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Abstrakt

V dizertacni praci se zabyvame problémem optimalizace rozmeéru elastického
nosniku na jednostranné pruzném podlozi. Stavova uloha ma tvar okrajového
problému s nelinearni obycejnou diferencialni rovnici ¢tvrtého radu. Budeme
se zabyvat dvéma konkrétnimi pripady okrajovych podminek, pro které je tloha
semikoercivni. Piedmétem optimalizace bude tloustka nosniku a koeficient tuhosti
jeho podlozi. Vysledna tiloha potom spoc¢iva v minimalizaci cenového funkciondlu
na mnoziné piipustnych navrhovych proménnych.

Nejprve stanovime nutné a postacujici podminky existence a jednoznacnosti
feseni stavového problému. Dokazana bude i spojita zavislost takového feseni na
navrhové proménné a existence alespon jednoho feseni tlohy optimalizace.

Poté aproximujeme tlohu metodou koneénych prvkia. Hodnoty bilinearni
formy odpovidajici podlozi a cenového funkcionélu nemohou byt vy¢cisleny presné,
proto je aproximujeme uzitim vhodné kvadraturni formule pro numerickou inte-
graci. Dokézeme existenci feSeni aproximované tlohy a provedeme konvergenc¢ni
analyzu.

Vzhledem k jednostrannosti podlozi je algebricka forma stavové tlohy ne-
linedrni a pravdépodobné nediferencovatelna. Proto vyuzijeme piistup zalozeny
na prevodu a feseni takové tlohy ve formé problému smisené linearni komplemen-
tarity. Diskrétni optimaliza¢ni tiloha ma potom tvar minimalizace nelinearni,
nediferencovatelné a mozna i nekonvexni funkce na mnoziné dané linedrnimi
podminkami ve tvaru rovnosti a nerovnosti.

V zavérecné ¢asti predstavujeme vhodny postup numerické realizace vysledného
problému. Provadime tzv. analyzu citlivosti a navrhujeme vzorce pro efektivni
vypocet gradientu (subgradientu) cenového funkcionédlu. Soucasti prace je i kéd
(vytvoreny ve jazycich C a Fortran), ktery implementuje navrzeny postup feseni.
Jeho pouziti je demonstrovano na nékolika piikladech.

Klicova slova: elasticky nosnik, optimalizace rozméru, semikoercivni tloha, jed-
nostranné podlozi, analyza citlivosti, nehladka optimalizace, adjungovana tloha



Abstract

A design optimization of an elastic beam with an elastic unilateral foundation
will be studied in the thesis. The state problem is here represented by a nonlinear
ordinary differential equation of 4-th order with boundary conditions. We will
deal with two special cases of boundary conditions which cause semicoercivity
of the state problem. The object of optimization will be the thickness of the
beam and the stiffness coefficient of its foundation. The optimization problem is
then formulated as a minimization of a cost functional over a set of all admissible
design variables.

Firstly, we establish necessary and sufficient conditions for the existence and
uniqueness of a solution to the state problem. The continuous dependence of the
state problem solution on the design variable and the existence of at least one
solution to the design optimization problem are proved.

After that, we approximate the problem using the finite element method. The
bilinear form representing the foundation as well as the cost functional can not
be evaluated exactly and therefore we approximate them making use of suit-
able quadrature formula for numerical integration. The existence of at least one
solution to the approximated design optimization problem is established. Con-
vergence analysis is made.

In view of the unilaterality of the foundation the algebraic form of the state
problem is nonlinear and possibly nonsmooth. We make use of the approach
which considers the state problem in a mixed linear complementarity form. The
discrete optimization problem then leads to a minimization of a nonlinear, non-
smooth and possibly nonconvex function with respect to linear equality and in-
equality constraints.

Finally, we propose a suitable approach for numerical realization of the opti-
mization problem. We make the design sensitivity analysis and propose a formula
for efficient computation of a subgradient of the cost functional. We present a
code (created in C/C++ and Fortran languages) which implements the approach
presented in the thesis and we demonstrate how to use the program on several
examples.

Keywords: elastic beam, shape design optimization, semicoercive beam prob-
lem, unilateral foundation, sensitivity analysis, nonsmooth optimization, adjoint
problem
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7 0.1 Outline of the thesis

Introduction

0.1. Outline of the thesis

A design optimization of an elastic beam rested on an elastic unilateral foun-
dation (subsoil) will be studied in the thesis. Shape design optimization has
been the subject of considerable research and is of concern in many engineering
applications. Let us mention civil and railway engineering for example.

We will mainly focus on long thin beams, therefore the well known Euler -
Bernoulli mathematical model of the beam will be considered. This model is
based on the theory of elasticity and if some required assumptions are satisfied
(size of the beam, orientation of the load etc.) then it is represented by a boundary
value problem for an ordinary differential equation of 4-th order. It takes the
advantage of dimensional reduction and the problem is then described by an 1-D
model (see e.g. [35]).

For the purpose of modeling of the contact between the beam and the foun-
dation we will not consider the beam and the foundation as two elastic mutually
non-penetrated bodies as it is usual in standard models of classical contact prob-
lems. The influence of the subsoil is represented in the model by adding the so
called response function s which is in general dependent on the stiffness coef-
ficient ¢ of the subsoil, on the deflection u and its derivatives. The variant of
linear (bilateral) subsoil with response function s = qu is usually used and is well
known from literature. This model has the advantage that the final mathematical
model is linear and has a unique solution (see e.g. [21], [30]). Unfortunately, in
some cases the linear model is not suitable. Especially, when the foundation is
not firmly connected to the beam. Then the nonlinear (unilateral) model is more
precise. In the thesis we consider one-parametric unilateral subsoil of Winkler’s
type with response function qu™. The state problem is then described by a non-
linear differential equation. This kind of foundation is from the theoretical and
practical point of view examined e.g. in [21], [50], [01]. It is also possible to use
a two-parametric model of the foundation. Mostly used is the two-parametric
Pasternak’s model with response function s = qu — ku”, where the second pa-
rameter k relates to the shear forces in the subsoil. Special case is a unilateral
rigid subsoil (rigid obstacle). The mathematical model then leads to a variational
inequality (see e.g. [17], [24]).

The next important aspect of the problem are the boundary conditions. In
the thesis we will deal with two particular cases of boundary conditions which
cause semicoercivity of the state problem. To ensure the coercivity and therefore
the existence and uniqueness of a solution, we will formulate some additional
assumption on the beam load. Admissible rigid displacements with zero poten-
tial energy will no longer be allowed and the existence of nonzero contact zone
between the beam and the foundation will be enforced.

The object of optimization will be the thickness ¢ of the beam and the stiffness

7



8 0.2 Main tasks of the thesis

coefficient ¢ of its foundation. They appear in the problem as coefficients of the
differential operator defining the state problem. The thickness will be represented
by Lipschitz continuous bounded functions. The stiffness coefficient will be rep-
resented by Lebesgue integrable bounded functions. The optimization problem is
then formulated as a minimization of a cost functional over a set of all admissible
design variables. Many works have been done in this field. Firstly let us mention

[16], [L7] or [22]. Optimization of beams with linear foundation is studied e.g.
in [25], [26] or [37]. Design optimization of a beam with unilateral supports is
presented in [21]. A related problem, optimization of an axisymmetric plate on
elastic foundation is treated in [15], [16]. But none of these works is concerning

a beam optimization with semicoercive state problem.

0.2. Main tasks of the thesis

- The first task of the thesis is to make a complete mathematical analysis
of the given optimization problem. There are two steps in this analysis.
Firstly try to formulate necessary and sufficient condition for the existence
and uniqueness of a solution to the state problem (P(e)). And secondly we
prove the existence of a solution to the optimization problem (P(e)).

- The next task is the approximation of (P) and the convergence analysis.
Define the approximated state problem and again formulate necessary and
sufficient condition for the existence and uniqueness of its solution. Next
we should define the approximation of (P(e)) and prove that there exists
at least one solution of it. Finally we need to study the relation between
continuous and discrete solutions for h — 0.

- Define the algebraic form of (P) and try to propose a suitable and effi-
cient solution approach for it. Make the sensitivity analysis and establish
a formula for subgradient computation.

- Implement the proposed solution algorithm in a programming language and
present its functionality on several examples.

The thesis is organized as follows: In Section 1 the mathematical model of
the problem is defined. In Section 2 we study the optimization problem (P)
for the first case of boundary conditions. Firstly we analyze the state problem
(P(e)), where e is the design variable. We formulate necessary and sufficient
condition for the existence and uniqueness of a solution to (P(e)). We make
use of decomposition of the space of kinematically admissible displacements to a
closed convex cone of rigid displacements and its negative polar cone. Then using
a modification of the well known Poincaré inequality we prove the coercivity of
the problem. Secondly, we will turn our attention to the optimization problem
(P). Uniform boundedness of a solution to (P(e)) and its continuous dependence

8



9 0.3 Basic notation

on the design variable e will be established. Finally the existence of a solution to
(P) is proved. Section 2 then continues by the approximation of the problem. The
finite element approximation (P,) of (P) is presented here. The existence and
uniqueness analysis of the approximated problem is made and it will be shown
that there exists at least one solution to (Pp), VA > 0. The final part of Section
2 contains the convergence analysis. It will be established that solutions of (Pj)
are close on subsequences to the solution of (P) as h — 0.

In Section 3 the optimization (P) problem for the second case of boundary
conditions is studied. We proceed similarly as in Section 2.

In Section 4 we define the algebraic form of the problem. For the state prob-
lem we make use of the approach presented in [36] which is based on application
of Gauss-Lobatto quadrature formula and decomposition of the deflection in in-
tegration nodes into positive and negative part. The discrete state problem then
takes a form of mixed linear complementarity problem. The discrete optimiza-
tion problem leads to a minimization of a nonlinear, nonsmooth and possibly
nonconvex function with respect to linear equality and inequality constraints.
The second part of Section 4 is dedicated to the sensitivity analysis. The cost
functional, as a composite mapping, can be nondifferentiable. We will show its
Lipschitz continuity and the existence of at least one subgradient in each point.
At the end of the section we propose an approach of efficient computing of these
subgradients. This approach is based on the definition of the so called adjoint
problem and on a decomposition of the constraint set on active, inactive and
semi-active constraints.

Section 5 contains a brief summary of numerical methods used to solve the
state problem in the mixed linear complementarity form and the optimization
problem in the nonlinear nonsmooth mathematical programming form. We have
chosen (in cooperation with prof. Mékela from University of Turku, Finland)
methods MPBNGC, PBUN, PVAR and PNEW for nonsmooth and nonconvex
optimization, see [28], [29], [30], [32] and [33].

In Section 6 we present the code created in C/C++ and Fortran languages
(the code is available on the attached CD) and in Section 7 we demonstrate its
functionality on several examples.

0.3. Basic notation

Through the thesis we will use the following notation:
N ... Set of all positive integers.

R™ n > 1 ... real n - dimensional Euclidean space. The corresponding
norm will be denoted by ||-||,, and the scalar product by (-, -),.

Q C R! ... open, nonempty and bounded interval in R!. The closure of
will be denoted by €.
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0.3 Basic notation

Ck(Q) ... spaces of functions whose derivatives up to order k, (k =0, 1,...)
are continuous in 2. The corresponding norm will be denoted by ||-[|x(g)-
For more detailed information see [27].

LP(2), p > 1 ... Lebesgue spaces. We will denote the norm of LP(§2) by
||l The standard scalar product in L*(€2) will be denoted by (-, -)2,0.

See e.g. [2], [27].

WHkP(Q) ... Sobolev spaces (k,p = 1,2,...). Standard norm of the space
WEP(Q) will be denoted as ||-[|,, and the i-th seminorm we will denote
by |0, @ = 1,2,... k. Especially for p = 2 we will use the notation
WHk2(Q) = H*(Q). The space H*(Q2), k =0,1,2,... is a Hilbert space and
its scalar product will be denoted by (-, -)x 2. For more information about
Sobolev spaces see e.g. [2], [27].

Py ... space of polynomials of k-th degree (k=0,1,2,...).

10



11 1. Mathematical model of the optimization problem

1. Mathematical model of the optimization prob-
lem

Let us consider an elastic beam of length [ which is situated in the interval
2:=(0,1). The beam has a rectangular cross section and its thickness is repre-
sented by function t. The beam is subject to a vertical load f. The well known
one-dimensional Euler-Bernoulli model for long thin beams will be used to com-
pute the deflection. This 1-D model is obtained under some assumption (size of
the beam, orientation of the load etc.) from the general 3-D elasticity problem
by dimensional reduction, see [35].

Along its entire length the beam is supported by a unilateral elastic foundation
of Winkler’s type. The influence of the subsoil is added to the model by the so
called response function dependent on the stiffness coefficient ¢ and the deflection
u. The response function for the unilateral Winkler’s subsoil is defined by s = qu™
and therefore the foundation is active only if the beam deflects against it (see e.g.
[53])-

In the thesis we will consider two variants of boundary conditions. Both cases
allow the existence of rigid beam displacements and cause the semicoercivity of
the state problem.

The classical formulation of the beam bending problem has the form of non-
linear differential equation of 4-th order with mixed boundary conditions:

Find v € C*(Q) N C3(Q) such that

(B()t* (x)u" ()" + q(z)ut(2) = f(x) Vee,
UI(O) _ u///(o) _ U”(l) — u///(l) _ 0’ (1)

where t,q and f are functions corresponding to the beam thickness, the foun-
dation stiffness and the intensity of the vertical load. Function u represents the
deflection of the beam and u™ is its positive part

u(w) + Ju(x)]

(z) = Q
u'(x) 5 , x € €.

Function (8 has the following form:
2

where F denotes the Young’s modulus of elasticity and b is a function representing
the width of the beam. In the sequel we will consider  to be a constant.

Remark 1.1. Instead of Fuler-Bernoulli mathematical model it is possible to
consider the Timoshenko model, where the plane normal to the beam axis be-
fore deformation remains plane after deformation, but not necessarily normal to

11



12 1. Mathematical model of the optimization problem

Figure 1: Outline of the beam with axes orientation.

the deformed axis as it is in Euler-Bernoulli case, see e.q. [77], [17] or [12].
Transverse shear deformations are considered in this model. But we have to keep
in mind that the Timoshenko model is suitable especially for short, equivalently
thick, beams but Fuler-Bernoulli is valid only for long span, equivalently thin,
beams.

Optimizaion of a Timoshenko beam with a linear elastic foundation and com-
parison to the results for Euler-Bernoulli model is treated in [77].

The thickness t and the stiffness coefficient g will be the subject of optimiza-
tion. Unlike the standard optimization problems (see e.g. [16], [17], [11]) in our
case the design variables appear as coefficients of the differential operator of the
state equation and the integration area remain fixed. The set of all admissible
thicknesses t will be defined as follows:

Uly = {t € C™(Q) :0 <ty <t(x) <ty in

/t(x) dz =7, [t'(z)] <7 inQ}.
Q

The thickness is represented by Lipschitz continuous and bounded functions.
Constants to, t;,7 and 72 are chosen in such a way that U!, is nonempty. Con-
straints from the set U}, are reasonable from the physical point of view as well
as they play an important role in the mathematical analysis of the problem. For
example the constraint |t'(z)| < 72 in € prevents thickness oscillation and ensures
that thickness functions are uniformly continuous.

The set of all admissible stiffness coefficients ¢ can be defined in a similar way:

UL, ={qeL*(Q) : g <q(z)<q aeinQ}. (2)

The optimal foundation stiffness will be chosen from the set of Lebesgue integrable
function that are bounded in the interval €2. Constants qg, q; are set in such a
way that UZ, # 0.

12



13 1. Mathematical model of the optimization problem

Finally the set of all admissible design variables is defined as the Cartesian
product
Uaa = ULy x UL, (3)

Elements of U,4 will be denoted by e = {t, ¢}.

The classical formulation (1) can be used only if the input data 3, f, t and ¢
are sufficiently smooth. In practical applications we often can not guarantee this
smoothness. Therefore we define the variational formulation that is based on the
minimum potential energy principle (see e.g. [35]). It enable us to weaken the
assumptions on the input data. Let e € U,q is arbitrary but fixed, § € L>(2) and
let there exist a constant 3y such that 0 < Gy < ((z) a.e. in Q. Now we define
spaces of kinematically admissible displacements for two variants of boundary
conditions in (1):

Vi={ve H*Q): v(0) =0},
Vo = {v e H*(Q): v(0) =0}.

In what follows we will consider V = Vj resp. V = V,. Forms a, : H?> x H> — R
and b, : H' x H' — R representing inner energy and work of the foundation are
defined as follows:

as(u,v) :z/ﬁf’u"@"dx, by(u,v) ::/quvdx.
Q Q

It is clear that these forms are bilinear Ve € U,,;. Work of outer forces is repre-
sented by a linear functional F': H> — R. If we denote L(v) := [, f(x)v(z)dz

then
F(v):= L(v) + ZEU(%) — ZMjU'(mj).

Values Fj, M; correspond to generalized forces in points x;, x; € Q). Functional of
total potential energy then reads as follows:

E(v) = %(at(v, v) + by (v, v")) — F(v), v € H*(Q), e € Uyg.

By the variational formulation of the state problem corresponding to e € U,y
we mean the following problem:

FindueV: &u) < E(v) YvelV. (P(e))
As the last part of the optimization problem we define the cost functional.

In general it is a mapping I : U,y X V — R!. Let us denote J(e) = I(e, u(e)),
where u(e) solves (P(e)). Let us now present some practical examples of cost

13



14 1. Mathematical model of the optimization problem

functionals:
Le, u(e) = Ji(e) = /Q fu(e)de, (@)
Lle, u(e)) = Jofe) = /Q W (e) dz, (5)
B, ule) = i) = [ £((e) da. ©)

The cost functional (4) represents the compliance of the beam and in fact it is
closely related to the potential energy of the beam. Indeed

28 (u(e)) = ac(u(e), u(e)) + be(u™(e), u'(e)) = 2F (u(e)) = —F(u(e)) = —J(e).

In fact the minimization of the compliance is equivalent to a maximization of the
total potential energy evaluated in the equilibrium state u(e). The functional (5)
corresponds to the distance between the deflection u and the zero function in the
sense of least square method. The functional (6) corresponds to normal stresses
at the extreme fiber of the beam. The last functional is the only one from them,
which is explicitly dependent on the design variable e = {¢, ¢}.

At this point we have everything what is needed for the definition of the design
optimization problem:

Finde* € Uyy: J(e*) < J(e) Ve € Uy, (P)

where J(e) = I(e, u(e)) with u(e) being a solution to (P(e)).
From the following outline we can see the form of the cost functional and the
specific scheme of design optimization problems.

e — u(e) — I(e,u(e)). (7)

Shape design optimization problems can be difficult, especially its numerical real-
ization. Every time we want to evaluate the cost functional, we have to solve the
state problem (P(e)) first. Usually we need to solve (P(e)) several times in every
iteration of the optimization algorithm. Moreover the cost functional obtained as
a composition of two mappings (see (7)), does not need to be necessarily convex
and continuously differentiable. As an example we can mention design optimiza-
tion with state problems governed by variational inequalities, see e.g. [10], [17],
[14]. In order to choose a suitable approach for the numerical realization we have
to analyze the problem properly.

14



15 2. Natural boundary condition u'(0) =0

2. Natural boundary condition «'(0) =0

2.1. Existence analysis of (P)

In this section we shall be aimed at the existence of a solution to the opti-
mization problem (P) with

V=V, ={ve H*Q): v(0) =0}

Firstly we establish a necessary and sufficient condition for existence and unique-
ness of a solution to (P(e)). Then we will proceed standardly by the proof of
compactness of U,y and by the proof of continuous dependence of the solution to
(P(e)) on the design variable e.

2.1.1. Existence and uniqueness of a solution to (P(e))

The boundary conditions have the following form: «'(0) = «”(0) = u"(l) =
u”(l) = 0. From the physical point of view it causes that the right end of the
beam is free. The left end it is fixed in such a way that it can move in vertical the
direction but it can not slope. The beam is allowed to float and the state problem

%
| L

I
HEaee

Figure 2: Outline of the beam with boundary condition u'(0) = 0.

is not coercive. For semicoercive problems it is typical that the input data of the
problem must satisfy some additional conditions to enforce the coercivity (see e.g.
[19], [23]). Therefore we must suppose that the resultant of the beam load acts
against the subsoil, what prevents rigid displacements and ensures the solvability
of (P(e)).

In this subsection we will consider that the pair e = {t, ¢} € U,q is arbitrary
but fixed and § € L>*(Q), 0 < [y < f(x) a.e. v Q. First let us recall the
boundedness of forms a;, b,.

Lemma 2.1. There exist positive constants ci, co such that

0, 0)| < 1 lullypg [Vlnne Y0 € HAR), Ve € U
by(u™ )] < c2llullyng l0llyng  Verv € H(Q), Ve € Una

15



16 2.1 Existence analysis of (P)

Proof. By using the well-known Cauchy—Schwarz inequality (see Theorem 8.1),
Theorem 8.4, (3) and Lemma 8.3 we easily receive the assertion of the lemma.
[

In what follows we will prove some important properties of the functional &,.
Its Gateaux differentiability, convexity and coercivity on V' will be sufficient for
the existence of a solution to (P(e)).

Lemma 2.2. The functional &, is Gateauz differentiable and conver on H*(SQ).

Its Gateauz derivative in arbitrary point uw € H?(Q) and arbitrary direction v €
H?(Q) reads

!

E(u; v) = a(u, v) +by(u™,v) — F(v) Ve € Ug. (8)
Proof. 1t is easy to prove that the following auxiliary relation holds:

et — (s

e—0t €

=2sTt, Vs, t e RL

From there we have:

+ +) + gt
hmbq((u—irev) (u+ev)t) — by(ut,ut) — 9, (u, )

e—0 €

Vu,v € H*(Q)), Ve € U,q. In case of the bilinear form a; and the linear functional
F' we proceed in a standard way. Then we directly obtain (8). In view of the
fact that £ (u; -) is linear and continuous on H?(f2), the functional &, is Gateaux
differentiable on H?((2).

Next we prove the convexity of £,. Using assumptions e € Uy, 0 < By <
a.e. in ) and the inequality

(st —tM)(s—t) > (st —tT)* Vs,teR! (9)

we obtain

/

E(u;u—v) — E(v; u—v) =au—v, u—0v) + by(ut —vt u—v)>
> ai(u—v, u—v) + bu" —v" ut —ovt) >
2
> oty |U_U‘§,2,Q + Qo Hu+ _UJFHQ,Q >0
Yu,v € H*(Q), Ve € U,q.
This estimate is a sufficient condition of convexity of Gateaux differentiable func-

tional &, see e.g. [12], [3].
|
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17 2.1 Existence analysis of (P)

According to Lemma 2.2 we can introduce the equivalent weak formulation

of (P(e)):
Findu € V: ai(u, v) + b(u",v) = F(v) YveV. (P'(e))

The weak formulation can be obtained from the classical formulation (1) by
multiplying by a testing function v € V| integrating over the interval €2, using
boundary conditions and suitable Green’s formula for integration per partes. If
the solution u and the input data of the problem are smooth enough we can also
pass from the weak formulation to the classical one.

In what follows we will focus on the key property of &, its coercivity. In our
case &, is only semicoercive on V', i.e. there exists a constant ¢ > 0 such that

a;(v,v) + by(vF,v) = c|v]§’279 Ve € Uyg, Yv € V. (10)

By prescribing suitable conditions on the beam load we eliminate rigid displace-
ments from the problem, enforce the coercivity of &£ and the existence of a so-
lution to (P(e)). In our case we make use of the approach based on orthogonal
decomposition of V' into a convex closed cone of rigid displacements and its neg-
ative polar cone (see e.g. [21]).

