
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering
and Communication

MASTER'S THESIS

Brno, 2018 Be. Karel Nekuza

T
BRNO UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND

COMMUNICATION
FAKULTA ELEKTROTECHNIKY

A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

CLIENT SIDE DNSSEC DEPLOYMENT
NASAZENÍ DNSSEC NA KLIENTSKÉ STRANĚ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. Karel Nekuža
AUTOR PRÁCE

SUPERVISOR Ing. Zdeněk Martinásek, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2018

T VYSOKÉ UČENÍ FAKULTA ELEKTROTECHNIKY

TECHNICKÉ A KOMUNIKAČNÍCH

V BRNĚ TECHNOLOGIÍ

Diplomová práce
magis te rský navazu j íc í s tudi jn í obo r T e l e k o m u n i k a č n í a i n f o r m a č n í t e c h n i k a

Ústav te lekomun ikac í

Student: Be. Kare l N e k u ž a ID: 155204

Ročník: 2 Akademický rok: 2017V18

N Á Z E V T É M A T U :

N a s a z e n í D N S S E C na k l i e n t s k é s t r a n ě

P O K Y N Y P R O V Y P R A C O V Á N Í :

S e z n a m t e se s p r o t o k o l e m D N S (D o m a i n N a m e S y s t e m) a j e h o r o z š í ř e n í m D N S S E C (D N S Secur i t y Ex tens ions) .

Ana lyzu j te p rob lémy , které m o h o u vzn i knou t na s t raně k l ienta při p ř e c h o d u mez i různými s í t ěm i , sous t řeď te se na

R F C 8 0 2 7 - D N S S E C R o a d b l o c k A v o i d a n c e . A n a l y z u j t e a p o r o v n e j t e s o u č a s n é řešen í D N S S E C v h o d n é pro

n a s a z e n í na k l i en tské s t r a n ě . P o r o v n e j t e ex is tu j í c í D N S r e s o l v e r y v h o d n é pro n a s a z e n í na s t r a n ě k l ien ta pro

lokáln í D N S S E C va l idac i . Ana lyzu j te d o s t u p n ý so f twa re pro konf igurac i s í tě , k terý je b ě ž n ě v y u ž í v á n v l inuxových

d i s t r i b u c í c h a z a m ě ř t e s e na m o ž n o s t i i n t e g r a c e s j i n ý m a p l i k a c e m i . N a v r h n ě t e ř e š e n í , k te ré b u d e s c h o p n é

r e a g o v a t na z m ě n y v s í ť o v é k o n f i g u r a c i a n a k o n f i g u r u j e l o k á l n ě b ě ž í c í D N S r e s o l v e r t a k , a b y byl s c h o p e n

p rovádě t D N S S E C va l idac i . V ý s l e d n o u konf igurac i o testu j te a výs ledky p řeh ledně zpracu j te .

D O P O R U Č E N Á L I T E R A T U R A :

[1] B L A C K A , Dav id , et a l . D N S secur i ty (D N S S E C) h a s h e d au then t i ca ted denia l of ex is tence . 2 0 0 8 .

[2] C O N R A D , Dav id . Ind icat ing reso lver suppor t of D N S S E C . 2 0 0 1 .

Termín zadání: 5 .2 .2018 Termín odevzdání: 21 .5 .2018

Vedoucí práce: Ing. Z d e n ě k Mar t inásek , P h . D .

Konzultant: Ing. T o m á š H o z z a

p r o f . I n g . J i ř í M i š u r e c , C S c .

předseda oborové rady

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným

způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského

zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku

č.40/2009 Sb.

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

A B S T R A C T
This thesis deals w i th a problem of end-user's access to the D N S S E C validation. It
explores the possibilities to implement and configure a locally running resolver to
address the security issue. It proposes a solution for Fedora Workstation operating
system. The solution is implemented and compared to the current solution.

K E Y W O R D S
domain name system, DNSSEC, security extensions, Fedora, Linux, resolver, Unbound,

NetworkManager

A B S T R A K T
Diplomová práce se zabývá problémem přístupu koncového uživatele k odpovědím

ověřeným pomocí protokolu D N S S E C . P ráce posuzuje možnos t i nasazení a nas
tavování resolveru za účelem zlepšení bezpečnos t i pro koncové uživatele. V práci
je navrhnuto řešení p rob lému pro operační sys tém Fedora Workstation. Nav rhnu té
řešení je realizováno a porovnáno s již existujícím řešením.

K L Í Č O V Á S L O V A
domain name systém, DNSSEC, security extensions, Fedora, Linux, resolver, Unbound,

NetworkManager

N E K U Z A , Karel. Client side DNSSEC deployment. Brno, 2017, 50 p. Master 's Thesis.

Brno University of Technology, Faculty o f Electrical Engineering and Communicat ion,

Department o f Telecommunicat ions. Advised by Ing. Zdenek Martinäsek, Ph.D.

Vysázeno pomocí balíčku t h e s i s verze 2.63; h t t p : / / l a t e x . f e e c . v u t b r . c z

http://latex.feec.vutbr.cz

DECLARATION

I declare tha t I have wr i t ten the Master 's Thesis t i t led "Cl ient side DNSSEC deployment"

independently, under the guidance of the advisor and using exclusively the technical refer

ences and other sources o f information cited in the thesis and listed in the comprehensive

bibliography at the end of the thesis.

As the author I fur thermore declare tha t , w i th respect t o the creation of this Master's

Thesis, I have not infringed any copyright or violated anyone's personal and/or ownership

rights. In this context, I am ful ly aware o f the consequences of breaking Regulation § 11

of the Copyright Ac t No. 121/2000 Coll. o f the Czech Republic, as amended, and of

any breach of rights related t o intellectual property or introduced wi th in amendments to

relevant Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40 /2009

Coll., Section 2, Head V I , Part 4.

Brno

author 's signature

ACKNOWLEDGEMENT

I would like t o thank the thesis supervisor Ing. Zdeněk Martinásek, Ph.D for professional

guidance, consul tat ion, patience and valuable suggestions. I would like t o thank the

thesis consultant Ing. Tomáš Hozza for professional guidance, consul tat ion, patience

and valuable suggestions.

Brno

author 's signature

ysix
^ • ^ • ^ B r e s e a r c h c e n t r e

sensor, information and communication systems

Faculty of Electrical Engineering

and Communication

Brno University of Technology

Purkynova 118, CZ-61200 Brno

Czech Republic

http: //www.six.feec.vutbr.cz

ACKNOWLEDGEMENT

Research described in this Master 's Thesis has been implemented in the laboratories

supported by the SIX project; reg. no. CZ.1 .05/2 .1 .00/03.0072, operational program

Výzkum a vývoj pro inovace.

Brno

author 's signature

M I N I S T E R S T V O Š K O L S T V Í ,
MLÁDEŽE A TĚLOVÝCHOVY

EVROPSKÁ UNIE

EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ

INVESTICE DO VAŠÍ BUDOUCNOSTI

OP Výzkum a vývoj
pro inovace

http://www.six.feec.vutbr.cz

CONTENTS

1 Theoretical part 13

1.1 Domain name system 13

1.1.1 Resource record 14

1.1.2 Communication 14

1.1.3 Master file 17

1.1.4 Domain name server 18

1.1.5 Inverse queries 19

1.1.6 Resolver 19

1.2 Domain name system security extensions 21

1.2.1 Concepts 21

1.2.2 Authentication and integrity 23

1.2.3 States 23

1.2.4 Resolvers 24

1.2.5 EDNSO 24

1.2.6 Resolver tests 25

2 Practical part 26

2.1 Environment 26

2.2 Solution proposal 26

2.3 Unbound 27

2.3.1 Configuration 27

2.3.2 Deployment 28

2.4 NetworkManager 28

2.4.1 Network change 29

2.5 Watcher 29

2.5.1 M a i n cycle 30

2.5.2 Received signal 30

2.5.3 Name servers 30

2.5.4 Devices 31

2.5.5 Unbound configuration 31

2.6 Unreliabil i ty of resolution 32

2.6.1 Description 32

2.6.2 Tried solutions 35

2.6.3 Untried solutions 35

2.7 Comparison with DNSSEC-trigger 36

2.7.1 Trigger script 36

2.7.2 Other OS 36

3 Conclusion 37

Bibliography 38

List of symbols, physical constants and abbreviations 39

List of appendices 40

A Ful l packet examples 41

B Source code of watcher.py 46

LIST OF FIGURES
1.1 Simplified D N S overview 13

1.2 D N S message header[3] 16

1.3 Example of a D N S query structure[3] 17

1.4 Authentication chain 21

1.5 D N S S E C header[8] 22

2.1 Solution design 27

LIST OF TABLES
1.1 T Y P E field values examples

1.2 C L A S S field values examples

LISTINGS
2.1 query for nic.cz 32

2.2 unsigned response for nic.cz 33

2.3 query for dnssec-deployment.org 34

2.4 signed response for dnssec-deployment.org 34

A . l query for nic.cz 41

A . 2 response for nic.cz 41

A . 3 query for dnssec-deployment.org 42

A . 4 response for dnssec-deployment.org 42

B . l source code for solution using threads 46

B.2 source code for solution using the r e so lve_async function 48

11

http://nic.cz
http://nic.cz
http://dnssec-deployment.org
http://dnssec-deployment.org
http://nic.cz
http://nic.cz
http://dnssec-deployment.org
http://dnssec-deployment.org

INTRODUCTION
There are many services and protocols utilized on the Internet that do not take

security into consideration. The D N S (Domain Name System) is one of them and it

is a crucial and necessary part of the Internet as we know it today. There are three

security aspects to consider. They are confidentiality, integrity and authentication.

The first aspect does not have to be considered since D N S data that is being sent

can be asked for by other stations on the network. The latter two should be a

part of the D N S system, but it was not designed with security in mind. Security

addition to the system was introduced in a form of D N S S E C (Domain name system

security extensions). It provides much needed authenticity and integrity, although

just to a certain point in a network. That point is the last validating resolver. To

make full use of D N S S E C , additional settings need to be made. There are two

ways to provide security for D N S data from the end-users' point of view. The first

way is to secure the channel between the end-user and a resolver that is capable of

D N S S E C validation. Other way is to run local validating resolver on the end-user's

workstation.

This thesis focuses on running a local validating resolver to provide a D N S S E C

authenticated services. Its objective is to find a solution for automatic deployment

and configuration of the resolver without having an impact on normal user expe

rience. To achieve this there need to be automatic setting of resolver during start

of the system, detection and reaction when the network environment changes and

testing of possibilities on any network. The outline of the solution is described in the

practical part of the project. The theoretical part focuses on providing explanations

of mechanisms, principles and concepts used in the practical part.

