vynalezce-inovator-alan-turing-1912-1954_41745.html
https://www.technickytydenik.cz/rubriky/informacni-a-komunikacni-technologie/vedec-vynalezce-inovator-alan-turing-1912-1954_41745.html
https://www.technickytydenik.cz/rubriky/informacni-a-komunikacni-technologie/vedec-vynalezce-inovator-alan-turing-1912-1954_41745.html
http://foots.info/1st-computer-eniac/
http://technicaldifficulties.us/episodes/080-a-history-of-computing
http://technicaldifficulties.us/episodes/080-a-history-of-computing

List of Figures

110 Brian W. Kernighan and Dennis M. Ritchie, see http://data.alishoker
.com/2015/06/me-too-hello-world-not-only-chick.html, http://learnc
omputershome.com/clanguage.html. 15

111 Creator of Linux OS kernel Linus Torvalds, see https://diit.cz/clanek/l
inus-torvalds-se-vratil-ke-gnome-3. 16

112 Prof. Olgierd C. Zienkiewicz, Prof. John H. Argyris and Prof. Miloš Zlámal,
see https://www.nap.edu/read/13338/chapter/69, https://www.nap.edu/r
ead/13160/chapter/6, [46]. 16

113 Professor Ted Bohdan Belytschko, see https://alchetron.com/Ted-Belytsc
hko. 17

114 Professor Vladimír Kolář in 1976. 18
115 The world’s fastest and most powerful supercomputer Tianhe-2, see https://

www.telegraph.co.uk/technology/news/10129285/Chinese-supercomputer-
is-worlds-fastest-at-33860-trillion-calculations-per-second.html. 19

116 Quantum computer D-Wave, see https://www.youtube.com/watch?v=ex0uNE
IYrug, https://niagaraelectronics.com/quantum-computers-d-wave/, ht
tp://www.infosecisland.com/blogview/22475-Is-This-the-Year-Quantum
-Computing-Comes-of-Age.html. 20

21 Continuum body B kinematics. 26
22 The Normal type of contact between B1 (master body) and B2 (slave body). . 40

31 Area and natural coordinates of Lagrangian triangular 3-noded element. . . . 57
32 Element configuration for obtaining formula of rigid body rotation θ̂rigx , see [39]. 62
33 Flowchart of an explicit time integration algorithm. 65

41 Examples of the Quadtree and Octree map, see https://www.staff.ncl.ac.u
k/qiuhua.liang/Research/grid_generation.html, http://thomasdiewald.c
om/blog/?p=1488. 73

42 Example of the kd-tree map, see http://morpheo.inrialpes.fr/static/Qui
ckCSG/. 74

51 The Macro Entity Interaction Multigraph (macro body contact interaction). . 81
52 Example of underlying simple graph of multigraph. 84
53 The MEIM model example, where ci ∈ C,mj ∈M and gk ∈ G. 86
54 Relations of sets C, M and G. 87
55 Forest (the set of disjoint trees) from solved example. 89

61 Cloud computing, see http://expertisenpuru.com/cloud-computing-out
standing-features-advantage-and-disadvantages/. 94

62 Windows OS (Vista) architecture, see [121]. 96
63 C++ revision timeline, see https://isocpp.org/std/status. 97
64 Local Area Network (LAN), see https://techterms.com/definition/lan. . 98

220

http://data.alishoker.com/2015/06/me-too-hello-world-not-only-chick.html
http://data.alishoker.com/2015/06/me-too-hello-world-not-only-chick.html
http://learncomputershome.com/clanguage.html
http://learncomputershome.com/clanguage.html
https://diit.cz/clanek/linus-torvalds-se-vratil-ke-gnome-3
https://diit.cz/clanek/linus-torvalds-se-vratil-ke-gnome-3
https://www.nap.edu/read/13338/chapter/69
https://www.nap.edu/read/13160/chapter/6
https://www.nap.edu/read/13160/chapter/6
https://alchetron.com/Ted-Belytschko
https://alchetron.com/Ted-Belytschko
https://www.telegraph.co.uk/technology/news/10129285/Chinese-supercomputer-is-worlds-fastest-at-33860-trillion-calculations-per-second.html
https://www.telegraph.co.uk/technology/news/10129285/Chinese-supercomputer-is-worlds-fastest-at-33860-trillion-calculations-per-second.html
https://www.telegraph.co.uk/technology/news/10129285/Chinese-supercomputer-is-worlds-fastest-at-33860-trillion-calculations-per-second.html
https://www.youtube.com/watch?v=ex0uNEIYrug
https://www.youtube.com/watch?v=ex0uNEIYrug
https://niagaraelectronics.com/quantum-computers-d-wave/
http://www.infosecisland.com/blogview/22475-Is-This-the-Year-Quantum-Computing-Comes-of-Age.html
http://www.infosecisland.com/blogview/22475-Is-This-the-Year-Quantum-Computing-Comes-of-Age.html
http://www.infosecisland.com/blogview/22475-Is-This-the-Year-Quantum-Computing-Comes-of-Age.html
https://www.staff.ncl.ac.uk/qiuhua.liang/Research/grid_generation.html
https://www.staff.ncl.ac.uk/qiuhua.liang/Research/grid_generation.html
http://thomasdiewald.com/blog/?p=1488
http://thomasdiewald.com/blog/?p=1488
http://morpheo.inrialpes.fr/static/QuickCSG/
http://morpheo.inrialpes.fr/static/QuickCSG/
http://expertisenpuru.com/cloud-computing-outstanding-features-advantage-and-disadvantages/
http://expertisenpuru.com/cloud-computing-outstanding-features-advantage-and-disadvantages/
https://isocpp.org/std/status
https://techterms.com/definition/lan

