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ABSTRAKT

Tato práce se zabývá automatickou detekcí vysokofrekvenčních oscilací jakožto

moderního  elektrofyziologického  biomarkru  epileptogenní  tkáně  v  intrakraniálním

EEG,  jehož  vizuální  detekce  je  zdlouhavý  proces,  který  je  ovlivněn  subjektivitou

hodnotitele. Epilepsie je jedním z nejčastějších neurologických onemocnění postihující

1 % obyvatelstva. Přestože jsou přibližně dvě třetiny případů léčitelné farmakologicky,

zbylá třetina pacientů je odkázána zejména na léčbu chirurgickým zákrokem, pro nějž je

zapotřebí přesně lokalizovat ložisko patologické tkáně. Vysokofrekvenční oscilace jsou

v  posledním  desetiletí  studovány  pro  jejich  potenciál  lokalizace  patologické  tkáně.

Součástí  této  práce  je  shrnutí  dosavadního  výzkumu  vysokofrekvenčních  oscilací

a výčet detektorů používaných ve výzkumu. V rámci práce byly vyvinuty či vylepšeny

tři detektory vysokofrekvenčních oscilací, na jejichž popis navazuje evaluace z hlediska

shody s manuální detekcí, přesnosti výpočtu příznaků oscilací a schopnosti lokalizace

patologické  tkáně.  V  závěru  práce  jsou  představeny  vyvinuté  metody  vizualizace

vysokofrekvenčních výskytu oscilací a stručně uvedeny dosažené vědecké výsledky.

KLÍČOVÁ SLOVA

Epilepsie,  zóna  počátku  záchvatu,  vysokofrekvenční  oscilace,  detekce

vysokofrekvenčních oscilací.



ABSTRACT

This  work  deals  with  automated  detection  of  high-frequency  oscillations  as

a novel electrophysiologic biomarker of epileptogenic tissue in intracranial EEG. Visual

detection of these oscillations is a time-consuming process and is prone to reviewer

bias.  Epilepsy  is  one  of  the  most  common  neurological  diseases  affecting  1  % of

population. Even though two thirds of cases are successfully treated with anti-epileptic

drugs,  the  rest  of  the  patients  are  dependent  mainly  on  surgical  procedure,  which

requires precise localization of pathologic focus. High-frequency oscillations have been

studied over  the last  decade for  their  potential  to localize  the focus of  pathological

tissue.  Initial  part  of this  work is  a summary of the current  state  of high-frequency

oscillations research and a detailed list of detectors used in research. Within the scope of

this work three high-frequency oscillation detectors were developed or enhanced. The

description  of  the  algorithms  is  followed  by  detector  evaluation  with  regard  to  the

concordance with expert reviewed events, feature estimation and the ability to correctly

localize  pathological  tissue.  The  final  part  of  the  work  provides  an  overview  of

developed visualization methods and a short summary of achieved scientific results.

KEYWORDS

Epilepsy, seizure onset zone, high-frequency oscillations, detection of high frequency

oscillations.
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INTRODUCTION

Epilepsy  is  a  group  of  diseases  which  affect  the  brain  of  the  patients  and

significantly impairs their quality of life and limits them in their everyday activities.

About 60 % of epileptic patients can be treated with antiepileptic drugs, however, the

remaining 30 % of patients have to undergo a surgery to remove epileptogenic tissue

causing  their  seizures.  Even  though  the  surgery  is  a  highly  invasive  procedure  the

positive outcome is never guaranteed due to poor localization of pathological part of the

brain.

Nowadays the localization of the epileptogenic focus is done by a number of

methods,  including  scalp  electroencephalography,  magnetic  resonance  imaging  and

neuropsychologic examination. If the results of these examinations are inconclusive, the

patient undergoes an electrode implantation to map the seizure onset zone in the brain.

While seizure onset zone is located in majority of the cases, the resection of the tissue

often does not bring seizure freedom to the patients. Thus, other biological markers of

epileptogenic tissue, which would correctly localize the pathologic tissue, are essential

for good outcome of the surgery.

High frequency oscillations (HFOs) in frequencies ranging from 80 - 600 Hz are

a relatively  novel  and  promising  electrophysiological  biomarker  that  could  improve

localization of epileptogenic focus and help the physicians minimize the resection area

while  achieving  better  surgery  outcome  and  protecting  the  functional  brain  sites

necessary for everyday life of the patient. Apart from being linked to the epileptogenic

foci, they are also present in healthy brain during cognitive processing. Distinguishing

between the physiological HFOs and pathological ones is one of current endeavors of

neuroscientists.

Manual revision and marking of high frequency oscillations is a time consuming

process and is prone to reviewer bias. Moreover, interviewer concordance is often poor

leading to discrepancies in the analyses. Therefore, an objective, robust and fast method

is  needed  to  eliminate  the  drawbacks  of  visual  detection.  Development  of  such

algorithm is hindered by an unclear HFO definition.
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To  date  a  number  of  detectors  based  on  different  HFO  features  and  signal

metrics have been developed but most of them were applied on preselected data sets or

animal recordings solely for research work. Moreover, evaluation of the detectors is not

uniform which makes them nearly impossible to compare.

The  aim  of  this  work  is  to  develop  and  evaluate  high-frequency  oscillation

detectors that are robust and feasible for clinical application and research. Such tools

could provide physicians with valuable information about the patient's brain and could

improve the well being of patients while reducing the costs of their stay in hospital.

It also allows for studying HFOs in cognition and broadening the knowledge of brain

processing.

Three detectors were developed or improved within this work. One based on

well known line-length metric, second which uses a novel frequency homogeny metric

to  overcome  effects  of  Gibb's  phenomenon  and  third  based  on  normalized  Hilbert

transformed signals.

All  detectors  were  evaluated  from  three  different  perspectives.  Agreement

between human scored events and automated detection was evaluated using precision-

recall analysis. Correctness of feature estimation was assessed with the use of artificial

events  and  comparison  of  their  set  features  with  automatically  computed  features.

Lastly, the ability of the detectors to correctly localize pathological tissue was measured

using pathological channels marked by expert reviewers and resected areas in patients

with good surgical outcome.

To provide clinicians and researchers with information about HFO occurrence

and their features three visualization methods developed for this purpose are presented.

One  is  based  on  HFO  rates  in  individual  frequencies,  other  uses  MRI  scans  to

simultaneously provide information about the anatomy of the studied brain and the last

one providing information about HFO rates, their features and brain connectivity.

The  results  of  this  work  are  currently  being  used  in  St.  Anne's  University

Hospital in Brno, Czech Republic and Mayo Systems Electrophysiology Laboratory at

Mayo  Clinic,  USA.  Further  work  will  focus  on  algorithm  optimization,  on-line

implementation and HFO clustering.
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1 EPILEPSY DIAGNOSTICS AND 

MARKERS

Epileptic seizures and epileptic syndromes have high prevalence and incidence

rates  affecting  both  sexes,  all  ages  and  all  races.  Their  estimated  incidence  ranges

between 0.5 % and 1 % [1]. They constitute an important part of everyday neurological

practice  and  are  listed  among  the  most  frequent  neurological  diseases  along  with

Parkinson's and Alzheimer's disease.

Epilepsy is not a single disease entity but rather a group of many syndromes and

diseases  that  have  a  multitude  of  various  manifestations  and  causes.  Therefore,  the

definition  of  epilepsy  is  not  clear  and  there  is  no  consensus.  The  newly  proposed

definition by International League Against Epilepsy is: “Epilepsy is a disorder of the

brain characterized by an enduring predisposition to generate epileptic seizures and by

the microbiological, cognitive, psychological and social consequences of this condition”

[2]. This definition requires the occurrence of at least  one epileptic  seizure with the

precondition that it is in association with an enduring disturbance of the brain capable of

giving  rise  to  other  seizures.  This  proposal  has  been,  however,  criticized  by  lead

epidemiologists.

1.1 Epilepsy throughout the history

Epilepsy has been known for at least 3000 years  [3]. In the past epilepsy was

considered to be something supernatural, daemonic or divine, due to inexplicable causes

of the disease.  Hence,  the common people of the time gave the disease names like

“Sacred disease” or “God's disease”. The perception of epilepsy as a god's punishment

led  to  similar  irrational  ideas  about  its  treatment.  Common  middle-age  treatment

included herbal teas often prepared in special conditions and during special rites [4].

Even though epilepsy was considered sacred,  some philosophers and doctors

studied epilepsy and claimed that epilepsy has organic causes rather than divine. Among
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them  for  example  a  Greek  philosopher  Hippocrates  who  stated  that:  ”Epilepsy  is

a natural  rather  than  divine  disease.  The  seizures  begin  in  the  brain.”  or  a  Swiss

German alchemist Paracelsus: ”Epilepsy is an organic rather than mythic disease. Even

animals can suffer from epilepsy. The causes of the disease are not always treatable but

the symptoms are.”[4]

The invention of electroencelphalography (EEG) by Hans Berger in 1924 led to

better understanding of epilepsy and confirmed its localization in the brain. EEG is still

the most used technique in diagnosis and management of epilepsies but fast emerging

field of neuroimaging enables physicians to deeper understand the processes in the brain

as well as the underlying pathologies of epilepsy.

1.2 Epilepsy treatment and pharmacoresistant epilepsies

The ultimate aim of epilepsy treatment is total seizure freedom with no clinically

significant adverse effects. This is nowadays broadened to include optimal outcomes of

health-related quality  of life with regard to physical,  mental,  educational,  social  and

psychological state of the patient.  The majority of epilepsies are successfully treated

with  anti-epileptic  drugs  (AEDs)  in  continuous  prophylactic  schemes  with  drug

mixtures tailored to each patient.  However, AEDs are ineffective for about 20 % of

epileptic patients. These patients are candidates for neurosurgical interventions, other

pharmacological or non-pharmacological treatments.

The surgical treatment of drug-resistant epilepsy has become increasingly more

valuable  and  often  life-saving  due  to  recent  advances  in  structural  and  functional

neuroimaging,  EEG monitoring and sophisticated surgical techniques. The outcome of

surgical methods has improved dramatically for both adults and pediatric patients. Early

successful  surgical  intervention  might  prevent  or  even  reverse  the  disabling

psychological  consequences  of  uncontrolled  seizures  during  critical  periods  of

personality  development.  Despite  the  advances  and  better  outcomes,  surgery  in

epilepsies is often not performed or delayed due to fear of patients or physicians about

the  surgery.  The  surgery  is  then  often  substituted  with  newer  AEDs,  vagus  nerve

stimulation  or  deep  brain  stimulation  devices  which,  however,  often  fail  to  deliver

appropriate medical treatment [5].
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A successful surgical intervention requires the epileptogenic tissue to be well

localized, and located in the brain area that can be removed safely without significantly

impairing the normal function of the brain. The correct localization of the pathological

tissue is  often crucial  for the surgery to  have a good outcome by achieving seizure

freedom for the patient. Despite the development of neuroimaging diagnostic methods,

additional information is often needed to better localize the focus of epileptic seizures.

This information is provided by the intracranial  EEG (iEEG) which involves  highly

invasive, albeit necessary, craniotomy procedure or access to the brain through holes

drilled in the skull and implantation of depth or/and subdural electrodes.

1.3 Epilepsy diagnostic tools and epilepsy markers

Medical technologies have an increasing impact on diagnosis and treatment in

all areas of medicine. More so on epilepsy where the use of technologies is inevitable

due to relative inaccessibility of the brain. Nowadays epileptologists have a wide array

of methods to choose from but not all of them are suitable for epilepsy diagnostics. This

section discusses the technologies used in clinical practice as well as in research.

1.3.1 Neuropsychological testing

Neurophysiological testing is nowadays an established method for examination

of  surgical  candidates.  The role  of  this  examination  is  mainly  to  evaluate  cognitive

deficits related to epilepsy. However, a standard battery of tests is not defined. Such

battery should cover at least one test targeting: episodic memory, executive function,

language, visuoconstructional functions, psychomotor speed, speech, and attention  [6].

1.3.2 EEG and video-EEG in epilepsy diagnosis

EEG methods are a well established tool in neurology and are commonly used

for brain diagnostics.

The classical EEG, which is entirely harmless and relatively inexpensive, is the

most important investigative tool used in diagnosis and management of epilepsies. The

EEG is indispensable in the correct diagnosis of the type of epileptic  seizure or the
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syndrome these patients may have. Nowadays the EEG is an integral part of epilepsy

diagnostic process and is mandatory for all patients with epileptic seizures.

Unlike  conventional  EEG,  video-EEG  is  the  means  of  reaching  an

incontrovertible diagnosis if clinical events occur during the recording. These may be

incidental  or  predictable  based  on circadian  cycle  or  triggering  stimuli.  Video-EEG

machines are becoming affordable mainly due to advances in digital compression and

storage technology. The main reason to use video-EEG is to capture minor symptoms

which might have clinical value but are hard to notice by medical staff.

1.3.3 iEEG in pharmacoresistant epilepsies

Compared to the two above mentioned methods iEEG is highly invasive and

expensive.  For this  reason it  is  solely  used in  patients  with pharmacoresistant  focal

epilepsies as a method for precise localization of epileptogenic focus. The implantation

of  iEEG  electrodes  is  preceded  by  classical  EEG  evaluation  and  neuroimaging

techniques.  When  the  rough  focus  localization  is  achieved  the  patient  undergoes

an implantation  surgery.  Once  implanted  the  electrophysiological  signals  can  be

recorded directly  from the brain tissue allowing for an in-depth evaluation  of small

areas of the brain and precise localization of seizure onset zone (SOZ).

The indubitable advantage of this approach is the direct contact with brain tissue

and possibility to record signals which are impossible to be captured with conventional

EEG or neuroimaging  [7]. Apart  from seizures themselves  there are a few interictal

biomarkers of epileptogenic tissue. Widely accepted biomarkers are epileptiform spikes

and sharp waves. These interictal EEG signatures of epileptic brain are generated by the

paroxymal discharge of large neuronal populations and are highly specific for epilepsy

[8].  Apart  from interictal  epileptiform discharges  (IEDs),  recent  studies  suggest that

HFOs are an interictal signature of epileptogenic networks. While IEDs are specific for

epileptogenic  brain,  they  are  not  an  ideal  biomarker  because  they  are  only  loosely

related to disease activity unless accompanied by other phenomena  [9]. They are not

a good indicator of seizure occurrence and do not fluctuate as seizures do in relation to

AED treatment  [10]. Since HFOs are the focus of this work their clinical value and

characteristics are described  separate chapter (3).
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1.3.4 Neuroimaging in epilepsy diagnostics

Modern  structural  and  functional  brain  imaging  has  had  a  huge  impact  on

diagnosis and managements of epilepsies.   The enormous amount of anatomical and

metabolic data has led to greater insights into pathophysiology underlying symptomatic

epilepsy  and  can  contribute  immensely  to  the  elucidation  of  the  various  forms  of

epilepsies.

MRI

Magnetic resonance imaging (MRI) is the superior of all structural imaging tools

in terms of epilepsy. MRI abnormalitites are present in 80 % of patients with refractory

focal seizures and 20 % of the patients with single unprovoked seizures or epilepsy in

remission [5]. MRI is greatly superior to computed tomography (CT) with regard to its

sensitivity and specificity for identifying subtle abnormalities.

In case the lesion is  found the patient  has  an increased chance of achieving

seizure freedom after a correct resection [11]. To achieve a correct MRI evaluation, two

main  conditions  have  to  be  fulfilled.  First,  the  MRI  scan  has  to  be  evaluated  by

an experienced  neurologist.  It  has  been  proved  that  the  chance  of  discovering

an abnormality on a standard MRI is 50 % when assessed by and expert compared to a

non-expert  neuro-radiologist  whose chance is only 40 %. Second, the MRI protocol

should be tailored to epilepsy. Using a tailored MRI measurement protocol the chance

of expert neuro-radiologist discovering a lesion is substantially increased to 90 % [12].

Such protocol was proposed by Wellmer et al. [13].

Computed Tomography

CT can be used for detection of gross structural lesions but, as stated above, will

miss small  lesions,  including tumors,  vascular  malformations,  hippocampal  sclerosis

and  most  malformations  of  cortical  development  [5].  Nevertheless,  CT  may  be

occasionally  useful  when  MRI  is  not  readily  available  or  cannot  be  performed  for

technical reasons (i.e. implanted cardiac pacemakers,  cochlear implant or even iEEG

electrodes).
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Positron emission tomography

Positron emission tomography (PET) is an important functional imaging method

for evaluation of SOZ localization.  In common practice,  interictal  PET is done with

a glucose analogue substance, namely fluorine-18fluorodeoxyglucose, used as a tracer.

The  tracer  is  an  indirect  marker  of  neuronal  activity.  In  interictal  PET  images

epileptogenic  area  appears  as  hypometabolic  area.  PET can be evaluated  by simple

visual  analysis,  however,  the  results  are  known  to  be  associated  with  significant

variability between investigators. To overcome this problem, two approaches have been

developed.  First,  comparison  of  glucose  metabolic  rate  in  the  region  of  interest  to

control  group  dataset.  Second,  voxel-based  approach  using  statistical  parametric

mapping and asymmetry index [14, 15].

Single photon emission computed tomography and SISCOM

 Single photon emission computed tomography (SPECT) with cerebral  blood

flow  agents  is  useful  for  supporting  the  localization  of  focal  epilepsy  when  it  is

performed in a carefully monitored ictal or early post-ictal examination compared with

inter-ictal scan. This may be used as part of pre-surgical evaluation and help guide the

placement of iEEG electrodes if other data, including structural imaging, are equivocal

or not concordant. In apparently generalized epilepsies, ictal SPECT may be helpful to

identify a focal component. In interictal periods the SOZ area show hypoperfusion of

the tissue, contrary to hyperperfusion at the beginning of seizures and during seizures.