12

1 THEORETICAL PART

1.1 Domain name system
D N S (Domain Name System) is a protocol for naming resources, services and devices

accessible through network. It provides more understandable designation and adds

another layer of virtualization.

It retrieves information based on a query, sent from a client and processed by

resolvers and name servers. The information is searched hierarchically from the root

zone as shown in figure 1.1. A l l terms are explained further in this theoretical part.

If there is no record of a name server address higher level zone is asked.

Client

Cache

A

Resolver

A

Shared
database

< >

Root zone
name server

Top-level
name server

Author i tat ive
name server

Fig . 1.1: Simplified D N S overview

Domain is a sphere of knowledge identified by a name. Typically, the knowledge

is a collection of facts or a number of network points or addresses. In this case the

term domain can be interchangeable wi th the term zone.

Zones are parts of a domain name space managed by a single entity. It contains

a database for a whole subtree of domain space. The data needs to be periodically

checked from a local or another name server whether it is up-to-date [3].

Root zone is labeled It is the highest level domain available. The root zone

is operated by root servers wi th specified addresses. Responsibility for it is placed

wi th I A N A (Internet Assigned Numbers Authority) [4].

13

Shared database can be located between the name server and the resolver. It

usually contains authoritative data provided and periodically updated by the name

server and cached data taken from previous resolver requests[3].

Domain name may be written in many ways possible, although in order to func

tion properly there are recommendations for preferred syntax when communicating

outside of administered zone.

Case of the domain name is not taken in account but in order to avoid mul

tiple entries single record with different case characters should not be added. Case

differences may be discarded when structured database is formed[3].

1.1.1 Resource record

Every domain name system consists of R R s (Recourse Record). R R contains retriev

able information, which is the reason to run D N S . It consists of six parts mentioned

below. Recourse record fields are:

• N A M E - variable length field representing designation of the node connected

to the record

• T Y P E - 2 byte field containing number specifying R R type

• C L A S S - 2 byte field defining class of a record

• T T L - 4 byte field defining T T L (Time To Live) in seconds unti l the record

is discarded

• R D L E N G T H - 2 byte field specifying the number of bytes used for R D A T A

field

• R D A T A - field carrying needed information.

List of T Y P E value examples can be found in tab. 1.1 [3]. Classes used in D N S can

be associated wi th different network types. Possible classes are mentioned in tab.

1.2.

1.1.2 C o m m u n i c a t i o n

It is preferred for D N S to communicate wi th a client using U D P (User Datagram

Protocol). For database update, shown in figure 1.1, it is preferred to use T C P

(Transmission Control Protocol) for its reliability. Bo th types of transmissions are

made on port 53, if not set otherwise. There is default l imitat ion in size for U D P

messages of 512 bites without headers. Longer messages are truncated. Communi

cation inside D N S is carried out by using messages wi th constant format. There are

five sections named: Header, Question, Answer, Author i ty and Additional[3].

14

Tab. 1.1: T Y P E field values examples

T Y P E Numerical value Record

A 1 IPv4 host address

NS 2 Authoritative name server

C N A M E 5 Canonical name for an alias

S O A 6 Start of a zone of authority

M B 7 Mai lbox domain name

M G 8 M a i l group number

M R 9 M a i l rename domain name

N U L L 10 N u l l

P T R 12 Domain name pointer

M X 15 M a i l exchange

T X T 16 Text string

R P 17 Responsible person

SIG 24 Signature

K E Y 25 Key record

A A A A 28 IPv6 host address

N A P T R 35 Naming authority pointer

K X 36 Key exchanger record

C E R T 37 Certificate record

DS 43 Delegation signer

S S H F P 44 S S H public key fingerprint

I P S E C K E Y 45 IPsec key

R R S I G 46 D N S S E C signature

N S E C 47 Next secure record

D N S K E Y 48 D N S key record

D H C I D 49 D H C P identifier

N S E C 3 50 Next secure record version 3

N S E C 3 P A R A M 51 N S E C 3 parameters

T L S A 52 T L S A certificate association

C D S 59 C h i l d copy of DS record

C D N S K E Y 60 Ch i ld copy of D N S K E Y record

O P E N P G P K E Y 61 O p e n P G P public key

T S I G 250 Transaction signature

C A A 257 Certification authority authorization

T A 32768 D N S S E C trust authorities

D L V 32769 D N S S E C lookaside validation record

15

Tab. 1.2: C L A S S field values examples

C L A S S Numerical value Description

I N 1 the Internet

CS 2 C S N E T (Computer Science Network)

C H 3 Chaosnet

HS 4 Hesiod

0 1 2 3 4 5 r 8 9 10 11 12 13 14 15

ID Q R

Opcode A A T C R D R A z R C O D E

Q D C O U N T

A N C O U N T

N S C O U N T

A R C O U N T

Fig . 1.2: D N S message header [3]

Unused sections are excluded. Present sections and their number can be viewed

in last 4 fields in header called Q D C O U N T , A N C O U N T , N S C O U N T , A R C O U N T [3] .

Visua l representation is in figure 1.2. W i t h introduction of other R F C (Request For

Comments) documents, D N S header was improved by dedicating some of the unused

bits. This is further explained in chapter 1.2.

Other parameters in header are:

• ID identifier serves to match question to the reply

• Q R - differentiates between query, marked 0, and response, marked 1

• O P C O D E - defines query type

• A A - authoritative answer

• T C - TrunCat ion is used when message needs to be truncated because of its

size

• R D - recursion desired

• R A - recursion available

• Z unused bits

• R C O D E - error messages used in responses.

Question section is used in most queries. It contains three fields named Q N A M E ,

Q T Y P E and Q C L A S S representing domain name, query type and query class.

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

H E A D E R

Q N A M E

Q T Y P E

Q C L A S S

N A M E

T Y P E C L A S S

T T L

R D L E N G T H R D A T A

Fig . 1.3: Example of a D N S query structure[3]

Answer, authority, and additional section have identical format, whose pa

rameters can be seen in section 1.1.1. There is a method for size reduction using

pointer to the previous recourse record in the same message. The pointer has size

of 2 bytes and it is signalized by the first 2 bits, which are set to 1[3].

1.1.3 M a s t e r file

The master file is a text file containing R R s of certain zone. Items in file are

separated wi th spaces or tabs. Comment can be written using semicolon. There are

five types of entries:

• blank entry

• entry containing R R

• entry containing R R and the domain name

• control entry wi th S O R I G I N keyword and the domain name

• control entry wi th S I N C L U D E keyword and the file name.

The keyword S O R I G I N defines the start of the zone file, if it is detected later, it

rewrites domain names to stated domain names after the keyword. The keyword

S I N C L U D E can insert named files to file it is used in. It does not reset the S O R I G I N

17

keyword if contained. R R entries are assigned to the domain name mentioned before

the R R or to the domain name mentioned before if it is not stated. Domain names

can be stated as relative or absolute. The absolute domain name ends wi th the

root zone marked as a dot. From there it specifies the top-level domain and then

it gradually progresses. Relative domain name does not include root zone, but

extends the domain name in the S O R I G I N control entry. Errors in a master file are

not acceptable since even a single error can corrupt the whole file. In order to avoid

the corruption, loading of the master file should be stopped after encountering an

error. Four recommended checks, which can be used to check the master file[3].

• same class on all R R s

• exactly one S O A R R

• containing delegation and glue information if needed

• non-authoritative R R s should be the glue information

The glue record or the glue information is a R R that contains IP address for a

name server in its delegating domain. It is needed when the name server is a host

for its own domain [1].

1.1.4 D o m a i n name server

There are several rules and recommendations to be considered when deploying and

maintaining a domain name server.

Blocking U D P requests is unacceptable. There are several reasons where this

could happen, for example server can be preoccupied wi th a data refresh.

Parallel processing of requests is necessary in order to address all requests. Var

ious ways to serialize the processing can be used, but they should not cause a sub

stantial delay.

Three part database is recommended but not necessary. It consists of catalog

of pointers to the zones, master files for each zone and cached data. Changing of the

zone file should be performed by changing the pointer. Authoritative data should

be preferred over cached data.

Time should be stored in two ways, as an absolute value and as a time left to the

next data refresh[3].

18

1.1.5 Inverse queries

Inverse queries are used in order to a obtain domain name based on a resource.

They are not necessarily supported but are required to return a response to indicate

if this feature is not supported. It is received in a message header with the R C O D E

section set to value 4. Inverse queries are used mainly for debugging and system

management. Queries of this type are send wi th an empty question field and answer

field filled in the standard query structure [2].

1.1.6 Resolver

Domain names are translated wi th assistance of a local agent called the resolver.

It is responsible for hiding the distribution of data among name servers from the

user. It is usual for the resolver to address several name servers in order to finish

the translation. The resolver has no need to know the addresses of all the the

name servers, it can be obtained from other name servers. It is also responsible for

dealing with failures by reaching to redundant name servers. The communication is

managed by a query, that is associated wi th a specific type of information needed

to be retrieved.

We differentiate between authoritative data stored permanently, and cached

data, which is stored in the resolver and updated according to authoritative data.

Cached data does not need to contain whole copy of a database. Storing the most

used parts of the database can greatly improve the system performance. After a set

amount of time passes, cached data is discarded. Shared database is used for a zone

check [3].

State block contains request that has not been processed. A time stamp can be

added to determine whether some R R s are suitable. Timers or other limiters can

also be added to prevent long request processing due to for example an error. S L I S T

is added to keep track of a state of the request in relation to foreign name servers.

S L I S T is a structure that connects name servers and zone, that are being queried.

It serves as a guide to obtain desired information according to data previously gained

by resolver.

Sending queries is usually carried out by NS records. Resolver should consider

the probability of receiving answer when contacting authoritative name server. The

time and number of transmissions should also be taken in account. There is a timer

that indicates if another action is needed. If there is no NS record to be found

19

the resolver contacts all name servers known to it in parallel. The resolver wi l l keep

track of response time for each name server address and consider this in its selection.

Responses are to be parsed and each part evaluated. Upon receiving response,

correct formatting, T T L and a header are checked. Then it is matched to a request.

This is usually done by matching an ID field and checking if appropriate field was

filled in. There are three major bugs that have to be accounted for. Firstly, the

response wi l l be received from a different address than the request was sent to.

Secondly, if retransmission occurs, there need to be separate times for each request

but the response needs to be associated wi th both transmissions. Lastly, when a

name server does not have a zone file, it needs to be removed from the current S L I S T

and a different name server should be addressed.

Cache can improve performance of a resolver, therefore a general rule is to use

it as much as possible although there are exceptions for data that should not be

cached [3].

