
Vysoké učení technické v Brně
F a k u l t a i n fo rmačn ích techno log i í

Ústav počítačové grafiky a multimédií (UPGM) Akademický rok 2019/2020

Z a d á n í b a k a l á ř s k é p r á c e
23124

Student: Muzikář Martin
Program: Informační technologie
Název: Nástroj pro efektivní správu testů webových aplikací

Tool for Effective Management of Web Application Tests
Kategorie: Uživatelská rozhraní
Zadání:

1. Seznamte se s aktuálními technologiemi pro testování webových aplikací. Prostudujte
využívané metody pro tvoření nových a udržování již existujících testů.

2. Vyberte vhodnou technologii a navrhněte celkový postup, dílčí metody a aplikaci pro efektivní
správu a editaci testů webových aplikací. Při návrhu reflektujte potřeby uživatelů.

3. Implementujte navrženou aplikaci pro vhodnou platformu podle potřeb uživatelů (aplikace
využívající TUI, desktop aplikace, webová aplikace, plugin pro IDE) s využitím relevantních
dostupných technologií a vhodných knihoven.

4. Vyhodnoťte vlastnosti výsledného řešení na základě experimentů s reálným využitím
aplikace.

5. Prezentujte klíčové vlastnosti řešení formou plakátu a krátkého videa.
Literatura:

• Semmy Purewal. Learning Web App Development: Build Quickly with Proven JavaScript
Techniques. O'Reilly Media, Inc., 2014. ISBN: 9781449370190.

• Steve Krug. Don't make me think, revisited: a common sense approach to web
usability. San Francisco: New Riders, ISBN 978-0321965516.

• Dále dle pokynu vedoucího.
Pro udělení zápočtu za první semestr je požadováno:

• Body 1 , 2 a částečně bod 3.
Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/
Vedoucí práce: Beran Vítězslav, Ing., Ph.D.
Vedoucí ústavu: Černocký Jan , doc. Dr. Ing.
Datum zadání: 1. listopadu 2019
Datum odevzdání: 28. května 2020
Datum schválení: 1. listopadu 2019

Z a d á n í b a k a l á ř s k é p r á c e / 2 3 1 2 4 / 2 0 1 9 / x m u z i k 0 6 S t r a n a 1 z 1

https://www.fit.vut.cz/study/theses/

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA I N F O R M A Č N Í C H TECHNOLOGI Í

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A M U L T I M É D I Í

TOOL FOR EFFECTIVE MANAGEMENT OF WEB AP
PLICATION TESTS
NÁSTROJ PRO EFEKTIVNÍ SPRÁVU TESTŮ WEBOVÝCH APLIKACÍ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

MARTIN MUZIKÁŘ

SUPERVISOR
VEDOUCÍ PRÁCE

VÍTĚZSLAV BERAN, Ing., Ph.D.

BRNO 2020

Abstract
The goal of this thesis is to create a tool that allows testers to see the progress of the
test they are currently developing on the fly. Hence, to eliminate an issue of constantly
re-running tests which take a long t ime to execute.

The problem was solved by creating a program which modifies the test suite logic by
using Java Instrumentation, enabling it to run test steps as the user needs and designing
G U I that is able to communicate wi th previously mentioned modified test suite.

A s a result the process of creating tests was significantly sped up (testers were able to
create a test w i th an unknown test suite i n terms of minutes), a l l users that participated
in testing were fond of this approach and would adapt to this workflow.

The pr imary result is p inpoint ing that things can be handled more efficiently, w i t h
proper tools testers can significantly speed up their workflow and also make the introduct ion
process for newcomers easier.

Abstrakt
Cílem t é t o p r á c e je vy tvo ř i t n á s t r o j , k t e r ý interpretuje testy b ě h e m jejich vývoje a v ý z k u m
oh ledně d o p a d ů i n t e r a k t i v n í h o t e s tován í na uživate le .

P r o b l é m by l vyřešen v y t v o ř e n í m programu, k t e r ý u p r a v í existuj ící t es tovac í sady p o m o c í
Java Instrumentace a poskytne uživate lské p r o s t ř e d í pro manipulaci s upravenou tes tovací
sadou.

Výs ledkem bylo ze jména zrychlení procesu v y t v á ř e n í t e s t ů (př i už iva te l ském te s tován í
by l i už iva te lé schopni napsat test b ě h e m minut, bez přechozí znalosti t es tovac í sady).
Všichni už iva te lé k t e ř í podstoupil i už ivate lské t e s tován í vyjádř i l i zá jem o použ i t í ná s t ro j e
př i b ě ž n é p rác i .

H l a v n í m výs ledkem t é t o p r á c e je p o u k á z á n í na neefektivitu současných ná s t ro jů , a n a l ý z u
p o t ř e b už iva te lů a n á v r h , vy tvo řen í a o t e s tován í nového n á s t r o j e pro vyhověn í t ě m t o p o t ř e
b á m .

Keywords
Java instrumentation, behavior driven testing, U I testing, react, monaco editor, selenium,
web applicat ion testing

Klíčová slova
Java instrumentace, behavior driven testing, t e s tován í UI , react, monaco editor, selenium,
t e s tován í webových apl ikací

Reference
M U Z I K Á Ř , M a r t i n . Tool for Effective Management of Web Application Tests. Brno , 2020.
Bachelor's thesis. Brno Univers i ty of Technology, Facul ty of Information Technology. Su
pervisor Ví tězs lav Beran, Ing., P h . D .

Tool for Effective Management of Web Applica
tion Tests

Declaration
Proh lašu j i , že jsem tuto b a k a l á ř s k o u p rác i vypracoval s a m o s t a t n ě pod v e d e n í m pana Ví tězs lava
Berana, Ing., P h . D . Dalš í informace m i poskyt l i T o m á š Sýkora , Dongni Wang and Sarah-
jane Cla rk . Uved l jsem všechny l i t e rá rn í prameny, publikace a dalš í zdroje, ze k t e rých jsem
čerpal .

M a r t i n M u z i k á ř
M a y 27, 2020

Acknowledgements
M y gratitude belongs to everyone who helped me wi th this thesis. Thank you M r . Beran
for being my supervisor, giving me a unique viewpoint on any presented issue, sometimes
challenging my views to make sure I always stood by my decisions.

The Fuse Q E team i n R e d Hat , namely T o m á š Sýkora , for being my consultant inside
the company setting, for many hours of brainstorming and providing me wi th contacts for
technical consultations. Dongni Wang and Sarahjane C la rk for consulting my designs and
user test ideas, I was able to get feedback even from discussing wi th them and the user
tests were able to provide useful data.

Users par t ic ipat ing i n user tests, namely Al i ce R u m , A n e t a Čadová , Stefan Vereš, and
the rest of the team who provided me w i t h constructive feedback and their support.

Contents

1 Introduction 2

2 Related theory (Software verification, Java Instrumentation, Monaco ed
itor) 3
2.1 Software verification 3
2.2 Java Instrumentation 7
2.3 Web applicat ion components 12
2.4 Ex i s t ing solutions 17

3 Solution draft for making B D T more interactive 20
3.1 Current approach to testing 20
3.2 Solutions for user issues 21
3.3 Designing the applicat ion 23
3.4 Verifying designs 27
3.5 App l i ca t ion architecture 29
3.6 Backend A P I 32

4 Implementation of interactive B D T tool 37
4.1 Agent implementation 37
4.2 Front-end implementat ion 41
4.3 User testing 44

4.4 Plans for the future 44

5 Conclusion 46

Bibl iography 48

A Backend experiments 49

B G h e r k i n monarch definition 51

1

Chapter 1

Introduction

Verification of software is an important part of the software development process, so it only
makes sense that there are many different tools and frameworks that make the verification
part easier. There are many different approaches to software verification, the a i m of this
thesis is not to create the best and the only testing solution to be, because frankly that is
not possible.

The a im is to observe one specific approach to verification which is Behavior Dr iven
Testing (B D T for short) and creating a tool to save testers work w i t h manual tasks. Y o u
can imagine the result of this thesis as an Integrated Development Environment specifically
created for Behavior Dr iven Testing development.

In this thesis current implementations of tools for B D T w i l l be shown and analyzed.
Y o u w i l l get to know basics of program instrumentation and how it is done i n the J V M ,
a deep-dive into the Cucumber framework (which is a B D T implementation) and B D T as
a whole, what are its benefits and why is it even used. A design of a tool that runs tests as
they are wri t ten, its implementat ion and user testing.

This thesis was made w i t h real input from quali ty engineers who use Behavior Dr iven
Testing, the analyzed problems and proposed solutions were designed wi th feedback from
this team. Same team also part icipated i n user testing to measure improvements provided
by this approach.

Fi rs t some context w i l l be provided to analyze user needs properly in Chapters 2.1
and 2.4. For the implementat ion part familiari ty w i t h Java Instrumentation 2.2 which is
used to modify program's behavior. A n d to implement an interface for users to interact
w i th using the React l ibrary and Monaco editor l ibrary 2.3.

Pr io r to implementing a solution it needs to drafted first. In this thesis the current
testing si tuation is analyzed 3.1, issues i n the approach are pinpointed 3.2. W i t h the issues
in m i n d the applicat ion is designed 3.3 and a proposal for user testing is made 4.3. A n d to
make the applicat ion work as a whole the architecture 3.5 and back-end A P I 3.6 are also
proposed.

Fol lowing the solution draft my notes from implementing the applicat ion are split into
agent implementat ion 4.1, implementing the user interface 4.2, testing the interface on
actual users 4.3 and analyzing the results and making plans for the future of this project 4.4.

2

Chapter 2

Related theory (Software
verification, Java Instrumentation,
Monaco editor)

2.1 Software verification

This sub-chapter provides an overview of what are different terms i n the area of software
verification, or the testing process. The most essential topic of this section is Behavior
Dr iven Testing as it is going to be referenced throughout the thesis. Other methodologies are
mentioned as they were an inspirat ion while designing the whole idea. Software verification
is a complex subject to describe on a few pages. A s the team's focus is system testing
where the appl icat ion is tested as a whole, unlike unit or integration testing which covers
only a por t ion of the project or communicat ion between parts of the project.

Information i n this chapter is p r imar i ly sourced from experienced quali ty engineers
and [4].

Regresssion testing
Regression testing is a process of re-running tests after a change in the product to make
sure that change didn ' t break anything. If a change appears and a test results in a failure,
testers can see early if a specific feature is not working correctly.

Changes can also introduce wanted failures which don't necessarily mean a feature
of tested applicat ion doesn't work as expected. Occasionally changes to the test itself are
needed.

Integration testing
Integration testing is a process where a l l parts of the tested applicat ion are tested as one
complex system. M u c h like black-box testing, tester interacts w i th the appl icat ion and
observes outputs as a user would.

Approaches to system testing
W h e n it comes to testing an applicat ion where user interacts w i th the Graph ica l User Inter
face several approaches exist to facilitate the verification. The most popular or influential
to interactive testing approach are described in the following chapter.

3

M a n u a l testing
A tester (person responsible for wr i t ing and maintaining the tests of a web application) can
prepare test scenarios and execute them manually each t ime there's a need for new results.
The benefit of the manual approach is its simplicity, no need for programming knowledge
and the fact that U I changes don't really affect the tests. Testers are able to see even
the tiniest problems in the applicat ion. O n the other hand it is really cumbersome to do
the same tasks a l l the time, especially as the applicat ion is gaining complexity.

Interactive testing
A more advanced approach is automating the manual tests. There are tools which are
able to record user's interaction wi th in a web browser and perform such interactions on
demand. However tools like this are usually not capable of executing code, i f you need to
check the state of a database for example or do any custom logic, those tools w i l l l ikely not
have a l l the features needed for such tasks. A l so a U I change i n the applicat ion could leave
the whole test suite i n a broken state which is not desirable.

The most used Open source tool is Selenium I D E 1 . It is made by the Selenium orga
nizat ion which also created Selenium, the biggest browser automation tool . It is simple
to understand but provides more advanced features closer to programming. B i g advantage
of this tool is i n being a browser plugin, apart from being easy to instal l , it does not require
setting up environment to run the tests.