A common technique, which utilizes this effect to improve the anatomical determination

of the abnormalities in cerebral blood flow, is the co-registration of interictal with either

ictal or post-ictal SPECT images with a patient's MRI which forms Substraction Ictal

SPECT Coregistred to MRI image commonly referred to as SISCOM. An example of

such image is in  Figure 1. Even though is method showed good correspondence with

SOZ, there are some factors limiting this method [16].
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Functional MRI and  Magnetoencephalography

Functional MRI (fMRI) is not currently indicated for clinical reasons. However,

this situation is changing and in many epilepsy centers fMRI of the blood oxygen level-

dependent contrast is being used to localize the functional areas of the brain.

Magnetoencephalography  (MEG)  is  a  promising  non-invasive  and  non-

hazardous technology of functional brain mapping that is still in development. It is used

to identify both normal and abnormal brain function. MEG records externally, from the

scalp, the weak magnetic forces generated by neuronal electrical activity of the brain.

It provides localized cortical  areas with a great  degree of accuracy,  generating maps

with high spatial and temporal resolution.

Figure 1: Ictal difference image of epileptic brain.

The  image  shows  ictal  difference  image  with  areas  highlighting  neuronal

desynchronization  (blue)  and  neuronal  synchronization  (orange).  The  cross  is

placed in the area of seizure onset zone.
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2 INTRACRANIAL EEG SIGNAL

Intracranial EEG signal differs form the classic scalp EEG in numerous ways.

First of all, the size and shape of iEEG electrodes is adjusted to their application in the

brain. Compared to scalp EEG, where summarized local field potentials are recorded,

the smaller sized intracranial electrodes allow for recording brain activity directly at the

source, which can be at the surface of the brain (subdural electrodes) or in the deeper

structures of the brain (depth electrodes). Due to its highly invasive nature, the number

and position of electrodes is determined solely by clinical needs which leads to only

limited  spatial  sampling  of  the  iEEG  signal  and  could  also  lead  to  an  imprecise

placement of electrodes, thus missing the epileptogenic focus. Since the iEEG signal is

recorded directly from the tissue, low amplitude high frequency signals can be acquired

because they are not damped by the skull. That requires appropriate recording device

with sufficient sampling frequency, quantization step and dynamic range. Intracranial

EEG signals do not suffer from myopotential noise as much as scalp EEG, nonetheless,

given their low amplitude they are more prone to environmental noise such as produced

by leads in walls and surrounding devices. In this regard, the methodology, reference

and the environment where the recording takes place, are essential for signal quality and

subsequent processing.

2.1 Source of iEEG signal

Compared to conventional scalp EEG intracranial EEG signal is recorded from

much smaller area and at the source of the signal. The signal recorded by clinical macro

contacts consists mostly of local field potentials (LFPs) but can be influenced by far

field potentials (FFPs) as well. 

Despite extensive research the origin of local field potentials  is still  not well

understood. However,  recent findings suggest that the LFPs are mostly produced by

synaptic currents and their return currents. Another factor contributing less to the final

signal are spikes generated by neurons[17]. LFPs appear  to be generated mainly by
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synaptic inputs and associated return currents. The position of the electrode with regard

to neuronal cells in crucial in this regard. Signal recorded near the soma of a neuron can

have different shape, amplitude and polarity than the signal recorded from the dendrite

tree of the neuron [17]. Although, LFPs signals are dominated by the synaptic activity,

other phenomena such as spikes produced by sodium channels. The locality of the LFP,

that is, the network activity generating the signal is still not fully understood. Studies

carried out to shed light on this problem yielded conflicting results [17].

When  analyzing  both  EEG and  iEEG,  brain  tissue  characteristics  should  be

taken  into  account.  A well  documented  volume  conduction  problem  is  caused  by

anisotropic characteristics of brain tissue, which has different conductivity in different

areas of the brain and is also influenced by age, disease state and environmental factors.

When localizing the source of the signal, volume conduction can significantly distort

the results.  More so in iEEG, where implantation of electrodes creates  an abnormal

environment for the brain [18]. Apart from the holes in the skull necessary for electrode

implantation,  the  areas  around electrodes  show traces  of  microhemorrhages  and the

body reacts to an alien object in the body by scaring and inflammation  [19]. This can

further enhance the effect of volume conduction by creating a layer of liquid along the

electrodes.

2.2 Intracranial electrode types

An important aspect with an impact on the acquired data is the electrode shape,

size  and  implant  location.  Intracranial  electrodes  can  be  divided  into  two  basic

categories based on their implantation site:

• Subdural electrodes – have the shape of small disks that are placed under the

dura mater onto the neocortex in form of arrays as grids or strips (Figure 2). The

main  drawback  of  this  type  of  electrodes  results  from  the  method  of

implantation which requires craniotomy. The contact between the electrode and

the tissue is  often drying out which results  in  worse signal  transmission and

introduces noise into the recording even though the implantation area is kept

moist by the medical staff. While craniotomy might seem as a highly invasive

approach the implantation has lower risks than the use of depth electrodes.
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• Depth electrodes – are commonly placed on a flexible plastic wire (Figure 3).

They are inserted directly into the brain tissue, therefore avoiding the drying out

drawback of the subdural electrodes. This results in better signal to noise ratio.

Depth electrodes  can be inserted into deep structures  to record from a close

proximity  of  the  source.  This  leads  to  risk  of  blood  vessel  rupture  during

implantation, which is around 2 % [20].

Electrode  types  can  be  further  divided  into  clinical  macro-electrodes  and

research micro-electrodes. While the first type is used in clinic regularly the latter serves

mainly  for  research  purposes.  The  differences  in  signal  stem  from  the  size  of  the

electrode as well as from the size of the tissue they record from. The macro electrodes

have size of about  10 mm2 and record from ~1000 neurons while  micro  electrodes

record 100 – 10 neurons with the diameter of approximately 40 μm. Micro electrodes on

subdural grids are in form of miniscule discs in spaces between clinical macro contacts.

Micro contacts on depth electrodes can have two forms – shafts, which are embedded

between the clinical macro electrodes in a circle around the needle, or bundles, which

have a form of microwires at the tip of the depth electrode. Because of their small size

micro  electrodes  can  record  single  unit  activity.  The  physical  size  of  the  micro

electrodes  is  ~10  times  smaller  than  of  the  macro  electrodes  which  makes  their

implantation challenging as well as makes them prone to noise due to weak signals they

record.

Even  though  intracranial  electrodes  present  a  unique  opportunity  to  record

electrical brain activity directly from the source, the spatial resolution of the acquired

signal is unsatisfactory due to electrode placement, which is directed solely by clinical

decision. The optimal electrode cross-section and spacing for mapping epileptic brain is

still not known.
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Figure 2: Types of subdural, non-penetrating electrodes.

(A)  Implant  of  hybrid  subdural  electrodes.  (B)  Hybrid  subdural  electrode  grid

composed of 24 clinical macroelectrodes. (C) Schematics of electrodes shown in (B)

with macroelectrodes marked in blue and intercalated microelectrode arrays in red. (D)

Flexible thin film electrodes with integrated electronics and 10μm electrode spacing.[7]

Figure 3: Penetrating depth electrodes.

(A)  Schematic  of  penetrating  depth  electrode  with  8  macroelectrodes  in  blue  and

microelectrodes  in  red  on  the  tip  and  embedded  into  the  shaft  between  the

macroelectrodes. (B) Enlarged depth-electrode tip showing 40 μm diametr wires exiting

the tip. (C) MRI showing implanted depth electrode into temporal lobe structures. (D)

Utah array composed of 100 microelectrodes that penetrate the cortex. (E) Thubtack

microelectrode array that penetrates the cortex. The microelectrodes are in an array

along the shaft.[7]
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2.3 Intracranial EEG recording devices

Even though a standard EEG recording device can be used to  acquire  iEEG

signals, it has a significant impact on the recorded data due to the high frequency and

low amplitude nature of the data. The basic characteristics such as sampling frequency,

bit depth and dynamical bandwidth play a crucial role in iEEG signal acquisition. Low

sampling frequency restricts  the frequency bandwidth for analysis,  high bit  depth is

necessary  to  correctly  record  low  amplitude  events  and  dynamical  bandwidth  is

necessary to avoid signal saturation.

Historically,  sampling  frequencies  of  iEEG  acquisition  systems  were  set  to

record well known Berger bands – delta (0.1 – 3 Hz), theta (4 – 7 Hz), alpha (8 – 15 Hz)

and  beta  (16  –  31  Hz)  rhythms.  Recent  studies,  however,  revealed  that  gamma

frequencies  (25  –  80  Hz)  as  well  as  high-frequency  oscillations  are  involved  in

cognitive function and pathology [10]. This has led to increase of sampling frequencies

in clinical acquisition systems up to 32 kHz to allow for analysis of high frequency

components of iEEG signals. 

Due to 1/f nature of EEG the bit depth of recording devices had to rise according

to sampling frequency. High-frequency oscillations can exhibit  amplitudes as low as

100 μV. In cutting edge devices the bit depth is 24 bits.

The  quality  of  individual  hardware  components  is  essential  since  they  can

produce artifacts into the acquired data and therefore complicate the subsequent signal

analysis. In case of HFOs this often leads to many false positive detections and could

potentially cause an incorrect localization of pathological tissue.

One  of  the  most  common machine  artifact  results  from lost  bits  during  the

recording. That creates a delta function in the data. Since frequency decomposition of

a delta function contains all frequencies the artifact poses a problem when filtering the

data because it creates higher amplitude of the filtered signal at the artifact position.
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2.4 Methods of intracranial data acquisition

However,  recorded signals are not subject only to technical differences.  Data

acquisition methods as well as the environment in which the signal is acquired play

an important role. Some epilepsy centers record iEEG signals in clinical wards without

giving  any  further  instructions  to  the  patient.  Such  signals  are  often  degraded  by

ambient  noise  produced  by  other  medical  devices  or  by  patient's  movement.  By

instructing the patient to lay still and using shielded rooms can immensely improve the

quality of the data which is the key to valid analysis.

Apart from the ambient in which the signals are acquired the brain state plays an

important  role.  Implanted patients  often undergo some kind of brain stimulation for

basic  research  such  as  visual  or  motor  tasks.  Brain  stimulation  can  influence  the

occurrence of biological  markers.  Another physiological  state  that is  known to have

an impact on electrophysiological markers is sleep. The depth of sleep changes power of

frequencies  in  recorded signals  and is  closely  linked to  electrophysiological  signals,

especially HFOs [21].

While brain states define the temporal changes in the data, anatomical location

of implanted electrodes defines the spatial differences and influences the data due to

neuronal  wiring  of  the  brain  and  distinctive  histological  tissue.  Archicortex  and

especially hippocampus are known to produce more HFOs and are more epileptogenic

than neocortex [22].

2.5 Reference electrodes and montages

Reference  for  iEEG signal  acquisition  as  well  as  used  electrode  can  have  a

significant  impact  on  the  recorded  data.  Chosen  recording  reference  and  montage

depends on the historical needs of the institution, available equipment and requirements

on the recorded signal.

So called unipolar or referential montage can be applied in a few different ways

by choosing the reference electrode. This type of montage is typically used for clinical

recording. There is no universal reference and each approach has its advantages and
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disadvantages. Virtual reference is used as the average signal of all recording channels.

While this reference makes the individual lead signals more resistant to low-amplitude

noise it can cause propagation of high-amplitude noise or pathological signal, such as

seizure, from one lead to the rest of the leads making it somewhat more difficult to

locate  SOZ.  Another  approach,  which  is  more  traditional,  is  to  use  one  reference

electrode  on the  scalp  or  ear  lobule.  This  reference  method is  prone to  introducing

outside noise, such as movement, from the reference lead.

A not so common approach is to choose a reference electrode or an average from

number of contacts located in the area of the brain that is not very active, typically the

white matter. Myopotentials and ambient noise are reduced by this configuration but

some basal activity from the white matter is introduced into the recording. Moreover,

this  approach  requires  localization  of  contacts  in  MRI  images  by  clinicians.  Such

configuration produces true unipolar intracranial EEG data that are suitable for research.

Biopolar montage utilizes two electrode contacts in the brain, which are usually

spatially  close  to  each  other,  by  comparing  their  electrical  potential.  This  approach

creates a signal that is a product of local field potentials between those two electrodes.

This montage is often used for studying a specific area of the brain such as motor cortex

or limbic system during cognitive tasks.
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3 HIGH-FREQUENCY OSCILLATIONS

High-frequency oscillations (HFOs) are electrophysiological phenomena visible

in EEG signals with frequencies above the usual clinical range of analysis, so called

Berger  bands  [10].  Since  their  initial  description  in  1992  [23] HFOs  have  been

intensively  studied  as  biomarkers  of  epileptogenic  tissue  and  as  signs  of  cognitive

functions. 

3.1 High-frequency oscillation characteristics

HFOs  were  first  described  in  hippocampus  of  freely  behaving  rats  as

a physiologic phenomenon. They were named ripples with their frequency band ranging

from 80-200 Hz  [23].  Later,  the same group of scientists  described another  type of

HFOs in epileptic rats which were called fast ripples due to their high frequency bands

200-600 Hz. This early investigations led to the first human wide bandwidth recordings.

Similar  to  the  model  of  epileptic  rats  both  ripple  and  fast  ripple  oscillations  were

identified  in  human  epileptogenic  hippocampus.  A typical  HFO appearing  in  iEEG

signal is depicted in Figure 4 [10].

It should be noted that HFO definition as well as the definition of ripples and

fast ripples, which is crucial for creating a gold standard dataset and development of

automated algorithms, varies in literature.  The duration of HFOs is often defined as

a short transient event without any further specification of duration or only as duration

range in a broad frequency band. However, some studies do mention HFO duration in

number of cycles, 5 to 15 oscillations  [23]. The frequency bands in which HFOs are

defined  also  differ  in  publications,  80  –  500 Hz  [23,  24],  100 –  500 Hz  [25,  26],

100 – 600 Hz [27], 100 – 800 Hz [28]. Due to this vague definition, it is hard to make

valid comparisons across studies and HFO detection algorithms since each of them was

developed for detection of slightly different graphoelements.
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Some recent studies also suggest that HFOs are occurring at frequencies above

the FR range ( > 1000 Hz), labeled ultra- or very-high frequency oscillations, but are

deemed to be a different pathophysiological phenomenon [29].

3.2 Current state of HFO research in cognition

Ranging from 80 to 600 of cycles per second, HFOs are likely to bridge the local

action potential firing of individual neurons with the large-scale interactions of neuronal

networks.  HFOs  are,  therefore,  increasingly  recognized  for  their  potential  to

complement the animal studies of single-unit mechanisms underlying cognition and the

human cognitive experiments using non-invasive imaging techniques [30, 31].

Studies of HFOs in cognition have largely focused on frequencies of the gamma

range  up  to  120Hz  which  overlaps  with  the  reported  ripple  frequencies.  They  are

induced in the sensory as well as higher order processing areas, driven by bottom-up

and top-down mechanisms, respectively, and have been associated with formation of

perceptual  and  memory  representations  in  humans[32].  Nevertheless,  neuronal

Figure 4: Representative examples of HFOs.

Each plot shows two views of HFOs in 300ms window: (A) unfiltered iEEG with an

HFO located in the center ~150 ms, (B) spectrogram (2.6 ms window). (1 & 3) Typical

HFOs in fast ripple range. (2) Typical HFO in ripple range. Amp: Amplitude, Freq:

Frequency [10].
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interactions  are  known  to  extend  beyond  the  classic  gamma  oscillations,  e.g.

synchronous firing of neuronal populations was shown to correlate most strongly with

the 80-200Hz frequencies [33]. 

Much less is known about the roles of HFOs in the ripple, fast ripple and novel

very high-frequency oscillations bands (125-1000Hz) during cognition. The underlying

mechanism  of  ripple  is  believed  to  be   discharges  of  synchronized  firing  between

specific neuronal ensembles, mainly occurring during states of rest and sleep  [23]. In

sleep,  ripples  were  shown  to  comprise  sequential  firing  of  specific  hippocampal

assemblies  that  were  active  during  preceding  behavior  in  rats  [34].  This  'replay'  of

activity,  observed  also  in  reverse  order  and  during  quiet  wakefulness,  was  initially

proposed to underlie memory consolidation but recent evidence suggests an active role

in decision-making [35]. Interestingly, ripples were shown to be generated by the same

neuronal networks and mechanisms as the gamma oscillations [36]. Whether the human

ripple-frequency HFOs support the same function as the hippocampal sharp-wave ripple

complexes  in  rodents  remains  to  be  established,  as  well  as  the  role  of  cortical

oscillations in the ripple frequencies. At least one study suggests involvement of rhinal

cortical ripples in human memory consolidation [37].

Network oscillations  recorded in  the highest  fast  ripple  band of HFOs (250-

1000Hz) were so far predominantly associated with pathological  network activity  in

epilepsy  [10,  38,  39].  Increasing  evidence,  however,  suggests  existence  of

physiologically-induced HFOs beyond the gamma and ripple bands reported in human

behavioral tasks [40]. The role of these fast ripple HFOs in brain functioning remains to

be explored, as is their relationship to the well described gamma and ripple oscillations. 

3.3 Current state of HFO research in epilepsy

HFOs  have  been  investigated  in  number  of  human  studies,  all  of  which

confirmed  the  link  between  higher  HFO  rates  and  pathologic  brain

[38][25][41][26][42][24][43][44][45][46].  Unlike  spikes,  which  are  deemed  to  be

another less specific biomarker, HFOs have been proven to better localize pathological

tissue  [24].  Studies investigating the relation of post surgical  persistent seizures and

areas with present pathological HFOs showed a better surgical outcome when the area
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of the brain with HFOs was resected [47][48]. All of these studies, however, evaluated

HFOs only in limited number of patients (~10) and/or reviewed only short segments of

iEEG which lowers their statistical power. Most of the studies are also based on visual

identification of HFOs which is a time consuming process, can introduce human bias

into the results and is not feasible for large data sets. Lastly, results of HFO studies are

often reported  relative  change of  HFO rate  in  SOZ rather  than absolute  HFO rates

which are not suitable for prospective studies, thus cannot be translated into clinical

environment.