• Only a whole set of R R s available for a particular owner name should be cached

and not its parts.

• Authoritative data have preference over cached data, so there is no reason to

keep it in cache.

• Inverse queries should not to be cached.

• Queries containing "*" in their Q N A M E field. This symbol is used for wild

cards.

• Unsolicited responses and other unreliable data should not be cached.

20

1.2 Domain name system security extensions
D N S S E C (Domain name system security extensions) is a way to provide the au

thentication and integrity assurance to the D N S . It can also provide public key

distribution. In order to provide this 2 bits had to be added to the message header

and dedicated R R types that can be seen in tab. 1.1. Header bits are listed below

and can be seen in figure 1.5 [8].

• C D - Checking Disabled

• A D - Authenticated Data.

D N S S E C employs an asymmetric cryptography, more specifically a digital sig

nature. The signature is verifiable through the authentication chain, also called the

chain of trust, to the trust anchor[8]. The types of queries carrying a signature can

be seen in figure 1.4.

Root zone
name server

Client Revolver
Top-level Client Revolver

DS, RRSIG name server

Authoritative
name server

Fig . 1.4: Authentication chain

O n figure 1.4 we can see a delivery of R R s necessary for proper function of the

D N S S E C . After a query is sent to the resolver it searches the answer gradually from

the highest zone to the zone with an exact record. Delegation, or recommendation,

to a zone wi th better records, between zones is done by the DS type R R . This type

of record contains a hash of the D N S K E Y type R R . During all steps the R R S I G

type R R is sent with a response to ensure validation.

A n algorithm used for the digital signature is a combination of R S A (Rivest

Shamir Adleman) and S H A (Secure Hash Algori thm) [10]. D N S K E Y type R R con

tains public key to verify signatures by name servers [7].

1.2.1 Concepts

R R sets are multiple R R that are signed together rather than signing each R R

separately. They are signed by zone-signing key.

21

0 1 2 3 4 5 6 7 8 9 10 i i 12 13 14 15

ID Q R

Opcode A A T C R D R A z A D C D R C O D E

Q D C O U N T

A N C O U N T

N S C O U N T

A R C O U N T

Fig . 1.5: D N S S E C header[8]

Zone-signing key is a private key used for a specific zone. Without a unique zone-

signing key no signature would be valid. A public key derived from the particular

zone-signing key and in combination wi th the RRset can be used to validate the

record. It is stored in R R S I G type R R and sent with the set.

Key-signing key creates R R S I G type R R for D N S K E Y type R R that contains

a key. The reason to separate these keys is to provide security high enough for an

authentication chain without putt ing too much strain on the domain name server.

Delegation signer R R serves to transfer trust from parent to child zone. Key-

signing key is hashed and given to the parent zone to be published as a DS type

R R . To check a child zone, hash of the key-signing key needs to be compared. It is

prone to malfunction when changing a DS type R R s since it requires several steps

to perform. Solution is to separate zone-signing keys and key-signing keys.

Authentication chain uses the key-signing keys and DS type R R to establish

trust through several levels of zones, one referring to the next. The root zone has no

parent zone. Authenticity of this zone is established in a "root signing ceremony",

where several subjects vouches for specific domain name servers and provide them

with private and public keys.

Island of security is a signed zone without the parent containing a proper

D N S K E Y type R R , therefore not a part of the authentication parents chain. Secure

key delivery can be done by other means.

Trust anchor is the starting point for an authentication chain. It is a D N S K E Y

type R R or DS type R R hash that was not obtained from a name server[8]. Usually

22

it a public key for the the root zone distributed in R P M (Red Hat Package Manager)

package containing D N S server.

1.2.2 A u t h e n t i c a t i o n and integri ty

The domain name server stores digital signatures in the R R S I G type R R s . These

signatures are compared to the data generated on a resolver side. A specific signature

is associated with a particular zone. Delivery of a public key must be provided. This

can be done via another domain name server where th keys are stored in D N S K E Y

type R R . In this case we speak of an authentication chain[8].

N S E C type R R was designed to solve a problem of authenticating a negative

response. Instead of sending error response this type of R R is sent and authenticated

same way as any other [8].

N S E C 3 type R R is a more secure option to the N S E C type R R . Its main purpose

is to mitigate "zone walking". It is an attempt to gain a full list of R R s managed by

the name server by sending queries for nonexistent D N S records. There is a simple

solution to hash the domain name. This puts an additional load on the server. There

can be added salt to the hash. This changes the hash value after the time when it

is resigned. This and other parameters, hash algorithm, number of iterations and

flags, are retrievable by the N S E C 3 P A R A M type RR[9]. Depending on available

resources the zone administrator can use N S E C instead of NSEC3[11].

1.2.3 States

Based on the result of validating a R R we differentiate four states.

Secure state is the desired result. The resolver has a complete authentication

chain wi th trusted anchor and all signatures validated.

Insecure state is reported when a signed record of non-existence of a DS type R R

is received. This proves that referenced zone cannot be validated. It is possible to

mark a part of the domain as secure and a part as insecure.

Bogus is caused by a validation error. There could be various causes, the most

usual ones are expired signature, unsupported algorithm, missing signature, missing

data or an attempt for an attack.

23

Indeterminate state is caused by missing the trust anchor, so there is no way to

determine which part is secure.

1.2.4 Resolvers

Security-aware resolver or a name server is the resolver or the name server ca

pable of using the D N S S E C functionality.

Stub resolver is a downsized resolver that does not perform all the functionality

and makes extensive use of recursive name servers. It depends on the security of

the above mentioned name servers as well as a security of a communication channel

for proper D N S S E C functionality. Whether the message was authenticated or not

is indicated in the A D bit of the message header. It answers only to the recursive

resolver [8].

Non-validating stub resolver is a stub resolver that delegates some of its func

tions to security-aware recursive name servers.

Security-aware recursive name server combines a security-aware name server

and the security-aware resolver functions [8].

Security-aware resolver should be configured wi th at least one anchor. It must

be able to perform cryptographic operations necessary to validate a digital signature

and recognize and properly process important D N S S E C R R s such as D N S K E Y , DS

and R R S I G . It is recommended that the time of validation is taken into an account

when determining a TTL[8] .

1.2.5 EDNSO

EDNSO (Extension Mechanism for DNS) provides backward compatible mecha

nism for extending the D N S enlarge messages. The effective use of D N S S E C re

quires this extension to the protocol for the same reason it was introduced. The

EDNSO provides more space for data transfer in a single query by attaching an

O P T type pseudo-RR[5]. D N S S E C uses available space by adding a control bit

called " D N S S E C O K " or a D O bit. The D O bit indicates whether the sender is ca

pable of accepting signed responses. W i t h the D O bit set to zero value the response

must not contain D N S S E C attributes. Value in query is sent back in a response[6].

24

1.2.6 Resolver tests

Several test should be performed before using a upstream resolver to avoid resolution

and validation problems due to an obstruction in a network infrastructure. When

any of the test fails measures need to employed to avoid the blocking or different

resolver need to be chosen[12]. Recommended tests are listed below:

• Test the U D P answers

• Test the T C P answers

. Test the EDNSO

• Test the the D O bit

. Test the the A D Bi t using D N S K E Y or DS type R R for algorithms 5 (R S A S H A l)

and 8 (RSASHA256)

• Test the return of R R S I G type R R

. Test the query for D N S K E Y type R R

• Test the query for DS type R R

• Test the query for negative answers wi th N S E C 3 type R R

• Test the query for D N A M E type R R

• Test the T C P over port 53

• Test the U D P over port 53

• Test the U D P fragmentation

• Test unknown R R s

• Test the D N S K E Y and DS type R R combination[12].

25

2 PRACTICAL PART

2.1 Environment
Working environment is L inux OS (Operating System) Fedora Workstation 27. A l l

source code is written in python 3.6. Used utilities are:

• NetworkManager - a network interface control tool

• Unbound - a local validating resolver

• D-Bus - a basis of A P I s used for data transfer

• libdns - a library used to display queries

• subprocess - a library for usage of shell commands within python

• watcher.py - a contributed python application made specifically for unbound

configuration and network connection state gathering

• ipdb - a python library for debugging

• wireshark - a network protocol analyzer.

During the development the environment was changed in order to find a solution

for an error described later. The original environment consisted of the features

mentioned above. The difference was that it was run in a vir tual environment under

OS R H E L (Red Head Enterprise Linux) 7.3. More information is provided in section

2.6.

2.2 Solution proposal

The goal is to provide a validation on a client device. This wi l l be achieved this by

installing a local validation resolver. The adjective "local" suggests it runs on the

same device as the original sender of the query, therefore the communication wi th

unsigned queries can be carried out through the localhost interface.

Unbound was chosen as a resolver since it was theoretically capable all required

features. Feature are validation, simple configuration during the run, sending test

queries and python accessible A P I . More information follows is in section 2.3.

Resolver configuration needs to adapt to active connections, especially wi th a

change of D H C P received name servers. There also needs to be an arbitrator if

more connections of name servers are available or if there is a problem wi th the

current one. If there are no suitable name servers, the resolver wi l l perform a full

recursion. These functions are executed in watcher.py.

The watcher.py wi l l receive data from a network utility, in this case NetworkMan

ager, and changes resolver settings accordingly. If there is no sufficient information

received, it can use a different ut i l i ty to obtain more information about name server

addresses. This is done by sending queries for known addresses. Changes to the

26

resolver configuration file can be done by copying a template file with a fewer parts

filled wi th data from a network ut i l i ty or by a command if the change is small, such

as a change of a name server address. A diagram of the concept is represented in

picture 2.1.

Domain name
server

I O S

Testing sites
Domain name

server

DHCP server

Jnbounö
resolver

unbound-contro

Unbound
content

> NetworkManager watcher.py

Fig . 2.1: Solution design

2.3 Unbound
Unbound is a validating, recursive and caching D N S resolver. The source code is

published under B S D (Berkeley Software Distribution) license. It wi l l be used as

a local validating resolver. It was chosen for this implementation for its ability to

validate signed queries and proven functionality under similar conditions in uti l i ty

DNSSEC-trigger.

2.3.1 Conf igura t ion

Unbound is configured in "unbound.conf" file located in the directory /e tc /un

bound / .A restart is required to load a configuration from the file. This file is left

in a default configuration and further changes are made using an unbound-control

utility. The configuration file is divided into several clauses.

