
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

IT/OT MODULAR HONEYPOT
MODULÁRNÍ HONEYPOT PRO IT A OT

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Martin Nečas

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. Petr Blažek

BRNO 2023

Date of project
specification:

6.2.2023
Deadline for
submission:

 26.5.2023

Supervisor: Ing. Petr Blažek

doc. Ing. Jan Hajný, Ph.D.

Chair of study program board

Bachelor's Thesis
Bachelor's study program Information Security

Department of Telecommunications
Student: Martin Nečas ID: 231259
Year of
study:

 3 Academic year: 2022/23

TITLE OF THESIS:

IT/OT modular honeypot

INSTRUCTION:

The bachelor's thesis aims to design and implement a modular and scalable honeypot focusing on IT and OT
communication protocols and to study the low to high-interaction honeypot issues. Subsequently, design and
implement a system where the core will be a scalable honeypot, in which modules representing communication
protocols and communicating physical and virtual devices can be easily added. Also, focus on the modularity of
the system during design and implementation. Then test the functionality and deployment in a simulated or real
environment and evaluate the data obtained from the honeypot.
The output of the bachelor's thesis will be a honeypot system focusing on selected protocols, implementation of
at least two protocols (one from IT and the other from OT) and simulations of selected devices. A partial output
will be the deployment of the honeypot into a real or simulated environment and evaluation of the obtained data.

RECOMMENDED LITERATURE:

[1] SPITZNER, Lance. Honeypots: tracking hackers. Reading: Addison-Wesley, 2003.

[2] NG, Chee Keong; PAN, Lei; XIANG, Yang. Introduction to Honeypot. In: Honeypot Frameworks and Their
Applications: A New Framework. Springer, Singapore, 2018. p. 1-5.

WARNING:

The author of the Bachelor's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

ABSTRACT
The bachelor’s thesis created a modular and scalable honeypot system focusing on IT
and OT. The goal was to design and implement a system that allows the easy addition
of modules representing communication protocols and virtual devices while strongly em-
phasising modularity. The honeypots are deployed in containers, and the system actively
monitors the communication between these containers and the attackers. All communi-
cation activities are stored in a centralised log for thorough analysis and monitoring.

KEYWORDS
Modular Honeypot System, Honeynet, Containers, Docker, Network Namespaces, Con-
tainer Network Monitoring, Information Technology, Operational Technology, Cyberse-
curity, tcpdump, Python, Django, Centralized Logging, syslog, rsyslog, modbus, http,
cron

ABSTRAKT
V bakalářské práci byl realizován modulární a škálovatelný systém honeypotů zaměřený
na IT a OT. Cílem bylo navrhnout a implementovat systém, který umožní snadné přidá-
vání modulů reprezentujících komunikační protokoly a virtuální zařízení a silně zdůrazňuje
modularitu. Honeypoty jsou nasazeny v kontejnerech a systém aktivně monitoruje ko-
munikaci mezi těmito kontejnery a útočníky. Všechny komunikační aktivity jsou uloženy
v centralizovaném logu pro důkladnou analýzu a monitorování.

KLÍČOVÁ SLOVA
Modulární systém Honeypotů, Honeynet, Kontejnery, Docker, Síťové jmenné prostory,
Monitorování sítě kontejnerů, Informační technologie, Operační technologie, Kyberbez-
pečnost, tcpdump, Python, Django, Centralizované logování, syslog, rsyslog, modbus,
http, cron

Typeset by the thesis package, version 4.07; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZŠÍŘENÝ ABSTRAKT
Cílem této bakalářské práce bylo navrhnout a vyvinout modulární, škálovatelný

systém honeypotů zaměřený na IT a OT protokoly. Dále cílem bylo vytvořit uživatel-
sky přívětivý koncept, který by zajistil jednoduchou upravitelnost systému a škálo-
vatelnost z pohledu rozšířování nových modulů nad rámec této bakalářské práce.
Motivace práce
Honeypoty slouží jako návnada pro kybernetické útočníky, čímž odvádějí pozornost
od skutečných systémů. Pomáhají při detekci a analýze útoků, což umožňuje lepší
pochopení taktik, technik a postupů kybernetických zločinců. Dále umožňují iden-
tifikovat nové druhy útoků a slouží jako první obranná linie před neautorizovaným
přístupem. Nakonec, tím, že zpomalují útočníky a nutí je vynakládat více úsilí,
mohou také sloužit jako efektivní odstrašující prostředek.
Teoretický rámec
Úvodní kapitola poskytuje přehled o honeypotech, jejich nezbytnosti, typech a klasi-
fikacích. Je zde provedeno srovnání mezi honeypoty a systémy pro detekci průniku
a je uveden přehled existujících open-source projektů honeypot, z nichž některé byly
využity během nasazení, testování a sběru dat v rámci této práce.

Kapitola dále podrobněji popisuje použití kontejnerů a porovnává je s virtuálními
stroji. Představuje koncept Linuxových jmenových prostorů, které tvoří základ kon-
tejnerů a přispívají k zabezpečení hostitelského operačního systému. Dále se zabývá
sítěmi kontejnerů a mechanismy, prostřednictvím kterých kontejnery komunikují se
sítí hostitele. Kapitola také diskutuje o obrazech kontejnerů, jejich složení a o tom,
jak je uživatelé mohou vytvářet a nahrávat do externího registru. Závěr teoret-
ické části popisuje Docker-compose, nástroj pro zjednodušenou správu a orchestraci
Docker kontejnerů na hostitelském systému.
Návrh a implementace
Tato sekce popisuje proces návrhu, přičemž zdůrazňuje dvě hlavní fáze vývoje návrhu,
rozdělené na počáteční a konečné návrhy.

Segment počátečního návrhu podrobně popisuje první model používající virtuální
stroje na hostiteli VMware ESXi místo kontejnerů. Vysvětluje proces vytváření
systému honeynet pomocí Ansible a zdůrazňuje problémy návrhu, které vedly ke
změně směrem ke kontejnerům.

Část konečného návrhu popisuje konečný design implementovaný pomocí konte-
jnerů, které umožňují rychlejší nasazení systému a menší nároky na úložný prostor
než virtuální stroje. Tento návrh zahrnuje několik propojených komponent.

Systém se skládá z webového serveru s uživatelským rozhraním, pomocí kterého
mohou administrátoři interagovat se systémem honeynet. Webový server přijímá
zachycenou komunikaci ve formátu pcap prostřednictvím API a ukládá je pomocí
cron jobu. Zachycená data jsou poté přenesena na centralizovaný FTP logovací

server. Webový server také funguje jako motor honeynetu, který spravuje a vytváří
honeynet a honeypoty.

Při vytváření honeynetu vytváří webový server novou síť Docker s definovanou
podsítí. Pokud není specifikováno, je proveden náhodný výběr, což vede k vytvoření
jmenového prostoru sítě pro další spuštění kontejneru.

Nejdůležitější aspekt práce byla jednoduchost přidávání nových honeypotů. Ad-
ministrátoři pouze potřebují určit obraz honeypot kontejneru a porty, které mají
být otevřené do sítě hostitele, aby byl honeypot přístupný mimo hostitele a to je
vše. Honeynet vytvoří kontejner se získaným obrazem a zveřejní jej na síti hostitele.

Další klíčovou součástí je monitorovací kontejner, který sleduje komunikaci ho-
neypotu s útočníkem. Spuštěný ve jmenovém prostoru sítě hostitele, získává přístup
k Linuxovému mostu, čímž umožňuje veškerou komunikaci do jmenového prostoru
sítě honeynetu. Tento proces zajišťuje, že monitoring pokračuje bez povšimnutí, i
když útočník získá kontrolu nad kontejnerem honeypotu.

Monitorovací kontejner využívá nástroj tcpdump pro zachycení všech příchozích
paketů, které filtruje podle IP adresy kontejneru honeypotu. Tcpdump umožňuje
ukládání zachycených dat do souborů pcap, které jsou automaticky odeslány na
webový server, když je dosažena určitá velikost souboru nebo časový limit, jenž je
nastaven administrátorem.

Design také zahrnuje komplexní logování všech běžících kontejnerů pomocí pro-
tokolu syslog. Server rsyslog ukládá komunikaci syslog, která je připojena k we-
bovému serveru a přenesena na centralizovaný webový server pomocí naplánovaného
cron jobu. Server rsyslog je integrován do každého jmenového prostoru sítě ho-
neynetu, což umožňuje každému honeypotu odesílat logy na rsyslog pomocí pro-
tokolu syslog.
Výsledky
Poslední kapitola podrobně popisuje výsledky bakalářské práce, a to ve dvou od-
dílech - nasazení ve veřejné síti a analýza zachycených dat.

Honeynet byl nasazen na serveru VUT, připojeném k veřejné síti, aby útočníci
mohli přistupovat k honeypotům. Honeynet se skládal ze dvou honeypotů - HTTP
a Modbus. Sekce "Deployed Honeypots" 3.1 diskutuje o open-source honeypotech
použitých v tomto projektu a o procesu sestavení a sdílení jejich obrazů kontejnerů
se systémem honeynet.

Honeynet byl nasazen na serveru VUT po dobu 2 týdnů. Poslední sekce ukazuje
skutečnou komunikaci útočníků s kontejnery. Bylo zachyceno okolo 277000 paketů
na nichž byla udělána základní analýza, která ukazuje potenciál a nutnost honeypotu
v sítích.

NEČAS, Martin. Modular Honeypot for IT and OT. Brno: Brno University of Technol-
ogy, Faculty of Electrical Engineering and Communication, Department of Telecommu-
nications, 2023, 68 p. Bachelor’s Thesis. Advised by Ing. Petr Blažek,

Author’s Declaration

Author: Martin Nečas

Author’s ID: 231259

Paper type: Bachelor’s Thesis

Academic year: 2022/23

Topic: Modular Honeypot for IT and OT

I declare that I have written this paper independently, under the guidance of the advisor
and using exclusively the technical references and other sources of information cited in
the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,
I have not infringed any copyright or violated anyone’s personal and/or ownership rights.
In this context, I am fully aware of the consequences of breaking Regulation S 11 of the
Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach
of rights related to intellectual property or introduced within amendments to relevant
Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.
of the Czech Republic, Section 2, Head VI, Part 4.

Brno .
author’s signature∗

∗The author signs only in the printed version.

ACKNOWLEDGEMENT

Rád bych poděkoval vedoucímu bakalářské panu Ing. Petru Blažkovi, za odborné vedení,
konzultace, trpělivost a podnětné návrhy k práci.

Contents

Introduction 14

1 Theory 15
1.1 Honeypots . 15

1.1.1 Categorisation Based on Usage 15
1.1.2 Categorisation Based on Interaction 16
1.1.3 Honeypots vs IDS . 17
1.1.4 Honeypot Detection . 17
1.1.5 Honeypot Solutions . 17

1.2 Information Technologies . 19
1.3 Operational Technology . 20

1.3.1 Communication OT Protocols 21
1.4 Containers . 23

1.4.1 Linux Namespaces . 23
1.4.2 Container Networking . 24
1.4.3 Container Security . 25
1.4.4 Container Images . 26
1.4.5 Docker Compose . 27

2 Design and Implementation 28
2.1 Initial Design . 28

2.1.1 Ansible Usage . 28
2.1.2 Creation of Honeypot System 29
2.1.3 Design Problems . 29

2.2 Final Design . 30
2.2.1 Web Server . 31
2.2.2 Monitoring . 38
2.2.3 Logging . 42
2.2.4 Honeypot Creation Workflow 45

3 Results 50
3.1 Deployed Honeypots . 50

3.1.1 Deployment of IT Honeypot 50
3.1.2 Deployment of OT Honeypot 51

3.2 Captured Communication . 51
3.2.1 HTTP Honeypot . 52
3.2.2 Modbus Honeypot . 53

Conclusion 54

Bibliography 55

Symbols and abbreviations 59

List of appendices 61

A Captured Data Graphs 62

B User Manual Installation 64

C Contents of the Electronic Attachment 67

List of Figures
1.1 ISO/OSI model . 19
1.2 Operation Technology structure . 20
1.3 Containers VS Virtual Machines . 23
2.1 Linux bridge monitoring . 28
2.2 Honeynet design . 31
2.3 Web Server Database . 33
2.4 Creation of honeynet . 36
2.5 Creation of honeypot . 36
2.6 Honeynet overview . 37
2.7 Linux bridge monitoring . 39
3.1 HTTP Honeypot UI . 52
3.2 HTML Form of the captured data . 52
A.1 Comparing HTTP and Modbus number of captured packets 62
A.2 The communication grouped by source IP 62
A.3 The most common data key in HTTP request 63
A.4 The most common data value in HTTP request 63

List of Tables
1.1 Overview of Existing Honeypot Solutions 18
1.2 Linux Bridge vs Open vSwitch . 25

Listings
1.1 Base image dockerfile . 26
1.2 Base docker compose . 27
2.1 Crontab Example . 34
2.2 Web Server Container Image . 37
2.3 Monitoring dockerfile . 40
2.4 Tcpdump service code . 41
2.5 Rsyslog container image . 44
2.6 honeypot.yml.j2 . 47
2.7 monitoring.yml.j2 . 49
3.1 Honeypots Dockerfile . 51
3.2 Captured modbus communication . 53
B.1 Initiating Development Mode . 64
B.2 Production docker-compose . 65

Introduction
In the modern era, Information Technology (IT) and Operational Technology (OT)
devices are constantly threatened by cyber-attacks, underscoring the growing neces-
sity to understand these attacks and the attackers themselves. Honeypots, which
simulate systems to study attack methodologies, are instrumental in this learning
process. The data collected from these attacks are analysed and utilised in Intrusion
Prevention Systems (IPS) to thwart future attacks.

