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Abstract
This thesis deals with synthesis and optimization methods of polymorphic circuits. Or-
dinary and multi-functional synthesis and optimization methods are discussed. The main
objective of this thesis is to introduce novel methodologies for scalable synthesis of multi-
functional digital circuits. Despite the fact that several approaches have been proposed
during recent years, those are applicable for small-scale circuits only or are based on vari-
ous evolution-inspired techniques. Obviously, scalable synthesis methodology for complex
multi-functional circuits does not exist yet. The proposed methodology is based on And-
Inverter Graphs (AIGs) with built-in extension for multi-functional circuits where the em-
ployment of rewriting techniques reduces the area by sharing common resources of two
different input circuits. Experiments performed on publicly available benchmark circuits
demonstrate significant optimization achievements.

Abstrakt
Tato práce se zabývá metodami logické syntézy a optimalizací pro polymorfní obvody. V
práci jsou jak diskutovány existující metody pro konvenční obvody, tak i představeny nové
metody, aplikovatelné na polymorfní elektroniku. Hlavním přínosem práce je představení
nových metod optimalizace a logické syntézy pro polymorfní obvody. Přesto, že v min-
ulých letech byly představeny metody pro návrh polymorfních obvodů, jsou tyto metody
založené na evolučních technikách nebo nejsou dobře škálovatelné. Z toho vyplývá, že
stále neexistuje stabilní metodika pro návrh složitějších polymorfních obvodů. Tato práce
představuje zejména reprezentaci polymorgních obvodů a metodiku pro jejich návrh za-
loženou na And-Inverter grafech. Na polymorfní obvody reprezentované pomocí AIG je
možné aplikovat známé techniky jako například přepisování [rewriting]. Nasazením tech-
niky přepisování na polymorfní AIG získáme obvod, obsahující polymorfní prvky uvnitř
obvodu, a je možné dosáhnout značných úspor prostředků, které mohou být sdíleny mezi
dvěma funkcemi současně. Ověření návrhové metodiky pro polymorfní obvody bylo prove-
deno nad sadou veřejně dostupných obvodů, čímž je demonstrována efektivita metodiky.
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Rozšířený abstrakt
Rozvoj číslicové techniky v šedesátých letech minulého století otevíral vědě nový, nepro-
zkoumaný prostor. Nová technologie nabízela nové otázky, na které nebyly známé odpovědi
a bylo nutné poznávat a pozorovat chování nových materiálů, ze kterých byla vyrobena
logická hradla. S rostoucí integrací byly také kladeny požadavky na vhodné nástroje, po-
mocí kterých se z hradel navrhovaly složitější číslicové obvody. Nyní, po více než 60 letech
existence číslicových obvodů, lze předpokládat existenci efektivních návrhových nástrojů,
jejichž vývoj se stabilizoval a dnes už nedochází k tak bouřlivému rozvoji, jako v počátcích
číslicové techniky.
Ano, toto tvrzení je zcela pravdivé, hovoříme-li o běžných číslicových obvodech. Avšak v
roce 2001 představil A. Stoica moderní pojem “polymorfní elektronika”, čímž otevřel další
nepříliš prozkoumanou vědeckou oblast [106]. Jde o vícefunkční číslicové obvody, u kterých
změna funkce není vyvolána přepínačem nebo rekonfigurací, jak je tomu známo u konvenční
elektroniky. Namísto toho je změna funkce vyvolána uvnitř číslicového obvodu v závislosti
na externím prostředí (teplota, světlo, ...) [105]. Objev polymorfní elektroniky s sebou
přinesl nové technologie a otázky týkající se efektivního návrhu polymorfních obvodů.
Materiály, které dříve byly považovány za nestabilní a tudíž nepoužitelné, nacházejí uplat-
nění právě v polymorfní elektronice. Je možné sledovat značný pokrok ve vývoji grafenu,
křemíkových nanotrubiček a organických materiálů [85] [73]. Jedná se tak o velmi mladou
věděckou disciplínu nabízející mnoho disertabilních témat.
Bohužel, konvenční návrhové metody a algoritmy nejsou dobře použitelné pro návrh poly-
morfních obvodů. Metody syntézy pro návrh polymorfních obvodů jsou mnohem složitější
než metody syntézy konvenční elektroniky. Touto problematikou se již zabývalo několik
výzkumníku, avšak dosud objevené syntézní metody nejsou natolik efektivní jako metody
pro návrh konvenční elektroniky. Tato situace vyžaduje výzkum a vývoj nových, lepších a
efektivnějších návrhových metod pro polymorfní obvody. Největší přínos polymorfní elek-
troniky je spatřován ve sdílení prostředků realizovaných funkcí v co největší možné míře.
Je snahou objevovat metody, které budou generovat polymorfní obvody splňující tento
předpoklad. Syntézní algoritmy pracují s obvody, nejčastěji reprezentovanými pravdivostní
tabulkou, logickým výrazem, či binárním rozhodovacím diagramem. Výstupem by měla být
co nejjednodušší reprezentace obvodu.
Cílem této práce je obecně představit polymorfní elektroniku a její otevřené problémy
(kap. 4), návrhové techniky konvenčních obvodů (kap. 2) a současné návrhové techniky poly-
morfních obvodů (kap. 5). Práce představuje tři techniky sloužící k návrhu polymorfních
obvodů (kap. 7 a kap. 6).
Jedním z hlavních přínosů práce je představení nové reprezentace polymorfních obvodů
PAIG, díky které je možné reprezentovat polymorfní obvody v And-Inverter grafu. Na
tuto novou reprezentaci je možné aplikovat již existující optimalizační metody, známé jako
strukturální hashování či přepisování [rewriting], ale i další. Právě rewriting byl přizpůsoben
tak, aby jej bylo možné spustit na reprezentaci PAIG za účelem optimalizace výsledného
polymorfního obvodu a propagace polymorfních prvků do nitra obvodu. Práce prezentuje
výsledky vykazující efektivitu metodiky a navrhuje další rozšíření.
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Chapter 1

Introduction

Reconfigurability as a phenomenon in the world of digital circuits brings more efficient
ways to implement certain applications, opens new possibilities and also allows new appli-
cations of electronics. As a matter of fact, it makes hardware more flexible. Flexibility is
one of the features that make software so popular as a way to implement various systems.
But a wide range of applications still needs to be implemented in hardware. So the hard-
ware reconfiguration is (and will be henceforward) very important for significant number
of applications.

Typical implementation of the hardware reconfiguration consists of a field of reconfig-
urable elements, a controller, and memory that serves as a storage for different configura-
tions [10]. The field of reconfigurable elements usually assumes various granularity levels -
from coarse-grained elements like functional units or data processing units on RT level to
transistor-level fine-grained field of elements. This allows not only the classic reconfiguration
scheme (the hardware changes its structure and behavior according to the configurations
prepared beforehand), but also effective implementation of so-called evolvable hardware
(new configurations are being created as a direct response to actual circumstances) [62].

Another (and quite different) concept of hardware reconfiguration was proposed by
Stoica et al. under the term ”Polymorphic Electronics“ [106]. In this concept polymor-
phic circuits have a permanent structure (interconnections are fixed) and each element (or
selected group of elements) of the circuit is sensitive to certain environmental factors (tem-
perature, variation of supply voltage, etc.). Then, the function of a polymorphic circuit
changes instantaneously in accordance with those specific factors. If these elements are
efficiently implemented and the synthesis of the circuit is properly done, the resulting cir-
cuit will be highly efficient. Let me also note that due to the multi-functional nature of
individual elements, synthesis of polymorphic circuits is much more complex than synthesis
of an ordinary digital circuit.

1.1 Research motivation
It is possible to identify two main issues, which still significantly hinder more extensive
adoption of polymorphic electronics as a technique for reconfigurable circuits. The first
one results from a lack of suitable polymorphic components on all levels of synthesis. As
the majority of polymorphic circuits have been designed on a gate level, the most-wanted
polymorphic components are naturally polymorphic gates. Several useful polymorphic gates
were proposed during the last decade [90] and some prospective sets of multi-functional
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gates are emerging even today [77]. The second issue is dealing with multi-functional
circuit synthesis using those polymorphic components. As the problem of polymorphic
circuit synthesis is relatively hard to address in a conventional way, many of the previously
devised polymorphic circuits have been synthesized using evolutionary principles (EA, CGP
etc.). Time needed to evolve a result grows dramatically with complexity of a circuit and
probability of obtaining reasonable and efficient implementation drops at the same time.

1.2 Thesis organization
Brief introduction to digital circuit design is reviewed in the following section 1.3. The
section explains integrated circuits design flow from system specification to physical device.
The design flow is demonstrated on a well known Y-chart, where logic synthesis phase takes
place. Consequently, the logic synthesis phase is discussed.

Chapter 2 presents existing methods and principles of ordinary logic synthesis and
optimization algorithms. Metrics and other terms, that are used further in this thesis, are
established. Two-level and multi-level methods are discussed. Subsequently, And-Inverter
Graphs, a key scheme of the thesis, is analyzed in detail in chapter 3.

A term polymorphic electronics is first mentioned in chapter 4. The chapter describes
evolution of polymorphic electronics and current situation in the field since its introduc-
tion in 2001. Principles, ideas and manufacture of polymorphic electronics are discussed,
together with application scenarios and open issues. Chapter 5 describes state of the art of
currently known synthesis methods for polymorphic circuits.

Next chapter 6 describes proposed two-level synthesis and optimization methods for
polymorphic circuits. The first mentioned method is based on boolean algebra optimizations
in order to design polymorphic circuit having NAND/NOR polymorphic gates (section 6.1).
The second method is suitable for detection of common parts in logic expression and thus
finding differences in a desired polymorphic circuit (section 6.2).

The main contribution of this thesis is presented in chapter 7. In the beginning, a
novel, multi-level representation for polymorphic circuits is introduced. The innovative
representation is an extension of AIG, in order to add capability to handle polymorphic
circuits. The chapter continues with a proposal of polymorphic-AIG (PAIG) rewriting of
polymorphic circuits. Its aim is to optimize a PAIG network.

Major experiments related to PAIG rewriting are described in chapter 8 in detail. The
chapter consists of four sections, where the first (section 8.1) optimizes one desired circuit
with polymorphic behavior. The second section (section 8.2) focuses on optimization of two
independent circuits in polymorphic mode. The second experiment The third experiment
(section 8.3) compares PAIG rewriting that allows KL-cuts to PAIG rewriting which permits
K-cuts only. The last one (section 8.4) compares the PAIG rewriting with the most famous
synthesis method PolyBDD.

Conclusion, thesis contributions and suggestions for future research are discussed in
chapter 9.

1.3 Digital circuits design background
In general, an electronic device is a composition of basic electronic components such as
resistors, capacitors, inductors, diodes, and transistors interconnected with wires. Inter-
connection of mentioned components with wires creates an electronic circuit with an ability
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to perform simple or complex operations such as computation, signal amplifying, data trans-
fer, etc. Electronics can be divided into these groups: digital electronics, analog electronics
and mixed electronics, which is mix of both previously mentioned [3].

Digital electronics is a subset of electronics, that operates on digital signals. A high-
light of digital electronics in comparison to analog electronics is that digital signals can be
transmitted without degradation caused by noise. For example, it is possible to reconstruct
an audio signal transmitted as a sequence of ones and zeros without any damage, assuming
that noise is not strong enough to prevent recognition of the zeros and ones in the sequence
[46]

Electrical signals appearing in digital circuits are discrete and represent logic values.
These values represent information that is usually further processed. In most of cases,
binary logic is applied: One voltage level (typically positive value) represents logical ’1’,
another voltage level (usually zero voltage) represents logical ’0’. Digital circuits are built
from logic gates (gates are built from transistors usually) and these gates offer functions
of boolean algebra, such as AND, NAND, OR, NOR, XOR, XNOR etc. Combination and
interconnection of these elementary gates can represent combinatorial digital circuit. [45]

Digital circuits can be divided in two groups: combinatorial and sequential circuits.
Outputs of combinatorial digital circuits depend on and only on values attached to circuit
inputs. Sequential digital circuits compute an output value based on values attached to
circuit inputs and also on internal state of the sequential circuit. It suggests, the sequential
circuits are enriched with memory, which can keep an internal state of a sequential circuit.
For the purposes of this thesis, only combinatorial circuits will be discussed in the further
text.

Nowadays, nearly all the computing machines are internally based on some variant
of a digital circuit. From a formal point of view, its composition can be described in a
straightforward way through the following definition [92] below, where its depicted as a
variant of acyclic graph:

Definition 1. Digital circuit
Let 𝐾 be a set of functional blocks (e.g. logic gates), and let 𝐺 is an acyclic graph 𝐺 =
(𝑉,𝐸). Then, a digital circuit is 𝐶 = (𝑉,𝐸, 𝜙), where

∙ 𝑉 is set of nodes (I/O ports of logic gates),

∙ 𝐸 = {(𝑎, 𝑏)|𝑎, 𝑏 ∈ 𝑉 } is a set of edges (interconnections),

∙ 𝜙 denotes a projection that assigns to each vertex from 𝑉 a component from the set
𝐾, 𝜙 : 𝑉 → 𝐾.

The definition 1 describes a structural description of a digital circuit on logical level in
Y-chart. The term Y-chart is explained a few paragraphs below. The structural description
is used for the purposes of this thesis.

In its most simple valid composition, a digital circuit may consist of a single logic gate
or similar fundamental element. It’s necessary to point out that in a real situation a circuit
would be comprised of potentially high number of mutually interconnected logic blocks (or
other substantial parts for its flawless operation).

It involves a term VLSI - Very Large Scale Integration, which means a process of cre-
ating an integrated circuit by combining millions of logic gates onto a single integrated
circuit. VLSI began in the 1970s when integrated circuits were widely expanded, enabling
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the development of complex semiconductor technologies. It is good to mention that mi-
croprocessors and memory chips are created by VLSI process. Before the introduction of
VLSI technology, most integrated circuits had a limited set of functions they could perform.
An electronic circuit might consist of a CPU, ROM, RAM and other glue logic. VLSI lets
integrated circuits designers add all of these into one chip.

For development of integrated circuits, a Y-chart (also known as Gajski-Kuhn chart) is
mostly used. Y-chart was developed in 1983 by Daniel Gajski and Robert Kuhn. The chart,
visible in figure 1.1, represents the hardware development view as three domains that are
depicted as three axises (behavioral, structural and physical) and looks like an Y. Along
these axises, the abstraction levels describe the degree of abstraction. The outer shells
are generalizations, the inner ones refinements of the same subject. Abstraction levels are
illustrated in a figure 1.2 and also figure 1.1 presents the mentioned Y-chart. The system
level describes the most abstract layer, such as processors or SoC’s (System-On-Chip).
Register Transfer Level describes digital circuits using registers (e.g. adder), logic level
works with gates and circuit level operates with transistors.

Physical axis binds the structure to silicon. It specifies a Printed Circuit Board (PCB)
layout or integrated circuit layout [75].

Behavioral axis reflects how a desired circuit should respond to a given input vector.
Behavior may be specified by truth tables, Boolean equations, algorithms or any hardware
description languages (HDLs) [75].

Structural axis describes how components are interconnected to perform a desired
function. This representation uses a list of components and their interconnections [75].

The thesis content can be put to logic level, where gates are representatives of structural
axis and Boolean expressions of behavioral axis.

Figure 1.1: Y-chart [75].

1.3.1 Logic synthesis and optimization

On the basis given by Y-chart, a design of digital circuits is following the flow from outer
shell inwards of Y-chart. To reach a systematic design of VLSI circuits, IC (Integrated
circuit) design flow comes out from the Y-chart. IC design flow uses a limited set of
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Figure 1.2: Abstraction levels in Y-chart [83].

Figure 1.3: Design flow.

digital logic gates (a cell library), and the process can be divided into five parts: System
specification, High-Level synthesis, Logic synthesis, Physical synthesis and Tape out.

∙ System specification simply describes the functional and non-functional requirements
posed on a system element.

∙ High-Level synthesis makes a transformation at an architectural level, transforming
an algorithmic description into an RTL.
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∙ Logic synthesis performs a transformation from a behavioral circuit description into
a netlist of logic gates of target technology [61].

∙ Physical synthesis (also known as Low-Level Synthesis) is responsible for transforma-
tion of a netlist, obtained from logic synthesis, into a set of geometric shapes and
layers to be manufactured.

∙ Tape out is the final result of the design process for integrated circuits or printed
circuit boards before they are sent for manufacturing.

A design flow is clearly illustrated in figure 1.3. The figure covers all mentioned ab-
straction layers with processes, that are applied in digital circuit design. The logic synthesis
block is highlighted and expanded, because the block is essential for this thesis. Logic syn-
thesis flow can be also divided into at least three parts: Translation, optimization and
technology mapping:

∙ Translation
A Register Transfer circuit description is transferred to input format of synthesis tool
like PLA (Programmable Logic Array), BLIF (Berkeley Logic Interchange Format),
Aiger, etc.

∙ Optimization
An input is optimized by a synthesis tool. Synthesis tool produces an optimized
result/circuit description.

∙ Technology mapping
An optimized description is mapped onto target technology, where target technology
elements are specified by a mapping library. The result is a Netlist on the gate level
of target technology.

The term logic synthesis is a very important topic in EDA (Electronic Design Au-
tomation) area [53]. The logic synthesis is a transformation process of a circuit behavioral
description into an optimized gate-level representation, i.e. a netlist of gates for a target
technology. Main goals of logic synthesis are optimizations, typically area, delay and power
optimizations, where these steps are common for two-level and multi-level representations
and also for ordinary and multi-functional circuits. The logic synthesis methods attempt
to minimize the number of required components, power consumption and delay of signal
delivery.
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Chapter 2

Overview of optimization methods

This chapter deals with design and optimization of ordinary combinatorial digital circuits,
because the main thesis contribution is logic synthesis and optimization of polymorphic
circuits. The most known design and optimization methods are discussed in a following
text [119].

Optimization phase clings on optimization methods, which can be categorized into three
groups, namely algebraic, graphic and algorithmic.

Algebraic methods take advantage of Boolean algebra laws, where a logic formula is
optimized by sequential application of axioms and theorems of Boolean algebra.

Graphical methods are usually based on Boolean neighborhood. A logic function is pro-
jected graphically, where an engineer can see particular structures, which can be optimized.
For example unit cube, Venn’s diagrams, Karnaugh’s and Svoboda’s maps.

The last kind are algorithmic methods. Algorithmic methods are also based on Boolean
neighborhood, but in comparison to graphical methods, it is possible to process optimization
by computer. Typical algorithmic methods are Quine McCluskey and Espresso.

2.1 Optimization metrics
The categories of optimization methods has been introduced in the previous section. How-
ever, it is appropriate to deploy a quality evaluation of optimized expression. Quality of
optimized expressions can be evaluated according to various criteria:

1. Size of a circuit: Size of a circuit can be measured as a number of logic gates AND,
OR, NOT, . . . used in a circuit implementation. The most common gates used in
industry are two input NAND gates, which are the most widespread in gate fields.

2. Delay of a circuit: Propagation delay or gate delay is the length of time interval
which starts when an input to a logic gate becomes stable and valid to change, to the
moment that the output of that logic gate is stable and valid to change. Circuit delay
is a sum of times of all gates one after another. Circuit delay can affect performance
and data propagation through circuit.

3. Number of wires: Number of wires can have influence on an area requirements of
circuit implementation. Each wire has physical dimensions, resistance and delay.

4. Power: The last most used criteria is power consumption. Each logic gate requires
specific amount of power to work properly. Material and internal construction of logic
gates have influences to power consumption of digital circuit.
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Some of metrics mentioned above, are technology dependent and thus it is required
to have known target technology during optimization. Because polymorphic electronics
doesn’t have a solid base in technology level, this thesis will use technology independent
metrics such as number of gates, that is usable for wide spread of interested parties.

2.2 Description of logic circuits
A logic optimization process is an algorithm. Algorithm is a finite set of instructions to
perform a computation on input data. In the case of logic optimizations, an algorithm
optimizes a logic circuit given to an algorithm input. Thus, a logic circuit to be optimized
(input data) must have an description format that is passed to optimization algorithm
and optimization operations are applicable on description well. Such logic circuit can be
described in many forms. The first five forms mentions Mr. Wakerly in his publication [119],
where it is also possible to find detailed information. The rest of descriptions are mostly
used for multi-level representation. The following text lists the most common description
of logic functions [119, 42]:

∙ Truth table: For each primary input and primary output exists exactly one column.
Input columns reflects state of primary inputs and output colums reflects all of the
possible results of the logical operation that the table represents. Each row express
one input combination that affects each primary output state.

∙ Disjunctive Normal Form: A logic formula composed of a disjunction of conjuc-
tive clauses. In other words: DNF Boolean function written as a sum of minterms1

(products). It is also known with these names: Sum of products (SOP) or ”OR of
AND’s“.

∙ On-set: List of line numbers of truth table, where function value is logical one. It is
a list of truth table rows, where combination of input variables leads to true function
value. On-set of f is {𝑥|𝑓(𝑥) = 1 = 𝑓−1(1) = 𝑓1}. Denoted by character

∑︀
.

∙ Conjuctive Normal Form: A logic formula composed of a conjunction of dis-
junctive clauses. In other words: CNF is Boolean function written as a product of
maxterms2 (sums). It is also known with these names: Product of Sums (POS) or

”AND of OR’s“.

∙ Off-set: List of line numbers of truth table, where function value is logical zero. It is
a list of truth table rows, where combination of input variables leads to false function
value. Off-set of f is {𝑥|𝑓(𝑥) = 0 = 𝑓−1(0) = 𝑓0}. Denoted by character Π.