Server clause is the most extensive. A n interface keyword is used to specify the

interface that the resolver wi l l be listening to for queries and to which it wi l l send

a response. In this case it should be set to localhost, 127.0.0.1 and ::1, since it

wi l l be set in the "resolv.conf" file in section 2.4. To set a port on the interface,

there is a port keyword. The default port is 53. Do-tcp and do-udp keywords are

recommended to be set to the value "yes". U D P datagrams are mainly used, although

27

under various conditions a name server can choose to use T C P . A n access-control

keyword allows access for networks or hosts. B y default only localhosts' queries are

processed. The auto-trust-anchor-file keyword should be set up wi th a path to the

"root.key" file, which contains a trust anchor. The keyword pidfile specifies a path

to a file containing current P I D (Process ID) of the resolver. The unwanted-reply-

threshold keyword is a defensive measure that wi l l trigger an action if the number

of unwanted replies reaches the number that has been set. A zero value turns the

feature off. To use a specific module, the keyword module-config needs to be used.

In this case I used the module "validator iterator" to enable D N S S E C usage.

Python clause can be used to add modules written in this language.

Remote-control clause contains means for configuration change without access

ing the "unbound.conf" file directly.

Stub-zone clause serves as a storage of authoritative data accessible only from

private zones.

Forward-zone clause contains addresses to recursive resolvers, where queries can

be sent if they can not be resolved by this resolver. The name keyword specifies

domain names to be forwarded. To forward all queries the keyword must be set wi th

the root domain. Addresses to forward to are defined by the forward-addr keyword.

Include is a keyword usable anywhere in the configuration file. It copies the

content of a file specified in the keyword into the configuration file.

2.3.2 Deployment

Several adjustments were made to the default unbound configuration. These are

checked during a system start.

• validator - this module need to be included to configure the unbound for the

D N S S E C validation

• tcp-upstream - its use wi l l ensure that queries exceeding the l imit of 512 B

wi l l be delivered

2.4 Net wor kManager

NetworkManager is a default open-source network connection configuration tool

used in Fedora Linux distribution. It searches for network connections and estab-

28

lishes them. It is possible to configure The NetworkManager using A P I (Applica

tion Programming Interface) written in the python named python-networkmanager.

This A P I utilizes D-Bus (Desktop Bus). The NetworkManager rewrites the file "re-

solv.conf" during every system start. The file "resolv.conf" is located in the directory

/e tc / and contains address of domain name servers that are used by the OS. The

default configuration of the NetworkManager is set to rewrite the file wi th D H C P

(Dynamic Host Configuration Protocol) obtained D N S addresses, this needed to be

changed since the implementation requires a local validating resolver. File is rewrit

ten during each change by the NetworkManager. To compensate, it is going to be

rewritten again by the watcher.py using subprocess and echo utilities. To obtain the

data, active connections must be accessed. That is be done by the use of the " A c -

tiveConnections" class, when each connection can receive different D N S addresses.

To gain received settings we can use the "Dhcp4Config" for IPv4 addresses.

2.4.1 N e t w o r k change

W i t h each change in the network, scripts in the directory "/etc/NetworkManager/dis-

patcher.d/" are executed. To enable a configuration change wi th a network change

the bash script was added to send the signal SIGUSR1 to a P I D of the watcher.py.

The content of directory is executed in an alphabetical order. Since the script is

very simple and the connection is a crucial feature I have put it in the second place

wi th the name "02-network-change". To follow the standard of other scripts, two

digits were placed before the name. Content can be seen below.

#!/bin/bash

PID=$(cat /home/knekuza/devel/Client_side_DNSSEC/pid)
k i l l -USR1 $PID

2.5 Watcher

Watcher is a program written in python 3.6 wi th the purpose to configure the un

bound in accordance wi th the data received from the NetworkManager and gained

from its own testing. It receives signals from the script "02-network-change" when

ever the network environment changes. It is presumed that during the start of this

program the unbound resolver wi l l be running, which is achieved by enabling the

unbound service in the systemd.

29

2.5.1 M a i n cycle

The start sequence and methods executed when receiving a signal are almost iden

tical since it is presumed that all connections can be lost during both events. There

is also a defined function for receiving signal.

The start of a watcher.py wi th the "resolve.conf" file is overwritten, because the

NetworkManager writes there D H C P received name servers. Then an instance of a

class unboundConf is created. It populates its variables wi th name servers during

the constructor execution. W i t h the running resolver there is no guarantee it is

capable of required tasks. The moduleCheck method is called to check and set the

resolver if needed. Then the previously obtained name servers are checked by the

checkNameServers method. The forwarding is periodically set according to the

results.

2.5.2 Received signal

The library "signal" and a method wi th the same name was used for inter-process

communication. Only two arguments are needed. The first is the type of the sig

nal that can be used the same library, and second is a handler. A handler is a

function called when signal is received. It is named "receive signal" in this case.

A s discussed in previous paragraph it creates the unboundConf instance, retrieves

addresses, checks them and configures them accordingly. The handler is called wi th

two arguments, the signal identification and a pointer to the current stack frame.

Neither of those are useful for the intended usage.

2.5.3 N a m e servers

For each name server there is an instance of a class named nameServer. The

nameServer has attributes that represent the type of queries it supports. The val

ues of these attributes are determined by a method sendQuery. A constructor sets

attributes and the unbound context by calling a method setContext. In order for

this class to be comparable, methods hash and eq were modified to com

pare according to the IP address. This wi l l be useful in a class device which could

contain several instances of this class.

The method sendQuery utilizes function of the unbound A P I named resolve.
It sends queries to known sites via the tested name server. The response then

indicates the name server's capability to resolve various query types. It is set under

an unbound context, which is a separate setting for query resolution. The context

is represented by a class ub_ctx and each instance sets its own context using the

method setContext. The resolve_async method was also tested to replace the

30

resolve. It uses a callback function that is called whenever a response is received

from sent queries. This proved less stable then the resolve function so I chose to

use the faster option. In order to shorten the time for determining these attributes

for every use of the resolve function, there is a separate thread.

The method setContext contains configuration for the instance of the resolver.

A l l setting are methods of the unbound context class. They determine how the

queries wi l l be resolved. The resolver has to be set to provide validation by the

set_option("module-conf i g " , "validator iterator") and has to have an access

to the trust anchor, add_ta_file("/var/lib/unbound/root.key"). Above men

tioned settings wi l l be the same for all nameServer, unlike the forwarding settings. It

is set to the IP address of the nameServer by method set_f wd(str (self . address)).

2.5.4 Devices

Class devices divides name servers to groups according to a device that can also be

called an interface, on which it was received. This is done to divide name servers

according to reliability and security of the connection.

2.5.5 U n b o u n d configurat ion

The unboundConf class serves to configure the unbound recursive resolver. It is set

in methods conf Forward and moduleCheck. The latter configures basic setting to

ensure a proper function of the resolver. Name servers are stored in variable forward
which contains a list of instances of the device class. They are gained through the

retrieveNameServers method.

The moduleCheck method is guarantees that the resolver is capable of tasks,

which wi l l be required. It is using the unbound-control commands that are executed

in the subprocess. This enables easy retrieval of output to determine the running

settings of unbound. Two parameters are checked. Module configuration, that has

to be set wi th "validator" keyword and trust anchor, that should point to the default

location of trust anchor file.

The confForward method checks properties of a name server, specifically the

ability to send signed A , A A A A and N S E C type queries. The functional name

servers are then set for forwarding using subprocess and the unbound-control. After

each setting of a forward zone, the cache is flushed, so there are no record from the

previous queries.

The retrieveNameServers method communicates with the NetworkManager to

gather name servers received through D H C P . Addresses are stored according to

the interface they were received on. Localhost addresses and bind interfaces are

31

excluded. This method utilizes the NetworkManager python A P I available through

the python3-networkmanager package.

The checkNameServers method uses the sendQueries method from each in

stance of nameServer to determine capabilities of a selected name server. It is also

responsible for dealing wi th threads. For threading it uses the "threading" library.

A site that is taken as a reference is chosen randomly from a list of verified sites

called the checkSites, which is an attribute of the unboundConf class.

2.6 Unreliability of resolution

The success of this program dependents on a the capability to recognize a name

server wi th functional D N S S E C properties. This was not achieved since the reliabil

ity of a resolution was not satisfactory. Some responses were either sent without the

R R S I G type R R or were not received at all . I made several alterations that could

fix the problem, but I did not manage to completely ensure reliable result. I tested

all solution in different networks to make sure that there are no network settings af

fecting it. Specifically it was tried on guest and employee networks in company Red

Hat wi th enterprise level of connection and managed name servers, and on V D S L

(Very High Speed Digi ta l Subscriber Line) connection. A l l connections had similar

results.

2.6.1 D e s c r i p t i o n

The resolution is done by the resolve method. This sends queries to the selected

name server. The responses should contain the original query, requested data and

a signature that can be validated. There are four listings from the wireshark as an

example of the problem. Queries received without the R R S I G type R R were sent

wi th the N A M E field containing "nic.cz", queries without the signature were sent

for the "dnssec-deployment.org". Bo th sites were proven to have functioning signed

R R s available during testing outside of the watcher.py.

The first two are listings 2.1 and 2.2. Their response was sent without a signature.

Listings 2.3 and 2.4 gained valid a R R S I G type R R . A symptom could be the C D

bit, in this case marked "Non-authenticated data", set to a positive value but it is

better to receive an unsigned response then to do not receive any since it reduces the

resources consumption and gives more information about the probed name server.

It is also worth pointing out that a D O bit in the EDNSO O P T type pseudo-RR is

set to "1" in both examples.