This bachelor’s thesis focuses on designing a scalable and modular honeypot
system for IT and OT communication protocols. The study is divided into three
main sections: a theoretical analysis, the design of the modular honeypot system,
and the deployment on real networks and gathered data.

The first chapter is a theoretical exploration that provides an overview of different
types of honeypots, categorises them based on their usage and level of interaction,
and compares them with Intrusion Detection Systems. It also delves into the intri-
cacies of Operational Technology systems, examining how OT devices communicate.
The final part of this chapter defines containers and explains their advantages over
Virtual Machines.

The second chapter is dedicated to designing and implementing modular honey-
pots using containers. It elucidates the construction of a web server to gather all
data from the honeypots and the communication mechanisms employed to transfer
the data from the honeypots to the web server.

The third chapter describes the deployment of the modular honeypot system. It
provides an overview of the honeypots which were used and deployed and it shows
the gathered data.

14

1 Theory
This chapter explores the theoretical aspects of the bachelor’s thesis in a detailed
manner. It focuses on honeypots, their definition, and how they are categorised. The
chapter provides an extensive overview of existing solutions in the field, shedding
light on the advancements and challenges in honeypot technology.

Additionally, the chapter discusses the technologies utilised in the design and
implementation of the thesis. It covers IT and OT protocols, highlighting their sig-
nificance and impact. The chapter also explores the use of containers, explaining
their scalability and deployment benefits. Furthermore, it touches upon container
network communication, explaining how containers interact and exchange informa-
tion.

1.1 Honeypots
Honeypots are hard to define. They are not a project or solution. The honeypot is
a computer system that acts as a decoy to lure cyber attackers and detect, deflect,
or study attempts to gain unauthorised access to information systems. Generally, a
honeypot consists of a computer that appears to be part of a network but is isolated
and monitored and which seems to contain information or a resource of value to
attackers. They can provide the attackers’ activities to the administrators with in-
formation about the attacks. Multiple honeypots in the network create honeynet. [1]

Honeypots can be categorised based on their purpose, including production and
research. Additionally, they can be classified based on their interaction level, in-
cluding low, medium, and high interaction honeypots. [1]

1.1.1 Categorisation Based on Usage

Research Honeypots

Research honeypots are primarily used for gathering information and researching
attacker behaviour, new attack techniques, and emerging threats. These honey-
pots capture detailed data about attackers. Research honeypots often involve high
interaction, emulating various services and vulnerabilities to attract attackers. [1]

Production Honeypots

Production honeypots, also known as deployment honeypots or strategic honeypots,
are designed to be integrated into an organisation’s production environment. These
honeypots detect and divert real attacks from critical systems, applications, and

15

data. Production honeypots are deployed alongside legitimate systems and services,
giving the appearance of genuine targets to attackers [1].

1.1.2 Categorisation Based on Interaction

The honeypot categorisation based on interaction refers to the level of engagement
a honeypot has with an attacker. This typically falls into three main categories:
low-interaction, medium-interaction, and high-interaction honeypots. [1]

Low-interaction

Low-interaction honeypots are designed to emulate the services and vulnerabilities
of real systems while providing limited functionality. They are typically lightweight
and easy to deploy. Low interaction honeypots simulate a few specific services, such
as open ports for common protocols like FTP or HTTP, and respond with emulated
responses when accessed by attackers. Since they have minimal functionality, they
can capture only basic information about the attacker’s activities, such as the source
IP address and the type of attack. Low-interaction honeypots are relatively simple
and require less maintenance and monitoring than higher-interaction honeypots. [1]

Medium-interaction

Medium interaction honeypots provide a more realistic environment for attackers by
simulating a broader range of services and vulnerabilities. They are designed to of-
fer a higher level of interaction, allowing attackers to interact with various emulated
services in a controlled environment. These honeypots may provide limited function-
ality and responses to attackers, enabling them to gather more detailed information
about attacker behaviour, techniques, and tactics. Medium interaction honeypots
balance realism and security, providing a more enticing target for attackers without
exposing the underlying systems. [1]

High-interaction

High-interaction honeypots are the most complex and resource-intensive type of
honeypots. They are designed to fully simulate real production systems and provide
attackers with an environment that closely mimics genuine network services and
applications. High-interaction honeypots are typically deployed using real operating
systems and applications, making them highly authentic targets for attackers. The
attackers can access them but do not affect the internal network. [1]

16

1.1.3 Honeypots vs IDS

Honeypots and Intrusion Detection Systems (IDS) are both cybersecurity tools used
to enhance network security, but they serve different purposes and have distinct
characteristics.

Honeypots are primarily focused on detecting attacks and gathering informa-
tion about attackers. They act as decoy systems designed to deceive attackers and
simulate vulnerable systems or services. By luring attackers away from production
systems, honeypots provide valuable insights into attacker techniques, tools, and
motives. [1]

On the other hand, IDS is designed for real-time intrusion detection. It moni-
tors network traffic or system events to identify suspicious or malicious activities.
IDS employs a combination of signature-based and behaviour-based detection meth-
ods [2]. However, IDS may suffer from false negatives when it fails to detect an
attacker utilising a new exploit. False positives can also occur in IDS when reg-
ular network traffic is mistakenly flagged as an attack, leading to the dropping of
legitimate packets. [1]

Honeypots address the limitations of IDS by being isolated from the production
network. Since all communication with honeypots is with potential attackers, any
activity detected can be assumed to be malicious, reducing the likelihood of false
positives. Honeypots provide a complementary approach to IDS, capturing and
analysing attacker interactions rather than real-time alerting. [1]

1.1.4 Honeypot Detection

Attackers use Honeypot detection tools to identify and avoid traps designed to
deceive and gather information about their activities, thereby minimizing their risk
of detection and countermeasures. One of these tools is the Honeypot Hunter.

The Honeypot Hunter is a tool designed to evaluate open proxy connectivity by
performing a series of tests, including setting up a false mail server and attempting
to proxy back to it to classify proxies as safe, failed, or honeypots [3].

To prevent honeypot detection, measures can be taken to make the honeypot
appear as realistic as possible. This includes ensuring the system has a believable
fingerprint, mimicking normal network traffic patterns, and employing defensive
mechanisms to deter attackers from further investigating the honeypot. [4]

1.1.5 Honeypot Solutions

Table 1.1 contains already-made honeypot solutions, which are open-source and can
be found on GitHub. This bachelor’s thesis focuses on IT and OT protocols.

17

From the OT honeypots, the thesis implementation uses the conpot project,
which has a GPL-2.0 license which allows copying the code and making changes
but does not allow changing the original license. From the IT honeypots, the thesis
implementation uses the honeypots project, which has an AGPL-3.0 license which
also allows us to modify the code and can emulate up to 25 IT protocols such as dns,
ftp, httpproxy, http, https, imap, mysql, pop3, postgres, redis, smb, smtp, socks5,
ssh, telnet etc.

Table 1.1: Overview of Existing Honeypot Solutions

Name Interaction Function
conpot1 Low Simulates OT devices
GasPot2 Low Simulates a Veeder Root Gaurdian AST
dicompot3 Low Simulates Digital Imaging and Communica-

tions in Medicine (DICOM) Honeypot
medpot4 Low Honeypot that simulates HL7 / FHIR
HoneyPLC5 High Hooneypot designed to simulate multiple PLC

models from different vendors
mailoney6 Low Simulates SMTP server
honeypots7 Medium Simulates up to 25 IT protocols
cowrie8 Medium to high SSH and Telnet honeypot
Heralding9 Low Honeypot that collects credentials
HoneySAP10 Low Research-focused honeypot specific for SAP

services
HellPot11 Low Honeypot which sends to attackers endless

stream of random data
RDPY12 Medium Simulates the Microsoft Remote Desktop Pro-

tocol (RDP) protocol
WebTrap13 Low Create deceptive webpages
1https://github.com/mushorg/conpot 2https://github.com/sjhilt/GasPot
3https://github.com/nsmfoo/dicompot, 4https://github.com/schmalle/medpot,
5https://github.com/sefcom/honeyplc, 6https://github.com/phin3has/mailoney,
7https://github.com/qeeqbox/honeypots, 8https://github.com/cowrie/cowrie,
9https://github.com/johnnykv/heralding, 10https://github.com/OWASP/HoneySAP,
11https://github.com/yunginnanet/HellPot, 12https://github.com/citronneur/rdpy,
13https://github.com/IllusiveNetworks-Labs/WebTrap,

18

https://github.com/mushorg/conpot
https://github.com/sjhilt/GasPot
https://github.com/nsmfoo/dicompot
https://github.com/schmalle/medpot
https://github.com/sefcom/honeyplc
https://github.com/phin3has/mailoney
https://github.com/qeeqbox/honeypots
https://github.com/cowrie/cowrie
https://github.com/johnnykv/heralding
https://github.com/OWASP/HoneySAP
https://github.com/yunginnanet/HellPot
https://github.com/citronneur/rdpy
https://github.com/IllusiveNetworks-Labs/WebTrap

1.2 Information Technologies
Information Technology (IT) uses computers, storage, networking and physical de-
vices to create, process, store and transfer data. It is the backbone of modern
digital systems, enabling various industries and sectors to operate efficiently and
effectively [5].

IT protocols are a set of rules, either formatting or processing data. The proto-
cols help to standardise the IT world. Despite differences in hardware or software
configurations, IT protocols provide a common language that enables different de-
vices and platforms to interact and exchange information [5].

This communication is described in Open Systems Interconnection (OSI) model
shown in Figure 1.1. OSI is a model which splits communication into seven layers.
Each layer describes a part of the IT network communication system.

Data Aplication7.

Data Presentation6.

Data Session5.

Segment,
Datagram Transport4.

Packet Network3.

 Frame Data link2.

Bit, Symbol Physical1.

Host
layers

Media
layers

Figure 1.1: ISO/OSI model

1. Physical layer transmits raw bits or symbols over medium [5].
2. Data link layer transfers data in frames between connected hosts with physical

links. Example protocols ARP, Frame relay, L2TP, etc [5].
3. Network layer bundles data in packets, handles host addressing, and deter-

mines paths, logical addressing and routing. Example protocols IP, ICMP,
RIP, OSPF, etc [5].

4. Transport layer allows a reliable data transfer; it establishes and maintains
the connections. Example protocols TCP, UDP, etc [5].

5. Session layer maintains connections between applications. Example protocols
NetBEUI, RTCP, RPC, etc [5].

19

6. Presentation layer standardises application communication and provides cryp-
tography and data compression services. Example protocols GIF, ASCII,
JPEG, MIDI, etc [5].

7. Application layer allows interfacing the user application with network flows.
Example protocols are HTTP, HTTPS, DNS, SSH, SMTP, SFTP, SNMP,
and more [5].

This bachelor’s thesis focuses on the Application layer protocols.