∙ Algerbraic expression or formula: An algebraic expression is a mathematical no-
tation that is made up of constants and variables 3, where meaningful relationships are
created by using algebraic operations (eg, addition, multiplication) and parentheses.

1 Minterm: A minterm is a product of literals. More specifically, if there are n variables, 𝑥1, 𝑥2, ..., 𝑥𝑛,
a minterm is a product 𝑦1𝑦2...𝑦𝑛, where 𝑦𝑖 is 𝑥𝑖 or 𝑥𝑖.

2 Maxterm: A maxterm is a sum of literals. More specifically, if there are n variables, 𝑥1, 𝑥2, ..., 𝑥𝑛, a
maxterm is a sum 𝑦1 + 𝑦2 + ... + 𝑦𝑛, where 𝑦𝑖 is 𝑥𝑖 or 𝑥𝑖. Maxterms are not usually used in practice, it is
related to the fact that NAND gates are often used in practice.

3 Variable: Input of Boolean function. Each 𝑘 − 𝑎𝑟𝑦 Boolean function has 𝑘 variables 𝑥1, ..., 𝑥𝑘
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∙ BDD - Binary decision diagrams: Logic function is expressed by directed acyclic
graph structures. Explained later in 2.4.2.

∙ Boolean networks (AIG, MIG, ...): Another variant of directed acyclic graph to
represent a logic function. Also explained later in 3.

This list contains the most known representations of logic functions applicable for two-level
and also multi-level logic functions. Other representations can exist, just as exist derivatives
of listed representations.

2.3 Two-level optimization
Optimization methods can be divided into two groups - two-level optimization and multi-
level optimization methods. For two-level circuits are SOP or POS typical representations
forms. Widely used implementation (format) for this kind of circuits is PLA (Programmable
Logic Array). On the basis of simplicity of the PLA format of a two-level circuits, the opti-
mization tasks are mostly easy to understood. This chapter describes two-level optimization
methods of ordinary circuits.

2.3.1 Boolean function representation

A two-level logic function can be described in many forms. The following list states the
most used two-level forms (enumerated from listing in section 2.2): Truth table, Disjunctive
Normal Form, Conjunctive Normal Form, On-set, Off-set.

Two-level methods generate formulas in disjunctive normal form or in conjunctive nor-
mal form. In contrast, multi-level optimization methods can handle and generate formulas
with deeper immersion, which lead to optimized circuits with a path longer than two gates.

Input of two-level optimization methods is one of the listed representations, i.e. truth
table, algebraic/logic formula or any other equal representation. Basic methods use prin-
ciples of boolean algebra and applying boolean algebra rules as much as possible. For
example, such rules are associativity rule, absorption rule, aggressiveness of zero and one,
idempotent rule and also deMorgan’s rules.

2.3.2 Karnaugh maps

Kaurnaugh map is a graphical method of minimization of Boolean functions. The principal
basis is projection of n-dimensional tabular values into two-dimensional map. Then it is
possible to extract, by human’s pattern recognition capability, a minimal function from the
two-dimensional map [49, 115]. This approach also allows identification and elimination of
potential race conditions. Input variables, typically taken from a truth table, are ordered
with respect to Gray code and inserted into two-dimensional map, where one cell repre-
sents exactly one combination of inputs. Cell value represents the corresponding output
value. When the map is prepared on the basis of previous description, cells are collected
into the largest possible groups containing 2𝑛 cells, where n is a number of variables in a
subexpression. Collected group is a cube4, thus conjuction of variables in a group. Once a
set of cubes is found, a logic sum of them produces a minimized boolean expression.

It is very simple method for minimization of Boolean expression up to 4 variables because
of complexity of two-dimensional map. For more variables, a map becomes harder to read

4 Cube: A cube is defined as the AND of a set of literal functions (conjunction of literals).
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and orient in a map. Thus, Karnaugh maps are still used for optimization of Boolean
expressions, but for resolution of less complex problems or subproblems only.

2.3.3 Quine-McCluskey

The Quine–McCluskey algorithm (or the method of prime implicants) is a method used
for minimization of Boolean functions that was developed by Willard V. Quine and im-
proved by Edward J. McCluskey [80, 81, 60]. The Quine–McCluskey algorithm uses the
same idea as Karnaugh map, however it is based on a tabular representation in contrast
to Karnaugh maps, which uses a graphical representation. The tabular representation al-
lows resolution by computer algorithms and it also produce deterministic way to generate
minimized Boolean function. The method can be divided into two steps: The first step is
finding all prime implicants of the booelan function. The second step is creation of a prime
implicant chart to find the essential prime implicants of the function, as well as other prime
implicants that are necessary to cover the function.

Despite the fact that Quine-McCluskey method is more practical for handling with
more than four input variables in comparsion to Karnaugh maps, the Quine-McCluskey
algorithm has also a limited range of use since the resolution complexity is NP-complete
[114]. The resolution time of Quine-McCluskey algorithm grows exponentialy with number
of input variables.

2.3.4 Espresso

All previously mentioned methods can be considered as basic and exact methods. Methods
produce minimal solutions, but most minimization tasks are too complex to by solved by
these exact algorithms. Rather than a search of minimal function, heuristic methods are
searching a near minimal solution in acceptable time. Espresso is a basic representative
of heuristic methods. The Espresso algorithm follows a completely different approach to
minimization than exact methods. It was developed by Brayton et al. at the University
of California, Berkeley [13]. In a contrast to previous methods, which expand a logic
function into minterms, the algorithm manipulates with ”cubes“, representing the product
terms in the On-set, DC-set5 and Off-set covers iteratively. Despite the fact that the
optimization result is not guaranteed to be the global minimum, in practice this is very
closely approximated, while the solution is always free from redundancy. In comparison to
other mentioned methods, this one is essentially more efficient, reducing memory usage and
computation time by several orders of magnitude.

Espresso algorithm works in three steps:

∙ Reduce - Maximally reduce all cubes, so that a cover is retained.

∙ Expand - Maximally expand all cubes, so that a cover is retained.

∙ Irredundand cover - remove a reduntant cover. Then, repeat these steps to find
alternative reduced implicants.

However, despite the success and good results, Espresso is applicable only to circuits up
to 100 inputs or outputs. To this weakness aims BOOM - Boolean minimizer.

5 DC-set: List of truth table rows, where combination of input variables does not matter output function.
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2.3.5 BOOM - Boolean minimizer

Boolean minimizer (BOOM), introduced by Petr Fišer in 2001 [34], is a two-level minimiza-
tion algorithm based on a new implicant generation paradigm. In comparison to all the
mentioned minimization methods, where the implicants are generated in bottom-up order,
the BOOM algorithm uses a top-down ordering. Thus, a dimension of a term is gradually
decreased by adding new literals 6, instead of increasing the dimensionality of implicants
by omitting literals from their terms. Boolean Minimizer has an ability to optimize logic
functions with thousands variables in reasonable execution time.

2.4 Multi-level optimization
In the real world, computation tasks and requirements for digital circuits are too com-
plex to be covered by two-level circuits. Based on the nature of two-level methods, it is
evident that the two-level optimization and synthesis methods are not applicable to com-
plex circuits in a full range. Thus, multi-level optimization and synthesis methods have an
irreplaceable position here. Due to complexity of multi-level circuits, truth table or Sum-Of-
Products/Products-Of-Sums are not robust enough to describe them, therefore graphical
representation and graph operations are most commonly used. The following text and ex-
amples are based on these publications [31, 42, 44]. Figure 2.1 shows examples of two-level
and multi-level logic circuit.

Figure 2.1: On the left is an example of two-level logic circuit. On the right is an example
of multi-level logic circuit. Both performs the same logic function.

For multi-level optimization, five basic operations are widely know, such as:

∙ Decomposition: decomposing a complex Boolean function into elementary gates from
a given library. i.e. express a single function by a set of functions. Usage of multiple
subexpressions is expected and result need not be in factored form.

Example 1.
𝐹 = 𝑋𝑌 + 𝑋𝑌

𝐹 = 𝑎𝑏𝑐 + 𝑎𝑏𝑑 + 𝑎𝑐𝑑 + 𝑏𝑐𝑑 → 𝑋 = 𝑎𝑏
𝑌 = 𝑐 + 𝑑

6 Literal: A literal is a Boolean variable or the complement of a Boolean variable. For example
𝑥1, 𝑥1, 𝑥2, 𝑥2.

14



∙ Extraction: expressing a set of functions by a set of functions. Extraction extracts
common subexpressions of more functions in comparison to decomposition.

Example 2.

𝐹 = 𝑋𝑌 + 𝑒
𝐹 = 𝑎𝑐𝑑 + 𝑏𝑐𝑑 + 𝑒 𝐺 = 𝑋𝑒
𝐺 = 𝑎𝑒 + 𝑏𝑒 → 𝐻 = 𝑌 𝑒
𝐻 = 𝑐𝑑𝑒 𝑋 = 𝑎 + 𝑏

𝑌 = 𝑐𝑑

∙ Factorization (serial-parallel decomposition): Searching factors, that is create a fac-
tored form from a SOP.

Example 3.
𝐹 = 𝑎𝑏𝑐 + 𝑎𝑏𝑑 + 𝑎𝑐𝑑 + 𝑏𝑐𝑑 → 𝐹 = 𝑎𝑏(𝑐 + 𝑑) + 𝑐𝑑(𝑎 + 𝑏)

∙ Substitution: Express a function using another function.

Example 4.
𝐹 = 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐𝑑 𝐹 = 𝐺𝑎 + 𝐺𝑏
𝐺 = 𝑐 + 𝑑 → 𝐺 = 𝑐 + 𝑑

∙ Collapse (eliminate): expressing a function without using another function (opposite
of substitution). In other words, express a function using primary inputs only or
express a network using a SOP form.

Example 5.
𝐹 = 𝐺𝑎 + 𝐺𝑏 𝐹 = 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐𝑑
𝐺 = 𝑐 + 𝑑 → 𝐺 = 𝑐 + 𝑑

2.4.1 Boolean division

Previously mentioned operations are a basis for algorithmic optimization. However, the
question is how to do all the mentioned operations? Questions ”How to find common
factors?“, ”What factor choose? Which factors are the best?“ or ”How to find shared
expressions?“ are in right place. As a reader can observe from examples, it is all about
searching common subexpressions and it may seem like division by a common divisor.
Unfortunately, ”Boolean division“ doesn’t exists in Boolean algebra. Nevertheless, it is
possible to factor a function into three parts:

𝑓 = 𝑝 * 𝑞 + 𝑟

where 𝑝 is a Boolean divisor, 𝑞 is a quotient and 𝑟 is a remainder. Thanks to this equation,
it is possible to perform boolean division of function 𝑓 by a divisor 𝑝. Thus, the aim is to
find functions (quotient) 𝑞 and remainder 𝑟.

In the previous paragraph it has been mentioned that it is possible to perform boolean
division of a given function 𝑓 and a divisor 𝑝, but how to find the best divisor 𝑝? The
answer is: kerneling.
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Kerneling is a methodology of looking for common subexpressions (divisors) of a given
function 𝑓 . Kernels are divisors 𝑝 for division of an expression 𝑓 . Such kernel is a cube-free
primary divisor. A cube-free expression is an expression without factors:
Example 6.
𝑎𝑏 + 𝑐 is cube free.
𝑎𝑏 + 𝑎𝑐 is not cube free (𝑎 is a divisor).
𝑎𝑏𝑐 is not cube free (𝑎, 𝑏, 𝑐 are a divisors).

Kerneling plays a key role in all mentioned operations (decomposition, factoring, extrac-
tion, substitution), where the best kernel intersections can be used as divisors for boolean
division. It is also important to notice that the kerneling and Boolean division are not the
only existing methods and other decomposition (Boolean) methods already exist, such as
Ashenhurst [8], Curtis [30], Roth and Karp [88], Steinbach [70] or Karplus [50] and others
[52, 84], but description of these boolean decomposition methods exceeds the content of
this thesis.

For a representation of complex boolean functions, logic formulas are not robust enough
and we need something to represent a complex logic network. The following text makes an
introduction of existing, well known, multi-level representation and synthesis methods of
conventional logic synthesis.

2.4.2 Binary Decision Diagrams

The main idea of Binary decision diagrams (BDDs) had grown from Shannon decomposi-
tion, that can be used to split a Boolean function into two simpler subfunctions until the
constant functions 0 and 1 are obtained [32].

BDD is a data structure for representation of a Boolean functions introduced by Lee in
1959 [54, 32], where a function is represented by directed acyclic graph (DAG) composed
of terminal and decision nodes. BDD can be formally defined as follows 2:
Definition 2. Let 𝐺 = (𝑉,𝐸) is a directed, acyclic graph, where 𝑉 is a set of nodes and
𝐸 is set of oriented edges (see definition 1). Then, 𝐺𝐵𝐷𝐷 = (𝑉,𝐸,𝑋) is Binary Decision
Diagram over set of input variables 𝑋 = {𝑥1, . . . , 𝑥𝑛}, if:

∙ 𝐺𝐵𝐷𝐷 has exactly one root 𝑣 ∈ 𝑉 ,

∙ each terminal node in 𝑉 is labeled with a value from {0, 1},

∙ each non-terminal node is labeled with a variable 𝑥𝑖 ∈ 𝑋𝑛 and has exactly two outgoing
edges, whose ends are denoted by 𝑙ℎ𝑠(𝑣) resp. 𝑟ℎ𝑠(𝑣) (𝑙ℎ𝑠(𝑣), 𝑟ℎ𝑠(𝑣) ∈ 𝑉 ). lhs means

”left hand side“ and rhs means ”right hand side“.

Thanks to graph representation of BDDs, many graph operations are applicable to
them. The most of operations are feasible in polynomial time 𝒪(𝑛𝑘) with respect to input
variables, such as conjunction, disjunction and negation.

2.4.3 Ordered Binary Decision Diagram (OBDD)

In order to express functions by BDDs more effectively, a few compact variants exist. The
first one is Ordered Binary Decision Diagram (OBDD). OBDD has ordered input variables,
i.e input variables appear in the same order on all paths from the root node. It is possible
to see complete ordered binary decision diagram in figure 2.2 on the left.

16



Figure 2.2: (OBDD) Complete and ordered binary decision diagram on the left. (ROBDD)
Reduced ordered binary decision diagram on the right. Both graphs represents the same
function.

2.4.4 Reduced Ordered Binary Decision Diagram (ROBDD)

Reduced Ordered Binary Decision Diagram (ROBDD) is another kind of BDD. Reduced
BDD must fulfill two rules:

∙ All isomorphic subgraphs are merged.

∙ All nodes, whose children are isomorphic, are eliminated.

The main advantage of ROBDDs is canonicity7. This property enables usage in functional
equivalence checking and functional technology mapping [14]. ROBDDs are the most com-
monly used BDDs and if BDD is mentioned, in the most cases ROBDD is meant. ROBDD
is shown in figure 2.2 on the right.

2.4.5 Multi-terminal Binary Decision Diagram (MTBDD)

The last kind of BDD, that should be mentioned is Multi-terminal Binary Decision Diagram
(MTBDD). Instead of logic zeros and logic ones, terminals can keep other integer values -
multivalued logic.

2.4.6 And-Inverter graphs

And-inverter graphs (AIGs) are essential for this thesis and therefore AIGs are described
in the next chapter 3 in detail.

2.4.7 Majority-Inverter graphs

Majority-Inverter Graphs (MIGs) are a relatively novel logic representation structure for
efficient optimization of Boolean functions. MIGs were introduced by Luca Amarú in 2014
[5] and can be considered the most effective representation of logic functions today (see
definition 4).

7 Canonical representation: Representation is unique for a particular function and variable order.

17



MIG is a directed acyclic graph (DAG) composed of three-input majority nodes and
regular/inverted edges.
Definition 3. Majority operator is a function 𝑀(𝑎, 𝑏, 𝑐), where 𝑎, 𝑏, 𝑐 are input Boolean
variables. When a sum of positive logic values is higher than a sum of negative logic values,
operator returns true, otherwise false.
Definition 4. MIG is a homogeneous logic network with indegree equal to 3 and with each
node representing the majority function (operator). In MIG, edges are marked by a regular
or complemented attribute [5].

MIGs can be compared with And/Or Inverter Graphs (AOIGs), while MIGs offer a more
compact representation for logic. Each AIOG network (optimized network included) can
be expressed by MIG network, whereas MIG network can be further optimized. Conversion
from AIOGs to MIGs follows from Majority operator.

Based on definition 3, if 𝑐 = 0, majority operator performs 𝐴𝑁𝐷(𝑎, 𝑏) operator, while
𝑐 = 1 majority operator behaves as 𝑂𝑅(𝑎, 𝑏) operator. It supports the claim that MIGs can
express an arbitrary AIOG, OIG or AIG network: 𝑀𝐼𝐺𝑠 ⊃ 𝐴𝐼𝑂𝐺𝑠 ⊃ 𝐴𝐼𝐺𝑠, which implies
that MIGs are the most universal representation form of all enumerated representations.
See figure 2.3 for an example of AIOG conversion into MIG and further MIG optimization.
For complete definitions and proofs, please see [5].

Figure 2.3: Example of conversion AOIG network into MIG and further MIG optimiza-
tion [4].

2.4.8 MIG Boolean algebra

In order to support natural manipulation with MIGs, a new Boolean algebra has been in-
troduced, based exclusively on majority and inverter operations, with a complete axiomatic
system. Set of five transformation rules on Majority operator are enumerated [5]:

1. Commutativity - Ω.𝐶
𝑀(𝑥, 𝑦, 𝑧) = 𝑀(𝑦, 𝑥, 𝑧) = 𝑀(𝑧, 𝑦, 𝑥)

2. Majority - Ω.𝑀
if(𝑥 = 𝑦): 𝑀(𝑥, 𝑦, 𝑧) = 𝑥 = 𝑦
if(𝑥 = 𝑦′): 𝑀(𝑥, 𝑦, 𝑧) = 𝑧
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3. Associativity - Ω.𝐴
𝑀(𝑥, 𝑢,𝑀(𝑦, 𝑢, 𝑧)) = 𝑀(𝑧, 𝑢,𝑀(𝑦, 𝑢, 𝑥))

4. Distributivity - Ω.𝐷
𝑀(𝑥, 𝑦,𝑀(𝑢, 𝑣, 𝑧)) = 𝑀(𝑀(𝑥, 𝑦, 𝑢),𝑀(𝑥, 𝑦, 𝑣), 𝑧)

5. Inverter propagation - Ω.𝐼 𝑀 ′(𝑥, 𝑦, 𝑧) = 𝑀(𝑥′, 𝑦′, 𝑧′)

These five primitive transformation are fully sufficient for transformation of any MIG 𝛼
into any other logically equivalent MIG 𝛽, by sequential application. However, the length
of transformation sequence may not be practical for modern computers. To avoid this
problem, authors derived another three powerful transformations Ψ from Ω:

1. Relevance, replaces and simplifies reconvergent variables - Ψ.𝑅
𝑀(𝑥, 𝑦, 𝑧) = 𝑀(𝑥, 𝑦, 𝑧𝑥/𝑦′)

2. Complementary Associativity, deals with variables appearing in both polarities - Ψ.𝐶
𝑀(𝑥, 𝑢,𝑀(𝑦, 𝑢′, 𝑧)) = 𝑀(𝑥, 𝑢,𝑀(𝑦, 𝑥, 𝑧))

3. Substitution, extends variable replacement also in the non-reconvergent case - Ψ.𝑆
𝑀(𝑥, 𝑦, 𝑧) =
𝑀(𝑣,𝑀(𝑣′,𝑀𝑣/𝑢(𝑥, 𝑦, 𝑧), 𝑢),𝑀(𝑣′,𝑀𝑣/𝑢′(𝑥, 𝑦, 𝑧), 𝑢′))

2.4.9 MIG optimization

The optimization of an MIG, representing a logic function, is a transformation process into
different, functionally equivalent MIG, having better quality terms such as size, delay or
power consumption. By application of transformation rules from Ω,Ψ to an input MIG,
it is possible to reduce size, optimize delay or decrease switching activity of an optimized
MIG [5].

Another optimization method on MIGs, introduced in [101], consists in functional hash-
ing of MIGs nodes, which is very similar to DAG-aware AIG rewriting (discussed in sec-
tion 3.1.6) [68], but deployed on MIGs. This approach aims to size reduction of an initial
MIG and experiments report remarkable results.
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Chapter 3

And-Inverter Graphs

The most popular representation of digital circuits structural implementation in the last
fifteen years are And-Inverter Graphs (AIGs) definitely. AIGs have found their application
primarily in logic synthesis and optimizations. However, the first mention about AIGs we
can find in an Alan Turing’s paper [48] on neural networks, where he has been writing
about randomized trainable network of NAND gates. Since the publication, AIGs had
felt into oblivion, a few local transformations have been introduced. AIGs and their local
transformations have began to appear in several logic synthesis and verification systems in
1980s, with the aim to reduce circuit area and delay during synthesis process or accelerate
formal equivalence checking process [31, 100]. A big progress has been done in IBM by
discovering important AIG properties, such as structural hashing. BDDs have been very
popular for logic synthesis application in 1990s and thus AIGs have started rising up again
around year 2000, when BDDs have reached their scalability boundaries in many of their
applications. Interest in AIGs was resumed when AIGs have began to be used as a functional
representation for a variety of tasks in synthesis and verification. It has been discovered,
that when AIGs are used for circuit representation, a significant acceleration is observed in
solving a wide variety of boolean problems.