It  has  been  proved  that  HFOs  are  also  a  physiologic  phenomena  naturally

occurring in normal brain and are believed to be important for consolidation of memory

[23][38]. The ability  to distinguish between pathologic and physiologic HFOs might

further improve localization of pathologic tissue. Nonetheless, it still remains unclear

how to distinguish between these types of HFOs  [39] even though some studies laid

solid foundations for achieving this goal.

Another factor influencing HFO rate are different anatomical structures of the

temporal lobe.  The hippocampal structures are known to be more epileptogenic than

others  and  they  have  been  also  proved  to  produce  physiological  HFOs  [23].  Even

though these facts are well known, most of the studies evaluate HFO rates in only one

structure or disregard brain structures altogether. 

Some attention has been given to the relation of HFOs and the behavioral state

of  the  patient.  Changes  of  HFO  rates  have  been  reported  both  during  cognitive

stimulation and during slow wave sleep  [49][50][44]. The cognitive stimulation tasks,

inducing  cognitive  processing  in  the  brain,  such  as  the  odd  ball  task  or  picture

presentation  have  been  proved  to  reduce  pathological  HFOs  and  epileptic  activity

[40] whereas the slow wave sleep rises the HFO rate in the epileptic lesion [44].
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4 DETECTION OF HIGH-FREQUENCY 

OSCILLATIONS

4.1 Why is objective HFO detector needed?

Even though HFOs have been studied for over a decade a clear definition of

HFOs is still to be determined. For this reason, expertly reviewed HFOs are considered

to  be  a  gold  standard.  Nonetheless,  this  approach  remains  a  flaw  in  the  current

methodology.  Not  only  is  the detection  of  HFOs based on subjective  visual  review

inevitably biased but the inter-reviewer concordance can be poor [51]. Moreover, visual

detection  is  a  time  consuming process  which  does  not  allow for  implementing  this

approach for big data sets or online detection in OR. This methodological weakness

could  be  overcome  by  implementing  a  reliable  automated  HFO detection  and  thus

achieving consistent and objective results.

Apart  from  removing  human  factor  from  the  HFO  detection  the  ability  to

distinguish between particular  HFO types is needed to achieve better  localization of

pathological tissue and to broaden the knowledge about the relationship between HFOs

and  cognition,  behavioral  states  and  anatomical  structures.  To  date  the  main  HFO

separation was based on their frequency and amplitude. So far, as mentioned in section

2, separation into two groups based on frequency has been accepted.  One group of

HFOs was named ripples  (80-200Hz, amp) and the second fast  ripples  (200-600Hz,

amp)[23]. While this distinction is sufficient for some areas of the brain the underlying

mechanisms of pathological and physiological HFOs still remain unclear and may vary

in different brain structures and behavioral states. Another possible distinctions may be

based on different features as in [52, 53].
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4.2 HFO features

Generally the detection of a graphical element in a signal requires definition of

its features. The features can differ significantly based on anatomy or whether the tissue

is pathologic or not [52].

The three most obvious and most common features used in EEG processing are

amplitude, duration and frequency. HFOs are a short-duration, high frequency events

standing out from the background so all these features can be utilized for their detection.

Amplitude  is  often  calculated  from  filtered  signal,  that  has  been  further

processed by for example root mean square sliding window or Hilbert transform and

usually  normalized.  Such  amplitude  calculation  is  indirect  and  relative  to  the

surrounding signal. An approach to calculate the amplitude of the event is during the

post processing stage once the HFO is detected. The detection can be linked back to the

raw signal  and absolute  amplitude  in  μV can be calculated.  This  value  reflects  the

underlying  biophysical  processes  more  precisely  than  relative  amplitude  but  can  be

influenced by noise, reference electrode and etc.

HFOs are wave like graphical elements. Thus, their frequency is linked to their

duration through number of cycles. The definition of how many cycles an HFO should

have is unclear since it varies in literature, especially the lower boundary.

Apart  from the features resulting from the basic  characteristics  of the signal,

additional, more complex, features can be estimated. These features are numerous but in

general  they often utilize  either  amplitude  ratios,  comparisons  of parts  of frequency

spectra or signal entropy (see section 4.3).  

4.3 HFO detectors developed to date

As a result of unclear HFO definition, the detectors designed by different groups

are  optimized  using  different  filter  and  threshold  settings  according  to  their  own

definition  of  HFO. However,  every detector  designed to  date  utilizes  a method that

preprocesses  the  signal  by  applying  frequency  filters,  calculates  the  energy  of  the

filtered signal and pick candidate events as those exceeding the set statistical threshold.
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Such assumption is correct for the most data sets. Nevertheless, it might fail in very

active channels such as those located in seizure onset zone (SOZ) of epileptic tissue,

where  normalization  of  the  signal  can  lead  to  lower  sensitivity  due  to  very  high

incidence of HFOs, therefore only HFOs with high energy get detected. Contrarily, in

low active channels, such as those in white matter, the signal normalization can have the

exactly opposite effect and result in lower specificity by detecting false positive events

because  only  slight  changes  in  signal  power  can  exceed  chosen threshold.  Possible

solution is to detect baseline segments (“segments with no oscillatory activity of any

kind”) and determine the statistical thresholds based on these segments [54].

The  sensitivity  and  specificity  of  HFO  detectors  is  often  defined  on  gold

standard detections produced by visual review but the approaches of calculation vary.

Some authors detect HFOs with very low threshold to achieve 100 % sensitivity. These

detections  are  then accepted  or rejected  by reviewers.  This  approach is  problematic

because it creates a bias in favor of the detector. Another approach is to manually mark

HFOs without any previous detection. In this case the reviewers are blinded to HFOs

detected by the detector but the definition of true negative instances becomes an issue. A

possible solution is to mark inter-event intervals as negatives but this usually leads to

very low specificity of the detector. Due to these differences, sensitivity and specificity

from different works cannot be directly compared.

The characteristics of detectors are chronologically listed below according to the

groups that developed them. A comprehensive summary is in Tab. 3.1.

Staba et al. [2002]

The detector designed by Staba et al. adopted the moving average of root mean

square of the preprocessed signal as the energy metric  [41]. The preprocessing stage

involves band-pass filtration of iEEG signal (100-500 Hz). The metric threshold was set

to 5 standard deviations above the mean of the whole signal. Events shorter than 6ms

were disregarded and events  less  than 10ms apart  were regarded as  one HFO. The

reported sensitivity of this algorithm was 84 %. The algorithm was originally developed

for micro-electrode recordings in rats and humans.
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Nelson et al. [2006]

Nelson et al.  [55] suggested a detector using the energy metric called Teager

energy  which  was  initially  designed  for  applications  in  acoustics  [56].  In  their

experiment  the  signal  was  filtered  by  a  Butterworth  filter,  however,  the  cut  off

frequencies  were  not  reported  even  though  the  frequency  setting  is  crucial.  No

sensitivity or specificity results were provided. The Teager energy metric was suggested

for rat micro-wire recordings.

Gardner/Worrell et al. [2007]

Gardner et al. [51] developed a detector based on line length of the iEEG signal

originally  designed  for  detection  of  high-gamma  events  and  subsequently  used  for

HFOs  [42]. In the preprocessing stage the signal was filtered by a Butterworth band

pass filter (30 – 100 Hz [51], 80 – 1 kHz [42]). The statistical threshold was set to 95

percentile of the given statistical window (3 minutes). The sensitivity of this detector

was reported to be 89.5  % [51]. The recordings for which this detector was designed

were micro as well as macro-electrode human iEEG [51].

Crepon et al. [2010]

Amplitude envelope of filtered iEEG signal calculated by Hilbert transform was

used in semi-automated detector designed by Crepon et al.  [46]. The band pass filter

used in preprocessing was set to 180 – 400 Hz. Putative HFOs were detected as 5 SDs

of iEEG signal amplitude.  The detector was developed for HFO detection in human

macro-electrode depth and strip recordings.

Zelmann et al. [2010]

In contrast with the previously described algorithms Zelmann et al. [54] created

an algorithm that uses previously detected background activity to calculate the signal

statistics  rather  than considering signal  surrounding HFOs as background.  The filter

settings were confined to the band pass 80-450 Hz. The threshold for putative HFO
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detection is calculated as the 95 percentile of the cumulative distribution function of the

previously detected background segments. The reported detector sensitivity was 96.8 +/-

8.91 % and specificity  99.1 +/-  8.91 %. The target  recordings  were  human macro-

electrodes.

Dümpelmann et al. [2012]

A detector based on some of the metrics used in previous works. The detector

aims on detection in ripple band only,  meaning that  the frequency band in which it

operates  is  80  –  250  Hz.  It  utilizes  signal  energy,  line-length  and  instantaneous

frequency. These metrics are processed by a radial basis function neural network. The

reported sensitivity was 49.1 % and specificity 36.3 % [57].

Lopez-Cuevas et al. [2013]

An online detector proposed by Lopez-Cuevas et al.  [58] uses metric of signal

complexity (Approximate entropy [59][60]) rather than signal energy. After calculation

of approximate entropy of raw signal an artificial neural network was trained to detect

HFOs with 4 neurons in the initial layer using last 4 values of approximate entropy as

their inputs. This algorithm was designed for micro-electrode rat recordings.

Sahbi-Chaibi et al. [2013]

The algorithm designed by Sahbi-Chaibi et al.  [61] uses part of Hilbert-Hunag

transform  and  its  integral  part  empirical  mode  decomposition  (EMD)  for  HFO

detection.  Firstly  the  intrinsic  mode  functions  (IMFs)  are  acquired  using  EMD.

Instantaneous frequency and amplitude is calculated in each IMF with Hilbert spectral

analysis. Because instantaneous frequencies are sensitive to noise, smoothing is applied

to  circumvent  this  drawback.  Subsequently  instantaneous  amplitude  coefficients  are

accumulated only in function of IMFs traces presented in HFOs band 80-500 Hz. The

obtained 1-D signal is smoothed by root mean square operation and thresholded for

detection of HFOs. 

25



Birot et al. [2013]

A method for detection of FR in iEEG. The authors use frequency band of 256 –

512  Hz,  which  was  chosen  for  methodological  reasons.  First,  the  signal  energy  is

obtained by calculating line-length. After thresholding, the putative HFOs are further

processed by either Fourier transform or wavelet transform, where the ratio between FR

frequency  band  and  lower  frequency  band  is  calculated.  This  metric  is  further

thresholded  and  the  final  HFO  detection  is  obtained.  The  reported  sensitivity  and

specificity were not reported, however, the best AUC achieved was reported to be 0.983

and 0.986 for the Fourier transform method and wavelet transform method respectively.

[62].

Burnos et al. [2014]

An HFO detector  designed to  detect  in  both ripple and fast-ripple frequency

range. During first stage of the algorithm the signal is filtered and amplitude envelopes

are calculated using Hilbert transform. Such signal is thresholded with low threshold

setting to detect putative HFOs with high sensitivity.  The putative HFOs are further

processed by Stockwell transform. The power spectral density was used to distinguish

between HFO detections and putative detections produced by Gibb's phenomenon, such

as  artifacts  and  spikes  [63].  The  sensitivity  and  specificity  was  evaluated  for  each

recording separately, and average values were not calculated.
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As it is apparent from  Table 1, the detectors that have been designed vary in

frequency  ranges,  the  target  recordings  and  used  technique.  Even  when  evaluating

sensitivity and specificity the authors of the listed detectors vary in definition of true

positive and true negative detections which makes the detectors impossible to compare.

A comparison has been attempted by Zelmann et al.  [64] and it was found that each

detector has to be optimized on certain type of data and re-validated in order to function

properly making wide-spread application of any of these detectors impossible.
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Table 1: Overview of HFO detectors.

Used techniques abbreviations: RMS – root mean square, TE – Teager energy, LL – 

line-length, AE – amplitude envelope, computed by Hilbert transform, MNI – baselane 

based detection, IF – instantaneous frequency, Aent – approximate entropy, HHT – 

Hilbert-Hunag transform, FFT – fast fourier transform, WT – wavelet transform, PSD –

power spectral density.

Study Freq range [Hz] Used technique Sensitivity Specificity Target recordings
Staba et al. 100-500 RMS 84.0% - Micro/human
Nelson et al. - TE - - Micro/rat
Gardner/Worrell et al. 30-100/80-1000 LL 89.5% - Micro,Macro/human
Crepon et al. 180-400 AE - - Macro/human
Zelmann et al. 80-450 MNI 96.8% 99.1% Macro/human

80-250 RMS + LL + IF 49.1% 36.3% Macro/human
Lopez – Cuevas et al. - Aent - - Micro/rat
Sahbi-Chaibi et al. - HHT 90.7% - Macro/human
Birot et al. 256-512 LL + FFT/WT - - Macro/human
Burnos et al. 80-500 AE + PSD - - Macro/human

Dümpelmann et al.



5 AIMS OF DISSERTATION

The main goal of this work was development and validation of automated HFO

detectors, study of HFOs in patients suffering from intractable epilepsy and localization

of epileptogenic zones within pathologic brain. Apart from the main focus on automated

detection algorithms, HFO occurrence analyzes were carried out and result presentation

tools were created within this work. The main analyzes and methods that may in the

future contribute to basic research of the brain as well as improved diagnostics are listed

below:

• Fast and robust algorithms for detection of high-frequency oscillations and their

validation with regard to gold standard data sets as well as SOZ and resected

area in patients with good surgical outcome.

• Modular software tools to validate any HFO detection algorithm.

• Characterization  of  HFOs with  regard  to  the  behavioral  state  of  the  patient,

anatomical structure, type of epilepsy, etc.

• Software  tools  to  detect  HFOs  close  to  real-time  detection  with  a  lag

approximately 10s make it possible to view HFO occurrence inside the operation

room  to  evaluate  the  feasibility  of  such  approach  to  map  and  resect  the

epileptogenic focus in one procedure.

• Tools to present HFO occurrence in a comprehensive form for physicians.

The  ultimate  gold  of  this  work  is  to  provide  physicians  with  additional

information  about  HFO  occurrence,  and  thus,  better  localize  pathological  tissue  in

patients with pharmacoresistant focal epilepsies and improve the outcome of the brain

surgery, therefore life and well-being of the patients.
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6 DATA CHARACTERISTICS

This section describes the data used in this thesis. Because the data come from

two institutions – St. Anne's University Hospital in Brno (FNUSA) and Mayo Clinic –

Mayo Systems Electrophysiology Lab (MSEL), each sub-section is accordingly divided

and describes the different characteristics.

6.1 Subjects

The data comprised of recordings from patients with medically intractable focal

epilepsies  who  underwent  electrode  implantation  to  localize  seizure  foci  prior  to

surgical resection. All subjects were on anti-epileptic drug medication (AED) which was

reduced for the purposes of video-EEG monitoring. Written consent was obtained from

each patient prior to the study.

6.2 Recording devices and electrodes

Recording devices both in FNUSA and at Mayo Clinic were certified medical

devices for video-EEG monitoring. 

In FNUSA, ALCIS electrodes were used for intracranial invasive exploration.

Individual  electrode  sizes  and  types  were  determined  by  clinical  requirements.

Acquisition  device  (Brainscope  -  BioSDA09  /  192ch)  is  capable  of  simultaneous

recording of up to 192 channels. It utilizes 24 bit A/D converter per channel and all

channels are sampled  at 25 kHz. The dynamic input range of +/- 20mV with 10 nV

resolution. 

In  MSEL the  used electrodes  were Ad-Tech  subdural  grids,  strips  and depth

electrodes.  Subdural  electrodes  had  varying  number  of  contacts  depending  on  the

clinical needs. A scalable (32–320 channels) acquisition platform capable of continuous

long-term  recording  was  used  (Neuralynx  Inc.).  The  Digital-Lynx  system  uses  an

individual,  high resolution,  24 bit  A/D converter  per channel to directly  digitize the
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electrode signal using a single, DC-coupled, low noise differential amplifier and anti-

aliasing filter (low pass 9kHz). All channels are simultaneously sampled at 32kHz with

a DC to 8kHz signal band- width. This high resolution design provides a dynamic input

range of ±132mV with 1V resolution (18th bit).

6.3 Data collection and manipulation

While the patients in both centers had similar diagnoses and were admitted into

hospital to undergo iEEG monitoring the data collection differs based on both historical

needs and practices as well as technical possibilities of both institutions.

In FNUSA the data used in this work consisted of two sets. First, the resting

state recording was acquired when patient was lying still without any auditory or visual

stimulation. Each recording was approximately 30 minutes long. Second, the oddball

paradigm, which includes visual stimulation with letters and requires patient's response.

In MSEL the recorded data were acquired during the patients' stay in intensive

care unit (ICU). The length of the recordings differs as it was dependent on the length of

patient's stay at the ICU and on patient's current clinical state. Two tasks were done by

some of the patients. A motor task  which consisted from on screen instructions and

patient's  response  by  finger  movements.  And  picture  presentation  task  involving

presentation of emotionally affective charge.

After  acquisition,  the iEEG signals were filtered and downsampled to 5 kHz

sampling frequency for processing and storage reasons. Since the analyzed frequency

bands reach maximum of 1 kHz the sampling frequency satisfied Nyquist's theorem by

a large margin.

Detections and recording meta data, such as signal quality, anatomical location

of  individual  contacts  and channels  from which  seizures  propagated  were  stored in

MySQL database for fast and modular processing.
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7 DEVELOPED AND IMPROVED 

ALGORITHMS

Three detectors of HFOs were used within the frame of this work. Each of the

detectors was developed for different definitions of HFO and distinct purposes. This

section is divided into three chapters each describing the algorithms, their  purposes,

advantages and disadvantages. All HFO detection algorithms can generally be divided

into  three  stages:  pre-processing,  detection,  post-processing.  All  of  these  stages  are

described  in  individual  sub-sections.  To  demonstrate  the  core  principals  of  each

algorithm, all figures utilize the same example data with one HFO on a sharp transient –

interictal epileptiform spike (Figure 5). 