The set of rigid displacements is generally given by linear polynomials in the
form p = ax + b € P,. If we take into account the natural boundary condition
u'(0) = 0, it reduces to the set of all constant polynomials p € Py. All rigid dis-
placements for which the subsoil is inactive must be eliminated from the problem.
A set of such displacements is defined as

Ry = {ve VNP :a,v)+b(vhv)=0} = {pe Py:p<0}. (11)

It is easy to prove that Ry is closed convex cone. Using the definition of the
standard scalar product on H?(2) the negative polar cone is defined by

Ry ={veV:(v,pha<0 VpeRy}={veV:(vl)qg >0} (12)
From (12) it again follows that R is convex and closed cone.

Theorem 2.1. (Necessary condition for the existence of a solution to (P(e)).)
Let there exist at least one solution to (P(e)), then the condition

F(1) = L(1) + Y [F; 2 0 (S1)

must be satisfied.
Proof. Let u € V be a solution to (P(e)). Then
ai(u,v) + by(ut,v) = F(v) YveV. (13)
17



18 2.1 Existence analysis of (P)

AN

Figure 3: Rigid beam motions belonging to Ry .

=

Inserting v = p € Ry into (13) we have:

0= by(u™,p) = ar(u,p) + by(u*,p) = F(p) = p (L(l) + ZF) :

The next lemma says that the space V' can be decomposed into a direct
orthogonal sum of cones Ry and R

Lemma 2.3. Let Ry, Ry be defined by (11) and (12), respectively. Then V can
be decomposed as follows:
V =Ry ®RYy.

In addition Vv € V 3! {p,v} € Ry x Ry such that
v = p@ 7_), (p, 1_})27239 = p(l,/l_))zg = 0. (14)

Proof. For the proof we refer to [3].

In view of the definition of Ry, R, and the orthogonality (14) we can deduce
that only one of the following two variants can occur:

p=0 and (0,1)20 > 0, (A1)

p <0 and (9,1)30 = 0. (A2)

The next lemma will play an important role in the proof of coercivity of &,..
In fact it is a suitable modification of the well known Poincaré inequality, see e.g.

[43], [27] or [2].
18



19 2.1 Existence analysis of (P)

Lemma 2.4. (Poincaré type inequality) Let V = {v € H?*(Q) : v/(0) = 0},
then there exists a positive constant cp depending only on the length of interval
Q:= (0, 1) such that

2 2
[ol350 < cp (I0Bog + (v, 130) Vo eV, (15)

Proof. Suppose that (15) does not hold. Then one can find a sequence {v,} C V

such that

2 2
el an > [onBag + (o, D3g >0 Va1 (16)

First, let us divide the inequality (16) by ||vn||§2Q and pass to the limit for
n — o0o. Then

lim |w,f5,0=0 and lim (w,, 1);Q =0, (17)

n—oo n—oo

where we denote wy, = vy/ [|vn |y, . Clearly |lwylly,q =1 and {w,} is bounded
in H?(Q2). Hence one can find a subsequence of {w,} (denoted by the same
sequence) and an element w € V such that w, = w in V. In view of (17) it holds
that w,, — w in V. Therefore we have

0 = liminf |wy|55q = [w|354 = 0.
n— o0 Y Y
Then |w]3,o =0 and w = p € Py. From the inequality

0 = liminf (w,, 1); 4 = (w, 1)54 >0,

n—o0

it follows that p = 0. But it leads to a contradiction with ||wy|,,o = 1 and
w, — pin V.

Let us now approach to the proof of coercivity of £. Theorem 2.1 says that
the necessary condition is in form F(1) > 0. Unfortunately it is not a sufficient
condition which ensures the coercivity.

Lemma 2.5. Let the condition

F(1) = L(1) + Y F; > 0 (S2)

be fulfilled. Then the functional &, is coercive on V.
Proof. Let (S2) hold. In view of (14) we can write:

28, (v) = 2E.(p+0) = a(v,0) + by(vt,v") —2F(p) — 2F(v) >
> Botd 10300 + @0 [0+ 0) |00 + 2pIF(1) — 2F(0).

19



20 2.1 Existence analysis of (P)

We know that only one of the variants (A1), (A2) can occur. Firstly we will
focus on variant (A1) for which it holds p = 0, v = ¥ and (v,1)39 > 0. The
following inequality is a consequence of properties of function v7:

_ _ 2
0 < (3,1)5 < (@130 <o, (18)
Using (15) and (18) it reads

28, (v) = 2E.(v) = ay(v,0) + by(v",0T) — 2F(v) >

> ﬁotg |@|§727Q + qo ||@+H;Q — QF(’D) 2

_ qdo , _ _
> [ty |00 + (0. 130 — 2F (D) > (19)
> HT)H2,2,Q (c1 HT)H2,2,Q — 2 ||fH29)a

denoting ¢; := (1/cp) min{Bot3, qo/1}.
Secondly, in the case of variant (A2) we have (7,1)20 = 0 and p < 0. Again
by using (15) we obtain
26.(v) = 2E.(p+ 1) = ar(v,0) + by(vT,v") — 2F(p) — 2F(v) >
_ 2 _
> Bots [0500 + @ [|(0+0)" |50 + 2pIF(1) — 2F(0) >
> fotg [0]550 + 2Ip|F(1) — 2F(7) = (20)
= oty 1100 + (9, 1)50 + 2p|F(1) — 2F(0) >
> e |olly00 + 21PIF(1) = 2 fllog 17l

where ¢, :== (1/cp) min{Got3, 1}. Due to (14) it holds that ||[v||, , = ||T)||§2Q +
Hp“;2Q Therefore if [|v]|,,, — +o0o then at least one part of the function v in
appropriate norm has to converge to +oo. And finally we make use of condition

(S2) that ensures the coercivity.
[

Now we can establish the main results of this subsection. Coercivity of &
enable us to introduce the following theorem.

Theorem 2.2. (Necessary and sufficient condition for the existence and unique-
ness of a solution to (P(e)).) The state problem (P(e)) has a unique solution if
and only if the condition (S2) is fulfilled. Such a solution w € V' can be charac-
terized in the following way:

W(M,) >0, (M1)

where p(M,) denotes the one—dimensional Lebesque measure of the set

M, ={x€Q: u(x)>0}.

20



21 2.1 Existence analysis of (P)

Proof. Necessity. This part of the proof will be made by contradiction. Assume
that u € V is a unique solution of (P(e)) and (S2) does not hold. According to
Theorem 2.1, the equality F'(1) = 0 have to hold. By inserting v = p € Ry into
(P'(e)) we obtain

= pF(1) YpeRy,p # 0, (21)

S
=
=
+
S
=
<
=
|
e
=
I

The equality (22) implies ut = 0, thus u < 0 a.e. in . Then it clearly holds
that u+p < 0 ae. in Q, Vp € Ry, p # 0. From there b,((u +p)*,v) =0Vp €
Ry, p# 0 and Vv € V. It is not difficult to see that u + p is another solution of
(P(e)) being in contradiction with the uniqueness of u. The condition (S2) must
be then fulfilled.
Sufficiency. Let (S2) be satisfied. According to Lemma 2.2 and Lemma 2.5 we
know that &, is Gateaux differentiable, convex and coercive on V' implying the
existence of a solution to (P(e)), see e.g. [12].

Further let v € V, u < 0 a.e. in ), solve (P(e)). Then by setting v = p €
Ry, p# 0 we receive

0 = by(u’,p) =pF(1)

what is in contradiction with (S2). Therefore the set M, must have a positive
Lebesgue measure.
Finally suppose that uy, us € V' are solutions to (P(e)). Then

ar(uy,v) + by(uf,v) = F(v) Yv eV, (23)
ar(ug,v) + by(ug,v) = F(v) YveV. (24)

Subtracting (24) from (23) and putting v = u; — us yield
ap(uy — ug, uy — ug) + by(uf —ug,uy —ug) = 0.
Making use of the definition of a;, b, we obtain

)© =0 ae inQ.

U —uy = p€ Py and uf — (uy —p
Taking into account (M1), we have p = 0 and therefore u; = uy a.e. in €.

Solution of the problem (P(e)) is unique.
|

2.1.2. Existence of solutions to (P)

In this subsection we shall focus on the proof of existence of a solution to
the optimization problem (P). Firstly we prove the compactness of U,y. The
next task will be the analysis of the mapping u : e — wu(e). We shall prove
that u(e) depends continuously on e what will be sufficient for the existence of

21



22 2.1 Existence analysis of (P)

an optimal solution to (P). In addition we will prove the Lipschitz continuity
of this mapping. It ensures stability of (P(e)), i.e. small change of the design
variable will produce a small change of the solution. Lipschitz continuity is also
important for the numerical realization. Due to the unilaterality of the foundation
there might occur a situation where the cost functional (composite mapping) will
not be continuously differentiable. Then the Lipschitz continuity enable us to use
a subgradient based nonsmooth optimization algorithm, see e.g. [31], [32], [28],
30].

We start by the definition of convergence in U,y. After that we will focus on
the compactness of U,y. Convergence in the set Uf, will be defined as uniform
convergence of continuous functions in the interval €:

t, —tinUl, & t, = tinC(Q). (25)

Lemma 2.6. The set Ul with convergence defined by (25) is a compact subset

of C(£2).

Proof. Functions belonging to Uf, are uniformly bounded and due to the con-
dition |¢/(x)| < T3 uniformly continuous in §2. Then according to Arzela - Ascoli
theorem (see e.g. [17], [27]) UL, with the convergence (25) is a compact subset of
c(Q).

[

Convergence in U, will be defined as weak convergence in the Lebesgue space
L3(9):
g — qin U, & q, — qin L*(Q). (26)

Lemma 2.7. The set Ul;, with convergence defined by (26) is weakly compact
subset of the space L*(Q).

Proof. The set Ul is closed and bounded in the reflexive Banach space L*(Q).
According to Eberlein-Smuljan theorem (sece e.g. [12]) the set Ul, is weakly
compact subset of L%(€). |

Finally we can introduce the convergence in U,g:
en —einly & t, =tin Q A ¢, — qin L*(Q), (27)

where e, = {t,,q.}, e = {t, q}.

Lemma 2.8. The set Uyg with convergence introduced in Definition 27 is a com-

pact subset of C(2) x L*(Q).

Proof. The assertion follows from properties of the Cartesian product, Lemma
2.6 and Lemma 2.7.
|
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23 2.1 Existence analysis of (P)

Assume that § € L>*(2),0 < fy < f(z) a.e.inQ and F € V* F(1) > 0
are given. Then we know that for any e € U,, there exists a unique solution to
(P(e)) with the property (M1). The set of all such solutions will be denoted by
W:

W= {{u,t,q} € V x UL, x UL, : u:= u(e) solves (P(e)), e = {t,q}}.
Lemma 2.9. There exists a positive constant ¢ such that
c1 Hquﬂz < a(u,u) + by(ut,u)  V{u,t,q} € W. (28)
The constant ¢y does not depend on {u,t,q} € W.

Proof. Let us suppose that (28) does not hold. Then one can find a sequence
{tn, tn, ¢} C W such that

1

" ||unH§,2,Q > ay,, (Un, up) + bqn(uivun) =20 Vn=1l (29)

Dividing (29) by HunH;ZQ and passing to the limit for n — oo we obtain:

lim a;, (wp,w,) =0 and lim b, (w;},w,) =0,

n—oo n—oo
where wy, 1= up/ [[unlly, - Clearly [[wylly,o = 1. Hence there exists a subse-
quence of {w,} (denoted by the same sequence) and an element w € V' such that
w, — w in V. Therefore

0= lim a;, (w,, w,) = toliminf [w,|35,q = to|lwlz,q = 0.
n—00 = =

n—oo
Thus |w[3,q =0, w=p € Py and |w,[3,o — 0. Therefore w, — p in V. From

0= lim by, (wf,w) > aoliminf ;|3 = aollw*30 > 0.

n—oo

it follows that w = p < 0 in €. Since
w, — pinV, (30)

due to the compact embedding of H?(f2) into C() we have that w, = p in Q.
We know that Vn > 1, 3z, € Q such that w, () > 0. Without loss of generality
we may assume z,, — z in 2. Then w,(z,) — p(z) > 0. Therefore p = 0. But

this leads to a contradiction with [Jwyl[,,q =1 and (30).
|

The next theorem shows the continuous dependence of u(e) on the design
variable e.
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24 2.1 Existence analysis of (P)

Lemma 2.10. (Continuous dependence.) Let ey, e € Uyq, €, — e. Further let
u, = ule,) € V be a solution to (P(e,)) and let (S2) be fulfilled. Then there
exists a function u € V' such that

U, — u inV
and moreover u = u(e) is a solution to (P(e)).

Proof. Let {u(e,),tn,q,} € W. Using the definition of (P(e,)) and setting
v = u, we have

2
e [[unllyp0 < at, (tn, un) + by, (g, un) = F(un) < | fllyq lunllzzq
making use of (28). Thus the sequence {u,} is bounded in H*(Q):
”unH2,2,Q <G (31)

where ¢ > 0 does not depend on n € N. Consequently one can pass to a subse-
quence of {u,} (denoted by the same sequence) such that

U, = u inV, (32)

for some u € V. In order to show that u solves (P(e)) we pass to the limit for
n — oo in (Ple,))

ag, (Un,v) + by, (ur,v) = F(v) YveV. (33)

First of all we will focus on the term ay, (u,,,v). We employ (27), (31) and (32).
It is readily seen that lim (ay, (un,v) — at(un,v)) = 0 so that

lim ay, (un,v) = lim (ag, (un, v) — ap(un, v)) + lim ag(uy,,v) = ar(u,v).

n—oo n—oo n—oo

In the analysis of the term b,, (u;",v) we make use of (27), (32) and Lemma 8.4.
It is easy to see that lim (b,, (u},v) — by, (u™,v)) = 0 so that

lim b, (ut,v) = lim (b, (u),v) — by, (u",v)) + lim b,, (u",v) = b,(u",v).

n—oo n—oo n—oo

Thus the limit element ©v € V satisfies
ar(u,v) + by(ut,v) = F(v) Yv eV, (34)

i.e. u solves (P(e)).

Since u(e) is unique, not only the subsequence, but the whole sequence {u, }
tends weakly to w in V. Since u,, — u in V' due to the Rellich theorem (Theorem
8.4) we have that u,, — w in H'(€2). Now it is sufficient to prove the convergence
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25 2.1 Existence analysis of (P)

in the seminorm |u/,,, ay(u,u), i.e. ay(un,u,) — a(u,u) as n — oo. From

(34) and definition ofsz T ), (P(ey)) it follows that
(

u,) = Flu,) — F(u) = a/(u,u) + by(u™,u) (35)

at, (Un, up) + by, (u

as n — oo. It is not difficult to see that lim (b, (u},u,) — by(u™,u)) = 0.

Therefore lim (ay, (u,, u,) — a;(u,w)) = 0 and consequently

At (Un, Up) = ap(Up, Up) £ ag, (Un, uy) — az(u,u), n — oo. (36)
The assertion of the lemma is now proved. [ |

Lemma 2.11. There exists a constant ¢y > 0 such that V{u;, t;,¢;} € W,i =1,2:
0 [lur = uall3 50 < ap, (U1 — 2, w1 — uz) + by, (uf — ug,uy — us). (37)
The constant ¢y does not depend on {u;,t;,q;} € Wi =1,2.

Proof. Assume that (37) does not hold. Then there exist sequences
{ul,nu tl,n7 QI,n}y {UQ,TL’ t2,n7 QZ,n} C W SUCh that

1 2
- [ — Uanlly g0 > Gy, (Ui — Uy Ut — Us )

(38)

+
+ by, (uf, —ug —Ugp) =0 Vn>1
g1 \U Ug py ULy — U2in) 2 n =1

1n

According to (31) the sequences {u;,,}, {us,} are bounded in H*(2). Thus one
can find its subsequences (denoted by the same sequences) and functions 4, s
such that u;,, — 4; in H*(Q2), i = 1,2. Due to Theorem 8.4 and Theorem 8.3 (see
e.g. [27]) it holds w;,, = 4; in Q, i = 1,2. By setting v = 1 in (P(e;,)), i = 1,2
and passing to the limit for n — oo we obtain for i = 1,2

7 / o dr=q lim [ u) dz> lim [ ¢,u, de=F(1)>0.
Q n—oo Jo n—oo Jo ’
Hence, we can find sets M7, My with the positive one-dimensional Lebesgue mea-
sure, such that u;,, > 0,%; > 0 in M;, 1 = 1,2 for n large enough.
Dividing (38) by |[u1n — tgnll5, o We have

a, , (W1 — Wop, W — W) — 0 and by, (Wi, —w3,, win—w2,) — 0, (39)
where w; , 1= U/ |1 UgnHQQQ , 1 =1,2. Clearly {wy,, —ws,} is bounded in
H?(Q) and |lwy, — wy nlly00 = 1. Hence there exist subsequences of {w;n}, i =

1,2 (denoted by the same sequences) and an element w € V' such that w, —
Wy, — win V. Thus

0= lim a,, (W1n—Wapn, W1 n—Wapn) = to ligiorgﬂwln w2n|229 150|w|22Q > 0.

n—oo
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26 2.1 Existence analysis of (P)

Therefore |wy, — wanl350 — 0, [w]3,0 =0, ie. w=pe Fyand wy, —wyy, —
pin H?(Q2). Consequently (39) reads
Wy — We, — pin H*(Q) and wi, —wi, — 0 in L*(Q). (40)

1,n n

Firstly consider:
e >0 Jur, — Uopllygg =€ Vn. (41)

Then {w;,}, {wa,,} are bounded in H%(2) and there exist subsequences (denoted
by the same sequences) converging weakly to w0y, w9 in H*(§2). Hence (40) leads
to

Wy —wy =p and W, — (W —p) =0 a.e. in Q. (42)

As Gy > 0in My, also w; > 0 in M;. From this and (42), p = 0 a.e. in Q on the
one hand and [|p[[,,o = 1 on the other hand as follows from (40) and the fact
that [Jwi, — wanllyyq = 1.

If (41) is not satisfied, then [juy, — tapllysq — 0. Thus 4y = Gy in Q. Denote
by M; 2 C Q) the subinterval where 4y, u; ,,, ¢ = 1,2 are positive for n large enough.
This implies that w;,, > 0, ¢ = 1,2 in M; 5. Then

Wiy — Way = w, —wy, —0ae in My as n— oo. (43)

From (43) and (40) it follows that p = 0, being in contradiction with

[win — w2,nH2,2,Q =1
|

Let us now mention that the optimization problems with the state described
by a variational inequality are in general nonsmooth, see e.g. [16], [L7], [14]. Our
state problem (P(e)) is represented by a nonlinear variational equation, which is
very close to problems governed by inequalities. Accordingly we can assume that
the problem (P) will be nondifferentiable as well. In Lemma 2.10 the continuity
of the mapping u : e — u(e) is established and in what follows we shall prove
its Lipschitz continuity.

Lemma 2.12. Let (S2) be satisfied. Then the mapping u : e — u(e), where u(e)
solves (P(e)), is Lipschitz continuous in Uug, i.e. there exists a constant Ky > 0
such that VYey = {t1,q1},e2 = {t2, g2} € Usa:

luer) = u(e2) 00 < Ki (s = allogey + o — aallan)

(€1), uz := u(ez) be solutions of (P(ey)),

Proof. Let e, es € Uy and uy = 1 u(
2)) fro (P'(e1)) we have:

u
(P(ez)), respectively. Subtracting (P’(e
Aty (uhv) - atz(u%v) + bq1 (uii_av) - qu(uéhv) =0 Ywel (44)
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27 2.1 Existence analysis of (P)

Adding and subtracting ay, (u1,v), by, (ui,v) to the left hand side of (44) yield

Qt, (ul — U2, U) + qu (UT - u;, U) - (45)
= (atz - atl)(ub U) + (bCIQ - bql)(u;rvv) Vo eV

Inserting v = u; — us into (45) and using (37) we have that
cllur — w30 < an(ur — s, ur — u) + by (uf —ug, uy — ug), (46)

where ¢ is a positive constant independent on {uy,t1, ¢}, {us,t2,q2} € W. The
right hand side of (45) can be estimated as follows:

(ag, — ag,)(ur,u1 — ug)

(th2 - bQ1)<u1+> Uy — u2)

22,0 |ur — U2||2,2,Q ) (47)

g1 — a2lly.q HUTHLZQ Jur — uzllyy - (48)

cllts = tafloq) llwn

NN

Therefore the assertion of the lemma is a consequence of (45) - (48) and the
uniform boundedness of u(e), e € Uyy.

To ensure the existence of a solution to (P), it remains to assume the lower
semicontinuity of the cost functional I:
(I1) Ife, e, € Uy, €, — €in Uyg and v, v, € V, v, — v in V, then

liminf I(e,, v,) = I(e, v).
Theorem 2.3. Let the cost functional I satisfy (I11), then there exists at least
one solution of (P).

Proof. Let us denote A = i%f I(e,u(e)). Then there exists a minimization
eclUqgd

sequence {e,} C U,q such that

A= nh_{& I(en, un(en)).
The compactness of U,y, proved by Lemma 2.8 implies the existence of a sub-
sequence (denoted by the same sequence) {e,} C U,q and an element e* € U,y
such that e, — e* in U,y. Therefore by making use of Lemma 2.10 we obtain
up(e,) — u*(e*) in V, where u,(e,),u*(e*) solve (P(e,)) and (P(e*)), respec-
tively. Due to the lower semicontinuity of the cost functional, we have

A = lm I(e,,uy(e,)) = I(e*, u*(e)).

n—oo

Then I(e*,u*(e*)) = m[i]n I(e,u(e)) and the assertion of the theorem is proved.
ecUqq
|
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28 2.1 Existence analysis of (P)

In addition, let us suppose that I is Lipschitz continuous in U,y x V:
(I2) There exist a constant ¢ > 0 such that Ve, ey € Uyy and Yoy, vy € V:

[1(e1,v1) — I(e2,v2)| < ¢ <||Ul —v2llyn0 + i —tallo@) + llan — CI2H2,Q) :

Lemma 2.13. Let I satisfy (12). Then J(e) := I(e,u(e)), with u(e) being a
solution of (P(e)), is Lipschitz continuous in U,q, i.e. there exists a constant
Ky > 0 such that

[J(e1) — J(e2)| < Ko (Hh —tall oy + Ml — ‘12||2,Q> Ver, ez € U

Proof. The assertion directly follows from (12) and Lemma 2.12.
|

At the end of this section we shall show that the cost functionals (4), (5) and
(6) have the required properties.

Lemma 2.14. Cost functionals (4), (5) and (6), with u(e) being a solution to
(P(e)), satisfy (I1) and (12).

Proof. Let ej,eq € U,y and let u(er),u(ez) € V be solutions to (P(e;)) and
(P(eq)), respectively. We start with the cost functional (4). Condition (I1) is
a direct consequence of the continuous dependence of Ji(e) = I;(e,u(e)) on w.
Using the Cauchy—Schwarz inequality, it directly reads

| Ji(e1) — Jilea)| < || flloq [luler) —ulea)lly0q -

Therefore Ji(e) = I1(e,u(e)) also satisfies (12).

Let us now continue with the cost functional (5). The lower semicontinuity
again follows from the continuity of Jy(e) = Iy(e,u(e)). By using the Cauchy—
Schwarz inequality and boundedness of solution to (P(e)) we obtain

| J2(e1) — Ja(ea)| < fluer) +ulez)llo0q [Juler) —ulea)llyo0 <
< ([ule)llzp0 + lule2)llop0) lluler) —ulea)ll0 <
< cllu(er) —ule2)llz00
where ¢ is a positive constant which does not depend on e, e5. Thus Jy(e) =
Iy(e,u(e)) satisfies (12).