An And-Inverter Graph is a directed acyclic graph for structural representation of
Boolean logic circuit. AIG is composed only of two input AND gates and two kind of
edges: wire and inverter. Terminals nodes are primary inputs and roots represent primary
outputs. AIGs can represent an arbitrary logic function and offers very efficient manipula-
tion of these functions. The following definition 5 supports a formal background of AIGs
and figure 3.1 shows an example of AIG network before and after optimization.
Definition 5. Let 𝐺 is a directed acyclic graph 𝐺 = (𝑉,𝐸). AIG A = (V, E, X, f) is an
extension of graph 𝐺, where

∙ 𝑉 = 𝑋 ∪𝑁 ∪ {0} is a finite set of nodes, where 𝑋 = {𝑥1, ..., 𝑥𝑛} are primary inputs,
𝑁 = {𝑛1, ..., 𝑛𝑘} = 𝑉 ∖ (𝑋 ∪ {0}) are non-terminal nodes representing the logic AND
operator and 0 is the constant 0 input,

∙ 𝐸 = {(𝑎, 𝑏)|𝑎 ∈ 𝑁, 𝑏 ∈ 𝑉 } is a set of edges (interconnections), so that every node
𝑎 ∈ 𝑁 has exactly two outgoing edges.

∙ 𝑓 : 𝐸 → 𝑇 , where 𝑇 = {𝑤𝑖𝑟𝑒, 𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟}, is a function that specifies, whether the edge
is a wire or an inverter.

Figure 3.1 represents a convention how AIGs will be shown in this thesis. Each primary
input is represented by a triangle and a square at the bottom of the picture, where squares
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denote input latch registers. Rounded nodes represent a logic AND gates with 2-indegree
numbered with even numbers. Even numbering reflects AIGER format and internal imple-
mentation described further in the text 7.1.2. Interconnection between nodes are solid or
dotted arrows. Solid arrow represent regular wire and dotted arrows represent inverter in
the connection1. Primary outputs are recognizable as triangles at the top of the network.
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Figure 3.1: Example of AIG network. The network on the left represents function
𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2 + 𝑥2𝑥3. The network on the right represent a functionally equiva-
lent, but structurally different function 𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑥2(𝑥1 + 𝑥3).

A transformation of an ordinary network, composed of logic gates, into AIG requires
only a conversion table of each logic gate, expressed in terms of AND gates and inverters
or application of DeMorgan’s rules. Simply, to derivate an AIG, factor SOPs of the nodes
in a logic network, then AND/OR factored forms convert to 2-indegree AND nodes and
inverters by applying DeMorgan’s rules. Thus, the transformation is scalable, fast and
doesn’t lead to unpredictable memory and runtime blowup. It makes the AIG an efficient
representation compared to SOP (Sum-Of-Product) form or BDDs (Binary Decision Dia-
grams) representation (see section 2.4.2). SOP or BDD representations can also be handled
as logic circuits, but they impose somewhat artificial constraints, which often deprive them
of scalability. SOPs are circuits with at most two-levels and BDDs are canonical, it means,
they require that input variables were evaluated in the same order on all paths [64].

AIGs can also represent sequential logic and sequential transformations, using D-flip-
flops with an initial state. However, the thesis doesn’t aim to the sequential circuits, but it
can be considered as a future work.

AIG ordinary concept is already implemented in ABC tool [1], which is an academic syn-
thesis tool, developed by Alan Mishchenko at the University of Berkeley. ABC is completely
based on AIGs containing AIG-based synthesis and equivalence checking techniques.

1Graphical representation of edges differs from commonly used notation. Arrows lead from leafs to roots.
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3.1 AIG Optimizations
The optimization of an AIG is a transformation of AIG 𝛼 into different AIG 𝛽, that is
functionally equivalent with 𝛼, having better parameter terms, such as area, depth or
switching activity. For all mentioned items exist particular optimization techniques, and
further research continues.

Logic optimization methods, except graphical methods, may be seen as two groups:
Boolean methods and algebraic methods. Algebraic methods handle Boolean function as
polynomial expression and thus these methods has limited set of allowed operations (as-
sociativity, commutativity and identity) in comparison to Boolean methods (associativity,
commutativity, identity, annihilation, distributivity, idempotence, absorption, complemen-
tation, De Morgan rule and double negation), which are based on Boolean algebra. It im-
plies, that Boolean methods are more efficient (better optimization results) in comparison
to algebraic methods, but they also require more computation time. In order to apply the
Boolean methods onto large logic networks, a known practice is to make a Boolean trans-
formation only in a particular subgraph of a large logic network at a time. This approach,
namely local optimization, is essential for scalability of many optimization algorithms.

One of the subgraph selection methods is Windowing, introduced in [72, 65], which is
applicable for local optimizations. The main aim of the windowing algorithm is to collect
nodes around a node 𝑛.

3.1.1 AIG Cuts

Another methodology handling subgraphs, called cuts, is used in the most AIG optimization
techniques and they are also necessary for this work. Because cuts have been already
published many times, the following text is a survey of [68, 66, 79, 101] with adaptation to
the thesis purposes.

A cut 𝐶 of a node 𝑛 is a set of nodes of the graph, called leaves of the cut, such that
each path from a primary input to 𝑛 passes through at least one leaf. Node 𝑛 is called the
root of cut 𝐶. The cut 𝑠𝑖𝑧𝑒 is the number of its leaves [68, 66]. See formal definition 6.

Definition 6. Cut
For a given AIG 𝐴 = (𝑉,𝐸,𝑋), a pair (𝑣, 𝐿) consisting of a root 𝑣 ∈ 𝑉 and leafs 𝐿 ⊆ 𝑉 ∖{0}
is called a 𝑐𝑢𝑡 (see [79, 66, 68]), if

1. every path from 𝑣 to a terminal visit at least one leaf 𝑙 ∈ 𝐿,

2. each leaf is contained in at least one path from 𝑣,

3. paths to the constant node are exempt from (1) and (2) constraints,

A set of all cuts of node 𝑣 is denoted cuts(v). In other words, 𝑐𝑢𝑡𝑠(𝑣) = {𝐿|𝐿 ⊆ 𝑉
{0} so that (𝑣, 𝐿) is a cut}.

A trivial cut, let us say a ”seed“ can be defined as follows, definition 7:

Definition 7. Trivial cut
A trivial cut 𝐶 of a node 𝑣 is composed of the node itself only and constant only.
{{}} for constant,
{{𝑣}}, for 𝑣 ∈ 𝑉 .

In order to deduce a set of all possible cuts of node 𝑣, we can define a k-feasibility,
definition 8:
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Definition 8. k-Feasible cut
A cut is called k-feasible if |𝐿| ≤ 𝑘. A set of all k-feasible cuts is denote 𝑐𝑢𝑡𝑠𝑘(𝑣). In other
words 𝑐𝑢𝑡𝑠𝑘(𝑣) = {𝐿|(𝑣, 𝐿) is a cut and |𝐿| ≤ 𝑘}.

Example 1. Let 𝐶 = (12, {1, 4, 7, 9}) be a cut with a root 12 and leaves 1, 4, 7 and 9. As
we can see, this cut is 4-feasible, i.e. {1, 4, 7, 9} ∈ 𝑐𝑢𝑡𝑠4(12).

All k-feasible cuts can be generated by a recursive algorithm. For cut enumeration
purposes, an operation ⊗ is defined, see definition 9:

Definition 9. Cut construction operation
Let 𝐴1 and 𝐴2 be two sets of cuts of a common root 𝑣 and 𝑘 a maximum number of leafs
of new cut. Then 𝐴1 ⊗𝐴2 ≡ {𝑎1 ∪ 𝑎2|𝑎1 ∈ 𝐴1, 𝑎2 ∈ 𝐴2, |𝑎1 ∪ 𝑎2| ≤ 𝑘}.

Now, it is possible to set a set of k-feasible cuts of node 𝑣:

Lemma 1. Recursive cut enumeration
𝑐𝑢𝑡𝑠𝑘(𝑣) = 𝑐𝑢𝑡𝑠𝑘(𝑣−1) ⊗ 𝑐𝑢𝑡𝑠𝑘(𝑣−2), where 𝑣 ∈ 𝑉 and 𝑣−1, 𝑣−2 are direct children of node
𝑣, for ∀𝑣 = {0..𝑛}.

Based on the previous definitions, it is possible to demonstrate an example of 3-feasible
cuts enumeration in figure 3.2.

Figure 3.2: Example of 3-feasible cuts enumeration.

KL-Cuts

KL-cut can be defined as a subgraph 𝐺𝑘𝑙 of 𝐺, having 𝑖𝑛𝑝𝑢𝑡𝑠 ≤ 𝑘 and also 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 ≤ 𝑙.
Inputs and outputs are represented by two sets of nodes (𝐺𝑘, 𝐺𝑙), where 𝐺𝑘 is a set of
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inputs and 𝐺𝑙 is a set of outputs. If a node 𝑣 belongs to a path between 𝑛𝑘 ∈ 𝐺𝑘 and
𝑛𝑙 ∈ 𝐺𝑙 and 𝑣 /∈ 𝐺𝑘, then 𝑣 is in 𝐺𝑘𝑙. All nodes in 𝐺𝑙 are contained in 𝐺𝑘𝑙 and 𝐺𝑘𝑙 doesn’t
contain any node of 𝐺𝑘 [59].

Differences between K and KL-cuts are following. Based on the definition in the previous
paragraph, k-cut is a sub-circuit of a circuit which has exactly k primary inputs and one
primary output. KL-cut is a sub-circuit of circuit which has k primary inputs and l primary
outputs. See figure 3.3 for examples of K-cut and KL-cut.
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Figure 3.3: Example of k=3 cut is on the left and situation for k=3 in case of multi-output
cut with two outputs is shown on the right.

Cut factorization

Enumeration of limited size cuts is a significant step in logic synthesis methods, such as
technology mapping or rewriting. The cut enumeration algorithm isn’t capable to enumer-
ate all cuts beyond 7 inputs, because there are too many of them. Fortunately, researchers
from University of Berkeley introduced cut factorization method [15], so that they can fac-
tor cuts of a network and use them to generate other cuts. With the factorization method,
new terms had been presented (definitions 10 and 11):

Definition 10. DAG cut
DAG cut/Factor cut is a cut of a node 𝑣 in an AIG, which has two or more outputs from
the node 𝑣.

Definition 11. Tree cut
Tree cut is a cut of node 𝑣 in an AIG, which has only one output of node 𝑣.
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A reader can see an example of cut factorization on figure 3.4, that shows a decompo-
sition of an AIG into factor trees. DAG/factor nodes are gray (see more than one output).

Using the cut factorization, it is possible to reduce number of cuts significantly and thus
reduce time for enumeration. For more details and experiments, see literature [15].

Figure 3.4: An AIG subgraph illustrating cut factorization. Nodes 𝑝, 𝑞, 𝑏, 𝑐 and 𝑑 are
PIs [15].

NPN Classification

Cuts are a good technique for subgraph selection in DAGs, the number of all functions
growths exponentially size as the number of inputs increase. The number of all functions
can be calculated as 22

𝑛𝑢𝑚_𝑖𝑛𝑝𝑢𝑡𝑠. For example, if we are looking for all 4-input functions,
the real number of all function is 65536. For 5-input cuts, the count of all combinations is
4294967296 [18].

In order to reduce the number of all combinations, NPN2 classes were established. NPN
classes allows to merge some circuits into equivalent one by permutation of inputs, negations
or output negations.

∙ P-class: n-input functions equivalent under input permutations.

∙ NP-class: n-input functions equivalent under input permutations and negations.

∙ NPN-class: n-input functions equivalent under input permutations/negations and
output negations.

The table 3.1 shows numbers of required functions merged into equivalent classes.

Table 3.1: NPN classes for numbers of inputs 1 - 5.

Inputs Functions P-classes NPN-classes
1 4 4 2
2 16 12 4
3 256 80 14
4 65536 3984 222
5 4294967296 37333248 616126

2 NPN - Negation of inputs, Permutation of inputs, Negation of outputs.
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3.1.2 Structural hashing

The first optimization technique is not a technique at all, but rather a property. AIGs are
usually implemented as a hash table in software. Hash table key of a node is made of two
previous nodes. If any new node should have the same predecessors as an existing node,
the keys will match and new node is merged with existing one. Thus, structural hashing
detects isomorphic subgraphs in a AIG. It leads to the fact, that the two nodes can’t be
redundant in an examined AIG.

3.1.3 Balancing

Reducing delay of a digital circuit is a significant topic in logic synthesis and therefore it
has long history since early days of logic design.

Balancing [19, 66] is a technique widely known from graph theory and it is also applicable
on AIGs. This technique is used for reducing depth of a network - reducing delay of a circuit,
which is an important topic in logic synthesis.

Balancing is an algebraic tree-height reduction, performed by application of Boolean
rules such as commutativity, distributivity and associativity, for example: 𝑎(𝑏𝑐) = 𝑎𝑏(𝑐).
Balancing operation has linear time complexity Ω(𝑛) and it is frequently used to minimize
logic depth. Figure 3.5 shows an example of balancing technique.

Figure 3.5: An example of AIG balancing transformation [66].

3.1.4 Refactoring

An optimization algorithm, mainly used for network area optimization, is refactoring.
Refactoring uses a heuristic algorithm [67] to compute one large cut for each AIG node.
Then, the refactoring attempts to replace cut of the current node by factored form. If there
is an improvement, the modification is accepted [68].

3.1.5 Resubstitution

A resubstitution is another optimization method, also based on enumeration of one large
cut for each node. It tries to re-express a Boolean function of a node by reusing other nodes
present in a network, known as divisors (see section 2.4.1). Similarly to refactoring, if a
smaller network is obtained, the transformation is approved [67, 51].
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3.1.6 Rewriting

Rewriting is another important optimization method for reduction the network size. It
is fast greedy algorithm for optimization the AIGs by iteratively selecting AIG subgraphs
- cuts (see section 3.1.1) rooted at a node and replacing them with smaller, functionally
equivalent, pre-computed subgraphs. Original algorithm uses typically 4-feasible cuts, that
are enumerated using the cut enumeration algorithm (see definition 9) [79]. For each cut
of each node 𝑛, the Boolean function is computed and its NPN-class (see section 3.1.1) is
recognized by hash-table lookup. Truth tables, stored as 16-bit strings, are used for fast
handling of 4-input optimum functions. If we recall an idea of NPN classes, it is required
to have only 222 variants of optimized subgraphs. It has been experimentally found that
approximately 100 of 222 optimum circuits are appearing in the rewriting process and only
40 of them are meaningful, in terms of network improvement [68].

Figure 3.6: Rewriting algorithm [68].

Figure 3.6 describes the AIG rewriting process, where the nodes are investigated in
bottom-top topological order. Then, for each 4-feasible cut 𝐶 of a node 𝑁 , it obtains a
boolean function 𝐹 . Using hash-table lookup, it finds all possible structures. Subsequently,
for each possible structure try: dereference old subgraph and the number of nodes, whose
reference counts became 0, is returned. These nodes will be removed if the old subgraph is
replaced. Then, a possible structure is added while counting the number of new nodes and
the nodes whose reference count went from 0 to a positive value. These nodes will be added.
The difference of the counters is the gain in the number of nodes if the replacement is done.
The new node is de-referenced and the old node is referenced to return the AIG to its
original state. While trying all possible structures, the maximum gain is remembered. The
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structure with maximum gain is then applied. If the improvement is zero and ”zero-cost“
is enabled, the possible structure is replaced [68].

Figure 3.7: Different AIG structures for function 𝐹 = 𝑎𝑏𝑐 [68].

Figure 3.8: An example of rewrite procedure [68].

Figure 3.7 illustrates three possible structures of function 𝐹 = 𝑎𝑏𝑐. Figure 3.8 shows a
replacement of subgraph 1 by subgraph 2, where it is possible to see one node reduction.

Rewriting algorithm leads to significant area improvements in logic synthesis and gave
a lot of opportunities for further research.

Further work on AIG rewriting

The AIG rewriting has prepared a stable basis for local transformations of logic optimiza-
tion. Rewriting is implemented in ABC tool [1] with opened sources, which allows source
code modification by other researchers.

In 2007, authors of combinatorial AIG rewriting algorithm extended the algorithm
for sequential circuits synthesis and introduced a new term: HAIG (History And-Inverter
Graph) [12].

In 2011, Nan Li and Elena Dubrova proposed an extension of combinatorial rewriting.
Researchers have tried to enable 5-input cuts in the original rewriting. However, as you
can see in section 3.1.1, the number of functions, belonging to NPN equivalence classes, are
616162, that is still a high number. They experimentally checked which 5-input functions
are appearing in all IWLS 2005 benchmarks [17] (2749 classes). After that, function (classes)
with higher than twenty occurrences had been picked up (1185 classes). All these functions
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(classes) had been precomputed and applied for 5-input cut rewriting. Researches achieved
about 5.57% further reduction of area of heavily optimized large circuits on average [55].

A next interesting work on AIG rewriting has been taken by Ivo Háleček and Petr Fišer.
They extended an ordinary AIG to XAIG (XOR-AND-Inverter-Graph) with adaptation of
rewriting algorithm to XAIGs. This modification allows to work with XOR gates in a native
way. Experimental results indicate that the proposed methodology is stronger in XOR
identification than XOR-aware structural hashing already implemented in ABC [43, 47].
Figure 3.9 shows valid rewrite on XAIG.

Figure 3.9: XAIG based rewrite example. Hexagon node represents a XOR gate [43].

A recent research also benefits from AIG rewriting. Exact synthesis3 rises up and AIG
rewriting offers a stable basis for further research activities. However, there are major prob-
lems of state of the art methods: enumerate Boolean functions to pre-compute optimum
networks, thus limiting the approach to small subnetworks and non-satisfactory strate-
gies to select subnetworks for rewriting. The following papers try to deal with mentioned
problems [41, 6, 86, 102].

An interesting paper [87], published in 2019 by research group of Berkeley and EPFL
introduces a novel methodology for multi-level synthesis, that is independent from a specific
structure, but defines synthesis procedures using an abstract concept definition of a logic
representation.

3Exact synthesis finds an optimal network that fulfills input parameters (e.g., depth or size).
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Chapter 4

Introduction to polymorphic
electronics

Closely before an inception of polymorphic electronics was an attention focused on the re-
quirement to find appropriate electronic technology which could potentially yield substan-
tial benefits for long-term autonomous unmanned space missions, where the fault-tolerant
aspects become a major issue. It was discovered that polymorphic electronics can auto-
matically compensate the fault states to a large extent and gradually adapt the system
parameters to an actual operating environment with mostly harsh or extreme conditions.
Adrian Stoica and his team at NASA JPL (Jet Propulsion Laboratory), who is regarded as
the founder of polymorphic electronics field as such, has introduced the term of Polymorphic
electronics in 2001 [106].

Polymorphic electronics is a relatively young discipline in the field of digital circuits and
systems. It can by classified as a group of digital circuits having an ability to perform more
than one intended function, while the interconnection of a given circuit remains the same
layout in all the operating modes. A choice of an active function, which a circuit is going to
perform, is strongly dependent on operating conditions (temperature, pressure, humidity,
voltage polarity, etc.). A state of surrounding environment can be accurately described by
means of a physical quantity with an impact on electrical properties. Then, it is possible to
unambiguously determine what function will be executed with respect to a specific value of
this variable [106], [20]. It is very important that a change of a polymorphic circuit function
comes into effect without any eminent delay perceived and sensitivity to the environment
is naturally embedded into the circuit itself [106].

It is important to mention that all the circuit functions are designed in a fully intentional
manner rather than, for example, as a specific fault condition caused by exceeding certain
operating parameters of a circuit. State of an environment, where a circuit is going to be
deployed, can be expressed by a physical quantity having a direct influence on the electrical
properties of circuit building elements. Subsequently, it is possible to determine an function
to be performed by desired circuit according to a specific value of a physical quantity [105].
Such behavior is applicable for circuits that must adapt itself to unfriendly environment,
e.g. by imposing power save mode [89].

An another significant attribute is stemming directly from the fundamental notion of
polymorphic electronics itself. Construction of multi-functional circuits in an efficient way
is expected. An advent of polymorphic-based circuit elements with multi-functional capa-
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Figure 4.1: On the left are two circuits designed separately. On the right are two functions
designed in polymorphic technology, where sharing of common resources is expected.

bilities may unlocks a way towards alternative solutions of the traditional reconfiguration
of digital circuits [16], [76] or [93].

Typical characteristics with a substantial impact on a core functionality of polymorphic
circuits [92] can be briefly specified by the following points:

1. Polymorphic circuits should place lower demands in terms of necessary chip area for
their implementation. It is anticipated that two different functions can share a large
portion of an existing circuit structure and thereby saving a considerable amount of
resources. See figure 4.1.

2. Transition between different function modes, i.e. selection of an active function to
be carried out, is substantially dependent on a current state of an environment. A
switching is an immediate event without any pertinent overhead. It is purposely em-
bodied into elementary circuit building blocks during the design phase. Polymorphic
circuits respond to a current state of an environment in a global fashion. It tech-
nically means that all the circuit elements share the information about state of the
environment at the same instant of time. Such type of circuit, thus, represents an
example of a distributed system.

Polymorphic circuits can be built of polymorphic gates that exhibit polymorphic be-
havior. For example, polymorphic gate NAND/NOR has two modes, where the NAND
operation is performed in mode one and the OR operation is performed in the second
mode. These polymorphic gates are usually based and created from unconventional mate-
rials, such as silicon nano-wires, silicon nano-tubes etc., that exhibit unstable behavior.