W h y is automation needed?
M a n u a l and interactive testing are usually used for smaller projects or early prototypes be
cause they are easy to set up and execute. W h e n it comes to bigger projects or fact changing
applications, re-recording or rewri t ing the same test usually leads to tester burnout. A c
cording to the Continuous Delivery methodology acceptance tests should be automated
which brings several benefits to the entire team [6]:

• Developers get feedback faster.

• Reduced workload on testers.

• Testers can focus on higher-level activities.

• A l l acceptance tests together create a well base for finding regressions i n the software.

Testing User Interface

Because system testing tests an applicat ion as a whole that means that the User Interface
must be covered by the tests as well . Different platforms provide different solutions but in
design most a l l s imilar to Selenium described bellow.

Selenium
Selenium [3] is the most popular tool to automate Web applications, it has a big community
support, language bindings to most popular languages.

Selenium provides an interface called WebDriver which is a language independent pro
gram, that accepts commands and instructs a browser to execute such commands. The browsers
are backed by drivers which handle the communicat ion between Selenium and the browser.
A driver exists for each major browser in the market. Hav ing a communicat ion layer be
tween developers and the drivers allows the same code to run on different browsers.

x h t t p s : //selenium.dev/selenium-ide/

4

The main entry-point for interacting wi th the automated browser is through a WebDriver
instance. In the following examples the instance is called webdriver.

Locating elements
Elements are located i n Selenium by using selectors, there are different types of selectors,
most commonly C S S 2 , X P a t h 3 and name selectors are used. W i t h a selector an element or
a list of elements on an opened page can be found using

WebElement element = driver.findElement(By.name("username"));
//or
List<WebElement> element = driver.findElements(By.tagname("h .2"));

Th is code snippet tries to find an element where an at tr ibute name has value username,
a proxy object is returned, that provides methods such as exists to check i f the element
was found, or the i s method that allows to check for predefined conditions such as „element
is visible", „element is clickable". If the WebElement exists, it allows for interactions using
sendKeys, click, clear methods. WebElements also allow to search in their children by
using the selectors, consider following example:

WebElement form = driver.findElement(By.id("login-form"));
i f (form.existsO) {

form.findElement(By.name("username")).sendKeys("admin");
form.findElement(By.name("password")).sendKeys("password");
form.findElement(By.cssSelector("input.primary[type=\"submit\"]")).click();

}

M o d e l based testing
A more flexible and maintainable approach to this would be to use models that represent dif
ferent pages. W h i c h is the ma in idea behind model based testing. Creat ing abstractions
of different pages is a good practise for several reasons:

• better maintainabi l i ty - i f part icular U I aspect changes, just rewrite the model and
al l existing tests should stay the same

• easier collaboration - it is easier to understand a model of a page, than to look at
a bunch of selectors and t ry ing to find them in the D O M

• re-usability of already wri t ten components

This could be the final solution for most testers but there is s t i l l another level of ab
straction that can be used. E a c h interaction w i t h the applicat ion should be describable by
one short sentence, such as „Click on the Submit but ton" which provides more abstraction
from the code, and stakeholders of product are able to read or even create new test sce
narios without any need for knowledge of programming language. This approach is called
Behavior Dr iven Testing (B D T for short).

2 h t t p s : //www.w3schools.com/ css/css_selectors.asp
3 h t t p s : //www.w3schools.com/xml/xpath_intro.asp

5

http://www.w3schools.com/
http://www.w3schools.com/xml/xpath_intro.asp

Behavior Dr iven Testing
Behavior Dr iven Testing [1] is an agile practise that allows a l l stakeholders to communicate
clearly and collaborate i n a better fashion on a product feature and every-ones expectation
for said feature.

I had a l iberty of having a discussion wi th an agile practit ioner that overlooks a huge
team of developers and testers, in his own words B D T is a tool that should encourage
communicat ion and discussion.

Separate tests are called scenarios, each test you would normally program is a scenario
that corresponds to a bigger feature. For example in a calculator, you might have a feature
of Square root and different scenarios could be:

• Square root of odd numbers

• Square root of even numbers

• Square root of zero

• Square root of negative numbers

A test suite can consist of many different feature files w i th a ton of scenarios i n each
feature file. Scenarios consist of steps, steps are the interactions wi th the applicat ion.
For programmers it is s imply an abstraction for a method, each step has a pattern and
arguments. There is a best practise i n place that steps pattern should be self-descriptive,
but since we use our natural language to define the steps, it is not always achievable to
have the same meaning to everyone.

For further explanation, let's create a sample feature file for the square root example

Feature: Square root
Background: Calculator running & clean state

Given calculator application i s running
And I press "CE" button

Scenario: square root of-odd number
When I input 7 into the~calculator
And I press "Square root" button
Then calculator should display 2 .6457

A s you see, some prepositions are used before actually using a step, these are also best
practises and aren't enforced by any shape, way or form by B D T . B u t to quickly explain:

• G i v e n - preparing the in i t i a l state of the applicat ion

• W h e n - describing an action or an event

• Then - describing an expected outcome

• A n d , B u t - used only for ease of reading, instead of having mult iple When , usually
it 's W h e n , A n d , A n d . . .

A l so a Background block is used, this block is run before each scenario in a feature file.
Though it is recommended to use it rarely to keep the scenarios easy to understand.

G

2.2 Java Instrumentation

Java Instrumentation allows developers to modify certain classes at runtime. B y ut i l is ing
this the test suite can be transformed to behave i n a certain way, without any need to
modify exit ing code. This is a great benefit as it makes setting up the environment require
li t t le to no changes i n existing code.

Instrumentation is a service that allows Java classes to be modified at runtime. This is
done v i a „Java agents". Th is might be confused wi th Reflection which is an introspection
tool , it allows to read metadata of class and i n sense of modification is not really flexible,
it is commonly used for serialization and accessing private methods and fields of classes.
B u t doesn't support modifying the behavior of a class, the only modifications allowed are
sort of a communicat ion layer. W h a t is different about Java Instrumentation is you s t i l l
get access to a l l the information you 'd get w i th Reflection but you are allowed to change
the actual bytecode of the class, so you can add fields and methods, modify existing behavior
of methods, create classes at runtime.

This chapter's main sources of information were [8] and [5] which both go into detail
of how exactly the J V M operates [8] and how the transformations are performed [5].

Java Agents
A Java Agent can be described as a program modifying the bytecode. It is specified as
a J A R file that contains required attributes i n Manifest and is attached to a program
running on the J V M .

A n agent can be attached while starting the program or dynamical ly when the program
is already running, al though attaching agent after start (from the codebase) is up to specific
J V M implementat ion to be supported. If a J V M implementat ion supports attaching agents
at runtime, the loading behavior is unspecified. A t the t ime of wri t ing , it is not a part
of the J V M specification to allow modifying already loaded classes which might cause issues
as the agent might attempt to modify a class that was already loaded.

Creat ing a basic agent

Similar to any other Java applicat ion, an agent needs to have an entrypoint specified.
A m o n g other properties, the agent entrypoint is specified in the Manifest file.

• Agent-Class - fully classified name of the class used as an entrypoint when attaching
an agent at runtime.

• Premain-Class - fully classified name of the class used as an entrypoint when attaching
an agent at startup.

• Boot -Class -Pa th - a list of paths to be searched by the boot classloader, any agent
libraries should be added here.

• Can-Redefme-Classes - abi l i ty of the agent to redefine classes, boolean

• Can-Retransform-Classes - abi l i ty of the agent to retransform classes, boolean

• Can-Set-Nat ive-Method-Pref ix - abi l i ty of the agent to the native method prefix,
boolean

Java 8 was used in all examples, the specification might have changed in newer versions.

7

Retransformation is a process which uses the registered class transformers, the changes
can be additive and one class might be modified by more than one agent. W h e n class is
redefined, the current implementat ion is overwritten by a new one. The class redefinition
process takes into consideration i f a class transformer is marked as Can-Redefine-Classes
and applies the transformations according to this values. Understanding the process in
not i n the scope of this thesis, more information is available i n the ClassFileTransformer
documentat ion 4 .

A n entrypoint class must contain a method wi th any of these signatures:

public s t a t i c void premain(String args, Instrumentation instrumentation);
public s t a t i c void premain(String args);
public s t a t i c void agentmain(String args, Instrumentation instrumentation);
public s t a t i c void agentmain(String args);

The methods are called i n the order as they are wri t ten, i f a method wi th Instrumentation
argument is found it gets called. The premain method is called when the agent was attached
at startup, agentmain i f the agent was attached at runtime. B o t h premain and agentmain
methods can exist i n the same class or can be i n a different classes.

Java Bytecode
Contrary to other popular programming languages, such as C , C + + or Rust , output of com
pi l ing Java code is called bytecode. This bytecode is loaded into a v i r tua l machine, w i t h its
own instruction set where the ind iv idua l bytes from the bytecode are operation codes.
The operations also take arguments as we are used to from assembler languages, but de
tailed knowledge of the Java bytecode is not needed to understand Java Instrumentation and
hence is not required by this thesis. W h a t is more important is being familiar w i th the gen
eral class structure and how the J V M operates.

Class structure
Since Java Instrumentation allows us to only modify classes, we need to understand what
makes a class, how are classes stored, how exactly are they loaded and what does modifying
the class mean.

Each class is stored i n one file containing data of the ClassFile structure.

ClassFile { u4 magic;
u2 minor_version;
u2 major_version;
u2 constant_pool_count;
cp_info constant_pool[constant_pool_count-l];
u2 access_flags;
u2 th i s _ c l a s s ;
u2 super_class;
u2 interfaces_count;
u2 interfaces[interfaces_count] ;
u2 fields_count;
f i e l d _ i n f o f i e l d s [f i e l d s _ c o u n t] ;
u2 methods_count;

4https://docs, oracle, com/javase/7/docs/api/java/lang/instrument/ClassFileTransformer.html

8

https://docs

method_info methods[methods_count];
u2 attributes_count;
attribute_info attributes[attributes_count];

Snippet directly taken from [8]
Firs t three fields are used for val idat ing the contents of the file and aren't important to

cover here.
Next we can see a field named constant_pool and constant_pool_count, this constant

pool is an array of values that are bigger than one byte, so each operation can stay at
min ima l size and also it avoids dupl icat ion of those values. There are many possible types
of the constant data i n a class, but it 's important to mention that class references, method
references etc. are also stored here.

Access rights to the class are stored i n the access_flags field. Classes referencing
the class and its super class are stored i n the t h i s _ c l a s s and super_class fields. Essen
t ia l ly the constant type class is just a fully qualified name of the class that the J V M has
to resolve. To illustrate better, J D K comes wi th a handy tool called javap that makes
the class' byte structure into a human readable structure.

public class mmuzikar.Stepdefs
minor version: 0
major version: 52
flags: (0x0021) ACC_PUBLIC, ACC_SUPER
this_ c l a s s : #1
super_class: #3
interfaces: 0, f i e l d s : 1, methods: 8,

Constant pool:

// mmuzikar/Stepdefs
// java/lang/Object

attributes: 3

#1
#2
#3
#4

Class
Utf8
Class
Utf8

#2 // mmuzikar/Stepdefs
mmuzikar/Stepdef s
#4 // java/lang/Object
java/lang/Object

#10
#11
#12
#13

Methodref
Class
Utf8
NameAndType

#11.#13
#12
java/lang/Class

// j...Class.getName:()Lj...String;
// java/lang/Class

#14:#15 // getName:()Ljava/lang/String;

In this structure, you can see the header of a class and a specific parts of the constant
pool , as you can see this_class and super_class are just references to the constant pool ,
where we can find the fully qualified names of the classes. We can see that somewhere
in the class a method Class#getName is called and it doesn't take any parameters and
returns an object of type java/lang/String. Understanding the signatures and everything
presented here is not crucial , but being familiar w i th existence of constant pool and what
it 's used for is important when dealing wi th Instrumentation.