1.3 Operational Technology
Operational Technology (OT) refers to the hardware and software used to change,
monitor or control the enterprise’s physical devices, processes, and events. This tech-
nology is found across various industries, such as manufacturing, oil and gas, and
utilities. The Operation Technology networks are made of Industrial Control Sys-
tems (ICS), Supervisory Control And Data Acquisition (SCADA), Programmable
Logic Controllers (PLC), Discrete Process Control systems (DPC), and Remote
Terminal Units (RTU). This structure is shown in Figure 1.2. [6]

OT

SCADA

ICS

DPC

PLC

Figure 1.2: Operation Technology structure

The ICS are the centre of Operational Technologies. They are systems of mon-
itoring and controlling industrial processes, for example, electrical grids and build-
ing alarm information systems. Industrial control systems mainly focus on high-
availability and mission-critical applications. Since operational technologies are used
in these areas, the most important is control and safety of the systems. [7]

20

The SCADA systems display the system under control and allow control of each
unit. These units comprise programmable logic controllers and discrete process
control systems. SCADA systems provide a graphical interface that presents real-
time data, such as temperature, pressure, and flow rates, enabling operators to make
informed decisions and take necessary actions for optimal system performance. [7]

The PLC is a controller with digital or analogue inputs, digital or analogue
outputs and a communication protocol describing how the controller communicates.
PLCs play a crucial role in process automation by collecting sensor data, processing
it based on programmed instructions, and triggering appropriate outputs to maintain
desired system behaviour and operational efficiency. [8]

The RTU are devices used in industrial automation systems to collect and trans-
mit data from remote locations to a central control system. They act as inter-
mediaries, gathering information from sensors and equipment, and relaying it via
communication networks, enabling efficient monitoring and control of remote oper-
ations. [7]

1.3.1 Communication OT Protocols

There are many communication protocols in operational technology, such as Mod-
bus, EtherNet/IP, Profibus, Modbus, Interbus, ProfiNet, and more [9]. This
Bachelor thesis focuses on the Modbus protocol.

Modbus

Modbus is a data communication protocol that uses a request-response model. The
Modbus is based on server and client topology. The server sends the requests to
the clients to do something, and the clients respond to the request. It is one of
the most widely used protocols in operational technology, especially manufactur-
ing. The Modbus is primarily used in communication between supervisory control,
data acquisition systems, sensors, and programmable logic controllers. The Modbus
protocol is open source, easy to use and reliable for transferring data. [10]

Modbus RTU

Modbus Remote Terminal Unit (RTU) is the most common serial transmission pro-
tocol. There are two types, the Modbus RTU, which transmits the data in binary
and the Modbus American Standard Code for Information Interchange (ASCII),
which sends data in plain text. That makes the Modbus ASCII less secure than
Modbus RTU. The Modbus RTU should be used unless the communication can not
support the binary transfer. In that case, the Modbus ASCII should be used. The

21

Modbus RTU and Modbus ASCII are connected with a point-to-point connection,
which provides a channel for communication between two ports. Modbus RTU can
only have one client and up to 247 server devices. The Modbus RTU networks are
made of EIA-approved RS-485, RS-422, or RS-232 physical standards describing
serial communications. [10]

Modbus TCP

Modbus TCP is an industrial Ethernet protocol that uses TCP/IP at the transport
layer, as shown in Figure 1.1. It solves the problems of Modbus RTUs by using the
ethernet instead of serial links. Communication is faster, can be sent over longer
distances and can be used in the IT infrastructure. It also solves the issue of multiple
devices in one network. [10]

There are two types of Modbus TCP. First, there is the Modbus TCP and
Modbus over TCP. The Modbus TCP uses the Modbus packets in the TCP layer.
Modbus over TCP is Modbus RTU packet over TCP, and this Bachelor thesis focuses
on the Modbus TCP packets. [10]

The Modbus TCP comprises of Modbus application protocol (MBAP) header,
a 7-byte header. The header identifies the Modbus Application Unit (ADU) that is
used. The Modbus standard uses TCP port 502. [10]

Secure Modbus

In 2018, the Modbus Security protocol was published. The Modbus Security protocol
does not change any specification of Modbus but defines the usage of Modubs with
Transport Layer Security (TLS) and with certifications [11].

Industry 4.0

Lately, OT and IT are slowly overlapping each other. This overlap creates OT
systems which can run on IT-based networks, creating Industry 4.0. One of the
examples is the Modbus TCP protocol, as mentioned in Section 1.3.1, which is used
for industrial operations but uses the ethernet and can communicate over the IT
infrastructure [12].

22

1.4 Containers
A container represents software operating on an existing operating system [13]. This
software introduces an independent layer that doesn’t interfere with the host oper-
ating system but instead encapsulates resources like storage, CPU, and networking
capabilities [14].

Containers are designed to execute programs and bundle all essential dependen-
cies, ensuring no disruption to the host operating system on which they operate.
Docker represents a commonly used command-line interface for managing contain-
ers, providing functionalities such as creating new containers, building container
images, and interacting with these containers. [13]

When comparing containers to Virtual Machines (VMs), as demonstrated in
Figure 1.3, distinct differences become apparent. VMs generate an abstraction layer
over physical hardware, facilitating the operation of multiple servers on one machine.
However, each VM requires a full operating system layered over the host operating
system, resulting in potentially excessive storage use. [13, 14]

The containers still need some host operating system. Instead of the guest oper-
ating system, it uses a container engine such as the Docker Engine, which allows the
programs to run on top of the host operating system but with an extra separation
layer. [13]

App A App B App C App D

Container Engine

Host Operating System

Infrastructure

Host Operating System

Infrastructure

Guest
Operating
System

App A

Guest
Operating
System

App A

Guest
Operating
System

App A
App E

Virtual machinesContainers

Figure 1.3: Containers VS Virtual Machines

1.4.1 Linux Namespaces

Linux namespaces offer a method for abstracting global system resources, creating
an illusion that processes within a namespace have their isolated instances of those
resources. As a result, modifications to a resource are visible to processes within the

23

same namespace but not to those outside it. Linux namespaces are widely used in
container implementation. [15]
Several types of Linux namespaces exist, with the most common ones listed below:

• Cgroup – Limit and monitor the resources
• IPC – System V IPC, POSIX message queues
• Network – Network devices, stacks, ports, etc.
• Mount – Mount points
• PID – Process IDs
• Time – Boot and monotonic clocks
• User – User and group IDs
• UTS – Hostname and NIS domain name

Each namespace type offers distinct isolation levels, enabling containerised applica-
tions to operate independently from one another and the host system. [15]

1.4.2 Container Networking

A key aspect of containerisation is the capacity to isolate networking resources and
functions using Network namespaces. Network namespaces provide isolation from
the host network, which is crucial for security and stability. However, they do not
offer any additional capabilities beyond basic network isolation. [16]

A virtual switch is required to manage communication between network names-
paces to facilitate packet forwarding and other advanced networking functionalities.
The Linux bridge is a widely-used virtual switch that functions as a network switch
and oversees packet forwarding between connected interfaces. Its primary use in-
volves forwarding packets on routers, gateways, and between VMs and network
namespaces on a host. [17]

This bachelor’s thesis concentrates on container networking and the capture of
communication between containers and attackers. Containers are situated in isolated
network namespaces, ensuring they remain separate from the host networks.

Veth devices are virtual Ethernet devices capable of acting as tunnels between
network namespaces, forming a bridge to a physical network device in another
namespace. They can also function as independent network devices. [18]

Linux Bridge vs Open vSwitch

An alternative to the Linux bridge is Open vSwitch (OVS), which supports the
Switched Port Analyzer (SPAN). OVS is particularly appealing for this thesis due
to its SPAN port compatibility. [19]

Table 1.2 contrasts the Linux bridge with OVS. OVS supports SPAN ports, which
mirror incoming or outgoing communication from the switch, making it an ideal tool

24

for monitoring incoming packets from attackers [19]. However, since Docker does
not support OVS by default but uses bridge [20], manually creating an OVS bridge
for each container is the only option, rendering it impractical.

Table 1.2: Linux Bridge vs Open vSwitch

Support Linux Bridge Open vSwitch
Default implementation in Docker yes no
Switched Port Analyzer no yes
Adding extra connections yes yes
Kernel module yes no

Consequently, the decision was made to use the Linux bridge, which lacks SPAN
port support. An alternative is to monitor communication passing through the veth
on the host machine, the default gateway inside the namespace. This way, tcpdump
collects all communication and filters it by destination IP within the namespace.

Bridge Network vs Host Network

The Bridge network is the default network driver for Docker. When an applica-
tion runs in a container and needs to be accessible on a network, it’s commonly
deployed in a bridge network. This network is isolated from the host, meaning that
the application won’t have access to its network but can communicate with other
applications in the same network. This adds a layer of security and allows better
control over network resources. [20]

On the contrary, the Host network driver removes the network isolation between
the Docker host and the Docker containers. This means a container can directly
access the host’s network. However, this also means that the container can read and
send all traffic to the host, which can be a security risk. [21]

1.4.3 Container Security

Container security relies on various components to ensure the overall security of
containers. These components include Control Groups (cgroups), Linux Kernel Ca-
pabilities, Linux namespaces, and more. Control Groups allow Docker to manage
resources and isolate containers, thereby enabling efficient allocation and prevent-
ing any potential abuse of resources. Linux Kernel Capabilities play a crucial role
in limiting container privileges, thereby reducing the attack surface and restricting
access to critical operations. Additionally, Linux namespaces provide isolation for
various aspects of a container’s environment, including processes, networking, and
file systems. Through the utilisation of these technologies, Docker achieves strong

25

isolation, precise resource control, and fine-grained privilege management, resulting
in enhanced security for containerised environments. These measures contribute to
an overall secure ecosystem. [22]

This bachelor’s thesis uses the Linux Kernel Capabilities to restrict the capa-
bilities of honeypots, limiting the actions that containers can perform in the case
that an attacker gains access to the honeypot container. By implementing these re-
strictions, the thesis aims to mitigate the potential damage caused by unauthorised
access, ensuring that the containers within the honeypot environment remain con-
tained and do not pose further risks. The use of Linux Kernel Capabilities serves as
a valuable security measure, providing an additional layer of protection and control
within the honeypot system.

1.4.4 Container Images

A container image is a lightweight, standalone, executable package that includes
everything needed to run the software, including the code, a runtime, libraries,
environment variables, and config files [13].

Docker images are built from Dockerfiles. A Dockerfile is a text document that
contains all the commands a user could call on the command line to assemble an
image [23]. The following list describes the Listing 1.1, which shows an example of
a simple application.

• FROM initialises a new build stage and sets the Base Image for subsequent
instructions [23].

• COPY copies new files or directories from <src> and adds them to the filesys-
tem of the container at the path <dest> [23].

• RUN will execute any commands in a new layer on top of the current image
and commit the results [23].

• CMD provides defaults for an executing container [23].

Listing 1.1: Base image dockerfile
FROM ubuntu :18.04
COPY . /app
RUN make /app
CMD python /app/app.py

The Docker image can be built using the command:
docker build -t image_name [24]. Once built, the Docker image can be pushed
using the command: docker push registry:port/name:tag. The image must be
tagged with the registry path name, as shown in the command:
docker image tag image_name registry:port/image_name:tag [25].

26

Container Registries

A container registry is a server application that stores and distributes Docker im-
ages [26]. These registries can be accessed via the Docker Command Line Interface
(CLI) or other tools using the docker push and docker pull commands to upload
and download images [25, 27].

1.4.5 Docker Compose

Docker Compose is a tool for defining and running multi-container Docker applica-
tions. It uses YAML files to configure the application’s services and performs the
creation and start-up process of all the containers with a single command. [28]

The Docker Compose uses file docker-compose.yml. The docker-compose.yml
file is a YAML file defining services, networks, and volumes for a Docker applica-
tion. [28]
Figure 1.2 shows a basic structure of a docker-compose.yml file.

Listing 1.2: Base docker compose
version : ’3.1 ’
services :

web:
image: nginx: latest
ports:

- "80:80"
database :

image: postgres : latest
environment :

POSTGRES_PASSWORD : example

The Docker Compose file defines two services: web and database. The web
service uses the latest nginx image and maps the container’s port 80 to the host’s port
80. The ‘database‘ service uses the latest PostgreSQL image and sets an environment
variable with the key POSTGRES_PASSWORD and value example.

27

2 Design and Implementation
This chapter describes the design development stages of the bachelor’s thesis. The
initial design used VMware ESXi hosts but encountered challenges regarding using
Virtual Machines (VMs) and licensing. The chapter’s second section describes the
final design using containers, and it shows all components, such as the web server,
monitoring and logging.

2.1 Initial Design
The first version of the bachelor’s thesis design did not integrate containers and
went through various design phases. The initial design shown in Figure 2.1 used
VMware ESXi hosts to manage VMs. One of the reasons to use VMware was the
default integration of the Open vSwitch [29], which can create SPAN ports that
mirror the communication [19]. The design consisted of a management VM creating
honeypots, monitoring attackers’ communication, and sharing the information with
the administrator.