4.1 Application scenarios
Adrian Stoica, the founder of polymorphic electronics, noted some utilization of polymor-
phic circuits in practice during introduction of polymorphic electronics term. The first
advantage can be observed as ”extra functions“ in addition to desired first function. These
extra functions are triggered by external stimulus. As possible useful applications of poly-
morphic electronics can be considered usage in authentication signature / watermark, extra
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protection from reverse engineering - where real operational function is appearing only in
special conditions, protection of unauthorized usage by integration of biometric data into
circuit, or providing another, hidden communication channel. Polymorphic electronics can
replace some kinds of sensors/detectorsin case their usage is not allowed [109].

Another proposed application, also by A. Stoica, is called ”smart fuses“, where poly-
morphic electronics can react for example to increase of temperature. This change of an
environment triggers a new functionality of electronic device. Advantage of switching be-
tween functionalities within polymorphic circuits (as a default property of polymorphic
electronics) is performed without complex chip reconfiguration [109].

The last possible application proposed by Stoica in [109] can be addressed to ”security“
feature. Polymorphic circuits can perform hidden or a secret function during attacking a
chip or reverse engineering in order to mask the original function. In other hand, polymor-
phic electronics can perform a primitive function (for example adder or clock generator)
until the key conditions are not met. When key conditions (voltage level, voltage polarity,
temperature, humidity, ...) are fulfilled, the secret function can be unlocked. This secret
function may appear only when particular conditions are created. This feature can be de-
ployed for tagging or some kind of verification of security check [109]. Sekanina et. al. had
experimented on this topic and introduced how polymorphic electronics can be utilized to
implement unique on-chip IDs [97]. Stoica also mentioned that polymorphic circuits sensi-
tive to biometric patterns are able to unlock secret function only if circuit receive specific
biometric signal.

Other applications of polymorphic electronics are presented by Sekanina et. al. This
research group have applied polymorphic electronic in the area of test and diagnostic. The
literature [103] introduces reduction of test vectors volume based on polymorphic recon-
figuration of some gates (replacement of ordinary gates by polymorphic gates) of circuit
under the test. This approach significantly helps to reduce test length to approximately
70% of runtime. Further useful applications can be observed in the field of self-checking
circuits. The paper [90] describes a polymorphic self-checking adder with capability to rec-
ognize failures. In the first mode, the adder behaves as usual, while in the second mode,
the circuit provides an error code to the primary outputs.

The same research group had invented another interesting application using polymorphic
components, namely polymorphic FIR Filter [99]. The filter can operate in two modes,
where the first mode is considered as a standard mode (filter performs normal operation),
while the second mode operates with reconfigured filter coefficients and disconnected some
parts of filter. It can lead to power consumption savings with preservation of reasonable
quality of filtering [95]. In the sequel on the filters topic, the same research group also
implemented a polymorphic bi-functional image filter [98], where authors observed, that
solutions exhibit a significant reduction in utilized operations and interconnects with respect
to multiplexing of conventional solutions.

Other work, presented by Růžička, demonstrates utilization of polymorphic electron-
ics to design digital circuit controllers, to design digital circuit controllers, that elegantly
behaves in the case of inconvenient situations, e.g. when a battery goes low or a chip
temperature cross some safe level. The paper [89] describes an algorithm for designing
gracefully degrading circuit controllers using polymorphic electronics. Mentioned research
implies that polymorphic electronics is also applicable in the field of sequential circuits that
has been confirmed by Adrian Stoica who designed JK flip-flop gates composed of poly-
morphic gates [82]. Růžička also tried to use polymorphic electronics for construction of
reliable circuits with aim to work under extreme conditions, such as high temperature, low
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voltage, etc. For example, circuits designed this way can fall into save mode and reduce
features in order to withstand difficult conditions [91].

Application of polymorphic electronics has been observed also in research area of cel-
lular automatons. An interesting work is an implementation of transition functions by
polymorphic circuits with globally switchable rules [118].

Last but not least is utilization of polymorphic circuits to build of mono-function circuits
with expectation of efficient implementation by polymorphic gates in comparison to con-
ventional solution. Gajda presents a 2-bit full adder and 5-input majority/parity functions
composed of polymorphic gates, where area reduction have been achieved [38].

The most of listed applications has been built and verified on REPOMO32 platform [96],
which contains an array of polymorphic and ordinary digital circuit elements based on
CMOS technology. REPOMO32 was utilized in order to achieve the desired multi-functional
behaviour in a target environment for these applications:

1. Polymorphic FIR signal filter [99].

2. Transition function of cellular automaton [118].

3. Safety and fault tolerant systems [92], [91].

4. Security measures physically unclonable functions [97].

4.2 Polymorphic circuits
From a formal point of view, a polymorphic circuit is an electronic digital circuit which can
be described as follows in definition 12 [20, 92]:

Definition 12. Polymorphic circuit
Let 𝐾 is a set (library) of logic gates. Let 𝐺 is a graph 𝐺 = (𝑉,𝐸). Then, a polymorphic
circuit is 𝐺 = (𝑉,𝐸, 𝜑), where:

1. 𝑉 is a set of vertices (ports of circuit components),

2. 𝐸 = {(𝑎, 𝑏)|𝑎, 𝑏 ∈ 𝑉 } is a set of edges (interconnections),

3. 𝜑 = {𝜙1, ..., 𝜙𝑛} is a set of projections, where |𝜑| > 1. Each projection 𝜙𝑖 ∈ 𝜑, assigns
a logic gate from set 𝐾 to each node from 𝑉 , 𝜙𝑖 : 𝑉 → 𝐾 for ∀𝑖 = 0..𝑛.

Then, graph 𝐺 explicitly determines interconnection of the individual gates from set 𝐾
and, therefore, particular structure of a given circuit, which is able to realize one of the
meaningful intended functions from a set Φ = {𝐹1, ..., 𝐹𝑛}, where |Φ| > 1.

Once the polymorphic circuit is defined, it is possible to define an environment sensitivity
of polymorphic circuit to physical quantity (definition 13):

Definition 13. Environment sensitivity
Let 𝑋 be a physical quantity, assuming values of the real numbers domain 𝑅 and describing
an operating environment of the circuit. A projection 𝜋 : 𝑌 → Φ, where 𝑌 = {𝐼𝑖|𝐼𝑖 ⊂ 𝑅}
is a disjunct set of intervals of values of the quantity 𝑋. If the quantity 𝑋 has a value
𝑋(𝑡1) ∈ 𝐼𝑘 at a time 𝑡1, where 𝐼𝑘 ⊂ 𝑅 is an interval from 𝑅, then the circuit represented by
the graph 𝐺 performs a function 𝐹𝑘 ∈ Φ at the time 𝑡1, briefly 𝜋(𝐼𝑘) = 𝐹𝑘. If the quantity
𝑋 has a value 𝑋(𝑡2) ∈ 𝐼𝑚 at a time 𝑡2, where 𝐼𝑚 ⊂ 𝑅 ∧ 𝐼𝑚 ∩ 𝐼𝑘 = ∅, then the circuit
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represented by the graph 𝐺 executes a function 𝐹𝑚 ∈ Φ at the time 𝑡2, briefly 𝜋(𝐼𝑚) = 𝐹𝑚.
Note that even such intervals of 𝑋 may exist, on which the function of the circuit is not
defined [92].

Operating environment affects a polymorphic circuit, within the meaning of function
selection from |Φ|, which may be, for example, level of power supply voltage, temperature,
humidity, pressure or similar physical quantity. Note that a function may be undefined for
some intervals of particular physical quantity. However, one exception is made by ”external
signal“, that may control function selection from |Φ|. Then, the polymorphic circuit is not
sensitive to environment, but is sensitive to external signal.

Definition of a polymorphic circuit introduced above (definition 12) reveals that the
structure of a circuit – a graph G, i.e. specific rendition of circuit components interconnec-
tion, always keeps its layout. On the other hand the function of the circuit is, of course,
allowed to transition from one mode to another, and the function of individual components
must therefore vary for different modes (functions to be performed). So the key to the
circuit polymorphism lies in a set of fundamental building components. These are exactly
the devices that change their function in accordance to a value of physical quantity de-
scribing an actual state of the environment. This observation is regarded as a key pillar of
the approach. It also makes the whole concept more universal and independent on specific
technology used for implementation of the logic.

4.2.1 Polymorphic logic gates

Polymorphic circuits are constructed of polymorphic components, namely polymorphic
gates. A polymorphic gate represents a simple circuit building component which imple-
ments a set of elementary logic (boolean) functions. An actual function of the gate is
selected due to an influence of the operating environment. If the gate exhibit e.g. NAND
function for some range of the power supply voltage (Vdd) and e.g. NOR function for
another range of the Vdd, the gate could be specified as a NAND/NOR gate controlled by
Vdd. It is assumed that a polymorphic gate may perform no more than one function at a
given moment in time. It is also important to emphasize, that rules discussed in previous
section 4.2 are valid for polymorphic gates also. Each polymorphic gate can be considered
as a small polymorphic circuit with difference, that gates are located in Y-chart one level
lower.

Today’s gates are often based on unipolar semiconductor transistors, but the concept
of polymorphic electronics has more general nature and allows to conveniently employ
new emerging devices like graphene [110] or nanowire structures [120], ambipolar devices
utilizing suitable organic polymers with semiconductor-like properties [111] etc., which make
it possible to obtain a new generation of advanced multi-functional logic gates.

Polymorphic gates may be classified into particular classes according to sensitivity to
physical quantity. Three the most common/known classes have been already introduced by
Stoica in the literature [109] presenting the polymorphic electronics term. The first class
is a group of gates sensitive to power supply. These gates can morph with a change of
voltage level or voltage polarity [90, 103, 109, 108]. There were also a few success attempts
to fabricate polymorphic gate (see figure 4.2) with described behavior [96].

The second class marks polymorphic gates sensitive to environment temperature. How-
ever, there are still not many temperature sensitive gates fabricated yet in comparison
to the first class. It is probably caused by a skeptical view of ”controlling electronics by
temperature“. However, transistors based on anorganic semiconductors exhibit significant
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Figure 4.2: Polymorphic NAND/NOR gate: the NOR when Vdd = 3.3V and the NAND
when Vdd = 5V [96].

temperature dependency. This property is meaningful for polymorphic components, de-
spite the conventional trend to develop linear transistors as much as possible. Polymorphic
gate array, REPOMO32, developed at Brno University of Technology, exhibits polymorphic
behavior dependent on environment temperature [96].

Polymorphic gates controlled by external signal forms the third class of the most com-
mon types of polymorphic gates. Gate polymorphism is controlled by wired signal, spread
over the entire circuit, carrying environment information. This kind of polymorphic gates
may look like multiplexers. However, in the case polymorphic gates, it is possible to imag-
ine multiplexers integrated inside one polymorphic gate. Polymorphic gates controlled by
external signal can be built of so-called ambipolar transistor. Ambipolar transistors are
described in section 4.2.1. Anyway, polymorphic gates might not be built of ambipolar
transistors necessarily.

Logic gates are usually available as a library with known gate properties, such as re-
sistance, delay, power consumption, power supply voltage, input signal tolerance, output
signal levels and dimensions. These information help to coordinate synthesis process and
low level layers (below or equal to transistor level) are hidden for digital designer. A com-
position of polymorphic gates on transistor level has been researched by Mr. Nevoral, who
designed polymorphic gate library, namely PoLibSi [78], which contains eight sets of ef-
ficient bi-functional two-input polymorphic gates, whose functions are selected by mutual
polarity of dedicated power rails. Sets differ in utilized transistor type (MOSFET or multi-
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gate ambipolar transistors) and they are optimized to delay, switching power, transistor
count or input impedance. The library has been designed using evolutionary algorithms
and further validated in a SPICE simulator. Nevoral highlights that the sets are complete.
It means that any pair of two-input Boolean functions is covered by a set in the library.

Utilization of the polymorphic electronics concept, and therefore construction of more
complex circuit arrangements, is limited by the availability of suitable polymorphic gates.
Two kinds of the polymorphic gates have been physically fabricated already. Polymorphic
gates reported in literature were either only simulated or tested in a FPTA [122] are belong-
ing to gates of old generation. For instance, the 6-transistor NAND/NOR gate controlled
by Vdd was fabricated in a 0.5-micron HP technology [107]. Another NAND/NOR gate
controlled by Vdd was introduced in [90]. The gate was designed with the aim to achieve
properties and criteria outlined in this section. Further research activities of J. Nevoral
brought a set of polymorphic gates belonging to a new generation - PoLibSi. Gates in a set
PoLibSi exhibit stable and digital behavior. Another aspect, that limits an expansion of
polymorphic circuits is missing univerzal and scalable synthesis method. This thesis brings
a solution for this limitation caused by missing synthesis methods.

Ambipolar transistors

The previous section mentioned a term Ambipolar transistor. Transistors having ambipolar
properties may exhibit different behavior with respect to another physical quantity. Am-
bipolar transistors are mostly fabricated with four electrodes. The first three electrodes
gate, source, drain, are identical with conventional transistors of type N and P. The fourth
electrode, namely ”Polarity gate“, is commonly used for selection of required behavior,
and so P or N. Figure 4.3 shows a four-electrode ambipolar FET Silicon Nanowire transis-
tor [112].

Figure 4.3: Ambipolar FET SiNW structure and polarity control scheme [112].

This kind of transistors already exists and the most of labs are able to fabricate them.
A disadvantage of this property is the fourth electrode in addition, that increases number of
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connected wires to the transistor. While the number of transistor is increased, the number
of wires is increased linearly. The fourth electrode is a step back in the case of polymorphic
electronics, based on the opinion of an author of this thesis.

A global effort is to find ambipolar transistors with three electrodes only. In contrast
to conventional technology, disadvantages related to the fourth electrode will not appear.
Transistor mode selection would be possible to perform by power supply polarity attached
to electrodes source or drain.

Based on the fact, that a three-electrode ambipolar transistor doesn’t exists in real
world, I tried to build a three-electrode ambipolar transistor using P-type and N-type
conventional transistors. Experiments had been performed in SPICE simulator and by using
real transistors also. With a power supply polarity change, the transistor has changed a
function as expected, but output voltage level has been highly dependent on attached load.
This negative property had been resolved using semiconductor diodes D1, D2 connected to
drain electrodes of both transistors used in replacement scheme (see figure 4.4). Figure 4.4
shows a replacement scheme of three electrode ambipolar transistor using conventional
technology sensitive to power supply polarity.

Figure 4.4: Model of three-electrode ambipolar transistor for simulation purposes.
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Figure 4.5 illustrates a scheme of inverter, composed of ambipolar transistors discussed
previously, at the bottom (on the left). Behavior of the inverter is valid regardless to
attached voltage polarity. There is a waveform simulation in SPICE tool on the top (on
the right) in figure 4.5.

It can be opposed that the introduced inverter is composed of four conventional tran-
sistors. Please note that this composition is only an attempt to build a polymorphic gate
using conventional technology. It is expected that unconventional technology may decrease
a number of building components to two transistors.

4.2.2 Open issues of polymorphic electronics

Despite the availability of formal apparatus and previously achieved research outcomes,
there can be still revealed a number of open problems within the domain of polymorphic
electronics that has to be addressed carefully.

Some of the most important problems of polymorphic electronics, which deserve further
attention in order to be resolved or further improved from the current level of advancement,
are especially the following ones.

The 1st issue is obviously connected with a effort to provide suitable polymorphic com-
ponents (gates). As it was demonstrated above, their availability is rather limited, as only
few types have been physically fabricated. Development of fully qualified logic gates (on
material as well as on transistor level), that would be able to precisely and predictably re-
act to the phenomena residing in surrounding operational environment is still in progress.
Recent decade has seen an appearance of highly promising materials including graphene, or-
ganic materials with semiconductor properties, silicon nanowires and many other nanoscale
semiconducting structures, which are expected to push forward facilities for polymorphic
components design and fabrication dramatically [85][73]. In addition, a relatively new work
exists that has expanded the number of available polymorphic gates based on conventional
MOS transistors, researched by J. Nevoral: PoLibSi [78].

The 2nd aspect is a problem of an appropriate design and synthesis methods for poly-
morphic circuits. One of the most common approaches to polymorphic circuits design is
based on using evolutionary methods. Thus, a research of efficient design methods and cir-
cuit synthesis techniques suitable for the domain of polymorphic circuits are still required.
An obvious requirement rises especially in connection with construction procedure of graph
𝐺 as it is a common practice to take into account presence of polymorphic gates alongside
the conventional ones. Such method must be able to construct a graph 𝐺 of polymorphic
gates, which represents a given circuit. Furthermore, desired circuit must perform all the
required functions once exposed to an influence of target operating environment. The cir-
cuit must be able to perform intended functions as prescribed in accordance to the present
state of the target operating environments.

Finally, the 3rd problem is basically concentrated around an appropriate method of
how to efficiently describe a structure of a polymorphic circuit and alleviate its potential
optimization in a reasonable time frame.

This thesis tries to cover the 2nd and 3rd open problems, with aim to create a logic
synthesis basis for polymorphic circuits. In view of this thesis and thesis of J. Nevoral, it
is very probable, that polymorphic electronics will be very close to practical deployment,
because both works exhibit good results of above mentioned problems.
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Chapter 5

Polymorphic circuit synthesis and
optimization

Synthesis methods of ordinary digital circuits have to solve a problem an interconnection
and nodes placement of graph 𝐺, searching just for one particular function 𝐹 . If a suit-
able canonical form1 of 𝐹 is found, a structure of 𝐺 can be easily inferred from it. For
polymorphic circuits, this approach tends to exhibit higher complexity. The reason is that
just one graph has to cover several functions from an existing set 𝜑 = {𝐹1, . . . , 𝐹𝑛}, that
are requested from a given circuit, and the demand of multi-functional operation has to be
fulfilled in the same time. The task to find the same form for all the functions 𝐹1 to 𝐹𝑛

(with different elementary functions on the same position) is, therefore, not trivial at all.
Contemporary the polymorphic circuit design takes place mostly at a gate level. During

the course of numerous experiments carried out within the field of polymorphic circuits it
became obvious that circuits designed solely with polymorphic gates are less useful than in
situation, which involves both polymorphic and conventional elements. It should be noted
that the number of conventional gates typically exceeds the number of polymorphic gates
of a target circuit currently. In many cases it is also sufficient to use a single polymorphic
gate type, if such gate executes logically complete functions (e.g. NAND / NOR). If a
wider selection of polymorphic gates is available, it could ultimately lead to better solu-
tion. However, the overall complexity of the problem could increase (in state space) [92]
significantly.

5.1 Existing polymorphic design and optimization methods
Recent advances in the domain of multi-functional circuits have brought into being several
approaches how to handle the synthesis process of polymorphic circuits performed at a gate
level. However, all of the methods presented up to now fail to comply in some measure
with the general requirements shared by common applications (e.g., resulting size, propa-
gation delay, operating frequency, runtime duration, etc.), which is particularly apparent
for demanding synthesis tasks.

1 Canonical representation: Representation is unique for a particular function and variable order.
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Figure 5.1: Self-checking polymorphic adder in REPOMO32 designed by CGP [96].

5.1.1 Ad - hoc: common sense design

Ad hoc approach is regarded as a circuit design method without using any explicit formal
design techniques or supplementary tools. Only fundamental knowledge and an experienced
designer is expected. This method allows to construct only relatively small circuits. The
method is therefore not the right choice for bigger circuits [92].

5.1.2 Evolutionary design

Regardless of the existing drawbacks visited in parent section, utilization of evolutionary
algorithms and techniques still plays an important role in connection with the optimization
of multi-functional circuits. In fact, such methods have been a natural choice ever since
the invention of polymorphic electronics. Especially in situations when certain awareness
of the expected result exist, it becomes less clear how a particular objective was achieved.
However, it is not an exception to obtain decent solutions.

CGP (Cartesian Genetic Programming) [63, 62] is considered to be one of several field-
proven methods generating satisfactory results. The design of polymorphic circuits using
CGP is almost the same compared to the conventional CGP design of circuits except the
fact that it involves extended fitness function. The difference lies only in the fitness function.
It is necessary to ensure that correctness of a circuit is evaluated for all functions / modes
that the circuit has to perform. However, scalability becomes the major issue for really
complex circuits due to possible explosion of state space, which needs to be searched [92].
Number of evolutionary-based techniques is capable of providing very efficient polymorphic
circuit solutions even from scratch [94, 57]. Nevertheless, it has been found that usage of
such methods makes sense for small problems only (up to 15 inputs [39]). Figure 5.1 shows
an polymorphic adder designed by CGP.

Unfortunately, a process and result of various evolutionary techniques and optimization
schemes derived from them is hard to predict in advance and get firmly under control.
Another important problem is scalability aspect. Despite that, the evolutionary design
is the most effective approach today. The proposed algorithms are capable to find many
solutions, which may not be satisfying at the beginning, but the algorithm can generate
successively better solutions. New solutions are derived as long as the previous ones do
not achieve a perfect match with the requested functionality specified by, for example, the
truth table. This approach may be conceived in a such way the fulfillment of even several
parameters may be demanded.
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Figure 5.2: Multiplexing of conventional circuits by means of using polymorphic multiplex-
ers: a) independent modules, and b) sharing gates between modules [37].

5.1.3 Polymorphic multiplexing

A simple and straightforward design method of multi-functional circuits is called polymor-
phic multiplexing - switching functions with respect to an environment state [37]. This
technique was designed by Gajda and Sekanina [39]. This is a rather simple method that
strives to adhere to the principles of conventional circuit design. In short, the principle is
this: Every function that the polymorphic circuit will perform is designed in a conventional
way using standard CMOS-based blocks. The output of each proposed circuit is connected
to a so-called polymorphic multiplexer, that finally performs selection of a given input,
depending on environmental conditions.