Finally we can approach to the functional (6). Let ¢, ¢, € Ul,, t, = t in €,
then u(e,) — u(e) in V. Therefore

liminf I3(e,, u,) = liminf/ 2 (u)?dz = /zﬁz(u”)2 de = Is(e, u).
Q Q

n—oo n—oo
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29 2.1 Existence analysis of (P)

By using the Cauchy—-Schwarz inequality and boundedness of solution to (P(e))
we have

| Ja(er) — Ja(ea)| <t [luler) + ulea)|ly 00 lluler) — ulea)|ly 00 +
+cllts = tal oy lule2) |00 <
<t(lluen)llypg + llulez)llya0) lluler) — ulez)llyaq +
+ellts = tall o) llulez)llyp0 <

< e luter) = ulea)llyoq + s = tallo )
where ¢, ¢; are positive constants which do not depend on ey, e5. Thus Js(e) =

I3(e,u(e)) satisfies (12). .
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30 2.2 Approximation of (P)

2.2. Approximation of (P)

Optimization problem (P) in the continuous form, as it is introduced in the
previous section, is not suitable for numerical realization. In this section we will
pay attention to the approximation of the state problem (P(e)) and corresponding
design optimization problem (P). We will study the existence of a solution to (P)
as well as we shall prove that discrete (approximated) problems are close to the
original problem in the sense of subsequences. In other words, discrete problems
approximate the original problem well if we let the approximation parameter
converge to zero.

2.2.1. Approximation of U,

Firstly we will be aimed at the approximation of design variables, i.e. approx-
imation of the set U,q = U, x UZ,. We define a partition of the interval  into
subintervals K; = [z;_1, x;], where the nodes satisfy

O=ag< a1 <...<m,, = L. (49)

Without loss of generality we will restrict ourselves to equidistant partition, i.e.
r;— 2,1 ="h, h >0, l=nh, x; =1ih, Vi=0,1,...,n. The admissible set U!, is
approximated by Lipschitz continuous and piecewise linear functions. Similarly
we approximate the set UZ, by piecewise constant functions, i.e., we define

Uban = {th € C¥N(Q) : ty|k,€ P1(K;), Vi=1,...,n} NU., (50)
Ulin ={an € L2(Q) : qnlx,€ Py (K;), Vi=1,...,n}NUL, (51)

Approximation of the set U,; then has the following form:
h
Una = Uéd,h X Ugd,h'
The set U, is an inner approximation of Uy, i.e. U C Uyg.

Lemma 2.15. The set UM, is a compact subset of C(Q) x L*(Q) with regard to
the convergence defined by (27).

Proof. The assertion follows from the fact that every closed subset of a compact

set is also compact.
|

Remark 2.1. Instead of piecewise linear approximation of the thickness t we
can consider piecewise constant functions, the so called stepped beam. Such an
approximation is no longer represented by continuous functions and the set Uyqp
1s not a subset of Uyy. However, for a stepped beam it is possible to reach similar
convergence results as for the continuous case (see e.g. [17]).
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31 2.2 Approximation of (P)

2.2.2. Approximation of (P(e))

Now we can approach to the approximation of the state problem. We use the
finite element method with the partition (49). Assume that {t;, gn} = e € U,
We define the following finite dimensional approximations of V' as it is usual for
beam problems:

Vi ={v, € CYQ) : vp|k, € P3(K;), Vi=1,...,n, v,(0) =0}

Space V;, C V contains of piecewise cubic polynomials that are continuous to-
gether with their first derivatives in ). These polynomials satisfy the same natu-
ral boundary condition as functions from V. Using the classical Ritz method we
approximate (P(e)) as follows:

Find up € Vh : Eeh (Uh) < Eeh (Uh) Vvh € Vh, (Ph(eh))

where &, () = 3(az, (vn, v) + b, (v, v})) — F(vp). The integrand defining the
form ay,, is piecewise polynomial of order 5 at most, therefore we can evaluate the
corresponding integral exactly and no additional approximation of a;, is needed.
Due to the nonlinear term v, we can not evaluate the form b,, (v, v;") exactly.
The same issue occurs in the case of the continuous linear functional F'(vy,), v, €
Vi, because f € L*(€) is a general function that is defined everywhere in Q.
Therefore terms b,, and F' will be approximated using the numerical quadra-
ture (176). Let ®;, i = 1,...,n be a transformation of the interval K; onto the
reference interval [—1, 1] defined by (178) with s = x;_1, t = z;. For the sake of
simplicity the generalized forces Fj, M; will no longer be considered. Further let
zji = ®;'(%;) a w; = (h/2)®;. Approximations then have the following form:

n

o (u,0) =Y (CIh,iijU(Zj,z‘)v(Zj,z‘))a (52)

F*(v) = Z Z wj f(z0)v(25), (53)

where g5, ; = qu|x,. For arbitrary e, € U,q these terms are defined on H'(2) and
associated with the reference quadrature formula (176) and the partition (49).
We will adopt the notation bgh € QF Fh e QF to express the fact that the used
formula is exact for polynomials of degree k at least. In addition let us denote
by
Qn={2:=0'(2)€eQ, j=1,....m,i=1,...,n}

the set containing all nodes of the quadrature formula on €. The approximated
state problem then reads as follows:

Find up € Vh : 5£h (Uh) g 5£h (Uh) V’Uh S Vh, (Ph(eh))
where E!' (vn) = §(ag, (vn, vn) + 08 (07, v7)) — F*(vg).
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32 2.2 Approximation of (P)

2.2.3. Approximation of the cost functional and the optimization prob-
lem

Let I, : U x V, — R! be an approximation of I and denote Jy(ep) =

In(en,un(en)) with up(ep) being a solution to (Pp(ep)). The approximation of
(P) then reads as follows:

Find e} € U™ . Ju(e;) < Julen) Ve, € UL (Pp)

Cost functionals (4), (5) and (6) have an integral form. Therefore we can also
use the formula for numerical integration for their approximation.

Jni(en) = Inq(en, un(en)) ZZ% zj.)un(24), (54)

=1 j=1

Jna(en) = Ina(en, unlen)) Zzwjuh Zji)s (55)
=1 j=1

Inalen) = Inz(en, un(en)) ZZ% (2) (i (25.0))%, (56)
i=1 j=1

where uy(ey) solves (Py(en)).

2.2.4. Existence and uniqueness of a solution to (P,(ey))

This subsection will be devoted to the existence analysis of (Py(ey,)) for h > 0
fixed. We will proceed in a similar way as for the continuous problem (see [52]),
i.e. we define orthogonal decomposition of V},, prove the coercivity of th on Vj,
using a modified Poincaré inequality and suitable assumption on the beam load.
In the sequel we will assume that f € Wh(K;), i =1,...,n, e, € U, e Q)
and F" € QY. Firstly we prove the uniform boundedness of bf;h and F".

Lemma 2.16. There exist positive constants ci, co such that

‘bh v)| <a [ullapallvllyeg  Vu,v € H?*(Q), Ve, € UL, (57)
|Fh( )| < ezflvllyog Vo € H*(Q). (58)

Constants cq, co depend only on the length of the interval €, definition of the set
UM, and the load f.

a
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33 2.2 Approximation of (P)

Proof. Let b’;h € Q) then

Z (qmz% (zj4)v Zm))

Sa HMLHC(Q) Wl ZZWJ -G ||u+||0(s‘z) 1ol /Q ldz =

i=1 j=1
=lq HUJFHC ||U||c < a HU+H172,Q ||U||2,2,Q S a ||U||22(2 ||U||2,2,Q
Yu,v € HZ(Q), Ve, € de.

Next we can pass to the proof of the estimate (58). Let F* € QY then

n m
< aqr Y Y wifut(z0)][o(z)] <

i=1 j=1

[V (s 0)] =

|Fh |_ ZZWJ 2j.i)v(254) ZZWJU zii)| [v(z50)] <
=1 j=1 i=1 j=1
<cllvllgg YD wi = lelvllog < callvllyng Vo€ HA(9),
i=1 j=1

where ¢ := max [|f|[5(x,- In both estimates we used the definition of UM, the
1 K2

compactness of embedding of H(€2) into C(Q) (see Theorem 8.3) and the com-
pactness of embedding of H*(2) into H'(2) (see Remark 8.1). It is easy to see
that values u™*(z),v(z) are defined correctly Vo € Q and Vv € H?(Q).

[ ]

Lemma 2.17. There exist positive constants ¢y, co such that
|b (uy, on) — th(uZ’th < aahllunllyo0 lvellyog Vun,vn € Vi, (59)
|F"(vs) — F(uy)| < e2h [vnll20.0 Yoy, € V. (60)

Constant ¢y, ca depend only on the length of the interval Q, definition of U, and
the load f.

Proof. Let b € Q). It is known that u,,v, € H?(Q) implies (u} vs)
WH(K;). Therefore by Lemma 8.5, Cauchy-Schwarz inequality and compact
embedding of H%(2) into H'(Q) we have

n

‘bf;h (uzv vh) - bqh (ui—t> Uh Z

m

+
E wjug (zj)vn(25.4) —/ uy vy do

'— [

<

n
<> fuinl, <y (e i, 1omhr s, + [ ]y, Mol ) <
=1

i=1

n n n
< Chz Hu;HLQ,Ki [onlly 0., < Chz Hu;HLQ,KiZthHLZ,Ki S
=1 =1 =1

< ch H“h ngg ||Uh||129 < ah ||Uh||2,2,sz ||Uh||2,2,Q Vup, vy, € Vi, Vep € Uaa.
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34 2.2 Approximation of (P)

Next we will prove the relation (60). Let F" € Q). In view of f € WHH(K;), i =
1,...,n, v, €V} it holds that (fuy)|x, € WH(K;), i =1,...,n. Then we have

|Fh(vh) < Z ij f(z50)vn(254) / fopdx

\
=1 | j=1
n
< ch Y | fonly g, < Chth||01(z‘<i)2||f||1,z,m <
i=1 =1
< ch th”Q,Q,Q Hf“lzﬂ < ©h th||2,2,§z Vv € V.

Lemma 2.18. The functional £} is Gateaus differentiable and convex on H?(S2).
Its Gateauz derivative in arbitrary point w € H*(Q) and arbitrary direction v €
H?(Q) has the following form:

th/(u; v) = ay, (u, v) + b (ut,v) = F"(v) Vu,v € H*(Q), Ve, € UL (61)

Proof. We proceed analogically as in the proof of Lemma 2.2. We have

b’;h((u +ev)t, (u+ev)t) — bgh (ut,ut)

: _ oph () +
ll_r)% - = 20 (u",v) (62)
Vu,v € H*(Q), Ve, € UM,
The convexity follows from
52 (u; u—wv) — Sh (v;u—v)=ay(u—v, u—v) + bg‘h(lﬁ—v ,U— V) =
> ay,(u—v, u—v) + b (Wt —vt ut—ot) >
> oty |u— U|22Q +
+ o Zij(u (2j4) = v*(24))% = 0
i=1 j=1

Lemma 2.18 enable us to introduce the equivalent weak formulation of the

problem (Py(ep)).
Find up € Vh : ath(uh, ’Uh) -+ bh (uh,vh) = Fh(vh) V’Uh € Vh. (P;l(eh))

It remains to prove the coercivity of th on V. We make decomposition of V},
into a convex cone of rigid displacements and its negative polar cone.

Ry, = {vn € VN Py @ ay, (vp, vp) + b];h(v;;,vh) =0} ={pe FRy:p<O0}.
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35 2.2 Approximation of (P)

From there by the definition of the following scalar product on H?(Q)
(1)) = / W de 30N wiu(z)u(z0), (63)
Q i=1 j=1

the negative polar cone R% reads as follows:
RY, = {vn € Vi : (vn, )20 <O Vp € Ry, } =

={on € Vi: Y > wjun(z) > 0}

i=1 j=1

Lemma 2.19. (Necessary condition for the existence of a solution to (Pp(ep)).)
Let there exist a solution to (Pr(er)), then the condition

F*(1) = 0 (S14)
must be satisfied.

Proof. The assertion can be obtained by inserting v = p € Ry, into (P} (en)).
|

The space V}, can be uniquely decomposed into the orthogonal sum Ry, @R‘e/h.
In addition Vv, € V,, 3! {p, v} € Ry, X R‘e/h such that

oh =P D0, (P20 =Py Y wital(z) = 0. (64)

i=1 j=1

In view of definitions of Ry, , R% and properties of the decomposition (64), only
one of the following variants can occur :

p =0 and ZZwﬁh(zﬂ) > 0, (Alp)

i=1 j=1
p < 0 and Zijz_)h(zM) = 0. (A2,)

i=1 j=1

Lemma 2.20. (Poincaré type inequality). Let V = {v € H*(Q) : v/(0) = 0},
then there exists a positive constant cp dependent only on the interval €2 such that

n

m 2
V]300 < CP<|U|§,2,Q + (ZZ%‘W%)) ) Vo eV, (65)

i=1 j=1

where w; > 0 are wages and z;; € Q, nodes of the integration formula.
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36 2.2 Approximation of (P)

Proof. Let (65) do not hold. Then there exists a sequence {vx} C V such that

2
1 n m
z lvell3 00 > [vkl300 + (Zzwjvk(zj,i)> 20 Vk>1 (66)

i=1 j=1

Divide (66) by ||vk||32Q and pass to the limit for & — oco. Then

n m 2
ljl—{go‘wk‘%?fl =0 and ]}Lr{)lo (Zijwk(zjj)) =0, (67)

i=1 j=1

where wy, 1= vg/ |[Uk]l4 5 - Clearly [|wg|l,, =1 and we can find its subsequence
(denoted by the same sequence) and an element w € V' such that wy — win V.
Due to (67) it holds that wy — w in V' and moreover wy = w in Q. Thus

0 = liminf |wi|3 50 = [w|550 = 0.
k—o0 2 2

Then |w|3,, = 0 and w = p € Py. From

0= h’?_l)g)lf (Z ijwk(zj7i)) = (Z ZWj'LU(ZjJ‘)) 2 0,

i=1 j=1 i=1 j=1

it follows that p = 0 being in contradiction with ||wg|/y5, =1 and wy — pin V.
|

Lemma 2.21. Let the condition

F"(1) >0 (S2,)
be fulfilled. Then the functional Sehh is coercive on Vj,.
Proof. Let (S2h) hold. Firstly consider the alternative (A1), then p =0, v, =
vy, and Z Z w;Tn(25:) = 0. For every function 7, € Ry, it holds the following

i=1j=
inequality:
ZZZ“}J oy zﬂ > < Zw]vh z]z> > (Zij@h(zji)) , (68)
i=1 j=1 i=1 j=1 i=1 j=1

where we used bZh € QY and the discrete form of the Cauchy-Schwarz inequality
(see Theorem 8.2). By using F'* € Q9 (68) and (65) we can rewrite the functional
gl as follows:

2" (vn) = 2E0 (0n) = ay, (On, ) + V) (05, 0 ) — 2F"(0y) >

2
> ot [0y + O (zzwh ) o) >

=1 j5=1

> ||77h||2,2,9 (c1 ||17h||2,2,9 — 2¢9),
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37 2.2 Approximation of (P)

where ¢; := (1/cp) min{foty, qo/l} and ¢, is the constant from Lemma 2.16.
If the alternative (A2j,) occurs, we have ) > w;Up(z;;) = 0 and p < 0.
i=1j=1

Then we obtain:

- n m 9 -
> Botd [Onl500 + @0 > > w; (v (z14)" + 2plF"(1) — 2F" (1) >

i=1 j=1

n m 2
> Botg [nl00 + (Zzwa‘vh(%yi)) + 2|p|F" (1) — 2F"(vp) >

i=1 j=1
> o1 ||onll0.0 + 2IpIF"(1) = 262 [10ally0

denoting ¢; := (1/cp) min{fFpt3, 1}. Due to the orthogonality of (64) it holds
that ||vh||§727Q = ||17h||§727Q + ||p||§2Q Therefore |lvplyq — +oo causes that at
least one part of vy, = p + v, converges to +oo in appropriate norm. By using

(S25,) we arrive at the assertion of the lemma.
|

Theorem 2.4. (Necessary and sufficient condition for the existence and unique-
ness of a solution to (Py(ep)).) There exists a unique solution to (Pp(ep)) if and
only if (S21,) is fulfilled. In addition for such a solution uy € V}, it holds

Muh = {Zjﬂ' c Qh : Uh(zj,i) > 0} 7é 0. (M1h>

Proof. Necessity. Assume that u, € V} is a unique solution to (Pp(ep)) and
(S21,) does not hold. Due to Lemma 2.19 it follows that F"(1) = 0. Inserting
vy = p € Ry, into (P} (en)) yields

b (uf,p) =0 Vp€Ry,, p #0. (69)

Then (69) implies u) (z;;) = 0, un(z;:) < 0 Vz;; € Q. Consequently up(z;;) +
p < 0Vz; € Qpand Vp € Ry,, p # 0. From there bgh((uh +p)t,u,) =0Vp €
Ry,, p # 0 and Vv, € Vj,. Then it is not difficult to see that u; + p is another
solution to (Pn(en)), what is in contradiction with the uniqueness of uy. The
condition (S2;,) must be satisfied.
Sufficiency. Let (S25) be fulfilled. We know that €£Lh is Gateaux differentiable,
convex and coercive on V},, therefore the existence of a solution u;, € V}, is ensured,
see e.g. [12], [8].

Next we prove (M1y,). Let w, € Vi, up(zj;) < 0 Vz;; € Qp, solve (Pr(er)).
Then by inserting v, = p € Ry, p # 0 into (P}, (e)) we obtain

0 =0 (uf,1)=F"(1). (70)
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38 2.2 Approximation of (P)

But (70) is in contradiction with (S2;) and the solution wu;, must satisfy (M1},).

In the rest of the proof we show the uniqueness of the solution. Let w1, up2 €
Vi, be solutions to (Pp(ep)). Subtracting corresponding weak formulations and
setting v = up 1 — up 2 yield

koo o+ + _
ar, (Up1 — Up 2, Up1 — Up2) + bqh (th — Up 95 U1 — up2) = 0.

Therefore
Up1 — Up2 = P < PO and U%(Zj,i) — (uh,l(zj,i) - p>+ =0 VZj,i S Qh-

Taking into account (M1,) we obtain p = 0 and up; = up 9 in Q.
[ |

Remark 2.2. Notice that satisfying of the condition F(1) generally does not
directly imply satisfying of the discrete condition F"(1). One must pay attention
to the choice of the discretization parameter h, it should be small enough, such
that the numerical quadrature is able to evaluate the condition as exact as possible.

2.2.5. Existence of solutions to (P;)

The next part of the thesis will be devoted to the existence analysis of (Py).
Analogically as in the continuous case it is possible to prove that uy(e;) depends
continuously on ej, and that the approximated optimization problem (Pj) has at
least one solution.

Assume that 8 € L>(Q),0 < 3 < B(z) a.e. in Q and F"* € V¥, F*(1) > 0.
Then for arbitrary e, € U", there exists a unique solution of (Py(e;)) with the
property (M1;). A set of all such solutions will be denoted by W). Recall the
notation ey, = {ts, qn}

Wi o= {{un, tn, qn} € Vi x Up gy X Usy = up solves (Py(en))}.

In the next lemma we will consider a whole class of problems (P (ey)) for 0 <
h < hg in order to use it also in the convergence analysis. Therefore we suppose
that F" € V¥, F"(1) > 0 for all 0 < h < hg. It implies that there exists a solution
of (Pu(en)) foralle, € |J UL,

0<h<ho

Lemma 2.22. There exists a positive constant ¢, such that

c1 Huh”ggg < ay, (up, up) + bZh(UZ,Uh) V{un,th, qn} € U Wy, (71)
0<h<ho

where the constant ¢; does not depend on {up,th,qn} € U Wh.
0<h<ho
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39 2.2 Approximation of (P)

Proof. Let us suppose that (71) does not hold. Then there exists a sequence

{un, th,,qn, } € U W such that
0<h<ho

1

E Huth;,Z,Q > Ay, (uhk7uhk) + bhk (uhk’uhk> >0 Vk=1 (72>

Dividing (72) by Huhk\|§29 and passing to the limit for £ — oo lead to

khj& at,, (Why, wp,) =0 and khi& bk (wh ,wp, ) = 0,
where wp, = up,/ ||unlly0q. Clearly |Jwn,|ly0q = 1 and {wy,} is bounded.
Hence one can find a subsequence of {wy, }(denoted by the same sequence) and
an element wy, € V such that wy,, — wy;, in V. Without loss of generality we may
suppose that gn, — ¢, and hy — h. It is not difficult to prove that |wh|§7279 =0
and w, =p € By and wy,, — pin V, see [52]. Due to the compact embedding of
H(Q) into C(Q) it holds wy, = pin Q. Then

0 < bZo (p+’p ) - hIIl bhk (wf—f 7wh ) khm bhk (wi—l_kawl—i_h) 0.
Therefore p < 0. In view of (M1;,) we know that Vk there exists a node zj, =
2;i(k) € Qp,, such that wy, (z;) > 0. Without loss of generality we may suppose
that z, — z € Q. Therefore p(z) > 0 and we obviously have p = 0. But it leads

to a contradiction with 1 = [Jwy, ||, o and wy, — pin V.
n

Lemma 2.23. (Continuous dependence.) Let h > 0 be fized, ey, e, € U, and
enn — en in Uyg. Further let up, = up(en,) € Vi, be a solution to (Py(enn))
and let (S2;,) be fulfilled. Then there ezists a function u, € V), such that

Upp — Up DV
and moreover uy = uy(ey) is a solution to (Pp(ep)).

Proof. Based on Lemma 2.16 and Lemma 2.22 we know that the sequence {uy,, }
is bounded in H?(Q), i.e.
< ¢ (73)

where the positive constant ¢ does not depend on n € N. Therefore we can pass
to a subsequence of {uy,} (denoted by the same sequence) such that

Upp — up in V. (74)
To prove that uy solves (Py(en)) we pass to the limit for n — oo in (Pp(epn))-
ath’n(uh,n,vh) + b];h’n (u;;n,vh) = Fh(vh) Yo, € V.
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40 2.2 Approximation of (P)

It holds that lim ay, , (upn,vn) = ay, (un,vs), see [52]. In the analysis of the

term b} (u}tn,vh) we make use of (74) (it implies up, = wp, in Q). Hence

lim (bh (uzn, vp) — b, () vp)) = 0 so that

n—oo

lim bh (uin,vh) = lim (bh gy s on) — bZh,n (u,on)) + nh_)ngo bghvn(u;{,vh) =

n—oo n—oo

= bh (uh ) vh)
Thus the limit element u;, € V}, satisfies
az, (up, vp) + bh (uh,vh) = FM'(vy) Yo, €V,

i.e. uyp is a solution of (Py(ep)). Since up(ey) is unique, not only the subsequence,
but the whole sequence {uy,,} tends weakly to uj, in V.

It remains to prove the strong convergence. Since up, — u; in V' we have
Upy — up in HY(Q). Tt is sufficient to prove the convergence in the seminorm
Ulay, 0 = v ag, (u,u), ie. ap, (Unn, Unn) — ag, (un, up) as n — oo. From (74),

(Pr(en)) and (Pr(epnn)) it follows that

aty, ., (uhﬂu uh,ﬂ) + bh (u}—i—n’ Un n) = (75)

= Fh(uhn) — FP (up) = ay, (up, up) + b (uh,uh)

as n — co. It is not difficult to see that lim (b}, (u!,, unn) — 0% (uy,up)) = 0.

Then (75) implies lim (ay, , (Upn, Unn) — @y, (Un, un)) = 0 and consequently

g, (Unyn, Unn) = G, (Unins Unn) £ Qg (Unis Unn) — Qg (U, up), 1 — 00.