VMware ESXi host

ansible

managment
VM

create
VMware API

honeypot VM

honeypot
monitoring

Attacker

Administrator

Open vSwitch

promisc
interfaceeth veth

Caputred
communication

Creation of VM

Attacker
communication

Figure 2.1: Linux bridge monitoring

2.1.1 Ansible Usage

Administrators use Ansible playbooks to define the desired state of the server. These
playbooks contain tasks, each of which includes modules, and each module is essen-
tially a Python script that manages a specific action. The characteristic of Ansible
that ensures the server remains in the state defined in the playbook is its idem-
potency. This allows for consistency and reproducibility in the management of
servers. [30]

28

The VMware ESXi server communicates with an API (Application Programming
Interface) via the VMware Software Development Kit (SDK). Ansible interacts with
this API, sending requests to create the VM, upload the disk, and perform other
tasks. [31]

2.1.2 Creation of Honeypot System

The initial step in the honeypot creation process involved the management Virtual
Machine (VM). This VM would manage the whole honeynet system and the ESXi
host. All captured data would be stored on this VM.

After deploying the honeynet from the VM web server, the web server would start
the Ansible playbook to create the necessary virtual switch in promiscuous mode
and the one promiscuous interface attached to the web server VM through which the
communication would be monitored. Once everything is configured, the playbook
will upload a pre-constructed disk containing all necessary honeypot dependencies.
This disk upload process was time-consuming as it required the upload of the entire
operating system, highlighting the advantages of using containers in the final design.
After the VM is ready, Ansible would add the VM to its inventory and start another
playbook inside it, deploying the honeypot.

2.1.3 Design Problems

The VMware ESXi was chosen for its free license, which led to some compromises,
such as creating a virtual switch in promiscuous mode instead of the SPAN ports
because the SPAN ports are supported in the vCenter, which would require addi-
tional licences [32, 33]. The VMware ESXi free license does not support the API
communication needed to deploy the honeypot system with Ansible.

An alternative could be the free and open-source virtualisation oVirt, which uses
the Open vSwitch to switch virtualisation. It also supports the monitoring interfaces
for communication, making it a better fit than VMware ESXi. [34]

Ultimately, the design changed to use containers instead of Virtual Machines,
removing the extra necessary operating system overhead and making it faster to
deploy.

29

2.2 Final Design
This bachelor’s thesis aims to design and implement a modular honeypot system to
collect vast amounts of data from attacks akin to the Research Honeypots discussed
in Section 1.1.1. The system must capture all communication with the honeypots
to achieve this. The design needs to be modular to enable easy extension and
installation. The containers solve both of these criteria. The final design, illustrated
in Figure 2.2, consists of several components.

The final designs took inspiration from the "A dynamic honeypot design for in-
trusion detection" article [35]. The design share usage of the Administrator Web
Interface to manage the honeynet system, log the honeypot events and monitor
the ethernet segment communication. This design also takes the design step fur-
ther, implementing the network namespaces for running multiple honeynets on one
host, separating all components into containers and gathering all information on a
centralized remote server.

The web server orchestrates the honeypot system, storing all packets captured by
the monitoring container before forwarding them to the central logging server. The
web server features a User Interface (UI) that allows administrators to interact with,
manage, and monitor the honeypots. The UI enables administrators to create a new
honeypot system. Additionally, the web server facilitates CRON export, transmit-
ting captured data to the centralised logging server based on a predetermined CRON
schedule. Finally, the web server includes an Application Programmable Interface
(API) that accepts captured data from the monitoring containers for storage in the
database and on the web server.

The syslog server archives system logs from all honeypot, monitoring, and web
server containers. The syslog server logs all data to a file as a container. These
stored files are mounted to the web server, enabling the web server and the syslog
container to access the logs for automatic export to the centralised logging server.
The syslog server container’s network interface is incorporated into each honeynet
network namespace, allowing all honeypots to send log messages to the server. This
setup results in a single syslog server aggregating data from all active containers.

The honeypot container contains a service exposed to the external host network
via a specific port, enabling communication with potential attackers. All honeypots
are initiated with the syslog server address, to which all standard output will be
logged. Administrators only need to specify the container image address, and the
web server will integrate it into the container network namespace.

Each honeypot is accompanied by a monitoring container, which initiates tcp-
dump on the bridge interface. All communication to the network namespace passes
through this interface, and the honeypot IP address filters the communication. Tcp-

30

dump dispatches the captured data either when the volume of captured data sur-
passes the set limit or when the predetermined timeout expires. After sending the
data to the web server, tcpdump is restarted.

network namespace centralized
logging

Attacker Admin

veth
linux bridge monitoring

monitoring
Monitoring

Honeypot
Honeypot
Honeypots

syslog server

veth
eth

host

website

cron export

API

Attacker
communicaiton

Syslog
communication

Captured
communication

Virtual network
components

Monitoring
container

Website
container

Syslog
container

Administrator
communication

Honeypot
container

Figure 2.2: Honeynet design

2.2.1 Web Server

The web server is the centre of the whole honeypot system. It serves multiple
purposes, such as the User Interface for the administrator and the database of stored
packets. It also creates the whole honeypot system using the docker-compose tool.

The web server needs to manage the host containers and container networks.
This was one of the issues encountered during the design. One potential solution
was to run the web server directly on the host operating system rather than within
a container. However, this solution was not chosen due to the increased complexity
it would introduce to installing the honeypot system. Eventually, the issue was
resolved by mounting the docker socket to the web server container. This way, the
web server container is able to access and manage the host containers and host
container networking.

31

Django Python Framework

The web server was designed to use Django Python Framework to handle web server
logic and incoming requests and generate dynamic web pages. Django is a high-level,
open-source Python web framework [36].
Key features and capabilities of Django include:

• Model-View-Controller (MVC) Design Pattern: Django uses the MVC
architectural pattern, a practical system for managing intricate applications. It
divides an application into three interlinked components: the Model, the View,
and the Controller. This separation allows the design to modify individual
elements without impacting others [36].

• Object-Relational Mapping (ORM): Django’s ORM enables developers to
interact with the database as SQL, providing a Pythonic interface for creating,
retrieving, updating, and deleting records in the database. The ORM helps
prevent SQL injection by providing parameterised queries, where user input is
treated as data rather than executable code [36].

• Admin Interface: Django offers a built-in administrative interface that is
highly customised and ready to use. This admin interface offers a user-friendly
UI for managing the data within your application [36].

Database

One crucial server component is the database, which organises and stores various
data. The database consists of seven tables, as depicted in Figure 2.3, each serving
a specific purpose:

• Honeynet: This table represents multiple honeypots within the same net-
work namespace. It allows the administrator to specify the subnetwork of the
network namespace.

• Honeypot: The Honeypot table contains essential data for each honeypot,
including details such as the image used to start the container and the exposed
port on the host network. Additionally, it specifies tcpdump parameters such
as filters, the maximum size of the pcap file, timeout for sending pcaps to the
web server API, and any extra arguments required by the administrator.

• HoneypotSyslog: Each honeypot in the network namespace has an assigned
address for the Syslog server, which is stored in this table.

• HoneypotExport: This table specifies the address, username, password, and
path where captured data should be stored. It also includes a crontab entry
to define the frequency at which the data should be sent.

• AttackDump: The AttackDump table maintains the paths to the captured
pcap files received by the server. It stores the location of the pcap file within

32

the web server container and the timestamp indicating when it was received.
• HoneypotAttack: Honeypots can send specific data to the web server in

JSON format. This table stores the received JSON data from the honeypots.
• Attacker: When a honeypot sends data via the HoneypotAttack, it may

include the IP and MAC address of the attacker. The Attacker table stores
this information.

HoneypotSyslog

id

address

tag

format

labels

tls_ca_cert

tls_cert

tls_key

HoneypotExport

id

address

path

username

password

crontab

Honeypot

id

name

ip_addr

syslog

honeynet

image

ports

tcpdump_filter

tcpdump_max_size

tcpdump_timeout

tcpdump_extra_args

Honeynet

id

name

subnet

export_id

Attacker

id

source_addr

source_port

mac

HoneypotAttack

honeypot

attacker

data

timestamp

AttackDump

honeypot

timestamp

path

Figure 2.3: Web Server Database

By default, Django uses the SQLite database, which stores all data within a file.
This feature is beneficial during web application development as it requires no pre-
requisites or database setup. However, it poses a setback during deployment with
a container. If a container utilising the SQLite database is restarted, all data could
be wiped out. [37]

A remote database, specifically the PostgreSQL database, was selected to circum-
vent this issue. PostgreSQL is a free, open-source relational database management
system. [38]

33

The PostgreSQL database server can operate externally to the host, requiring
network access from the web server. However, PostgreSQL was set up within another
container the Django web server could connect to for this specific implementation.
This arrangement allows the Django web server to be restarted and updated with
new code while ensuring data persistence.

Cron Export

In this bachelor’s thesis, Cron has been used to automate exports to external stor-
age. Administrators specify the crontab format to determine the frequency of data
exports, and the web server starts this operation as a background process [39]. The
export sends all captured pcap files, honeypot syslogs, and specific data from the
database. Once all data are successfully sent to the external storage, they are deleted
from the web server to free up storage for more data.

The Cron is a fundamental technology within UNIX. Operating as a background
system daemon, it executes commands according to a predetermined schedule [39].
To define the timing for script execution, Cron uses files referred to as ’crontabs’ [40].
The crontab uses the format minute hour day month day script. Examples of
this format are displayed in Listing 2.1.

Listing 2.1: Crontab Example
5 4 * * * script .sh # AT 04:05.
0 */4 * * * script .sh # At minute 0 past every 4th hour.

Application Programming Interface

The API is crucial for facilitating interactions with honeypots. Each monitoring
container communicates with the API by sending data to its web service endpoints.
The API is designed with multiple endpoints, each serving a different purpose. The
list of the API endpoints utilised by the honeypot:

• honeypots/<uuid>/upload – This endpoint is used for uploading pcap
files from tcpdump.

• honeypots/<uuid>/attack – This endpoint is used for uploading specific
data from the honeypot.

The API uses the Django Rest Framework (DRF), a powerful and flexible toolkit
for building Web APIs. It’s a modular, flexible, customised API framework built on
Django and Python. [41] Key features of Django Rest Framework include:

• Web browsable API: DRF provides a user-friendly web interface to navigate
the API, making it easy to understand and test [41].

34

• Authentication & Authorisation: DRF comes with multiple authentica-
tion methods and provides a robust and customised system for managing API
access [41].

• Serialisation: DRF provides a powerful serialisation engine compatible with
ORM and non-ORM data sources, effortlessly handling complex and nested
JSON structures [41].

Authentication and Authorisation

The API uses Authentication and Authorisation to allow only existing users to
upload data to the web server. The web server creates a user for each monitoring
container. This way, even if the attacker gets access to the monitoring container,
they could only upload data but not get, remove or change any data. So the honeypot
would still know the attacker’s steps and how he got to the system.

In the design, every monitoring container initiates with a secret token passed
in an environment variable named TOKEN. This token is critical for authentication,
acting as a unique identifier to validate the honeypot’s identity when interacting
with the API.

Once authenticated, authorisation rules come into play. In the system, each
honeypot user is granted permission only to send data to the honeypot associated
with the same UUID as the user. This restriction ensures that each user can interact
only with the intended honeypot, enhancing the security and data integrity of the
system.

User Interface

The User Interface (UI) is created for administrators’ easy usage of the honeypot
system infrastructure. The UI of the system uses the Bootstrap framework for its
responsive design capabilities.

The administrators can create the honeypot system in the UI. They can specify
the name of the honeynet, the network namespace’s subnetwork and the auto export
to the remote storage server. The UI of this action is shown in Figure 2.4.

In the honeynet, the administrators can create a honeypot with a name and
container image containing the honeypot itself. The administrator can specify the
networking of the honeypot, such as the IP address with which the container should
be started and the exposure of ports, which creates a tunnel to the host network on
a specific port. The last parameters the administrators can specify for the honeypot
are the tcpdump parameters. They can specify the filter of the listening packets.
The timeout at which the capturing packets should be stopped, sent to the web
server API and started again. The max file size specifies the threshold on the size

35

Figure 2.4: Creation of honeynet

of the log/network-trace files that when reached, the file is sent to the web service
API. The last parameter of tcpdump is the tcpdump extra arguments for any extra
parameters that allow the monitoring container to run. The UI of this action is
shown in Figure 2.5.

Figure 2.5: Creation of honeypot

Once the honeynet with the honeypot is created, it has an overview of the hon-
eypots in the graph shown in Figure 2.6. The graph is made with the ’AnyChart’
JavaScript library. The AnyChart is a JavaScript library that provides a wide range
of powerful and customisable charts. In the graph are shown honeypots with their
IP in the network namespace. The administrators can click on the honeypot in the
graph to view its details as shown in Figure 2.5 and to show all its captured data.