9

Type Signature Java Type
boolean Z

B
C
I
J
F
D

byte
char
int

long
float

double
L fully-qualified-class:

[type
(arg-types)ret-type

fully-qualified-class
type[]

method type

Table 2.1: J V M signature table

J V M signature types
Convert ing J V M signature to the ones we are used from Java wi th this useful table from
the J N I (Java Nat ive Interface) documentation :

A s an example the method long f (int n, String s, int [] a r r) ; has the signa
ture (ILjava/lang/String; [I) J

Class Transformations
Java by default allows us to modify classes in just one way, to register a ClassTransf ormer
in Java Agent startup method. The ClassTrasf ormer is an interface wi th just one method
and that is

byte[] transform(ClassLoader loader,
String className,
Class<?> classBeingRedefined,
ProtectionDomain protectionDomain,
byte [] cla s s f i l e B u f f e r)

throws IllegalClassFormatException

Where we get many parameters we are only able to perform basic reflection tasks
wi th classBeingRedef ined and the compiled class bytecode in classf ileBuf fer which
can be modified and returned in the function.

This means that the agent should be able to read and write val id bytecode which
requires developers to be well versed i n this. Tha t is a hard and error prone way to create
agents which was the reason for 2 awesome libraries which enable more users to write
instrumentation code easier and i n a safer way.

Frameworks
There are way more than 2 framework for dealing w i t h manipula t ing bytecode but A S M 6

and Bytebuddy are the most commonly used, M i x i n s 8 l ibrary is worth at least mentioning
as it looks like the easiest l ibrary to actually develop wi th .

5https://docs, oracle, com/javase/7/docs/technotes/guides/jni/spec/types.html
6 h t t p s : //asm.ow2.10/
7 h t t p s : //bytebuddy.net/
8 h t t p s : //github.com/SpongePowered/Mixin

10

https://docs

A S M
A S M is an a l l purpose Java bytecode manipulat ion and analysis framework. It can be used
to modify existing classes or to dynamical ly generate classes, direct ly i n binary form. A S M
provides common bytecode transformations and analysis algorithms from which custom
complex transformations and code analysis tools can be buil t 9 .

A S M is even used i n the Open J D K , Groovy and K o t l i n compilers which speaks a lot
about its maturi ty. A l though it deals only wi th bytecode instructions, it makes the process
easier thanks to ut i l is ing the Vi s i t o r pattern and handling manual tasks such as recalculating
the offsets of instructions or dealing wi th the constant frames or calculat ing size of stack
for methods.

Bytebuddy
Bytebuddy is a code generation and manipulat ion l ibrary for creating and modifying Java
classes during the runtime of a Java applicat ion and without the help of a compiler 1 0 .

By tebuddy does not a im to compete wi th A S M , rather it strides towards abstracting
as much bytecode instructions as possible, it utilises complete D o m a i n Specific Language
to create new and modify existing classes.

D e s c r i p t i o n t a k e n f rom project page: h t t p s : / / a s m.ow2 . i o /
' D e s c r i p t i o n t a k e n f rom project page h t t p s : / / b y t e b u d d y . n e t /

11

https://asm.ow2.io/
https://bytebuddy.net/

2.3 Web application components

The most user friendly approach is usually to bu i ld a Graph ica l User Interface (G U I from
now on) for your appl icat ion which w i l l also be needed in this thesis. There are countless
approaches and resources to bui ld ing a general G U I applicat ion which is the reason this
section w i l l cover basics of web applicat ion development and more detailed description into
the Monaco E d i t o r l ibrary as it is widely known by being taken from the V i s u a l Studio
Code editor but the documentat ion is lacking i n many aspects.

Web application development
Web applications are used commonly for their universal appeal on any platform, developers
don't have to concern themselves wi th operating system specifics. It is not a surprise that
the Web applicat ion frameworks and libraries are one of the most rapidly growing projects.

T y p i c a l web applicat ion consists of H T M L to define the contents, C S S to define visual
side of the content and Javascript to make the websites interactive and functional. W h e n
it comes to creating more complex applications, there are many different libraries and
frameworks that a im to simplify the process.

Because the React l ibrary was used to implement the applicat ion it is going to be
described. Other notable mentions are Vue 1 1 , Ember 1 2 , Angu la r 1 3 .

React
React [2] is a Javascript l ibrary for bui ld ing interactive user interfaces i n a declarative way.
Phi losophy of React is that applicat ion is made up of web components which manage their
own state and react to changes in the state.

A web component receives props from its parent. Props are data coming from an upper
layer. A component can keep track of its state which is a structure that is manipulated
from only inside the component.

React uses v i r tua l D O M technology to keep track of any changes to the web elements,
this process is called reconciliation. W h e n a change is detected i n the v i r tua l D O M , only
then is a redraw of the specific web component actually called i n the browser view. This
enables the declarative functionality of React and saves performance.

Monaco editor
Monaco editor is a l ibrary that uses the editor of popular editor V i s u a l Studio C o d e 1 4 ,
it supports syntax highlighting, autocompletion, adding custom commands and widgets,
mult iple cursors, and everything else modern code editors support. A l t h o u g h it might seem
as developers can use the documentation of V i s u a l Studio Code to use as reference when
using Monaco Ed i to r - apart from basic examples, the documentation 1 5 is a list of defined
types where some functions have a smal l description.

Monaco editor installation
Unlike most Javascript libraries, Monaco Ed i to r needs to be loaded i n a proper way into
the website as it uses Webworkers to offload non U l - c r i t i c a l tasks, Monaco Ed i to r comes
wi th its own loader or according to most claims other loaders w i l l work as well . A n example

n h t t p s : //vue js.org/
1 2 h t t p s : //ember j s.com/
1 3 h t t p s : //angular, i o /
1 4 h t t p s : //code.visualstudio.com/
1 5 h t t p s : //microsoft.github.io/monaco-edit or/api/modules/monaco.edit or.html

12

http://js.org/
http://visualstudio.com/

repository 6 exists to showcase basics of how different loaders can be used. It is not
necessary to understand how webworkers work and why is it required to load them, as
Monaco Ed i to r abstracts those concepts from developers. After the loaders are set up
correctly, a editor can be created w i t h cal l ing a Javascript function on an H T M L E l e m e n t
to use as a parent.

Syntax highlighting
Monaco comes wi th its own way to specify language syntax i n J a v a s c r i p t / J S O N , on the con
trary V S Code supports other ways. It is called M o n a r c h and it works as following:

• Syntax definition is a self-contained Javascript object, support ing only data.

• Syntax rules are defined in a tokenizer field.

• Syntax rules can use groups of tokens defined i n the root object.

• Rules can be pushed on a stack.

• a set of rules is used based on what is on top of the rule stack.

• a rule is defined as a list, where [<pattern>, <act ion>, [<next>]].

• a pattern can either be a regular expression, or a token group defined i n the object
(referred to as „ @ < n a m e - o f - g r o u p > " .

• A n action can be a str ing that holds a category of matched token.

• Next is an optional value i f after matching this token a different set of rules should
be used, for example [„ / / * " , „ commen t " , „ c o m m e n t B o d y "] would classify „ / / * " as
a comment and push „ c o m m e n t B o d y " on the stack, so the tokenizer now uses that
set of rules.

A n example of the Cucumber syntax wri t ten i n Monarch can be seen i n A p p e n d i x B .
There are more advanced features of monarch that allow matching brackets etc., those

are documented on the Monarch website 1 .

A d d i n g custom functionality
The editor proposes two ways of interacting wi th the editor or the contents of the editor
which are commands and actions. There is no explanation provided about what is
the difference between those two approaches and what should they be used for. B u t there are
some differences and non-writ ten rules when it comes to using other Monaco components.

The simplest way to differentiate actions and commands would be: commands are more
lightweight, they are registered as a function wi th an optional key b inding and optional
preconditions. W h e n it comes to actions, they require an id , can be used from the context
and command menu. It can be confusing because what Monaco calls command menu shows
what developers register as actions.

W h e n it comes to other features such as CodeLens, if an interaction is desired wi th it
a command i d needs to be supplied, and i f it is desired to have the functionality of actions
such as v is ib i l i ty i n command menu, an action can be registered that call
editor#executeCommand() w i th the command id.

1 6 h t t p s : //github.com/microsoft/monaco-editor-samples
1 7 h t t p s : //microsoft, github.io/monaco-editor/monarch. html

13

Codelens
Codelens is a mechanism where custom text can appear above specified lines of code, that
can provide addi t ional info to users. A command i d can be supplied together w i th the Code
lens object to execute a command when the Codelens is clicked on. A n important detail
when it comes to executing commands from Codelens is how the arguments are passed to
the command.

{

range: range,
i d : "Run-Step-CodeLens",
command: {

id : runStepId,
t i t l e : "Run Step",
t o o l t i p : "Runs the~step",
arguments: [model, range.startLineNumber]

}

}

In this code snippet, a Codelens object is created that is t ied to arbi trary range range
(which contains start and end line numbers and start and end columns). O n click it executes
a command wi th id runStepId and passes arguments model and range. startLineNumber
to the command. B u t the command by default receives one argument which is named
context i n the A P I documentat ion but the meaning of what the variable contains is not
explained anywhere. To make the command work wi th Codelens defined above, it needs to
be registered as

//0 as f i r s t argument because no key bind is wanted
runStepId = editor.addCommand(0, (ctx, model, lineNum) => {

commandLogic(model, lineNum);
}) ;

Decorating text
Most code editors provide a way to provide feedback, the most famous example is a red
squiggly underline of typos or incorrect code. The way to add custom line decorations in
Monaco is by cal l ing editor#deltaDecorations, this method expects 2 parameters, first
one is the o ld parameters and second one is a list of monaco. editor. IModelDeltaDecoration
which contains fields range and options, range determines the range the decoration is applied
to and options specifies the C S S class names used and other options such as i f the decora
t ion should be placed i n the margin (which is next to the line numbers). Important note
when decorating lines is the first parameter, i n the example it is just empty list, but that
causes wrong behavior when editing the text. The old decorations are returned when call ing
editor#deltaDecorations. Consider following snippet:

14

var decorations;

function decorateText(lines) {
decorations = editor.deltaDecorations(decorations II [], lines.map((i) =>

range: new monaco.Range(i, 1, i , 1),
options: {

isWholeLine: true,
inlineClassName: 'squiggly-error'

y
}) ;

}

In the snippet a lines variable contains a l l line numbers w i th syntax errors which
get 'squiggly-error' C S S class applied to them, notice that decorations are being set to
the return value of the function and are passed when cal l ing the function next time, that
is important for consistent text decorations.

Custom widgets
There are different ways of adding an H T M L element into the editor, the different ways
can be see i n an example called „Lis tening to mouse events" 1 8 where different widgets are
used to demonstrate listening to mouse events.

In summary, Monaco editor provides these ways of customizing the editor:

• Viewzones - allows to specify a custom D O M node for a set number of lines, effectively
adding content between lines.

• Content widgets - allows to create a D O M node i n the editor, this node is considered
as part of the content of the editor, so it scrolls along wi th the text.

• Overlay widgets - allows to create a D O M node overlaying the editor, node is not
affected by scrolling.

• Codelens - allow to display clickable text above a line of code.

• G l y p h margins - allows to apply custom decorations to the gutter area, right next to
the line numbers.

Work ing wi th these specified widgets differs i n terms of flexibility, the first 3 items
require developers to add the D O M node on their own, so those are the most flexible
methods. Codelens allows specifying a command id which is executed when the text is
clicked on, i n terms of flexibili ty of manipula t ing the text, the whole editor content is
passed to the function providing the lenses, i n that terms there are no l imitat ions. G l y p h
margins are more decorative, so the only control provided is the line number and the class
name, but since Monaco editor allows custom listeners for key and mouse events, that
functionality can be provided as well.