Figure 5: Sample signal.

Top – raw iEEG signal (2 seconds) with a spike and HFO on its peak. Bottom – zoom of

the signal from the top pane. HFO marked in red.
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7.1 Ideal HFO detector

There are several characteristics which an ideal HFO detector should have. This

definition stems from requirements of clinical practice,  processing time and detector

portability in different centers.

First, the detection itself should achieve the sensitivity and specificity close to

100 %. While this condition seems unrealistic the values close to 100 % can be achieved

depending on the method of metric calculation. This problematic is further described in

section 8.1.

Second, the algorithm should require as little of fine tuning as possible.  This

means,  there  should  be  a  limited  number  of  thresholds  that  are  needed  to  be  set.

Algorithms with many thresholds usually need to be tuned and adjusted do particular

data sets and cannot be uniformly applied for different signal types and recordings with

varying  characteristics,  such  as  sampling  frequency,  signal-to-noise  ratio,  dynamic

range, etc.

Third, the processing time should be as short as possible while needing as little

of processing power and memory as possible. There is, of course, a connection between

the  processing  power  of  the  unit  and the  processing  time,  nonetheless,  the  detector

should be usable on standard desktop PCs in order to be usable across institutions in the

world.

Last but not least, an ideal algorithm should be multiplatform and available for

no  additional  costs,  to  be  easily  usable  by  any  epileptic  center.  Meaning  that  the

program should be written in one of the cross-platform languages (C, C++, python,

Java,  etc.)  and  it  should  not  require  any  third-party  commercial  software,  such  as

Matlab.

7.2 Line-length detector with feature cascade

This algorithm was developed to analyze enormous data sets produced by long

term clinical iEEG recordings (TB of data). The main purpose was to retrospectively

evaluate the relationship between the pathological brain and HFO rates recorded with
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iEEG electrodes. The core of this algorithm, i.e. the processing part was developed by

Benjamin H. Brinkmann (MSEL). The main advantage of the line-length metric is that

it reflects increases in both signal amplitude and frequency. However, it is dependent on

sampling frequency and prone to presence of noise in the signal. The algorithm was

already used in number of works [51, 62, 64, 65].

In the pre-processing stage the signals are usually visually checked for excessive

noise levels or even channels that include no useful signal. These channels are excluded

from  the  analysis.  The  rest  of  the  channels  are  filtered  with  a  band-pass  4-pole

butterworth filter to 100-600 Hz frequency band. In the detection stage a 10s statistical

window is created and the filtered signal is converted to line-length signal (Equation 1),

using 50ms (5 oscillations at 100 Hz) sliding window with ¼ overlap. These parameters

can be varied as needed. Mean and standard deviation are calculated and a fraction of

standard deviation above the mean is used as a threshold. The threshold is set so that the

sensitivity of this step is 100 %. The LL metric of a filtered signal is demonstrated in

Figure 6. The possible danger here is that if signal-to-noise ratio is low, the noise can

increase overall line-length metric and the HFO is not detected because it does not stand

out from the background. Conversely, if the threshold is set too low, the signals that are

less active yield more detections than active channels. This happens due to higher line-

length standard deviation in active channels.

Equation 1: Line-length metric.

LL= ∑
k=t−N +2

t

|(xk−xk−1)|
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The post-processing stage was added within this work and it involves calculation

of  HFO features  – duration,  amplitude,  frequency (using  multi-taper  power  spectral

density)  and  event  to  background  ratio  and  correlation  with  low-passed  signal  for

improvement  of  algorithm  specificity.  The  detection  process  is  represented  by  the

diagram in Supplement 1.

7.2.1 Advantages of the algorithm

The  main  advantage  of  the  line-length  algorithm  is  its  speed  (~5

minutes/channel/2 hours of recording at 5 kHZ sampling rate) which makes it a good

tool for processing large data sets. Moreover, the computed features may be further used

for data mining tasks and to develop more sophisticated classifiers.

Figure 6: Line-length metric.

Filtered signal with corresponding line-length metric (100 ms sliding window with 25

ms overlap). Top – filtered signal (80 – 600 Hz). Bottom – Line-length metric.
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7.2.2 Disadvantages of the algorithm

While this algorithm is fast, the detection characteristics are far from being ideal

(see section 8). This is likely caused by Gibb's phenomenon which is not accounted for.

Nevertheless, it is suitable for analysis of very high frequencies (> 500 Hz) in a high

quality noiseless signals where Gibb's phenomenon is less likely to influence detections.

If these conditions are met, the line-length detector can provide useful information.

7.3 Algorithm based on frequency homogeny

The purpose of this  algorithm was to be able to process large datasets  while

improving specificity compared to less sophisticated methods. Originally designed by

Mathew Stead (MSEL) the algorithm efficiently removes false positive HFO detections

that occur due to Gibb's phenomenon while maintaining reasonable speed of detection.

In  the  first  step  the  signal  is  filtered  with  band  pass  butterworth  filters  in

a sequence  of  overlapping  frequency bands that  cover  the  whole  frequency span of

high-frequency oscillations (80 – 600 Hz). Each filtered band is processed separately in

the subsequent steps in the same fashion.

First, the amplitude envelope of the filtered signal is calculated using Hilbert

transform (Equation 2, Figure 7). 

Equation 2: Hilbert transformation.

F( t)=
1
π ∫

−∞

∞ f (x )

t−x
dx
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Second, a metric evaluating frequency stability is calculated as the “signal-to-

noise” ratio (Equation 3). The numerator of the equation is the root mean squared cosine

representation of the narrow-band signal phase (Equation 4) and the denominator is the

root mean squared difference between the cosine representation of the broad-band and

narrow-band filtered signal phases (Equation 5). The broad-band filtered signal has the

same cut-off frequency as the narrow-band passed signal but the low cut-off frequency

is four times smaller (Figure 8). This second metric servers for elimination of detections

caused by higher amplitude in filtered signal which is produced by Gibb's phenomenon.

Equation 3: Frequency homogeny metric.

SNR j=
√npxx j

√bpxx j

Figure 7: Amplitude envelope metric.

Top –  filtered  signal  (237 – 332 Hz)  in  one  of  the  frequency  bands utilized  in  the

frequency homogeny algorithm. Bottom – amplitude envelope of the filtered signal.
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where

Equation 4: Frequency homogeny numerator.

and

Equation 5: Frequency homogeny denominator.

npxx j=npxx j−1−npi
2
+npk

2

bpxx j=bpxx j−1−(bpi−npi)
2
+(bpk−npk)

2

Figure 8: Frequency homogeny metric.

Top – blue:  narrow band passed signal  (237 – 332 Hz),  green:  broad band passed

signal (59 – 332 Hz). Middle – cosine transformed signals from the top pane. Notice the

synchronization around the HFO area. Bottom – frequency homogeny metric.
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The third step of metric calculation consists of calculating the dot product of the

normalized signal amplitude envelopes and frequency stability metric, thus obtaining

a signal that utilizes both amplitude and frequency features of the analyzed signal. If

one of the metrics is negative the resulting signal is put to 0 (Figure 9).

To account for non-stationary character of EEG signal all metrics are normalized

by Poisson normalization. The detection of putative HFOs is done by thresholding the

normalized  product  metric.  Each putative  HFO enters  the cascade  of  minimum and

maximum value boundary thresholds for amplitude, frequency stability, dot product and

duration. The thresholds are calculated from cumulative distribution functions that were

generated from the features of HFOs visually marked by expert reviewers. The block

schema representing the algorithm can be found in Supplement 2. 

Figure 9: Dot product metric.

Dot  product  metric  is  produced  by  sample  by  sample  multiplication  of  amplitude

envelope and frequency homogeny metrics. Top – blue: normalized amplitude envelope

metric, green: normalized frequency homogeny metric. Bottom  - dot product metric.
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7.3.1 Advantages of the algorithm

The main advantage of this algorithm lies in the effective elimination of Gibb's

phenomenon  that  occurs  during  filtration  of  a  sharp  wave  and  therefore  increased

specificity of detection. The algorithm is fast enough for real time detection.

7.3.2 Disadvantages of the algorithms

While the speed is sufficient for real time processing of iEEG signals, detection

run  on  very  large  datasets  is  slow  compared  to  the  line-lengh  detector.  Another

disadvantage is the rigid threshold setting created based on gold standard detections.

This makes the algorithm less usable on different datasets. To eliminate this effect the

thresholds have to be calculated again on the gold standard detection dataset.

7.4 Hilbert 2D detection algorithm

The algorithm was developed to detect  physiological  HFOs occurring during

cognitive and memory tasks and to broaden the understanding of pathological HFOs

with regard to their features. The aim of this algorithm is to provide detailed study of

individual  pathological  and  physiological  HFO  features,  and  thus  contribute  to  the

distinction between the two groups and their behaviors.

Instead of using a wider frequency band of interest, such as 80 – 600 Hz this

algorithm uses a series of band passed signals using 4-pole butterworth filter. This can

be achieved by band-passing the original signal with 1 Hz step. Z-score for each signal

is calculated. (EQ) Such approach can be visualized in a time-frequnecy matrix (Figure

10).  This matrix  differs from classical  time-frequency analysis  in three aspects.  The

produced matrix does not use sliding windows so each sample corresponds exactly to

the sample of raw signal. Furthermore, each band reflects changes in amplitude rather

than power of the band, result of which is that baseline noise, such as 60 Hz, is not

visible in the matrix. Finally, the 1/f characteristic of EEG is overcome by individual

z-score normalization of each band.
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Equation 6: Standard score (z-score) calculation.

As it is apparent from (Figure 10) the higher frequencies of the histogram carry

redundant information. Therefore, choosing a logarithmically spaced frequency bands is

a logical approach to reduce the information redundancy and increase algorithm speed.

The logarithmically spaced equivalent is depicted in (Figure 11, top).

In  order  to  overcome  the  consequences  of  Gibb's  phenomenon  the  cross

correlation is calculated between band-passed signal and the low-passed signal with the

common high cut-off frequency. To speed up this calculation the relationship between

convolution and correlation is exploited (Equation 7,  Equation 8) and convolution is

Figure 10: Time-frequency matrix of z-score amplitude envelopes.

2 – D Representation of HFO in  time-frequency matrix with 1 Hz frequency step.

z-score=
x− x̄

s x
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done by multiplication  in  the frequency domain (Equation  9).  The cross  correlation

signals can be again visualized in a matrix (Figure 11, middle).

Equation 7: Correlation

Equation 8: Convolution

Figure 11: Time-frequency z-scored metric with cross-correlation, log spaced.

Top  –  log  spaced  time-frequency  z-scored matrix  of  amplitude  envelopes,  middle  –

cross-correlation between ban-passed signal and low-passed signal matrix, bottom –

square  root  of  the  amplitude  and  correlation  matrices.  Notice  the  turquoise  trace

produced by Gibb's phenomenon in the top pane which is eliminated by using the cross-

correlation metric.

corr (x [n ] ,h [n])=∑
k=0

∞

h [k ] x [n+k ]

x [n]∗h[n]=∑
k=0

∞

h[k ] x [n−k ]
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Equation 9: Convolution in frequency domain.

To create a metric that takes into account both amplitude and cross correlation

the square root of the dot product is calculated. The computed metric is depicted in the

bottom pane of Figure 11.

The  detection  of  events  is  done  by  thresholding  the  final  metric  in  each

frequency band. Since the metrics are z-scored, the used threshold represents a fraction

of standard deviation above the mean. The detections with less than one cycle period

apart  in  one  frequency  band  are  joined  into  one  event.  The  detections  in  different

frequency bands overlapping in time domain are joined into a single HFO detection.

Only one post-processing step is applied to reduce the number of false positive

detections. The number of cycles is calculated using event peak frequency and duration

and the events that are shorter than 1 cycle are discarded. The detections then enter

a cascade of feature calculations. The block diagram of the algorithm can be found in

Supplement 3.

7.4.1 Advantages of the algorithm

Precise feature calculation and the sensitivity level are main advantages of this

algorithm. Features obtained by precise analysis can be utilized in post-processing and

allow for more in depth analysis of detected HFOs.

7.4.2 Disadvantages of the algorithm

The main drawback of this method is the long processing time. Depending on

sampling rate the processing time of one trial is ~5-10s which is close or above the real-

time processing time.  Another disadvantage is low specificity  with regard to human

scoring which can be partially  overcome with post-processing steps by thresholding

detections  with  computed  features  or  by  clustering  the  detections  based  on  these

features and using clusters as detections.

f (x)∗f (h)=F (x )⋅F ( y)
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8 DETECTOR EVALUATION

To  quantify  the  efficiency  of  HFO  detection  algorithms  they  have  to  be

evaluated. Even though each publication of HFO detection algorithm method contains

some form of  efficiency quantification  the methods for detection  evaluation  are not

unified which makes a direct comparison almost impossible. This chapter discusses the

problems of variable approaches to evaluation and presents the efficiency of algorithms

included in this work.

8.1 Pitfalls of detector evaluation

As mentioned in section 3.1 the main problem of HFO detection is the lack of

clear definition. This discrepancies in HFO definitions makes it difficult to mark HFOs

uniformly  across  different  institutions.  Moreover,  while  human  reviewed  HFOs  are

considered the gold standard the marking of HFOs is inevitably a subjective process

which results in poor inter-reviewer concordance. This problem is commonly overcome

by submitting the same segment of data for review to multiple medical professionals.

The HFOs marked by the majority of the reviewers are considered true positives.

Apart from the unclear HFO definition the recording equipment and methods

differ  from  institution  to  institution.  The  differences  in  recording  techniques  and

methods result in development of algorithms tailored to data and HFO definitions of

individual institutions. Such algorithms are difficult to compare since they are tuned to

a particular data set. A possible solution to this problem is to create an inter-institutional

library  of  data  segments  with  marked  HFOs  and resected  tissue  areas  by multiple

epileptologists and train the algorithms on these data segments. All algorithms would

then be run and evaluated in the same fashion which would yield comparable result. The

initiative  to  create  detector  library  with  common evaluation  tools  has  been  already

started as an open source project (http://github.com/HFO-detect) which is maintained by

the author of this work. The common evaluation and detection of shared datasets would

lead to enhancement of algorithms and benefit patients.
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8.2 Approaches to evaluation

Evaluation  of  algorithms  depends  on  the  desired  output.  In  case  of  HFO

detection algorithms the general standard is a comparison to a gold standard dataset

marked by epileptologists. While this approach is generally accepted the inter-reviewer

variability and subjectivity is a persistent problem.

Precision of HFO feature calculation is often disregarded, however, it  can be

used as an evaluation method in case the results of the detection are used for in-depth

study or HFO clustering.

Another possible approach is to evaluate the detection based on the localization

of pathological tissue. This method effectively eliminates the problem of unclear HFO

definitions, however, can be influenced by detections that have different characteristics

than HFOs, such as spikes.

8.2.1 Evaluation methods based on gold standard datasets

Traditionally  the  evaluation  of  a  detection  method  is  done  by  constructing

confusion  matrix  for  the  method  and  calculating  its  sensitivity  and  specificity  with

regard to the ground truth. This approach is often used for example in evaluation of

medical screening tests.

Since  detection  algorithms  use  thresholds  for  tunning  their  performance  the

receiver operating curve (ROC), developed by electrical engineers and radar engineers

during World War II for detecting enemy objects in battlefields, appears to be an apt

approach. The ROC analysis serves for determination of the optimal model or threshold

with the best specificity and sensitivity that can be achieved. The quality of the model is

usually expressed by the x and y values of the point closest to the [1,1] position in the

ROC graph or by the area under the curve (AUC).

In  case  of  an  HFO detector  ROC yields  results  that  largely  depend  on  the

definition of a negative observation. HFOs are relatively rare event in iEEG signals so

using a sliding window and evaluation for HFO presence results in true negative count

significantly larger than other confusion matrix statistics. On the other hand, defining

segments  between  gold  standard  detections  as  true  negatives  yields  disproportional
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counts  of  false  positive  detections  compared  to  true  negative  detections.  This

phenomenon propagates into the calculation of ROC and produces seemingly excellent

or poor results. The definitions  of true negatives in scientific papers regarding HFO

detection algorithms differ, making the comparison even more complicated. ROC curve

is, therefore,  not suitable for this evaluation.

The negative observation problem can be overcome by using the precision-recall

curve. The curve is calculated using recall,  which is an equivalent of sensitivity, and

precision, which is the proportion of number of true positive detections to all positive

detections.  Contrary  to  specificity,  precision  does  not  include  true  negatives  in  its

calculation. That leads to more realistic curve characteristics than ROC curve.

Another way to overcome the negative observation problem is to use error trade-

off curve as the evaluation metric, which is not very common. Error trade-off curve plot

contains false reject rate(FN / TP + FN) versus false accept rate (false positive rate –

FP / TN+FP). The advantage in comparison to ROC, however, lies in the scaling of

x and y axes. These axes are non-linearly scaled by their standard normal derivatives. 

8.2.2 Evaluation of detectors with regard to HFO features

Features of individual  HFOs might  be a key to  solve a number of problems

regarding HFO detection and analysis. Precise feature estimation is, therefore, one of

the desired attributes in HFO detection. HFO features can not only be useful in post-

processing  steps  to  enhance  detection  sensitivity  and  specificity  but  they  may  also

contribute to distinction between pathological and physiological  HFOs. Furthermore,

HFO features may be variable both from temporal and spatial point of view which can

be exploited in localization of epileptic foci as well as in seizure prediction.

One  way  to  evaluate  the  precision  of  feature  estimation  is  to  compare  the

estimated value with a value produced by another method or a value estimated by visual

review. However, all methods have some degree of error and visual review is prone to

reviewer bias.

Another approach is to select a piece of iEEG signal without any high frequency

activity  and  create  artificial  HFOs  with  known  features.  These  values  can  then  be

compared with the values estimated by the detector and the error can be calculated.
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The artificial  HFO method can also  be used  to  evaluate  the error  of  human

reviewers and compare inter-reviewer concordance as well as compare the results of

human estimation with detector estimation.