36

Figure 2.6: Honeynet overview

Container Image

The web server is running in a docker container, so it needs to have the docker file
to specify how it should be installed and started. The docker file also specifies the
dependencies of the whole project. This provides easy installation on any system-
supporting containers. The administrators do not need to install any dependencies
but simply start the container. The Listing 2.2 shows the docker file.

Listing 2.2: Web Server Container Image
FROM ubuntu : latest

COPY . /code/
WORKDIR /code

ENV DEBIAN_FRONTEND = noninteractive
RUN apt update -y
RUN apt install python3 python3 -pip cron libpq -dev -y
RUN pip3 install -r requirements .txt

Install docker and docker - compose
RUN apt install docker docker - compose -y

37

The docker file is made of multiple parts:
• The Docker file starts by using the latest version of the Ubuntu base image

using the FROM instruction.
• The COPY instruction is then used to copy the honeynet project directory (.)

to the /code/ directory in the container.
• The WORKDIR instruction sets the working directory to /code/.
• The ENV instruction sets three environment variables. The DEBIAN_FRONTEND

is set to noninteractive, sets the front end to non-interactive mode, and
disables any prompts during package installations.

• The RUN instruction updates the package index and installs several packages
including python3, python3-pip, cron, and libpq-dev. The python3 pack-
age is needed for running the Djnago web server. The python3-pip is a Python
package manager needed for installing the Django framework and its Python
dependencies. The cron package is needed to export the gathered data auto-
matically. The last required system package is the libpq-dev, which contains
the required PostgreSQL system libraries. These are needed for the web server
connection and communication to the remote database.

• The RUN instruction than installs the packages listed in the requirements.txt
file using pip3. Which installs all the web server Python dependencies such
as Django web server, Django REST API, jinja2 for the jinja templating and
more.

• Finally, the RUN instruction installs Docker and Docker Compose by installing
the docker and docker-compose packages using apt. Which are needed man-
agement of the host containers and the creation of the honeypot system.

2.2.2 Monitoring

The monitoring needs to capture all incoming and outgoing communication to the
honeypot. The communication needs to be sent to the web server API. This moni-
toring is represented in Figure 2.7.

The monitoring is also a container as all the honeynet components. The con-
tainer must monitor the Linux bridge interface connected to each honeynet network
namespace. By default, the docker containers are started in their network names-
pace. The administrators can specify the network namespace the container should
be started with.

One solution could be adding the mirroring container to the network namespace
of the honeynet. This solution was not chosen for security reasons. If the attackers
could get inside the honeypot container, they could scan the network namespace
and see the mirroring container. Another reason why this solution was not chosen

38

is that the monitoring container needs to send the captured data to the web server
API. For this, the monitoring container needs to have network access to the web
server, and the web server would need to be inside the network namespace. This
would also expose the web server to attackers and allow further attacks.

The solution which was chosen was that the monitoring container would run in
the host network mode. The mode allows the container to access the host network
stack. This allows the container to monitor the host bridge interface, which is
connected to the network namespace through which all communication goes to the
network namespace. This way, the monitoring container will not be visible to the
honeypot container inside the network namespace. The web server must also run
with the host network mode so the monitoring container can easily send data to the
web server API.

There is one running monitoring container for every honeypot, which filters the
communication by the honeypot IP address. This splits the communication across
multiple containers. Each container sends the captured data to its corresponding
API endpoint.

network namespace

Attacker

veth
linux bridge

Honeypot
Honeypot
Honeypots

eth

Host

Attacker
communication

Captured
communication

Virtual network
components

Honeypot
Honeypot
Monitoring

Monitoring
container

Honeypot
container

Figure 2.7: Linux bridge monitoring

Container Image

Like all the honeynet components, the monitoring component is a container, so it
also needs its container image, which describes what the container should consist of

39

and what it should do when running. The container images docker file is specified
in Listing 2.3.

Listing 2.3: Monitoring dockerfile
FROM ubuntu : latest
WORKDIR /code/
COPY . .
RUN apt -get update -y
RUN apt -get install tcpdump inotify -tools \

util -linux curl libcap2 -bin -y
RUN groupadd -r tcpdumpuser
RUN useradd -r -g tcpdumpuser tcpdumpuser
RUN groupadd pcap
RUN usermod -a -G pcap tcpdumpuser
RUN chgrp pcap /usr/bin/ tcpdump
RUN chmod 750 /usr/bin/ tcpdump
RUN setcap cap_net_raw , cap_net_admin =eip /usr/bin/ tcpdump
USER tcpdumpuser
CMD ["./ honeypot ", "start"]

The docker file is made of multiple parts:
• The Docker file starts by using the latest version of the Ubuntu base image

using the FROM instruction.
• The WORKDIR instruction sets the working directory to /root/.
• The COPY instruction is then used to copy the honeynet project directory (.)

to the WORKDIR, which is the root directory in the container.
• The RUN instruction updates the package index and installs several packages

including tcpdump, inotify-tools, util-linux, curl and libcap2-bin.
• The following RUN instructions create the tcpdumpuser user and pcap group

which is added to the user and the group grants access to the tcpdump binary
file, with these instructions, the tcpdump will not require the root privileges.

• The USER instruction specifies the user with which the container will be started,
in this case, the created user tcpdumpuser.

Tcpdump

The Tcpdump is used to monitor the Linux bridge that is connected to the Honeynet
network namespace.

The tcpdump is a powerful tool in the UNIX system. It allows capturing all
incoming and outcoming communication packets [43]. This tool also allows filtering

40

communication by specified filters [43]. For example, tcpdump -i eth0 tcp for
filtering all TCP packets on interface eth0.

The tcpdump program can be initiated with various arguments that impact its
functionality. The honeypot tcpdump service utilises the following parameters.

• The option -w specifies the file path where the captured packets should be
stored. The file is in the format pcap, which can be opened in data analytic
software such as Wireshark [42, 43].

• The option -W specifies the number of files created per rotation. In the hon-
eypot, the base is used for just one file. The tcpdump rotation represents a
start of capturing packets and is ended by one of the triggers, either by the
-C, which specifies the maximum size of the file or by the -G, which specifies
the timeout. [43]

• The option -C specifies the maximum file size in Megabytes before finishing
the capture, starting a rotation script specified by -z, and starting the new
capture again. [43]

• The option --packet-buffered with option -w causes packets to be stored
in the file instead of waiting for the buffer to be filled. This is needed in
honeypots in case the honeypot stops or failed still has all captured packets
stored in the file instead of volatile RAM. [43]

• The option -G specifies the timeout after which the tcpdump should finish
and start, which clears the captured files from -w and start capturing packets
again. This separates the captured communication into smaller parts. [43]

• The option -z specifies which script should be started after the rotation. For
example, -z gzip would compress the captured data in the gzip format file.
In the honeypot use case, it starts the script, which sends the stored pcap file
to the web server [43].

Most options are used with the environment variables to make the tcpdump more
configurable. The environment variables can be set during the container startup,
which makes the container more modular since the image can be the same, and the
only thing that changes are the variables. The final tcpdump service command with
all the options used together is shown in Listing 2.4.

Listing 2.4: Tcpdump service code
tcpdump -W 1 -C $TCPDUMP_MAX_SIZE -G $TCPDUMP_TIMEOUT \

--packet - buffered -i any -w $TCPDUMP_FILE \
$TCPDUMP_FILTER -z $PWD/ send_data .sh

41

Container Runtime

As with all other components, the monitoring is also made modular, fast and easy
to install. The monitoring comprises one container image, which can be started
with various environment variables. The monitoring container needs to capture all
incoming and outcoming communication to the honeypot, and the attacker can not
see the monitoring container. By default, all docker containers are started in the
network namespace, so they can not interact with the host networking devices; this
could cause a huge security risk to the host, but the monitoring containers need
to see the host network to access the virtual ethernet interface connected to the
honeynet system.

The monitoring container is started with the host network mode, which does
not add the container to its separate network namespace but uses the host net-
work resources. Due to this, the web server container can monitor the host network
interfaces, such as the virtual ethernet interface connected to the network names-
pace from the honeynet. Because of this, the monitoring container can capture all
incoming packets to the honeypot container and filter by the honeypot IP address.

The monitoring container is started with multiple environment variables. The
following list describes the most important variables for the monitoring container.

• SERVER – The address to the webserver to which the captured pcap files should
be sent.

• TOKEN – The token the monitoring container will use to authenticate and au-
thorize itself to the web server.

• ID – The ID of the honeypot for which it is listening to the data. The ID is
used to specify to which API endpoint the captured data should be sent.

• TCPDUMP_EXTRAARGS – The container starts with the tcpdump extra arguments
to specify which virtual ethernet to start listing the communication.

• TCPDUMP_FILTER – The honeypot container is started before the mirroring
container. This way, the monitoring container can get the assigned IP address
of the container. This address filters incoming communication to the network
namespace through the virtual ethernet connected to the Linux bridge.

2.2.3 Logging

Logging is an essential part of this bachelor’s thesis, which designs the research hon-
eypots which should gather as much data as possible. The design logs all incoming
and outcoming communication and all logs from every container. For this, multiple
technologies were used, such as tcpdump for monitoring the communication of the
honeypot with the attacker or the syslog for monitoring the container log. All logs

42

are stored in the web server and later sent with the automatic export to the central
logging server, which can hold data from multiple honeynet infrastructures.

Syslog

Syslog is a standard protocol to send system messages across a network. It allows
applications and devices to send log messages to a central server for storage, analysis,
and reporting. The Syslog protocol defines a standardised message format. [44]

The Syslog format is a standard logging format used for exchanging event mes-
sages. It consists of a header with fields like priority, timestamp, hostname, and
application name, and optional fields like process ID and message ID. The message
part contains the actual log content. Syslog messages are transmitted over UDP or
TCP and can be stored locally or sent to a centralised server for analysis. [44]

Rsyslog

The Syslog is used for logging all container logs. Each container is configured to
send all its logs to the rsyslog server. The rsyslog stores all syslogs to files and shares
it with the web server, which later sends them to the centralised logging server.

Rsyslog is an open-source implementation of a syslog server that provides ad-
vanced features and capabilities for receiving, processing, and storing log messages.
It is widely used in Linux and Unix systems as the default syslog daemon due to its
flexibility and scalability. [45]

The Dockerfile shown in the Listing 2.5 uses an Ubuntu base image using the
FROM instruction. The next two RUN instructions update the Ubuntu package index
and install the rsyslog package.

Following this, the RUN instruction sets the configuration for rsyslog by append-
ing a series of commands to /etc/rsyslog.conf file. The commands in the echo
statement load the imudp and imtcp modules, configure rsyslog to listen for UDP
and TCP traffic on port 514, define a custom logging template called RemoteStore,
and specify that logs received from any source other than localhost should be
stored in a file path under /var/log/remote/ directory, named based on the sys-
logtag, and the current date.

Finally, the ENTRYPOINT instruction specifies that the container should run the
rsyslogd daemon in the foreground with the -n option. This will allow the container
to continuously process incoming logs and store them in the configured location.

43

Listing 2.5: Rsyslog container image
FROM ubuntu
RUN apt update && apt install rsyslog -y
RUN echo ’$ModLoad imudp \n\
$UDPServerRun 514 \n\
$ModLoad imtcp \n\
$InputTCPServerRun 514 \n\
$template RemoteStore ,

"/ var/log/ remote /% syslogtag %/% $day %-% $month %-% $year %. log" \n\
:source , !isequal , " localhost " -? RemoteStore \n\
:source , isequal , "last" ~ ’ > /etc/ rsyslog .conf
ENTRYPOINT [" rsyslogd ", "-n"]

Centralized Storage

The centralised storage system is designed to collect all the data gathered from
multiple honeynet infrastructures, offering administrators a single point of reference
for monitoring collected information. The web server automatically sends the data
to the web server using a Linux cron, which executes the files depending on the
schedule.

The centralised storage server in this setup operates an FTP server. The web
server needs to have communication capabilities with the FTP. So the web server
uses a script to manage the connection, log in, create the directory structure, and
send the file to the FTP server.

While setting up the honeynet in the web servers UI, administrators can set the
remote logging server and the corresponding path for data storage, expressed in the
format ADDRESS:PATH. Additionally, the administrator must provide the username
and password for the account intended to establish this connection. The last required
parameter is the schedule for the data export, defined in the crontab file format,
instructing the web server on the frequency of log transfers to the central logging
server.

Upon entering all the requisite information and creating the honeynet system,
the web server attempts to connect to the FTP server using the provided details.
If the connection cannot be established, the web server presents the administrator
with an error message, indicating an issue and specifying the nature of the problem.
If the connection is successful, the web server generates the honeynet object and
adds it to the database. As the administrator adds more honeypots, data collection
begins on the web and the rsyslog servers.