List ing 2.1: query for nic.cz
Domain Name System (query)

32

http://nic.cz
http://dnssec-deployment.org
http://nic.cz

T r a n s a c t i o n ID: 0xd55a
Flags : 0x0110 Standard query

0 = Response : Message is a query
.000 0 = Opcode: Standard query (0)

0 — T r u n c a t e d : Message is no t t r u n c a t e d
1 = Recurs ion d e s i r e d : Do query r e c u r s i v e l y

0 = Z : re served (0)
1 = Non—au t h e n t i c a t e d d a t a : A c c e p t a b l e

Ques t ions : 1
Answer RRs : 0
A u t h o r i t y RRs: 0
A d d i t i o n a l RRs: 1
Queries

n i c . c z : t y p e AAAA, c l a s s IN
Name: n i c . c z
[Name Length : 6]
[L a b e l Count : 2]
Type: AAAA (IPv6 Address) (28)
C l a s s : IN (0x0001)

A d d i t i o n a l records
<Root>: t y p e OPT

Name : <Root>
Type: OPT (41)
UDP payload s i z e : 4096
Higher b i t s i n extended RCODE: 0x00
EDNS0 v e r s i o n : 0
Z: 0x8000

1 - D O b i t : Accepts DNSSEC s e c u r i t y RRs
.000 0000 0000 0000 = Reserved: 0x0000

Data l ength : 0
[Response In: 40]

List ing 2.2: unsigned response for nic cz
Domain Name System (response)

T r a n s a c t i o n ID: 0xd55a
F l a g s : 0x8190 Standard query response , No e r r o r

1 = Response : Message i s a response
.000 0 = Opcode: Standard query (0)

0 = A u t h o r i t a t i v e : Server is no t an a u t h o r t y f o r domain
0 — T r u n c a t e d : Message is no t t r u n c a t e d

1 = Recurs ion d e s i r e d : Do query r e c u r s i v e l y
1 = Recurs ion a v a i l a b l e : Server can do r e c u r s i v e quer ies
0 = Z: reserved (0)

0 = Answer a u t h e n t i c a t e d : Answer / a u t h o r i t y p o r t i o n was no t
a u t h e n t i c a t e d by the server

1 = Non—au t h e n t i c a t e d d a t a : A c c e p t a b l e
0000 = Reply code: No e r r o r (0)

Ques t ions : 1
Answer RRs : 1
A u t h o r i t y RRs: 0
A d d i t i o n a l RRs: 1
Queries

n i c . c z : t y p e AAAA, c l a s s IN
Name: n i c . c z
[Name Length : 6]
[L a b e l Count : 2]
Type: AAAA (IPv6 Address) (28)
C l a s s : IN (0x0001)

Answers
n i c . c z : t y p e AAAA, c l a s s IN , addr 2 0 0 1 : 1 4 8 8 : 0 : 3 : : 2

Name: n i c . c z
Type: AAAA (IPv6 Address) (28)
C l a s s : IN (0x0001)
Time to l i ve : 116
Data l ength : 16
AAAA Addres s : 2 0 0 1: 1 4 8 8 : 0 : 3 : : 2

A d d i t i o n a l records
<Root>: t y p e OPT

Name : <Root>
Type: OPT (41)
UDP payload s i z e : 4096
Higher b i t s i n extended RCODE: 0x00
EDNS0 v e r s i o n : 0
Z: 0x8000

1 - D O b i t : Accepts DNSSEC s e c u r i t y RRs
.000 0000 0000 0000 = Reserved: 0x0000

Data l ength : 0
[Request In : 39]

33

http://nic.cz
http://nic.cz
http://nic.cz
http://nic.cz
http://nic.cz
http://nic.cz

[Time 0.001757417 seconds]

List ing 2.3: query for dnssec-deployment.org
T r a n s a c t i o n ID: 0xdfe6
Flags : 0x0010 Standard query

0 = Response : Message is a query
.000 0 = Opcode: Standard query (0)

.0 — T r u n c a t e d : Message is no t t r u n c a t e d

. .0 — Recurs ion d e s i r e d : Don't do query r e c u r s i v e l y
0 = Z: reserved (0)
. . 1 — Non—authenticated d a t a : A c c e p t a b l e

Ques t ions : 1
Answer RRs : 0
A u t h o r i t y RRs: 0
A d d i t i o n a l RRs : 1
Queries

dnssec—deployment . org : type AAAA, c lass IN
Name : dnssec—deployment . org
[Name Length : 21]
[L a b e l Count : 2]
Type: AAAA (IPv6 Address) (28)
C l a s s : IN (0x0001)

A d d i t i o n a l records
<Root>: type OPT

Name : <Root>
Type: OPT (41)
UDP payload s i z e : 4096
Higher b i t s in extended RCODE: 0x00
EDNS0 v e r s i o n : 0
Z: 0x8000

1 = D O b i t : Accepts DNSSEC s e c u r i t y RRs
.000 0000 0000 0000 = Reserved: 0x0000

Data l ength : 0
[Response In: 4790]

List ing 2.4: signed response for dnssec-deployment.org
Domain Name System (response)

Length : 763
T r a n s a c t i o n ID: 0xdfe6
F l a g s : 0x8410 Standard query response , No e r r o r

1 = Response : Message is a response
.000 0 = Opcode: Standard query (0)

1 = A u t h o r i t a t i v e : Server is an a u t h o r i t y f o r domain
0 = Truncated : Message is no t t r u n c a t e d

0 = Recurs ion des i red : Don't do query r e c u r s i v e l y
0 = Recurs ion a v a i l a b l e : Server c a n ' t do r e c u r s i v e quer ies

0 = Z: reserved (0)
0 = Answer a u t h e n t i c a t e d : Answer / a u t h o r i t y p o r t i o n was no t

a u t h e n t i c a t e d by ;he server
1 = Non—a u t h e n t i c a t e d d a t a : A c c e p t a b l e

0000 = Reply code: No e r r o r (0)
Ques t ions : 1
Answer RRs: 2
A u t h o r i t y RRs: 6
A d d i t i o n a l RRs : 10
Queries

dnssec—deployment . org : t y p e AAAA, c l a s s IN
Name : dnssec—deployment . org
[Name Length : 21]
[L a b e l Count : 2]
Type: AAAA (IPv6 Address) (28)
C l a s s : IN (0x0001)

Answers
dnssec—deployment . org : t y p e AAAA, c l a s s I N , addr 2001:41c8: 20 : :400 1

Name : dnssec—deployment . org
Type: AAAA (IPv6 Address) (28)
C l a s s : IN (0x0001)
Time to l i ve : 300
Data l ength : 16
AAAA Addres s : 2001 :41c8 :20::4001

dnssec—deployment . org : t y p e RRSIG, c l a s s IN
Name : dnssec—deployment . org
Type: RRSIG (46)
C l a s s : IN (0x0001)
Time to l i ve : 300
Data l ength : 169

34

http://dnssec-deployment.org
http://dnssec-deployment.org

Type Covered: AAAA (IPv6 Address) (28)
A l g o r i t h m : RSA/SHA1 (5)
L a b e l s : 2
O r i g i n a l T T L : 300 (5 minutes)
S ignature E x p i r a t i o n : May 2 9, 201 8 22:40:03.000000000 CEST
S ignature I n c e p t i o n : May 15, 2018 22:40:03.000000000 CEST
Key Tag: 60423
Signer ' s name : dnssec—deployment . org
S ignature : 67007b75ad7508aOe77aefcdd490Od949 1 ecd85685fdc33e . . .

2.6.2 T r i e d solutions

Firstly, I tried using different method for resolution. The first is the resolve_async
method in python unbound A P I . This allows a resolution of queries without waiting

for a response. This is achieved by using the callback function. The callback function

receives pointer to the structure in an argument, where it stores the data. The

callback method is also a part of a the nameServer class. It determines the result

and the type of a query to adjust class attributes. When this approach proved

unsuccessful I used the resolve method. The waiting was evaded using different

threads for each query. It lowered the number of false reposes, but not sufficiently

Another possible reason for the problem could be the usage of U D P . The simple

solution is to use T C P . There are two possible setting that can achieve this. They are

the tcp-upstream and the do-udp commands. These wi l l influence the configuration

of the unbound context and wi l l be therefore applicable only for one set of queries.

The resolver needs to communicate wi th a workstation so turning off the resolution

through the U D P could be harmful. Testing wi th the tcp-upstream setting proved

to be ineffective.

Two workspaces were tried. The original workspace consisted of a vir tual ma

chine running Fedora 27 OS in Red Head Enterprise Linux 7.3 OS. There were two

connections, the vir tual network 192.168.122.0/24 and a bind interface. Through

the bind interface it was able to receive the address of a local D N S resolver. There

was a possibility that the dnsmasq running on the R H E L interferes wi th the reso

lution, since it was compiled without the D N S S E C validation. I tried the second

workspace running Fedora 27 on bare-metal. Neither this solution was successful.

2.6.3 U n t r i e d solutions

There were other solutions to consider, but those were not included because of the

lack of time necessary for implementation.

Probably the best option would be to choose a different programming language.

The C language would be a much better choice since it can provide more optimized

application and it accesses better A P I , than the python A P I . This would be useful

to do even without having to resolve discussed problem.

35

Another solution could be to ask specifically for the R R S I G type R R . It would

have to be distinguished which responses arrived without a signature and sent queries

for their R R S I G type R R s .

2.7 Comparison with DNSSEC-trigger

The DNSSEC-trigger is the only solution I was able to find for the D N S S E C de

ployment on a client device that uses the locally running resolver.

The main difference, which was the reason for not only updating the DNSSEC-

trigger wi th new options, is in the trigger scrip. It is located in directory the

"dispatcher.d" mentioned in chapter 2.4.

2.7.1 Trigger script

The DNSSEC-trigger is using the part to retrieve and select information from the

NetworkManager to configure the unbound resolver and forward zones. During the

run time of these procedures, it is necessary to wait for the completion before other

scrips in the directory can be executed. It is put in the second place in order of

execution wi thin the directory since it is a crucial feature, but that makes it even

more dependent on a swift execution for other services. Using the SIGUSR1 signal

mitigates the need for waiting since it is done by a different program.

2.7.2 Other OS

There is downside to the use a signal in a different OS. The library "signal" is not

made to receive the SIGUSR1 type. This would require to choose a different type

or change the basic execution to that of a DNSSEC-trigger where no signals are

needed.

36

3 CONCLUSION
The diploma thesis deals wi th possibilities of D N S S E C query usage on the client side

uti l izing a local validating resolver. The proposal of this thesis is directly compared

to the existing solution named DNSSEC-trigger. The purpose is to create a proof

of concept for an improvement for this project.

In the first chapter of the theoretical part there can be found terms and principles

explanations for the basic D N S functionality, most importantly there is the structure

of queries, headers within them, and their types. The second chapter builds on the

first and explains an extension to the system, the D N S S E C .

The first chapter of the practical part describes the working environment. The

environment was changed during the development. Only common features are de

scribed in this chapter, other information is in the following paragraphs. The second

chapter outlines the overall design, ideas and connections. It specifies the tools de

scribed in more detail in the next two chapters. These are the recursive resolver, the

unbound, and the networking tool, the NetworkManager, which are used in both

projects. The fifth chapter describes the program watcher.py. This is a software

specifically designed for this solution. The sixth chapter describes a problem wi th

realization of the intended functionality and goes through possible solutions. The

last chapter compares all of the above wi th a solution that is provided by DNSSEC-

trigger in key points.

The solution proposed in this thesis did not function as intended, therefore, I

cannot compare the results, although the features can be compared. The basic dif

ference is in the usage of a signal instead of executing it from a shell script in the

"the dispatcher.d" directory. The downside to the signal is that there is no informa

tion about the change and all interfaces need to be tested. This causes only a minor

setback since the same information is later retrieved from the NetworkManager.