Custom autocomplete
Prov id ing custom suggestions while user is typing in the editor is really easy i n the Monaco
editor, and it is well covered by an example 1 9 . A suggestion provider can be registered by

1 8 h t t p s : //microsoft, github.io/monaco-edit or/playground.html#interacting-with- the-edit or-
listening-to-mouse-events

1 9 h t t p s : //microsoft, github.io/monaco-edit or/playground.html#extending-language- s e r v i c e s -
completion- provider-example

15

call ing function
monaco.languages.registerCompletionltemProvider(<languageId>,
<completionProvider>), where languageld is an id of the language the provider is going
to be registered for ('json' or 'Java' as an example).

completionProvider is an instance of type monaco. languages. CompletionltemProvider
which requires functions

• provideCompletionltems(model, position, context, token)

• resolveCompletionltem(model, position, item, token)

Where both functions return ProviderResult<CompletionList> which is a type alias
for CompletionList or a Promise<CompletionList>. CompletionList contains two fields:
incomplete and suggestions, where incomplete can be set to true i f there is data missing
in the items which are resolved by cal l ing the resolveCompletionltem w i th each i tem as
the th i rd parameter.

W h e n a function is computat ional ly demanding, it is recommended to provide just
the most basic information such as labels i n the provideCompletionltems function and
then add the information on per i tem basis i n resolveCompletionltem function.

The Completionltem t y p e 2 0 has a lot of fields to document, but the basic fields are:

• label - an i d and by default a display text i n the suggestions, the i d is important to
provide for the resolveCompletionltem

• insertText - the text that is going to be inserted, can use placeholders to allow users
T A B into specific places

• kind - the type of the i tem, such as variable, function, symbol, etc.

• detail - short documentation of the i tem, is displayed above the text when it was
inserted.

• documentation - documentation of the i tem, that is displayed on demand

• insertTextRules - rules that are applied when this completion is used (this is used
mainly to allow using placeholders i n the insertText)

Accessing the content
The content of the editor is stored i n Models, a model represents one tab open i n the editor.
A model can be created by cal l ing monaco.editor.createModel(<value>, <language>,
<uri>), where value is the in i t i a l text, language is opt ional and determines the suggestion
providers and the syntax highlighting used, u r i is opt ional as well, i f no file pa th is specified,
Monaco just keeps the models i n memory.

Since the editor is made pr imar i ly for edit ing code, there are many functions that
facilitate searching for patterns i n the model, navigating through lines, applying edits to
allow undo and much m o r e 2 1 .

https: //github. com/Mi crosoft/monaco-editor /blob/master /monaco. d.ts# L 5 2 4 2
2 1 h t t p s : //microsoft.github. io/monaco-edit o r / a p i / i n t erf aces/monaco. ed i t or. i t extmodel.html

16

2.4 Exist ing solutions

The closest things to existing solutions are various plugins to text editors and I D E s that
highlight the syntax for describing different testing scenarios, some tools also provide ad
di t ional functionality.

These tools are described and analyzed because Cucumber Studio provides the most
functionality and the Intellij I D E A plugin is the most used by the user base. A t the time
of wr i t ing Cucumber studio was the most sophisticated tool . Other tools exist such as Cuke
Test 2 2 and plugins for text editors V i s u a l Studio Code 2 3 , A t o m 2 4 .

Cucumber Studio
Cucumber Studio is an in-house tool created by the team behind Cucumber which is a pop
ular Behavior Dr iven Testing framework. It provides more functionality than other tools.

This tool was definitely created as a tool for for everyone in the software creation process,
there is no code visible to the users.

Figure 2.1: Cucumber studio test scenario example 2 5

Search folders Display errors

Serve coffee (1)

Support internation... (?)

Can be configured

I" I Display errors

E3 Beans (4]

Subfolderfl)

Grounds (2)

= Water (3)

Descaling

Bad usage (1)

It is possible to take 40 coffees before
there is really no more beans

Maecenas sed diam eget risus varius blandit sit amet non magna.

Aenean eu leo quam. Pellentesque ornare sem lacinia quam venenatis

vestibulum. r Add attachment

Test results

Debatable

Tests C§> View tests

SETUP STEPS /
1 Given the coffee machine has been started

2 and I handle everything except the beans

• Select all

3 When | take = 40 coffees

4 Then coffee should be served

Raw version -l

In the picture you can see an example of one test scenario, it is a good representation
for stakeholders of a product, but from the testers perspective, it could be improved. A l so

2http://cuketest. com/
3 h t t p s : //marketplace, v i sualstudio.com/it ems?itemName=alexkrechik. cucumber autocomplete
4 h t t p s : //atom.io/packages/cucumber

17

http://cuketest
http://sualstudio.com/

the Cucumber Studio has quite unusual definitions i n terms of B D T terminology as there are
actions and action words and results. Overa l l I found it confusing and too convoluted. A s
a tester I a m wr i t ing actions or steps, whether it is to do a test setup or to do a verification.

B u t a great feature of this tool is this feature of showing where a step is used, providing
users wi th other scenarios which use that step as an example. Th is is a common practise
while wr i t ing tests to see what other scenarios use and modify to suite their needs.

Figure 2.2: Cucumber studio step „Used by" page 26

Action words

Search folders Q

I handle beans

I handle the coffee grounds

The coffee machine is started

Used by

Beans message

Default settings

Display settings

I empty the coffee grounds

I fill the beans tank

I fill the water tank

I handle everything expect the ..

coffee should be servec

coffee should not be served

I handle everything expect the ..

I handle water tank

I handle everything expect the ..

Grounds

Simple use

Simple use case

Water

No messages are displayed

Revision history

Cucumber plugin for Intellij I D E A
W h i l e doing research i n the team of quali ty engineers, every one of them stated they used
this plugin as their main driver for wr i t ing B D T Scenarios, ma in reasons for that are:

• the team writes the test logic i n Java which means most of them are using Intellij
I D E A anyway.

• B y far this plugin has the best support for scanning dependencies of test suite for any
steps to provide autocomplete.

• It provides , jump to definition" feature which the testers use when investigating any
issue wi th scenarios.

W h e n asked what they missed, common requests were (in order):

18

• a breakpoint functionality for scenarios.

• a hierarchical view of test suite features and tags.

• Way to run specific test scenario while it is open in the editor.

The following requirements are the basis for the designed tool: make the work less
convoluted, don't force tester to look for information - provide step definition list
and search, allow testers to analyze the applicat ion under test state - add code execution
functionality. If the goals were to be summarized into one short goal it would be: Provide
an Integrated/Interactive Development Environment for Behavior Dr iven Testing.

19

Chapter 3

Solution draft for making B D T
more interactive

The overarching goal of this tool is to save t ime for testers and make their jobs easier. To
know how and i f t ime can be saved, an analysis of the current workflow needs to be done
in order to propose a better solution.

3.1 Current approach to testing

Let 's say there's a new feature i n a web app that needs to be tested. F i rs t the new feature
needs to go through a hands-on phase, where tester observes what the feature brings to
the applicat ion and if there is anything present i n the test suite they can use for testing this
feature. This hands-on phase usually takes day or two, depending on the size of the feature.

Then a happy path scenario gets created which means wr i t ing the scenario for the fea
ture as it was designed to get used. This phase is hard to guess the average t ime as you
need to take into account i f the required logic is wri t ten, so let's say an hour for one scenario
for a new feature when a l l the logic is already wri t ten i n the test suite, however i f new logic
needs to be wri t ten, that can take up to 3 or more days.

How is a scenario written?
Most testers start w i t h copying other scenario, then they open the applicat ion and start
performing the actions manual ly and t ry ing to find steps that perform those actions as well.

W h e n a happy path scenario or a base scenario (a min ima l working scenario) is created,
testers usually start copying that scenario and modifying it , when they modify it and feel
like it is correct, they just run the test and observe the results. A n d keep i n mind these
tests take t ime to execute, average t ime of one test execution is roughly 4 minutes 1 .

Issues in current approach
The biggest issue i n the current approach is everything takes too long, especially when
copying and modifying tests most testers describe that phase as „ t r ia l and error" where
they often face issues w i t h typos or other logic issues.

Note that it is not really easy to see what exactly is going on i n a running U I tests,
you don't see a cursor, you just see a browser that either performs the actions on its own

1 T h i s i n f o r m a t i o n is a p p r o x i m a t e d f rom the test sui te used b y the q u a l i t y eng ineer ing t e am. A t the t i m e
of w r i t i n g there were i n t o t a l 682 test scenarios a n d e x e c u t i o n t i m e i n t o t a l was a r o u n d 2 days a n d 4 hours .
R e s u l t i n g i n average t i m e per test scenar io 4.8 minu tes .

20

or stalls, it doesn't really te l l you what is wrong, it might be wai t ing for some condit ion,
or you wrote a C S S selector wrong, but you w i l l learn that only when the test fails and
the browser window is closed.

It is possible to save the H T M L and a screenshot of the page, but a l l users to ld me that
it is often not enough to see what the issue is.

Another issue is, it 's quite easy to miss steps that are already defined, this leads to each
tester defining their own steps which then brings unnecessary complexity into the test suite
and later makes maintenance harder.

Initial feedback
P r i m a r y users are people skil led enough to write test scenarios and the logic behind it, so
quali ty engineers. However Behavior Dr iven Testing is made so not only testers are capable
of understanding the test scenarios, it is meant to be a common ground between technical
people and others such as project managers, technical writers, even software developers
who are not familiar w i th the test suite, can easily read what is tested for a specific feature.

This applicat ion is suited mainly for the testers but could theoretically be used by other
groups of people.

the user needs
Al though users are now capable to work just fine enough, that doesn't mean there isn't
a room for improvement. I obtained a feedback from testers i n various phases of familiari ty
w i th the testing process. M a i n complaints that turned into the list of the user needs were:

• difficulty to familiarize themselves wi th tests and steps for features not wr i t ten by
them

• lacking options of debugging the tests, the process is s t i l l code centered

• while debugging, there's no easy option to just pause the test execution

• no warnings regarding typos or incorrectly used steps

W h e n asked what they missed, common requests were (in order):

• a breakpoint functionality for scenarios.

• a hierarchical view of test suite features and tags.

• Way to run specific test scenario while it is open in the editor.

3.2 Solutions for user issues

Firs t of a l l let's recapitulate the main requirements for the tool and sum up our options.
W h a t is required:

• fast feedback - tester should always know what is happening

• information - tester should be able to get enough information from the applicat ion to
make proper decisions based on that information

• safety - any wrong action should not sacrifice tester's progress, they should feel safe
to experiment

21

• ease of use - applicat ion should be easy enough even to be used as a macro tool ,
if testers have automation wri t ten for specific scenarios they should be able to use
the automation

• easy to setup - m in ima l work should be needed to start the appl icat ion when a „compat ib le '
test suite already exists, it should be as easy as start ing the tests w i t h a different pa
rameter

W h a t needs to be changed to provide this functionality?
A s it was described this functionality is not provided by default i n any standard test suite
implementation. The test suite functionality must change i n order to allow any other
requirement to even be addressed.

Ideal test suite functionality
Before any changes the test suite starts executing any specified tests and reports the different
results i n a desired way (web page, text document). Creat ing tests interactively requires
the test suite to execute testers actions and wait for commands. F i rs t act ion to implement
this tool w i l l be to create a test suite that init ializes and waits for any commands from
the user, turning it into an interpreter effectively.

After the test suite is able to respond to commands a way for users to exchange infor
mat ion wi th the test suite is required. The first and easiest information to provide is to list
a l l the step definitions from the running test suite.

How will it be made interactive?
Second step to making the testing process interactive is al lowing testers to execute a step.
This step should be executed like it was read from a feature file, a l l parameters must be
extracted correctly and passed to the testing function.

W h e n the step fails the test suite should report an error but not fail and exit. A n d i f
such report was to happen, then testers need to see i t . W h i c h means the reporting interface
(either output streams or different means i n term of internal test suite reporting) must be
provided to the tester i n the application.

In this state the applicat ion can be considered a min ima l working product, al though it
does not allow creating a whole test scenario i n its entirety a significant amount of time
can be saved and the safety and fast feedback goals were met.

Providing more information
Since the applicat ion under test is running as the test is wri t ten more information can be
provided the user. A mechanism to allow providing custom information from the applicat ion
under test must be provided.

Creat ing complete test scenarios
W h e n executing the tests the applicat ion should keep track of the steps executed to make
a test scenario from them. To add to the ease of use, the test scenario and feature should
be also possible while wr i t ing the steps.

Summary
To allow proper working of the tool , the test suite must be able to execute commands on
demand and an applicat ion must be designed around this feature.