44

The cron job, once initiated, triggers a script responsible for data transfer to
the central logging server. This script initiates a connection to the FTP server,
logs in using the credentials provided during honeynet setup, and changes the root
directory to the path defined in ADDRESS:PATH. It then creates a directory structure
in the format honeynet/<HONEYNET_NAME>/<CONTAINER_NAME>. After establishing
the directory structure, it transmits the captured pcap and syslog files from rsyslog.
Assuming all processes function correctly, the script will delete the data to free up
space for future data capture.

2.2.4 Honeypot Creation Workflow

When the administrator creates a new honeynet, the web server creates a network
namespace on the host using the docker command-line interface. After the honeynet
is successfully created, the administrator can add new honeypots.

The honeypot creation comprises the honeypot container deployment and the
honeypot monitoring container. For both of these deployments, docker-compose is
used, which helps to start up multiple containers at once using the docker-compose
files. The files specify what services should be started and their configurations. To
make the configuration modular so the web server can pass some data to specify
how the services should be started, use the Jinja template.

Jinja is a powerful and flexible open-source templating engine for Python, which
allows variable substitution to insert values into text documents. These variables
are enclosed in double curly braces {{ }}. It also supports control structures like
loops and conditionals. For example, {% for item in items %} to start a loop
and {% endfor %} to end it and the {% if condition %} to start the block with
the condition and {% endif %} to end it. [46]

For clarification between the already existing docker-compose.yml and jinja files
in the project, the jinja files have added the .j2 suffix to the name, creating the
filenames honeypot.yml.j2 and monitoring.yml.j2. From these files, the docker-
compose files will be generated and used to start the honeypot service.

The honeypot.yml.j2 show in Listing 2.6 is a Jinja docker-compose template.
The template creates a honeypot.yml for each honeypot, and using the docker-
compose CLI starts it. The containers do not need to be started by the root. Any
user with the required privileges can start the containers. The core elements of the
Docker Compose file are:

• Services: This block defines the different services (containers) that comprise
the application. In this case, the service is a honeypot, and its name and ID
are dynamically filled using Jinja2 templating.

45

• Image: This field specifies the Docker image for the honeypots’ container.
The administrator provides the image address. It needs to be a URL to the
registry image.

• Ports: If defined, these are the ports that the service will expose. These
ports are specified dynamically through the Jinja2 template. The administra-
tor specifies the ports in format HOST:CONTAINER,HOST:CONTAINER... where
the HOST represents which port the honeypot should expose and the CON-
TAINER specifies the port on which the container is listening. This creates a
tunnel to the host network so the attacker can communicate with the honey-
pot.

• Logging: If a syslog IP address is provided, the syslog driver is used for
logging. The syslog address and tag are provided dynamically.

• Networks: This field specifies the network the service belongs to. In this
case, it belongs to an externally defined network created before starting the
container.

• IPv4 address: If an IP address is provided and the network does not need
updating, this IP address is assigned to the service.

• Capabilities: The option indicates that all capabilities will be dropped for
the container. This means that the container will run without any elevated
privileges or permissions beyond the default capabilities provided to all pro-
cesses.

46

Listing 2.6: honeypot.yml.j2
version : ’3.4 ’
services :

honeypot -{{ honeypot .name }} -{{ honeypot_id }}:
image: {{ honeypot .image }}
container_name : {{ honeypot .name }}
restart : always
cap_drop :

- ALL
{% if honeypot_ports and honeypot_ports [0] %}

ports:
{% for port in honeypot_ports %}

- "{{ port }}"
{% endfor %}
{% endif %}
{% if syslog_ip %}

logging :
driver : syslog
options :

syslog - address : "tcp ://{{ syslog_ip }}:514 "
tag: "{{ honeynet .name }}/{{ honeypot .name }}"

{% endif %}
networks :

honeynet_bridge :
{% if honeypot . ip_addr and not update %}

ipv4_address : {{ honeypot . ip_addr }}
{% endif %}
networks :

honeynet_bridge :
external : true
name: {{ honeynet .name }}

47

The monitoring.yml.j2 is show in Listing 2.7. This Docker Compose file de-
scribes a service for monitoring honeypot communication. The key components of
the Docker Compose file are:

• Services: In this Docker Compose file, a single service named honeypot-
monitoring is defined. The exact name is dynamically generated using Jinja2
templates.

• Container Name: The container’s name, when it is launched, is also specified
using Jinja2 templates.

• Image: The Docker image used for this service is quay.io/mnecas0/honeypot-
base:latest. This image contains the monitoring script with the tcpdump de-
pendencies.

• Restart: The ‘always‘ restart policy means that Docker will restart the con-
tainer every time it exits, regardless of the exit code.

• Logging: If a syslog IP address is provided, the syslog driver is used for
logging with a dynamically specified syslog address and tag.

• Environment: This block defines environment variables for the container.
These variables include debug mode, server address, identification token, hon-
eypot ID, tcpdump filtering options, maximum size of tcpdump, tcpdump
timeout, and additional tcpdump arguments. These arguments are passed
to the tcpdump and monitoring script, which logs captured data to the web
server.

• Network Mode: The network mode is set to ‘host‘, which means the con-
tainer will use the host’s network stack. This is needed to monitor the Linux
bridge, which is connected to the host and network namespaces through which
the container communicates. Without this, the monitoring container could not
see the Linux bridge.

• Capabilities: The option indicates that all capabilities will be dropped for
the container except the NET_RAW and NET_ADMIN which are required for the
tcpdump monitoring.

48

Listing 2.7: monitoring.yml.j2
version : ’3.4 ’
services :

honeypot -{{ honeypot .name }}- monitoring :
container_name : {{ honeypot .name }}- monitoring
image: quay.io/ mnecas0 /honeypot -base: latest
restart : always
cap_drop :

- ALL
cap_add :

- NET_RAW
- NET_ADMIN

{% if syslog_ip %}
logging :

driver : syslog
options :

syslog - address : "tcp ://{{ syslog_ip }}:514 "
tag: "{{ honeynet .name }}/{{ honeypot .name }}- mirror "

{% endif %}
environment :

SERVER : " 127.0.0.1:8000 "
TOKEN: "{{ honeypot_token }}"
ID: "{{ honeypot_id }}"
TCPDUMP_FILTER : "host $HONEYPOT_ADDR

{% if honeypot . tcpdump_filter %}
and {{ honeypot . tcpdump_filter }}

{% endif %}"
TCPDUMP_MAX_SIZE : "{{ honeypot . tcpdump_max_size }}"
TCPDUMP_TIMEOUT : "{{ honeypot . tcpdump_timeout }}"
TCPDUMP_EXTRAARGS : " $EXTRA_ARGS

{{ honeypot . tcpdump_extra_args }}"
network_mode : host

49

3 Results
This chapter presents the outcomes of the bachelor’s thesis. The results consist of
the final honeypot system deployed on the public network and the analysis of the
captured communication.

3.1 Deployed Honeypots
The modular honeynet system designed and implemented in the previous chapter
was installed on a web server shared on the public network. The system utilized two
containers, one for the IT protocol and another for the OT protocols. The containers
need to have a built container image which contains the honeypot project and be
uploaded to the container registry from which it will be accessible to the honeynet
system. These images will be started in the honeynet system with a specified port
tunnel to the host network so the attackers can access the honeypot.

3.1.1 Deployment of IT Honeypot

For the IT honeypot, an existing open-source honeypot called "honeypots" from
qeeqbox was chosen. The source code for this honeypot can be found on GitHub1.
Although the GitHub repository does not include the Dockerfile for the honeypot
itself, it does provide the Dockerfile for the syslog server used for logging. However,
this logging image was unnecessary for this deployment since the honeynet had its
syslog server.

To build the honeypot container, a new Dockerfile was created. The created
Dockerfile is shown in Listing 3.1. The image is built in the root directory of the
qeeqbox/honeypots repository. It uses the base image ubuntu:22.04, onto which
the project is copied and installed, along with all the required dependencies. Once
the dependencies are installed, the qeeqbox/honeypots is installed in the container.
The entry point is set to /usr/local/bin/honeypots, and the CMD specifies the
parameters for starting the honeypot. In this case, it starts the HTTP honeypot on
port 80, which will be exposed to the host network. The image is built using the
docker CLI command docker build, and then it is pushed to the registry to make
the built image accessible to the honeypot system.

1https://github.com/qeeqbox/honeypots

50

https://github.com/qeeqbox/honeypots

Listing 3.1: Honeypots Dockerfile
FROM ubuntu :22.04
WORKDIR /root/
COPY . .
ENV DEBIAN_FRONTEND = noninteractive
RUN apt -get update -y

Install honeypots dependencies
RUN apt -get install postgresql libpq -dev python3 -pip git -y
RUN pip3 install requests ==2.20.1
RUN pip3 install .

Start base honeypot as backgroud process
ENTRYPOINT ["/usr/local/bin/ honeypots "]
CMD ["--setup", "http :80", "--termination - strategy ", " signal "]

3.1.2 Deployment of OT Honeypot

The OT honeypot selection was the open-source honeypot conpot, available on
GitHub2. Deploying the conpot was simpler than qeeqbox/honeypots as the conpot
GitHub repository already includes the Dockerfile for building the honeypot con-
tainer. To use conpot on the honeypot system, the image was built and pushed to
a container registry from which it can be downloaded. The conpot can mimic large
amounts of OT protocol. This bachelor’s thesis focuses on the Modbus protocol,
which runs on the 502 port, which will be exposed to the host network.

3.2 Captured Communication
The honeynet was deployed for two weeks on the public network through which the
honeypots captured vast amounts of data. The HTTP honeypot captured around
275000 packets while the Modbus honeypot captured 1500. This comparison is
shown in the Firgure A.1. The honeypots do not affect this, but the HTTP servers
are most likely more targeted than the Modbus servers, which are uncommon in IT
networks.

2https://github.com/mushorg/conpot

51

https://github.com/mushorg/conpot

3.2.1 HTTP Honeypot

A total of 278 public IP addresses were connected to the HTTP honeypot. The
address 100.100.17.23 was the most active, accounting for 96.5% of the recorded
HTTP communication. The IP address 100.100.17.23 is reserved for carrier-grade
NAT communication between service providers and subscribers3. Figure A.2 shows a
graph comparing the number of requests per IP address connected to the honeypot.

The HTTP honeypot was made of a UI shown in Figure 3.1. The UI form
comprises a username and password; these data are then sent to the honeypot
server, shown in Figure 3.2.

Figure 3.2 shows two items, and these items are comprised of key and value pairs.
These pairs are sent to the server by the attacker. The attacker can create HTTP
packets with its HTML form, investigating how the server will reply. These keys
and values were analysed and made to the graphs.

Most HTTP requests had no form data, but among those containing some, the
most frequently used key was an unfinished PHP script that sent a base64-encoded
text, specifically GBNVT RCE Test. Figure A.3 shows the most common data key in
HTML form.

Figure A.4 shows the most common data value in HTML form. The most com-
mon value was the value: ")) which is finishing the PHP script. The values also
contained some SQL injections, an example of one of the injections:
select username from ap_users’ or ’ 1=1’-- ’,x.

Figure 3.1: HTTP Honeypot UI

Figure 3.2: HTML Form of the captured data

3https://www.speedguide.net/ip/100.100.17.23

52

https://www.speedguide.net/ip/100.100.17.23

3.2.2 Modbus Honeypot

As for the Modbus honeypot communication, there was not as much communication
as with the HTTP honeypot, but that does not mean it is not being targeted. The
conpot honeypot detected multiple Modbus requests to the server with some data
by which the attackers were testing the server’s capabilities.

One of these captured request communication is shown in Listing 3.2. The server
successfully received the byte sequence "133700000005002b0e0100" in the hexadeci-
mal format. The same byte sequence was mentioned in article [47]. "The attacker
read the Modbus variables and subsequently crafted some invalid input that is be-
yond a specified safe range. The attack appears to be an attempt to cause some
sort of damage to the CPS equipment." [47] This incident demonstrates the actual
utilisation of the honeypot in a live network environment and shows the value and
necessity of honeypots.

Listing 3.2: Captured modbus communication
New modbus session from 198.235.24.211
New Modbus connection from 198.235.24.211:59196.
Modbus traffic from 198.235.24.211:
{

’request ’: b’133700000005002 b0e0100 ’,
’slave_id ’: 0,
’function_code ’: None ,
’response ’: b’’

}
Modbus connection terminated with client 198.235.24.211.

53

Conclusion
This thesis designed and implemented a modular and scalable honeypot system
focused on IT and OT protocols. The initial theoretical part provided valuable
information into the operation and necessity of honeypots, their categorisation, and
the existing open-source projects in the field. Moreover, it detailed the use and
benefits of containers, comparing them to virtual machines.