8.2.3 Evaluation methods based on localization of pathologic tissue

Rather  than  relying  on  the  unclear  HFO  definition  and  poor  inter-reviewer

detection reproducibility this approach directly evaluates the usefulness of the algorithm

by correlating the number of detected event per channel with the pathology of the tissue

surrounding electrode contacts.

Definition  of  pathological  tissue may vary.  Nowadays,  pathological  tissue in

iEEG is generally defined as the first temporal onset of seizure in particular channels

and  so  called  irritative  zone  which  exhibits  interictal  epileptiform spikes.  Although

successful to some extent, the resection of SOZ channels does not guarantee seizure

freedom for  patients  which  leads  to  search  for  other  biomarkers.  The  only  way  of

defining the pathological  tissue correctly  is to select patients  with favorable surgery

outcome and marking channels that were resected during surgery.  However,  surgical

routines involve resection of whole structures, therefore, healthy tissue is resected too

and it is unclear around which particular contacts was the pathologic tissue located.

The  evaluation  method  can  also  exploit  machine  learning  algorithms  by

clustering the detections, picking useful clusters which localize the pathological tissue

and  training  a  classifier  to  automatically  classify  detections  into  clusters  in  post-

processing steps. To make the clustering possible HFO features have to be estimated.

This can either be done in the detection process (algorithms  7.3,  7.4) or during post-

processing (algorithms  7.2,  7.4). In order to achieve effective clustering the relevant

features  have  to  be  selected.  This  step  is  often  ignored  in  the  literature  and  can

potentially degrade the result of clustering.

The drawback of this method is the fact that the detected events that are used in

evaluation can be a different electrophysiological phenomenon such as spikes and that

the pathologic tissue can be incorrectly localized by neurologists. This, on one hand, can

potentially  lead to degradation of HFO usefulness as currently defined, on the other

hand, can also lead to more precise definition of this biomarker.
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8.2.4 Evaluation of algorithm speed

Algorithm speed is  important  both for  research  and clinic.  In  research,  long

processing times hinder subsequent analyzes. Nowadays results in clinic are delivered

with delay of approximately 24 hours depending on the implemented algorithm. While

this  is  currently  sufficient,  online  or  near  online  (~  10  mins)  implementation  of

algorithms is desirable in order to evaluate actual state of the patient's brain in operation

room or intensive care unit. This could lead to higher patient comfort and shorter stay in

hospital  or to better  medication management.  On the other hand, faster  and simpler

algorithms are usually less precise which might not be apt for resection guidance. 

While  crucial  for  online  implementation,  algorithm  speed  is  surprisingly

disregarded  in  scientific  papers.  It  is  relatively  easy  to  test  by  applying  different

algorithms to the same dataset but might vary on different computers and depends on

the programming language.

8.3 Used evaluation methods

All three detectors were evaluated by the evaluation methods mentioned in the

previous chapter. Since each detector was developed under slightly different conditions

and for varied purposes the results acquired for the given data set might not correspond

to the results when applied to data sets that have, for example, different montage.

8.3.1 Analysis based on gold standard data sets

Acquisition of the gold standard detections was done separately by two expert

reviewers in  iEEG signals from 5 minute segments in 3 patients. 9 channels per patient

were evaluated; 3 channels were localized in SOZ, 3 in IZ and 3 in nonSOZ area of the

epileptic brain which was previously selected by epileptologists in clinical recordings.

The  HFOs  were  marked  as  segments  of  filtered  signals  that  had  4  times  higher

amplitude than the surrounding signal and the amplitude spanned at least 4 cycles. To

eliminate  false  detection  produced  by  filter  ringing  care  was  taken  to  review  the

detection  in  the  raw  signal  for  sharp  transients.  Only  the  detections  where  both

reviewers agreed were considered true positives.
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Evaluation was carried out for detected events without any correction and for

detections where noisy segments were excluded from the analysis in semi-automated

fashion.

Numbers  of  true  positive,  false  positive  and  false  negative  detections  were

collected  and precision-recall  characteristics  were  calculated  and plotted.  Numerical

evaluation was done by calculating F1, F2, and F0.5 measures (Table 2).

8.3.2 Analysis based on feature estimation precision

To evaluate the feature estimation of the detectors, artificial HFOs were inserted

into 20 minute long iEEG signal, which was previously visually checked for absence of

visible HFOs. The used signal was taken from a contact located in white matter to avoid

muscle artifacts and possible contamination by physiological HFOs from neocortex or

structures of lymbic system. Furthermore, the signal was visually checked for any signs

of pathologic activity and artifacts. The artificial events in form of simulated spikes,

HFOs, delta functions, line noise and HFO-spikes (HFOs coincident with spikes), were

inserted in 3 second intervals with varying amplitude, frequency and duration. To assess

the influence of event amplitude on feature estimation the signals with artificial events

were created for different amplitudes separately with the values spanning from 0.1 to

0.5 std (0.1 std step) of iEEG signal amplitude. In order to to investigate whether noise

produces  any  distortion  in  feature  estimation,  separated  analysis  was  conducted  on

signals with superimposed pink noise, which is typical for EEG. All algorithms were

run with the lowest threshold settings to achieve the highest sensitivity possible.

This analysis is somewhat limited by the detection methodology. In case of the

line-length detection algorithm the amplitude and frequency have to be computed in

post-processing steps because it utilizes only one frequency band and the line-length

metric  takes  both  features  into  account.  Frequency  homogeny  algorithm  uses  rigid

frequency bands thus a priori creates error in the estimation of this feature. 
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8.3.3 Analysis of HFO rates with regard to localization of pathologic

tissue

A sample of 30 minute recordings from 5 patients was processed by automated

detectors developed and modified in this work. Clinical recordings were reviewed by

experienced epileptologists and seizure onset zone, irritative zone and normal channels

were marked. Irritative zone was marked within the channels that had clear pathologic

activity. Determination of resected area and subsequent channel marking was done by

experienced clinicians using overlapped pre and post-surgical MRI. Surgery outcome

was evaluated based on Engel class. Four patients had favorable outcome of Engel IA

while one had persisting seizures with outcome Engel IIIA.

The detection was done by all algorithms for varying threshold settings and best

performing threshold was determined using the lowest p value (t-test). ROC for each

detector was constructed using either SOZ, SOZ+IZ or resected channels as targets, the

varying variable was HFO rate. To compensate for potential differences in patients the

same analysis was done for per patient normalized rates. The AUC were calculated for

each ROC separately to evaluate pathologic tissue localization.

8.3.4 Analysis of algorithm speed

All algorithms were run on one channel of itracranial EEG data with the length

of 30 mins and 5 kHz sampling frequency. Standard desktop computer unit was used for

evaluation with 12 GB RAM memory and Intel® Xeon(R) CPU E5-1620 0 @ 3.60GHz

× 8 processors. Algorithms were all implemented in Python programming language.

8.4 Results

Automated  HFO  detection  is  a  complex  task  that  is  still  being  actively

developed. Individual detection methods vary in HFO definition, the purpose for which

they  were  developed  and  the  datasets  on  which  they  were  tested.  This  makes  the

comparison across multiple institutions difficult. The detection methods created in this

work do not suffer from these problems because they are tested on the same datasets

and evaluated by uniform methods.
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8.4.1 Results of comparison with gold standard detections

Construction  of  precision-recall  curves  proved  that  frequency  homogeny

algorithm achieved the best performance at  detecting human scored events with the

lowest F scores.

The performance of line-length detector proves the usefulness of this algorithm

in HFO detection. The reasonable performance shows that this method is robust, albeit

simple.

Hilbert  detector  exhibits  poorest  performance  regarding agreement  with  gold

standard detections.

Similar  analysis  with semi-automated approach,  where noisy segments in the

data  were  marked  by  reviewers  and  all  detections  in  these  areas  discarded,  was

performed. All detectors showed improved performance (Figure 12, Table 2).

Figure 12: Precision-recall analysis of gold standard HFO detection.

Precision-recall  curves  of  agreement  with  gold  standard  reviewer  marks.  Blue  –

automated detection, green – semi-automated detection.

Table 2: F-scores for gold standard evaluation.

Algorithm Mode
Hilbert Automated 3.993 6.238 6.238

Semi - Automated 3.991 6.236 6.236
Frequency homogeny Automated 2.669 4.17 4.17

Semi - Automated 2.599 4.061 4.061
Line-length Automated 3.273 5.114 5.114

Semi - Automated 3.248 5.074 5.074

F1 F2 F05
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8.4.2 Results of feature estimation precision

The  analysis  of  amplitude  estimation  precision  revealed  that  all  algorithms

overestimated event amplitude (Figure 13,  Table 3). Increased amplitude of simulated

events showed improved mean amplitude estimation error in all detectors, however, the

standard deviation increased.  The best performing algorithm for this feature was the

Hilbert detector while frequency homogeny and line-length detectors showed similar

results.

Similarly  to  amplitude,  all  algorithms  exhibited  overestimation  of  duration

(Figure 14, Table 3). Changes in artificial event amplitude did not have any impact on

duration estimation. The Hilbert algorithm was the best performing while the worst was

line-length algorithm. 

Figure 13: Amplitude estimation analysis.

Higher event amplitude improves automated estimation but increases its standard 

deviation. Red square – mean value. Blue – line-length, green – frequency homogeny, 

red – Hilbert.
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Figure 14: Duration estimation analysis.

Higher event amplitude improves duration estimation in Hilbert algorithm. Frequency 

homogeny a line-length algorithms show stable estimation. Red square – mean value. 

Blue – line-length, green – frequency homogeny, red – Hilbert.

Figure 15: Frequency estimation analysis.

Hilbert detection algorithm shows the lowest difference with referential values. Line-

length algorithm exhibits the highest error. Red square – mean value. Blue – line-

length, green – frequency homogeny, red – Hilbert.
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Contrary  to  amplitude  and  duration  all  algorithms  underestimated  frequency

irrespective of the event amplitude (Figure 15,  Table 3). Increasing event amplitude

worsened frequency estimation in Hilbert detector and frequency homogeny detector

only in transition between the lowest threshold setting to the second lowest setting. The

most precise algorithm was the Hilbert  algorithm and the worst  was the line-length

algorithm. 

In general,  Hilbert  algorithm showed best performance in analysis  of feature

estimation. Frequency homogeny algorithm performed roughly similarly to line-length

detector in amplitude estimation but was worse in duration and frequency estimation.

Line-length algorithm had poorest performance in feature estimation. Noise in signal

had the highest impact on amplitude estimation. Duration and frequency showed similar

mean differences as the signal without noise (Table 3, Table 4).

Table 3: Mean feature differences from artificial HFO events – clean signal.

STD fraction
Feature Algorithm 0.1 0.2 0.3 0.4 0.5
Amplitude FH 2.033 1.488 1.751 1.755 0.761

Hilbert 1.704 1.213 1.371 1.415 0.632
LL 2.366 1.564 1.717 1.609 0.664

Duration FH 0.009 0.011 0.011 0.012 0.011
Hilbert -0.001 0.001 0.002 0.003 0.002
LL 0.095 0.096 0.104 0.097 0.095

Frequency FH -6.526 -11.126 -14.242 -10.71 -17.863
Hilbert -0.091 -8.234 -6.193 -4.917 -6.342
LL -212.206 -189.411 -148.561 -92.388 -93.625

Table 4: Mean feature differences from artificial HFO events - noisy signal.

STD fraction
Feature Algorithm 0.1 0.2 0.3 0.4 0.5
Amplitude FH 2.614 2.077 1.766 1.645 1.157

Hilbert 2.197 1.739 1.584 1.515 0.647
LL 2.701 1.900 1.672 1.518 0.713

Duration FH 0.007 0.008 0.009 0.010 0.010
Hilbert -0.009 -0.002 -0.002 0.000 0.000
LL 0.090 0.094 0.095 0.097 0.096

Frequency FH -4.741 -7.901 -8.588 -12.069 -13.648
Hilbert -0.706 -3.273 -2.492 -3.629 -4.542
LL -232.771 -245.602 -210.731 -180.773 -189.701
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8.4.3 Results of pathologic tissue localization

Investigation of pathological tissue localization with regard to detector threshold

revealed a trend for line-length detector where higher thresholds improved localization

both in normal vs. pathological (SOZ + IZ), normal vs. SOZ analysis (disregarding IZ)

and resected channels in patients with good outcomes (Table 5).

Threshold analysis of pathological tissue localization revealed that line-length

and  Hilbert  algorithms  showed  a  similar  trend  where  increasing  threshold  led  to

improved detection. Contrary to the other two algorithms frequency homogeny detector

had  inverse  trend  where  the  lowest  threshold  achieved  the  best  results.  The  best

performing thresholds were 5, 0.1, 5 for line-length, frequency homogeny and Hilbert

algorithms respectively.

ROC curves for best performing thresholds were done for pathology, SOZ and

resected channels as target instances (Table 5 and Figure 16). Line-length detector had

the highest values of AUC for pathology and SOZ analysis. Hilbert detector had the

highest AUC for resected channels.

Using per patient normalized HFO rates generally improved performance of all

HFO detectors.

Table 5: AUC values for pathological channel localization of different algorithms.

Algorithm Feature Pathology Seizure onset zone Resection
Line-length HFO count 0.778 0.951 0.704

normalized HFO count 0.783 0.957 0.709
Hilbert HFO count 0.537 0.787 0.719

normalized HFO count 0.613 0.822 0.803
Frequency homogeny HFO count 0.565 0.628 0.637

normalized HFO count 0.593 0.584 0.752
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8.4.4 Algorithm speed results

The fastest algorithm was the line-length based detector  which processed the

dataset  in  265  s  which  is  6.79  times  faster  than  real  time  (30  mins).  The  second

algorithm was the frequency homogeny with the computation time of 1592 s which is

1.13 times faster than real time. The slowest algorithm was the Hilbert detector with the

processing time of 7840 s and 0.23 times slower than real time.

Figure 16: ROC analysis  of pathologic tissue localization.

ROC curves for localization of pathological tissue. Line-length algorithm outperforms

the other two in clinically determined channels (Pathology, Seizure onset zone) but is

the worst in determination of resected channels in patients with good outcome. Hilbert

algorithm shows the best performance in this regard. Top – ROC for HFO rates, bottom

– ROC for per patient normalized HFO rates. Blue – line-length, green – frequency

homogeny, red – Hilbert.

55



8.5 Summary of results and discussion

Four types of evaluation were performed: ability of detectors to correctly detect

gold standard HFOs marked by expert  reviewers,  ability  to  correctly  estimate  HFO

features, ability to correctly localize tissue that exhibits pathologic electrophysiologic

activity (SOZ+IZ), seizure onset zone (SOZ) or resected channels in patients with good

surgical outcome and processing time of each algorithm.

Evaluation of detector performance based on expertly reviewed events is often

used in scientific literature dealing with HFO detection [61, 63, 64]. Even though this

method  is  generally  accepted  there  are  certain  drawbacks  already  discussed  in  the

chapter 8.2.1. Within the scope of this work the best performing algorithm was the one

based on the frequency homogeny metric. This result confirms the assumption that the

algorithm  improves  specificity  compared  to  earlier  and  simpler  detectors  such  as

line-length and RMS detector [41, 51]. Higher specificity can be explained by the novel

metric which effectively eliminates Gibb's phenomenon as well as to post-processing

steps that take reviewer expertise into account.

The second best performing algorithm was the  line-length algorithm with added

simple post-processing steps. The results in this work corroborate previous findings in

earlier studies  [51, 64]. The fact that the specificity is lower might reflect insufficient

elimination of Gibb's phenomenon with use of correlation and detection of events that

are not visible for naked human eye.

The design and purpose of the algorithm based on Hilbert envelopes, which is

feature  extraction  while  maintaining  high  sensitivity,  was  reflected  in  very  poor

specificity.  This confirms that  post-processing steps or methods of machine learning

have to be applied in order to achieve better concordance with human reviewers.

Results of the same analysis performed in semi-automated fashion where noisy

segments were removed by reviewers improved in all tested algorithms. The highest

improvement  by 0.07 in  F1 score was seen in  frequency homogeny algorithm.  This

suggest that either a manual or automated detection of noise and artifacts can lead to

a substantial increase in performance.
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Detection  matching  to  reviewed  events  and  HFO  occurrence  in  individual

channels is often the main focus of HFO detection algorithms. In some works, HFO

features such as frequency and duration are described [23, 38], nonetheless the method

by which these features were acquired is often not clearly stated. In papers dealing with

HFO  detection  the  performance  of  algorithms  in  feature  estimation  is  usually

completely disregarded.

This aspect of detectors was evaluated using artificial HFO events with known

amplitude, frequency and duration that were inserted into one channel of non-pathologic

iEEG signal.  Increasing  event  amplitude  was  applied  to  estimate  change  in  feature

estimation error.

All  algorithms  showed  trend  to  overestimate  the  amplitude.  This  could  be

ascribed to the noise of the original iEEG signal into which the artificial signals were

inserted.  Increased amplitude of simulated events showed improved mean amplitude

estimation in all detectors which is likely due to higher signal to noise ratio but the

standard  deviation  of  the  estimation  error  increased  presumably  because  of  high

amplitude of spikes in HFO-spike artificial events. The Hilbert algorithm showed the

best performance which is likely due to precise detection of event onset and offset.

Analysis  of  duration  estimation  precision  revealed  the  same  trend  as  with

amplitude  where  all  algorithms overestimated  this  feature.  This  could  be caused by

algorithm methodology, which is further discussed below, and by filtration that smears

the extent of the event to some extent. The worst performing algorithm was the line-

length based algorithm while the Hilbert algorithm showed the best performance. These

results  stem  from  the  algorithm  nature  since  line-length  algorithm  utilizes  sliding

window with only 25 % overlap it introduces error into duration estimation. Contrarily,

Hilbert  algorithm  uses  sample  by  sample  detection  leading  to  higher  precision.

Frequency homogeny algorithm introduces  estimation error likely  due to the sliding

window nature of frequency homogeny metric.