22

Implementing the solutions

To address a l l the needs from previous section, it is apparent that my solution w i l l
consist of two different components communicat ing wi th each other.

Java Instrumentation is going to be used for manipulat ing existing test suites to provide
required behavior. Meaning a program w i l l exist that w i l l modify the behavior of the test
suite and provide an A P I for communicat ing wi th the test suite. Th is is further described
in section 3.5

The second component is a User Interface which means that first of a l l it needs to be
designed and verified w i t h users, further described i n section 3.3 and 3.4. A n d for this
specific project a working compatible test suite needed to exist for any user testing. It
was required because the users needed to see what they are testing and the results of their
actions. The details for implementing the User Interfaces are in section 3.5 where data
structures used for inner and outer communicat ion are used.

3.3 Designing the application

Platform
Pla t form is an important fact to keep in mind while designing U I but due to the nature
of this tool , it is not required to take phones or touchscreens into consideration, since
testers do their jobs on laptops and write using a keyboard. So platform is going to be just
a desktop applicat ion.

M y first idea was to implement just a terminal interface, since wr i t ing the steps is quite
similar to typing commands into terminal . M o d e r n terminals are able to provide graphics
enhancements and handle mouse input quite well but w i th the planned complexity of this
project, sooner or later the terminal interface would become cluttered. A l so it is not desired
to make people learn to use the applicat ion, it is meant to save time, so spending time
learning keyboard shortcuts and navigation i n the appl icat ion would be counter productive.

A great idea was to implement the fronted as a part of an I D E , so no new too l is needed.
Therefore, the final platform was web application which is able to run i n the browser,
integrates well into editors like V S Code and thanks to Elec t ron can be made into an actual
standalone applicat ion.

Mockups
A s stated before, the first prototypes used a shell-like interface which worked quite well but
other designs started to come to mind while working on mockups. W h a t i f there was no
differentiation between typing steps and executing them? W h e n user writes the step in an
editor, it just executes. W h a t i f there was no editor present i n the UI? A n d the steps were
presented just as cards neatly formatted as it w i l l be i n the resulting scenario.

Let 's focus on the two different approaches, the Shell and Editor designs to evaluate
which would be a better fit.

Shell design
In figure 3.1 you can see, there is one ma in element at the bot tom, where user writes
the steps they want executed and at the top they see the status of executed steps and
potentially the output. O n the right there is a list of a l l available steps and other tools,
this panel would more or less stay the same between the two designs. A great advantage
of this design is that it 's just simple for developing but also for understanding, since it 's

23

Figure 3.1: Shell design mockup

Window Title o o o
File Eil: Tools Options

Tab1 ~"
When log in as "userl"

Application output:
[LoginSteps#24]: Credentials found for userl
[LoginSteps#32]: Waiting for login form to validate credentials
[LoginSteps#35]: Logged in as user l

When click on link "Home"

When click on link "Applitacion"
Application output:

[BrowserSteps#79]: Link not found Applitacion
[Selenide#425]: Nul l pointer exception

When click on link "Application"
Application output:

[BrowserSteps#65]:Found exactly one link
[BrowserSteps#67]: Clicking and sleeping 1 s

He p

Button Provider
Log in
Cancel
Submit

click on button " "

Step list
Search ,
click on button
click on link "#1"
verify there is|are #1 #2
log in as

File / Scenario Browser

Search
Feature: login & logout

Scenario: login
Scenario: log out
Scenario: invalid cred..

so close to the terminal interface, many users should be able to just pickup the tool and
understand what is going on where. A l so it 's potential ly more expandable when taking into
consideration the abi l i ty to write code i n the input panel. A disadvantage is that this isn't
the natural process of wr i t ing scenarios, some commands w i l l just become actions nowhere
to be documented. O r the output could very quickly become unreadable and the wri t ten
scenario can be lost. O n the other hand this might be what we need for more advanced
features like discarding failed steps or debugging.

24

Figure 3.2: Ed i to r design mockup

Options He p

F e a t u r e : L o g i n and l o g o u t f u n c t i o n a l i t y

S c e n a r i o : L o g i n w i t h c o r r e c t c r e d e n t i a l s
When open browser on I rhttps://my.app.com"
And f i l l i n form

| username | t e s t - u s e r l
j password | password!2

And c l i c k on t h e " S u b i t ' r b u t t o n •

^fter pressing Enter
the st^p-gets executed

O O P
Step list

Search ,
click on button
click on link "#1"
verity there is|are #1 #2
log in as

File / Scenario Browser
Search p
Feature: login & logout

Scenario: login
Scenario: log out
Scenario: invalid cred...

Edi tor design

The editor design (figure 3.2) is different by the entire applicat ion just being an editor
window (with maybe the side panels), and a l l the actions user want performed would be
accessible from that editor. The greatest advantage is the seamless experience it would
provide, the tester would write test scenarios as they are used to wr i t ing and the scenario
would be executed as they are typing. B u t that can also be a disadvantage. I can see
more possibilities i n confusing the user w i th technically more advanced actions, such as
copy pasting, moving and removing steps. If the only consideration was executing steps as
they are being wri t ten, this approach is the best fit, but for the more advanced purposes
could be really confusing for the user to understand how exactly should these actions be
performed and also leave the scenario i n progress intact.

25

https://my.app.com

Decision between designs
The most important factor i n deciding what the final design is going to look like was
of course the convenience of the users. So apart from my own thoughts on the design, I
asked the users to see i f there are any strong feelings about either of those designs.

I collected great feedback for both designs, but to sum it up these were the ma in takeouts
from asking around: The editor design - overall felt better to the users, but everyone asked
„How do I edit i t? How do I edit and run/not run the step?", also users wanted to be able
to see the resulting feature file, but s t i l l see the history of their actions. The shell design -
the overall feelings of the users was that i t ' d be good to do a quick experiment or just use
a few steps, but they didn ' t even expect being able to edit the file, or write comments. It
was just too complicated, and there wasn't much space to show users the possible actions
they can perform.

Based on this feedback, I looked very hard for already existing solutions, to see how
others overcame the issues I a m facing and to my surprise I didn' t get it a l l wrong, but I
just needed to merge both designs together to resemble typica l W h a t Y o u See Is W h a t Y o u
Get editor. W h i c h meant d iv id ing the user space into two main areas, the user workplace,
where they w i l l write the test scenarios, name their scenarios etc. and the other where they
see results of their actions.

Side-by-side editor design

Figure 3.3: Side-by-side editor design mockup

Window Title

File

I Tab 1
Edit Options Tools Window Help

Tab 3
User space

When c l i c k or the "Submit" button
#users can type comments here as w e l l

Feature: l o g i n f u n c t i o n a l i t y

$(".mySelector")

XlJsers are able to run individual steps
or start executing all steps

\Possible integration for Java interoperability

Place for all non-Gherkin output -> test suite logs, any selenium specific commands etc.
I

Logs

Output space

Feature: Login and logout f u n c t i o n a l i t y

Scenario: Login with c o r r e c t c r e d e n t i a l s
When open browser on "https://my.app.com"
#logging with user account

^ And f i l l i n form
| username | t e s t - u s e r l |
| password | passwords |

^ And c l i c k on the i rSubit' r button

When step is executed
it moves from user space to output space

This editor is still editable

O O O l
Step list

Search
click on button "#1"
click on link
verify there is|are #1 #2
log in as

File / Scenario Browser
Search p
Feature: login & logout

Scenario: login
Scenario: log out
Scenario: invalid cred...

A s you can see there are inspirations from both designs, but it 's overall neater. Gives
a clear separation of where the working focus should be. This also makes developing

26

http://my.app

the applicat ion easier, since there are many open source text editor libraries, that already
have their great implementat ion of syntax highlighting and autocompletion.

Figure 3.4: Context view of a step definition

Step list

Search P
click on button
click on link
verify there is|are #1 'i
l o g i n a s n # r *

¥2"

click on button
click on link
verify there is|are #1 'i
l o g i n a s n # r *

verify there is|are #1 "#2"

Checks currently open
website if selector #2
finds amount of #1
Example:
verify there are 2
button, primary

VerificationSteps#46
Args:

1 - elementCnt : int
2 - tagName : String

Used in:
Main menu items#23
Gallerv add#13

VerificationSteps#46
Args:

1 - elementCnt : int
2 - tagName : String

Used in:
Main menu items#23
Gallerv add#13

3.4 Verifying designs

In this section, the issues/improvements are going to be mentioned and what was the de
sign decision to not make it a problem anymore, or at least make handling that problem
for testers easier.

Too many step definitions, defined in a bunch of places
The easiest solution is to allow testers to search through a l l the step definitions and provide
autocomplete for when they are wr i t ing the test scenarios, so they don't have to remember
the exact pattern, just to know when they type a part of it they can find it in the l ist ing.
W h a t could improve this design is abi l i ty to add a hierarchy to the searching component,
maybe allowing users to have a hierarchy like i n the classes, or to be able to tag the step
definitions, for example have „account" steps although they might not contain the word
account. A n example can be the Step list component i n figure 3.3.

Long recoveries from mistakes
A s this was the issue that inspired the idea, this was the prior i ty during design process.
The applicat ion encourages experimentation wi th different step definitions because they are
al l available to the user when they find them and i f the execution of the step fails, they can
simply manual ly revert any progress, observe the logs and s t i l l continue in wr i t ing the test
scenario.

27

W h a t did they mean in this step definition
Most testers would rather make informed choices while testing which comes wi th its own
set of challenges. A short sentence i n form of a step definition is never going to be enough.
A solution for this is to provide context when tester is looking at a step definition, a proposed
solution is depicted i n figure 3.4

This design was presented during the user testing process to a l l testers, it covers a l l
the the context „clues" they commonly used to figure out how to use a step definition,
most of them looked in already existing scenarios which is covered. Then they resort to
code, where they look if any of the used methods are documented, i f not they resort to
reading the code. A l l of those methods are covered by the component, and users especially
appreciated that documentation of step definition is going to be more visible here than
in code and it would encourage them to write documentation for their own step
definitions.

Does such test exist? W h a t tags do I use?
Due to the test scenarios being stored i n a file per feature, it sometimes happen that
overlapping scenarios are i n one feature file and that leaves room for s imilar or equivalent
scenarios due to testers inabi l i ty to find it i n a given feature file.

Test scenarios and features can be identified and grouped together using tags, the usual
workflow is one unique tag per scenario, one unique tag for feature and then tags for common
functionality, such as „@ui", „@oauth", etc. W h e n testers were asked about how they use
the common tags, none of them had clear answer. They were proposed w i t h design depicted
in figure 3.5

Figure 3.5: Scenario/ tag explorer widget

File / Scenario Browser

Search P
Feature: login & logout

Scenario: login
Scenario: log out
Scenario: invalid cred.

File / Scenario Browser

Search P
@ui

Scenario:
Scenario:
Scenario:
Scenario:

@oauth
Scenario:
Scenario:
Scenario:

login
log out
invalid cred.,.
login - github

twitter share
gdrive export
login - github

The focus of this widget was to hide the notion of files to ease up the navigation in
test suite. Scenarios w i l l s t i l l remain in separate feature files, but at least while researching
testers are not bothered by navigating i n files and folders.

28

The tag exploring widget was seen as a nice to have feature, it would be nice to know
what tests are executed w i t h a given tag and to be able to see a l l defined tags (apart from
the unique per scenario ones) to potential ly add to a scenario or a feature.

User testing proposal
For verifying the designs in an ideal world a prototype could be made for each mockup
and test those prototypes on at least 3 users w i t h different experience i n this area. It is
important to have a working prototype for testing, because part of the testing is to see how
users react to the fact they are working in real t ime environment. To save t ime of developers
and testers, a decision for the best design can be made and implement working prototype
for that design.

W h e n it comes to hands-on testing of the application, several conditions should apply:

• Users should be a l l of different experience.

• Users should not be familiar w i th the test suite.

• Users should be presented wi th a more abstract goal, such as „Test login functionality",
to encourage exploration.

• Users should be encouraged to follow the think-aloud protocol, to gain the most
feedback from them.

• Users should encounter a case where a step they just wrote didn ' t success, to observe
their reaction.