Polymorphic multiplexing can be explained formally as follows: Let’s have two con-
ventional digital circuits 𝑀1 and 𝑀2 implementing two different logic functions 𝑓1 and 𝑓2
(see a) on figure 5.2). Both circuits may be optimized using ABC tool [1] and have the
same number of inputs 𝑃𝐼 and outputs 𝑃𝑂. Outputs are connected using polymorphic
multiplexers. In the first mode, primary output 0 of circuit 𝑀1 is propagated to a com-
mon output 𝑜0, primary output 0 of circuit 𝑀2 is propagated to a common output 𝑜0 in
the second mode. In fact, the intended sharing of common parts is not achieved without
additional steps of the synthesis process.

This initial approach is not very efficient in terms of occupied area (no sharing of
similar circuit parts), which is in a direct contrast to expected benefits of using polymorphic
electronics [92] [37]. A closer analysis of conventional circuits, which are supposed to be
merged together using polymorphic principles, reveals the fact that it is possible to share
common parts of the participating circuits. In fact, the original version of polymorphic
multiplexing method can be slightly optimized with this assumption in mind. Figure 5.2
shows closer view at the principals of polymorphic multiplexing method.

5.1.4 PolyBDD

Gajda [37] suggested a method for synthesis of polymorphic circuits using binary decision
diagrams (BDD). This method is called PolyBDD. It uses a concept of so-called multi-
terminal BDD, which is an extension of binary decision diagrams with the terminal nodes
of the diagram containing integer values. The PolyBDD method is using these values
to represent a possible relation between input variables and a relevant output. In case of
polymorphic circuit expected to implement two different functions working in two allowable
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Figure 5.3: Conversion table for the transformation procedure of PolyBDD into a polymor-
phic circuit [37].

modes while using polymorphic gates, it yields 16 possible combinations. Values in terminal
nodes of MTBDD tree will be therefore integers from an interval <0-15> (figure 5.3).
Detailed explanation of internal principles of PolyBDD method can be found in [37] and
[39]. Principal drawbacks of this method lie in relatively sparse exploitation of polymorphic
gates, i.e. these are practically used only in a role of input/output switches. Further
optimizations relies on evolutionary optimization of polymorphic circuit.

5.1.5 Recent work on logic synthesis of polymorphic circuits

Some further work on polymorphic circuit logic synthesis has been done in recent years.
This section summaries interesting published papers related to polymorphic logic synthesis
topic.

Evolutionary design of polymorphic circuits with the improved evolutionary
repair [124]

In 2013, a Chinese research team tried to improve evolutionary synthesis of polymorphic
circuits by including Repair algorithm into evolutionary synthesis process [124]. Evolution-
ary synthesis algorithms are the most usable techniques for design of polymorphic circuits,
but they still face scalability problems. The most complex polymorphic circuit designed
evolutionary is a sorter/multiplier with 6 primary inputs and 6 primary outputs. Thus,
designing more complex polymorphic circuits is still the biggest obstacle in the case of use
of evolutionary algorithms.

The team published the Repair algorithm for evolutionary synthesis algorithms in order
to accelerate the evolution process and overcome Stall effect in 2012 [123]. Stall effect is
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a state when the best fitness of the evolutionary population is not increasing or increases
slowly. It may take several generations to find a population that will have progressive
fitness again. The repair algorithm is deployed when stalling state is detected. It repairs
incomplete, best individual to a target circuit directly. This repair technique removes time
wasted in stall effect.

Authors applied the repair algorithm onto evolutionary design of polymorphic circuits
in order to make evolutionary techniques more scalable.

Evolutionary Design of Polymorphic Circuits with Weighted Sum [57]

Sekanina et. al. experimentally applied a CGP design of logic circuits. The fitness is
computed for the whole polymorphic circuit without respect to complexity of each desired
function [94]. A Chinese research team extended CGP evolutionary approach applying
weighted sum, that helps to increase the success ratio and decrease the evolutionary gen-
erations in 2007 [57]. Without loss of generality, authors expect that a polymorphic circuit
can perform two independent logic functions in two independent modes. Both circuit (per-
forming function 1 or function 2) can be regarded as a traditional digital circuit. Circuits
in mode 1 or mode 2 may have different complexity. Thus, a characteristics of polymorphic
circuits (to be evolved) should be taken into account for generating the expected polymor-
phic circuit. Authors involve weighted sums 𝑊1 and 𝑊2 in computation of fitness function
of desired polymorphic circuit in the following form: 𝐹 = 𝑊1 * 𝐹1 + 𝑊2 * 𝐹2, where 𝑊1

𝑊2 are weight coefficients, and 𝐹1 𝐹2 are common fitness for circuits in desired modes.
For detailed description, see experiments presented in [57]. Unfortunately, experiments are
presented on quite small circuits only.

In 2015, the team extended the weighted sum approach with periodical weight adjust-
ment, changing weight factor are changed periodically according to the sinusoid function,
expressed as: 𝑊𝑖 = 𝑠𝑖𝑛(2𝜋𝑡𝑖) + 1, where 1 ≤ 𝑖 ≤ 𝑛. Authors present improvement in com-
parison to initial weighted sums work, thus, experiments are presented on small circuits
only. For more details, visit [58].

Design Methods for Polymorphic Combinational Logic Circuits based on the
Bi-Decomposition Approach [56]

The newest paper related to design and optimization of polymorphic circuits is dealing with
Bi-Decomposition approach [56]. Authors apply Bi-Decomposition, known from traditional
design of logic circuits [104, 71]. The work promises an algorithm for design of relatively
large circuits with gate-efficient implementation and utilization of polymorphic gates in
contrast to PolyBDD, where the lesser utilization of polymorphic gates is criticized. Ex-
periments report number of used gates and utilization of polymorphic gates. This paper
looks very promising, however, it is currently available on arXiv2 only without admitting
reviews.

2 arXiv is a free distribution service and an open archive for scholarly articles.
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Chapter 6

Proposed two-level design and
optimization methods

An initial research of synthesis and optimization methods of polymorphic circuits, related
to this thesis, has started with two-level design methods due to their simplicity. During this
period, two two-level approaches had been introduced and had served as a relatively stable
basis for further research of synthesis methods of more complex polymorphic circuits.

6.1 Design of polymorphic circuits using NAND/NOR Gates
The initial research had been triggered by physical availability of polymorphic gate array
REPOMO32 [96], having 32 NAND/NOR polymorphic gates. REPOMO32 was developed
by Lukas Sekanina et. al. at the Faculty of Information Technology, Brno University
Of Technology for experimental purposes and for validation of evolutionary approaches.
REPOMO32 polymorphic gates are special structures developed on transistor level encap-
sulated in ceramic DIL package having 28 pins.

Synthesis of polymorphic logic, suitable for REPOMO32, has been done using evolu-
tionary approaches. At the beginning of the research, the main aim was to find easy design
methods for designing polymorphic circuits. Thus, experimental work has started with
study of two-level representations and looking for ways to design NAND/NOR polymor-
phic circuits. Results lead to following design method using NAND/NOR gates and it is
well applicable to REPOMO32 gate array.

Following text describes details of the proposed method, while the description contains
illustrative examples. Method can be divided into 7 rigid steps:

1. Input: truth tables of both functions. See table 6.1 for example.

2. Minimization of both functions. An output of this step must be boolean formula
in SOP (Sum of Products) describing the first function and boolean formula in POS
(Product of Sums) describing the second function. In this step we obtain two formulas.
The first one comprises group of terms connected by operator OR and second formula
consists of groups of terms connected by operator AND.

3. Transform the (level 1) ORs into NANDs at the formula 1. Transform the (level 1)
ANDs into NORs at the formula 2 (deMorgan’s laws).
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Table 6.1: Truth table specification of initial functions.

A B C 𝐹1 𝐹2 note
1. 0 0 0 0 1
2. 0 0 1 1 1
3. 0 1 0 1 1
4. 0 1 1 0 1
5. 1 0 0 0 1
6. 1 0 1 0 0 inverted 3rd 𝐹1 inputs
7. 1 1 0 0 0 inverted 2nd 𝐹1 inputs
8. 1 1 1 0 1

4. The obtained expressions now require an adjustment using Boolean algebra in order
to make them look as much identical as possible.

5. The parts of the expressions, which differ only in the operator (NAND/NOR) will be
implemented by means of deploying the polymorphic principles.

6. Isolation of dissimilar parts. Because some parts of the circuit can not be joined
(parts of expressions are different), it is necessary to isolate them from each other.
It is recommended to use some polymorphic gates, which will serve as polymorphic
multiplexer, identity / negation and negation / identity.

7. Join the two formulas together and create the final formula describing polymorphic
circuit.

Let us assume that the first function is true for some input combinations, otherwise is
false. The second function is true for the most of the combinations except for the inverted
inputs of the first function, where it was previously true, see table 6.1.

The proposed method brings certain benefits:

∙ It generates solutions with the polymorphic gates naturally embedded into the circuit
during the application of individual steps of the method.

∙ The method seems to deliver satisfactory results for reasonable sized designs of poly-
morphic circuits.

However, certain constraints of the proposed design flow have been identified:

∙ The 4th step is not deterministic. It requires an intervention of an operator or a
heuristic algorithm.

∙ XOR gates are not supported as it isn’t a logical complete function (it is possible to
express by combination of simpler gates). Therefore its utilization potential would be
rather limited. The next reason of absence XOR gates is connected with the fact that
XORs are not currently available inside REPOMO32 chip as a polymorphic gate [96].
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6.1.1 Examples

This section shows two examples demonstrating various aspects of the proposed method
application. The first example simply demonstrates the best case, having an ideal com-
bination of the two functions. The second example shows an application of the proposed
method with a random functions combination.

Example: The best case

1. Let us have two functions specified by On-set and Off-set form:

Π𝐹1 = (0, 4, 10, 14)∑︁
𝐹2 = (1, 5, 11, 15)

2. The functions are minimized by means of Karnaugh maps. These resulting formulas
were obtained (to understand notation, see section 2.2):

𝐹1 = 𝐴𝐶𝐷̄ + 𝐴𝐶𝐷̄

𝐹2 = (𝐴 + 𝐶 + 𝐷̄)(𝐴 + 𝐶 + 𝐷̄)

3. Modify functions into NAND/NOR form at level 1:

𝐹1 = 𝐴𝐶𝐷̄ *𝐴𝐶𝐷̄

𝐹2 = (𝐴 + 𝐶 + 𝐷̄) + (𝐴 + 𝐶 + 𝐷̄)

4. At this moment we have very similar formulas and nothing needs to be isolated. Now
we can create the final formula ( *

+ is polymorphic gate NAND/NOR):

𝐹 = (𝐴
*
+
𝐶

*
+
𝐷̄)

*
+

(𝐴
*
+
𝐶

*
+
𝐷̄)

This example shows the best case. This solution saves more than a half of gates in
comparison to conventional solution. The polymorphic solution requires 7 polymorphic
gates in total. As it can be seen, conventional solution needs two 3-input AND gates, one
2-input OR and two 3-input OR with 2-input AND.
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The polymorphic solution consumes two 3-input NAND/NOR gates and one 2-input
NAND/NOR gate. Finally, it brings the overall savings of 57%.

Example: The usual case

1. Let us have two functions specified by On-set:

Π𝐹1 = (2, 3, 5)∑︁
𝐹2

= (2, 4, 5, 6)

2. The functions are minimized by means of using Karnaugh maps [49][116]. These
resulting formulas were obtained:

𝐹1 = 𝐴𝐵̄𝐶 + 𝐴𝐵

𝐹2 = (𝐵̄ + 𝐶)(𝐴𝐵)

3. Modification of functions into NAND / NOR form at level 1:

𝐹1 = 𝐴𝐵̄𝐶 *𝐴𝐵

𝐹2 = (𝐵̄ + 𝐶) + (𝐴𝐵)

4. As it can be obviously seen, input 𝐴 is left over in function 1. Therefore, Input A
must be isolated. Polymorphic multiplexer (labeled as “|” in the expression 1) will be
used for this purpose. Now we can create the final formula:

𝐹 = (𝐴|0 *
+
𝐵̄

*
+
𝐶)

*
+

(𝐴
*
+
𝐵)

This example shows a case in which is necessary to isolate some parts of a circuit.
This solution have used polymorphic multiplexer for the isolation of input A in mode 2.
The resulting solution saves nearly a half amount of gates in comparison with conventional
solution, which is comprising 7 gates in total. In this case, the adoption of polymorphic
principles helps to achieve 43% savings. However, overall savings may be affected by a
combination of input functions.

6.1.2 Related summary

The proposed synthesis method is based on a formal Boolean representation of correspond-
ing input functions. Its main advantage can be recognized in rigid notation with an employ-
ment of minimization techniques, which is in a direct contrast to the competitive solutions,
predominantly based on heuristic approaches.

Despite some existing constraints of the proposed approach that were identified during
the theoretical analysis and subsequent experiments, it was successfully applied in connec-
tion with real functions specified by the truth table. The obtained results clearly suggest
its benefits in a comparison to the conventional techniques. It is possible to estimate that
further improvements can be achieved, especially when new types of polymorphic circuit
component based on emerging materials will be prepared.

1 (𝑙𝑒𝑓𝑡)|(𝑟𝑖𝑔ℎ𝑡) - sign for 2-input polymorphic multiplexer. Left side is active in mode 1, the right side
is active in mode 2.
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6.2 Optimization of polymorphic circuits by searching com-
mon parts

Searching for the corresponding interconnection of graph 𝐺 (see closer explanation in sec-
tion 5) may not be an easy task in case of polymorphic circuitry. Directly related to this
observation is a goal to propose a synthesis method that would address the weak spots of
previous the attempt.

The main idea behind the approach is based on an identification of common parts across
the source circuits, which are virtually shared between them as a so called common divisors,
by means of exploiting techniques of function kerneling and Boolean division [42]. Kerneling
was introduced in [11] to provide means for finding subexpressions common to two or more
expressions. All operations used to find kernels are algebraic. Also see also section 2.4.1
for detailed background.

Typical execution flow behind the proposed method consists of the following sequence
of individual steps, which are further outlined below:

1. Minimized expressions in DNF notation depict the input functions – 𝐹 and 𝐺. Both
functions are initially provided in two-level PLA format as a truth table.
Example:

𝐹 = 𝑎𝑏𝑑 + 𝑏𝑐𝑑 + 𝑏̄𝑐𝑑 + 𝑎𝑐 + 𝑎̄𝑏̄𝑐𝑑

𝐺 = 𝑎𝑏𝑐 + 𝑎𝑐𝑑 + 𝑎̄𝑏̄ + 𝑏̄𝑐𝑑 + 𝑎̄𝑐

2. Creation of an intersection table at a dimensions given by 𝑚 * 𝑛, where 𝑚 denotes
the number of term groups of 𝐹 and 𝑛 has the same meaning for 𝐺. This table is
laid out in such way that the first column contains term groups belonging to 𝐹 and
the first row holds the number of terms of 𝐺. Individual cells within the table are
filled up in the following way: group of terms intersection (remaining terms of 𝐹 |
remaining terms of 𝐺).
Example:

𝐹
𝐺

𝑎𝑏𝑐 𝑎𝑐𝑑 𝑎̄𝑏̄ 𝑏̄𝑐𝑑 𝑎̄𝑐

𝑎𝑏𝑑 𝑎𝑏(𝑑|𝑐) 𝑎(𝑏𝑑|𝑐𝑑) ∅ 𝑑(𝑎𝑏|𝑏̄𝑐) ∅
𝑏𝑐𝑑 𝑏𝑐(𝑑|𝑎) 𝑐(𝑏𝑑|𝑎𝑑) ∅ 𝑑(𝑏𝑐|𝑏̄𝑐) ∅
𝑏̄𝑐𝑑 𝑐(𝑏̄𝑑|𝑎𝑏) 𝑐𝑑(𝑏̄|𝑎) 𝑏̄(𝑐𝑑|𝑎̄) 𝑏̄(𝑐𝑑|𝑐𝑑) ∅
𝑎𝑐 𝑎𝑐(1|𝑏) 𝑎𝑐(1|𝑑) ∅ ∅ ∅
𝑎̄𝑏̄𝑐𝑑 ∅ ∅ 𝑎̄𝑏̄(𝑐𝑑|1) 𝑏̄𝑐𝑑(𝑎̄|1) 𝑎̄𝑐(𝑏̄𝑑|1)

3. The main task here is to identify those entries that exhibit a mutual intersection of
a maximum size. These so called minterms2 are shared for both input functions.
Once a minterm is registered in the final expression, corresponding row and column
is eliminated from the table.

2 Minterm: A minterm is a product of literals. More specifically, if there are n variables, 𝑥1, 𝑥2, ..., 𝑥𝑛,
a minterm is a product 𝑦1𝑦2...𝑦𝑛, where 𝑦𝑖 is 𝑥𝑖 or 𝑥𝑖.
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Example:

𝐹
𝐺

𝑎𝑏𝑐 𝑎𝑐𝑑 𝑎̄𝑏̄ 𝑏̄𝑐𝑑 𝑎̄𝑐

𝑎𝑏𝑑 𝑎𝑏(𝑑|𝑐) 𝑎(𝑏𝑑|𝑐𝑑) ∅ 𝑑(𝑎𝑏|𝑏̄𝑐) ∅
𝑏𝑐𝑑 𝑏𝑐(𝑑|𝑎) 𝑐(𝑏𝑑|𝑎𝑑) ∅ 𝑑(𝑏𝑐|𝑏̄𝑐) ∅
𝑏̄𝑐𝑑 𝑐(𝑏̄𝑑|𝑎𝑏) 𝑐𝑑(𝑏̄|𝑎) 𝑏̄(𝑐𝑑|𝑎̄) 𝑏̄(𝑐𝑑|𝑐𝑑) ∅
𝑎𝑐 𝑎𝑐(1|𝑏) 𝑎𝑐(1|𝑑) ∅ ∅ ∅
𝑎̄𝑏̄𝑐𝑑 ∅ ∅ 𝑎̄𝑏̄(𝑐𝑑|1) 𝑏̄𝑐𝑑(𝑎̄|1) 𝑎̄𝑐(𝑏̄𝑑|1)

𝐻 = 𝑏̄𝑐𝑑(𝑎̄|1)+

4. Second pass through the table constructed in step 2) is commenced. This time, the
task is to find a next largest intersection. The cell fulfilling this requirement is then
rewritten into the final expression and the whole row and column with this particular
cells are eliminated from the table.

5. Previous step 4) is continuously repeated while the table contains uncovered cells
with at least some intersection. Once all the intersections are covered, it’s possible to
proceed with a next step.
Example: The final expression obtained at this step is following:

𝐻 = 𝑏̄𝑐𝑑(𝑎̄|1) + 𝑏𝑐(𝑑|𝑎) + 𝑐𝑑(𝑏̄|𝑎)+

6. Now, it’s necessary to apply a special functional block called polymorphic multiplexer
(labeled as “|” in the expression), which isolates contradictory parts of functions 𝐹
and 𝐺.
Example: Now, the table contains just the remaining groups of terms which do not
have any common divisor.

𝐹
𝐺

𝑎̄𝑏̄ 𝑎̄𝑐

𝑎𝑏𝑑 ∅ ∅
𝑎𝑐 ∅ ∅

𝐻 = 𝑏̄𝑐𝑑(𝑎̄|1) + 𝑏𝑐(𝑑|𝑎) + 𝑐𝑑(𝑏̄|𝑎) + ((𝑎𝑏𝑑 + 𝑎𝑐)|(𝑎̄𝑏̄ + 𝑎̄𝑐))

Decomposition of the obtained expression will be done as a measure towards the best
possible mapping onto a set of available circuit components. The resulting expression
ready for technology mapping phase may have the following composition:
𝐴2 = (𝑎|𝑎̄) - positive polymorphic inverter
𝐵2 = (𝑏|𝑏̄) - positive polymorphic inverter
𝐶1 = (𝑐|𝑐) - negative polymorphic inverter
𝑍 = (𝑑|1) - polymorphic multiplexer

The final expression describing the example circuit:

𝐻 = 𝑏̄𝑐𝑑(𝑎̄|1) + 𝑏𝑐(𝑑|𝑎) + 𝑐𝑑(𝑏̄|𝑎) + 𝐴2𝐵2𝑍 + 𝐴2𝐶1
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7. If the both functions 𝐹 and 𝐺 have different number of term groups, there will remain
a certain number of uncovered terms belonging to a function with higher number of
term groups. Those uncovered terms are put into the resulting expression by means
of polymorphic operator “|” and neutral element for addition denoted as “0”.

6.2.1 Experiments with generated circuits

The proposed synthesis technique for polymorphic circuits has been tested on several circuits
defined by a truth table in two-level PLA format. Detailed specification of these circuits
can be found in figure 6.1. These circuits were randomly generated using PLA Generator
[74]. The first column identifies a test batch. A test batch is a set of test circuits that
differ only in one property (number of input variables, number of product terms or size
of On-set). It means, the test batch #1 is composed of three circuits having 4 inputs, 16
product terms and 25, 50 and 75% on-set size. Similarly for other test batches. All circuits
have one primary output.

Figure 6.1: Specification of circuits properties.