Frequency estimation showed inverse trend to those of duration and amplitude

and  all  algorithms  underestimated  frequencies  of  simulated  events  which  could  be

ascribed to  frequency band sequences  used  by these  detectors.  Hilbert  detector  and

frequency homogeny detector showed stable frequency estimation with increasing event
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amplitude which worsened only in transition between the lowest threshold setting to the

second lowest setting. The possible cause here is the more precise detection of event

onset and offset with lowest threshold settings. The frequency calculation in line-length

algorithm  is  done  in  post-processing  steps  using  the  maximum  peak  in  frequency

spectrum leading  to  a  substantial  error  which,  however,  diminishes  with  increasing

event amplitude where the maximum spectrum peak is more prominent.

In  summary,  the  Hilbert  detector  outperformed  the  other  two  detectors  in

estimation of all evaluated features. This result confirms that the Hilbert detector design

is the most suitable tool for in depth study of HFOs. Frequency homogeny algorithm

performance exhibited reasonable estimation error proving that it can be used for rough

overview of  HFO features  in  the  detected  dataset.  Line-length  detector  showed  the

poorest performance which is due to the simplistic nature of the algorithm.

The capability of pathological tissue localization is vital for clinical applications.

This is often tested in the literature along with analysis of successful detection of gold

standard detections  [54, 62, 63]. While this approach is the most important in clinical

applications  the  best  performance  in  this  regard  does  not  necessarily  mean that  the

algorithm can as efficiently serve for basic research of HFO.

All  algorithms  were  able  to  successfully  show  increased  HFO  activity  in

pathological tissue based on HFO detection. Relatively high thresholds in line-length

and Hilbert detector showed the best performance with regard to SOZ localization. This

can be  explained  by the  core  of  these  algorithms  which  is  based  mainly  on  signal

amplitude. Frequency homogeny algorithm showed the best performance in the lowest

threshold setting. 

Analysis  of  tissue  generating  pathological  interictal  epileptiform  spikes  and

HFOs (SOZ+IZ)  decreased the performance of all algorithms. HFOs have been proved

to be more localized in SOZ [25], thus this finding corroborates these previous results. 

Analysis  of  HFO  rates  in  patients  with  good  surgical  outcome  showed

improvement  in  frequency  homogeny  and  Hilbert  algorithm  while  decreasing  the

performance  of  line-length  algorithm.  The  result  highlights  low specificity  of  line-

length algorithm suggesting that it might be influenced by false positive detections of

spikes.
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ROC curves were created with the best performing threshold of each algorithm

with HFO rate in individual channels as the threshold metric and pathological channels

as targets. Interestingly, the line-length algorithm showed the best performance in SOZ

localization while frequency homogeny the worst.  Hilbert algorithm showed the best

localization  of  resected  channels.  When the  HFO rates  were normalized  on the  per

patient bases the results improved for resected channels in patients with good outcome

suggesting that HFO rates may vary depending on implantation sites and patient's brain.

Processing time for each algorithm was measured using one iEEG signal. Line-

length  algorithm  had  the  shortest  processing  time  mainly  due  to  its  simplicity.

Frequency homogeny algorithm needed more processing time but it was still faster than

real time. Hilbert detection algorithm was approximately 5 times slower than real time

suggesting that a compiled version of the algorithm should be developed in order to

allow this algorithm to be used in clinic.

The  line-length  algorithm with  simple  post-processing  steps  (correlation  and

event to background ratio) showed very poor feature estimation yet the localization of

SOZ was superior to other detectors. However, in localization of resected channels the

algorithm performed poorly. With its speed this algorithm can be very useful in online

HFO  detection  and  use  in  clinic  to  give  clinicians  a  rough  idea  about  the  HFO

distribution in epileptic foci, thus highlighting the channels they should focus on.

Feature estimation error was the lowest for the Hilbert algorithm. This outcome

demonstrates the algorithm's capability of HFO feature precise determination. Given the

results in analysis of gold standard HFOs and pathologic tissue localization analysis this

algorithm shows promising  results  that  can  be  further  improved by post-processing

steps and machine learning methods. 

Frequency homogeny algorithm showed the best performance in concordance

with gold standard detections. Interestingly, the analysis of SOZ channel localization

did not reveal good results but localization of resected channels was superior to line-

length  while  inferior  to  Hilbert  algorithm.  As  mentioned  earlier  in  this  work  HFO

marking is highly subjective. Enlarging the dataset on which the algorithm was trained

is likely to improve the results. Feature estimation evaluation revealed that this detector

can provide rough estimation of detected events' features.
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9 DETECTION RESULT PRESENTATION

Conveying the results in simple and visually appealing way to the interpreter

while preserving as much information as possible is crucial for wide spread usage of

any detection algorithm in clinic and science. Medical doctors and some scientists often

lack the technical  skills  and time to understand the details  of signal processing and

automated  detection.  Consequently,  development  of  result  presentation  is  almost  as

important as the detection itself.

In  this  regard  information  acquired  from the  brain  present  a  challenge.  The

electrophysiological signals have intrinsic features – amplitude and frequency. In case

of  HFOs,  two  other  features  can  be  acquired  –  duration  and  count.  However,  the

physiology of the brain and its electrical properties change in time (cognition, sleep,

etc.), space (neocortex, archicortex, etc.) and is dependent on external factors (drugs,

external stimuli, etc.).

As it is apparent from the previous paragraph, it is not possible to visualize all

information at once. Instead, the visualizations are focused on the desired application.

Nonetheless, the interpreter should always be aware of the limitations.

9.1 HFO count per channel

Basic visualization used by vast majority of current publications dealing with

HFO  is  usually  a  simple  bar  graph  used  to  highlight  channels  with  higher  HFO

occurrence  (Figure  17).  While  this  is  sufficient  for  a  general  overview  the  loss  of

information about HFOs is significant. There is no information about HFO occurrence

in time domain, which obstructs a potential feedback by medical staff or adjustment of

medication. The frequency information is reduced to that of the frequency band used by

algorithm filters.  And the person reading the plot  has to be aware of the individual

contact locations within the brain in order to interpret the results correctly.

This type of visualization could stress the results by color-coding the HFO count

in  individual  bars  which  would  make  it  easier  to  identify  the  channels  of  interest.
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Furthermore, temporal information could be included by creating a video or by plotting

numerous bar graphs for each time segment.

9.2 HFO count with regard to HFO frequency

This type of visualization was created as part of this PhD thesis and is useful for

clinicians since fast ripples (250 – 600 Hz) are currently deemed to be correlated with

pathologic brain more than ripples (80-250 Hz). The color-coded table presents HFO

counts  in  individual  frequencies  and provide  simplified  information  about  the  HFO

distribution in frequency domain. The visualization was designed to present results of

frequency homogeny algorithm, hence the frequency bands are set accordingly.

Figure 17: Bar graph of HFO counts in individual channels.

Bar graph showing the count of  detected HFOs in individual  channels.  Without  the

knowledge  of  contact  location  in  patient's  brain  it  is  difficult  to  determine  the

epileptogenic foci. Moreover, there is no information about the frequency of HFOs.
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Even  though,  this  visualization  provides  fast  overview  about  the  tissue

surrounding individual contacts there is still some information loss. Temporal aspect of

HFO occurrence is completely neglected and information about HFO are represented

solely by their count in frequency bands.

This type of visualization can be further developed by creating a video where

changing  colors  would  show  shifts  in  HFO  counts  with  regard  to  channels  and

frequency. This would account for temporal changes.

Figure 18: Color-coded HFO rate in individual electrodes across frequencies.

Image showing HFO occurrence in individual channels and in frequency bands with

color-coded  cells  to  stress  the  highest  values.  Color-coding  contributes  to  simple

immediate recognition of the areas with highest HFO rates.
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9.3 HFO count with regard to anatomy

Anatomical structure may play a crucial role in spatial distribution of HFO. It is,

therefore, useful to visualize the information about HFO occurrence in MRI scans so

that  clinical  staff  has  immediate  information  about  the  location  of  HFO generating

tissue and can tie  together the information of electrophysiology and anatomy of the

particular patient's brain.

This method was created as a diploma thesis  [66] which was mentored by the

author of this work. 

Figure 19: Color-coded HFO count in MRI slices.

MRI scan of a patient with temporal lobe epilepsy. HFO counts are color coded as dots

in  places  where  electrode  contacts  were  located.  A –  transversal  plane  B-  coronal

plane.

Further enhancements of this type of visualization can be again incorporation of

information  about  HFO  occurrence  in  time  by  creating  video  clips.  Moreover,

tractography  analysis  can  be  joined  with  this  visualization  in  order  to  elucidate

communication between different brain structures.
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9.4 Circular graphs

Inspired by data visualization in genome research, this type of graph reduces

information loss to minimum while allowing for display of interactions between areas

of the brain from which iEEG signal is acquired. The visualization was created within

this work  and is  freely available  as an open-source library which is being actively

updated and developed (https://github.com/cimbi/pancircs) and can be easily installed

through python package index.

Circular  graphs  can  have  multiple  layers  each  expressing  different  piece  of

information. HFO counts and their mean attributes can be simply visualized this way

although any type of electrophysiological information can be included such as spike

rates  or  their  features.  Individual  layers   can  also  represent  development  of  HFO

occurrence in time, space and frequency.

Inner area of the circular graph can be used to visualize interactions between

signals such as correlation or other connectivity metrics which can contribute to correct

localization of pathologic tissue.

Channels can be grouped according to their location in brain structures but any

grouping variable can be used.

Circles can be assembled into a series to create either an array or a video to

capture the development of electrophysiological data in time.
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Figure 20: Circular visualization.

Correlation between individual contacts (inner connections). Histogram of HFO count

in frequency bands from low frequencies to high, inner to outer direction (inner circle).

Total relative HFO count (middle circle). Pathology of channels (outer circle, SOZ -red,

IZ – green, nonSOZ – blue). Contact sections are divided according to the structure in

which they were located
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10 ACHIEVED SCIENTIFIC RESULTS

Even though all described algorithms are constantly being improved they have

already been used for clinical and research applications both at Mayo Clinic as well as

FNUSA. This section is a brief result summary of finished and ongoing studies that

serves as a proof of concept.

10.1 Spatiotemporal dynamics of high-frequency oscillations

The aim of this  study was to  evaluate  the feasibility  of line-length detection

algorithm, investigate  the localization of SOZ by HFOs and map the spatiotemporal

characteristics  of  HFO  occurrence  in  different  brain  structures  and  in  different

behavioral states. The reference to this study can be found in [67].

10.1.1Data

91 epileptic  patients  with focal  epilepsy  were implanted  with clinical  hybrid

depth  electrodes  (micro-electrode  + macro-electrode)  as  part  of  their  evaluation  for

partial surgical medio-temporal lobectomy.

The data were continually acquired during patients'  stay in the intensive care

unit  at  the  sampling  frequency  of  32  kHz.  For  storage  purposes  and  reduction  of

computation time all macro electrode recordings were filtered by a low pass filter (cut-

off 1 kHz) and decimated to 5 kHz. Because the HFOs were proved to be present in

both  macro  and microelectrode  recordings  the  detection  algorithm was run only  on

macro  electrode  recordings  to  achieve  better  clinical  relevance  and  further  reduce

computation time. No time segments were excluded from the study.

To determine the seizure onset zone, an automated seizure detector with very

high sensitivity was run on all acquired data prior to human assessment. The detections

were then visually reviewed by an experienced neurologist and the first clear visible

change in iEEG leading to propagating seizure discharges were marked as the seizure

onset and the corresponding channels were marked as seizure onset channels.
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Two experienced neurologists  used pre-operative MRI and post-operative CT

images  to  manually  co-register  the  contact  locations  for  each  patient.  The  MNI

coordinates were used to automatically assign a brain structure to each contact. Since

the study was conducted solely in patients with medi-temporal epilepsy the structures

used for analysis were amygdala, hyppocampus, parahyppocampus and neocortex.

To assess the effect of behavioral states, especially the slow wave sleep, on the

HFO rate 7 recordings were scored by experienced sleep technicians. The individual

behavioral states were – Awake, Stage I, Stage II, Stage III, REM, Unknown. 

10.1.2 Brief summary of results

The evaluation of HFO rates in SOZ and nonSOZ proved that HFOs localize

clinically marked epileptogenic areas in the vast majority of the patients. To assess the

population statistics, using HFO rate in one channel as an instance, the Wilcoxon rank

sum test  was used with a  highly  significant  result  p<0.001.  To further  evaluate  the

applicability of results for prospective studies a separate Wilcoxon rank sum test for

each patient was performed as well as paired t-test for the whole data set. Furthermore,

to investigate the relationship of HFO rates in different structures of temporal lobe the

channels were divided according to their localization in brain (32 patients with marked

anatomical structures) and evaluated with regard to SOZ and nonSOZ. The result is

demonstrated in Figure 21.

To investigate the temporal distributions of HFO rates 7 patients who had sleep

staging were  computed  and evaluated  in  different  sleep stages.  Example  figure  that

demonstrates HFO temporal changes with regard to sleep stages in one patient can be

found in the supplement section (Supplement 4).
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Figure 21: SOZ localization by HFO rate and spatial distribution of HFOs.

(A) Mean HFO rates in SOZ channels and nonSOZ channels in a subset of 32 patients

with focal temporal-lobe epilepsy. 28 patients (red ticks) had significantly higher HFO

rate  in  contacts  located  in  SOZ than in contacts  located  in  nonSOZ area (p<0.01,

Wilcoxon rank sum), 4 patients (blue ticks) did not show statistically significant level.

(B)  Normalized  HFO rates  in  different  areas  of  temporal  lobe  provides  proof  that

pathological HFO rates in one structure might by similar to normal HFO rate in other

structures.
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10.2 High-frequency oscillations in cognitive processes

The study was conducted in order to investigate the relationship between HFOs

and cognitive  processing.  The Hilbert  2D detector  was used to  detect  HFOs during

image presentations and their subsequent subjective evaluation in the brain. The whole

study can be found in [68].

10.2.1Data

Twelve  patients  undergoing  intracranial  seizure  monitoring  for  surgical

treatment participated in this voluntary study at Mayo Clinic. They were first presented

a set  of 80 images  and were asked to rate the affective charge of each picture and

remember it for subsequent recall 24h later. In every trial, image was displayed for 6s

followed by 2s of blank screen. After that the patient was prompted to rate the picture's

affective  charge  on a  five-point  scale,  which ranged from 'very unpleasant'  to  'very

pleasant', by pressing a labeled key. The key press initiated an inter-trial interval of 6s

preceding the next trial of this encoding stage of the task.

The recall stage of the task was analogous to the encoding, only this time 140

images were presented including the 80 pictures shown 24h earlier mixed with 60 new

pictures.  Images  were  presented  for  6s,  followed  by  2s  of  blank  screen  and  then

a prompt screen asking the patient to indicate whether the image was 'old' or 'new' by

pressing the labeled key. The key press triggered a second question asking the subject to

rate their level of certainty on a five-point scale, which ranged from 'very certain' to

'very uncertain'.  The key press initiated  the 6s inter-trial  interval  preceding the next

recall trial.

The acquired electrophysiological data were first decimated to 5000Hz, filtered

between  0.1-1000Hz  and  notch-filtered  to  eliminate  the  60Hz  line  noise.  Bipolar

differential signal was derived using recordings from neighboring pairs of electrodes to

subtract out potential interference from the common reference, to ensure independence

of  the  output  signals  in  the  analysis,  and to  reduce  the  non-cerebral  artifacts.  Data

segments from the task encoding and recall stages were normalized by their standard

deviation  and  cut  into  18s  epochs,  which  stretched  from  6s  preceding  image
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presentation to 6s following image disappearance. Every epoch was visually inspected

for  the  occurrence  of  epileptiform  discharges  and  artifacts,  and  rejected  from  the

analysis if positive. Data from channels with more than 30 % of such epochs were not

used in the study at all.

10.2.2Brief summary of results

Changes of HFOs during cognitive processing associated with the encoding and

retrieval of visual images was accompanied by focal increases of HFO power in all of

the studied cortical and limbic structures.  The pattern of power induction, confined to

individual electrodes, was maintained across the HFO bands of high gamma, ripple and

fast ripple frequencies. In contrast to the changes observed in the high frequency bands,

theta/alpha/low  beta  oscillations  (4-15Hz)  showed  widespread  global  reduction  of

power in response to image presentation (Figure 22).

HFOs  recorded  in  different  cortical  and  limbic  structures  of  the  processing

stream revealed distinct pattern of gamma, ripple and fast ripple relative distributions.

They lasted on average between 10-30ms and most those detected in the hippocampus

and the amygdala had longer durations than the cortical discharges. Durations of the

ripple band HFOs were consistently longer than the ones of the gamma and fast-ripple

frequencies in all of the studied structures but the prefrontal cortex. Finally, the ripple

and fast-ripple oscillations were very significantly modulated by the task phase (Figure

6) and predicted the affective value and memory of the images (Figure 23), suggesting

an active role of these fast network events in cognitive processing.
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Figure 22: Frequency power during cognitive processes.

Brain  images  of  the  normalized  power  changes   recorded  from  temporal  cortical

surface grid electrodes in patient 8 are displayed for 4 frequency bands of oscillations,

snapshot at 4 trial time-points of image encoding. Notice the focal pattern of activation

in all HFO bands, including ripple and fast ripple frequencies, contrasted by uniform

power decrease in the low frequencies.

71



Figure 23: Local HFO band responses predict the affective value of encoded

images.