[ |
Lemma 2.24. There exists a constant co > 0 such that Y{up;, tp:, qni} € Wh,
1=1,2 1t holds
o |Jupy — Uh,zH;ZQ < ay,, (Uny — Un2, Un1 — Up2) + (76)
+ b'ql 1<uh 1 u;,w Up1 — Up2)-
The constant cy does not depend on {up;,thi, qni} € Whyi = 1,2.
Proof. Suppose that (76) is not fulfilled. Then there exist sequences
{un1msthin, @hints {Un2n,thon, @hont C Wy such that Vn > 1 it holds
1
—llunn — > ay,, , (Unin = Un2mn, Unin — Un2n) + (77)
+ bZh 1,n (uilﬂ’l - u;{,Q,n’ uh717n - uh,27”) > 0'
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41 2.2 Approximation of (P)

According to (73), sequences {up 1.}, {tn2,} are bounded in H?(2). Then there
exist their subsequences (denoted by the same sequences) and functions 4y, 1, tp2
such that up;, — dp; in H*(Q),7 = 1,2. In fact it holds wp,;, = dp,; in
2, i=1,2. By setting v, = 1 in (Py(en1,,)) and passing to the limit for n — oo
we obtain

n m n m
03 it ) =i 3Dty ) >

i=1 j=1 i=1 j=1

n m
>l Y anan ) wiuh (20 = F'(1) > 0.
i=1 j=1

The same estimate holds also for {us 2, }. Hence, we can find nodes 21, 22 € @y,
such that up1,(21) > 0,0p1(21) > 0 (resp. up2n(22) > 0, Up2(22) > 0) for n large
enough.

Dividing (77) by ||up1n — Uh727nH§727Q yields

Uty 1 o (Wh 1 — Wiz Whin — Whiapn) — 0, 1 — 00 (78)
and
bZh,l,n (w}tlﬂl - w}tQ’nj wh,l,'fl - wh,2,n> - OJ n— OOJ (79>

where we denote wp, ;. == Upin/ || Un1n — uh,27n||272’9, i =1,2. Clearly {wp1, —
Whan} is bounded in H?(Q2). Hence there exist subsequences of {wp;,}, i = 1,2
(denoted by the same sequences) and an element wy, € Vj, such that w1, —
Whon — wy in H*(Q). From (78) it follows that |whl3,o = 0, wp, = p € F.
Then

Wh1m — Whaon — p in H*(Q) and w}tlm(zj’i) — w}tQ,n(zj,i) — 0 Vzj; € Qn. (80)
Let us first consider that:
Je> 0 [lupin — tngnllyng =2 Vo (81)

Therefore {wp 1}, {whan} are bounded in H?() and there exist their sub-
sequences (denoted by the same sequences) converging weakly to w1, Wpo in

H?(Q). Hence (80) leads to
Wp,1 — Whe =p and wL(%z) - (1@;1(2’32) —p)=0 Vz; € Q.

As the sequence {up1,} is bounded and y1(21) > 0, also wy1(z1) > 0. From
there obviously p = 0 in €.

If (81) is not satisfied, then ||up1,n — Un2nlly,q — 0, 7 — o0o. Thus uy; =
Up2 a.e. in 2 and we can denote by z; 5 the point7v;/here Up1, Uh,1m, U2 and Up 24,

41



42 2.2 Approximation of (P)

are positive for n large enough. It implies that wy, 1 ,(21,2) > 0 and w2, (21,2) > 0.
Then
(Wh1m — Whan)(212) = (Wy 1, — Wy, ) (212) = 0, 1 — 00 (82)
what again implies p = 0 being in contradiction with 1 = [|wh 10 — Wa2nlly, 0
and wp 1, — Wha, — p in H2(Q).
|

To ensure the existence of a solution to (Pj), it remains to assume the lower
semicontinuity of Iy:
(I1,) Ifen, enn € UL, eppn — en in U, and vy, vppn € Vi, Uppn — vy in V, then

liminf Ij,(epn, vnn) = In(en, vn).

n—oo

Theorem 2.5. (Existence of a solution to (Py,)) Let I, satisfy (I1,). Then (Py)
has at least one solution for every h > 0.

Proof. The assertion follows from (I1;,), Lemma 2.23 and Lemma 2.15.
|

In view of Lemma 2.23 and Lemma 2.24, the mapping e, — uyp(ep,) is Lip-
schitz continuous, i.e. there exists K; > 0 such that Ve, = {tn1,qn1},en2 =
{thg, qh’g} S U;Ld it holds

lunenn) = un(en2)llyzn < K (1t = thallog + lans = anallyg)

In addition let us suppose that I, is Lipschitz continuous on U”, x Vj,:
(I2,) There exists a constant ¢ > 0 such that Ve, 1, €52 € U and Yoy, 1, v50 € Vj,
it holds:

| In(en1,vn1) — In(ena, vno)| < c <||Uh,1 —Up2lly0 0t
+ ltny = thollo@ + llans — C]h,2”2,9) :

Lemma 2.25. Let I}, satisfy (12,). Then Jy(en) = In(en, un(er)), with up(ep)
being a solution to (Pu(en)), is Lipschitz continuous in U, i.e. there exists a
constant Ko > 0 such that Vep1,ep2 € Ugbd:

[nlent) = Tulenz)l < Ko (Il = trallo + lans = mnalla) -

Proof. The assertion directly follows from (I12;) and the Lipschitz continuity of
en — up(ep).

To end this section we will show that the approximations of cost functionals
defined by (54), (55) and (56) have the required properties.
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43 2.2 Approximation of (P)

Lemma 2.26. Let I,; € Q% i = 1,2,3. Then the cost functionals (54), (55)
and (56) satisfy conditions (115,), (125).

Proof. We start with the cost functional (54). Condition (I1,) follows from
the fact that up, — up in V implies up,, = up, in Q. Let ep1,ep2 € Ué‘d and

un(en), un(ens) € Vi solve (Pr(en1)) and (Ph(ens)), respectively. Therefore it
holds

[Thi(ena) = Jnalen2)| < tmax|| fllog, llun(ent) —unlen2)llysq-

Thus Jy1(en) = Inq(en, un(er)) satisties (12,).

Let us now continue with the cost functional (55). It is again not difficult
to prove the lower semicontinuity of Jy,2(en) = In2(en, un(en)) using the uni-
form convergence as in the previous case. By using the discrete Cauchy—Schwarz
inequality (see e.g. [0]) and boundedness (73) we obtain

|Jh,2(€h,1) Jh2 €h2 X Z Zw] |Uh 1 Z]z Uh,z(Zj,i)\ |Uh,1(zj,i) + Uh,Q(Zj,i)| <

i=1 j=1
U ||un,y + Uh,2H2,2,Q [ uh,QHQ,Q,Q <

<
< l<||uh,1||272,9 + Huh,2||272,9) [un1 — Uh,2”272@ <
<

c ||Uh,1 -

where ¢ is a positive constant which does not depend on ey 1, e 2. Thus Jy, 2(e) =
Ino(en, up(en)) satisfies (12,).

Finally we can approach to the functional (56). Let es,, — e in U,q, then
up(€enn) — up(en) € V. Then

llm 1nf Iy s(enn, Upy) = lim 1nfz Zw]t,m z”)(u;;’n)Q(zj,i) >

n—oo

i=1 j=1
ZZ%% 2 (up)*(254) = Isp(en, un).
=1 j5=1

Further it holds

[ Ths(eny) = Tnslena)] <> Y wj|(upy —uj o) (20| |(upy + 1 o) (z30)] +
=1 j=1

n m

I Wi |y = 6 5) (=) [ 2)?(250)] <
i=1 j=1

<t max [un,1 + uh,QH(ﬁ(i{-) [[tn,1 — uh,2H2,2,Q +

Fleltng = thallog max [[unsllca i, <

< C( |uny — 1= thelle@ )7

43



44 2.3 Convergence analysis

where ¢ is a positive constant which does not depend on ey, 1, e, 2. Thus Jj, 3(es) =
Iy 3(en, up(en)) satisfies (12,).
[ |

2.3. Convergence analysis

This subsection will be devoted to the analysis of the relation between solu-
tions of (Pj,) and the solution of (P) for A — 0*. The convergence analysis starts
with the following lemma:

Lemma 2.27. Let ¢, € Ud,e € Uyg, en — € in Uy as h — 07. Further
let up(en) € Vi, be a solution to (Pylen)) and let (S23,) be fulfilled for every
0 < h < hg. Then there exists a function uw € V such that

upb — u in 'V
and in addition uw = u(e) is a solution to (P(e)).

Proof. Firstly we prove the uniform boundedness of {uy}. Let u;, be a solution
to (Pu(en)). We insert vy, = uy, into (P} (ep,)) and according to (S2;), Lemma 2.22
and (58) there exist positive constants c¢;, ¢ such that

e [unllng < an, (un un) + B2 (wh un) = F*(un) < e |Junllyqg -

Therefore
Jec>0: [unllyp o <c VO <h < ho.

Thus one can find a subsequence of {uy,} (denoted by the same sequence) and a
function u € V' such that

up —~u inVash— 0" (83)

From the definition of V}, it follows that for arbitrary function v € V' one can find
a sequence {v,}, v, € Vj, such that v, — v in V as h — 0%,
Next we prove that u solves (P(e)). The state problem (Py(ep)) reads

at, (up, vp) + bh (uh,vh) F'"(vy) Yo, € V.

We will pass to the limit for h — 07. Firstly we focus on ay, (up, vs). Making use
of (83) we have

hli%a at, (up,vp) = li%l+(ath — ag)(up, vp) + llrél at(up, vp) = ar(u,v).

Passing to the limit for & — 0% in b}, (), v,) we obtain
th?+ bg (u),vp) = hlir(r)1+ (b]qzh(u;,vh) — by, (uf,vn)) + 11,%1+ by, (uyh,vp) =
lirél (th —b )(u}mvh) + hm b (uhavh) = bQ(u+7U)'
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45 2.3 Convergence analysis

We used (59), (83) and the boundedness of {uy}, {vs}. It remains to pass to the
limit in F"(vy). Estimate (60) then implies:

lim F" = lim (F"-F lim F = lim F = F(v).
g, o) =l (F2 =) o)+ Jip, ) =l Fln) = F(0)

Summarizing the previous results yields
ai(u,v) + by(ut,v") = F(v) Yo eV.

The limit function w € V' is a solution to (P(e)). Since the solution u is unique,
then the whole sequence {uy,} tends weakly to u in V.

Next we will prove the strong convergence. Since u;, — w in V' implies u;, —
win HY(Q), it is sufficient to prove that a;(up,un) — as(u,u). We know that

() + b, (0 ) = F(ur) = F(u) = g, w) + byt ). (84)
It is not difficult to prove that b (u;,up) — bg(u™, u™). From (84) then follows
at, (up, up) — ar(u, u) and
ay(un, un) = ay(up, up) £ ay, (un, un) — ar(u,w).

Now we turn our attention to the relation between cost functionals I, I;. Let
us assume that I, I have the following properties:
(I35) There exists a constant ¢ > 0 such that

|]h<€h7vh) — I(eh,vh)| < ch ”Uh||27219 Y, € Vi, Ve, € U(?d'

(14,) Let e, — e in Uyg, v, — v in V, where e, € U, e € Uyg, v5 € Vi, v €V,
then

hli%l+ I(en, vn) = I(e,v).

Theorem 2.6. Let I, I, satisfy (13,), (14,). Then for arbitrary sequence {e} },
where €, € U, is a solution to (Py) and uy(e}) solves (Py(e})), one can find a
subsequence {ej, } such that

ep, — € inUs, (85)
up,(ey,) — u(e”) inV, (86)
where {e*,u(e*)} is a solution of (P).

Proof. For arbitrary € € U, there exists a sequence {e,} C U such that
en — € in Uy (see e.g. [5]). From U" C U,y and compactness of Uyg it follows
the existence of {e; }, {€x,} and e € Uuq such that

ezj — " in Uy,

éh]. — € in Uad-
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46 2.3 Convergence analysis

Let us denote by up, (€}, ), un, (€n;) solutions to (P, (e, ) resp. (P, (ep;)). Using
Lemma 2.27 it yields
up,(ey,) — u(e”) inV,

up; (€n;) — u(e) inV,
where u(e*), u(e) solves (P(e*)) resp. (P(€)). The definition of (Pj) implies
In, (€h, uny(5,)) < In,(Eny, un, (n,)) Ven, € Ung. (87)
If we pass to the limit for h; — 07 in (87), use (I3,) and (I4,), we obtain

hlg% In,(en,, un,(€r,)) = hlgﬂ In;(€n,, un,(€y,)) £ (e, un,(€,)) =
= hhHOI I(eh y Uh (eh )) = I(eau(€>)'
We proceed similarly for the right hand side of (87) and we finally obtain
I(e*,u(e”)) < I(e,u(€)) Ve € Ugg.

Therefore e* is an optimal solution of (P).
|

Condition (I4,) is clearly satisfied for the cost functionals (4), (5) and (6) and
its approximations I,; € Qf), i = 1,2,3 defined by (54), (55) and (56).

Lemma 2.28. Let I;,; € Q), i = 1,2,3. Then (54) and (55) satisfy (13,).

Proof. For functional (54) we proceed analogically as in the proof of inequality
(60).

Let us now continue by the cost functional (55). Assume that e, € U", uh(eh)
solves (Pp(en)). In view of uy, € H*(Q) it holds that uj; € W (K;), i = 1,.
Due to the compact embedding of H?*(Q2) into C*(Q), (73) and Cauchnychwarz
inequality, we have

m

2
E wiud(z) —/ uy, do
K;

~

\Ih2(en, up) — Ia(en, up)| < Z

n
<ch Y |u],, . < chZ lnll o, <
i=1 i=1

< Ch||uh||1,2,9 < C2h||uh||2,2,9'

46



47 3. Natural boundary condition u(0) =0

3. Natural boundary condition u(0) = 0

3.1. Existence analysis of (P)
In this section the existence of a solution to the problem (P) with
V=V, ={ve H*Q): v(0) =0}
will be studied. We will proceed using the same approach as in the case of natural
boundary condition «’(0) = 0.
3.1.1. Existence and uniqueness of a solution to (P(e))

Through the subsection we will assume that e € U,y is arbitrary but fixed.
The following boundary conditions are prescribed in this case:

w(0) = u"(0) =" (1) =" (1) = 0. (88)

Conditions (88) define a beam that is free at the right end (x = [) and its left
end (z = 0) can slope but can not move in the vertical direction (see Fig. 4).

si3zsszzis

Figure 4: Outline of the beam with boundary condition u(0) = 0.

Therefore there are allowed rigid motions of the beam for which the foundation
is not active (see Fig. 5) and only the estimate (10) holds. Let us now define a
scalar product on H?(Q):

((u,0))22.0 = (u,v)20 + (U, 0")20. (89)
The decomposition of V to Ry and Ry with regard to (89) then reads
Rv = {ve VNP :a(v,v) +b,(vT,v) =0} = {p€ P :p=az,a<0} (90)
The negative polar cone has the following form:
Ry ={veVa:((v,p)220<0 VpeRy}={veV:(v,z)q=>=0} (91

It is easy to prove that cones (90), (91) are convex and closed. The norm
[|v]]220 = ((v,v))égg induced by the scalar product (89) is equivalent to the
standard norm on the Sobolev space H?((2), see e.g. [27].
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48 3.1 Existence analysis of (P)

7 1

Figure 5: Rigid beam motions belonging to Ry .

Theorem 3.1. (Necessary condition for the existence of a solution to (P(e)).)
Let there exist a solution to (P(e)), then the condition

F(z) = L(x) + Y Fa; — Y _M; >0 (S3)

must be satisfied.

Proof. Let u € V be a solution of (P(e)). Inserting v = p € Ry into (P'(e))
we obtain:

0> b,(u",p) = F(p) = a (L(:v) + ZFJ@ — ZM]> :

Lemma 3.1. Let Ry, Ry be defined by (90),(91). Then
V =Ry @R (92)
Moreover Vv € V 3 {p,v} € Ry x RY such that
v=pBU, (U,p)a20 = a-(0,x)30 = 0. (93)

Proof. For the proof we refer to [3].
[

In view of (90),(91) and (93) we easily deduce that only one of the following
variants can occur:



49 3.1 Existence analysis of (P)

In the proof of coercivity of £ will be necessary to use the following modifi-
cation of the Poincaré inequality.

Lemma 3.2. (Poincaré type inequality) Let V = {v € H*(Q) : v(0) = 0}, then
there exists a positive constant cp dependent only on the interval Q0 such that
2 2
lol350 < cr (I0Bag + (v, 2)3g) VoeV. (94)
Proof. We proceed similarly as in the proof of Lemma 2.4. [

Next we can pass to the proof of coercivity of &,.

Lemma 3.3. Let the condition

F(z) = L(z) + Y Fax; — Y M; > 0 (S4)

be fulfilled. Then the functional &, is coercive on V.

Proof. Let (S4) be fulfilled. Firstly, in the case of variant (A3), we have a = 0,
v =0 and (0,x)20 = 0. The following inequality is a consequence of properties
of vT:

0 < (3,2)30 < (T%,2)30 < P |o7]5,. (95)

Then we can rewrite &, with use of (93), (94) and (95), as follows:
2E.(v) = 2£.(0) = ay(D,0) + bg(v",0%) — 2F(v) >
_ 2 ~
> ot |U|§,2,Q + @ ||"U+H27Q — 2F(v) >

_ 2q0 _
> oty |U|§,2,Q + 1_2(7)7@39 — 2F(v) 2

2 ||0lly 00 (e [0ll00 = 2[1fll20);

where ¢; := (1/cp) min{Bot3, 2q0/1%}.
Secondly in the case of variant (A4), it holds that (v,2)2q = 0 and a < 0.
Using (94) we have

2E.(v) = 2E.(p+ ) = a(,0) + by(vt,v") — 2F(p) — 2F(v) >
> Bot [0l300 + 00 ||(p+0)F |5 + 2lalF(2) — 2F () >
> Botg [0]5.5.0 + 2la|F(x) — 2F(v) >
> Botf 0300 + (9,2)30 + 2la|F(z) — 2F(v) >
> e ||0)500 + 20alF(z) = 2[|flly0 10ls20

where ¢y := (1/cp) min{fyt3, 1}. The orthogonality of the decomposition (92)
ensures that HvHéQQ = H@H;ZQ + HaxHéQQ Thus if [[vly5q — 00, then at
least one part of the function v = ¥ + ax converge to infinity in appropriate

norm. Finally we make use of (S4) which ensures the coercivity.
[
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50 3.1 Existence analysis of (P)

According to Lemma 2.2 we know that &, is convex and Gateaux differentiable
on V. The coercivity of & on V enable us to introduce the following existence
theorem.

Theorem 3.2. (Necessary and sufficient condition for the existence and unique-
ness of a solution to (P(e)).) The state problem (P(e)) has a unique solution
if and only if (S4) is fulfilled. Such a solution uw € V' can be characterized as
follows:

(M) >0, (M2)

where p(M,) is the one—dimensional Lebesque measure of the set M, = {x € Q :

u(x) > 0}.

Proof. Necessity. This part of the proof will be done by contradiction. Assume
that u € V is a unique solution to (P(e)) and (S4) does not hold. Then according
to Theorem 3.1 we have F(z) = 0. By settingv = p € Ry in (P(e)) we obtain:

ar(u,p) + by(u*,azx) = F(azx) = aF(z) Vax € Ry, ax # 0, (96)
by(ut,ax) =0 Var € Ry, p # 0. (97)

From (97) one can deduce that u + p is another solution of (P(e)) what is in
contradiction with the uniqueness of u (see the proof of Theorem 2.2). Thus (S4)
must be satisfied.
Sufficiency. Let (S4) hold. In view of Lemma 2.2 and Lemma 3.3 we know that
E. is Gateaux differentiable, convex and coercive on V. It implies that there
exists at least one function u € V solving (P(e)), see e.g. [12].
Further let u € V, u < 0 a.e. in Q solves (P(e)). Settingv =p € Ry, p#0
in (P'(e)) leads to
0 = b,(u",ax) = a F(z). (98)

But (98) is in contradiction with (S4). Thus M, must have a positive Lebesgue
measure.

It remains to prove the uniqueness. It can be proved exactly in the same way
as in the proof of Theorem 2.2. [ |

3.1.2. Existence of solutions to (P)
Let us consider that § € L>*(Q2), 0 < fy < f(x) a.e. v Q and F € S5, where
Ss={FeV*: F(z) > > 0}.

We know that for any e € U, there exists a unique solution to (P(e)) with the
property (M2). Then we denote the set of all such solutions by W:

W= {{u,t,q} € V x UL, x UL, : w=u(e) solves (P(e)), e = {t,q}}.
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51 3.1 Existence analysis of (P)

Lemma 3.4. There exists a positive constant ¢y = ¢1(0) such that
1 ||u||§2Q < ap(u,u) + by(u't, u) V{u,t,q} € W. (99)
The constant ¢y does not depend on {u,t,q} € W.

Proof. Let us suppose that (99) does not hold. Then one can find a sequence
{tn, tn, @} C W such that

1
n Huan,z,Q > ag, (Un, un) + b%(“j{a“ﬂ) >0 Vn=l (100)

Dividing (100) by ||un||§2Q and passing to the limit for n — oo lead to

lim at, (W, w,) =0 and lim b, (W, w,) =0,
where wy, 1= up/ [[unlly, . Clearly [[wylly,o = 1. Hence there exists a subse-
quence of {w,} (denoted by the same sequence) and an element w € V' such that
w, — win V. In a similar manner as in the proof of Lemma 2.9 we can show
that [wl3,0 =0, w =p = ar € P,a <0 and w, — w in V. It implies that
w, = az in .
From F' € Ss it follows that

l

/u: de > o0/qil (101)
0

which implies that there exists € = £(0) > 0 such that u(M,,) > e, Vn > 1.
Then there exists a sequence {z,},z, € (¢,!] such that w,(z,) > 0,Vn > 1.

Without loss of generality we will suppose that z,, — z in R!, then z € e, (]
and wy(x,) — p(z) = 0. Therefore we obviously have a = 0. But it leads to a
contradiction with 1 = |lw, ||y, and w, — win V.

We proceed by the continuous dependence of the solution to (P(e)) on the
design variable e.

Lemma 3.5. (Continuous dependence.) Let e, € € Uyg, €, — € in Uyy. Further
let u, = u(e,) € V be a solution to (P(e,)) and let (S4) be fulfilled. Then there
exists w € V' such that

U, —u inV

and moreover u := u(e) is a solution to (P(e)).

Proof. Using Lemma 3.4 and the Cauchy—Schwarz inequality we can easily prove
the boundedness of u,, in V. Therefore one can find a subsequence (denoted by
the same sequence) such that w, — w in V. In the same way as in the proof of
Lemma 2.10 we can show that u solves (P(e)) and u,, — u in V.

|
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52 3.1 Existence analysis of (P)

Lemma 3.6. There exists a constant ¢ = c3(6) > 0 such that Y{u;, t;,q;} €
W,i=1,2 it holds

O [Jur — ualls 5 g < @y, (ur — uz, uy — ua) + by, (uf — ugd, ug — uy). (102)
The constant ¢y does not depend on {u;,t;,q;} € Wi =1,2.

Proof. Assume that (102) does not hold. Then one can find sequences
{ul,na tl,n7 ql,n}a {uQ,na t2,n7 q2,n} C W SUCh that
1

~Jlun — Usnllyng > @t (U1n — Uz, Usp — Unn)

+ (103)
+ bq1,n (ui":n - u;na ul,n - uQ,n) 2 0 Vn 2 1

Due to Lemma 3.5 and condition (S4), sequences {u;,}, {u2,} are bounded in
H?(Q2). Then one can find their subsequences (denoted by the same sequences)
and functions 4y, iy such that w;,, — 4; in H*(Q),7 = 1,2. In fact it holds
Uin =2 U; in ¢ =1,2. By setting v =2 in (P(e;)),% = 1,2 and passing to the
limit for n — oo we have

! ! !
qll/ if dz =ql lim [ u, de> lim [ ¢,ul,zdz=F(x)>0.
0 n—oo Jq ’ n—oo Jq ’
Hence, we can find sets My, My with a positive one-dimensional Lebesgue mea-
sure, such that u;,, > 0,4; > 0in M;, i = 1,2.