The watcher.py is functional since it uses a fallback mechanism of a full recursion

if there are no available name servers. That is the same situation when tests fail

to prove that the found name servers are capable of validating. This and other

properties make it slower than the DNSSEC-trigger. I advise using the DNSSEC-

trigger for its swiftness and reliability of the resolution. I also recommend testing

the use of a signal apart from a direct execution in the DNSSEC-trigger.

37

BIBLIOGRAPHY
[1] Lottor, M . Domain administrators operations guide, STD 13, R F C 1033,

November 1987.

[2] Mockapetris, P. Domain names - concepts and facilities, STD 13, R F C 1034,

November 1987.

[3] Mockapetris, P. Domain names - implementation and specification, STD 13,

R F C 1035, November 1987.

[4] Manning, B. , Vixie, P. Operational Criteria for Root Name Servers, R F C 2010,

October 1996.

[5] Vixie, P. Extension Mechanisms for DNS (EDNS0), R F C 2671, August 1999.

[6] Conrad, D. Indicating Resolver Support of DNSSEC, R F C 3225, December

2001.

[7] Kolkman, O., Schlyter, J. , Lewis, E. Domain Name System KEY (DNSKEY)

Resource Record (RR) Secure Entry Point (SEP) Flag, R F C 3757, Apri l 2004.

[8] Arends, R., Austein, R., Larson, M . , Massey, D., and S.Rose. DNS Security
Introduction and Requirements, R F C 4033, Colorado State University, March

2005.

[9] Laurie, B. , Sisson B., Arends, R. and Blacka, B. DNS Security (DNSSEC)
Hashed Authenticated Denial of Existence, R F C 5155, March 2008.

[10] Jansen, J. Use of SHA-2 Algorithms with RSA in DNSKEY and RRSIG Re

source Records for DNSSEC, R F C 5702, October 2009.

[11] Kolkman, O., Mekking, W. and Gieben, R. DNSSEC Operational Practices,
Version 2, R F C 6781, December 2012.

[12] Hardaker, W., Gudmundsson, O., Krishnaswamy, S.. DNSSEC Roadblock

Avoidance, R F C 8027, November 2016.

38

LIST OF SYMBOLS, PHYSICAL CONSTANTS
AND ABBREVIATIONS

D N S Domain Name System

R R Recourse Record

T T L Time To Live

U D P User Datagram Protocol

T C P Transmission Control Protocol

D N S S E C Domain name system security extensions

B S D Berkeley Software Distr ibution

D N F Dandified yum

A P I Applicat ion Programming Interface

D-Bus Desktop Bus

OS Operating System

D H C P Dynamic Host Configuration Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

P I D Process ID

IP Internet Protocol

R H E L Red Head Enterprise Linux

V D S L Very High Speed Digi ta l Subscriber Line

R F C Request For Comments

I A N A Internet Assigned Numbers Authori ty

R S A Rivest Shamir Adleman

S H A Secure Hash Algor i thm

EDNSO Extension Mechanism for D N S

R P M Red Hat Package Manager

39

LIST OF APPENDICES

A Full packet examples 41

B Source code of watcher.py 46

40

A FULL P A C K E T EXAMPLES

List ing A . l : query for nic.cz
No. Time Source D e s t i n a t i o n P r o t o c o l Leng th Info

39 2.426188709 2 a 0 0 : 1 0 2 8 : 8 3 a 0 : 5 e l 6 : f l 7 1 : 4 9 a c : d 4 8 0 : b a 9 8 2 a 0 0 : 1 0 2 8 : 8 3 a 0 : 5 e l 6 : : l DNS
97 Standard query 0xd55a AAAA n i c . c z OPT

Frame 39: 97 bytes on wire (776 b i t s) , 97 bytes captured (776 b i t s) on i n t e r f a c e 0
Etherne t II , Src : I n t e l C o r _ 7 7 :96:29 (00:28: f8:77:96:29) , Dst : Asus tekC_ba : 59 : 10 (38: d5 :47 ba

:59:10)
In terne t P r o t o c o l V e r s i o n 6, S r c : 2aOO:1028:83aO:5e16: f171:49ac:d480:ba98 , Dst: 2a00:1028 83aO:5

el6 : :1
User Datagram P r o t o c o l , Src Port : 53145 , Dst Port : 53
Domain Name System (query)

T r a n s a c t i o n ID: 0xd55a
Flags : 0x0110 Standard query

0 = Response : Message is a query
.000 0 = Opcode: Standard query (0)

0 — T r u n c a t e d : Message is no t t r u n c a t e d
1 = Recurs ion d e s i r e d : Do query r e c u r s i v e l y

0 = Z : re served (0)
1 = Non—au t h e n t i c a t e d d a t a : A c c e p t a b l e

Ques t ions : 1
Answer RRs : 0
A u t h o r i t y RRs: 0
A d d i t i o n a l RRs: 1
Queries

n i c . c z : t y p e AAAA, c l a s s IN
Name: n i c . c z
[Name Length : 6]
[L a b e l Count : 2]
Type: AAAA (IPv6 Address) (28)
C l a s s : IN (0x0001)

A d d i t i o n a l records
<Root>: t y p e OPT

Name : <Root>
Type: OPT (41)
UDP payload s i z e : 4096
Higher b i t s i n extended RCODE: 0x00
EDNS0 v e r s i o n : 0
Z: 0x8000

1 - D O b i t : Accepts DNSSEC s e c u r i t y RRs
.000 0000 0000 0000 = Reserved: 0x0000

Data l ength : 0
[Response In: 40]

List ing A . 2 : response for nic.cz
^o. Time Source D e s t i n a t i o n P r o t o c o l Length Info

40 2.427946126 2 a 0 0 : 1 0 2 8 : 8 3 a 0 : 5 e l 6 : : l 2 a 0 0 : 1 0 2 8 : 8 3 a 0 : 5 e l 6 : f l 7 1 : 4 9 a c : d480:ba98 DNS
125 Standard query response 0xd55a AAAA n i c . c z AAAA 2001:1488:0 : 3 : :2 OPT

Frame 40: 125 bytes on wire (1000 b i t s) , 125 bytes captured (1000 b i t s) on i n t e r f a c e 0
Etherne t II , S r c : AsustekC ba :59:10 (38:d5:47:ba:59:10) , Dst : Intel Co r_77 :96 :29 (00:28:f8

:77:96:29)
In terne t P r o t o c o l V e r s i o n 6, Src : 2a00 : 1 0 2 8 : 8 3 a 0 : 5 e l 6 : : l , Dst : 2a00 : 1 0 2 8 : 8 3 a 0 : 5 e l 6 : f l 71:49 ac:

d480:ba98
User Datagram P r o t o c o l , Src Port : 53 , Dst Port : 53145
Domain Name System (response)

T r a n s a c t i o n ID: 0xd55a
F l a g s : 0x8190 Standard query response , No e r r o r

1 = Response : Message is a response
.000 0 = Opcode: Standard query (0)

0 = A u t h o r i t a t i v e : Server is no t an a u t h o r i t y f o r domain
0 = Truncated : Message is no t t r u n c a t e d

1 = Recurs ion des i red : Do query r e c u r s i v e l y
1 = Recurs ion a v a i l a b l e : Server can do r e c u r s i v e quer ies
0 = Z: reserved (0)

0 = Answer a u t h e n t i c a t e d : Answer / a u t h o r i t y p o r t i o n was no t
a u t h e n t i c a t e d by the server

1 - Non—a u t h e n t i c a t e d d a t a : A c c e p t a b l e
0000 = Reply code: No e r r o r (0)

Ques t ions : 1
Answer RRs : 1
A u t h o r i t y RRs: 0
A d d i t i o n a l RRs: 1

41

http://nic.cz
http://nic.cz
http://nic.cz
http://nic.cz
http://nic.cz
http://nic.cz

Queries
n i c . c z : t y p e AAAA, c l a s s IN

Name: n i c . c z
[Name Length : 6]
[Labe l Count: 2]
Type: AAAA (IPv6 Address) (28)
C l a s s : IN (0x0001)

Answers
n i c . c z : t y p e AAAA, c l a s s IN , addr 2 0 0 1 : 1 4 8 8 : 0 : 3 : : 2

Name: n i c . c z
Type: AAAA (IPv6 Address) (28)
C l a s s : IN (0x0001)
Time to l i v e : 116
Data l ength : 16
AAAA Addres s : 2 0 0 1 : 1 4 8 8 : 0 : 3 : : 2

A d d i t i o n a l records
<Root>: t y p e OPT

Name: <Root>
Type: OPT (41)
UDP payload s i z e : 4096
Higher b i t s i n extended RCODE: 0x00
EDNS0 v e r s i o n : 0
Z: 0x8000

1 = DO b i t : Accepts DNSSEC s e c u r i t y RRs
.000 0000 0000 0000 = Reserved: 0x0000

Data l ength : 0
[Request In : 39]
[Time: 0.001757417 seconds]

List ing A . 3 : query for dnssec-deployment.org
Domain Name System (query)

Length : 50
T r a n s a c t i o n ID: 0xdfe6
Flags : 0x0010 Standard query

0
.000 0 . . .

. . 0 .

. . . 0
0 .