(A; top) Examples of two similar pictures, analogous to the IAPS set of images used in

the study, with neutral and negative affective charge; (bottom) Cumulative scatterplot

of  the  HFO  discharges  detected  in  the  three  frequency  bands  come  from  a

representative  amygdala  electrode  during  the  memory  encoding  (black  dots  are

individual detections from trials with neutral images; red dots come from trials with

emotionally charged images of the same session; black bar indicates  time-course of

image presentation). (B; top) Spectrograms summarize trial-averaged HFO band power

changes in the two trial  types from the same session as in 'A'; (bottom) mean trial

counts of the gamma, ripple and fast ripple HFO detection from the same session are

binned across the trial time-course aligned to the spectrograms (* - p<0.01, Wilcoxon

signed-rank test comparison with the matched average count from the 4 'baseline' bins

preceding image presentation).  Notice that this  amygdala electrode shows enhanced

HFO power underpinned by significantly increased number of HFO discharges on the

trials with emotionally charged images.
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CONCLUSION

High-frequency oscillations have been studied for over a decade now. All the

studies conducted to date have proven that HFOs can indeed localize epileptogenic foci

in focal epileptic patients and that by resecting pathological tissue with HFO a better

surgical  outcome  can  be  achieved,  leading  to  improvement  of  patients'  lives.

Nonetheless, most of the studies used retrospective visual or semiautomated detections

of HFOs. Such approach is a time-consuming process and is prone to reviewer bias. An

automated detection algorithm is needed as a fast and objective method of detection.

A number of HFO detectors have been developed to date at different institutions

around the world. However, due to unclear definition of HFOs, their characteristics and

different  recording  techniques,  all  detectors  were  trained  and  tested  on  different

datasets.  Moreover,  evaluation  of  developed  detectors  is  not  uniform rendering  the

results of automated HFO detection incomparable. 

The main aim of the presented work was to develop a robust detector which

would be useful for physicians and provide them with additional information about the

localization and spatial spread of epileptogenic focus. The secondary goal was to create

a tool for research of HFO produced by pathological and healthy tissue as well as during

different cognitive stages such as somatosensory processing or sleep and wake cycle.

Three HFO detection algorithms were developed or enhanced in this work. One

is the line-length algorithm which was improved by post-processing steps, aims at use

in clinic and has already been used to investigate the spatiotemporal dynamics of HFOs

in patients with mesio-temporal epilepsy. The second is an algorithm based on a novel

frequency homogeny metric that effectively reduces the false positive detections and

takes  human expertise  into  account  through a set  of boundary thresholds  calculated

from distribution functions created from visually marked HFOs. The last algorithm was

developed for detailed HFO analysis with precise HFO feature estimation and is based

on normalized amplitude envelopes and convolution of narrow band-passed signal and

broad-band passed signal. Its earlier version has been already used for study of HFO

behavior during cognitive task to investigate the normal function of the brain.
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To test  the feasibility  of detectors from different  points of view all  detectors

were subjected to three different evaluation methods designed to overcome the common

drawbacks  appearing  in  literature.  To  test  agreement  with  human  reviewers  the

detections  produced  by  automated  methods  were  compared  with  gold  standard

detections created by manual review. Precision in HFO feature estimation was tested

with  artificial  events  inserted  into  iEEG  signal  and  calculated  feature  values  were

compared with the known features  of artificial  events.  Lastly,  the ability  to  localize

pathological tissue based on the count of HFO detections in individual channels was

compared with clinically determined channels from which the seizures originated.

Results of evaluation confirmed effectiveness of each algorithm in the task they

were designed for. While frequency homogeny algorithm had the best performance in

agreement  with  gold  standard  detections,  Hilbert  algorithm showed the  best  feature

estimation and localization of resected channels and line-length algorithm outperformed

the remaining two in pathological tissue localization.

In order to convey the results to the end user, which is usually a clinician or

a researcher, apt result visualization has to be chosen. Apart from wide-spread bar graph

visualization of HFO count in individual channels, two other methods were developed

in this work. One is a color-coded table with count in individual channels and frequency

information.  This allows clinicians to immediately evaluate the HFO analysis and is

currently being used in St. Anne's University Hospital in Brno. The second method is

inspired by visualization techniques  in genome research and utilizes  circular  graphs.

That allows for visualization of different HFO qualities as well as relationships between

individual channels or brain structures.

The future work will focus on detector  improvement and on combining their

capabilities  to  provide  better  localization  of  pathological  tissue  while  mapping  the

normal function of the brain. For that purpose more visually reviewed events will be

acquired as well as data from multiple centers. HFO differentiation will be done with

the use of machine learning methods and HFO spread will be studied with the use of

brain  connectivity  methods  and  causality  information.  These  future  studies  should

improve both detection as well as general understanding of epilepsy and normal brain

function.

74



All detection algorithms as well as evaluation codes mentioned in this work will

be  over  time  published  online  within  the  HFO-detect  initiative

(https://github.com/HFO-detect) that aims at creating a library of HFO detectors along

with  standardized  evaluation  tools.  In  conjunction  with  other  algorithms  developed

around the world and publicly accessible iEEG datasets this will allow for objective

evaluation of each algorithm with precisely defined evaluation methods. Moreover, it

will allow other centers around the world that have not yet started using HFOs in their

research and in clinic to immediately begin automated detection in intracranial EEG and

contribute with their datasets to the world wide pool. Circular visualization library is

already available for easy installation through python package index (name: “pancircs”)

and the source code is accessible on GitHub (https://github.com/cimbi/pancircs). 

75

https://github.com/cimbi/pancircs
https://github.com/HFO-detect


REFERENCES

[1] HOLDEN, E Wayne, Hoang THANH NGUYEN, Elizabeth GROSSMAN, Scott
ROBINSON, Leila S NELSON, Margaret J GUNTER, Ann VON WORLEY and
David  J  THURMAN.  Estimating  prevalence,  incidence,  and  disease-related
mortality  for  patients  with  epilepsy  in  managed  care  organizations.  Epilepsia
[online].  2005,  vol. 46,  no. 2,  pp. 311–9.  ISSN 0013-9580.  Available
at: doi:10.1111/j.0013-9580.2005.30604.x

[2] FISHER R, VAN EMDE BOAS W, BLUME W, ELGER C., GENTON P, LEE P,
Engel J. Epileptic seizures and epilepsy: definitions proposed by the International
League  Against  Epilepsy  (ILAE)  and  the  International  Bureau  for  Epilepsy
(IBE).  Epilepsia [online].  2005,  vol. 46,  no. 10,  pp. 1698–9.  ISSN 0013-9580.
Available at: doi:10.1111/j.1528-1167.2005.00273_1.x

[3] RYAN,  Monique  M.  A  Disease  Once  Sacred.  A  History  of  the  Medical
Understanding  of  Epilepsy [online].  2002.  ISBN 0861966074.  Available
at: doi:10.1016/S0920-1211(02)00175-4

[4] MORÁŇ, Miroslav. Praktická epileptologie. 2003. ISBN 978-80-7387-023-2. 

[5] C.  P.  PANAYIOTOPOULOS.  A clinical  guide  to  epilepsy  syndromes.  B.m.:
Bladon medical publishing, 2010. ISBN 978-1-84628-644-5. 

[6] CHRISTOPH,  Helmstaedter.  Neuropsychological  aspects  of  epilepsy  surgery.
Epilepsy & Behavior. 2004, vol. 5, pp. 45–55. 

[7] WORRELL,  Gregory  A,  K  JERBI,  K  KOBAYASHI,  J.  M  LINA,  Rina
ZELMANN and M LE VAN QUYEN. Recording and analysis  techniques for
high-frequency  oscillations.  Progress  in  neurobiology [online].  2012,  vol. 98,
no. 3,  pp. 265–78  [accessed. 2013-10-26].  ISSN 1873-5118.  Available
at: doi:10.1016/j.pneurobio.2012.02.006

[8] AYALA,  G  F,  M  DICHTER,  R  J  GUMNIT,  H  MATSUMOTO  and  W  A
SPENCER.  Genesis  of  epileptic  interictal  spikes.  New knowledge  of  cortical
feedback systems suggests a neurophysiological explanation of brief paroxysms.
Brain  research [online].  1973,  vol. 52,  pp. 1–17.  ISSN 00068993.  Available
at: doi:10.1016/0006-8993(73)90647-1

76



[9] REN, L., Michal T. KUCEWICZ, Jan CIMBALNIK, Joseph Y MATSUMOTO,
B. H. BRINKMANN, W. HU, W. R. MARSH, F. B. MEYER, S. M. STEAD and
Gregory a WORRELL. Gamma oscillations precede interictal epileptiform spikes
in the seizure onset zone. Neurology [online]. 2015, vol. 84, no. 6, pp. 602–608.
ISSN 0028-3878. Available at: doi:10.1212/WNL.0000000000001234

[10] WORRELL, Gregory A and Jean GOTMAN. High-frequency oscillations  and
other electrophysiological biomarkers of epilepsy: clinical studies. Biomarkers in
medicine [online].  2011,  vol. 5,  no. 5,  pp. 557–66.  ISSN 1752-0371.  Available
at: doi:10.2217/bmm.11.74

[11] TELLEZ-ZENTENO,  JF,  LH  RONQUILLO,  F  MOIEN-AFSHARI  and  S
WIEBE. Surgical outcomes in lesional and non-lesional epilepsy: A systematic
review and meta-analysis. Epilepsy. 2010, vol. 89, no. 2-9, pp. 310–318. 

[12] MCBRIDE, MC, KS BRONSTEIN, B BENNETT, G ERBA, W PILCHER and
MJ BERG.  Failure  of  standard  magnetic  resonance  imaging  in  patients  with
refractory temporal  lobe epilepsy.  Archives  of Neurology.  1998, vol. 55, no. 3,
pp. 346–348. 

[13] WELLMER,  J,  CM  QUESADA,  L ROTHE,  CE  ELGER,  CG  BIEN  and  H
URBACH. Proposal for a magnetic resonance imaging protocol for the detection
of  epileptogenic  lesions  at  early  outpatient  stages.  Epilepsia.  2013,  vol. 54,
no. 11, pp. 1977–1987. 

[14] VAN BOGAERTA, P, N MASSAGERC, P TUGENDHAFTD, D WIKLERA, P
DAMHAUTA, M LEVIVIERC, J BROTCHIC and S GOLDMANA. Statistical
parametric  mapping  of  regional  glucose  metabolism  in  mesial  temporal  lobe
epilepsy. Neuroimage. 2000, vol. 12, no. 2, pp. 129–138. 

[15] TAKAHASHI,  M,  T SOMA, K KAWAI,  K KOYAMA, K OHTOMO and T
MOMOSE. Voxel-based comparison of preoperative FDG-PET between mesial
temporal  lobe  epilepsy  patients  with  and  without  postoperative  seizure-free
outcomes. Annals of nuclear medicine. 2012, vol. 26, no. 9, pp. 698–706. 

[16] JEONG TAE, Kim, Bai SUN JOON, Choi KEUM OK, Lee YOON JIN, Park
HAE-JEONG, Kim DONG SEOK, Kim HEUNG DONG and Lee JOON SOO.
Comparison of various imaging modalities in localization of epileptogenic lesion
using epilepsy surgery outcome in pediatric patients. Seizure - European Journal
of Epilepsy. 2009, vol. 18, no. 7, pp. 504–510. 

77



[17] EINEVOLL, Gaute T, Christoph KAYSER, Nikos K LOGOTHETIS and Stefano
PANZERI.  Modelling  and  analysis  of  local  field  potentials  for  studying  the
function of cortical circuits. Nature reviews. Neuroscience [online]. 2013, vol. 14,
no. 11,  pp. 770–85  [accessed. 2015-12-20].  ISSN 1471-0048.  Available
at: doi:10.1038/nrn3599

[18] VAN  DEN  BROEK,  S.P,  F  REINDERS,  M  DONDERWINKEL  and  M.J
PETERS. Volume conduction effects in EEG and MEG. Electroencephalography
and  Clinical  Neurophysiology [online].  1998,  vol. 106,  no. 6,  pp. 522–534.
ISSN 00134694. Available at: doi:10.1016/S0013-4694(97)00147-8

[19] STEPHAN,  Christina  L.,  John  J.  KEPES,  Karen  SANTACRUZ,  Steven  B.
WILKINSON, Barbara FEGLEY and Ivan OSORIO. Spectrum of Clinical and
Histopathologic Responses to Intracranial  Electrodes: From Multifocal Aseptic
Meningitis  to  Multifocal  Hypersensitivity-type  Meningovasculitis.  Epilepsia
[online].  2001,  vol. 42,  no. 7,  pp. 895–901.  ISSN 00139580.  Available
at: doi:10.1046/j.1528-1157.2001.042007895.x

[20] GORGULHO, Alessandra,  Antonio a F DE SALLES, Leonardo FRIGHETTO
and  Eric  BEHNKE.  Incidence  of  hemorrhage  associated  with
electrophysiological  studies  performed  using  macroelectrodes  and
microelectrodes  in  functional  neurosurgery.  Journal  of  neurosurgery [online].
2005,  vol. 102,  no. 5,  pp. 888–96.  ISSN 0022-3085.  Available
at: doi:10.3171/jns.2005.102.5.0888

[21] STABA,  Richard  J,  Charles  L WILSON,  Anatol  BRAGIN,  Donald  JHUNG,
Itzhak  FRIED  and  Jerome  ENGEL.  High-frequency  oscillations  recorded  in
human medial temporal lobe during sleep.  Annals of neurology [online]. 2004,
vol. 56,  no. 1,  pp. 108–15  [accessed. 2014-01-29].  ISSN 0364-5134.  Available
at: doi:10.1002/ana.20164

[22] BRÁZDIL, Milan, Jan CIMBALNIK, Robert ROMAN, Daniel J SHAW, Matt M
STEAD,  Pavel  DANIEL,  Pavel  JURÁK  and  Josef  HALÁMEK.  Impact  of
cognitive  stimulation  on  ripples  within  human  epileptic  and  non-epileptic
hippocampus.  BMC  Neuroscience [online].  2015,  pp. 1–9.  ISSN 1471-2202.
Available at: doi:10.1186/s12868-015-0184-0

[23] BUZSÁKI, György, Z HORVÁTH, R URIOSTE, J HETKE and K WISE. High-
frequency  network  oscillation  in  the  hippocampus.  Science  (New  York,  N.Y.)
[online].  1992,  vol. 256,  no. 5059,  pp. 1025–7.  ISSN 0036-8075.  Available
at: http://www.ncbi.nlm.nih.gov/pubmed/1589772

78



[24] JACOBS,  Julia,  Pierre  LEVAN,  Rahul  CHANDER,  Jeffery  HALL,  François
DUBEAU and  Jean GOTMAN. Interictal  high-frequency  oscillations  (80-500
Hz) are an indicator of seizure onset areas independent of spikes in the human
epileptic  brain.  Epilepsia [online].  2008,  vol. 49,  no. 11,  pp. 1893–907
[accessed. 2014-01-09].  ISSN 1528-1167.  Available  at: doi:10.1111/j.1528-
1167.2008.01656.x

[25] BRAGIN, Anatol, Jerome ENGEL, Charles L WILSON, Itzhak FRIED and Gary
W. MATHERN. Hippocampal and entorhinal cortex high-frequency oscillations
(100--500  Hz)  in  human  epileptic  brain  and  in  kainic  acid--treated  rats  with
chronic  seizures.  Epilepsia [online].  1999,  vol. 40,  no. 2,  pp. 127–37
[accessed. 2013-10-28].  ISSN 0013-9580.  Available  at: doi:10.1111/j.1528-
1157.1999.tb02065.x

[26] URRESTARAZU,  Elena,  Jeffrey  D  JIRSCH,  Pierre  LEVAN,  Jeffery  HALL,
Massimo  AVOLI,  Francois  DUBEAU  and  Jean  GOTMAN.  High-frequency
intracerebral  EEG activity  (100-500 Hz) following interictal  spikes.  Epilepsia
[online]. 2006, vol. 47, no. 9, pp. 1465–76 [accessed. 2014-01-20]. ISSN 0013-
9580. Available at: doi:10.1111/j.1528-1167.2006.00618.x

[27] STABA, Richard J and Anatol BRAGIN. High-frequency oscillations and other
electrophysiological biomarkers of epilepsy : underlying mechanisms.    Biomark
Med. [online].  2011,  vol. 5,  no. 5,  pp. 545–556.  Available
at: doi:10.2217/bmm.11.72.High-frequency

[28] IBARZ, Jose M, Guglielmo FOFFANI, Elena CID, Marion INOSTROZA and
Liset MENENDEZ DE LA PRIDA. Emergent  dynamics  of fast  ripples  in the
epileptic hippocampus.  The Journal of neuroscience : the official journal of the 
Society  for  Neuroscience [online].  2010,  vol. 30,  no. 48,  pp. 16249–61
[accessed. 2013-11-08].  ISSN 1529-2401.  Available
at: doi:10.1523/JNEUROSCI.3357-10.2010

[29] USUI,  Naotaka,  Kiyohito  TERADA,  Koichi  BABA,  Kazumi  MATSUDA,
Fumihiro NAKAMURA, Keiko USUI, Takayasu TOTTORI, Shuichi UMEOKA,
Shigeru FUJITANI, Tadahiro MIHARA and Yushi INOUE. Very high frequency
oscillations  (over  1000  Hz)  in  human  epilepsy.  Clinical  Neurophysiology
[online].  2010,  vol. 121,  no. 11,  pp. 1825–1831  [accessed. 2013-10-18].
ISSN 1872-8952. Available at: doi:10.1016/j.clinph.2010.04.018

79



[30] JERBI, Karim, Tomás OSSANDÓN, Carlos M HAMAMÉ, S SENOVA, Sarang
S  DALAL,  Julien  JUNG,  Lorella  MINOTTI,  Olivier  BERTRAND,  Alain
BERTHOZ,  Philippe  KAHANE  and  Jean-Philippe  LACHAUX.  Task-related
gamma-band  dynamics  from  an  intracerebral  perspective:  review  and
implications for surface EEG and MEG.  Human brain mapping [online]. 2009,
vol. 30, pp. 1758–1771. ISSN 1097-0193. Available at: doi:10.1002/hbm.20750