Dividing (103) by |[u1n — tgnl5,, and taking into account properties of
at, 5 by, yield ;

q1,n

gy, (W1 =W, Wiy —Way,) — 0 and by, (wfn—w;n, Wy —Way,) — 0, (104)
where w; , == Uin/ || U1 — Uzp|lg s, ¢ = 1,2. Clearly {wy, —ws,} is bounded in
H?*(Q) and ||wy, — waplly 4 = 1. Hence there exist subsequences of {w;,}, i =
1,2 (denoted by the same sequences) and an element w € V such that w;, —

Wy, — w in V. Similarly as in Lemma 2.11 we can show that \w\%z’ﬂ =0, w=
p=azx € Py and (104) then takes the following form:

Wiy — Wa, — az in H*(Q) and  wi, —wj, — 0 in L*(Q). (105)

1,n n

Firstly consider:
e >0 [Jur, —uonllyng =c  Vn. (106)

Therefore {wy ,,}, {wa,,} are bounded in H?(Q2) and there exist their subsequences
(denoted by the same sequences) converging weakly to 11, Wy in H?(2). Hence
(105) leads to

W — Wy =azx and W] — (W] —azr)=0 ae. in Q. (107)
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53 3.2 Approximation of (P)

As 4y > 0 in My, also w; > 0 in M;. From there and (107) we have a = 0 a.e. in
) being in contradiction with [lwy, —wa,,,q = 1 and (105).
If (106) is not satisfied, then similarly as in the Lemma 2.11 we can prove
that a = 0, what is in contradiction with [[w1, — waull,, o =1 and (105).
|

Next we prove the Lipschitz continuity of the mapping u : e — u(e), where

u(e) solves (P(e)).

Lemma 3.7. Let (S4) be satisfied. Then the mapping u : e — u(e), where u(e)
solves (P(e)), is Lipschitz continuous in Uug, i.e. there exists a constant Ky > 0
such that Ve, = {t1, q1}, e2 = {t2, @2} € Uua:

luer) = u(en) 0 < K (Il = tallo@ + o — @l) -

Proof. We proceed exactly in the same way as in the proof of Lemma 2.12. We
make use of Lemma 3.6.
|

Theorem 3.3. Let the cost functional I satisfy (I1), then there exists at least
one solution of (P).

Proof. The assertion follows from Lemma 2.8 and Lemma 3.5.
|

Lemma 3.8. Let I satisfy (12). Then J(e) = I(e,u(e)), with u(e) being a
solution of (P(e)), is Lipschitz continuous in U,q, i.e. there exists a constant
K5 > 0 such that:

[J(e1) — J(e2)| < Ko <||751 —tolloy + o — CI2||2,Q> Ver, s € Uad-

Proof. The assertion directly follows from (I2) and Lemma 3.7.

3.2. Approximation of (P)
3.2.1. Approximation of (P(e))

Let us consider the partition of €2 defined by (49). The set U,y will be ap-
proximated similarly as in the previous section. The following finite dimensional
approximation of V' will be used:

Vi ={v, € CHQ) : vp|k, € P3(K;), Vi=1,....n, v,(0) =0} C V.
Using the classical Ritz method we approximate (P(e)) as follows:
Find u;, € V}, : geh (uh) < geh (’Uh) Y, € Vi, (Ph(eh))
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54 3.2 Approximation of (P)

where &, (vn) = (ay, (vn, v) + by, (v, v;7)) — F(vp,). The terms by, and F will

be approximated by applying the quadrature formula (176), see (52), (53). The
approximated state problem then reads as follows:

Find up, € Vi, + € (wn) < E! (vn) Yoy € Vi, (Pr(en))

where ! (vy) = 3(ar, (vn, va) + 0 (v, v)7)) — F"(v,). The equivalent weak for-

mulation of the problem (P (ep,)) has the following form:
Find up € Vh : ath(uh, ’Uh) + bgh(u;, ’Uh) = Fh(vh) Vvh € Vh. (P;L(eh))
3.2.2. Approximation of the cost functional and the optimization prob-
lem

Let I, : U x V}, — R! be the approximation of I. The approximation of the
whole optimization problem then reads as follows:

Find e € UM« Ju(el) < Julen) Ve, € UL, (Pn)

denoting Jy(en) = In(en, up(er)) with uy(ep,) being a solution to (Py(ep)).

3.2.3. Existence and uniqueness of a solution to (Py(ey))

Firstly recall that in this subsection e, € U}, is arbitrary but fixed and b}, €
0 Fh e QY. We will make the decomposition of V}, into the convex cone of rigid

displacements and its negative polar cone. After that we will prove the coercivity
of ! on Vj,.

Ry, = {vn € VN Py @ ay, (vp, v) + bgh(vff,vh) =0} = {ax € P, : a < 0}.
From there by using (63) we define the negative polar cone R‘e/h as follows:

Ry, = {vn € Vi : (v, )20 <0 Yp € Ry, } =

= {Uh & Vh : Z ijvh(zjyi) Zji 2 O}

i=1 j=1

Lemma 3.9. (Necessary condition for the existence of a solution to (Py(en)).)
Let there exist a solution of (Pr(en)), then the condition

F'(z) > 0 (S3n)
must be fulfilled.

Proof. If we insert v, = p € Ry, into (P, (es)), we directly obtain the assertion
of the lemma.
[
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55 3.2 Approximation of (P)

The space V}, can be uniquely decomposed into the orthogonal sum Ry, @R‘e/h.
Moreover Vv, € V,, 3! {p, v} € Ry, X R‘e/h such that

vh = p® 0, (0,0)20 = @Y Y wibh(z4)2: = 0. (108)

i=1 j=1

It is clear that only one of the following alternatives can occur:

a =0 and Zzwj@h(zj’i)zj’i 2 0, (A3h>
i=1 j=1

a <0 and ZZ%%(%:‘)Z]‘J = 0. (A4y)
i=1 j=1

Lemma 3.10. (Poincaré type inequality) Let V = {v € H?*(Q2) : v(0) = 0}, then
there exists a positive constant cp dependent only on the interval €2 such that

n m 2
]300 < cp <|U|3,2,Q + (Zijv(zjji)sz ) Vo eV, (109)

i=1 j=1
where wj > 0 are wages and z;; € Qp nodes of the quadrature formula (176).

Proof. The assertion can be proved exactly in the same way as Lemma 2.20.

Lemma 3.11. Let the condition
Fh(.l’> > 0 (S4h)
be satisfied. Then the functional th 15 coercive on Vj,.

Proof. Let us suppose that (S4;) is fulfilled. If the alternative (A3,) occurs,

then a =0, v, = vy and ) > w;0n(25,)2;; = 0. For arbitrary function vy, € R‘@h
i=1j=1

it holds the following inequality:

n 2

l3 Z ij (@}T(Zjﬂ'))z = (Z Zle_);(Zj,i)Zj,i> =

i=1 j=1 i=1 j=1

2 (Zijvh(zj,i)zj,J s (110)

i=1 j=1
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56 3.2 Approximation of (P)

where we make use of bZh € QY and the discrete Cauchy-Schwarz inequality
(see Theorem 8.2). Using F" € Q) (109) and (110) the functional £ can be
rewritten as follows:

25£h(vh) = 256 (On) = ay, (O, Up) + b (Uh,vh) 2F" () >

2
_ q _ _
> Botf [0nl50.0 + l_g <§ D :wjvh(zj,i)zj,i) — 2F"(tn) >

i=1 j=1

2 ||17h||27279 (c1 ||77h||2,2,§2 — 2¢y),

where ¢; := (1/cp) min{Gyt3, qo/l3} and ¢y is the constant from Lemma 2.16.
In the case (A2j,), we have Z Z w;On(2:)2; = 0 and a < 0. Then we
i=17=1
obtain:

28" (vp) =282 (p+0p) = ag, (On, 0n) + B (v, o) — 2F"(p) — 2F" () >

_ “ 2 _
> Bott [0nl300 + a0 Y D ws (v (22))" + 2lalF*(x) — 2F"(w) >

i=1 j=1

n m 2
> Bot [0nl3.50 + (Zzwj@h(zj,i)zj,i> + 2lalF*(z) — 2F"(vy) =

i=1 j=1

> c1[onllz00 + 2lalF"(2) = 2¢2 [allyp0,

denoting ¢; := (1/cp) min{fByt3, 1}. Taking into account the orthogonality of
(108) we have [[onlly 5 = [l 06 + [Pl125.0- Thus [[onllyq — +oo implies that
at least one part of the function v, = v, + ax converges to 400 in appropriate

norm. Making use of the assumption (S4,) the assertion is proved.
[

Theorem 3.4. (Necessary and sufficient condition for the existence and unique-
ness of a solution to (Py(en)).) There exists a unique solution of (Pn(ep)) if and
only if (S4y,) is fulfilled. In addition for such a solution uy € V}, it holds

Muh = {Zjﬂ' € Qh : uh(zj,i) > 0} 7é 0. (M2h>

Proof. Necessity. Let uj, € Vj, be a unique solution of (Py(es)) and let (S4,) be
not satisfied. Due to Lemma 3.9 we have F"(x) = 0. Inserting v, = ax € Ry,
into (P} (ep)) reads

be (uf, x) =0. (111)

Thus uj (z;:) = 0, up(zj;) < 0Vz;; € Qn. Then Vp € Ry,, ax # 0 it holds that
up(2;:) +axr < 0Vz;; € Qp. From there bh ((uh+ax)+,vh) =0Vp e Ry, ax #0
and Yvy, € Vj,. Thus uy, +az is a solutlon to (Pr(en)) being in contradiction with
the uniqueness of u;,. Therefore the condition (S4;) must be fulfilled.
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57 3.2 Approximation of (P)

Sufficiency. Let the condition (S4;) hold. From Lemma 2.18 and Lemma 3.11
it follows that &' is Gateaux differentiable, convex and coercive on Vj, thus the
existence of a solution u;, € V}, is ensured, see e.g. [12].

Further we prove that the solution can be characterized by (M2,). Let uy, €
Vi, up(z:) < 0 Vzj,; € Qp be a solution of (Py(ep)). By inserting v, = p €
Rv,, p # 0 into (P, (e;)) we obtain

0= b (uf,z) = F"(x). (112)

But (112) is in contradiction with (S4;), therefore uy, satisfies (M2;,).
Let us assume that there exist solutions w1, up2 € Vi, of (Pr(ep)). Subtract-
ing corresponding weak formulations and setting v = w1 — up, 2 yield

Qy,, (uh71 — Up2,Un1 — U,h,g) + bfllh (U?L_,l — u;[a, Up1 — Uh,g) = 0. (113)

In view of definitions of a,, bgh it holds

Up1 — Upe = ax € P and uzl(zﬂ) — (upa(z:) —az)™ = 0 Vz;,; € Qu.

making use of (M2;,) we obtain a = 0 and up 1 = up 2 in Q. [ |

3.2.4. Existence of solutions to (P;)

Similarly as in the previous case we will show that uy(e,) depends continuously
on ey, and that (P,) has at least one solution.
Let 3 € L*(Q), 0 < By < B(x) a.e. in Q and F" € Sj 5, where

Sps={F" eV F"(z)>§ > 0}.

We know that for any e, € U”, there exists a unique solution to (Py(ep)) with
the property (M2;,). We will denote the set (for fixed h > 0) of all such solutions
again by Wj:

Wi = {{un, tn, qn} € Vi X Uédﬁ X U(Zd,h . up, = up(ep) solves (Pr(en))}

In order to use the next lemma in the convergence analysis we will consider whole
class of problems (Py(en)), 0 < h < hg. Therefore we assume F" € S}, 5 for each
0 < h < hyg.

Lemma 3.12. There ezists a positive constant c¢; := ¢1(0) such that

o funllnn < au, (un,un) + 0k (ufun)  V{untnogd € () Wao  (114)
0<h<hg

The constant ¢y does not depend on {up,tp,qn} € | Wi.
0<h<hg
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58 3.2 Approximation of (P)

Proof. Let us suppose that (114) does not hold. Then one can find a sequence
{un, th,,qn, } € U W such that
0<h<hg
1 2
E ||uth2,2,Q > Ay, (uhk7uhk> + bg:k (uZyuhk) >0 Vk=1 (115>
Dividing the inequality (115) by ||uhk||§2Q and passing to the limit for & — oo
lead to

lc11—>r£lo athk (whk7 whk) =0 and k:h—{{.lo bfll:k <w;:_k’ whk) =0,
where we denote wy, = up,/ ||Uhk||229' Clearly ||whk|l22ﬂ = 1 and {wp,} is

bounded. Hence there exists a subsequence of {wy, } (denoted by the same se-
quence) and an element wy, € V', h > 0 such that w;,, — wy, in V. Without loss
of generality we may suppose that hy — h for £ — oco. In a similar manner as
in the proof of Lemma 2.9 we can show that |wp|3,0 = 0, wy = p = az € P,
and wy, — p in Q. Due to embedding theorems (see e.g. [27]) it holds that
wp,, = ax in Q. We know that

b+ .+ _ 1 Bl (0t oyt : h
0 < b (P, p7) = Jim by (w, wy,) < lim byl

(wy ,wy ) =0 (116)

which implies a < 0. We shall show now that we can find a point zp > 0 such that
p(zp) = azp > 0. From F™ € S}, s it follows that there exist ¢ = £(d) > 0 such

that for each up, € |J W, it exists at least one 2% € Qy,,, 2¥ € (¢,1] satisfying
0<h<ho

up, (2%) > 0 and wy, (2%) > 0. Without loss of generality we may suppose that

2¢ — zp for k — oco. Then whk(zk) — azp > 0. Therefore we obviously have

a = 0 being in contradiction with 1 = |jws, ||, 5 o and wy, — az in Q.

We proceed by the continuous dependence of the solution uy(ey) on the ap-
proximated design variable ey,.

Lemma 3.13. (Continuous dependence.) Let ep,, en € UM en, — ep in Ung.
Further let up,,, == up(enn) € Vi, be a solution to (Ph(enn)) and let the condition
(S41,) be fulfilled. Then there exists a function uy, € V}, such that

Uppn — Up inV
and moreover uy, = uy(ep) is a solution to (Py(ep)).

Proof. Using Lemma 3.12 we can easily prove the boundedness of {u,} in V.
Therefore one can find a subsequence (denoted by the same sequence) such that
Up, — up in V3. In the same way as in the proof of Lemma 2.23 we show that
uyp, solves (Pp(ep)) and that up, — up in V.

|
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59 3.2 Approximation of (P)

Lemma 3.14. There exists a constant ca == c2(d) > 0 such that V{un;, thi, qni} €
Wh,1=1,2 it holds

¢ [Juny — Uh,2||§,2’9 < ag, , (Uny — Un, Uny — Up2) + (117)
+ bgh,1<ui1 - UZ? Up,1 — uh,2)-

The constant ¢y does not depend on {up;, thi,qni} € Wh,i = 1,2.

Proof. Assume that (117) does not hold. Then one can find sequences
{un 10 thins @nints {tn2n: th2n: gh2n} C Wi such that
1

- | tn,1m — uh,?,nH;ZQ > ag, ;o (Unam — Un2m, Untn — Un2m) 118)

+ (
h + +
+ th 1,n (uh,l,n - uh,27n7 uh)lvn - uh727n) 2 0 vn 2 ]"

Due to Lemma 3.13, sequences {up1,}, {tn2,} are bounded in H%*(Q). Then
one can find its subsequences (denoted by the same sequences) and functions
@ip1, Gpo such that up;, — Gy, in H*(Q), i = 1,2. In fact it holds up;, = U,
in Q,7 = 1,2. By setting v, = = in (Pr(en1,)) and passing to the limit for
n — oo we have

% SITHERENITS 5 SRERE

i=1 j=1 i=1 j=1
n m
- + _ ph
> lm Y guin Yy w202 = F'(@) > 0.
1= j=

A similar estimate holds also for {uj2,}. Hence, we can find points z;, 2o € @y,
such that up1,(21) > 0,0p1(21) > 0 resp. upa,(22) > 0, Up2(22) > 0 for n large
enough.

Let us now divide (118) by [[us 1., — Un2nllz 4, and use the following notation
Whin = Unin/ |[Un1n — u27n|]27279, i =1,2. 7According to Lemma 2.24 there
exists wy, € Vj, such that wp1, — Whon — wy in Vy and [wyf3,6 = 0, wy = p =
ar € P,. Thus

Wh1n — Whan — av in H*(Q) and w;{’m(zj’i) — w,’;Q’n(zj,i) — 0 Vzj,; € Q.

Following the approach presented in Lemma 2.24 we again have that a = 0 what is
in contradiction with 1 = [|wp1,n — Wh 290 and Wy 1 —Wh o, — az in H*(Q).

Making use of the Lemma 3.14 we can prove the Lipschitz continuity of the
mapping e, — up(ep), where uy(ep,) solves (Pp(ep)), ie. there exists Ky > 0
such that Ven1 = {th1,qn1},en2 = {tna, qna} € UL, it holds

lntens) = un(ena)llyng < Ki (s = tusllo) + o = auallyg) - (119)
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60 3.3 Convergence analysis

Theorem 3.5. (Existence of solutions to (P)) Let I, satisfy (113), then (Py)
has at least one solution for every h > 0.

Proof. The assertion follows from (I1;,), Lemma 2.15 and Lemma 3.13. |

Lemma 3.15. Let I, satisfy (12,). Then the functional Jy(ep) = In(en, up(en)),
with uy(ep) being a solution to (Py(er)), is Lipschitz continuous in UM, i.e. there
exists Ky > 0 such that Vey, 1, epo € Ul

nlens) = Julenz)l < Kz (1t = trallog + lans — anallyg) -

Proof. The assertion directly follows from (12;,) and (119).

3.3. Convergence analysis

Lemma 3.16. Let uy := up(en) € Vi, be a solution to (Pr(ep)) and let (S4y) be
satisfied for every 0 < h < hy. Then there exists a function u € V' such that

up — u inV
and in addition uw = u(e) is a solution to (P(e)).

Proof. The boundedness of {u;} can be proved by using (S4;), Lemma 3.12 and
(58). Thus one can find a subsequence of {uy} (denoted by the same sequence)
and a function v € V such that

up, = u inVash— 0% (120)

In the same manner as in the proof of Lemma 2.27 we show that u solves (P(e))
and u;, — u. [ |

Theorem 3.6. Let I, 1), satisfy (13,), (14,). Then for arbitrary sequence {e} },
where e, € UM, is an optimal solution to (Pr,) and uy(e}) is a solution of (Pr(e})),
one can find a subsequence {e}, } such that

ep, — € inUs, (121)

up, (ep,) — u(e’) in'V, (122)
where €* is an optimal solution of (P) with u(e*) being a solution to (P(e*)).

Proof. See the proof of Theorem 2.6.
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61 4. Numerical realization

4. Numerical realization

In the first part of this section we will show one of the possible approaches
for solving of problem (Pj,), where the solution of the state problem (Py(ep,)) is
based on transformation of a system of nonlinear algebraic equations into a mixed
linear complementarity problem, see [36]. The second part of the section will be
devoted to design sensitivity analysis that in general deals with differentiability
in shape design optimization problems, see e.g. [10], [L7] or [15].

4.1. Algebraic formulation of (P})

Let us start with design variables. From (50), (51) it follows that ¢, and ¢ can
be uniquely determined by n + 1 and n — dimensional vectors, respectively. The

thickness will be represented by nodal values of t, i.e. t; = tp(z;),i=1,..., n+
1. Vector representing the stiffness consists of values of ¢, on subintervals K, i.e.
¢ = qulr;» t = 1,...,n. Then the algebraic form of U", is

U =uj x Uy, (123)
where

n

h
Uy, = {t eR™ ¢y < t; < 1y, Z§(tz + tiv1) = M, |tisn — 6] < h’Yz},

=1

Ul = {qeR”“: Qo < ¢ < Q1athi = 737}-
=1

Pair {t, q} will be denoted by e. Notice that for the numerical realization we have

n
added the constraint Y hg; = 73 into U;. It has no influence on the existence
and convergence anal}zfsils, but it is important for the practical computations. It
prevents the stiffness from jumping to the upper bound ¢;.

Now we can pass to the algebraic form of (Pj(es)) and its transformation
into a mixed linear complementarity problem. Unfortunately the standard finite
element method (see [7], [18], [55], [56] or [19]) does not work with functions
u) and therefore the current form of (Py(ep,)) is not suitable for the numerical
realization. But we can modify the problem by using

an(z) uf (x) = gu(x) up(x) Vo € Q,
where

_ n(x) up(x 0,
(o) = { ) e =

61



62 4.1 Algebraic formulation of (Pj)

The bilinear form bgh can be then rewritten as follows:

n m

O, (s vn) = D > widn(Z6)un(z)0n(254)-

i=1 j=1

Now we can use the standard finite element method. But notice that the function
qn(x) is here replaced by a piecewise constant unknown function g,(x). Since
V}, is finite dimensional we can define its finite Hermite basis {@2;_1, @2}, i =
1,...,n+1,seeeg. [7], [30] or [57].

0 < Ti-1,

(e —)e = 5= /2) o € ]

&
Pai1(x) = (124)
Z(r—z)* (@ — i+ h/2)  x € [y, 244],
0 T > Tit1,
0 T < Ti-1,
(x— 2 1) (x — x) T € [Tio1, T4
2 i—1 i i—1y Ly
i) = 4 ) ) (125)
22 (T — zip1)* (2 — i) @ € [, wipa],
0 T > Tiqq-

Each function u;, € Vj, can be written as a linear combination of basis functions
in the form u; = Z?;rll U; P2i—1 + U, po;. Using the well known Galerkin method
we obtain the following system of nonlinear algebraic equations for unknown
coefficients w;, u;:

Ku+ P'Q(u)Pu=F, (126)

where u = {uq, uf, ..., Uny1, Uy }, K € RYN i the stiffness matrix of the beam,
P € RM*N s a matrix that transforms the function values and the values of the
first derivatives in the nodal points x;, onto nodes z;; € Qp, j = 1,...,m, i =
1,...,n and Q(u) € RM*M is a diagonal matrix containing products of the
weights of the numerical quadrature and the stiffness coefficients of the subsoil.
We denote N = 2n+2, M = nm. F € R¥ is a vector corresponding to the
load of the beam.

In order to simplify the notation we will denote the nodes z;; € @)}, by z; and
corresponding wages by wg, k =1,..., M, then

K(i, j) = /mhwz ‘v dx, i,j=1,...,N,
P(k,i) = vi(zk), i=1,...,N, k=1,..., M,
Q(u)(k, k) = wrqn(zr), k=1,...,M.

62



63 4.1 Algebraic formulation of (Pj)

Let the polynomial —1 € Ry, (for the first case of boundary conditions) be
represented by vector p; € RY, then p; represents all polynomials belonging to
Ry,. In addition it holds that Kp; = 0. This vector creates the kernel of K.
Similarly —x € Ry, (for the second case of boundary conditions) is represented
by vector p, € RV, It represents all polynomials belonging to Ry; and moreover
Kp, = 0. From the construction of matrices K and Q is clear that mappings
e — K(e) and e — Q(e) are continuous.

The necessary and sufficient condition for the existence and uniqueness of a
solution to (126) has the following algebraic form:

piF <0, plF <O

Every solution then can be characterized by M, = {i € Z : (Pu); > 0} # 0,
where

T={1,...,M}

Now we know that Ve € U" there exists a solution of the nonlinear system (126)
and that the mapping e — u(e) is Lipschitz continuous.

In practical computations there are usually used shape functions N;(§), i =
1,...,4 (see e.g. [30]). Using the transformation (178) we obtain shape functions
on the reference interval (0, 1) in the following form:

M) = 10 -2 +9)

h
M) = 21— 921+ 0
MO = T +€22 -0
h
N(©) = —P €20 ).
Matrices K, K(u) = PTQ(u)P can be assembled from element matrices K% €
R4>4, K?)(u) € R¥™ §=1,...,n as it is usual in the finite element method.
(%) 86 11 1"
KY(k, 1) = th (&) N (E) N (€) d,
5
K9 (u ﬁi D@ M) N(E),  FOU —@i@f o
2 = s Ne(Z) N 24

where w;, Z; correspond to the reference quadrature formula (176) and f is a
transformation of f onto [—1, 1]. The system (126) assembled in the way de-
scribed above is nonlinear and due to the form of g, (z) the dependence of Q on
u is not continuously differentiable. In such a case we can not solve the problem
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64 4.1 Algebraic formulation of (Pj)

by standard methods like Newton’s method or Quasi-Newton methods (see e.g.
4], 1], [13).