— Response : Message is a query
— Opcode : Standard query (0)
— Truncated : Message is no t t r u n c a t e d
= R e c u r s i o n des i red : Don't do query recurs
— Z: reserved (0)
— Non—au t h e n t i c a t e d d a t a : A c c e p t a b l e

i v e l y

Ques t ions : 1
Answer RRs : 0
A u t h o r i t y RRs: 0
A d d i t i o n a l RRs: 1
Queries

dnssec—deployment . org : type AAAA, c lass IN
Name : dnssec—deployment . org
[Name Length : 21]
[L a b e l Count : 2]
Type: AAAA (IPv6 Address) (28)
C l a s s : IN (0x0001)

A d d i t i o n a l records
<Root>: type OPT

Name : <Root>
Type: OPT (41)
UDP payload s i z e : 4096
Higher b i t s in extended RCODE: 0x00
EDNS0 v e r s i o n : 0
Z: 0x8000

1 = DO b i t : Accepts DNSSEC s e c u r i t y RRs
.000 0000 0000 0000 = Reserved: 0x0000

Data l ength : 0
[Response In: 4790]

List ing A .4 : response for dnssec-deployment.org
Domain Name System (response)

Length : 763
T r a n s a c t i o n ID : 0xdfe6
F l a g s : 0x8410 Standard query response , No e r r o r

1 = Response: Message is a response
.000 0 . . . — Opcode : Standard query (0)

1.. — A u t h o r i t a t i v e : Server is an a u t h o r i t y f o r domain
0 . — Truncated : Message is no t t r u n c a t e d

0 — Recurs ion des i red : Don't do query rec u r s i v e l y
0 — Recurs ion a v a i l a b l e : Server c a n ' t do r e c u r s i v e quer ies
.0 = Z: reserved (0)

42

http://nic.cz
http://nic.cz
http://nic.cz
http://nic.cz
http://dnssec-deployment.org
http://dnssec-deployment.org

0 = Answer a u t h e n t i c a t e d : Answer / a u t h o r i t y por t i on was no t
a u t h e n t i c a t e d by the server

1 = Non—au t h e n t i c a t e d d a t a : A c c e p t a b l e
0000 = Reply code: No e r r o r (0)

Ques t ions : 1
Answer RRs : 2
A u t h o r i t y RRs: 6
A d d i t i o n a l RRs: 10
Queries

dnssec—deployment . org : t y p e AAAA, c l a s s IN
Name : dnssec—deployment . org
[Name Length : 21]
[L a b e l Count : 2]
Type: AAAA (IPv6 Address) (28)
C l a s s : IN (0x0001)

Answers
dnssec —deployment . org : t y p e AAAA, c l a s s I N , addr 2 0 0 1 : 4 1 c8 : 2 0 : : 4 0 0 1

Name : dnssec—deployment . org
Type: AAAA (IPv6 Address) (28)
C l a s s : IN (0x0001)
Time to l i ve : 300
Data l ength : 16
AAAA Addres s : 2 0 0 1: 4 1 c8 : 2 0 : : 4 0 0 1

d nssec—deployment . org : t y p e RRSIG , c l a s s IN
Name : dnssec—deployment . org
Type: RRSIG (46)
C l a s s : IN (0x0001)
Time to l i ve : 300
Data l ength : 169
Type Covered: AAAA (IPv6 Address) (28)
A l g o r i t h m : RSA/SHA1 (5)
Labe l s : 2
O r i g i n a l T T L : 300 (5 minutes)
S ignature E x p i r a t i o n : May 29, 2018 2 2:40:03.000000000 CEST
S ignature I n c e p t i o n : May 15, 2018 2 2:40:03.000000000 CEST
Key Tag: 60423
Signer ' s name : dnssec —deployment .org
S ignature : 6700 7 b 75 ad 75 08 aO e 7 7ae fc d d 4 90 Od 9 49 1 e c d 8 5 68 5 f d c 33e . . .

A u t h o r i t a t i v e nameservers
dnssec—deployment . org : type NS , c la s s IN , ns n s l . s e a l . a f i l i a s - n s t . i n f o

Name : dnssec—deployment . org
Type: NS (a u t h o r i t a t i v e Name Server) (2)
C l a s s : IN (0x0001)
Time to l i ve : 300
Data l ength : 27
Name Server : n s l . s ea l . a f i l i a s —nst . info

dnssec—deployment . org : type NS , c la s s IN , ns n s l . mia l . a f i l i a s —nst . i n f o
Name : dnssec—deployment . org
Type: NS (a u t h o r i t a t i v e Name Server) (2)
C l a s s : IN (0x0001)
Time to l i ve : 300
Data l ength : 11
Name Server : n s l . m i a l . a f i l i a s —nst . info

dnssec—deployment . org : type NS , c la s s IN , ns n s l . amsl . a f i l i a s —nst . i n f o
Name : dnssec—deployment . org
Type: NS (a u t h o r i t a t i v e Name Server) (2)
C l a s s : IN (0x0001)
Time to l i ve : 300
Data l ength : 11
Name S e r v e r : n s l . amsl . a f i l i a s —nst . info

dnssec—deployment . org : type NS , c la s s IN , ns n s l . y y z l . a f i l i a s — n s t . i n f o
Name : dnssec—deployment . org
Type: NS (a u t h o r i t a t i v e Name Server) (2)
C l a s s : IN (0x0001)
Time to l i ve : 300
Data l ength : 11
Name Server : n s l . y y z l . a f i l i a s —nst . info

dnssec—deployment . org : type NS , c la s s IN , ns n s l . hkg 1 . a f i l i a s —nst . i n f o
Name : dnssec—deployment . org
Type: NS (a u t h o r i t a t i v e Name Server) (2)
C l a s s : IN (0x0001)
Time to l i ve : 300
Data l ength : 11
Name S e r v e r : n s l . hkg 1 . a f i l i a s —nst . info

dnssec—deployment . org : type RRSIG, c lass IN
Name : dnssec—deployment . org
Type: RRSIG (46)
C l a s s : IN (0x0001)
Time to l i ve : 300
Data l ength : 169

43

Type Covered: NS (a u t h o r i t a t i v e Name Server) (2)
A l g o r i t h m : RSA/SHA1 (5)
L a b e l s : 2
O r i g i n a l T T L : 300 (5 minutes)
S ignature E x p i r a t i o n : May 29, 2018 2 2:40:03.000000000 CEST
S ignature I n c e p t i o n : May 15, 2018 2 2:40:03.000000000 CEST
Key Tag: 60423
Signer ' s name : dnssec—deployment . org
S ignature : 67003 f3 9 700 6abd 9 d 30 c 0 5 8a08 2 3 f 0 7b 31 2 a34 6ee34 7f6 b 2 .

A d d i t i o n a l records
ns 1 . a m s l . a f i l i a s — n s t . i n f o : t y p e A , c l a s s IN , addr 65 .22 .6 .79

Name : n s 1 . ams 1 . a f i l i a s —nst . info
Type: A (Host Address) (1)
C l a s s : IN (0x0001)
Time to l i v e : 3600
Data l e n g t h : 4
Addres s : 65 .22 .6 .79

ns 1 . h k g l . a f i l i a s — n s t . i n f o : t y p e A , c l a s s IN , addr 65 .22 .6 .1
Name : n s l . h k g l . a f i l i a s — n s t . i n f o
Type: A (Host Address) (1)
C l a s s : IN (0x0001)
Time to l i v e : 3600
Data l e n g t h : 4
Addres s : 65 .22 .6 .1

ns 1 . m i a l . a f i l i a s — n s t . i n f o : t y p e A , c l a s s IN , addr 65 .22 .7 .1
Name : n s l . m i a l . a f i l i a s — n s t . i n f o
Type: A (Host Address) (1)
C l a s s : IN (0x0001)
Time to l i v e : 3600
Data l e n g t h : 4
Addres s : 65 .22 .7 .1

ns 1 . s e a l , a f i l i a s — n s t . i n f o : t y p e A , c l a s s IN , addr 65 .22 .8 .1
Name : n s l . s e a l , a f i l i a s — n s t . i n f o
Type: A (Host Address) (1)
C l a s s : IN (0x0001)
Time to l i v e : 3600
Data l e n g t h : 4
Addres s : 65 .22 .8 .1

ns 1 . y y z l . a f i l i a s — n s t . i n f o : t y p e A , c l a s s IN , addr 65 .22 .9 .1
Name : n s l . y y z l . a f i l i a s — n s t . i n f o
Type: A (Host Address) (1)
C l a s s : IN (0x0001)
Time to l i v e : 3600
Data l e n g t h : 4
Addres s : 65 .22 .9 .1

ns 1 . hkg l . a f i l i as —nst . info : t y p e AAAA, c l a s s I N , addr 2a01:8840 :6: : 1
Name : n s l . h k g l . a f i l i a s — n s t . i n f o
Type: AAAA (IPv6 Address) (28)
C l a s s : IN (0x0001)
Time to l i v e : 3600
Data l ength : 16

AAAA Addres s : 2 aO 1 : 8 8 4 0 : 6 : : 1
ns 1 . mia l . a f i l i a s —nst . info : t y p e AAAA, c l a s s I N , addr 2a01:8840 : 7: : 1

Name : n s l . m i a l . a f i l i a s — n s t . i n f o
Type: AAAA (IPv6 Address) (28)
C l a s s : IN (0x0001)
Time to l i v e : 3600
Data l ength : 16

AAAA Addres s : 2 aO 1 : 8 8 4 0 : 7 : : 1
ns 1 . s ea l . a f i l i as —nst . info : t y p e AAAA, c l a s s I N , addr 2a01:8840 :8: : 1

Name : n s l . s e a l , a f i l i a s — n s t . i n f o
Type: AAAA (IPv6 Address) (28)
C l a s s : IN (0x0001)
Time to l i v e : 3600
Data l ength : 16

AAAA Addres s : 2 aO 1 : 8 8 4 0 : 8 : : 1
ns 1 . y y z l . a f i l i as —nst . info : t y p e AAAA, c l a s s I N , addr 2a01:8840 :9: : 1

Name : n s l . y y z l . a f i l i a s — n s t . i n f o
Type: AAAA (IPv6 Address) (28)
C l a s s : IN (0x0001)
Time to l i v e : 3600
Data l ength : 16

AAAA Addres s : 2 aO 1 : 8 8 4 0 : 9 : : 1
<Root>: t y p e OPT

Name : <Root>
Type: OPT (41)
UDP payload s i z e : 4096
Higher b i t s i n extended RCODE: 0x00
EDNS0 v e r s i o n : 0
Z: 0x8000

44

1 - DO bit : Accepts DNSSEC s e c u r i t y RRs
.000 0000 0000 0000 = Reserved : 0x0000