• Observe where the user is looking for information, how are they finding new step
definitions?

• If users show signs of struggle, or being lost, ask them what are they looking for and
where would they expect to find it.

A list of recommended questions at the end of the hands-on session:

• W o u l d you adapt this workflow?

• If you are hesitating to adapt - what are you missing?

• D i d you feel your job was made easier? D i d something interfere i n your work?

• How do you write scenarios now? Where do you look for step definitions? D o you
look for documentation somewhere?

The user testing plan was pilot tested on 2 user experience engineers and used knowledge
from Handbook of Usabi l i ty Testing [7]. Feedback from users is used throughout this thesis
and the main results of this testing are described i n 4.3.

3.5 Applicat ion architecture

Firs t a short explanation of how the test suite is structured is needed to understand what
needs to change.

A standard B D T test suite consists of code and test scenarios. The code provides step
definitions that are used i n scenarios as steps. M a i n difference is that step definition is

29

like a declaration of a step, it has a pattern and an action. O n the other hand step refers
to a usage of step definition, like a function ca l l it can have parameters that are defined in
the pattern.

W h e n the test suite is started, the code is loaded and step definitions i n the code are
registered, then the test suite runner determines which scenarios are to be run and then
loads said scenarios and runs them. W h e n a scenario is run, it means that line by line a step
is read, gets matched against registered step definitions and i f a match is found, the action
is run; if a match is not found, then that scenario fails.

Since the purpose of test runners is to run tests, running steps on demand and making
test suite wait for supplied steps is not out of the box functionality of any test framework.
This means that either a new test runner needs to be wri t ten, or the currently used test
runner needs to be modified.

The process of start ing and executing tests by the test suite is visualized in figure ?? .
Wr i t i ng a new test runner isn't the best choice, because it required a lot of effort bo th

from person developing this appl icat ion to testers as there w i l l be 2 test runners which in
the worst case could introduce issues such as some dependency incompatibil i t ies and more
important ly different runtime behaviors. So introducing a new component was required
to change specific parts of the test suite to allow required behavior. I w i l l refer to this
component as the Agent.

The architecture is visualized in the figure 3.6.

Figure 3.6: App l i ca t i on infrastructure

Backend

Test suite

Test developer

Together the agent and the test suite makes a back-end which allows for needed functions
such as list registered step definitions and run a step. Testers w i l l then use the front-end
to uti l ize those functions.

30

Figure 3.7: Test suite lifecycle

p "

Test run is started

Initialize environment Initialize environment

_3X

3.6 Backend A P I

A universal proposal for a l l test suites (not just Java and Cucumber) is to modify the runner
code right before the execution starts and open an H T T P server to allow communicat ion
wi th any tool . H T T P server is recommended for its simplicity, it is easy to communicate
wi th an H T T P server through any language/framework. A n d specifically i n case of Java
an H T T P server client and server are already included i n the standard library, as using
libraries is not as easy an universal as it can be (more about this in Implementation 4).

To be able to provide a l l functionality to the tool , several things are required from
the test suite:

• step definitions - for l is t ing i n applicat ion and running:

• a l l features - for opening scenarios, reading the tags, the „used i n " context section

• in more advanced cases - type registry

Back-end functionality

The back-end is going to resemble a R E S T f u l service, w i t h following paths, methods
and data shapes:

D a t a shapes
These following data shapes are going to be used in the R E S T f u l service as data types,

values ending wi th ? denote opt ional value.

StepDefinition = {
id : integer, //< autogenerated id for~the~step d e f i n i t i o n
pattern: string, //< regular expression source to match the~step d e f i n i t i o n
location?: Location,
documentation?: string,
arguments?: Argument []

}

Location = {
filename: string, //< source filename
lineNumber: integer //< source line number

}
Argument = {

suggestionProvider?: string, //< a~unique name for~a~suggestion provider
type: string, //< data type of-the-argument
name?: string

}

CompileStepDefinition = {
pattern: string, //< regular expression pattern for-the-step d e f i n i t i o n
code: string //< code in a~programming language that is executed when this step dej

}
CompileResult = {

stacklrace?: string, //< output of-the-compiler
f a i l e d : boolean //< result of~the~operation,

}

SuggestionRequest = {

32

name: string, //< name of-the-suggestion "provider, can be obtained from argument
value: string, //< the-step currently written
position: integer //< which argument is the-suggestion for

}

Logs = {
stdout: string, //< the-test s u i t e logs to standard output stream
stderr: string //< the-test s u i t e logs to standard error stream

Paths

Paths are used i n a R E S T service to differentiate between the different types or services
provided. W h e n a path contains a {name}- that means the name w i l l be used as a parameter,

/steps
Methods:

• GET : StepDef i n i t i o n [] - returns a list of a l l step definitions registered. If providing
list of a l l step definitions wi th a l l values is computat ional ly expensive (for example
loading documentation), a list w i t h only required fields is returned.

/step/{id} Methods:

• GET : i d -> StepDef i n i t i o n - finds a step definition wi th the same i d as i n the pa
rameter and returns a complete StepDef i n i t i o n , can take longer time to compute.

• POST : body=CompileStepDefinition -> StepDefinition | CompileResult- cre
ates a new step definition i n the test suite, i f compilat ion and adding the step defini
t ion is successful, 201 : StepDefinit ion is returned, otherwise 406 : CompileResul t is
returned.

• PATCH : i d , body=CompileStepDefinition -> StepDefinition | CompileResult
- replaces step definition wi th id i d i n the test suite, if compilat ion and replacing
the step definition is successful, 201 : StepDefinit ion is returned, otherwise 406 :
CompileResul t is returned.

/ r u n Methods:

• GET : body=string -> string - body is considered as one step, test suite runs
the step as i f it was just read from a feature file, executes it and returns the log
output i n the response wi th code 200, i f there was an error while executing the step,
400 wi th the log output i n the body is returned.

/logs Methods:

• GET : Logs - the outputs kept for sending to the application, the applicat ion is pol l ing
for any logs, if log is once read, it is cleared. If no new output occurred i n a given
stream, then empty string is set for that field.

33

/ suggestion Methods:

• POST : body=SuggestionRequest -> string [] - invokes the suggestion provider
for given name wi th parameters from body, a l l suggested
values from the SuggestionProvider are returned.

/scenarios Methods:

• GET : string [] - returns paths of a l l feature files present in the test suite,

/scenario/ Methods:

• POST : body=string -> string - returns contents of a feature file indicated by
the path present i n the request body.

Suggestion mechanism
The suggestion provider mechanism is meant for step definitions to be able to provide more
context while the appl icat ion is running. It is desired to make it really easy to provide
suggestions for a step argument. The most convenient way for developers is to provide
an annotation ©Suggestions(<class>), the annotat ion can be used either for a function
parameter or as a class annotation which makes a l l arguments of the type of annotated
class use that suggestion provider, i f the B D T framework allows to automatical ly convert
step argument to custom data types.

the class used as value of the annotat ion needs to implement following interface:

public interface ISuggestionProvider {

List<Object> provide(String step);
List<Object> provide(String step, int arg);

}

If context is needed, the step variable w i l l have value of the step that is already wri t ten, but
the value might not match any step definition as it uses fuzzy searching. F i n d i n g the right
posit ion of the argument is a complex issue due to the pattern being a regular expression.
B u t it is safe to ignore the arg function, as by default that function just delegates to
the function wi th just one argument.

Predefined classes such as EnumSuggestionProvider can be a part of the agent l ibrary
if it can be implemented i n a generic way.

Communicat ion proposal
Communica t ion is going to follow the R E S T f u l contract described above, an authentication
mechanism should be implemented, as when the service provides code execution features,
it w i l l be really easy to leak information such as any credential info, execute code on
the hosting machine and instruct the controlled browser to access malicious websites.

Client is meant to be pol l ing the server, so more than one connection at the t ime might
occur even when the applicat ion is used by only one user.

Front-end proposal
Front-end should reflect the side-by-side design mentioned above i n figure 3.3, it is highly
recommended to use a code editor library.

34

The functionality for executing the different inputs inside the input editor are classes
implementing the IService interface which are a l l registered inside Services singleton
class. Each service accepts the whole contents of the input editor as Model, this is required
because some services might need to read more than one line of text to execute the command
correctly. Due to the asynchronous nature of part icular services, there must be a messaging
mechanism in place for the service to send updates.

The following contract applies for an IService implementation:

• Each service has its own messaging channel.

• Each services payload contains the status of execution and optionally data w i th a data
shape previously declared by the service.

• canHandle(line:string) :boolean - receives a line from the model, returns true i f
this service is capable of handling such input, otherwise returns false. N o addi t ional
val idat ion is implemented i n this method.

• handle (model: Model, lineNum: integer) : Status - starts consuming input from
the model on posit ion lineNum, after a line is consumed, it should no longer be
a part of the model . Returns the status of execution (SUCCESS, RUNNING, FAILURE).
A n y other data or updates should be send through the messaging channel.

• provideSuggestions(model:Model, position:Position):SuggestionData[] - p r o
vides autocomplete items to the editor, returns empty list i f none are or available.
The suggestions can range from context-aware to constants such as Cucumber key
words, for added context the Position type contains column number. SuggestionData
is abstract type - depending on the editor library.

The Services class is responsible for keeping track of a l l registered services, finding
the right match for an input and delegating the execution. The U I Widgets subscribe to
concrete services' messaging channels and update their data and U I accordingly.

Appl icat ion lifecycle
W h e n the applicat ion starts up, first ca l l to back-end should always be getting a l l registered
step definitions. W h e n a l l step definitions are displayed in the UI , the basic functional
ity of the editor can work while the appl icat ion requests details for more information in
the background.

A n anonymous file is always created at start-up, user is able to start wr i t ing steps
or other control sequences into the input editor. W h e n an execution command is fired
(keybind pressed or a widget is clicked), the applicat ion calls its internal service registry to
determine which registry is able to satisfy the request. W h e n the request is served, the line
is removed and output is wr i t ten to according place. The place for service output is chosen
as: if output belongs to feature file, then it is added into the output editor, otherwise it is
added into the logs view.

W h e n the export bu t ton is pressed, any not-edited and failed steps are removed from
the output editor and a save file dialog is shown and file is saved in selected location.

Possible extensions
Some functionality was left out from the proposal due to its complexity and being dependant
on a single technology, because they are not required for testers to be able to use this

35

application, they w i l l be described here abstractly keeping in m i n d there probably w i l l be
deviations due to specific technologies.

Execut ing code in the application
This functionality is dependant on the language used by the test suite. Expec t ing it is possi
ble to execute code from text, it almost a must for an „exposing" mechanism. W h e n a class/-
variable/function are exposed, they are usable in the context of the code, for example:
ScriptExecutor.register(<name>, <reference>) or ©Expose <Type> <variable> so
users are able to use the code of the test suite for debugging.

Debugging the test suite
If a code execution functionality is in place, debugging can be achieved by making it possible
to load a scenario in the applicat ion. A breakpoint mechanism, where i f the test is currently
executing and either there is a breakpoint at the current line or the previous step returned
Failure status, the execution is stopped and testers are allowed to inspect the applicat ion
state and execute code i f needed.

36

Chapter 4

Implementation of interactive B D T
tool

The main idea of this thesis is to allow testers see currently wri t ten tests being executed
on-the-fly. Meaning the first implementat ion step is to create a test runner that allows this.
Since no test runners provide this behavior and wr i t ing a test runner only for this behavior
can cause conflicts i n existing test suites and adds complexity, the implemented solution
w i l l change existing test runner instead of creating one (further described i n Section 4.1).

After the test suite is able to listen to commands and execute testing steps on demand,
the user interface w i l l be implemented and gradually tested on users to seek feedback and
make improvements (further described i n Sections 4.2, 4.3).