In what follows we will introduce the approach based on transformation of
(126) onto a mixed linear complementarity problem. This approach was firstly
published in [36]. We know that the influence of the foundation for an element
is represented in the model by coefficients that are given as follows:

5 [ s@M© N th ) oy N (35) Ni(55).

-1

Without loss of generality we will consider only the first element K7 = [0, h], then
the —th row of the stiffness matrix Kgcl)(u) affects the global system as follows:

5 [@ONEOME© deu + 5 [ @O M Na(e) a6 ug +

+3 / WONEON(E) A wa + 5 [ MONOM© Ay ~ (127
h m
5; (25) un(Z)).

Now it is necessary to decompose function values uy(Z;) to their positive and
negative parts. For each j = 1,...,m we define

uh(éj) = ’Uj — U)j, (128)

where v;, w; are u) (2;) and u,, (2;), respectively. Substituting (128) into (127)
we obtain

m

Z (%) un(2;) = gZQh(%)@j/\fi(%)%- (129)

j=1

MI?

From (129) it is clear that we are now able to compute all the unknowns explic-
itly. To connect both parts of the decomposed system we have to add following
equations describing the relation between original values w;,(Z;) and new variables
v; and wj:

un(24) — v; +w; = Ni(Z5) ur + Na(%5) uy + N3(25) ug + Na(Z5) uy —v; +w; = 0.

If we use a reference quadrature formula with integration points —1 and 1 then it
is not necessary to add any more equations. In the previous chapter we considered
a general quadrature formula. An efficient choice satisfying property bh e Q)
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65 4.1 Algebraic formulation of (Pj)

seems to be the 4-point Gauss—Lobatto formula with integration points 41, i\/%;)

and wages %, %, which is exact for polynomials of degree 5 at most, see [20], [!]

or [36]. The influence of the unilateral subsoil for the first element is then given
by element matrices S a DM,

h
S(l)(j72> = §Qh<7:'j) d)j./\/;<éj), 7 = 1’ . 747 ] = 1, S, m.
. h ... ,
DO)(];]) = §Qh<2j) wj, J=1,...,m.

Matrices S € RM*N and D € RMXM can be obtained again by assembling of
element matrices as it is usual for matrix K. The nonlinear system (126) then
transforms into the following problem of mixed linear complementarity:

T T u
(1; _SD‘]))) v | = (0F> (mLCP(e))
w
viw =0, v,w > 0,
where v = (vy,...,0), W = (wy,...,wy,). In fact we replaced the problematic
part PT7Q(u)Pu of (126) by the linear product S”v and we added some equations
describing the relation between the old variable u and new vectors v, w.

At the end of this subsection we will focus on the algebraic expression of the
cost functional. In the previous sections we considered cost functionals approx-
imated by a general formula for numerical integration satisfying I,,; € QY i =
1,2, 3. Now we will approximate them using the trapezoidal formula for numerical
integration, which satisfies all the requirements. Then

n+1
h

Jni(e) = Ina(e, ule)) = Z 5 (wicy f(zio1) + w; f(2:)) = u' B,

i=1
n+1 h
Jno(e) = Ina(e, ule)) = Z 3 (u? | + u?) = u'Bu,

Tna(e) = Insle, ule) =) 5 (Ea(ui(wi))” + 8(uh(2)) = uw'@'E'E®u,

i=1
where u(e) is a solution to (mLCP(e)) and

B = hdiag(1/2,0,1,0,1,0,..., 1,0, 1/2, 0) € REn+2x(n+2),
f = (f(wo), 0, f(a1), 0, ..., flan), 0) € R,

1 1
E = hdlag (§t0, tl, t2, cey tn—l, §tn) c R(n+1)><(n+1).
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66 4.2 Design sensitivity analysis

The matrix ® € R+1x27+2) i defined as follows:
(ﬁi,j IQO;/(l'l) i:O,...,n,j: 1,,2n—|—2

The discrete optimization problem then turns to the following nonlinear program-
ming problem:

Find e cU": Jy(e") < Jule) VecU™ (Pp)

4.2. Design sensitivity analysis

In this subsection we shall make the design sensitivity analysis which in gen-
eral deals with differentiability in shape design optimization problems.

Every cost function evaluation requires solution of (mLCP(e)), which is costly.
Therefore we would like to use as few evaluations of J;, as possible during the
optimization process. Thus zero order methods (see e.g. [I1], [1]) are not suit-
able as they usually use many function evaluations in each iteration to find a
direction of decrease. We shall prepare the problem for application of a gradient
(subgradient) optimization method. These methods usually proceed fast and do
not require so many function evaluations.

We know that the mapping e — u(e) is Lipschitz continuous. Due to the
fact that v = (Pu)™ and w = (Pu)~, the mappings e — v(e), e — w(e)
are Lipschitz continuous as well.

From there by the Rademacher theorem (see e.g. [31]) it follows that these
mappings are differentiable almost everywhere in 4”. Next we prove that u,v
and w are in fact directionally differentiable.

Theorem 4.1. A solution {u(e), v(e), w(e)} of the state problem (mLCP(e))
is directionally differentiable at any point e € U™ and in any direction d € RY.
Moreover the directional derivatives u'(e) := u'(e;d), v/(e) := v/(e;d), w'(e) :=
w'(e;d) can be computed from the following problem:

(K ST 0T> “,8 = (‘_5({;) (%),?é;e) _]g/T(e>) U(e;

vi(e)wi(e) = 0, vi(e) > 0, wi(e) > 0, i € Iy(e),

2

wie) =0,ieZ,(e), viie) =0,ieZ (e),

2

where the index sets T, (e), Z_(e) and Zy(e) are defined as follows:

Z.(e)={iel: vi(e) > 0},
Z (e)={iel: vie) =0, wi(e) > 0},
I()(e) = {l el Vi<e> = 0, Wz(e) = 0}
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67 4.2 Design sensitivity analysis

Proof. Let us denote by {u(e+ed), v(e+ed), w(e+ed)} asolution of (mLCP(e+
ed)), where e € U", d € RY and ¢ > 0. Next we define difference quotients

u(e+ed) —u(e) vie+ed)—v(e) w(e+ed)— W(e).

) I

€ € €

Due to the Lipschitz continuity of u, v, w, these quotients are bounded for € > 0
and one can find a sequence {€,},, €, — 07 and vectors u, v, w such that
u(e +¢,d) —u(e) . vie+e,d) —v(e) . w(e+e,d) —w(e)
H

u, — v, — W,
€n €n €n

where 1 = u({e,}), v = v({e,}), w = w({e,}). We know that the mappings
e — K(e), e — S(e) and e — D(e) are continuously differentiable, therefore
the operation ”-” coincide with the classical derivative for these mappings. Now
we apply the operation ”-” to the state problem (mLCP(e)):

N M N M

. . . / _ ! L / .
E Ku u; + E :Sj,iVj =F; E Ki,j u; E Sj,iVJ7
j=0 j=0 j=0 j=0

N N
7=0

J=0

where i =1,...,n.

As the next step we will approach to the constraints. We will analyze their
behavior for small parameter perturbations e+ed, ¢ — 07. Firstly let us suppose
that ¢ € Z,(e). Then because the mapping e — v(e) is continuous, we have
vi(e) > 0= v,(e+ed) >0and i€ Z (e+ed) for |¢] <, § > 0 small enough.
From (mLCP(e)) it follows that w;(e) = 0, w;(e + ed) = 0 and

wi(e + ed) — w;(e)

= 0= w;(e) = 0.

Further we consider i € Z_(e). Then owing the continuity of mapping e — w(e)
we obtain w;(e + ed) > 0 for |¢] < 4,6 > 0 small enough. State problem
(mLCP(e)) implies v;(e) = 0, v;(e) + ed) = 0 and consequently v;(e) = 0
have to be fulfilled. The third case is i € Zy(e). For all ¢ > 0 it holds that
vi(e + ed) > v;(e) = 0 and w;(e + ed) > w;(e) = 0. Therefore v;(e) > 0 and
w;(e) > 0. Let us now show that

vi(e)wi(e) =0 Vi € 7. (130)

For i € Z,(e) UZ_(e) it is clear that (130) holds since either v;(e) = 0 or
w;(e) = 0. It remains to prove the relation for i € Zy(e). If w;(e) = 0 then
(130) holds. If w;(e) > 0 then w;(e + ed) > 0, v;(e + ed) = 0 and consequently
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68 4.2 Design sensitivity analysis

From the previous analysis it follows that u = u({e,}), v = v({e,}), w =
w({e,}) satisfy the following system.

N M N M

. . . / _ ! L / .
E KZ] u; + E :Sj,iVj =F; E Ki,j u; E Sj,ivj7
i=0 j=0 j=0 j=0

N
Y Siu; + Dy (w; — ;) =Dj, ZS W5
5=0
V,L(e) wl(e) = 0, V,L(e) 2 O, wz(e) 2 0, ’iEI()(e>,
wi(e) = 0,i€Z,(e), vi(e) = 0,1€Z (e).
Any accumulation point of e+5de) ue) v(e+6d)_v(e) w(e+EdE —W(®) has this prop-
erty. Then if the difference quotients have a hmlt (from practical computations

it follows that the limit exists) then u({e,}) = u'(e;d), v({e,}) = v'(e;d),
w({e,}) = w'(e;d) and the assertion is proved.

Despite the fact that the control state mappings are directionally differentiable
they need not to be continuously differentiable in U". If Zy(e) is nonempty then
u'(e; d), v/(e; d) and w/(e; d) are nonlinear in d and therefore u, v and w are
only directionally differentiable at e. Their Lipschitz continuity implies that there
exists at least one subgradient of these mappings at any e € &". The mapping
Jy, as a composite mapping of e — u(e) and Ij,(e,u(e)) is Lipschitz continuous
and possibly nonsmooth in U". Therefore to solve (Pj,) one needs to use suitable
nonsmooth optimization method.

The evaluation of .J, involves computing of a solution to the nonlinear problem
(mLCP(e)). Consequently, the optimization algorithm should use as few function
evaluations as possible. Thus some gradient (subgradient) information is needed.
In what follows we shall evaluate the subgradient of J,(e) = (e, u(e)) with
respect to the design variable e = {t, q}.

It holds the following formula for computation of the subgradient of I, (e, u(e))
(see Theorem 8.6 or [31]):

Veln(e, ule)) + £X(e) Vy (e, u(e)) € dly(e, ule)). (131)

In practice it can be difficult to compute a representative &, from the generalized
Jacobian Ou(e). Therefore we will go forward by applying the adjoint state
technique to eliminate the term &, from (131). Firstly we define the adjoint state
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69 4.2 Design sensitivity analysis

problem (if it has a solution):

(%5 (x) - ("), (AGe)

ri(e)s;(e) = 0, r;(e) = 0,s,(e) = 0, i € Zy(e),
si(e) = 0,i€Z,(e), ri(e) =0,i€Z_(e).

As e = {t, q}, the subgradient of I, contains of two parts 0y, and Oql,. We
will analyze both parts separately. Firstly we shall focus on the subgradient with
respect to the thickness.

Theorem 4.2. Let {u(e), v(e), w(e)} be a solution to (mLCP(e)) and let
{p(e), r(e), s(e)} solve (A(e)). Then

Ve In(e, ue)) + (—ViKu)" p € dly(e, ule)), (132)

where the multilinear mapping VK s defined as follows:

N,n+1

N
0
ViKu = (Z %Kz,k uk) c RNX(?H—I).
k=1 """

Q=1
Proof. From (131) we obtain
Veln(e, ule)) + (€8T VuIu(e, ule)) € dily(e, ule)).

By differentiating (mLCP(e)) we have

K¢ = -Vi{Ku — S”¢t. (133)
Substituting from (A(e)) into (&%) V, I1,(e, u(e)) we receive

()" (Kp +8™r) = (K&)' p + (6)"S"r.
Making use of (133) we obtain
(-VeKu — 87¢t) " p + ()78

It remains to prove that

(€)' — (&)'Sp = 0. (134)
From (mLCP(e)) and (A(e)) it follows that

S¢t =D —DE, Sp=Dr — Ds. (135)
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70 4.2 Design sensitivity analysis

In view of (134) and (135) we have
(€u)'S"r — (§)"Sp = (§)'Ds — (&,)'Dr.

Let ¢ € Z,(e), then s; = 0 and w;(e; d) = 0. If i € Z_(e), then r; = 0 and
v;(e; d) = 0. The same situation arises if i € Zy(e), it can be proved under some
technical assumptions, see [10]. From there we may conclude that (134) holds

and the assertion is proved.
|

Next we can approach to the subgradient with regard to the foundation stiff-
ness.

Theorem 4.3. Let {u(e), v(e), w(e)} be a solution to (mLCP(e)) and let
{p(e), r(e), s(e)} solve (A(e)). Then
Veln(e, ule)) + (—VqSTV)Tp — (136)
— (VgDVv — VgSu — VgDw)' r € d4l)(e, ule)),

where the multilinear mappings VoS, VoST and VD are defined in the following
way:

N 8 M,n
qu u = Z Esz,k Uk) S ]RMXH,
k=1 " Q=1
M a N,n
Vo S'v = Z %Skz Vk) e RV,
k=11 ij=1
M a M,n
VqD vV = Z %Dz,k Vk> € RMxn
k=1~ =1

Proof. The generalized chain rule (131) narrowed only to the components cor-
responding to design variable q reads

VeIn(e, u(e)) + (60T VyI(e, ule)) € dqlin(e, ule)).
By differentiating (mLCP(e)) we obtain
K¢l = -V, STv — sT¢a (137)
From (A(e)) we can substitute into (£3)7 V,, I1,(e, u(e)).

EH" (Kp + 8"r) = (K& p + (£)"S™r. (138)
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Then by substituting (137) into (138) we have
(~VaSTV)" — (€)7Sp + (€S
In what follows we shall prove that
(€D7S™r — (€1)"Sp = (VqDV =~ VgSu — VqDw)'r. (139)
Definitions of (A(e)) and (mLCP(e)) imply

S¢d=D¢d — Ded + (VgDv — VqSu — V Dw), (140)
Sp=Dr — Ds.

Then by (140) we receive

(ED'S™r — ()'Sp=(&)'Ds — (§1)'Dr +
+ (VgqDv — V4Su — V,Dw)'r.

In the rest of the proof we can proceed similarly as in the proof of (134) and
finally we may conclude that (139) holds.
|

The main advantage of this approach consists in the possibility of computing
the subgradient of the cost functional using only the solution of (126) and (.A(e)).
There is no longer necessary to compute the representative &, from the generalized
Jacobian, what would be costly.

5. Methods

The algebraic form of the discrete optimization problem leads to the following
nonlinear programming problem:

Find e cU": J,(e") < Jy(e) VecU", (Pp)
where Jy(e) := I;(e, u(e)) with u(e) being a solution to the following mixed
linear complementarity problem:

K s™ o™\ (! F
<S—DD) V]~ \o (141)
w
viw =0, v,w > 0.
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72 5.1 Numerical solution of (mLCP(e))

5.1. Numerical solution of (mLCP(e))

Firstly we will focus on numerical methods available for solving of the state
problem (mLCP(e)) and possibly for the adjoint problem (A(e)). There are
several possibilities how to solve such a case of problems. One can use the so called
Lemke method or the Gauss—Seidel method with projection, see e.g. (mLCP(e)),
[30], [38]. But for boundary conditions which we are working with in the thesis the
stiffness matrix K is only positive semidefinite and the mentioned algorithms may
have some issues with such a kind of problems. Therefore we decided to use an
approach based on interior point methods (IPM). See [3(], for example. These
methods are much more robust and more suitable for this case. As nowadays
interior point methods are studied widely we will present here the method only
briefly. The reader can find more information about interior point methods e.g.
in [9], [10], [39], [44] or [54]. A primal-dual interior point method which works
with a linearized step equation has been used. The key is a linearization of the
scalar product vI'w. It can be written as W V € and the general formula for the
path-following step is then defined as follows

K ST of Au r
S-DD Av = ro , (142)
0O WYV Aw —VWe + o, uré

where oy, pi are parameters known from the theory of interior point methods.
Value o}, € [0,1] is a so called centering parameter and p;, = v w/M represents
a duality measure. By € we denote the unit vector (do not interchange with
the design variable e), W = diag(wy, ..., wy), V = diag(vy, ..., vy) and
r, = F—Ku—S’v, ry = Dv—Dw — Su are residual vectors. The new iteration
is then obtained as

k+17 VkJrlJ WkJrl) = (ukv Vk? Wk) + Qg (Au7 AV? AW)?

where using suitable step length «j and parameter values oy, i are such that
vi, w; > 0,1 =1,..., M.

Most of the computational effort in primal-dual interior point methods is
taken up in solving linear systems (142). Moreover the coefficient matrix is large
and sparse, because the matrices D, V and W are large and sparse themself.
The special structure of the system matrix enable us to rewrite it in a much more
compact form, that is easier and cheaper to solve than the original system. First
let us eliminate Aw and add —D V! times the third equation to the second
equation of the system. It is possible because v and w are strictly positive, so
that the matrices V and W are nonsingular. If we denote po = r, + DWe —
D V~lo}, ju;, € then we obtain

K ST Au [
(5 pa Svow ) (30) = () (143)
Aw = —Weé — VWAV + Vg, e

(u
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73 5.1 Numerical solution of (mLCP(e))

Further we can eliminate Av and add ST[D — DV~'W]|~! times the second
equation to the first equation of (143).

K + ST[D - DV 'W]'SJAu =1, + STID - DV 'W]| 'p,  (144)
Av = [D — DV'W][S Au — p,]. (145)
Aw = -We — V'WAv + Vg, e (146)

The dimension of the linear system (144) is NV while the dimension of the original
linear system was N + 2 M. In addition the system is now symmetric and positive
definite. The products and matrix inversions in (144)-(146) are cheap due to the
diagonal structure of matrices D, V and W.

In practice it is an important issue to choose a starting point. A poor choice of
starting point may lead to a failure of convergence. We present here an heuristic
starting point selection procedure. This approach is based on [39]. Firstly let us
choose v > (. Then find a solution of the following problem
min %T(U)Tr(u), r(u) = F — STv — Ku. (147)

u

Further by solving the following linear system we obtain vector w.
Dw =Dv — Su. (148)
In general w obtained from (148) has nonpositive components. Such a vector is
not suitable for us as the starting point. We define
dw = max(—(3/2) minw;, 0) (149)
and set
W =W + JyéE. (150)
Now clearly w > 0 and to ensure that v and w are not too close to zero and not
too dissimilar we define

R 1 ~ T R 1 T\
S (151)

2 elv 2 elw

and set R R
Vg = V + 5‘, €, Wy = W + 5w e. (152)

Now we can finally introduce the outline of the IPM algorithm.
IPM Algorithm:
Calculate (u’, v, w®) as described above, set g = (v?)Tw®/M, oy € [0,1];
for k=0,1,2,...
Set (u,v,w) = (u*, vF, wh).
Compute residuals rq, ro and solve the linear system (144)-(146) for
(Au, Av, Aw);
Calculate o = max{a € (0,1] : (v,w) + a(Av,Aw) > 0};
Set (uFT!, vE+HL whth) = (u* vF W) + ap (Au, Av, Aw);
Compute i1 = (VFH)TwH /M,
end(for) The algorithm stops when the duality measure is small enough.
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74 5.2 Numerical solution of (Pj)

5.2. Numerical solution of (P})

This subsection will be devoted to the solution algorithm of the nonlinear
optimization problem (P,). As we mentioned above, the objective function Jj
can be nonsmooth and possibly nonconvex.

5.2.1. Bundle methods for nonsmooth optimization

Let us suppose a general nonsmooth optimization problem in the following
form:
minimize f(z)

subject to g(x) = (¢1(x), ..., gm(x)) <0, (153)

where f : R" — R, g : R® — R are Lipschitz continuous. In this section we
briefly describe a general bundle method for solution of (153). It produces a
sequence {zy}52;R™ converging to the global minimum of the objective function,
if it exists.

First let us consider an improvement function defined by:

H(l‘,y) = max{f(x) - f(y)agj(x)v j = 17 cee am}'

Let xj be the current approximation to the solution of (153) at the k-th iteration.
We seek for the search direction dj as a solution of the following unconstrained
optimization problem:

minimize H (zy + d, xy,)

subject to d € R™. (154)

But (154) is still a nonsmooth problem. Therefore we need to approximate it in
some way. Firstly let us suppose for a moment that the objective function f is
convex and in addition to the current iteration we have some trial points y; € R"
(from the past iterations), subgradients £} € df(y;) and subgradients & éj € 9g;(y)
forl € I, 7 =1, ..., m, where I} is a nonempty subset of {1,...,k}. The cutting
plane model of the improvement function linearizing both the objective and the
constraint functions is defined by

Hy(z) == max{fi(z) — f(x1), gu(x), j=1,...,m, | € I},

where

fe) =) + (€)@ —w), ek,
giax) =g+ (€) (x—w), 1€ j=1...m

The approximation of (154) then reads as follows:

minimize I:Ik(xk +d)+ %dTMkd

1
subject to d € R, (155)
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75 5.2 Numerical solution of (Pj)

where the regular and symmetric n x n matrix M, is intended to accumulate
information about the curvature of f in a ball around xy.

Notice that (155) is still nonsmooth optimization problem, but due to its
piecewise linear nature it is equivalent to the following (smooth) quadratic pro-
gramming problem:

minimize v + %dTM Ld
subjectto — o, + (£4)7d < v, l € I, (156)
—ag (& )Td <y, lel,j=1,...,m,

where )
oy = flxr) = filzr), 1€

ap = —gj(x), l€l,j=1,....,m (157)

are so-called linearization errors. To avoid the difficulties caused by nonconvexity
we replace linearization errors by so-called subgradient locality measures

5’@ = max{|aj,[, yyllzr — wll*},

158
¥ = max{ak || 5, 2 — w1, (158)

where 77, 7., 2 0, j = 1,...,m are so-called distance measure parameters (v, =
0 if f is convex, v, = 0 if g; is convex). In what follows, we shortly present
several versions of bundle methods, which are slight modifications of the general
bundle algorithm presented above. We focus on their main differences in the
choice of the cutting plane approximation fk and the stabilizing matrix Mj.

5.2.2. Diagonal variable metric bundle methods

A weighting parameter was added to the quadratic term of the objective
function in (156) in order to accumulate some second-order information about
the curvature of f around x;. Thus the variable metric matrix M; took the
diagonal form

with the weighting parameter u; > 0. Based on the proximal point algorithm the
proximal bundle method was derived. Also an adaptive safeguarded quadratic
interpolation technique for updating u, was introduced. For more detailed infor-
mation see e.g. [32].

5.2.3. Variable metric bundle methods

The development of second-order methods has been in the center of interest
for many researchers in nonsmooth optimization. Several attempts to employ

My, as a full matrix (160)
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76 6. Computer implementation in C/C++ and Fortran

with some updating scheme have been proposed by various authors. One of the
most recent variable metric bundle methods using BFGS update was derived in
[28]. The idea of the method is to use only three subgradients (two calculated at
xy and yg,1, one aggregated, containing information from past iterations). This
means that the dimension of the normally time-consuming quadratic program-
ming subproblem (156) is only three and it can be solved with simple calculations.
For details we refer e.g. to [28], [32].