List of Figures

65 Examples of possible VPN configurations (SoftEther VPN), see https://ww
w.softether.org/. 99

66 Example of sending and receiving data across TCP/IP network, see http:
//microchipdeveloper.com/ethernet:overview. 100

67 Simplified representation of designed parallel model of the FEXP solver. . . . 102
68 Composition of the FEXP solver. 104
69 UML diagram of designed file reader. 106
610 Example of the $TAB_D1 table in block #CALCULATION.dynamic. 109
611 Example of the $TAB_M1 table in block #CALCULATION.material. 109
612 Example of the tables $TAB_CSTR_V and $TAB_CSTR_A in block #CAL-

CULATION.constrains. 111
613 Example of the tables $TAB_LOAD_A and $TAB_LOAD_F in block #CAL-

CULATION.loads. 112
614 Example of the table $TAB_ND1 in block #GEOMETRY.nodes. 113
615 Example of the table $TAB_EL1 in block #GEOMETRY.elements. 114
616 Example of the table $TAB_IPS in block #SERVER.init. 115
617 Example of tables $TAB_FLS and $TAB_FLS_DFLT in block #SOLVER.input_files.

. 117
618 Example of the table $TAB_CALC in block #SOLVER.calc_behaviour. . . 118
619 UML diagram of designed container classes. 120
620 UML diagram of designed structure for tabulated I/O data. 122
621 UML diagram of model builder template classes. 125
622 UML diagram of classes for solver types. 129
623 UML diagram of class for explicit computation. 134
624 UML diagram of classes for export of results to VTU file for ParaView. . . . 139
625 ParaView main frame window presenting the loaded result data from the nu-

merical simulation. 142
626 The listing of a model input data files. 148
627 Loaded input file structure. 151
628 Setting of the FEXP solver type, and setting of the solver behaviour monitor-

ing. 152
629 Listing a model input files. 152
630 Listing of the network initialization workstations. 153
631 Result behaviour in a console window vs. FEXP Solver Manager. 155
632 Client-server architecture using TCP/IP network, see [66]. 158
633 Example of data file sending using a TCP/IP packets in client-server architec-

ture, see [66]. 160
634 Native command line vs. FEXP Solver Manager behaviour of hybrid-parallel

FEXP solver (two connected client workstations to server). 183

71 Configuration of spheres at time t0. 189
72 Velocity initial conditions of individual macro entities. 190

221

https://www.softether.org/
https://www.softether.org/
http://microchipdeveloper.com/ethernet:overview
http://microchipdeveloper.com/ethernet:overview

List of Figures

73 Macro entity distribution over the network at time t0, see https://www.freep
ik.com/free-icon/server_738376.htm, https://www.iconspng.com/image/113191/
computer-workstation, https://www.shareicon.net/fashion-designer-ha
ndcraft-modiste-sewing-fashion-tailor-dressmaker-patch-material-
832921. 191

74 Macro entity distribution over the network at times t51 and t53, see https://ww
w.freepik.com/free-icon/server_738376.htm, https://www.iconspng.com/i
mage/113191/computer-workstation, https://www.shareicon.net/fashion
-designer-handcraft-modiste-sewing-fashion-tailor-dressmaker-pat
ch-material-832921. 192

75 Macro entity distribution over the network at time t337, see https://www.freep
ik.com/free-icon/server_738376.htm, https://www.iconspng.com/image/113191/
computer-workstation, https://www.shareicon.net/fashion-designer-ha
ndcraft-modiste-sewing-fashion-tailor-dressmaker-patch-material-
832921. 193