This chapter relies heavily on the solution design, short reminder of commonly used
words and their meaning:

• test suite - code and test cases together i n one project

• scenario - one test case wri t ten in Gherk in syntax (readable by everyone)

• agent - program responsible for modifying test suite behavior to suite the applicat ion
needs

• back-end - test suite modified wi th agent - ready to communicate w i th the front-end

• front-end - web applicat ion that allows testers to run test parts on demand

4.1 Agent implementation

Creat ing back-end from the test suite was technically the hardest obstacle of this thesis,
as at the t ime of wr i t ing the thesis, to my knowledge, there was not any project to allow
users to write their B D T scenarios in real-time. A n d the information sources were scarce.
The process that lead me to implementing the agent is implemented i n Append inx A

Java Agent is defined file where the M A N I F E S T file contains either a
Premain-Class or Agent-Class attributes which contain the fully qualified name of a class
wi th a class that has a proper signature specified i n the Java Instrumentation documenta
t ion: public s t a t i c void premain(String arg, Instrumentation ins t r) .

Java agents get loaded before any code from the applicat ion gets loaded, so it solves
the issue of redefining already loaded classes.

37

Redefining Test runner
In order to provide the wanted behavior, the most important step is to redefine the currently
used Test runner class to do a l l the required ini t ia l izat ion, but to stop it from executing
tests.

Fi rs t it is necessary to know what method is in need of modification, if it is desired to
replace the code or add code before or after the current code, or i n specific cases it could
be also required to insert code i n a certain section of a method, using local variables, but
this is not lucki ly the case for most cases.

Short version of default runner:

public class Cucumber extends ParentRunner<FeatureRunner> {

public Cucumber(Class clazz) {
loadStepDefinitions();
loadScenarios();
prepareScenariosToRunO ;

}

©Override
protected Statement childrenlnvoker(RunNotifier n o t i f i e r) {

return () -> runScenarios();
}

private void addChildren(List<CucumberFeature> cucumberFeatures) {
createRunnersForScenarios(cucumberFeatures);

}

}

A t a glance, it is understandable that a l l the needed ini t ia l izat ion happens i n the con
structor and tests start executing i n the childrenlnvoker method. Now it is only needed
to understand what the code does and what is needed for it to do so it serves the purpose
of the applicat ion.

The Statement return type is s imply a method that gets called to execute the tests,
since it is not required to run any tests, the default behavior can be to s imply rewrite this
implementation.

How to rewrite implementation?
To make the job easier, I decided to use the Bytebuddy library, with Bytebuddy-agent
addi t ional l ibrary which allows developers to easily create ClassTransformers without
the need of direct manipula t ion of bytecode. It also uses D o m a i n Specific Language to
create the Transformers so the code stays readable.

public s t a t i c void premain(String args, Instrumentation instrumentation) {
new AgentBuilder.Default()

.with(AgentBuilder.TypeStrategy.Default.REDEFINE)

.with(AgentBuilder.InjectionStrategy.UsingReflection.INSTANCE)

.type(ElementMatchers.named("cucumber.api.junit.Cucumber"))
//.with(AgentBuilder.Listener.StreamWriting. toSystemError())
.transform((builder, typeDescription, classLoader, module) -> {

return builder.method(ElementMatchers.named("childrenlnvoker"))

38

.intercept(MethodDelegation.to(Cucumberlnterceptor.class));
}).installOn(instrumentation);

}

Short explanation of the important lines:

• TypeStrategy.Default .REDEFINE - means to overwrite the code,
TypeStrategy.Default .REBASE would create an inner class where the original im
plementation is kept

• InjectionStrategy.UsingReflection.INSTANCE - instruct ion how to inject newly
created class into the classloader, this is the safest and easiest approach, other imple
mentations allow using Instrumentation or the Unsafe class

• Element Matchers. named (M cucumber. api. junit .Cucumber") - narrowing the classes
to be rewritten, other methods of filtering classes exist such as: isDecorated, imple
ments/extends type etc.

• .with(AgentBuilder.Listener.StreamWriting.toSystemError()) - this is not re
ally a documented feature, but it is almost a necesity to be able to debug Java agents,
it logs classnames as they load, provides information whether the classes are trans
formed and logs useful error messages when an error happens

• return builder.method(ElementMatchers.named(MchildrenInvoker"))
.intercept(MethodDelegation.to(Cucumberlnterceptor.class)) ; - find method
named childrenlnvoker and delegate the implementat ion to the Cucumberlnterceptor
class

The Cucumberlnterceptor class contains a method wi th signature:

©RuntimeType
public s t a t i c Statement childrenlnvoker(RunNotifier n o t i f , ©This Object cucumber);

and B y t e B u d d y is implemented i n a way where the best match for a method gets chosen
as the intercepted method. It follows rules such as: argument counts and types, return
type, name of method. The annotat ion ORuntimeType instructs B y t e B u d d y to t ry to cast
the argument types while determining which method gets chosen as the interceptor and
the ©This Object cucumber parameters is a mechanism that passes the this reference
of the original object to the intercepted methods.

Presented information related to Java Instrumentation and Bytebuddy were pr imar i ly
sourced from an amazing conference talk [9].

In summary the childrenlnvoker method does these following things:

• reads values from the Cucumber instance such as registered steps,

• register contexts for different server endpoints,

• starts an H T T P server and processes incoming requests.

The method s t i l l has to return value, and due to J U n i t specific notions, it isn't possible
to start the H T T P server i n the returned statement, so I ended up returning a pr imit ive
closing function:

39

return new Statement() {
©Override
public void evaluate() throws Throwable {

while(!"quit".equalsIgnoreCase(lastMessage)){
Thread.sleep(lOOO);

>
}

>;

Also important note is that it is not a good idea to use lambdas i n any intercepting
code, as lambdas are compiled to inner anonymous classes. W h i c h often leads to issues as
the different J V M implementations support this differently 1 .

Initialization process
Before the H T T P server is opened it is needed to obtain the values to be provided by
the back-end. Because there is a goal not to include any testing l ibrary code to avoid con
flicts, the values are extracted dynamically. Th is process can be seen i n classes
Cucumberlnterceptor and StepDefProcessor, where the StepDefinition class is ana
lyzed and values are extracted for two different versions of the Cucumber library. For a fully
featured implementation, the StepDefProcessor should be able to obtain the required val
ues from any object.

Opening the H T T P server
To avoid any more conflicts in the libraries the com. sun. net. httpserver. HttpServer was
used as the H T T P server implementat ion because it is already included i n the standard
library. The H T T P server allows to register different contexts which allows a specific path
to invoke a specific code, the contexts are registered i n an enum called Handlers, where
each member of holds an object that implements the Handler interface.

public interface Handler {

void handle(HttpExchange exchange) throws IOException;

default String getPathO {
return "/" + getClassO .getSimpleNameO

.toLowerCaseO.replace("handler", " ") ;
}

}

The implemented handlers the code provided wi th this thesis are

• RUN_STEP(new RunStepHandlerO) - runs a step provided i n a P O S T request body

• LIST_STEPS (new ListStepsHandler ()) - provides a list of a l l step definitions

• SUGGEST(new SuggestionHandler()) - provides suggestion for a registered provider

• LOG (new LogHandler ()) - provides access to the test suite logs

1the a u t h o r of B y t e b u d d y h i m s e l f doesn ' t adv i ce to use l ambdas : h t t p s : / / g i t h u b . c o m / r a p h w / b y t e -
b u d d y / i s s u e s / 7 3 1 # i s s u e c o m m e n t - 5 3 3 0 6 8 0 4 6

40

https://github.com/raphw/byte-

Al lowing developers to provide custom suggestions when someone is using a step defini
t ion was high on my prior i ty list because it well presents the benefit of interactive testing.
To provide a suggestion for a parameter of a step definition, an annotation ©Suggestion can
be used wi th a value which holds a class implementing ISuggestionProvider interface.

public interface ISuggestionProvider {

List<Object> provide(String step);
default List<Object> provide(String step, int arg){

return provide(step);
}

}

Where only the provide method wi th just the Str ing parameter has to be implemented.
The step parameter contains currently wri t ten step in the applicat ion, i f more context is
required the arg parameter should contain which argument the suggestion was requested
for.

4.2 Front-end implementation

Implementing front-end was more streamlined experience, it was implemented i n the React
framework using the Typescript language. For quite a long time the desired design to
implement was the terminal design (see figure 3.1), but as more functionality was adding
and more IDE- l ike features were adding, it became clear that design has some serious
l imitations.

Fol lowing libraries were used:

• flux2 - provides functionality for unidirect ional dataflow i n React:

• react-grid-layout 3 - provides React components to create manipulable gr id layouts:

• fuse 4 - fuzzy search l ibrary:

• monaco-editor - fully featured code editor l ibrary:

• react-monaco-editor 6 - l ibrary adding a Monaco editor React component:

The project is bundled v ia Webpack, along wi th plugins html-loader, html-webpack-plugin,
monaco-editor-webpack-plugin, source-map-loader.

Before using monaco l ibrary and typescript, I t r ied to implement a prototype U I just
using React, it wasn't the best choice for implementat ion but I learned a lot about React
while t ry ing to implement the terminal design.

Dur ing development of the applicat ion in Javascript, there were many mistakes while
naming props and state variables. M a n y mistakes were discovered while testing the appli
cation that needed to recompile the whole appl icat ion and test again. Typescript made any

2 h t t p s : 111 acebook.github.io/f lux/
3 h t t p s : //github.com/STRML/react-grid-layout
4 h t t p s : 111 usej s.io/
5 h t t p s : //microsoft.github.io/monaco-editor/
6 h t t p s : //github.com/react-monaco-editor/react-monaco-editor

41

Input editor Output editor

Step
definitions

Input editor Output editor

Scenario
browser

Log oulpul

Scenario
browser

Figure 4.1: Overview of U I components

fails show up faster and the tool ing and support i n React is even better than when using
only Javascript.

The U I consists of a few components show i n Figure 4.1:
The most important components are both of the editors, they provide most of the infor

mat ion to the user. The step definitions list allows users to search through the registered
step definitions, al lowing them to quickly familiarize themselves wi th the test suite. The logs
output is used for reading the logs of the test suite. The Scenario browser should allow
users to browse through the defined scenarios, features and tags.

Services
The different interactions are implemented in services and the service functionality is then
used in the editor code. Because the services play an important role in the implementation,
they need to be documented prior to describing the components.

A services' role is to be able to read a command i n the input editor and execute it
either by changing the inner applicat ion state or by using resources outside the applicat ion.
A service extends following abstract class and implements the abstract methods.

export interface ServiceResult {
status: ResultType,
data?: any,

}

abstract class Service<T extends ServiceResult> {
dispatcher:Dispatcher<T> = new DispatcherO;

abstract canHandle(line: string): boolean;
abstract handle(model: Model, from: number):ResultType;
async provideSuggestions(model:Model,

position: Position,
context: CompletionContext) : Promise<CompletionItem[]>

canHandleModel(model: Model, from: number): boolean {
return this.canHandle(this.peek(model, from));

}

}

42

Since the command can be executed from any line number, the service reads the editor
content from the model . If the canHandle method returns true, meaning the command is
recognized by this service and the service is able to execute i t , the line is consumed and re
moved from the model (editor content). The command validat ion takes place i n the handle
method, where i f the command is not val id a Result Type .Failure is returned. Otherwise
if the error contains data or i n case of asynchronous communicat ion, the dispatcher is used.
Every service has its own dispatcher and the U I components w i l l register to the dispatchers
to receive messages wi th data or changes i n a command state.

If a service can provide suggestions to the editor autocomplete, the provideSuggestions
method is used, the method receives the same parameters as when it is used by the monaco
editor, if no suggestions are to be provided a resolved promise w i t h an empty list w i l l be
returned.

A special UnknownOpService is implemented in case there is no service that can handle
a command. A l l it does is consume the line it was invoked on.

The services existing i n the implementat ion are

• Cucumber service - Communicates w i th the back-end, sends commands to execute
the steps and provides suggestions i f suggestion provider is registered.

• Comment service - Moves comments to output adding them to the final scenario

• Variable service - Al lows users to set a variable to a certain value, used for naming
scenarios and can be used to insert the value of variable into input editor

A legacy implementat ion of managers is also left i n the code. This code was wri t ten
before using monaco editor, it serves the main purpose of handling the communicat ion
w i t h the back-end.