5.2.4. Bundle-Newton method

The most recent advance in the development of the second-order bundle
method was made in [29], where the bundle-Newton method was derived. In-
stead of the piecewise linear cutting plane model, it uses a quadratic model of
the form

i) = masl fu) + (€)7 (e =)+ goule — MG =)}, (161)
where p; € [0, 1] is a damping parameter. When we compare the bundle-Newton
method to the earlier variable metric bundle methods, we can state that the
bundle-Newton method is the "real” second-order method, since every part of
the model contains the second-order information in the form of the stabilizing
matrix M;. For the approximation

M, =V f(y) (162)

the authors proposed optionally analytic or finite-difference approximations. Un-
der some additional assumptions it can be shown to maintain superlinear conver-
gence rate. Although the operations with full matrix demand more storage and
time. More detailed information can be found e.g. in [29], [32].

6. Computer implementation in C/C++ and For-
tran

The Multiobjective Proximal Bundle method (MPBNGC 2.0 by M.M. Mékel4)
for nonsmooth, Nonconvex and Generally Constrained optimization, the Prox-
imal Bundle algorithms for nonsmooth optimization(PBUN by L. Luksan and J.
Vlcek), the Variable metric bundle method (PVAR by L. Luksan and J. Vlcek) and
the bundle-Newton algorithm for nonsmooth optimization (PNEW by L. Luksan
and J. Vléek) briefly described in the previous section will be used as the opti-
mization algorithm for (Pj). For detailed description of the algorithms see [33],
28], [20] and [30].

The interior point approach (IPM) presented in Section 5 is used for com-
puting of a solution to the state problem in the mixed linear complementarity
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7 6. Computer implementation in C/C++ and Fortran

form (mLCP(e)). Reduced linear systems (144) arising in the IPM method will
be solved using an algorithm based on the well known Gaussian elimination.

In this section we will present all subroutines contained in the program de-
veloped for solution of the discrete optimization problem (Pj). Setting of all
the input parameters will be described. To get a better view how the program
proceeds and which subroutines are called, we will show a graphical scheme of
the code (see Fig. 6).

The code is divided into several files. File main.cpp is the main file of the
code. All the optimization parameters and state problem parameters are de-
fined there and all the nonsmooth optimization algorithms are called from there.
Subroutines MPBNGC 2.0, PBUN, PVAR, PNEW are originally written in FORTRAN
77 while the rest of the code (the state problem solver, the adjoint problem
solver etc.) is written in C/C+4++. Therefore it was needed to connect the
FORTRAN subroutines contained in files mpbngc.f, pbun.f, pvar.f, pnew.f,
msubs. f and psubs. f with the rest of the C/C++ code using the interface defined
in methods_cpp.cpp, methods_cpp.h. Conversely the objective function written
in C/C++ needed to be converted in order to work with the FORTRAN subrou-
tines, it was made in objfunc wrapper.f. Files beam defl.cpp, beam defl.h
contain function fun_and_grad which calls the solver of the state problem named
state_solver and the adjoint problem solver sensitivity analysis (with sub-
gradient computation). The state problem solver is based on the interior point
approach presented in Section 5, it uses the Gausian elimination (see e.g. [15])
for solution of the symmetric linear systems (144) and GMRES algorithm in the
starting point computation in the IPM method.

The subgradient of the objective function is computed using the adjoint
problem approach described in Section 4.2. Finally the files functions.cpp,
functions.h, print.cpp and print.h contain of definitions of some auxiliary
functions and print subroutines.

7



78 6. Computer implementation in C/C++ and Fortran

main.cpp

A

to, Qo t*, g

mpbngc.f

v

pbun.f

A

/ pvar.f
k=123,.. optimizer <

pnew.f

ti, Ok
VJ(U’ tk’ qk)
J(U, tk’ qk)

v

fun_and_grad.cpp |

u, Vv, w te, Ok
tk! qIA’ tk’ qk) u, V,NVJ(U’ tk’ qk)

state_solver sensitivity _analysis
u, v, w % N rs
Adjoint_nondiff_solver GMRES
Gauss. elimin.

Figure 6: Scheme of the optimization code
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The C/C++ equivalent functions of MPBNGC, PBUN, PVAR and PNEW defined in
the interface files methods_cpp.cpp, methods_cpp.h are called by the following
statements:

MPBNGC_setup setup(n,1,2+N+2,uad,h,imethod,rmethod,istate,state);
MPBNGC_results results(setup);
MPBNGC_solve (&beam_deflection_wrapper,x0,n,setup,results);

PVARL_setup setup(n,0,1,2*N+2,uad,h,imethod,rmethod,istate,state);
PVARL_results results(setup);
PVARL_solve (&beam_deflection_wrapper,x0,n,setup,results);

PBUNL_setup setup(n,0,1,2*N+2,uad,h,imethod,rmethod,istate,state);
PBUNL_results results(setup);
PBUNL_solve (&beam_deflection_wrapper,x0,n,setup,results);

PNEWL_setup setup(n,0,1,2*%N+2,uad,h,imethod,rmethod,istate,state);
PNEWL_results results(setup);
PNEWL_solve (&beam_deflection_wrapper,x0,n,setup,results);

In what follows we will summarize all the input arguments of the code needed
to be initialized in the main. cpp file. The following abbreviations are used: II - in-
teger, input, RI - real, input, IU - integer, input, output, RU - real, input, output.
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80 6. Computer implementation in C/C++ and Fortran

Argument  Type Significance

N II Number of finite elements.

n I1 Total number of the design variables (n = 2N + 1).

h RI Element length (h = L/N).

x0(n) RU On input, vector with the initial estimate to the optimal
solution. On output, the approximation of the optimal
thickness and subsoil stiffness. x0[0]-x0[N] contains vec-
tor t and xO[N+1]-x0[2N] contains q.

uad(7) RI Vector containing parameters defining the set U".
uad [0] - t(), 0< to.
uad[l] - tl, t() < tl‘
uad[2] - v, 0 < 7.
uad[3] - 72, 0 < 2.
uad[4] - qo, 0 < qo.
uad (5] - q1, @0 < ¢1-
uad[6] - v3, 0 < 3.

state(6) RI Vector containing real input parameters of the state prob-
lem (Pr(ex)).
state[0] - £ - Young’s modulus of elasticity (0 < E).
state[1] - b - Width of the beam (0 < b).
state[2] - L - Length of the beam (0 < L).
state[3] - € - Final accuracy for the GMRES method
(0 <e).
state[4] - €contact - Tolerance parameter for activity of
the subsoil (0 < €contact)-

istate(2) 1II Vector containing integer input parameters of the state

problem (Py(en)).

istate[0] - natural boundary condition.
0: u(0) = /(0) = 0.

1: /(0) = 0.

2: u(0) = 0.

istate[1] - cost functional.

0: Ii(e,u(e)) = Ji(e) := [, fudz.

L: I(e,u(e)) = Jo(e) := [, u*dx.

2: Iz(e,u(e)) = J3(e) == [, t*(u")? dx.
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81 6. Computer implementation in C/C++ and Fortran

method II Parameter defining the nonsmooth optimization method
used for solution of (Py,).
1: MPBNGC - Proximal Bundle method for Nonsmooth,
nonconvex and Generally Constrained optimization (by
Mikeld, M.M.).
2: PVAR - Variable metric bundle method (by Luksan, L.,
Vicek, J.).
3: PBUN - Proximal bundle algorithm for nonsmooth opti-
mization (by Luksan, L., Vicek, J.).
4: PNEW - Bundle-Newton algorithm for nonsmooth opti-
mization (by Luksan, L., Vicek, J.).
The nonsmooth optimization methods have the following input parameters
imethod II  Vector containing the integer input parameters of the op-
timization method.
rmethod RI Vector containing the real input parameters of the opti-
mization method.
These parameters are listed in the following table:

Parameter MPBNGC PVAR PBUN PNEW
imethod[0] | iprint MIT MIT MIT
imethod[1] | 1max MFV MFV MFV
imethod[2] | jmax MEX MET -
imethod[3] | niter = MTESX MTESX MTESX
imethod[4] | nfasg MTESF MTESF MTESF

imethod[5] | - IPRNT IPRNT IPRNT
imethod[6] | - - - IHES
rmethod [0] | gam XMAX  XMAX  XMAX
rmethod[1] | rl TOLX TOLX TOLX
rmethod[2] | eps TOLF TOLF TOLF
rmethod[3] | feas TOLB TOLB TOLB
rmethod[4] | - TOLG TOLG TOLG
rmethod[5] | - ETA ETA ETA

The arguments have the following meaning;:
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Argument Type Significance

iprint IT Printout control parameter.

-1: No printout.

0: Only the error messages.

1: The final value of the objective function.

2: The whole final solution.

3: At each iteration value of the objective function.
4: At each iteration the whole solution.

lmax IT The maximum number of the objective function calls in
line search.

jmax IT The maximum number of stored subgradients.

niter U Input : The maximum number of iterations. Output:
Number of used iterations.

nfasg U Input : The maximum number of the objective function
calls. Output: Number of the objective function calls.

gam RI Distance measure parameter.

rl RI Line search parameter.

eps RI Tolerance for constraint feasibility.

feas RI Final objective function accuracy parameter.

MIT II Variable that specifies the maximum number of iterations;
the choice MIT=0 causes that the default value 200 will be
taken.

MFV I1 Variable that specifies the maximum number of function
evaluations; the choice |MFV|=0 causes that the default
value 500 will be taken.

MEX II Version of nonsmooth variable metric method:

0: Convex version.
1: Nonconvex version.

MET II Variable that specifies the weight updating method:

0: quadratic interpolation.
1: local minimization.
2: quasi-Newton condition.

MTESX II Variable that specifies the maximum number of iterations
with changes of the coordinate vector X smaller than TOLX;
the choice MTESX=0 causes that the default value MTESX=20
will be taken.

MTESF II variable that specifies the maximum number of iterations

with changes of function values smaller than TOLF; the
choice MTESF=0 causes that the default value MTESX=2 will
be taken.
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83 6. Computer implementation in C/C++ and Fortran

IPRNT II  Variable that specifies print.
0: Print is suppressed.
1: Basic print of final results.
-1: Extended print of final results.
2: Basic print of intermediate and final results.
-2: Extended print of intermediate and final results.

IHES II  Variable that specifies a way for computing second deriva-

tives:
0: Numerical computation.
1: analytical computation by the user supplied subroutine
HES.

XMAX RI Maximum stepsize; the choice XMAX=0 causes that the de-
fault value 1072 will be taken.

TOLX RI Tolerance for the change of the coordinate vector X; the
choice TOLX=0 causes that the default value 10716 will be
taken.

TOLF RI Tolerance for the change of function values; the choice
TOLF=0 causes that the default value 10~8 will be taken.

TOLB RI Minimum acceptable function value; the choice TOLB=0
causes that the default value —10%° will be taken.

TOLG RI Tolerance for the termination criterion; the choice TOLG=0
causes that the default value 107% will be taken.

ETA RI Distance measure parameter.

Let us now present a sample initialization of the input arguments of the code
in the file main. cpp:

int main(int argc, char **xargv){

const int N = 10;
const int n = 2*N+1;
double uad[7];
double rmethod[6];
int imethod[7];
double state[6];

int istate[5];

/)= //
// Selection of the optimization method //
/)= //
int method = 3;

/) //
// Set of admissible design variables Uad //
e //
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84 6. Computer implementation in C/C++ and Fortran
uwad[1] = 0.8; // T1
uad[2] = 5; // T2
uad[3] = 0.3; // T3
uad[4] = 0.5; // QO
uad(5] = 1.5; // Q1
uad[6] = 10; /7 Q2
/) //
// State problem constants //
et //
state[0] = 2.19e+6; // E
state[1] = 0.4; // b_w
state[2] = 10; // L
state[3] = 10e-10; // epsilon
state[4] = 10e-6; // epsilon_contact
state[5] = 10e+6; // f_m
/)= //
// Boundary conditions and Cost functional //
it //
istate[0] = 1; // bc
istate[1] = 0; // cf
[/ //
// Definition of a starting point //
/) //

double h = statel[2]/N;
double x0[n];
for(int i = 0; i < n; i++){

if(i < N+1)
x0[i] = 0.5; // t[i]
else
x0[i] = 1; // qlil
}
[/ %Kk ko ok ok o ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok / /
// method==1 -->  MPBNGC method will be used //

[/ sk sk ok sk ok sk sk s sk sk sk ok sk ok sk sk sk sk sk sk sk sk ok sk sk e sksk sk sk sk sk ok sk sk sk sk sk sk sk ok sksk sk sk kok / /
if (method==1){

A S //
// Parameters of the MPBNGC method //
e //
imethod[0] = 3; //iprint

imethod[1] = 100; //1max

imethod[2] = n; // jmax

imethod[3] = 1000; //niter

imethod[4] = 1000; //nfasg
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85 6. Computer implementation in C/C++ and Fortran
rmethod[0] = 0.3; // gam
rmethod[1] = 0.0001; // rl
rmethod[2] = le-6; // eps
rmethod[3] = 1le-9; // feas
ittt //
// MPBNGC setup //
/) //

MPBNGC_setup setup(n,1,2*N+2,0,uad,h,imethod,rmethod,
istate,state);
MPBNGC_results results(setup);

it //
// Executing of the MPBNGC method //
e //

MPBNGC_solve (&beam_deflection_wrapper,x0,n,setup,results);
X

// method==2 --> PVAR method will be used //
[ /] 3Kk sk sk sk sk sk ok sk sk sk sk ok sk ok sk ok sk ok sk sk sk sk ok sk ok ok ok sk ok sk sk ok sk ok sk ok ok s ok sk sk sk sk k sk sk sk ok sk ok / /

if (method==2){

/)= //
// Parameters of the PVARL method //
ettty //
imethod[0] = 4000; // MIT

imethod[1] = 4000; // MFV

imethod[2] = 1; // MET

imethod[3] = 4000; // MTESX

imethod[4] = 4000; // MTESF

imethod[5] = -2; // IPRNT

rmethod[0] = 1; // XMAX

rmethod[1] = O; // TOLX

rmethod[2] = O; // TOLF

rmethod[3] = O; // TOLB

rmethod[4] = O; // TOLG

rmethod[5] = 0.3; // ETA

A //
// PVARL setup //
e //

PVARL_setup setup(n,0,1,2%N+2,uad,h,imethod,rmethod,
istate,state);
PVARL_results results(setup);
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// Executing of the PVARL method //
[/=mmmmm oo //

PVARL_solve(&beam_deflection_wrapper,x0,n,setup,results);

by

[ /KK koK sk sk ok ok sk ook sk sk ok ok sk ok ok sk sk ok ok K ok ok sk ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk ok sk kok ok ok ok / /

// method==3 --> PBUN method will be used //
[/ 3% ok sk sk ok sk ok ok stk ok ok stk ok s ok stk ok s ok stk sk sk ok stk sk sk o sksk sk sk ok sksk sk sk ok skok sk ok / /

if (method==3){

et //
// Parameters of the PBUNL method //
e //
imethod[0] = 4000; // MIT

imethod[1] = 4000; // MFV

imethod[2] = 2; // MET

imethod[3] = 4000; // MTESX

imethod[4] = 4000; // MTESF

imethod[5] = -2; // IPRNT

rmethod[0] = 1; // XMAX

rmethod[1] = 0; // TOLX

rmethod[2] = O; // TOLF

rmethod[3] = O0; // TOLB

rmethod[4] = O; // TOLG

rmethod[5] = 0.5; // ETA
e //
// PBUNL setup //
ettt //

PBUNL_setup setup(n,0,1,2*N+2,uad,h,imethod,rmethod,
istate,state);
PBUNL_results results(setup);

ittty //
// Executing of the PBUNL method //
ettt //

PBUNL_solve (&beam_deflection_wrapper,x0,n,setup,results);

3

// method== --> PNEW method will be used //
[ /3 ok koo ok sk ok ok sk ok o ok stk ok s ok sk ok s ok sk ok s ok stk ok s o sksk ok sk o skskok sk ok skok ok ook / /

if (method==4){

e //
// Parameters of the PNEW method //
Attt bt //
imethod[0] = 4000; // MIT
imethod[1] = 4000; // MFV
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imethod[2] = 2; // MET

imethod[3] = 4000; // MTESX

imethod[4] = 4000; // MTESF

imethod[5] = -2; // IPRNT

imethod[6] = O0; // THES

rmethod[0] = 1; // XMAX

rmethod[1] = O; // TOLX

rmethod[2] = O0; // TOLF

rmethod[3] = O0; // TOLB

rmethod[4] = O0; // TOLG

rmethod[5] = 0.5; // ETA
[/ //
// PNEW setup //
[/ //

PNEWL_setup setup(n,0,1,2*%N+2,uad,h,imethod,rmethod,
istate,state);
PNEWL_results results(setup);

[/ === //
// Executing of the PNEW method //
e //

PNEWL_solve (&beam_deflection_wrapper,x0,n,setup,results);

}
return EXIT_SUCCESS;

The output from the code may have the following form:

ENTRY TO PBUN :

NIT= 0 NFv= 1 NFG= 1 F= 08.8348549 G= 0.100E+61
NIT= 1 NFV= 2 NFG= 2 F= b5.8645670 G= 0.500E+00
NIT= 2 NFV= 3 NFG= 3 F= 45.8273444 G= 0.543E-01
NIT= 3 NFv= 4 NFG= 4 F= 44.6196036 G= 0.661E-02
NIT= 4 NFvV= 5 NFG= 5 F= 43.6140929 G= 0.535E-02
NIT= 5 NFv= 7 NFG= 7 F= 43.6065349 G= 0.668E-02
NIT= 6 NFV= 9 NFG= 9 F= 43.6032432 G= 0.988E-02
NIT= 7 NFV= 11 NFG= 11 F= 43.5908066 G= 0.352E-01
NIT= 8 NFvV= 12 NFG= 12 F= 43.5739112 G= 0.239E-01
NIT= 9 NFv= 14 NFG= 14 F= 43.5724029 G= 0.165E-01
NIT= 10 NFV= 15 NFG= 15 F= 43.5706204 G= 0.138E-01
NIT= 11 NFV= 17 NFG= 17 F= 43.5697041 G= 0.100E-01
NIT= 12 NFV= 18 NFG= 18 F= 43.5690191 G= 0.832E-02
NIT= 13 NFV= 19 NFG= 19 F= 43.5690191 G= 0.675E-02

EXIT FROM PBUN :
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NIT= 13 NFV= 19 NFG= 19 F= 43.5690191 G= 0.675E-02 ITERM= 4

t= 0.8000000 0.8000000 0.7913685 0.6896902 0.5312745
0.2876668  0.2000000  0.2000000  0.2000000

g= 0.6724032 0.7069785 0.7080681 0.6958103 0.7167398
1.500000 1.500000 1.500000

Total time | 0.231 sec | 100%

State problem | 0.103 sec | 44.58879
- starting point: | 0.008 sec | 3.4632%
- assembling the linear system in IPM: | 0.07 sec | 30.303%

- solution of the linear system in IPM: | 0.024 sec | 10.3896

Adjoint problem, Sensitivity analysis: | 0.045 sec | 19.4805%
- adjoint problem: | 0.015 sec | 6.49351Y
- sensitivity analysis: | 0.03 sec | 12.987%
The rest of the code: | 0.084 sec | 36.3636%

This output is different for different values of the input argument IPRNT resp.
iprint. In this case we have set IPRNT= 2. For sample output for the other
IPRNT (resp. iprint) options see the documentation of MPBNGC, PVAR, PBUN and
PNEW on the attached CD.

7. Numerical experiments

In this section we shall present results of several numerical examples. Firstly
we will try to compare the efficiency of methods MPBNGC, PVAR, PBUN and PNEW
on a particular example. Setting of the parameters of U", the cost functional .Jj,,
boundary conditions, number of finite elements and the vertical load f certainly
have an influence on the optimal solution (P,). It will be demonstrated on the
following examples. In all examples we will consider a beam of length

L =10

with an equidistant partition. We will use the 4-point Gauss—Lobatto formula
with integration points £1, :i:\/L5 and wages é, %, see e.g. [1] or [20]. The param-
eters related to the material properties and the cross sectional area of the beam
will be defined as follows: b = 0.4, E = 2.19 - 10°.
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89 7.1 Nonsmooth optimization methods

7.1. Nonsmooth optimization methods

In the first example the load function f is piecewise constant and given by

o= {30752 -

-50 N/m 100 N/m

/ |
u%%%%%%%%%%%%%%%%

Figure 7: Outline of the beam with the load.

The cost functional is the compliance of the beam:

n+1
J(e) = / fu(e)de ~ Z g (wimy f(2io1) + u; f(z;)) = u'Bf.
Q i=1

Let U" be defined by the following parameters:t, = 0.2, ¢, = 0.8, 71 = 5, 72 =
0.3, go = 500, ¢; = 1500, 43 = 10000 and let the initial guess be ey = {to, qo},
where t) = 0.5 for i = 0,...,N and ¢ = 1000 for i = 0,..., N — 1. We used
32 finite elements in discretization; i.e., N = 32 and h = 5/16. The following
boundary condition is prescribed: u/(0) = 0. It is clear that F” with f defined
by (163) fulfills the condition (S25).

The nonsmooth and possibly nonconvex nonlinear mathematical program-
ming problem (Pj) was solved using optimization codes MPBNGC, PVAR, PBUN and
PNEW. Optimal results are dependent on the setting of input arguments of these
algorithms. Inputs are slightly different for MPBNGC and the three remaining
methods.

Algorithms have been run with the following arguments:

MPBNGC: iprint = 3, Ilmax = 100, jmax = 2n + 1, niter = 1000, nfasg =
1000, gam = 0.3, r1 = 0.1, eps = 1074, feas = 107°.

PVAR: MIT = 1000, MFV = 1000, MEX = 1, MTESX = 1000, MTESF = 1000, IPRNT =
—2, XMAX = 0.7, TOLX = 0, TOLF = 0, TOLB = 0, TOLG = 104, ETA = 0.3.

PBUN: MIT = 1000, MFV = 1000, MET = 1, MTESX = 1000, MTESF = 1000, IPRNT =
—2, XMAX = 0.7, TOLX = 0, TOLF = 0, TOLB = 0, TOLG = 10~%, ETA = 0.3.
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90 7.1 Nonsmooth optimization methods

PNEW: MIT = 1000, MFV = 1000, IHES = 0, MTESX = 1000, MTESF = 1000, IPRNT =
—2, XMAX = 1, TOLX = 0, TOLF = 0, TOLB = 0, TOLG = 10~*, ETA = 0.3.

The optimal cost functional values and number of iterations are summarized
in Table 1. The following abbreviations are used: Algorithm = nonsmooth opti-
mization algorithm, Final = optimal value of the cost functional, Iter = number
of iterations, Feval = number of fun_and grad calls, Ctime = solution time (in
seconds).

Table 1: Cost functional values and number of iterations

Algorithm | Final Iter | Feval | Ctime
MPBNGC 40.2276673 | 52 165 27.042
PVAR 40.2295349 | 80 | 81 13.356
PBUN 40.2270780 | 25 | 35 6.151
PNEW 42.3717060 | 104 | 6930 | 1187.235

The best cost functional value was reached by the PBUN method. Also the
number of function evaluations is very small in comparison to the other algo-
rithms. Therefore if the dimension of the problem is higher, it will be probably
efficient to use the PBUN method. The difference between the final cost functional
values for PBUN, PVAR and MPBNGC is minimal.

Optimal thickness
12 T T T T T T

1500 .
1000 - ’_'_ 1
500 .

Figure 8: The optimal results obtained by the PBUN method.

In Figure 8 the optimal thickness of the beam and the optimal stiffness of its
foundation reached by PBUN are shown. The optimal deflection of the beam is
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Figure 9: A deflection of the beam

shown on Figure 9. The graphical display of the results obtained by PVAR, PNEW
and MPBNGC are almost identical to Figures 8 and 9.

a5 : : : : : : : : : :
™ — 4 - MPBNG
an ! PYAR  h
! — 4~ BUN
— 4 -PNEW |

Cost functional value

T 1 1 1
40 a0 B0 70 a0 a0 100
Mumber of iterations

Figure 10: Cost functional values

In Figure 10 the cost functional values during the iterations of methods
MPBNGC, PVAR, PBUN and PNEW are plotted. Methods MPBNGC and PBUN proceed
vey quickly to the optimum and after first 5 iterations they almost reached the
optimal value. The codes PVAR and PNEW decreased slower. MPBNGC, PVAR, PBUN
reached almost the same cost functional value, the fastest from these three algo-
rithms is PBUN which converged in 25 iterations.