222

https://www.freepik.com/free-icon/server_738376.htm
https://www.freepik.com/free-icon/server_738376.htm
https://www.iconspng.com/image/113191/computer-workstation
https://www.iconspng.com/image/113191/computer-workstation
https://www.shareicon.net/fashion-designer-handcraft-modiste-sewing-fashion-tailor-dressmaker-patch-material-832921
https://www.shareicon.net/fashion-designer-handcraft-modiste-sewing-fashion-tailor-dressmaker-patch-material-832921
https://www.shareicon.net/fashion-designer-handcraft-modiste-sewing-fashion-tailor-dressmaker-patch-material-832921
https://www.freepik.com/free-icon/server_738376.htm
https://www.freepik.com/free-icon/server_738376.htm
https://www.iconspng.com/image/113191/computer-workstation
https://www.iconspng.com/image/113191/computer-workstation
https://www.shareicon.net/fashion-designer-handcraft-modiste-sewing-fashion-tailor-dressmaker-patch-material-832921
https://www.shareicon.net/fashion-designer-handcraft-modiste-sewing-fashion-tailor-dressmaker-patch-material-832921
https://www.shareicon.net/fashion-designer-handcraft-modiste-sewing-fashion-tailor-dressmaker-patch-material-832921
https://www.freepik.com/free-icon/server_738376.htm
https://www.freepik.com/free-icon/server_738376.htm
https://www.iconspng.com/image/113191/computer-workstation
https://www.iconspng.com/image/113191/computer-workstation
https://www.shareicon.net/fashion-designer-handcraft-modiste-sewing-fashion-tailor-dressmaker-patch-material-832921
https://www.shareicon.net/fashion-designer-handcraft-modiste-sewing-fashion-tailor-dressmaker-patch-material-832921
https://www.shareicon.net/fashion-designer-handcraft-modiste-sewing-fashion-tailor-dressmaker-patch-material-832921

Attachments

1. Files related to testing example of numerical simulation:

◦ Structural models from RFEM program:
a) rfem_sphere_m_1.rf5
b) rfem_sphere_m_2.rf5
c) rfem_sphere_m_3.rf5
d) rfem_sphere_m_4.rf5

◦ Input data files for FEXP solver:
a) sphere_m_1.fexin
b) sphere_m_2.fexin
c) sphere_m_3.fexin
d) sphere_m_4.fexin
e) sphere_default.fexin
f) cnfg_fexp_solver.fexcfg

◦ Folder with result files for Paraview program: RESULTS.
◦ Videos related to dynamic simulation:

a) FEXP_simulation_spheres_view_1.mp4
b) FEXP_simulation_spheres_view_2.mp4
c) FEXP_simulation_spheres_view_3.mp4
d) FEXP_running_network_solver___localhost.mp4

2. Compiled programs:

◦ FEXPSolver.exe, FEXPNetServer.exe, FEXPNetClient.exe
◦ FEXPSolverManager.exe, FEXPSolverNetworkClientManager.exe, FEXPEnter-
priseCommonLibrary.dll

3. Software documentation of FEXP Solver and FEXP Solver Manager.

223

	Introduction
	Aims of the Thesis
	State of the Art
	Brief History Review of Dynamics
	Brief History Review of Computer Science
	Scientific Computing in Computational Mechanics
	Multiprocessor and Multicore Technologies in Scientific Programming

	Summary of Chapter

	Dynamics of Structures in the Language of Continuum Mechanics
	Continuum Kinematics
	Stress Measure
	Governing Equations of Structural Dynamics
	Constitutive Equations
	Generalized Standard Materials
	Thermodynamics of (Hyper-) Elastic Materials
	Simplified Saint Venant–Kirchhoff Material Model

	Nonlinear Boundary Conditions
	Summary of Chapter

	Mathematical Modeling
	Brief Introduction to Mathematical Theory of Variational Calculus
	Variational Formulation of an Inertial Problem
	The Finite Element Method
	Numerical Threatment of Solution to Problems in Structural Dynamics
	Numerical Solution to a Set of Semidiscrete Nonlinear Orinary Differential Equations of the Second Order
	A C0 Triangular Shell Finite Element with Corotational Coordinates
	Numerics of Applied Contact Conditions

	The Explicit Time Integration Algorithm
	Numerical Stability
	Summary of Chapter

	Searching in the Euclidean Space
	Nearest Neighbor Searching
	Range Searching in the d-dimensional Space Using the kd-tree Data Structure
	Summary of Chapter

	Analysis of the Macro Entity Interaction Multigraph
	The Graph Theory
	The Data Distribution Algorithm
	Summary of Chapter

	Massive Parallel Computing
	Theoretical Performance Analysis
	Distributed and Cloud Computing
	Utilization of CPU Cores
	Network Based Parellel Computing

	Introduction of the Hybrid Parallel Testing Solver FEXP
	Applied Software Architecture
	The Parallel Hybrid Model

	Description of the FEXP Parts
	Preprocessing
	Preprocessing-Structure Model Input Data
	Preprocessing-Solver Setting Input Data
	Finite Element Model Assembly
	FEXP Computational Parts
	Post Procesing-Output Data
	FEXP Solver Manager
	Client-Server based Network Distributed Computation

	Summary of Chapter

	Results of Simulation Test
	Summary of Chapter

	Conclusions
	Contributions of the Doctoral Thesis
	Future Work

	List of Abbreviations
	Bibliography
	List of Tables
	List of Figures
	Attachments