In order to verify the proposed method, circuits from figure 6.1 has been passed to
proposed algorithm described in the previous section. Achieved results were compared to
Espresso algorithm implemented in SIS synthesis tool. Each test batch has a direct relation
to a batch in 6.1 and numbers are averaged over particular a changing property. Espresso
synthesized circuit have two outputs in order to share common logic and all circuits may
use only two input gates. Figure 6.2 reports experimental results of proposed methodology
and comparison to Espresso synthesis. All columns, except test batch and improvement,
report number of required 2-input gates. The column improvement denotes improvement
of proposed method against Espresso in percentage.

Results from the table 6.2 are graphically illustrated in figures 6.3 and 6.4 depending
on variable property. Number of 2-input gates was chosen as a metric in these experiments.
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Figure 6.2: Optimization results of method based on searching common parts applied on
synthetic circuits.

Figure 6.3: Graph on the left shows improvement depending on number of primary inputs.
Graph on the right shows improvement depending on on-set size.

Figure 6.4: Improvement depending on number of product terms.
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6.2.2 Experiments with MCNC benchmark circuits

The proposed synthesis method for a design of polymorphic circuits based on searching
common parts has been tested on synthetic circuits summarized in figure 6.1. In addition,
another experiments on real circuits defined by truth tables in two-level PLA format taken
from MCNC benchmark set [121]. Circuits have been chosen with respect to the same
number of input for one synthesis run.

Basic specification of these circuits can be found in table 6.2. Original names of circuits
are in brackets in the table. Letters in brackets show which outputs are synthesized (all
noted letters) and capital letters tell us which output is active while circuit works in mode
one, or in mode two respectively. When there are no brackets, two different circuits are
synthesized and polymorphism is responsible for switching between circuit function one
and circuit function two. For example rd84.pla (WxYz) | rd84.pla (wXyZ means that
WXYZ are output functions. In the first mode, the polymorphic circuit performs functions
tainted to W and Y, while in the second mode, it performs functions tainted to X and Z.
Basically, output functions W and X or W and Y are polymorphically switched depending
on environment state.

Finally, results provided by polymorphic synthesis tool are shown and compared with
results from conventional synthesis tool SIS [33]. With the aim of straightforward com-
parison, all circuits were built of 2-input gates only. The only exception in this context is
an inverter. We have chosen a number of actually deployed 2-input gates as the main pa-
rameter for comparison. A percentage improvement over the conventional solution is noted
in the last column of the table 6.2 as the number of used gates in polymorphic solution
versus convectional solution. Number of used gates in circuits synthesized by polymorphic
synthesis tool versus conventional synthesis by SIS are compared in a figure 6.5. Percentage
improvement is plotted also in figure 6.5.

6.2.3 Related summary

In this section, a simple synthesis methodology using polymorphic multiplexers and poly-
morphic inverters was proposed. Obvious benefits obtained through a proper exploitation of
polymorphic electronics offer significant improvement over conventional solution. A method
based on a formal basis has been formulated. The obtained results, performed on randomly
generated circuits, indicate that it’s possible to achieve around 27% improvement especially
in comparison to the standard synthesis tool called Espresso. A set of real experiments with
complex circuits was performed in order to evaluate the proposed synthesis method. In one
case it was possible to achieve almost 40% gates saving. Then, an average improvement on
real benchmark MCNC circuits is about 20%. The method was validated on two-level cir-
cuits. However, an integration of the method into multi-level apparatus may be promising.

In order to further increase the synthesis efficiency of polymorphic circuits, next steps
will explore, for example, the applicability of AIG graphs and rewriting technique for better
identification of circuit parts that can be shared between two (or even more) functions
subjected to the synthesis process.
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Chapter 7

Proposed multi-level design and
optimization method

In fact, a specification of logic function itself can appear in several, mutually different forms.
An elaborate discussion on five of the most common description using two-level arrangement
can be found in [119] and also in chapter 2.2. These cases are mostly focused on various
representations of truth table forms together with disjunctive/conjunctive notation. For
the sake of completeness it is important to point out that synthesis and minimization
techniques in digital circuit domain are based extensively on multi-level representations as
well [31, 42, 44], especially due to reasonable compromise between compact representation
and efficient manipulation. Probably one of the most illustrative examples here is tied with
AIG as a widely adopted scheme in logic optimizations.

Those minimization and synthesis techniques could be, as a matter of fact, roughly
classified as two-level or multi-level oriented. In case of two-level methods the final circuit
composition is delivered as a logic expressions in conjunctive or disjunctive notation. This
approach then leads to the situation when input signals will only pass through two logic
gates at most. On the other hand, multi-level techniques are generating so called nested ex-
pressions with the resulting data path (or interconnection of the individual gates) spanning
even far more than two circuit elements within the final circuit arrangement.

The previous chapter discussed two-level optimizations of polymorphic circuits. Pre-
sented optimization techniques are applicable to two-level circuit representations. Literals
are inputs and it is assumed that a final circuit is represented in the same way as a repre-
sented function. It leads to significant number of multi-input AND gates and one big OR
gate. This fact may be a motivation to focus multi-level optimization methods. Multi-level
representations are more realistic in the most cases.

In order to develop a method for multi-level logic optimization, a valid multi-level
representation of logic circuit for an optimization algorithm is necessary. Multi-level circuit
representations for ordinary logic circuit already exist, such as BDDs, AIGs or factored
forms. It is assumed that a node can perform an arbitrary function and a number of
literals can be significantly reduced. Unfortunately, similar descriptions for polymorphic
circuits are missing.

It is a motivation to propose a multi-level representation of polymorphic circuits. This
representation shall prepare a basis for optimization processes. Last years, AIG’s are very
popular representation useful for optimizations of ordinary circuits. Popularity of AIG’s has
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led to a focus the AIG representation and hence PAIG (Polymorphic And-Inverter Graph),
which is described in following section, was introduced.

7.1 PAIG - An extension of AIG for polymorphic circuits
The problem outlined above, which is being pursued by this thesis, represents a challenge
that stands out particularly in a situation when the circuit complexity is reaching beyond
the boundary of more than just a few tens of gates. A key obstacle here is given by the
fact that standard methods for representation of a typical digital circuit fail to adequately
capture the specifics within the polymorphic electronics domain, which in turn renders their
performance quite unsatisfactory. However, a solution leading ultimately to an inception
of a novel format for representation of polymorphic circuits. The novel format could be
identified in integration of corresponding extension into the foundation of conventional
schemes like e.g. And-Inverter Graphs [68] or Binary Decision Diagrams [2].

Hence, the need to design a novel format for transparent representation of polymorphic
circuits, which satisfies the requirements of easy manipulation in terms of synthesis and
optimization tasks, clearly emanates from those aspects.

7.1.1 Elements of And-Inverter Graph scheme

One of the most ubiquitous schemes used for representation of a conventional digital circuit
is known as And-Inverter graph (AIG) (see section 3). In fact, its core principle is based on
an acyclic network of nodes and edges, where a node is two-input AND gate and an edge
behaves like a negation of the logic signal passing through it between nodes. A significant
advantage of using AIG concept for representation of a digital circuits is undoubtedly given
by the fact that its foundation is relying on well-established graph theory. Hence this
observation suggests a possibility to apply various operations that are generally known
from graph theory also in case of AIGs. The continuous exploration and refinement of AIG
with regard to its origins of theoretical background, which has been done already for more
than a decade, brought a couple of advanced operations, which turn out to be very useful
for digital circuits optimization.

Most of these operations have originated from research activities of Alan Mischenko [68].
For the sake of clarity, let’s mention just some of them:

∙ Balancing: reduction of the depth.

∙ Structural hashing: detection of an isomorphic subgraphs.

∙ Functional reduction: detection of an isomorphic subfunctions in a graph.

∙ Rewriting: identification of ineffective parts and their replacement.

∙ and a rich set of additional operations.

And-Inverter graph offers modern, effective and transparent representation for necessary
minimization operations requested by logic synthesis. For this reason, I decided to use AIG
’s as a base for a new unique representation format of polymorphic circuits.
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7.1.2 Toolset for operations with AIGs

The term AIGER denotes a format and, in the same time, also set of utilities for And-
Inverter Graphs processing, which was developed at Johannes Kepler University in Linz.
AIGER has been presented to the general audience at the Alpine Verification Meeting 2006
in Ascona [7]. The main idea was to provide a simple, compact file format for a model
checking purposes. In fact, a specification of AIGER format [9] is available in two, slightly
different versions: an ASCII and a binary. Each version is conceived with the aim to
accommodate somewhat different purpose.

The ASCII version is the format of choice when it comes to AIG circuit representation,
which needs to be saved for further reading and editing by a human circuit designer. It is
simple to generate and it less constrained in comparison to the binary format. The binary
version is, in fact, a compressed version of ASCII variant. Binary format saves data and is
unreadable without corresponding AIGER reader. ASCII format requires more disk space,
but it is readable by human.

Further within the context of this contribution the ASCII format will be considered only,
especially because it gives better means for explaining the fundamentals of novel approach
to the representation of polymorphic circuits.

Every circuit description file compliant with AIGER format should begin with one-line
header, where the exact version of AIGER is given:

∙ ”aig“ - binary identifier

∙ ”aag“ - ascii identifier

This identifier is followed by 5 unsigned integers M I L O A which denote the following
items respectively:

∙ M - maximum variable index

∙ I - number of inputs

∙ L - number of latches

∙ O - number of outputs

∙ A - number of ands

After this sequence of integer identifiers, the file format simply continues with an AIG
description of a circuit structure. Now, each object (input, output, and, latch) has a unique
numeric identifier. In order to keep a tidy arrangement, inputs are described first - each
input (unique numeric identifier) is specified on a dedicated line:

<input identifier>

After the specification of all relevant input, latches can be placed. However, latches
are not supported at the moment for polymorphic circuits, because this work focuses to
combinatorial circuits only:

<latch input> <latch output>

Outputs must be specified in the same way as inputs:

<output identifier>
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Finally, there still remains the need to specify the inner portion of AIG circuit repre-
sentation consisting of AND-based nodes and their mutual links based on inverters:

<node identifier> <left leaf> <right leaf>

The following box contains an example of AIGER format in ASCII encoding [9]. The
example is based on the previous instructions:

aag 6 2 0 2 2
2 #input 0
4 #input 1
8 #output 0
7 #output 1
6 2 4 #and node
8 3 5 #and node

I0

2

I1

4

6 8

O0O1

Figure 7.1: Representation of circuitry that contains two combinatorial functions, NAND -
output O1 and NOR - output O2, using AIG paradigm.

It is possible to notice on figure 7.1 and example of AIG description given above, all
object identifiers are even. It is required by internal implementation of AIGER intercon-
nections, where even number is a wire. An inverting edge (dotted) is specified by odd
object identifier (+1). For example an inverting edge from node 8 to node 2 will be noted
as follows1:

8 3

7.1.3 Newly proposed AIG format for polymorphic circuits: PAIG

As it was concisely demonstrated in the previous section, AIGER and other widespread
conventional tools and techniques do not offer, if any at all, an immediate support for
the representation of polymorphic circuits. Hence, the need to design a novel format for

1Graphical representation of edges differs from commonly used notation. Arrows lead from leafs to roots.
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transparent representation of polymorphic circuits, which satisfies the requirements of easy
manipulation in terms of synthesis and optimization tasks.

Technical details of PAIG

The intention to develop new format for representation of polymorphic circuits was pri-
marily motivated by the constraints and severe limitations of the available conventional
methods. In addition, there was also an objective to get a compact format which may fa-
cilitate the tasks of synthesis and further optimization of circuit structure. A key decision
was to preserve backward compatibility to AIGER format due to its widespread acceptance
and relative simplicity.

With the aim to keep the complex nature of polymorphic circuit synthesis at a reasonable
level, a number of permissible modes for each node within AIG representation was limited
to the number of two. It means that the final polymorphic circuit can ultimately work
in just two different operating modes, where an actual mode is switched by a state of the
environment. In general, a resulting behaviour of the circuit built in AIG can be affected
only by two aspects:

1. Interconnection.

2. Edges (wire or inverter).

One of the possible ways how to enhance the capabilities of AIGs involves definition of
new edge types. Thanks to the polymorphism it is possible to change behaviour of gates
and also inverters. AIG contains only AND gates, however, any other function can be built
from AND gates and their appropriate interconnection. This idea has resulted into the
extended variety of edge types - from the initial two types to total of four types now:

1. Normal edge - wire.

2. Inverted edge - inverter.

3. Polymorphic edge 1:

∙ In mode 1 - wire,
∙ in mode 2 - inverter.

4. Polymorphic edge 2:

∙ In mode 1 - inverter,
∙ in mode 2 - wire.

Black solid line represents a normal wire. Black dotted line represents an inverter. New
polymorphic edges are denoted as a double solid line in the case of polymorphic edge 1
and as dotted double line in the case of polymorphic edge 2. See figure 7.2 for examples
illustrating those types of edges. Finally, those four types of edges enable design arbitrary
polymorphic circuit with two operating modes.
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normal

1

normal

2

polymorphic

3

polymorphic

4

wire inverter wire | inv inv | wire

Figure 7.2: Graphical representation of edge types. Edge types from the left: wire, inverter,
polymorphic wire, polymorphic inverter. Polymorphic wire is working as a normal wire in
mode 1, while in mode 2 it assumes the function of inverter. Polymorphic inverter of is
shown on the right side. In mode 1 it provides the functionality of inverter. Then, in mode
2, its behavior resembles wire.

At the beginning it is necessary to inform an AIGER parser about an intention to use
the extended format. Format identifier in header must contain string ”paag“. Then, the
extension for polymorphic circuits will be correctly recognized:

∙ ”paig“ - binary identifier for polymorphic AIGER (not supported yet),

∙ ”paag“ - ascii identifier for polymorphic AIGER.

The ordinary AIGER format works with unsigned integers only. Even reference indexes
are treated as ”wires“ and odd are being seen as ”inverters“. Extending AIGER to work
with signed integers is necessary for the support of new edge types - polymorphic edges.
Ordinary edges are staying unchanged, while the polymorphic edges have negative prefix
before their object index. Following example highlights the proposed extension:

∙ Polymorphic edge 1 (mode 1 = wire, mode 2 = inverter) will be noted as negative
even integer.

∙ Polymorphic edge 2 (mode 1 = inverter, mode 2 = wire) will be noted as negative
odd integer.

paag 4 4 0 4 0
2 #input 0
4 #input 1
6 #input 2
8 #input 3
2 #output 0
5 #output 1
-6 #output 2
-9 #output 3

7.1.4 New constructions offered by PAIG extension

AIG extension of polymorphic edges has brought new constructions that may appear in a
network. These constructions may bring new, more effective interconnections, but in other
hand they require an attention during AIG manipulation.
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One of the new construction that does not make sense in AIG, but in PAIG has signifi-
cant importance, is connection of both edges from node a 𝐴 to a node 𝐵. This construction
has no meaning in AIG, because it propagates constant value, but in PAIG, it may change
output dependently on polymorphic state. It is possible to insert a polymorphism into a
circuit easily and this construction is also applicable inside a network. See figures 7.3 for
better understanding.

Figure 7.3: The left network shows an interconnection useless in AIG. However, the right
network shows the same interconnection with polymorphic edge, that has significant us-
ability in proposed PAIG networks.

This construction is further used for transformation of random primary input to vir-
tual polymorphic input in performed experiments and evaluation. These constructions can
appear inside a PAIG network also.

7.1.5 Experiments and demonstration

no. Description
# Description Circuit 1 Circuit 2
1 2-bit ALU Logic ALU Arithmetic ALU
2 2-bit Adder SUM Carry
3 Cellular tr.function Rule 30 Rule 100
4 GRAY/BCD Coder Gray BCD
5 Self-checking adder Carry Carry

Table 7.1: Description of experimental circuits for PAIG extensions.

For the purpose of demonstrating properties of the newly proposed format for polymor-
phic circuits representation five different experiments were prepared in total (table 7.1).
These experiments clearly show the efficiency of polymorphic circuits handling using new
PAIG/PAAG format in comparison to the conventional solution based on standard AIGER
format without additional modifications. Selection of benchmark circuits was random in
order to clearly demonstrate the concept of PAIG representation.
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no. Conventional solution Polymorphic solution Improvement
# Circuit 1 Circuit 2 SUM AIG PAIG Conv. vs PAIG. AIG vs PAIG

[ANDs] [ANDs] [ANDs] [ANDs] [ANDs] [%] [%]
1 9 7 16 18 10 44.44 37.50
2 4 6 10 13 7 46.15 30.00
3 4 4 8 13 6 53.85 25.00
4 16 7 23 26 16 38.46 30.43
5 4 4 8 8 4 50.00 50.00

Table 7.2: Comparison results of conventional AIG representations and PAIG representa-
tions.

Experiment no.1: Logic/Arithmetic ALU

The first experiment is dealing with a combination of two different ALU structures. The
first ALU should be working in a logic mode and the second ALU should be working in
an arithmetic mode. Conventional AIG implementation of these two ALUs is shown in
figure 7.4. In this case, the logic operation mode of the ALU requires 9 AND gates and the
arithmetic ALU consumes only 7 AND gates. See table 7.2 stating the overall number of
used gates.

If an addition of polymorphism feature (switching of operating modes) is conceived us-
ing conventional AIG, then a mode switching is achieved thanks to an additional, dedicated
virtual input labelled Mode. Let’s call this solution ”virtual polymorphism“. Virtual poly-
morphism of ALU requires 18 AND gates. It is possible to see a graphical representation
of this circuit variant in figure 7.5 on the left.

If the PAIG/PAAG format is used, it is possible to reach significant savings of re-
sources. See figure 7.5 on the right. It shows a polymorphic ALU working in both logic and
arithmetic mode, in which an operating mode is depends on a state of a target operating
environment. This implementation is built upon the exploitation of new polymorphic edge
types.

Experiment no.2: 2-bit adder

The second experiment is comprising a polymorphic adder, where Carry and Sum bits
are switched in polymorphic way. In the first mode, adder calculates SUM, in the second
mode, adder calculates carry. An adder circuit representation using conventional AIG
scheme requires 10 AND gates. If the PAIG novel format is used, common resources are
shared and whole the adder implementation requires only 7 AND gates. See table 7.2 for
details.

Experiment no.3: Cellular transition functions

Another application of polymorphic circuits is demonstrated as a transition function of
cellular automaton. This experiment executes two transition functions: Rule 30 and Rule
110. Rules are switched with regard to the operating conditions. Two conventional functions
build from AIGs require 8 gates in total. Polymorphic AIG solution saves 2 gates while
still preserving the original functionality. See table 7.2 for details.
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Figure 7.4: There is a conventional AIG of logic ALU on the left. There is a conventional
AIG of arithmetic ALU on the right.

Experiment no.4: Gray/BCD decoder

This experiment combines two 4-input and 4-output circuits - Gray coder and BCD coder.
Polymorphism switches between gray coding and BCD coding. A conventional solution of
both circuits requires 23 AND gates in total. Virtual polymorphism needs 26 AND gates
and a PAIG solution consumes only 16 AND gates. An improvement of the polymorphic
solution reaches 38.46% in comparison to the conventional solution.

Experiment no.5: 2-Bit self-checking adder

The last experiment takes aim on a special kind of 2-bit adder with self-checking ability.
This idea originated at Faculty of Information Technology, Brno University of Technol-
ogy [90] as an illustrative example of polymorphic circuits application. Adder works equally
in both polymorphic modes. An additional feature is hidden in fault detection mechanism.
The adder calculates carry in the first mode. In the second mode, the adder performs the
same - carry. If the carry is equal in both modes, no fault is present. But, if the carry is
different in operational modes with respect the same inputs, an fault is signalized.
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Figure 7.5: There is a conventional AIG of virtual polymorphic logic/arithmetic ALU on
the left, in which the mode is controlled by virtual input labeled as MODE. There is a
polymorphic AIG (PAIG) version of logic/arithmetic ALU on the right. Is possible to note
significant savings of AND gates.

Figure 7.6: Left graph shows a comparison between two circuits synthesized as two separate
circuits and polymorphic solution using PAIG. Right graph shows a comparison between
AIG and PAIG, where both are representing a polymorphic circuit.
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PAIG extension evaluation

The table 7.2 summarizes results of all conducted experiments outlined in the previous sec-
tion. The table is separated into two main columns: Conventional solution and polymorphic
solution. The conventional solution contains number of AND gates used with conventional
technology and AIG representation. The polymorphic solution contains number of ANDs
required by polymorphic technology. An AIG column contains number of ANDs required
in case of using virtual polymorphism (basic AIG representation). A column PAIG con-
tains number of used ANDs in PAIG/PAAG representation. The third column shows an
improvement between conventional solution vs polymorphic solution in a percentage ratio
and also the comparison of virtualized polymorphism to PAIG/PAAG representation. The
results demonstrate, that the proposed PAIG/PAAG representation scheme can provide
average saving of 34.59% AND gates (see figure 7.6 for details).

This evaluation presents the novel PAIG/PAAG representation on relatively small cir-
cuits. A main intention of the evaluation is clear explanation of PAIG/PAAG representation
principles. More complex circuits are evaluated later, in chapter 8.

7.1.6 PAIG extension summary

A novel format for representation of polymorphic circuits using AIG was proposed. It is
an extension of AIGER format, which is fully supported in well known tools like ABC and
others. A few experiments show that the novel format seems to be very effective approach
how to represent polymorphic circuits, including very complex variants (complex variants
discussed in chapter 8).

7.2 Polymorphic AIG Rewriting
In comparison to conventional circuit design, designing of polymorphic circuit is much
more complex. It is mainly caused by an ability to change behavior of building elements,
while interconnection remains the same. Many designing methods have been proposed (see
section 5.1), but most of them are two-level, or they have a scalability problem. Two-level
polymorphic design methods were already published [25, 24], but a scalable, multi-level and
straight methodology is still missing. Considering the AIG as a very popular concept for
conventional circuit design, I decided to create a polymorphic circuit design methodology
based on AIG.