The project’s design phase underwent multiple stages, resulting in a final design
that utilises containers for faster system deployment and reduced storage require-
ments. This system includes a web server for administrator interaction, a monitoring
container for tracking honeypot communication, and comprehensive logging capa-
bilities.

Moreover, the system designed in this thesis emphasises the ease of adding new
honeypots. Thanks to the modular structure and use of container technology, in-
troducing a new honeypot is as simple as creating and configuring a new container
image. This approach streamlines the process and makes the system highly adapt-
able to evolving cybersecurity threats. Thus, the implemented system provides an
efficient and user-friendly platform for cybersecurity defence enhancement.

The honeypot system was deployed in a public network and successfully collected
data for analysis, proving its potential for practical application. The deployed honey-
pots were conpot4 for Modbus protocol and honeypots5 for HTTP both open-source
and available on GitHub. Overall, the thesis demonstrated the effective development
and application of a honeypot system using container technology.

This bachelor’s thesis was presented at the 2023 EEICT conference under the
name "Modular Honeypot for IT and OT". There were few improvements since
the writing of the article. The article had one base image for a honeypot with the
monitoring tools and on top of this the honeypots would build their own images. If
the attackers would get control over the honeypot they could access the monitoring
scripts, letting the attackers know that they are being monitored. This bachelor’s
thesis improved on this by separating the honeypot and monitoring containers.

4https://github.com/mushorg/conpot
5https://github.com/qeeqbox/honeypots

54

https://github.com/mushorg/conpot
https://github.com/qeeqbox/honeypots

Bibliography
[1] MOKUBE, I.; ADAMS, M. Honeypots: Concepts, Approaches, and Chal-

lenges In Proceedings of the 45th Annual Southeast Regional Conference [on-
line]. [cit. 2022-02-12]. 2007, pp. 321-326. ISBN 9781595936295. Available from:
https://doi.org/10.1145/1233341.1233399

[2] MUKHERJEE, B.; HEBERLEIN, L. T.; and LEVITT, K. N. Network intrusion
detection IEEE Network, vol. 8, no. 3, pp. 26-41, 1994.

[3] KRAWETZ, N. Anti-honeypot technology IEEE Security and Privacy, vol. 2, no.
1, pp. 76-79, 2004. Available from: https://doi.org/10.1109/MSECP.2004.
1264861

[4] TSIKERDEKIS, M.; ZEADALLY, S.; SCHLESENER, A.; and SKLAVOS, N.
Approaches for Preventing Honeypot Detection and Compromise In 2018 Global
Information Infrastructure and Networking Symposium (GIIS), 2018, pp. 1-6.

[5] ISO OSI Basic reference model. networkhope [online]. [cit. 2022-02-12]. Available
from: https://networkhope.in/iso-osi-basic-reference-model/

[6] Operational technology (OT) – definitions and differences with IT. Operational
technology [online]. [cit. 2022-02-12]. Available from: https://www.i-scoop.
eu/industry-4-0/operational-technology-ot/

[7] OT, ICS, SCADA – What’s the difference? kuppingercole, WILLIAMSON, G.
[online]. [cit. 2022-02-12]. Available from: https://www.kuppingercole.com/
blog/williamson/ot-ics-scada-whats-the-difference

[8] A Beginner’s PLC Overview, Part 3 of 4: PLC Inputs and Out-
puts (I/O) Automation, GATES, S. [online]. [cit. 2022-02-12]. Avail-
able at: https://www.automation.com/en-us/articles/2018/
a-beginners-plc-overview-part-3-of-4-plc-inputs-an

[9] What is Communication Protocol? dipslab, CHAUDHARI, D.
[online]. [cit. 2022-02-12]. Available from: https://dipslab.com/
plc-communication-protocols-used-industry/

[10] What is Modbus? paessler [online]. [cit. 2022-02-12]. Available from: https:
//www.paessler.com/it-explained/modbus

[11] How to ensure security in Industrial Protocols. enigmedia [online].
[cit. 2022-02-12]. Available from: https://enigmedia.es/2021/09/19/
security-industrial-protocols-ot-networks/

55

https://doi.org/10.1145/1233341.1233399
https://doi.org/10.1109/MSECP.2004.1264861
https://doi.org/10.1109/MSECP.2004.1264861
https://networkhope.in/iso-osi-basic-reference-model/
https://www.i-scoop.eu/industry-4-0/operational-technology-ot/
https://www.i-scoop.eu/industry-4-0/operational-technology-ot/
https://www.kuppingercole.com/blog/williamson/ot-ics-scada-whats-the-difference
https://www.kuppingercole.com/blog/williamson/ot-ics-scada-whats-the-difference
https://www.automation.com/en-us/articles/2018/a-beginners-plc-overview-part-3-of-4-plc-inputs-an
https://www.automation.com/en-us/articles/2018/a-beginners-plc-overview-part-3-of-4-plc-inputs-an
https://dipslab.com/plc-communication-protocols-used-industry/
https://dipslab.com/plc-communication-protocols-used-industry/
https://www.paessler.com/it-explained/modbus
https://www.paessler.com/it-explained/modbus
https://enigmedia.es/2021/09/19/security-industrial-protocols-ot-networks/
https://enigmedia.es/2021/09/19/security-industrial-protocols-ot-networks/

[12] Communication Protocols for the Industry 4.0 EEWeb, GESUALDO,
D. D. [online]. [cit. 2022-02-12]. Available from: https://www.eeweb.com/
communication-protocols-for-the-industry-4-0

[13] Use containers to Build, Share and Run your applications. Docker [on-
line]. [cit. 2022-02-12]. Available from: https://www.docker.com/resources/
what-container/

[14] POTDAR, A. M.; NARAYAN D. G.; KENGOND, S., MULLA, M M. Per-
formance Evaluation of Docker Container and Virtual Machine In Procedia
Computer Science [online]. [cit. 2022-02-12]. 2020, vol. 171, pp. 1419-1428.
ISSN 1877-0509. Available from: https://doi.org/10.1016/j.procs.2020.
04.152

[15] namespaces(7) — Linux manual page. man7 [online]. [cit. 2022-05-10]. Available
from: https://man7.org/linux/man-pages/man7/namespaces.7.html

[16] Network namespaces(7) - Linux manual page. man7 [online]. [cit. 2023-05-
10]. Available from: https://man7.org/linux/man-pages/man7/network_
namespaces.7.html

[17] An introduction to Linux bridging commands and features. Red
Hat Developers, LIU, H. [online]. [cit. 2023-05-11]. Available
from: https://developers.redhat.com/articles/2022/04/06/
introduction-linux-bridging-commands-and-features

[18] veth(4) — Linux manual page. man7 [online]. [cit. 2022-05-11]. Available from:
https://man7.org/linux/man-pages/man4/veth.4.html

[19] Open vSwitch FAQ - Configuration. Open vSwitch [online]. [cit. 2023-
05-10]. Available at: https://docs.openvswitch.org/en/latest/faq/
configuration/

[20] Docker Documentation: Use bridge networks. Docker [online]. [cit. 2023-05-10].
Available at: https://docs.docker.com/network/bridge/

[21] Docker Documentation: Use host networking. Docker [online]. [cit. 2023-05-10].
Available at: https://docs.docker.com/network/host/

[22] Docker Documentation: Docker security. Docker [online]. [cit. 2023-05-13].
Available at: https://docs.docker.com/engine/security/

[23] Docker Documentation: Dockerfile reference. Docker [online]. [cit. 2023-05-10].
Available at: https://docs.docker.com/engine/reference/builder/

56

https://www.eeweb.com/communication-protocols-for-the-industry-4-0
https://www.eeweb.com/communication-protocols-for-the-industry-4-0
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://doi.org/10.1016/j.procs.2020.04.152
https://doi.org/10.1016/j.procs.2020.04.152
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/network_namespaces.7.html
https://man7.org/linux/man-pages/man7/network_namespaces.7.html
https://developers.redhat.com/articles/2022/04/06/introduction-linux-bridging-commands-and-features
https://developers.redhat.com/articles/2022/04/06/introduction-linux-bridging-commands-and-features
https://man7.org/linux/man-pages/man4/veth.4.html
https://docs.openvswitch.org/en/latest/faq/configuration/
https://docs.openvswitch.org/en/latest/faq/configuration/
https://docs.docker.com/network/bridge/
https://docs.docker.com/network/host/
https://docs.docker.com/engine/security/
https://docs.docker.com/engine/reference/builder/

[24] Docker Documentation: Docker CLI reference — Docker build. Docker [on-
line]. [cit. 2023-05-10]. Available at: https://docs.docker.com/engine/
reference/commandline/build/

[25] Docker Documentation: Docker CLI reference — Docker push. Docker [on-
line]. [cit. 2023-05-10]. Available at: https://docs.docker.com/engine/
reference/commandline/push/

[26] Docker Documentation: Deploying a Registry. Docker [online]. [cit. 2023-05-10].
Available at: https://docs.docker.com/registry/deploying/

[27] Docker Documentation: Docker CLI reference — Docker pull. Docker [on-
line]. [cit. 2023-05-10]. Available at: https://docs.docker.com/engine/
reference/commandline/pull/

[28] Docker Documentation: Docker Compose Features and Uses. Docker [on-
line]. [cit. 2023-05-11]. Available at: https://docs.docker.com/compose/
features-uses/

[29] Native vSwitch: What is It and How Does It Work? VMware Net-
work Virtualization Blog, FORTIER, R. [online]. [cit. 2023-05-11]. Avail-
able at: https://blogs.vmware.com/networkvirtualization/2017/03/
native-vswitch.html/

[30] Glossary. Ansible [online]. [cit. 2023-05-11]. Available at: https://docs.
ansible.com/ansible/latest/reference_appendices/glossary.html

[31] Ansible Documentation: VMware Guide. Ansible [online]. [cit. 2023-05-11].
Available at: https://docs.ansible.com/ansible/2.9/scenario_guides/
vmware_scenarios/vmware_intro.html

[32] Monitoring network traffic from within a virtual machine on a VMware vSphere
ESX/ESXi server. VMware [online]. [cit. 2023-04-06]. Available at: https://
kb.vmware.com/s/article/1038847

[33] VMware vSphere Networking Guide. VMware [online].
[cit. 2023-05-11]. Available at: https://docs.vmware.com/
en/VMware-vSphere/7.0/com.vmware.vsphere.networking.doc/
GUID-CFFD9157-FC17-440D-BDB4-E16FD447A1BA.html

[34] Port Mirroring. oVirt, ASAYAG, M.; OURFALI, O.; HAVIVI, S. [on-
line]. [cit. 2023-05-11]. Available at: https://www.ovirt.org/develop/
release-management/features/network/portmirroring.html

57

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/push/
https://docs.docker.com/engine/reference/commandline/push/
https://docs.docker.com/registry/deploying/
https://docs.docker.com/engine/reference/commandline/pull/
https://docs.docker.com/engine/reference/commandline/pull/
https://docs.docker.com/compose/features-uses/
https://docs.docker.com/compose/features-uses/
https://blogs.vmware.com/networkvirtualization/2017/03/native-vswitch.html/
https://blogs.vmware.com/networkvirtualization/2017/03/native-vswitch.html/
https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html
https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html
https://docs.ansible.com/ansible/2.9/scenario_guides/vmware_scenarios/vmware_intro.html
https://docs.ansible.com/ansible/2.9/scenario_guides/vmware_scenarios/vmware_intro.html
https://kb.vmware.com/s/article/1038847
https://kb.vmware.com/s/article/1038847
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.networking.doc/GUID-CFFD9157-FC17-440D-BDB4-E16FD447A1BA.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.networking.doc/GUID-CFFD9157-FC17-440D-BDB4-E16FD447A1BA.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.networking.doc/GUID-CFFD9157-FC17-440D-BDB4-E16FD447A1BA.html
https://www.ovirt.org/develop/release-management/features/network/portmirroring.html
https://www.ovirt.org/develop/release-management/features/network/portmirroring.html

[35] KUWATLY, I.; SRAJ, M.; AL MASRI, Z.; and ARTAIL, H. A dynamic honey-
pot design for intrusion detection In The IEEE/ACS International Conference
on Pervasive Services, 2004. ICPS 2004. Proceedings., 2004, pp. 95-104.