In the editor folder most of the implementat ion relating to the monaco editor resides.
A monarch syntax definition had to be created for this project which is included in A p
pendix B . It is registered for both input and output browser.

Input editor functionality
The functionality of the input editor component is provided by the monaco-editor compo
nent w i th proper actions and commands registered. A Code lens provider and a suggestion
provider is registered as well . A l l the functionality provided in the „edi tor" folder i n source
code deals w i th interfacing wi th the monaco editor, the actual functionality is always pro
vided by services.

Output editor functionality
The addi t ional behavior for the output editor is defined i n the component file itself. The ad
di t ional features provided are adding margin decorations to executed steps, providing an
export but ton and setting the scenario names from the variable service.

Step list
The Step list component is a simple list of a l l step definitions wi th a search function.
The fuse.js l ibrary was used for the search functionality to provide results even wi th mis
spelled search text or only parts or the text.

43

Input console

1 When open browser on "h t tps : / /oooa le .com"

2 And c l i c k on l i n k "Search"

Figure 4.2: Code lens example

4.3 User testing

In the first user testing round, my main goal was seeing i f users understand the concept
of the almost W Y S I W G approach to the tool . Users were presented wi th a sample test suite,
that they had seen for the first time, mainly to see if just presenting them wi th the steps
is enough, or more context is needed.

I had 2 users wi th different familiari ty of U I Testing to see i f different sk i l l sets affect
their workflow. Users were presented wi th one overarching task: „Wri te a test scenario to
perform a search i n Google images", where I presented them wi th minor tasks which they
either d id right or struggled wi th and we had a discussion about why d id they struggle and
what would help them out.

To sum up the results of the first testing round, I got an overwhelmingly positive
feedback about the idea of the tool , bo th users wanted to adapt this workflow in their day
to day jobs. The side by side editor idea d id tu rn out to be fairly easy to grasp, the main
issue that both testers expressed was that it was confusing at first to know where they
are supposed to write and they would expect the editor to be read only. I also wanted to
see how users are going to Submit actions, bo th were presented w i t h keyboard shortcut
Ctrl+Enter to submit, but there was also a but ton and a code lens.

A n d neither of those users didn ' t notice the CodeLens (see Figure 4.2) at a l l which is
really good to know as I planned to implement other features by using CodeLens, but it
just blends into the code too much.

In conclusion of first user testing, users would s t i l l appreciate more context about
the steps, and smal l tweaks to the UI , such as disabling the output editor by default and
making the test suite logs easier to read. This w i l l a l l be addressed by later designs.

Impact on testers
Al though the user tests were quite short (1 hour at max), every participant got used to
working wi th this tool really fast and expressed interest into adapting this workflow. M a n y
were sure it w i l l save them significant amount of t ime (due to t ime constraints it was not
possible to do a longer test).

4.4 Plans for the future

A s it was mentioned several times, dur ing the user testing every user expressed interest
in this project. A s well as other people from other parts of the team other than Qual i ty
Engineering, this project is going to be open sourced wi th a team forming around it .

Due to some outstanding issues it is not easy and convenient to set up wi th existing
test suites due to mismatching l ibrary versions. The first task to br ing this project to more
people and get more contributors is to support most major versions of the Cucumber library.

44

https://oooale.com

After fixing this more s tructural issue the feedback from user testing can be addressed and
new features implemented.

In regards to the solution design (Chapter 3) not every feature was implemented.
The code execution feature was not implemented due to the lack of any libraries pro
v id ing this functionality out of the box. The feature files are not read and provided by
the agent, as well as the „Used i n " context section. The suggestion provider functionality
is not context aware, as I was not able to make and algori thm determining i f the caret is in
place of an argument, so suggestions are provided as „ < n u m b e r > : <value>" where number
is posi t ion of the argument and value is the text to be inserted.

In hindsight most of these issues were caused by the complexity of the Cucumber frame
work and Java Instrumentation, if this were to be developed in a dynamic scripting language
such as Py thon , the implementat ion could have been more advanced, but the solution draft
should be universal.

45

Chapter 5

Conclusion

The a im of this thesis was to analyze a specific approach (Behavior Dr iven Testing) to
software verification and to make this approach more user friendly, resulting i n faster times
of tests development and quicker on-boarding experience for newcomers getting familiar
w i th new test suites.

To create a proposal of the solution I studied the libraries used for Behavior Dr iven
Testing and ways to modify existing code, software verification wi th focus on Behavior
Dr iven Testing and U I testing. A big resource for designing this environment was a team
of quali ty engineers that use Behavior Dr iven Testing as a main tool for system testing.

A solution proposal addressed the main hindrances while testing was created after get
t ing feedback from testers. A l l proposals were thoroughly discussed and reviewed wi th
testers to verify the solution solves the issues. The proposed solution was to create an
environment that introduces a fail fast environment and allows to execute tests as they are
wri t ten, making the process more interactive and feel less like t r i a l and error.

After the significant part of the system was implemented it was tested by users. The users
were able to get familiar w i th a completely new test suite and create a test scenario under
an hour. W h i l e it usually takes a few days to get familiar w i th a new test suite and creating
a scenario usually takes around 3 hours without any prior preparation. More significantly
al l users favoured this approach to what they were used to, further proving the point of this
thesis.

N o specific data can be provided i n regards to speeding up the workflow due to the
small sample size and the implementat ion being unable to work wi th the existing test suite.
However, it is safe to say that getting familiar w i th a test suite was significantly sped up.
Dur ing the user testing sessions it was clear that biggest speed up comes from being notified
about an error and s t i l l being able to interact w i th the applicat ion.

To make this approach feature-complete and available to general public there are s t i l l
issues that need to be sorted out: making this tool compatible w i th more than one version
of the used testing libraries, reading existing scenarios from the test suite and providing
them i n the U I and adding a debug functionality.

The idea of interactive test wr i t ing sparked interest among the quali ty engineering team
and also among teams from different specializations. Software engineers showed the desire
to collaborate, to br ing their knowledge of the J V M and to make this tool usable for them
as well . U X experts are interested i n the changes this solution brings to the testing. Front-
end engineers are eager to help out w i th the front-end implementation. This nicely shows
what the Fuse agil i ty practit ioner said: „ B D T is a collaboration and communicat ion tool
first, testing framework second." This opens up a lot of new opportunities how collaborate

46

further and allows to embrace the B D T concept of everyone should be able to read the tests
and now also write them.

47

Bibliography

[1] Cucumber documentation [online], [cit. 2020-4-10]. Available at:
https : //cucumber.io/docs/guides/overview/.

[2] React JS for professionals [online]. Goalkicker .com [cit. 2020-05-10]. Available at:
https://books.goalkicker.com/ReactJSBook/.

[3] Selenium documentation [online], [cit. 2020-4-20]. Available at:
https : //www.selenium.dev/documentation/en/.

[4] What is Software Testing? [online], [cit. 2020-4-05]. Available at:
https ://www.guru99.com/software-testing-introduction-importance.html.

[5] B R U N E T O N , E . ASM 4-0 A Java bytecode engineering library [online]. U S A :
asm.ow2.io, September 2011 [cit. 2020-02-11]. Available at:
https : //asm.ow2.io/asm4-guide.pdf.

[6] H U M B L E , J . and F A R L E Y , D . Continuous Delivery. 1st ed. W i l e y Publ ish ing, Inc.,
2011. I S B N 978-0-321-60191-9.

[7] R U B I N , J . and C H I S N E L L , D . Handbook of Usability Testing. 2nd ed. W i l e y Publ ish ing,
Inc., 2008. I S B N 978-0-470-18548-3.

[8] T I M L I N D H O L M , G . B . and B U C K L E Y , A . The Java® Virtual Machine Specification
[online]. U S A : Oracle.com, march 2015 [cit. 2020-02-20]. Available at:
https : //docs.oracle.com/javase/specs/jvms/se8/j vms8.pdf.

[9] W I N T E R H A L T E R , R . The definitive guide to Java agents. In: JFokus. JFokus,
February 2020. Available at: https://www.youtube.com/watch?v=oflzFG0NG08.

18

http://Goalkicker.com
https://books.goalkicker.com/ReactJSBook/
http://www.selenium.dev/
http://www.guru99.com/software-testing-introduction-importance.html
http://asm.ow2.io/
http://Oracle.com
http://oracle.com/javase/
https://www.youtube.com/watch?v=oflzFG0NG08

Appendix A

Backend experiments

Prototype
Before I even started to research Instrumentation, the naive way was to create a new

test runner and run the steps from the standard input . Creat ing a new runner is really
simple, it requires to implement just one class, on the other hand any other configuration
or setup had to be done for both runners and some other things didn ' t behave as they d id
wi th the original runner.

Also the Surefire runner starts the test process in a new process, so there is no direct
access to the process input and output streams.

B u t as a prototype it showed that it is possible w i th a l i t t le effort and some hard coded
workarounds it was possible to execute steps on demand. This was especially useful to get
familiar the framework structures, I learned what is a test runner and how exactly does
Cucumber work. Also realizing that the test runner spawns other processes came crucial
in later parts.

Loading compiled classes
M y first idea on how to avoid the issues from the prototype phase was to compile the

testsuite and load the compiled classes i n other process, which would be a way to read a l l
step definitions and run them on demand. This would also resolve the issue of spawning
other processes as there would be no test runner, or it would not be the main class that
gets run.

This proved be to be even more difficult or even more error prone than the prototype
version, as some dependencies were loaded at runtime and the worst part was making
Selenium work, as it required many workarounds. Eventual ly this approach proved to be
bad, but it s t i l l brought some positives. I learned to read classes and familiarized myself
w i th the class loading process, also it proved well as a basic in t roduct ion to Java Bytecode,
which was a good enough start for the next phase.

Modify ing classes at runtime
Since both of these experiments so far proved that it is hard to setup the testsuite in

another process, I started researching Java Instrumentation, which to put is s imply is a
way to change classes when an applicat ion is running.

This brought several benefits:

• N o edge cases as i n previous t ry should interrupt this method, i f something is done
at runtime it should a l l work as it does when executing tests.

• N o need for the end user to know many things about the J V M architecture and require
them to pre-compile a l l of their classes

49

• A n y added dependencies or code at runtime won't have to be handled separately (this
was the cause for Selenium in previous experiment)

This wasn't however without issues, the ma in issue was when the Instrumentation
started, the main class of testsuite has this basic structure:

public class TestRunner {

public TestRunner() {
i f (shouldRunlnteractiveTool()){

modifyClassesO ;
>

}

@BeforeClass
public void setup() {

//Used for i n i t i a l i z a t i o n generally - before any test s t a r t s

}

©AfterClass
public void teardownO {

//Used for cleanup after a l l tests are finished

}

}

The in i t i a l idea was to start modifying the classes inside the setup method or i n the
constructor, however it is not possible to modify already loaded classes. There is a proposal
and a prototype 1 , but it hasn't made it to any J V M yet.

X J E P 159 - https://openjdk.java.net/jeps/159

50

https://openjdk.java.net/jeps/159

Appendix B

Gherkin monarch definition

defaultToken: 'invalid',
symbols: ["" , " " '] ,
tokenizer: {

root: [
[/#.*$/, 'comment'],
[/@[\w\-] */, 'annotation'] ,
[/(?:Feature I Scenario|Background):/, 'keyword', '©description'],
[/(?:Then I When|And|Given I But)/, 'keyword', '@step'],
[A I / , 'delimiter', 'Stable'],
[/ /, 'string', 'OmultilineString']

] ,
description: [

[/.*/, ' i d e n t i f i e r ' , '@pop']
] ,
table: [

[/[~\|]/, 'string.table'] ,
[/ \ | \ s * $ / , 'delimiter', 'Opop'],
[A I / , 'delimiter'],

] ,
step: [

[/"[-"]*"$/, 'string', 'Opop'],
[/ \ S $ / , ' i d e n t i f i e r ' , '@pop'],
[/ \ s $ / , 'whitespace', '@pop'],
[/"[""]*"/, 'string'],
[A S / , ' i d e n t i f i e r '] ,
[A s / , 'whitespace']

] ,
multilineString: [

[/ . * / , 'string', '@pop'],
[/.*$/, 'string'],

]

>
>

51