[31] LACHAUX,  Jean-Philippe,  Nikolai  AXMACHER,  Florian  MORMANN, Eric
HALGREN and Nathan E. CRONE. High-frequency neural activity and human
cognition:  Past,  present  and  possible  future  of  intracranial  EEG  research
[online].  2012.  ISBN 1873-5118  (Electronic)r0301-0082  (Linking).  Available
at: doi:10.1016/j.pneurobio.2012.06.008

[32] TALLON-BAUDRY,  Catherine  and  Olivier  BERTRAND.  Oscillatory  gamma
activity  in  humans  and  its  role  in  object  representation [online].  1999.
ISBN 1879-307X  (Electronic)n1364-6613  (Linking).  Available
at: doi:10.1016/S1364-6613(99)01299-1

[33] RAY, Supratim,  Nathan E CRONE, Ernst NIEBUR, Piotr J  FRANASZCZUK
and Steven S HSIAO. Neural correlates of high-gamma oscillations (60-200 Hz)
in  macaque  local  field  potentials  and  their  potential  implications  in
electrocorticography.  The Journal  of  neuroscience :  the official  journal  of  the 
Society for Neuroscience [online]. 2008, vol. 28, pp. 11526–11536. ISSN 0270-
6474. Available at: doi:10.1523/JNEUROSCI.2848-08.2008

[34] WILSON,  M  A  and  B  L  MCNAUGHTON.  Reactivation  of  hippocampal
ensemble  memories  during  sleep.  Science  (New  York,  N.Y.) [online].  1994,
vol. 265,  pp. 676–679.  ISSN 0036-8075.  Available
at: doi:10.1126/science.8036517

[35] JADHAV,  S.  P.,  C.  KEMERE,  P.  W.  GERMAN and  L.  M.  FRANK.  Awake
Hippocampal  Sharp-Wave  Ripples  Support  Spatial  Memory [online].  2012.
ISBN 0036807510959203. Available at: doi:10.1126/science.1217230

[36] SULLIVAN,  David,  Jozsef  CSICSVARI,  Kenji  MIZUSEKI,  Sean
MONTGOMERY, Kamran DIBA and György BUZSÁKI. Relationships between
hippocampal  sharp  waves,  ripples,  and  fast  gamma  oscillation:  influence  of
dentate and entorhinal cortical activity. The Journal of neuroscience : the official 
journal of the Society for Neuroscience [online]. 2011, vol. 31, pp. 8605–8616.
ISSN 0270-6474. Available at: doi:10.1523/JNEUROSCI.0294-11.2011

80



[37] AXMACHER, Nikolai, Christian E ELGER and Juergen FELL. Ripples in the
medial temporal lobe are relevant for human memory consolidation.  Brain : a 
journal of neurology [online]. 2008, vol. 131, pp. 1806–1817. ISSN 1460-2156.
Available at: doi:10.1093/brain/awn103

[38] BRAGIN, Anatol, J ENGEL, C L WILSON, I FRIED and György BUZSÁKI.
High-frequency oscillations in human brain. Hippocampus [online]. 1999, vol. 9,
no. 2,  pp. 137–42.  ISSN 1050-9631.  Available  at: doi:10.1002/(SICI)1098-
1063(1999)9:2<137::AID-HIPO5>3.0.CO;2-0

[39] ENGEL, Jerome, Anatol BRAGIN, Richard J STABA and Istvan MODY. High-
frequency oscillations: what is normal and what is not? Epilepsia [online]. 2009,
vol. 50,  no. 4,  pp. 598–604 [accessed. 2014-01-22].  ISSN 1528-1167. Available
at: doi:10.1111/j.1528-1167.2008.01917.x

[40] MATSUMOTO,  Joseph  Y,  Matt  STEAD,  Michal  T.  KUCEWICZ,  Andrew  J
MATSUMOTO,  Pierce  a  PETERS,  Benjamin  H  BRINKMANN,  Jane  C
DANSTROM, Stephan J GOERSS, W Richard MARSH, Fred B MEYER and
Gregory  a  WORRELL.  Network  oscillations  modulate  interictal  epileptiform
spike rate during human memory. Brain : a journal of neurology   [online]. 2013,
vol. 136,  no. Pt  8,  pp. 2444–56  [accessed. 2013-11-08].  ISSN 1460-2156.
Available at: doi:10.1093/brain/awt159

[41] STABA, Richard J, Charles L WILSON, Anatol BRAGIN, Itzhak FRIED and
Jerome ENGEL. Quantitative Analysis of High-Frequency Oscillations (80 − 500
Hz) Recorded in Human Epileptic Hippocampus and Entorhinal Cortex. Journal
of neurophysiology. 2002, vol. 88, pp. 1743–1752. 

[42] WORRELL, Gregory A, Andrew B GARDNER, S Matt STEAD, Sanqing HU,
Steve GOERSS, Gregory J CASCINO, Fredric B MEYER, Richard MARSH and
Brian LITT. High-frequency oscillations in human temporal lobe: simultaneous
microwire and clinical macroelectrode recordings. Brain [online]. 2008, vol. 131,
no. Pt 4, pp. 928–937. Available at: doi:10.1093/brain/awn006.High-frequency

[43] JACOBS,  Julia,  Pierre  LEVAN,  Claude-Edouard  CHÂTILLON,  André
OLIVIER, François DUBEAU and Jean GOTMAN. High frequency oscillations
in  intracranial  EEGs  mark  epileptogenicity  rather  than  lesion  type.  Brain :  a 
journal  of  neurology [online].  2009,  vol. 132,  no. Pt  4,  pp. 1022–37
[accessed. 2013-11-25].  ISSN 1460-2156.  Available
at: doi:10.1093/brain/awn351

81



[44] BAGSHAW, Andrew P, Julia JACOBS, Pierre LEVAN, François DUBEAU and
Jean GOTMAN. Effect  of sleep stage on interictal  high-frequency oscillations
recorded from depth macroelectrodes in patients with focal epilepsy.  Epilepsia
[online].  2009,  vol. 50,  no. 4,  pp. 617–28  [accessed. 2014-01-22].  ISSN 1528-
1167. Available at: doi:10.1111/j.1528-1167.2008.01784.x

[45] BRÁZDIL,  Milan,  Josef  HALÁMEK, Pavel  JURÁK, Pavel  DANIEL, Robert
KUBA, Jan CHRASTINA, Zdenek NOVÁK and Ivan REKTOR. Interictal high-
frequency oscillations indicate seizure onset zone in patients with focal cortical
dysplasia.  Epilepsy  research [online].  2010,  vol. 90,  no. 1-2,  pp. 28–32
[accessed. 2014-01-22].  ISSN 1872-6844.  Available
at: doi:10.1016/j.eplepsyres.2010.03.003

[46] CRÉPON,  Benoît,  Vincent  NAVARRO,  Dominique  HASBOUN,  Stéphane
CLEMENCEAU,  Jacques  MARTINERIE,  Michel  BAULAC,  Claude  ADAM
and Michel LE VAN QUYEN. Mapping interictal oscillations greater than 200
Hz  recorded  with  intracranial  macroelectrodes  in  human  epilepsy.  Brain :  a 
journal  of  neurology [online].  2010,  vol. 133,  no. Pt  1,  pp. 33–45
[accessed. 2014-01-22].  ISSN 1460-2156.  Available
at: doi:10.1093/brain/awp277

[47] JACOBS,  Julia,  Maeike  ZIJLMANS,  Rina  ZELMANN,  Claude-Edouard
CHATILLON,  Jeffrey  HALL,  André OLIVIER,  François  DUBEAU and Jean
GOTMAN. High-frequency electroencephalographic  oscillations  correlate  with
outcome of epilepsy surgery.  Annals of neurology [online]. 2010, vol. 67, no. 2,
pp. 209–20  [accessed. 2014-01-11].  ISSN 1531-8249.  Available
at: doi:10.1002/ana.21847

[48] WU, J Y, R SANKAR, J T LERNER, Joseph Y MATSUMOTO, H V VINTERS
and G W MATHERN. Removing interictal fast ripples on electrocorticography
linked  with  seizure  freedom  in  children.  Neurology [online].  2010,  vol. 75,
no. 19,  pp. 1686–94  [accessed. 2014-01-29].  ISSN 1526-632X.  Available
at: doi:10.1212/WNL.0b013e3181fc27d0

[49] GROSS, D W and J GOTMAN. Correlation of high-frequency oscillations with
the sleep-wake cycle and cognitive activity in humans.  Neuroscience [online].
1999,  vol. 94,  no. 4,  pp. 1005–18.  ISSN 0306-4522.  Available
at: http://www.ncbi.nlm.nih.gov/pubmed/10625043

[50] WORRELL,  Gregory  A,  Landi  PARISH,  Stephen  D  CRANSTOUN,  Rachel
JONAS, Gordon BALTUCH and Brian LITT. High-frequency oscillations and
seizure generation in neocortical epilepsy. Brain : a journal of neurology   [online].
2004, vol. 127, no. Pt 7, pp. 1496–506 [accessed. 2014-01-22]. ISSN 0006-8950.
Available at: doi:10.1093/brain/awh149

82



[51] GARDNER,  Andrew  B,  Gregory  A  WORRELL,  Eric  MARSH,  Dennis
DLUGOS and Brian LITT. Human and automated detection of high-frequency
oscillations  in  clinical  intracranial  EEG  recordings.  Clinical  Neurophysiology
[online]. 2007, vol. 118, pp. 1134–1143. 

[52] BLANCO, Justin A, S Matt STEAD, Abba KRIEGER, Jonathan VIVENTI, W
Richard  MARSH,  Kendall  H  LEE,  Gregory  A WORRELL and  Brian  LITT.
Unsupervised classification of high-frequency oscillations in human neocortical
epilepsy  and  control  patients.  Journal  of  neurophysiology [online].  2010,
vol. 104,  no. 5,  pp. 2900–2912  [accessed. 2013-10-24].  ISSN 1522-1598.
Available at: doi:10.1152/jn.01082.2009

[53] PEARCE,  Allison,  Drausin  WULSIN,  Justin  A BLANCO,  Abba  KRIEGER,
Brian  LITT and William C STACEY.  Temporal  changes  of  neocortical  high-
frequency  oscillations  in  epilepsy.  Journal  of  neurophysiology [online].  2013,
vol. 110, no. 5, pp. 1167–79 [accessed. 2013-10-26]. ISSN 1522-1598. Available
at: doi:10.1152/jn.01009.2012

[54] ZELMANN,  Rina,  F  MARI,  Julia  JACOBS,  Maeike  ZIJLMANS,  Rahul
CHANDER  and  J  GOTMAN.  Automatic  detector  of  High  Frequency
Oscillations  for  human  recordings  with  macroelectrodes.  In: 32nd  Annual
International  Conference  of  the  IEEE  EMBS.  2010,  p. 2329–2333.
ISBN 9781424441242. 

[55] NELSON,  Ryan,  Stephen  M MYERS,  Jennifer  D SIMONOTTO,  Michael  D
FURMAN,  Mark  SPANO,  Wendy  M  NORMAN,  Zhao  LIU,  Thomas  B
DEMARSE,  Paul  R  CARNEY  and  William  L  DITTO.  Detection  of  high
frequency oscillations with Teager energy in an animal model of limbic epilepsy.
In: Conference  proceedings :  ...  Annual  International  Conference  of  the  IEEE 
Engineering in Medicine  and Biology Society.  IEEE Engineering in Medicine
and Biology Society. Conference. 2006, p. 2578–2580. ISBN 1424400333. 

[56] MARAGOS,  Petros,  James  F.  KAISER  and  Thomas  F.  QUATIERI.  On
Amplitude and Frequency Demodulation Using Energy Operators.  Transactions
on signal processing. 1993, vol. 41, no. 4, pp. 1532–1550. 

[57] DÜMPELMANN,  Matthias,  Julia  JACOBS,  Karolin  KERBER  and  Andreas
SCHULZE-BONHAGE. Automatic 80-250Hz ‘ripple’ high frequency oscillation
detection in invasive subdural grid and strip recordings in epilepsy by a radial
basis function neural network.  Clinical neurophysiology : official journal of the 
International  Federation of  Clinical  Neurophysiology [online].  2012, vol. 123,
no. 9,  pp. 1721–31  [accessed. 2016-01-16].  ISSN 1872-8952.  Available
at: doi:10.1016/j.clinph.2012.02.072

83



[58] LÓPEZ-CUEVAS,  Armando,  Bernardino  CASTILLO-TOLEDO,  Laura
MEDINA-CEJA, Consuelo VENTURA-MEJÍA and Kenia PARDO-PEÑA. An
algorithm for on-line detection of high frequency oscillations related to epilepsy.
Computer methods and programs in biomedicine [online]. 2013, vol. 110, no. 3,
pp. 354–60  [accessed. 2013-10-26].  ISSN 1872-7565.  Available
at: doi:10.1016/j.cmpb.2013.01.014

[59] PINCUS, Steven M. Approximate entropy as a measure of system complexity.
In: Proceedings of National Academy of Sciences 1991.

[60] LIANG,  Sheng-Fu,  Kuo-Tien  LEE,  Yu-Hsiang  PAN and  Yung-Hung  WANG.
Fast  computation  of sample entropy and approximate entropy in biomedicine.
Computer Methods and Programs in Biomedicine [online]. 2011, vol. 104, no. 3,
pp. 382–396  [accessed. 2013-10-26].  ISSN 1872-7565.  Available
at: doi:10.1016/j.cmpb.2010.12.003

[61] CHAIBI,  Sahbi,  Zied  SAKKA,  Tarek  LAJNEF,  Mounir  SAMET  and
Abdennaceur  KACHOURI.  Automated  detection  and  classification  of  high
frequency oscillations (HFOs) in human intracereberal EEG. Biomedical Signal
Processing  and  Control [online].  2013,  vol. 8,  no. 6,  pp. 927–934
[accessed. 2014-02-14].  ISSN 17468094.  Available
at: doi:10.1016/j.bspc.2013.08.009

[62] BIROT, Gwénaël, Amar KACHENOURA, Laurent ALBERA, Christian BÉNAR
and  Fabrice  WENDLING.  Automatic  detection  of  fast  ripples.  Journal  of
neuroscience  methods [online].  2013,  vol. 213,  no. 2,  pp. 236–49
[accessed. 2016-01-16].  ISSN 1872-678X.  Available
at: doi:10.1016/j.jneumeth.2012.12.013

[63] BURNOS,  Sergey,  Peter  HILFIKER,  Oguzkan  SÜRÜCÜ,  Felix
SCHOLKMANN,  Niklaus  KRAYENBÜHL,  Thomas  GRUNWALD  and
Johannes SARNTHEIN. Human intracranial high frequency oscillations (HFOs)
detected by automatic time-frequency analysis.  PloS one [online]. 2014, vol. 9,
no. 4,  p. e94381  [accessed. 2016-01-16].  ISSN 1932-6203.  Available
at: doi:10.1371/journal.pone.0094381

[64] ZELMANN,  Rina,  F  MARI,  Julia  JACOBS,  Maeike  ZIJLMANS,  François
DUBEAU  and  Jean  GOTMAN.  A  comparison  between  detectors  of  high
frequency oscillations.  Clinical Neurophysiology [online]. 2012, vol. 123, no. 1,
pp. 106–116  [accessed. 2013-10-26].  ISSN 1872-8952.  Available
at: doi:10.1016/j.clinph.2011.06.006

84



[65] DÜMPELMANN,  Matthias,  Julia  JACOBS,  Karolin  KERBER  and  Andreas
SCHULZE-BONHAGE. Automatic 80-250Hz ‘ripple’ high frequency oscillation
detection in invasive subdural grid and strip recordings in epilepsy by a radial
basis function neural network.  Clinical neurophysiology : official journal of the 
International  Federation of  Clinical  Neurophysiology [online].  2012, vol. 123,
no. 9,  pp. 1721–31.  ISSN 1872-8952.  Available
at: doi:10.1016/j.clinph.2012.02.072

[66] TRAVNICEK, Vojtech.  Interactive spatial visualisation of eeg parameters from
depth intracranial electrodes in CT/MRI images. B.m., 2015. Brno University of
Technology. 

[67] CIMBALNIK, Jan, Michal T. KUCEWICZ and Gregory a WORRELL. Interictal
high-frequency  oscillations  in  focal  human  epilepsy.  Current  Opinion  in
Neurology [online]. 2016, no. February, pp. 175–181. ISSN 1350-7540. Available
at: doi:10.1097/WCO.0000000000000302

[68] KUCEWICZ, Michal T., Jan CIMBALNIK, Joseph Y MATSUMOTO, Benjamin
H BRINKMANN, Mark R BOWER, Vincent VASOLI, Vlastimil SULC, Fred
MEYER,  W  R  MARSH,  S  M  STEAD  and  Gregory  a  WORRELL.  High
frequency  oscillations  are  associated  with  cognitive  processing  in  human
recognition  memory.  Brain :  a  journal  of  neurology   [online].  2014,  pp. 1–14
[accessed. 2014-06-15].  ISSN 1460-2156.  Available
at: doi:10.1093/brain/awu149

85



LIST OF SYMBOLS, VARIABLES AND 

ABBREVIATIONS

EEG Electroencephalograph

AED Anti-epileptic drug

iEEG Intracranial EEG

sEEG Stereo EEG

SOZ Seizure onset zone

MRI Magnetic resonance imaging

CT Computed tomography

fMRI Functional magnetic resonance imaging

PET Positron emission tomography

SPECT Single photon emission tomography

MEG Magnetoencephalography

HFO High-frequency oscillation

ROC Receiver operating curve

AUC Area under the curve

FNUSA St. Anne's University Hospital in Brno

ICU Intensive care unit

LFP Local field potential

FFP Far field potential
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Supplement 1:  Block diagram of line-length algorithm.

88
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Supplement 4: HFO rates during sleep.

Top – whole recording, middle – sleep part of the recording, bottom – slow wave part of the recording. Red – HFO rate in SOZ channels, blue –

HFO rate in nonSOZ channels, black – hypnogram. Note the oscillatory peaks in HFO rates that correlate with slow wave sleep (green arrows) and

even with slight changes in hypnogram (teal arrows).