In order to synthesize and optimize multi-functional circuits by means of using a scalable
methodology based upon a formal foundation, a polymorphic-AIG (PAIG) rewriting is
proposed as a modification of original AIG Rewriting [68] and PAIG extension. Original
AIG Rewriting is described in [68] in detail or in this thesis, section 3.1.6. However, it
is not applicable for synthesis and optimization of polymorphic circuits without further
modifications of the former algorithm.

Basic idea of the original rewriting technique is based on replacement of AIG sub-
graphs by optimal, smaller sub-graphs in order to reduce total number of gates. The
algorithm proceeds iteratively from leaves to roots of an AIG and if a better solution is
found, replacement is applied. Sub-graphs which are investigated have typically 4-inputs
(K-feasibility K=4) and L outputs (L=1).

PAIG-based rewriting approach uses rewriting technique with a slightly different idea
in mind. As it was mentioned in previous subsections, main intention of multi-functional
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circuits is to take an advantage of sharing common logic of two completely different func-
tions. At first, it is necessary to insert polymorphism (multi-functionality) into a circuit
that is going to be synthesized. Two options open up here. The first option, an usual pro-
cedure implements two different functions in a conventional manner, so the polymorphic
multiplexing is used as a seed of polymorphism. Polymorphic multiplexers are connected
to primary outputs with respect to functions that are being switched. In PAIG, I designed
two variants of polymorphic multiplexer, which are depicted in figure 7.7. Let’s note that
both variants consist of 3 AND gates. Adding polymorphic multiplexers creates full-fledged
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Figure 7.7: Two variants of polymorphic multiplexer represented in PAIG network.

polymorphic circuit with two functions. The second option is conversion of conventional
circuit into polymorphic circuit by removing one primary input and making the primary
input polymorphically driven.

However, sharing of common resources is not reached in either options, in contrary to
the main objective here. So here comes the right moment for unleashing PAIG rewriting
algorithm for optimization of polymorphic circuit in order to share common logic resources.
In comparison to the original AIG rewriting, a few modification have been applied, such
as support of PAIG representation, modified cut enumeration and generating optimal sub-
circuits. All these modifications are described in detail in the following sections.

7.2.1 PAIG rewriting algorithm

For optimization and synthesis of polymorphic circuits, a rewriting algorithm has been cho-
sen for his popularity, quality and efficiency in conventional synthesis. Rewriting algorithm
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is well described in [68], where it was introduced. Brief of conventional rewriting was al-
ready mentioned in section 3.1.6. In the recap, rewriting technique goes through all nodes
in a network and all cuts of each node (see cut definition 6). Then, each cut is analyzed
and replaced by its optimal implementation (note that all optimum 222 NPN-classes are
pre-computed). The cut having the best gain of nodes is replaced.

Algorithm 1 PAIG rewriting algorithm
1: procedure rewrite(𝐴𝐼𝐺, 𝑢𝑠𝑒_𝑧𝑒𝑟𝑜_𝑔𝑎𝑖𝑛)
2: for each node N in AIG in the reverse topological order do
3: C𝑏𝑒𝑠𝑡 = NULL;
4: gain_max = 0;
5: for each 4-input poly cut C of node N do
6: F = simulate_cut(C);
7: 𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = Generate_optimal_subgraph(F);
8: AIG𝑠𝑎𝑛𝑑 = copy(AIG);
9: replace_cut(AIG𝑠𝑎𝑛𝑑, C𝑜𝑝𝑡𝑖𝑚𝑎𝑙);

10: AIG𝑠𝑎𝑛𝑑 = structural_hashing(AIG𝑠𝑎𝑛𝑑);
11: gain = AIG_num_gates - AIG𝑠𝑎𝑛𝑑_num_gates;
12: if ((gain > gain_max) ||
13: ( (gain_max == 0) && (use_zero_gain) )
14: ) then
15: 𝐶𝑏𝑒𝑠𝑡 = 𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙;
16: gain_max = gain;
17: polyedges_max = polyedges(C);
18: if (𝐶𝑏𝑒𝑠𝑡! = 𝑁𝑈𝐿𝐿) then
19: replace cut(AIG, 𝐶𝑏𝑒𝑠𝑡);
20: return AIG;

Pseudo-algorithm of PAIG rewriting procedure is denoted in Algorithm 1. The Algo-
rithm 1 describes a single rewrite iteration through a circuit 𝐶. For maximum efficiency
of a synthesis process, it is recommended to run more than one iteration, until zero gain is
achieved - this principle is valid for original rewriting also.

In comparison to the original AIG rewriting is iteration through AND nodes in the
reverse topological order. The reverse iteration from roots to leaves will ensure propagation
of polymorphism deeper into a network. To achieve maximum expansion of polymorphism
into a network, in contrast to ordinary rewriting, PAIG rewriting is processing each node
unless the gain of cut or whole network is negative.

PAIG rewriting algorithm is a key element behind the first synthesis and optimization
method targeting multi-functional circuits which does not involve usage of any heuristic
aspects at its core. All steps in the algorithm are strictly defined and the optimization
process is fully controlled in comparison to evolutionary optimizations. The algorithm
ensures polymorphism propagation deeper into the circuit structure and enables sharing of
common sources of both desired functions.
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7.2.2 Cut enumeration in PAIG

Cut enumeration completely follows the definition 6 and process of construction and recur-
sive enumeration from section 1. DAG cuts and tree cuts are considered with respect to
DAG-aware rewriting.

It is quite typical for a conventional rewriting procedure that 4-input (k = 4) cuts are
commonly used. If k = 3, the chance to find a replacement with reasonable potential to
improve the circuit representation is reduced significantly. If k = 5, a number of subgraphs
grows rapidly instead. A 4-input polymorphic cut capable to switch between two functions
require an additional 5th input. The additional input ensures the function switching and
for purposes of this thesis the input is named virtual polymorphic input. The virtual poly-
morphic input in conjunction with 4-input cuts for the purpose of optimizing polymorphic
circuits makes up altogether 5-input cuts. It is possible to observe a direct influence on the
expansion of state-space comprising all permissible cuts.

Cut enumeration produces a set of all k-feasible cuts assigned to each node. Cut enu-
meration starts at leaves and continues in topological order to the root of AIG. Each node
contains at least trivial cut. Each set of cuts of node n is computed as Cartesian product
of two previous cut sets of nodes a and b. Formal notation of cut sets computation of node
n is following [69]:

𝜑(𝑛) = {{𝑛}} ∪ {𝑢 ∪ 𝑣|𝑢 ∈ 𝜑(𝑎), 𝑢 ∈ 𝜑(𝑏), |𝑢 ∪ 𝑣| ≤ 𝑘}

Cartesian product of two sets creates a new cut set of node n, while keeping only K-
feasible cuts.

7.2.3 Optimal circuit generator - MinCirc

Based on AIG rewriting principles discussed in section 3.1.6, the rewriting replaces non-
optimal subgraphs by optimal. These optimal subgraphs must be somehow available. There
are two options here: to have a precomputed library of optimal subgraphs or compute
optimal subgraphs during runtime. For 4-input subgraphs and usage of NPN-class, we must
have available 222 optimal structures, that are used for the ordinary rewriting algorithm
(4-input cuts are used). Unfortunately, polymorphism adds additional virtual input - a
polymorphic control wire, hence the polymorphic cut enumeration searches for 5-input cuts
instead. Due to very high number of 5-input cuts (4-real input, 1-virtual input), a number
of possible solutions is growing up at an extremely fast pace and, thus, it is rendering the
option to keep all the pre-computed optimal cuts structures unrealistic. It simply becomes
necessary to compute optimum cuts on-line.

Nan Li and Elena Dubrova proposed a technique for AIG rewriting using 5 input cuts.
5-input NPN equivalence classes circuits counts 616126, this number of graphs is too big to
precompute and store. Authors experimentally discovered that only 2749 classes appear in
all IWLS 2005 benchmarks [17]. Further they picked 1185 classes of 2749 with more than
20 occurrences and they generated best circuits for representative functions [55].

To generate an optimum circuit is
∑︀

2−𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problem [113] and this problem worries
researchers since 1970’s. Some methods have been introduced, for example methods based
on ILP (Integer Linear Programming) or SAT based approaches (listed in [35]).

Although the generation process of optimum circuit implementation is well-mastered
process in case of conventional circuits, no such approach hadn’t existed for polymorphic
circuits until introduction a MinCirc tool [35]. The MinCirc tool is a tool for generation of
optimum circuits including polymorphic circuits using proposed PAIG format. MinCirc is
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mainly used for an on-line computation of optimum sub-graphs in PAIG rewriting. Once
the MinCirc produces optimum subgraphs (structures) for particular function, the optimum
structure is chosen and deployed on the basis of achieved gain of overall network.

Because the generation process of optimum functions is essential for the rewriting al-
gorithm, let us look under-hood the MinCirc. The initial version of MinCirc was mainly
designed for generating optimum circuits with XOR gates [36], while later was extended
for polymorphic circuits. MinCirc extension for polymorphic circuits exploits a property
that polymorphism can be viewed as an additional primary input. Thus, a polymorphic
stimulus 𝑃 is introduced and enables (switches) between polymorphic modes. Basically,
polymorphic stimulus 𝑃 is a virtual polymorphic input mentioned in previous section 7.2.2.

An example of formula describing a polymorphic gate implementing a function AND/OR,
is following:

𝐹 = 𝑃 (𝑎 * 𝑏) + 𝑃 (𝑎 + 𝑏)

where 𝑃 is the polymorphic stimulus (virtual polymorphic input) and 𝑎, 𝑏 are primary
inputs of gate.

Algorithm

To understand problematics of generation of optimum circuits, this short section briefs
MinCirc algorithm, based on [35].

The problem of optimum circuit generation is solved by its reduction to a decision
CNF-SAT problem [40]. These and similar problems belong to disparate complexity classes
of polynomial hierarchy, the reduction is not polynomial. The optimization problem is
elegantly limited by a simple trick applied to a decision problem : ”Does there exists an
n-node implementation of a given k-input function?“. Initial value of 𝑛 = 1. If the answer is

”no“, procedure is repeated with incremented 𝑛. The algorithm repeats until answer ”yes“
is obtained. Then, it is a solution of the original problem.

The algorithm outlined by a pseudo-code in the Algorithm 2. The algorithm input is
a truth table of the intended function and the output is an optimal structure. The key
procedure in algorithm is Generate_CNF(). Detailed description of CNF generation can
be found in [35] as well as experimental results.

Algorithm 2 MinCirc algorithm [35]
1: procedure Generate_optimum_structure(𝑡𝑟𝑢𝑡ℎ_𝑡𝑎𝑏𝑙𝑒 𝑓, 𝑖𝑛𝑡 𝑘)
2: n = 1;
3: do
4: CNF = Generate_CNF(f, k, n);
5: Sol = SAT_Solve(CNF);
6: if (Sol.unsat) n++;
7: while (Sol.unsat);

The MinCirc tool also offer to configure some parameters, such as required delay (depth),
gate cost, etc. The MinCirc is deployed in PAIG rewriting for generating optimum sub-
circuits and completely covers Genereate_optimal_subgraph(F) in PAIG rewriting Algo-
rithm 1.
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7.2.4 Cut replacing

The original AIG algorithm performs dereferencing and referencing nodes during replace-
ment and structural hashing is immediately applied per each node change. PAIG rewriting,
implemented in the PAIG tool, removes nodes matching an inspected cut from a network
and adds new nodes into a network corresponding to optimal sub-graph (generated by Min-
Circ). So modified network is structurally re-hashed at once. It may affect the performance
of PAIG algorithm. Nevertheless, the complexity of original AIG rewriting algorithm is
well-known. Cut replacement implementation can be improved later by referring the origi-
nal AIG rewriting.
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Chapter 8

Evaluation of multi-level
polymorphic design and
optimization method

In order to prove and evaluate the proposed PAIG rewriting algorithm, a set of experiments
has been prepared for thorough evaluation. Experiments are divided into two groups, where
deployment of polymorphic circuits make a sense. The first group of experiments rests in
conversion of conventional circuits to polymorphic, and so converting one primary input
to a virtual polymorphic input. The experiments may prove that circuits composed of
polymorphic components may be solved more effective.

The second group of experiments consist in a joining of two different circuits and switch-
ing their output function using polymorphism. The main idea is to share common resources
of two completely different circuit using polymorphism and demonstrate that polymorphic
circuits saves resources.

Both kinds of experiments are working with the same batch of 21 combinatorial cir-
cuits from a publicly available benchmark set LGSynth91 [121]. Table 8.1 summaries the
properties of combinatorial circuits used for experiments. Circuits in a set are chosen with
a various number of AND nodes, high number of primary inputs and outputs in order to
thoroughly evaluate proposed algorithm.

All the experiments presented in this section are successively performed in accordance
to the synthesis flow previously discussed in Section 7.2.

In order to put the proposed solution and obtained results presented in this contribu-
tion into a proper context, an important aspect behind the experimental work takes aim at
providing an illustrative comparison in terms of synthesis efficiency between polymorphic-
based rewriting approaches against other convenient optimization methods exhibiting scal-
able properties. However, it is necessary to take into account an important fact that no
easily scalable methodology for synthesis and optimization of polymorphic circuits has been
reported up to the date.

8.1 Conversion of primary input to virtual polymorphic in-
put

Experiment that demonstrates applicability of PAIG rewriting on conventional circuits is
presented in this section. Conventional circuit is modified into a polymorphic circuit in the
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Table 8.1: List of combinatorial circuits used for both kinds of experiments.
Index Circuit name Primary Inputs Primary Outputs AND nodes

1 cht.aig 47 36 185
2 apex1.aig 45 45 2604
3 apex6.aig 135 99 659
4 apex7.aig 49 37 221
5 lal.aig 26 19 109
6 c8.aig 28 18 169
7 misex2.aig 25 18 119
8 misex3.aig 14 14 1549
9 misex3c.aig 14 14 721

10 pcler8.aig 27 17 71
11 my_adder.aig 33 17 176
12 ttt2.aig 24 21 218
13 C499.aig 41 32 400
14 C1355.aig 41 32 504
15 seq.aig 41 35 2411
16 count.aig 35 16 127
17 unreq.aig 36 16 112
18 pdc.aig 16 40 1621
19 vda.aig 17 39 924
20 k2.aig 45 45 1998
21 rot.aig 135 107 550

following way: a random primary input is converted to a polymorphic driven one on the
basis of environmental state.

The main objective of the proposed experiment is to produce an optimized structures
of polymorphic circuits.

8.1.1 Specification of benchmark set

For demonstration purposes, all 21 polymorphic circuits has been selected from the table 8.1
for thorough evaluation, where circuit properties are also summarized. Each test case 𝐶
consists of one combinatorial circuit from a publicly available benchmark set LGSynth91
(listed in table 8.1). The set has been selected with various number of inputs 𝑃𝐼 and outputs
𝑃𝑂. Selection of the individual test circuits used during the consecutive experimental
evaluation did not reflect any further consideration or properties (e.g. signal propagation
delay or interconnection complexity of a given circuit structure) than the aspect explicitly
mentioned above. However, it could be interesting to assess the proposed approach behavior
also from this standpoint during some of the future research activities.

Each test circuit 𝐶 has number of primary inputs 𝑃𝐼𝐶 and number of primary outputs
𝑃𝑂𝐶 . One of 𝑃𝐼𝐶 is removed and substituted by virtual polymorphic input 𝑃 in initial
circuit, that cause the 𝑃𝐼𝐶 is controlled by the basis of environmental state. See figure 8.1
for more details of the conversion.
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Figure 8.1: Example of primary input I0 conversion to virtual polymorphic input.

8.1.2 Results analysis

Details on results obtained thanks to the polymorphic-oriented modification of conventional
rewriting process are shown in table 8.2. The table itself is further divided into four sections,
where the first one identifies the individual circuits from a given benchmark set. Then,
the second one outlines the average results after optimization by PAIG rewriting that led
to an observable circuit improvement. The third section reports an optimization results
obtained with ABC tool and finally, the fourth one depicts the improvement PAIG rewriting
comparison against ABC tool results. All results in the table 8.2 are averaged values of
permutation over all primary inputs.

A column num of rewrites in second section reports average number of applied sub-
circuit replacements per one iteration (one iteration = one rewrite command). A column
AND nodes before represents a number of AND nodes of initial circuit. A column AND
nodes after denotes the resulting number of AND gates required by a given target circuit
once the synthesis process is finished. Analogically, a column gain reports a number of
saved AND nodes and it is computed as subtraction of number ands after from number
ands before. Both columns 𝑃𝑒𝑑𝑔𝑒𝑠 denotes the overall number of polymorphic edges used
in that circuit. A column avg cuts per it reports average number of all found cuts per
one iteration (one rewrite command). Next column rewrite iterations denotes a number of
called ”rewrite“ command to reach the best optimization. Improvement PAIG shows the
details on a percentage improvement against the initial circuit. Time column contains an
assessment of the elapsed time of the whole synthesis process including time for generation
of optimal sub-circuit.
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For the purpose of drawing a relevant comparison a contribution of standard ABC tool
was used for an optimization of combinatorial circuits from every circuit under optimization
given in table 8.1. With the aim to make optimization results more relevant, the optimiza-
tion is performed especially for each primary input 𝑃𝐼𝐶 of each initial circuit and results
are averaged. Thus, results report average values of optimization for all primary inputs.

The third section reports briefly maximal optimization reached by ABC tool, whereas
several iterations has been applied too. The best optimization using ABC tool was achieved
no later than in the in fourth iteration of the ABC ”rewrite“ command. In summary,
the optimization flow exploiting the conventional ABC-based rewriting methodology has
resulted into the average reported improvement of 17.50% against the initial benchmark
circuits arrangement. The last section contains only one column, reporting the difference
of improvement of PAIG optimization against to ABC tool optimization.

An improvement or gain expressed in terms of AND nodes saving achieved by PAIG
throughout all the experiments is reaching 21.02% in average. Further details mentioned
here within the second section of table 8.2 give an overview of the proposed approach
characteristics in situation when the objective was to achieve the best possible refinement
of polymorphic circuits structure from the specified benchmark set. Efficiency of the PAIG-
based rewriting algorithm is enumerated in column Improvement PAIG. The best derived
solution (averaged per all primary inputs) has 34.76% improvement, which confirms the
ability to design competitive multi-functional circuits.

The table 8.2 provides also a closer insight into the performance and runtime behavior
(which is indeed a significant aspect when it comes to optimization of complex circuits) of
the proposed approach in case of the chosen benchmark set, when the on-line computation
of optimum sub-circuits (replacement cuts) is taken into account.

On-line optimum cut computation is a difficult task, which is managed by MinCirc tool
within the proposed synthesis flow. In order to minimize the impact of that particular
property exhibited by MinCirc, already generated PAIG graphs are reused without even
launching the tool. The MinCirc produces optimum sub-graphs in a quite fast manner
for the majority of functions (combinatorial circuits handed in to the synthesis process),
however, some of functions are too difficult to be resolved in an acceptable time.

Therefore, a 5 seconds timeout period for MinCirc tool has been chosen. It is necessary
to specify the timeout period in a cautious manner because its overly constrained value
prevents the generation of good sub-graphs having an importance for circuit improvement.
Tens of optimal subgraphs are usually generated in this period. On the contrary, too
generous timeout significantly extends the overall duration of synthesis process. If the
MinCirc runtime period expires for a particular function, the function is noted as difficult
and MinCirc skips the function in the future with the aim to reduce the necessary synthesis
time. Unfortunately, such timeout could potentially lead to non-deterministic behavior on
a different computing platforms than the one actually used in that case. To get rid of
this drawback, the future research activities could explore the possibility of creating the
database of precomputed optimum circuits. The algorithm is expected to run just a few
seconds with precomputed optimum cuts and effective PAIG code implementation. The
experiments were performed using a workstation equipped with Intel(R) Core(TM) i7 CPU
920 processor.
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8.2 Switching between two different functions
This section describes experimental results that demonstrate usability of PAIG rewriting
for joining two different circuits into one polymorphic circuit, where their outputs are
multiplexed on the basis of environmental state.

A main objective of the proposed approach is to produce an optimized structure of poly-
morphic circuits while mutual, non-conflict sharing of common resources between two initial
circuits (input of the synthesis toolkit based on the proposed PAIG rewriting technique) is
naturally ensured.

8.2.1 Specification of benchmark set

For experimental purposes, 15 polymorphic circuits has been selected from the the table 8.1
for thorough evaluation. Circuit properties are summarized in the table 8.3. Each test case
𝐶 consists of two circuits 𝐴 and 𝐵 (listed in the table 8.1), where both of them have a
similar number of inputs 𝑃𝐼 and outputs 𝑃𝑂. Choice of individual test circuits or their
mutual combination into a target circuit pair 𝐶 used during the consecutive experimental
evaluation did not reflect any further consideration or properties (e.g. signal propagation
delay or interconnection complexity of a given circuit structure) than the aspect explicitly
mentioned above.