The evaluation of the cost functional and its gradient (subgradient) involves
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solving of the nonlinear state problem (mLCP(e)) and the adjoint problem (A(e)).
Consequently, the optimization algorithm should use as few fun_and grad calls
as possible. In Table 2 the dependence of the number of function evaluations on
the discretization parameter is shown. All the other parameters are the same as
before, only the dimension changes (N = 8,16, 32,64, 128).

Table 2: Number of cost functional evaluations

Algorithm | 8 16 32 64 | 128
MPBNGC 40 187 165 | 177 | 220

PVAR 24 43 81 106 | 257
PBUN 33 42 35 36 | 40
PNEW 1260 | 20686 | 6930 | — -

On the one hand it is obvious that the method PBUN is the most efficient
method for this problem and for the actual setting of the input parameters.
On the other hand the method PNEW with the options THES =0 is certainly not
suitable for this type of problems. The high number of fun and grad calls is
caused by the fact that the method uses the value of the gradient (subgradient)
for numerical computation of second order derivatives.

We have to notice that the number of iterations depends on the setting of
input arguments of the algorithms, especially setting of the distance measure
parameter gam resp. ETA and the line search parameter rl resp. XMAX. Therefore
a setting which seems to be optimal for one problem configuration does not need
to be optimal for other problem configurations and we must be careful when
setting these arguments.

7.2. The influence of the discretization parameter h

In the second ezample we shall analyze the dependence of the optimal solution
to (Py) on the discretization parameter h (resp. N). The load function f is
piecewise polynomial and given by

) = {i?)(; E08)4 EPTN (164)

o0|Z0 | S

We will minimize the compliance of the beam:

n+1
h

J(e) = /qu(e) dz ~ Z 3 (wiy f(zis1) + u; f(2;)) = u'Bf.

=1

Let the set U" be defined by the following parameters: ¢y = 0.2, t; = 0.8, 7, =
5, 7% = 04,9 = 500, ¢ = 1500, v3 = 10000 and let the initial guess be
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f -(x-8)*-30 N/m

Figure 11: Outline of the beam with its load.

Table 3: Results

Dim | Initial Final Iter | Eval
8 5.12908953 | 2.50448124 | 33 | 42
16 4.99601988 | 2.30372504 | 55 | 69
32 5.00690169 | 2.35593981 | 43 | 58
64 5.10577388 | 2.43685832 | 33 | 47

e = {to, qo}, where t! = 0.5, =0,...,N and ¢ = 1000, : =0,...,N — 1.
The following boundary condition is prescribed: u(0) = 0.
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Figure 12: Optimal thickness
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Figure 13: Optimal stiffness of the foundation
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Figure 14: Optimal deflection of the beam

We have solved the problem using the PBUN algorithm with N = 8, 16, 32, 64.F™"
with f defined by (164) fulfills the condition (S4;) for all h. The algorithm has
been run with the following arguments:

PBUN: MIT = 1000, MFV = 1000, MET = 2, MTESX = 1000, MTESF = 1000, IPRNT =
—92, XMAX = 0.5, 0.6, TOLX = 0, TOLF = 0, TOLB = 0, TOLG = 10~% ETA =
0.1, 0.2.

The results are summarized in Figures 12-14 and Table 3. The optimal solutions
are slightly different. It can be seen especially on the optimal subsoil stiffness,
see Figure 13. The optimal thicknesses and optimal deflections look similar at
the first sight, nevertheless there are also small deviations for different N.
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7.3. The influence of the definition of U,

In the third example we shall illustrate the dependence of the optimal design
on the parameters appearing in the definition of the set 4". Especially we will
change the parameter ;. The load function f is piecewise constant and given by

100 z < Bvae > @,
ro={ T e (165)

=== n

Figure 15: Outline of the beam with the load.

Let the set U" be defined by the following parameters:ty = 0.2, t, = 0.8, v, =
5, o = 500, ¢ = 1500, v3 = 10000 and let the initial guess be ey = {to, qo}
where tY = 0.5, i = 0,...,N and ¢ = 1000, ¢ = 0,..., N — 1. The initial
cost functional value is 11.1931345. We used 32 finite elements in discretization;
ie., N = 32 and h = 5/16. The following boundary condition is prescribed:
u/(0) = 0. The functional F" with f given by (165) fulfills the condition (S2;,)
and the cost functional corresponds to the compliance of the beam:

n+1
J(e) = / fu(e)dzr ~ Z g (i1 f(2i1) + u; f(2;)) = u'Bf.
L i=1
The problem will be solved for 75 = 0.1, 0.2, 0.3. The other parameters remains
the same. The input arguments of PBUN will be set as follows:
PBUN: MIT = 1000, MFV = 1000, MET = 2, MTESX = 1000, MTESF = 1000, IPRNT =
—2, XMAX = 0.7, TOLX = 0, TOLF = 0, TOLB = 0, TOLG = 104, ETA = 0.1.
The results are summarized in Table 4 and Figures 16-18.

The optimal foundation stiffness is the same for all three choices of v;. It can
be seen that the final shapes of the beam are slightly different. If v grows the
mass of the the beam is allowed to be re-distributed more efficiently and we are
able to reach a better cost functional values (see Table 4 and Figures 16-18).
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1500
1000
500

1500
1000
500

Optimal thickness

Ciptimal foundation stiffness

H _

Figure 16: Optimal results for v = 0.1

Optimal thickness

Optimal foundation stiffness
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Figure 17: Optimal results for v, = 0.2
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Optimal thickness
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Cptimal foundation stiffness

1500
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Figure 18: Optimal results for v = 0.3

Table 4: Results
Y2 | Final Iter | Eval

0.1 | 8.50544174 | 23 | 35
0.2 | 8.20262861 | 25 | 34
0.3 | 8.16788551 | 28 | 33

7.4. The dependence of the optimal solution on the cost
functional

In the fourth example we will present optimal results for three different cost
functionals. The load f is piecewise constant and given by

0= 0 55 169

Let the set U" be defined by the following parameters:ty = 0.2, t; = 0.8, v, =
0.3, v1 = 5, ¢ = 500,q¢ = 1500, v3 = 10000 and let the initial guess be
ey = {to, qo}, where t? = 0.5fori =0,..., N and ¢’ = 1000 fori =0,..., N—1.
We used 32 finite elements in discretization; i.e., N = 32 and h = 5/16. The
following boundary condition is prescribed: u/'(0) = 0. Functional F" clearly
satisfies the condition (52;).

The optimal solution will be found with respect to the following three cost
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Figure 19: Outline of the beam with the load.
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Figure 20: Optimal results for J;
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functionals:
n+1 h
Ji(e) = / fule)dr ~ Z 5 (uia f(xi1) + u f(2:)) = u' B,
Q i=1
n+1 h
Jo(e) = /Qu2(e) dz ~ ;5 (u? , +u?) = u'Bu,
n+1 h
Jo(e) = / P (e) e 30 5 (Rl ) + Fuf(e) = wTSTETE@u.
Q i=1

The other parameters of the problem remains the same.
We have solved the problem using the PBUN algorithm with the following
arguments:

Optimal thickness
12 T T T T T T
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Optimal deflection
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Figure 21: Optimal results for J,
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Figure 22: Optimal results for J3

PBUN: MIT = 1000, MFV = 1000, MET = 2, MTESX = 1000, MTESF = 1000, IPRNT =
—2, XMAX = 1, TOLX = 0, TOLF = 0, TOLB = 0, TOLG = 104, ETA = 0.3.
The results are summarized in Table 5 and Figures 20-22.

Table 5: Results

Cfun | Initial Final Iter | Eval
J1 132.235808 | 55.1465208 | 33 | 49
Jo 0.802462135 | 0.082413541 | 60 | 114
Js 2.21450923 | 0.622296156 | 40 | 57
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7.5. The influence of boundary conditions

In the fifth ezample we shall show the dependence of the optimal solution on
the choice of boundary condition. The load function f is given in the following
form:

o= {307 52 =

-60 N/m 100 N/m

/ |
u%%%%é%%éé%éé%%%%

Figure 23: Outline of the beam with the load.

The cost functional is defined as follows:

n+1
h

J(e) = /QUQ(e) dr ~ Z 5 (u? | + v?) = u'Bu

=1

Let the set " be defined by the following parameters:t, = 0.2, t; = 0.8, vy, =
03,1 = 5,q = 500, q = 1500, v3 = 10000 and let the initial guess be
ey = {to, qo}, where t{ = 0.5, i =0,...,N and ¢° = 1000, i =0,..., N — 1.
We used 32 finite elements in discretization; i.e., N = 32 and h = 5/16. The
problem will be solved with the boundary condition«’(0) = 0 and the boundary
condition u(0) = 0. The condition (S2;) and (S4;) are clearly satisfied.

We have solved the problem by the MPBNGC algorithm with the following ar-
guments:
MPBNGC: iprint = 3, Imax = 100, jmax = 2n + 1, niter = 1000, nfasg =
1000, gam = 0.3, rl = 0.1, eps = 107%, feas = 107°.
The results are summarized in Table 6 and Figures 24, 25.

Table 6: Results

Bceondition | Initial Final Iter | Eval
w'(0) =0 0.377676653 | 0.046572618 | 41 56
u(0) =0 0.110807054 | 0.054800595 | 50 62
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Optimal thickness
12 T T T T T T
R=R .
06
03F

d3F
OFF
08¢ =
1.2 1 ] 1 1 1 1

Optimal foundation stiffness
T T T T T T

1500
1000 -
500

Optimal deflection
E|2 T T T T T T

Figure 24: Optimal results for «/(0) =0

The constraint [, t(x) dz = 7, keeps the beam volume fixed during the op-
timization process. The algorithm is allowed to prevent the deflection only by
moving the mass of the beam. It can be seen from Figures 24, 25 that the optimal
results are different. In the first case the mass of the beam is concentrated on
the left end where the boundary condition is prescribed. It is typical for beams
with free right end. In the second case the mass of the beam is on the one hand
concentrated near the left end of the beam to take a benefit from the support.
But on the other hand the mass is also concentrated near the middle and the
right end of the beam to prevent the biggest deflection. The distribution of the
mass of the beam depends on many aspects such as load distribution, boundary
conditions etc.

It can be seen from the figures above that for given cost functional, the subsoil
is usually distributed such that it is the stiffest at locations where the beam
deflects at most.
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Optimal thickness
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Optimal foundation stiffness

1500 .
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Figure 25: Optimal results for «(0) =0

7.6. Computational time of some particular parts of the
algorithm

In the sixth example we shall illustrate how much of the total computational

effort take some particular pieces of the optimization code, especially computing

of a solution to (mLCP(e)), computing of a solution to (A(e)) and the computing

of the gradient (subgradient) using the approach presented in Section 4.2. The
load function f is given by

o= {307 52 o
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-50 N/m 100 N/m
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Figure 26: Outline of the beam with the load.

The cost functional is defined as follows:

n+1
J(e) = / fu(e)dr ~ Z h (i1 f(zii1) + u f(2;)) = u'Bf. (169)
£ = 2

Let the set U" be defined by the following parameters:ty = 0.2, t; = 0.8, 75 =
0.3, v1 = 5, g0 = 500, ¢ = 1500, v3 = 10000 and let the initial guess be eg =
{to, qo} where t? = 0.5 fori=0,...,N and ¢? = 1000 for i =0,...,N —1. We
will run the algorithm with N = 8,16, 32,64, 128,256. The boundary condition
is u/(0) = 0. The condition (S2,) is satisfied. We have solved the problem using
the PBUN algorithm with the following arguments:
PBUN: MIT = 1000, MFV = 1000, MET = 2, MTESX = 1000, MTESF = 1000, IPRNT =
—2, XMAX = 1, TOLX = 0, TOLF = 0, TOLB = 0, TOLG = 10~4, ETA = 0.3.

Table 7: Results

N
Part of the code [8 |16 [32 [64 |128 | 256

| SolveSP [ 0.145 | 0.422 [ 0.848 [ 11.269 | 40.255 | 602.442 |
SPinit 0.011 [ 0.037 [ 0.125 | 1.726 | 9.878 [ 226.342
MakeLsS 0.099 [ 0.265 | 0.4 [ 4.141 ]9.225 [69.203
SolveLsS 0.026 | 0.113 [ 0.318 | 5.386 | 21.137 | 306.834
SolveAP 0.013 [ 0.042 [ 0.11 [1.851 [13.089 [ 322.272
GradComp 0.047 [ 0.174 [ 0.423 | 9.485 | 53.379 | 768.593

| RestC [ 0.171 [ 0.21 ]0.397 | 1.032 |3.171 | 30.359 |

| Total [ 0.376 [ 0.848 | 1.773 | 23.621 [ 109.879 | 1723.67 |

Solution times in seconds are shown in Table 7. In Figures 27, 28 is presented
the percentage of the computational time for particular pieces of the code. The
following abbreviations are used: SolveSP = time needed to solve (mLCP(e)),
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Figure 27: The amount of time spent by the algorithm (in percents)
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Figure 28: The amount of time spent by the algorithm

SPinit = time needed to compute the initial guess for the state problem solution
algorithm (IPM), MakeLS = time needed to assemble the linear algebraic system
for computation of the direction in IPM, SolveLS = time needed to solve the linear
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algebraic system for computation of the direction in IPM, SolveA P = time needed
to solve (A(e)), GradComp = time needed to compute the gradient(subgradient)
of the cost functional using relations (132), (136), RestC' = time spent by of the
rest of the algorithm (initializations, auxiliary computations), Total = The total
computational time of the algorithm.

Firstly we divide the code into three parts SolveSP, SolveAP + GradComp
and RestC. If N = 8 then the time needed to solve the state problem, the adjoint
problem and to compute the subgradient (in the code it is represented by calls
of functions state_solver and sensitivity analysis), takes only about 50
percents of the total solution time. As the FEM mesh is getting finer and the
number of elements is increasing, the amount of time spent by this two parts
of the code is growing in comparison to the rest of the code. It can be clearly
seen in Figure 27. This fact is reasonable because solution of the state problem
and the design sensitivity analysis involve multiple solution of linear algebraic
systems and many matrix multiplications. Therefore the number of operations
grows bigger if the dimension of the problem rises.

In Table 7 and Figure 28 more detailed results are shown. The solution of
the state problem (mLCP(e)) is here divided into three parts: SPinit, MakeLsS,
SolveLLS. And the design sensitivity analysis is divided into two parts: SolveAP,
GradComp. We can see that in case of low problem dimension (N = 8, 16), the
biggest part of the computational time is taken by assembling the linear algebraic
system (144) for IPM, computing the gradient using (132), (136) and the rest of
the code. While in case of N = 128, 256 the biggest amount of operations is
spent on computation of the subgradient, solution of the linear system (144) in
IPM and solution of the adjoint problem (A(e)).

8. Conclusions

In the thesis we have dealed with an application of mathematics in mechan-
ics. Particularly we have considered the optimization of an elastic beam with a
unilateral elastic foundation of Winkler type. The state problem was here repre-
sented by a boundary value problem for nonlinear ordinary differential equation
of fourth order. Due to particular choice of boundary conditions and due to
the unilaterality of the foundation the state problem was semicoercive. The ob-
jects of optimization were the beam thickness and the stiffness coefficient of the
foundation.

Between the main results of the thesis it belongs the establishing of necessary
and sufficient conditions for the existence and uniqueness of a solution to the
state problem (P(e)). We have also proved the continuous dependence of the
state problem solution u on the design variable e and the existence of at least one
solution to the design optimization problem (P). The Lipschitz continuity of the
mapping u : e — u(e) and consequently the Lipschitz continuity of considered
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cost functionals have been shown.

The problem has been approximated using the finite element method. The
linear form F' and the bilinear form b, appearing in the variational formulation of
the state problem have been approximated by a formula for numerical integration.
As in the continuous case we have introduced necessary and sufficient conditions
for the approximated state problem (Pj(es)) and the existence of at least one
solution of the approximated optimization problem (Pj) have been established.

Finally, for the numerical solution we have proposed the approach based on
use of a nonsmooth optimization method for nonlinear programming. We have
made the design sensitivity analysis and we have proposed a procedure for efficient
computing of a gradient (subgradient) of the cost functional J,. The main points
of the design sensitivity analysis were the definition and solution of the adjoint
problem and establishing of formula needed for computation of the subgradient
from the state and adjoint solutions.

The whole procedure (with usage four different nonsmooth optimization meth-
ods MPBNGC, PVAR, PBUN, PNEW) have been implemented in C/C++ and Fortran.
The code and its practical usage have been described. The results obtained by
these four optimization methods have been presented, compared and analyzed.
The influence of boundary conditions, cost functional, definition of " and the
discretization parameter on the optimal design have been illustrated on several
examples.

The results obtained in the thesis can be useful in the technical practice.
Beams are widely used especially in the civil or railway engineering and in many
other engineering applications. The studied unilateral (nonlinear) model of foun-
dation is in some cases more precise as the widely used linear model of foundation.
Therefore in some situations it is more correct to use the model which is in detail
described and analyzed in the thesis. The main originality of the thesis insist in
passing through the issues caused by the semicoercivity of the state problem and
also in the possible nondifferentiability of the resulting optimization problem.

The thesis can be extended in many different ways. For example we can con-
sider the foundation only on a part of the interval [0, [] or we can consider a
system of subsoils and topsoils situated in certain subintervals of [0, /]. Instead
of Winkler model we can also consider the so call Pasternak’s model of the foun-
dation with response function s(x) = q(z)u(z) — k(x)u”(z), where the second
parameter k(z) relates to the shear forces in the subsoil. The state problem can
be also generalized to a 2D problem of a thin plate. The optimization part of the
problem can be extended for example by adding the material coefficient or width
of the beam as the design variables. We can optimize the beam with respect to
many other cost functionals.

109



110 Appendix

Appendix

In this section we will introduce some preliminary results that are used through
the thesis.

Theorem 8.1. (Cauchy-Schwarz inequality.) Let f, g € L*(Q2), where Q is a
nonempty open interval in R*. Then

/Qfgda: < (/Qdex)l/2 (/Qdex)l/Q. (170)

Proof. For the proof we refer to [0]. |
Theorem 8.2. (Discrete Cauchy—Schwarz inequality.) Leta = (ay, ..., a,), b=
(b1, ..., by) be real vectors, then
n 2 n n
(San) <Y aedw ()
i=1 =1 =1
Proof. For the proof see e.g. [27]. |

Lemma 8.1. Let Q be a nonempty open interval in R and let the subspace of
H?(Q) be defined as V = {v € H*(Q) : v'(0) = 0}. Further let {u,} CV be a
sequence bounded in H*(QY) such that

Unlypg — 0. 11— +oc.
Then there exists a subsequence {un,;} C {un} and a polynomial p € Py such that
Up, — p in H*(Q), j— +oo.

Proof. Since {uy,} is bounded in H?(Q), there exists its subsequence {u,,} and a
function v € V' such that u,, — v in H*(Q2). By the well-known Rellich theorem

(see e.g. [27]) we have u,, — v in H'(Q) and
Hu"z - unj”2,2,ﬂ S }u"z‘ - unj|2,2,ﬂ + Hum B u”j“m,ﬂ S
< funlao0 + ’“nj ‘2,2,9 + Hun - u”jHLQ,Q -
— 0 1, — +00.

Thus u,; — win H?*(Q2) and |ul,, o = 0. Owing the fact that u € V we obviously
have u =p € F,. [ ]

Lemma 8.2. Let Q be a nonempty open interval in R' and let the subspace of
H?(Q) be defined as V = {v € H*(Q) : v(0) = 0}. Further let {u,} C V be a
sequence bounded in H*(Q) such that

tnly0 — 0. 1 — oo
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Then there exists a subsequence {un,} C {un} and a polynomial p = ax € P
such that
Up, — p in H*(Q), j— +oo.

Proof. See the proof of Lemma 8.1. |

Theorem 8.3. (Sobolev embedding Theorem.) Let Q0 be a nonempty bounded
interval in R'. Then the embedding of the space H*'(Q), k =1,2,... into the
space C*(Q) is continuous, i.e. there exists a constant ¢ > 0 such that

lullorgy < cllulliron Vo€ HH(Q). (172)

The constant ¢ is dependent only on the length of the interval € and on the
parameter k.

Proof. For the proof see e.g. [27]. |

Theorem 8.4. (Rellich Theorem.) Let Q be a nonempty bounded interval in R*.
Then the embedding of the space H'(Q) into the space L*(2) is compact.

Proof. For the proof we refer to [27]. |

Remark 8.1. Analogous inclusion can be derived by “translating” the deriva-
tives. Therefore we have that H*™(Q) is compactly embedded into H*(Y) for
k=1,2,3,... and there exists a constant ¢ > 0 such that

lulion < cllullisrpe Yu€ H*HQ). (173)

Next we introduce some properties of the positive part ut of a function u €

H2(Q).

Lemma 8.3. Let Q be a nonempty open interval in R and u € H*(SY), then the
positive part

ut(z) = (u(z) + |u(2)])/2, z€Q (174)

belongs to the space H'(Q) and ||[ut|l,,q < llully,q. Moreover, the following
inequality holds:

lut(2) — v (2)] < |u(z) —v(x)| Vu,ve C(Q), z e Q. (175)
Proof. For the proof we refer to [50]. |

Consequently, if there exists a constant ¢; > 0 such that |lul|,,, < ¢1, then
there exists ¢, > 0 such that ||u'], , o < ca.

Lemma 8.4. Let Q be a nonempty open interval in R and u,,u € H*(Q), n € N
such that u, — w in H*(Q). Then u, — u in L*(Q) and in addition u} —
u™ in L*(Q).
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Proof. The first part of the assertion is a consequence of the compactness of
embedding H%(Q2) into L*(Q), see e.g. [27]. The second part follows from the
definition of the positive part (174). |

Let us now summarize some basic properties of numerical quadrature that
will be used for the approximation of the optimization problem. We define the
numerical quadrature on the reference interval [—1, 1] as follows

1 m
[ o0~ Y o) veewhi(-1) (176)
where w; > 0 and the points 2; belong to the reference interval Vj = 1,2,... m.

We say that the quadrature formula is exact for polynomials of degree k at least
if

/_1116(5) d§ = Z@Jﬁ<’§]> Vp € Py([—1,1]). (177)

Next we can approach to the definition of a numerical quadrature on general
interval [s, t] with length h > 0. Transformation of the interval [s,t] onto [—1, 1]
is given by

O(x) = ¢ = g(x —s)—1, Va € [s,t]. (178)

Therefore

/%mm-—[¢@%Wewmwm (179)

1

where $(€) = o(®71(¢)). Corresponding numerical quadrature on [s, ] is defined
in the following way

[ elads = S wiets) e e W) (130

denoting z; := ®71(Z;) and w; := (h/2)w;.

Lemma 8.5. Let Q be a nonempty open interval in RY with length h > 0. Let the
numerical quadrature formula be exact for polynomials of degree k > 0 at least.
Then there exists a constant ¢ > 0 such that

ijgo(zj) — /Qgp(a:) dz| < chFt? Pleri10 Vo€ WHLL(Q). (181)
i=1
Proof. For the proof see e.g. [7]. [ |

And finally we introduce a which is a generalization of the classical chain rule
of differentiation. This lemma plays an important role in establishing of formulas
for subgradient calculation.
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Lemma 8.6. Let f: R" — R be a function defined by

f@) = J(z, y(x)), (182)

where J : R™ x R™ — R s a continuously differentiable function andy : R —
R™ is a locally Lipschitz mapping. If &,(z) € Oy(x), then

Vol (@, y(2)) + & () VyJ (z, y(2)) € 0f(x). (183)

Proof. For the proof we refer to [31]. |
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