[36] Meet Django. Django [online]. [cit. 2023-05-13]. Available at: https://www.
djangoproject.com/

[37] Django Tutorial Part 2: Creating the Polls App. Django [online]. [cit. 2023-
05-13]. Available at: https://docs.djangoproject.com/en/4.2/intro/
tutorial02/

[38] What is PostgreSQL? PostgreSQL [online]. [cit. 2023-05-12], Available at:
https://www.postgresql.org/docs/15/intro-whatis.html

[39] cron(8) — Linux manual page. man7 [online]. [cit. 2023-05-13]. Available from:
https://man7.org/linux/man-pages/man8/cron.8.html

[40] crontab(5) — Linux manual page. man7 [online]. [cit. 2023-05-13]. Available
from: https://man7.org/linux/man-pages/man5/crontab.5.html

[41] Django REST framework. Django REST framework [online]. [cit. 2023-05-13].
Available at: https://www.django-rest-framework.org/

[42] PCAP(1) MAN PAGE. tcpdump [online]. [cit. 2022-02-12]. Available from:
https://www.tcpdump.org/manpages/pcap.3pcap.html

[43] TCPDUMP(1) MAN PAGE. tcpdump [online]. [cit. 2022-02-12]. Available from:
https://www.tcpdump.org/manpages/tcpdump.1-4.9.2.html

[44] The Syslog Protocol. datatracker.ietf.org [online]. [cit. 2023-05-14]. Available
from: https://tools.ietf.org/html/rfc5424

[45] The Rocket-fast SYStem for LOG processing. Rsyslog [online]. [cit. 2023-05-14].
Available at: https://www.rsyslog.com/

[46] Template Designer Documentation. Jinja [online]. [cit. 2023-04-06]. Available
at: https://jinja.palletsprojects.com/en/3.1.x/templates/

[47] ELIAS, B.; WALTER L.; NICOLA F.; SEAN W., NASIR G.; and BRUNO S.,
Cyber Meets Control: A Novel Federated Approach for Resilient CPS Leveraging
Real Cyber Threat Intelligence, IEEE Communications Magazine, vol. 55, no.
5, pp. 198-204, 2017. Available from: https://doi.org/10.1109/MCOM.2017.
1600292CM

58

https://www.djangoproject.com/
https://www.djangoproject.com/
https://docs.djangoproject.com/en/4.2/intro/tutorial02/
https://docs.djangoproject.com/en/4.2/intro/tutorial02/
https://www.postgresql.org/docs/15/intro-whatis.html
https://man7.org/linux/man-pages/man8/cron.8.html
https://man7.org/linux/man-pages/man5/crontab.5.html
https://www.django-rest-framework.org/
https://www.tcpdump.org/manpages/pcap.3pcap.html
https://www.tcpdump.org/manpages/tcpdump.1-4.9.2.html
https://tools.ietf.org/html/rfc5424
https://www.rsyslog.com/
https://jinja.palletsprojects.com/en/3.1.x/templates/
https://doi.org/10.1109/MCOM.2017.1600292CM
https://doi.org/10.1109/MCOM.2017.1600292CM

Symbols and abbreviations
ADU Application Unit
AGPL Affero General Public License
API Application Programming Interface
ARP Address Resolution Protocol
ASCII American Standard Code for Information Interchange
CLI Command-Line Interface
CPU Central Processing Unit
CRON Command Run On
DPC Discrete Process Control
DNS Domain Name System
DMZ DeMilitarized Zone
DRF Django Rest Framework
EIA Environmental Impact Assessment
ESX Elastic Sky X
FTP File Transfer Protocol
GIF Graphics Interchange Format
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
ICMP Internet Control Message Protocol
ICS Industrial Control Systems
IDS Intrusion Detection System
IP Internet Protocol
IT Information Technology
JPEG Joint Photographic Experts Group
L2TP Layer 2 Tunneling Protocol
MAC Media Access Control address
MBAP Modbus Application Protocol
MIDI Musical Instrument Digital Interface
NetBEUI NetBIOS Extended User Interface
OT Operation Technology
OSPF Open Shortest Path First
OVS Open vSwitch
PCI Payment Card Industry
PLC Programmable Logic Controllers
POSIX Portable Operating System Interface
RAM Random Access Memory
REST REpresentational State Transfer

59

RIP Routing Information Protocol
RPC Remote Procedure Call
RS Recommended Standard
RSYSLOG Rocket-fast SYstem for LOG
SFTP Secure File Transfer Protocol
SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol
SSH Secure Shell
SPAN Switched Port Analyzer
SCADA Supervisory Control And Data Acquisition
SQL Structured Query Language
SYSLOG System Logging Protocol
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
UI User Interface
UUID Universally Unique Identifier
VM Virtual Machine

60

List of appendices

A Captured Data Graphs 62

B User Manual Installation 64

C Contents of the Electronic Attachment 67

61

A Captured Data Graphs

HTTP
99.5%

Modbus
0.5%

Figure A.1: Comparing HTTP and Modbus number of captured packets

36.94.2.139
0.3%

100.100.17.22
0.0%

100.100.17.23
96.5%

Figure A.2: The communication grouped by source IP

62

username,psd
13.0%
username,password
3.2%
username,email
2.4%
User,Password,Submit
0.8%
user,pass
1.6%
uname
1.6%
supportedBrowser
1.6%
catlist[0]
1.6%
bla,blub,foo
4.7%

0x[]
19.8%

<?
0.8%

<?php echo(base64_decode
27.7%

<?php phpinfo();?>
14.2%

Figure A.3: The most common data key in HTTP request

yes
1.8%
select username from ap_users' or ' 1=1'-- ',x
2.8%
select username from ap_users' or ' 1=1'-- ',GBNVT@147.
2.8%
catlist[0]=GBNVT')||phpinfo();//
1.8%

androxgh0st
23.0%

admin,Feefifofum
15.2%

1
0.9%

"));
32.3%

1,2,<?php phpinfo(); ?>
5.5%

admin,' or 1=1#
1.8%

Figure A.4: The most common data value in HTTP request

63

B User Manual Installation
The web server has two operational modes: production and development.

The default mode is development, the steps to install it are show in Listing B.1.
This mode initiates a basic web server integrated with an SQLite database. It does
not have any extra components such as a syslog server. These additional components
need to be manually installed. The syslog configuration is show in the production
deployment Listing B.2 and the administrator needs to use just the rsyslog config
and run the docker-compose up -d. The -d tells to docker that the containers
should start as a background process. Despite the absence of a syslog server, the
honeynet will remain functional, but it will not keep a record of container logs.

Listing B.1: Initiating Development Mode
$ pip3 install -r ./ requirements .txt
$ python3 manage .py makemigrations
$ python3 manage .py migrate
$ python3 manage .py runserver

For production deployment of the honeynet is used a predefined docker-compose
file. This file is shown in Listing B.2. To install the honeynet on a clean system,
administrators must install docker and docker-compose. No additional installations
are necessary; the docker-compose takes care of the rest.

The production docker-compose file comprises three containers: the web server,
a Postgres database, and a syslog server. All of these containers’ images can be ob-
tained from the quay registry. Docker will fetch these images and start them. The
containers are designed to restart automatically in case of an error. Administra-
tors must execute the docker-compose up -d command in the directory with the
specified docker-compose file to start the deployment. If the administrator wants to
make any changes and deploy the project from the source code, they must add the
build parameter to the docker-compose file and run docker compose build.

The web server is initiated with a default administrator user called mnecas and
password mnecas. This user can be modified on the Django admin page, to which
this user has access.

To initiate a new honeypot, the administrator must create a honeynet network
by specifying its name and subnet address. After creating the honeynet, the ad-
ministrator can continue to create the honeypot, which requires a container image
from the registry. The image example1 is made from qeeqbox/honeypots. To enable
access to the honeypot from the host network, the administrator needs to specify
the Expose ports. In this case, it should be 80:80.

1quay.io/mnecas0/honeypots:latest

64

quay.io/mnecas0/honeypots:latest

Listing B.2: Production docker-compose
version : ’3’
services :

web:
container_name : honeynet_web
image: quay.io/ mnecas0 / honeynet : latest
build: .
command :

- /bin/bash
- -c
- |

python3 manage .py collectstatic --noinput
python3 manage .py migrate \

--settings web_server . settings . production \
--noinput

python3 manage .py create_admin \
--settings web_server . settings . production

python3 manage .py runserver \
--settings web_server . settings . production \
127.0.0.1:8000

network_mode : host
restart : always
volumes :

- /var/log :/ var/log
- /var/run/ docker .sock :/ var/run/ docker .sock

environment :
- POSTGRES_USER = postgres
- POSTGRES_PASSWORD = postgres

depends_on :
db:

condition : service_healthy
db:

image: postgres : latest
restart : always
environment :

- POSTGRES_USER = postgres
- POSTGRES_PASSWORD = postgres

healthcheck :
test: ["CMD -SHELL", " pg_isready -U postgres "]
interval : 5s
timeout : 5s

65

retries : 5
network_mode : host
volumes :

- ./10 - init -db.sql :/ docker -entrypoint - initdb .d/
10-init -db.sql

- db:/ var/lib/ postgresql /data
syslogserver :

image: quay.io/ mnecas0 /honeypot - rsyslog : latest
build: deployment / logging /
container_name : syslog
restart : always
volumes :

- /var/log :/ var/log
cap_add :

- SYSLOG
volumes :

db:
driver : local

66

C Contents of the Electronic Attachment

honeynet..Root dir
api...API directory

apps.py
authentication.py.................................The authentication file
examples.py
serializers.py. The serialisation of the Django Database Objects
tests.py. .. The tests of the API
urls.py..The list of API endpoints
views.py. .. The logic of the API

deployment.........................Directory for honeynet management scripts
delete-honeypot.sh.........Removing honeypot with monitoring container
deploy-honeypot.sh. Creating honeypot with monitoring container
export-data.sh.......................Export script started by the corn job
honeypot-examples. The honeypot example directory, testing/example usage

Dockerfile..................The ssh honeypot example, testing purpose
http.yml. ... Example of docker-compose of HTTP honeypot (honeypots)
modbus.yml....Example of docker-compose of Modbus honeypot (conpot)

logging
Dockerfile.................................The rsyslog server dockerfile

templates
honeypot.yml.j2. The honeypot docker-compose jinja template file
monitoring.yml.j2....The monitoring docker-compose jinja template file

docker-compose.yml........The docker-compose which starts the whole project
Dockerfile..............The Dockerfile to build the web server container image
10-init-db.sql........................The init script of the Postgres database
LICENSE..The Apache License
main..The main web server directory

admin.py.......................The configuration of the Django admin page
apps.py
forms.py...................The Django forms used for user input validation
management.........The directory of custom Django management commands

commands
config.py
create_admin.py.....Command to create new specified administrator
remove_logs.py............Command to remove logs of the honeynet
send_logs.py...................Command to send the honeynet logs

migrations. The Django database migration
models.py..Database description
static..Static files used in for the UI

anychart Anychart library, used for honeynet visualisation
bootstrap................................Bootstrap library, used for UI
dashboard.css
dashboard.js
favicon

67

jquery
main.css
switch.png

templates. Directory of the HTML templates
base.html
honeynet.html
honeypot_form.html
honeypot.html
honeypots.html
index.html
logging_card.html
login.html
sidebar.html

templatetags
get_item.py

tools
deployment.py

urls.py
views.py...................The backed logic of the Django main web server

manage.py
monitoring......................The scripts for monitoring honeypot continaer

docker-compose.example.yml
Dockerfile.................................The monitoring Dockerfile used
honeypot...Main monitoring script
Makefile
README.md
send_data.sh..............Script executed by tcpdump to send data to API
tools.sh................................Common tools used in both scripts

README.md
requirements.txt......................All python requirements for web server
.dockerignore
.editorconfig
.gitignore
.flake8
.pre-commit-config.yaml
web_server

asgi.py
settings

base.py
production.py. The setting used for production environment
development.py...........The setting used for development environment

urls.py
wsgi.py

68

	Introduction
	Theory
	Honeypots
	Categorisation Based on Usage
	Categorisation Based on Interaction
	Honeypots vs IDS
	Honeypot Detection
	Honeypot Solutions

	Information Technologies
	Operational Technology
	Communication OT Protocols

	Containers
	Linux Namespaces
	Container Networking
	Container Security
	Container Images
	Docker Compose

	Design and Implementation
	Initial Design
	Ansible Usage
	Creation of Honeypot System
	Design Problems

	Final Design
	Web Server
	Monitoring
	Logging
	Honeypot Creation Workflow

	Results
	Deployed Honeypots
	Deployment of IT Honeypot
	Deployment of OT Honeypot

	Captured Communication
	HTTP Honeypot
	Modbus Honeypot

	Conclusion
	Bibliography
	Symbols and abbreviations
	List of appendices
	Captured Data Graphs
	User Manual Installation
	Contents of the Electronic Attachment