Each test circuit 𝐶 has a number of primary inputs 𝑃𝐼𝐶 = 𝑚𝑎𝑥(𝑃𝐼𝐴, 𝑃 𝐼𝐵) and
a number of primary outputs 𝑃𝑂𝐶 = 𝑚𝑎𝑥(𝑃𝑂𝐴, 𝑃𝑂𝐵). Since the primary inputs of
circuit 𝐶 are shared, the primary outputs 𝑚𝑖𝑛(𝑃𝑂𝐴, 𝑃𝑂𝐵) are connected using poly-
morphic multiplexers. See figure 7.7 for more details on implementation of polymor-
phic multiplexers. Remaining outputs are assumed to have permanent/constant func-
tion. Column 𝐴𝑁𝐷𝐴,𝐵,𝐶 denotes the number of two-input AND nodes used in a given
circuit. In case of circuit 𝐶, the initial number of AND nodes is following: 𝐴𝑁𝐷𝐶 =
𝐴𝑁𝐷𝐴 + 𝐴𝑁𝐷𝐵 + 𝐴𝑁𝐷𝑝𝑚𝑢𝑥 *𝑚𝑖𝑛(𝑃𝑂𝐴, 𝑃𝑂𝐵), where 𝐴𝑁𝐷𝑝𝑚𝑢𝑥 = 3.

8.2.2 Results analysis

This subsection is divided into two parts: Results collected during the benchmark circuits
processing by ABC tool and results collected during the benchmark circuits processing by
PAIG tool.

ABC results

Similarly as previous experiment, for the purpose of drawing a relevant comparison, was
the contribution of standard ABC tool used for optimizing 𝐴 and 𝐵 combinatorial circuits
from every test case 𝐶 given in table 8.3. Then, the optimized variants of both 𝐴 and 𝐵
combinatorial circuits are switched accordingly through the polymorphic multiplexer.

Results collected during the benchmark circuits processing by ABC tool are shown in a
table 8.4). The table itself is further divided into three large sections, where the first one
identifies the individual circuits from a given benchmark set. Then, the second one outlines
the results after the first iteration that led to an observable circuit improvement and finally,
the third one depicts the results when the synthesis process reached the best optimization
level.

Each section of the table also provides the details on total number of AND nodes required
by a given benchmark circuit 𝐶 in three different situations (no optimization took place,
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Table 8.3: Combination of combinatorial circuits used for evaluation PAIG rewriting by
joining two different circuits. Polymorphic multiplexers are connected to primary outputs
of both circuits. Thus P𝑒𝑑𝑔𝑒𝑠 represents number of polymorphic edges in polymorphic circuit
to be optimized.

polymorphic circuit C circuit A circuit B AND nodes P𝑒𝑑𝑔𝑒𝑠

C1 cht.aig apex7.aig 514 144
C2 lal.aig c8.aig 332 72
C3 misex2.aig c8.aig 342 72
C4 pcler8.aig c8.aig 291 68
C5 my_adder.aig count.aig 351 64
C6 misex2.aig lal.aig 282 72
C7 ttt2.aig lal.aig 384 76
C8 ttt2.aig misex2.aig 391 72
C9 lal.aig pcler8.aig 231 68
C10 C499.aig C1355.aig 1000 128
C11 count.aig unreq.aig 287 64
C12 my_adder.aig unreg.aig 336 64
C13 pdc.aig vda.aig 2662 156
C14 apex1.aig k2.aig 4737 180
C15 misex3.aig misex3c.aig 2312 56

after the first iteration of ABC processing with some improvement, the best optimization
result accomplished). Results shown in table 8.4 were obtained in the following way:

∙ optimized circuits were joined by polymorphic multiplexers connected to primary
outputs in order to create polymorphic circuit,

∙ a rewrite command was issued on the input circuits A and B until any improvement
at all,

∙ a final number of AND nodes has been counted (column A+B+pmux) and compared
to the situation with initial circuits (column Impr.).

In summary, the optimization flow exploiting the conventional ABC-based rewriting
methodology has resulted into the average reported improvement of 17.83% against the
initial benchmark circuits arrangement.

PAIG results

Results achieved by the polymorphic rewriting are shown in table 8.5. The table itself
is further divided into three large sections. The first one identifies the individual circuits
from a given benchmark set. Then, the second one outlines the results after the first
iteration that led to an observable circuit improvement and finally, the third one depicts
the results when the synthesis process reached the best optimization level. A column 𝐴𝑁𝐷𝐶

in second and third section simply denotes the resulting number of AND gates required by
a given target circuit once the synthesis process is finished. 𝑃𝑒𝑑𝑔𝑒𝑠 denotes the overall
number of polymorphic edges used in that circuit. Rwrts shows the number of sub-circuit
replacements. Gain reports number of saved AND gates and Impr. shows the details on a
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percentage improvement against the initial circuit. Runtime column contains an assessment
of the elapsed time in case of the first iteration that brought an observable improvement
(second section of the table) and also of the whole synthesis process (third section of the
table).

It is important to explicitly mention the fact that so called KL-cuts were enabled during
the first iteration in order to get rid of the polymorphic multiplexers occurrence at the
primary outputs. In general, KL-cuts offer an easier way how to find a proper cut (a
sub-circuit eligible to be replaced by its optimized version) with polymorphic edges.

The table 8.5 provides a closer insight into the performance of the PAIG rewriting in
case of the chosen benchmark set, when precomputed optimum cuts are taken into account.
An improvement or gain expressed in terms of AND nodes saving achieved throughout all
the experiments is reaching 23.00% in average after the first iteration with multi-output cuts
option enabled. Further details mentioned here within the third section of table 8.5 give
an overview of the proposed approach characteristics in situation when the objective was
to achieve the best possible refinement of polymorphic circuits structure from the specified
benchmark set. Efficiency of the PAIG-based rewriting algorithm is enumerated in column
Impr. The best derived solution has 48.11% improvement, which confirms the ability of the
proposed synthesis method to design multi-functional circuits while simultaneously trying
to employ the principle of common resources sharing. Finally, it is possible to notice an
average improvement of 25.95% across the whole benchmark set in comparison to the initial
circuit 𝐶𝑛.
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Experimental measurements have revealed that the largest chunk of computational time
is consumed by PAIG code execution caused by ineffective implementation. But, from logic
point of view, rewriting technique is very fast, while the code is written well. For example,
ABC code is pretty well optimized and optimum cuts are stored in effective way. The
experiments were performed using a workstation equipped with Intel(R) Core(TM) i7 CPU
920 processor.

For evaluation and comparison of PAIG rewriting algorithm efficiency with ABC con-
ventional rewriting, it is possible to analyse in detail tables 8.4 and 8.5 respectively. In this
way it is possible to recognize a significant advantage behind PAIG rewriting algorithm
when it comes to the optimization of polymorphic circuits. A closer look will reveal the
fact that the algorithm is able to achieve about 8.12% better optimization of polymorphic
circuits than the conventional approach based on the utilization of ABC rewriting.

8.3 KL-cuts influence on PAIG rewriting
Referring to section 3.1.1, K-cuts are an efficient representatives of a region of an AIG,
where the region has one output. Lets imagine a multiple output region. Such region
would have to be covered by count of K-cuts. KL-cuts are novelty introduced in [59], that
covers a multiple output region. It is supposed, that KL-cuts may help to find a more cuts
in an AIG and thus offer to PAIG rewriting more paths for optimization of polymorphic
circuits.

For this kind of experiment, a hypothesis was set: Forced deployment of cuts with zero
contribution to the optimization of a circuit structure during replacement stage allows to
propagate polymorphism deeper into the circuit. Then, the utilization of KL-cuts can help
to generate more comprehensive pool of cuts with the possibility to achieve improvement > 0
and, thus, perform synthesis of polymorphic circuits in terms of better area results.

In this approach, KL-cuts are generated in the same way as K-cuts. However, KL-cuts
are not dropped during the generation process. Generation process of KL-cuts does not
conceal any other difficulty instead of expansive growth of generated solutions.

Despite the fact that the generation process of KL-cuts is quite straightforward, some
complications still do emerge during the consecutive replacement process.

For the purpose of examining the influence of KL-cuts on the optimization efficiency
of polymorphic circuits, the implementation of PAIG optimization tool was used. This
section provides detailed overview of the experimental results obtained with this tool on
set of benchmark circuits.

8.3.1 Specification of benchmark set

Benchmark set (LGSynth91 [121]) has been chosen as the starting point for subsequent
evaluation of the proposed PAIG-based rewriting scheme using KL-cuts at its core. The
experiments were performed using 15 pairs of similar conventional circuits from that bench-
mark set. Detailed overview of selected circuits properties is provided in table 8.3. See sec-
tion 8.2 for more details, because this experiment use the same benchmark set and initial
circuit setup as experiments called ”Switching between two different functions“.

The experimental part of my contribution presented in this chapter is closely related to
the objective to confirm or deny the hypothesis formulated in section 8.3 that the utilization
of PAIG-based rewriting with KL-cuts for the purpose of polymorphic circuit synthesis tasks
is expected to deliver better results in terms of resulting area optimization. Thus all the
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experiments are first conceived as a comparison of polymorphic rewriting algorithm with
K-cuts to the variant which, on the contrary, involves KL-cuts. Second, the comparison is
shown as an area improvement for both variants expressed in percentage value, where the
attention is also given to the possible state space expansion in case of KL-cuts.

The main objective of polymorphic-aware rewriting is to produce an optimized structure
of polymorphic circuits while mutual, non-conflict sharing of common logic resources be-
tween two initial circuits (the desired functions to be performed by the resulting circuitry)
is accomplished.

Experiments are performed in two stages, with the assistance of PAIG tool implemented
in C language. First of all, synthesis of circuits from the benchmark set is performed with
the K-cuts. During the second round of experiments, the utilization of KL-cuts is allowed.
Details of the initial circuits configuration are given in table 8.3.

8.3.2 Results analysis

Obtained results are depicted in table 8.6. The organization of the table summarizing the
results is conceived with two main sections. Each of them is dedicated to a separate round
of experiments in case of K-cuts and KL-cuts.

Each section in table 8.6 has the following sub-columns: Column Iters denotes how many
iterations of polymorphic rewrite were used for a particular circuit 𝐶𝑛 until it becomes
resilient to further attempts of its optimization. Column Tot.rewrites counts the number
of performed rewrites (replacements) as a sum of all iterations. Column Ands denotes a
number of all gates (nodes) within the optimized circuit. Gain column contains information
about number of saved gates in comparison to the initial circuit pair. Impr. column denotes
how much area has been saved (number of nodes) using polymorphic rewrite algorithm in
percentage value. This description is applicable for both experimental stages (first one with
K-cuts and second one with KL-cuts enabled).

In addition, it is possible to notice also a third main section entitled Influence within
table 8.6. Its sole purpose is to provide a comparison between using K-cuts and KL-cuts.
A column Impr. in this section gives an account of the area improvement while KL-cuts
usage is enabled in contrast to the situation with KL-cuts considered as prohibited. In
other words, Impr. column illustrates the effect of KL-cuts onto the quality of resulting
solution produced by the polymorphic rewriting optimization algorithm. At last, column
Growth shows space explosion of investigated cuts in the case of enabled KL-cuts.

As it becomes apparent from a closer inspection of table 8.6, KL-cuts are undoubtedly
helping to get more optimized polymorphic circuit structure in most of the situations,
when the average improvement is reaching the level of 4.39%. The maximum value of the
obtained area improvement of polymorphic circuit optimization using KL-cuts is 31.10 %
against K-cuts rewriting for the circuit variant identified as C10. Whereas in the case of
circuits C11 and C12 the utilization of KL-cuts did not have any impact on optimization
at all. Please, refer figure 8.2, where both variants are graphically compared.

However, although the exploitation of KL-cuts brings only positive area optimization
result, another important aspect deserves a further attention - explosion of cut set range
(set of cuts to be investigated). State space explosion comprising different variants of cuts
can be observed in the last column of table 8.6 and it is also depicted in figure 8.3. As it
can be clearly seen, number of investigated cuts grows to 172.07% in average, where the
maximum observed value of the state space growth is 459.64%.
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8.3.3 Related summary

This subsection was dealing with the investigation of a hypothesis that the usage of KL-cuts
may lead to an improvement of polymorphic circuit optimization. The proposed approach
is employed in a close conjunction with the PAIG-based rewriting algorithm. Especially
due to the number of modifications that were introduced in case of polymorphic rewriting
itself (e.g. forced replacement due to propagation of polymorphic edges deeper into the
circuits structure) in comparison to the conventional rewriting variant, the hypothesis (see
section 3.1.1) has been successfully confirmed. The obtained results clearly demonstrate a
positive impact of the KL-cuts scheme, yet the improvement reach beyond the level of just
a few percent.

8.4 Comparison of PAIG rewriting to PolyBDD
In order to compare PAIG rewriting results to the most famous methodology for polymor-
phic circuit design PolyBDD [37], the PAIG rewriting was applied to the same circuits that
Gajda reports in his thesis.

Mr. Gajda has selected a number of test circuits for evaluation of PolyBDD method.
Each polymorphic circuit is composed of two circuits performing independent functions.
Gajda has used only polymorphic gates of type NAND/NOR and AND, OR, XOR, NAND,
NOR, inverter and multiplexer gates. Unfortunately, his results report just overall numbers
of required gates after synthesis by PolyBDD method, regardless of the price of used gates
(especially XOR and multiplexer). An optimum implementation of XOR gate and 2-way
multiplexer is consisting of 3 two-input AND gates. In table 8.7 in a column PolyBDD,
numbers of required gates are reported, includes expensive XOR and MUX gates after
PolyBDD synthesis. Figure 8.4 shows a PolyBDD structure (a) and corresponding poly-
morphic circuit (b) (note that circuit is composed of multiplexers mainly). The number of
multiplexers in non-reduced BDD grows with power of 2 of primary inputs.

Figure 8.4: PolyBDD circuit (a) and corresponding polymorphic circuit (b) [37].

The proposed PAIG rewriting approach can handle only AND gates, stemming from the
nature of AIG. Thus AIG cannot represent complex gates such as XOR gate and multiplexer
natively. Despite that, one node type is not a disadvantage. It allows effective simple

84



optimizations. Simple AIG structures are mappable to complex target technology during
technology mapping process. However, different metrics are appearing and comparison of
PAIG to PolyBDD may be inaccurate.

Table 8.7 reports a comparison of PAIG to PolyBDD method. As it is outlined above,
metrics of methods are different. The column Circuit denotes a name of a desired polymor-
phic circuit. M/S is Majority/Sorter, M/P is Majority/Parity and xA/xB is multiplier by A
and B. The column Inputs contains number of primary inputs, analogically the column Out-
puts contain number of primary outputs. The column PolyBDD contains numbers of used
gates after PolyBDD synthesis considering these types of gates: {NAND/NOR polymorphic
gate, AND, OR, XOR, NAND, NOR, 2-way multiplexer, inverter}.

The next column PolyBDD Evo. contains a number of gates required after evolutionary
optimization of PolyBDD synthesized circuits. Evolutionary optimization of PolyBDD cir-
cuit is performed by CGP, where are two-input elements only. Thus evolutionary results do
not reflect complex multiplexers, that are often placed in PolyBDD circuits (see figure 8.4).
Unfortunately, complex XOR gates are included, which may be a disadvantage for PAIG
comparison. It is especially visible in the case of Majority/Parity circuits, that are mainly
composed of XOR gates. However, the PAIG is still competitive, although XOR gate costs
three 2-input AND gates.

The fifth column reports results of PAIG rewriting synthesis and values denotes a num-
ber of used 2-input AND gates. Analogically, the sixth column reports a number of required
2-input gates using conventional AIG (results from ABC tool).

A reader can compare efficiency of PAIG with PolyBDD by focusing columns PolyBDD
Evo. and PAIG. PolyBDD Evo. includes complex XOR gates, that are not possible to
express in PAIG structure natively.

Circuit Inputs Outputs PolyBDD PolyBDD Evo. PAIG AIG (abc)
M/S4 4 4 31 45 19 27
M/S5 5 5 50 71 43 49
M/S6 6 6 94 131 88 97
M/S7 7 7 150 212 162 170
M/S8 8 8 269 375 311 321
M/S9 9 9 428 697 602 614
M/P7 7 1 31 41 42 43
M/P9 9 1 41 60 60 61
M/P11 11 1 59 81 86 91
M/P13 13 1 73 114 114 115
x67/x127 7 14 228 274 187 215
x131/x251 8 16 430 547 441 468
x257/x509 9 18 348 410 279 310
x521/x1021 10 20 905 1028 865 894

Table 8.7: Comparison of PolyBDD and PAIG rewriting method.
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Chapter 9

Conclusion

Logic synthesis and optimizations techniques are still popular topics despite the fact that
they’ve been researched for at least 50 years. The need for further investigation of these
topics is mainly related to growing complexity of digital circuits. Therefore, more effective
and scalable synthesis methods are required. New research areas may be opened by emerg-
ing technologies or applications, such as multi-functional or polymorphic electronics. The
concept of polymorphic electronics was introduced in 2001 [109], almost 20 years ago, and a
non-evolutionary, scalable optimization technique still does not exist. Mentioned situation
gave me an opportunity to start research of scalable synthesis and optimization methods
for polymorphic circuits.

The main goal of this thesis was to propose an effective, scalable method for synthesis
and optimization of multi-functional circuits. Initial research started with two-level design
methods. The first proposed method, using only NAND/NOR gates, is well applicable
to small circuits deployable to REPOMO32. The second method is based on boolean
division and kerneling, which is suitable for detection of common parts of two desired
circuits. Ongoing research has followed up on multi-level methods and brought new ”PAIG“
representation for polymorphic circuits in And-Inverter Graphs, which was very useful for
further optimization. Since the polymorphic representation was designed, the AIG rewriting
technique was adapted to work with the new PAIG representation. The whole synthesis
and optimization process of polymorphic circuits clearly gives promising results.

9.1 Thesis contribution
The thesis contribution was partially mentioned in the previous paragraph. The thesis
presents a proposal of synthesis and optimization methods for polymorphic circuits.

The first approach, using NAND/NOR gates (section 6.1) and dealing with the issues
of multi-functional logic circuits synthesis, was introduced. The proposed synthesis method
was based on a formal Boolean representation of corresponding input functions. Its main
advantage can be recognized in its simplicity and an employment of boolean minimiza-
tion techniques, which is in a direct contrast to existing solutions, predominantly based
on heuristic approaches. Despite some constraints of the proposed approach, that were
identified during the theoretical analysis and subsequent experiments, the method was suc-
cessfully applied to real functions specified by the truth table. The obtained results clearly
suggest benefits of the proposed approach in comparison the the conventional techniques. It
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is safe to say that further improvements can be achieved, especially when new types of poly-
morphic circuit components based on the emerging materials will be prepared [22, 21, 78].

The second milestone was an introduction of kerneling based synthesis method (sec-
tion 6.2). The method searches common parts of two desired circuits that were randomly
generated. The obtained results indicate that it’s possible to achieve around 27% improve-
ment, especially in comparison to the synthesis tool called Espresso. Next experiment was
performed on real-life complex circuits. Especially, in one case it was possible to achieve
almost 40% gates saving. An average improvement on benchmark MCNC circuits is about
20% [117, 26]. Results were also published in Journal of Electrical Engineering [23]

In order to increase the synthesis efficiency of polymorphic circuits, a research was
focused to an applicability of AIG and structural hashing for better identification of circuit
parts that can be shared between two functions subjected to the synthesis process.

As a result, the novel polymorphic AIG representation format for polymorphic circuits
was introduced (section 7.1). It is an extension of AIGER format, which is fully supported
in well known tools like ABC. A few experiments showed that the novel format can be very
effective representation of polymorphic circuits for future, more complex synthesis processes
[27].

An innovative scalable methodology (section 7.2), called PAIG rewriting scheme, capa-
ble of synthesis of multi-functional circuits was introduced. The methodology is inspired
by an existing rewriting algorithm [67, 68] that was used mainly for optimization tasks of
conventional digital logic circuits. The PAIG rewriting offers strictly rigid, algorithm-based
and scalable methodology, which is capable of producing valid results in a finite, predictable
amount of time. More precisely, a defined background of the proposed approach to predict
accurately the amount of time needed to obtain an acceptable solution. The PAIG rewrit-
ing method also contrasts to the state-space exploration (searching for the valid solution)
involving, for example, various evolution-inspired techniques [28, 29].

The obtained experimental results indicate significant contribution in the field of syn-
thesis of multi-functional circuits, that could potentially help to increase adoption of the
polymorphic circuits for various application scenarios within the domain of multi-functional
digital circuits. Research activities behind this contribution, including AIG extension for
polymorphic circuits, open a new path for the synthesis of polymorphic circuits and cre-
ate a stable basis for further research. This contribution may move the areas of synthesis
and optimization polymorphic circuits forward significantly, mentioned in opened problems
(section 4.2.2).

9.2 Future work
This thesis presents innovative design methods for multi-functional circuits. The thesis
prepares a basis for a new direction in logic synthesis of multi-functional circuits in research
area. Possible ways to continue this research are outlined in the following paragraphs:

A focus was given to verification of proposed principles mainly instead of development
of optimized tools. Thus, a C code implementation of PAIG tool in order to speed up
handling a graph may be the first task on the agenda.

Then, future work should be focused on exploration of the most frequent cuts, and prepa-
ration of an on-line available cut library in order to reduce the burden of time-consuming
need to generate all the sub-graphs in an on-line manner, as proposed in [55].

Further focus on development of the proposed scheme should be aimed to technology
mapping issues, i.e. translation from PAIG network structure to building components of a
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target technology. PAIG network can represent conventional AND gates, wires, inverters
and polymorphic wires only, but real circuits are not expressed entirely in this way. Real
circuits are composed of more complex gates, such as XOR or even polymorphic complex
gates and thus it is supposed that a mapping to a target polymorphic technology may
further shrink an area of desired polymorphic circuits.
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