Data l ength : 0
[Request In: 4659]
[Time: 0.176171254 seconds

45

B SOURCE CODE OF WATCHER.PY

List ing B . l : source code for solution using threads
#/ usr/bin/pythonS
i m p o r t os , time , s i g n a l , subprocess , random
i m p o r t NetworkManager , ipaddres s
f r o m unbound i m p o r t ub_ctx , RR_TYPE_A, RR_CLASS_IN, RR_TYPE_A
f r o m unobund i m p o r t RR_TYPE_AAAA, RR_TYPE_RRSIG, RR_TYPE_NSEC, RR_TYPE_NSEC3
i m p o r t ipdb
i m p o r t t h r e a d i n g

c l a s s nameServer:

d e f send Q uer y (s e 1 f , s i te , number) :
i f (number —— 0) :

s e l f . s ta tus [0] , r e s u l t = s e 1 f . c t x . r e s o 1 v e (s i t e , RR_TYPE_A, RR_CLASS_IN)
i f (r e s u l t . s e c u r e a n d r e s u l t . h a v e d a t a) :

s e 1 f . a = True
p r i n t (number)

e 1 i f (number —— 1) :
s e l f . s ta tus [1] , r e s u l t = s e 1 f . c t x . r e s o 1 v e (s i t e , RR_TYPE_AAAA, RR_CLASS_IN)
i f (r e s u l t . s e c u r e a n d r e s u l t . h a v e d a t a) :

s e l f . a a a a = True
p r i n t (number)

e 1 i f (number —— 2) :
s e l f . s ta tus [2] , r e s u l t = s e l f . ctx . r e s o l v e ('ne funguje . " + s i te , RR_TYPE_A, RR_CLASS_IN)
i f (n o t r e s u l t . h a v e d a t a) :

s e l f . nsec = True
p r i n t (number)

d e f s e tContext (s e l f) :
s e l f ctx add _ t a _ file (" / v a r / l i b / u n b o u n d / r o o t . k e y ")
s e l f ctx set_ fwd (s t r (s e l f . a d d r e s s))
s e l f ctx s et_ _o p t: on (" tcp—upstream " , "yes")
s e l f ctx s et_ _o p t: on (" module —c o n f i g " , " v a l i d a t o r i t e r a t o r
s e l f ctx s et_ _o p t: on ("key—c ac he — s ize" , "32m")
s e l f ctx s et_ _o p t: on (" max—udp—s i z e " , "8192")
s e l f ctx s et_ _o p t: on ("prefetch —key " , "yes")
s e l f ctx s et_ _o p t: on ("do—tcp", "yes")
s e l f ctx s et_ _o p t: on ("do—udp", "yes")

d e f eq (s e l f , o t h e r) :
i f i s i n s t a n c e (other , nameServer) :

r e t u r n (s e l f . address —— other . address)
e l s e :

r e t u r n Fa l se

d e f hash (s e l f) :
r e t u r n h a s h (s e l f , address)

d e f init (s e l f , address) :
s e l f . address — ipaddres s . ip address (address)
s e l f . a — F a l s e
s e l f , aaaa = Fa l se
s e l f , nsec — Fa l se
s e l f . s t a t u s — [1 ,1 ,1]
s e l f , ctx — ub ctx ()
s e l f . s e tContext ()

nameservers = se t ()

d e f addNameserver (s e 1 f , nameserver) :
s e l f . nameservers . add (nameServer (nameserver))

d e f init (s e l f , name) :
s e l f , name — name

c l a s s unboundConf :

forward — [
c h e c k S i t e s = [" i s c . o r g " ,

" n i c . c z " ,
"dnssec—deployment .org" ,
" i n t e r n e t s o c i e t y . o r g " ,

46

http://isc.org
http://nic.cz
http://internetsociety.org

"dnssec—tools . org"]

d e f confForward (s e l f) :
s ervers =

f o r f i n s e l f . f o r w a r d :
f o r n i n f . n a m e s e r v e r s :

i f (n . a a n d n .aaaa a n d n . nsec) :
s ervers — servers + 1 1 + s t r (n . address)

i f s e r v e r s :
subprocess . check output (" unbound —c o n t r o l forward " + servers , s h e l l —True)
subprocess . check output (" unbound —c o n t r o l f lush zone . " , s h e l 1—True)

d e f checkNameServers (s e l f) :
r e so 1 v e T h r e ad — l i s t ()
f o r f i n s e l f . f o r w a r d :

f o r n i n f . n a m e s e r v e r s :
f o r i i n r a n g e (3) :

r e s o l v e T h r e a d . append (t h r e a d i n g . Thread (target —n . sendQuery ,
args — (s e l f . c h e c k S i t e s [random . r a n d i n t (0 , l e n (s e l f .

c h e c k S i t e s) —1)] ,

i)))

r e s o l v e T h r e a d [— 1]. s t a r t ()

d e f mod uleCheck (s e l f) :

modules — s t r (s u b p r o c e s s . check output (" unbound —c o n t r o l get opt ion module — conf ig " , s h e l l -
True))

i f (" i n t e r a t o r " no t i n modules or " v a l i d a t o r " no t i n modules) :
subprocess . check output (" unbound —c o n t r o l set opt ion module—config: v a l i d a t o r

i t e r a t o r " , s h e l l —True)
tcpupstream — s t r (s u b p r o c e s s . check output (" unbound —c o n t r o l get opt ion tcp —upstream" ,

s h e l l = T r u e))
i f ("yes" not i n t c p u p s t r e a m) :

subprocess . check output (" unbound —c o n t r o l set opt ion tcp —upst ream : yes", s h e l 1 - T r u e)
a n c h o r f i l e — s t r (subprocess . check output (" unbound — c o n t r o l get opt ion auto — t rust - a n c h o r -

f i l e " , s h e l l = T r u e))
i f (" / v a r / l i b / unbound / r o o t . key " no t i n a n c h o r f i l e) :

subprocess . check output (" unbound —c o n t r o l set opt ion aut o — t r ust—anchor—file : \ " / v a r /
l i b / u n b o u n d / root . key \ " " ,

s h e l l = T r u e)
subprocess . check output (" unbound —c o n t r o l set opt ion aggressive—nsec : no" , s h e l 1 - T r u e)

d e f r e t r i e v e N a m e S e r v e r s (s e l f) :
f o r conn i n Net work Manager . Net work Manager . A c t i v e C o n n e c t i o n s :

s e t t i n g s — conn. C o n n e c t i o n . G e t S e t t i n g s Q
f o r dev i n conn . Devices :

i f (dev . D eviceTy pe ! = 13):
s e l f . forward . append (device (dev . I n t e r f a c e))
i f ('Nameservers ' i n d i r (dev. I p 4 C o n f i g)) :

f o r ns i n dev. I p 4 C o n f i g . Nameservers:
i f (n s != "127 .0 .0 .1" a n d ns != ": :1") :

s e l f . forward [— 1] . addNameserver (ns)
i f ('Nameservers ' i n d i r (dev. I p 6 C o n f i g)) :

f o r ns i n dev. I p 6 C o n f i g . Nameservers:
i f (ns != "127 .0 .0 .1" a n d ns != ": :1") :

s e l f . forward [— 1] . addNameserver (ns)

d e f f r w (s e l f) :
f o r f i n s e l f . f o r w a r d :

p r i n t (f . name)
f o r n i n f. nameservers:

p r i n t (n . a d d r e s s)
p r i n t (n . a)
p r i n t (n . a a a a)
p r i n t (n . n s e c)

p r i n t ()

d e f init (s e l f) :
s e l f . r e t r i e v e N a m e S e r v e r s ()

d e f rece ive s i g n a l (signum , s tasudock) :
subprocess . check out put ("echo —e \"#Generated by DNSSEC watcher \nnameserver 127.0 .0 . 1 \

nnameserver : : 1 \ " >
/ e t c / r e s o l v . c o n f " ,
s h e l l = T r u e)

u — unbound Conf()
u . checkNameServers ()
u . confForward ()
u . fr w ()

47

d e f main () :
subprocess . check out put ("echo —e \"#Generated by DNSSEC watcher \nnameserver 127.0 .0 . 1 \

nnameserver : : 1 \ " >
/ e t c / r e s o l v . c o n f " ,
s h e l l = T r u e)

s i g n a l . s i g n a l (s i g n a l . SIGUSR1 , rece ive s i g n a l)
u — unbound Conf()

with o p e n f ' / home / knekuza / devel / Client side D N S S E C / p id ' , 'w') as f:
f. w r i t e (s t r (os . ge tp id ()))

u . moduleCheck ()
u . checkNameServers ()

w h i l e True :
u . confForward ()
u . frw ()
time . s leep (5)

i f name —— ' main
main ()

List ing B.2: source code for solution using the resolve_async function
#!/usr/bin/pythonS
i m p o r t os , time , s i g n a l , subprocess , d n s l i b , random
i m p o r t NetworkManager , ipaddres s
f r o m unbound i m p o r t ub_ctx , RR_TYPE_A, RR_CLASS_IN, RR_TYPE_ A
f r o m unobund i m p o r t RR_TYPE_AAAA, RR_TYPE_RRSIG, RR_TYPE_NSEC, RR_TYPE_NSEC3
i m p o r t ipdb

c l a s s nameServer:

d e f sendQueries (s e l f , s i t e) :
f o r md i n s e l f , my data :

md [' s i t e '] = s i t e
s e l f . s ta tus [0] , async i d l — s e l f . ctx . resolve async (s e l f , my data [0] [' s : t e '] ,

s e l f , my data [0] ,
s e l f . ca l l back ,

RR_TYPE_A,
RR_CLASS_IN)

s e l f . s ta tus [1] , async id2 — s e l f . ctx . resolve async (s e l f , my data [1] [' s: t e '] ,
s e l f , my data [1] ,
s e l f . ca l l back ,

RR_TYPE_AAAA,
RR_CLASS_IN)

s e l f . s ta tus [2] , async id3 — s e l f . ctx . resolve async (" nefunguje . " + s e 1 f . my data [2] ' s i t e '] ,
s e l f , my data [2] ,
s e l f . ca l l back ,

RR_TYPE_A,
RR_CLASS_IN)

d e f ca l l b a c k (s e l f , my data , s tatus , r e s u l t) :
i f s ta tus 0 a n d my data [' done flag '] —— Fal se :

i f (r e s u l t . s e c u r e) :
i f (s t r (my data [' s erver ']) —— s t r (s e l f . address)) :

my data [' done flag '] — True
i f (r e s u l t . qname —— my data [' s i t e '] a n d r e s u l t . h a v e d a t a) :

#ip db . s et trace ()
i f (r e s u l t . q t y p e = 1): #A record

s e 1 f . a = True
i f (r e s u l t . q t y p e —— 28): #AAAA recor d

s e l f . a a a a = True
i f (r e s u l t . qname —— " nefunguje . " +my data [' s i t e ']) :

s e l f . nsec = True

d e f p r o c e s s (s e l f) :
r e t u r n s e l f . ctx . process ()

d e f s e tContext (s e l f) :
s e l f . ctx . add ta fi le(' / v a r / l i b / unbound / root . key ')
s e l f . ctx .set fwd (s t r (s e l f . addres s))
s e l f . ctx . set opt ion (" tcp —upstream " , " yes ")
s e l f . ctx . set opt ion ("module—config " , " v a l i d a t o r i t e r a t o r ")
s e l f . ctx . set opt ion (" key —c ac he — s i z e " , "3 2m")
s e l f . ctx . set opt ion (" max—udp— s ize" , "8192")
s e l f . ctx . set opt ion (" do—t cp" , "yes")

18

s e l f . ctx . set opt ion (" do—udp " , "yes")
s e l f . ctx . set async (True)

d e f eq (s e l f , o t h e r) :
i f i s i n s t a n c e (other , nameServer) :

r e t u r n (s e l f . address —— other . address)
e l s e :

r e t u r n F a l s e

d e f hash (s e l f) :
r e t u r n h a s h (s e l f , address)

d e f init (s e l f , address) :
s e l f . address — ipaddres s . ip address (address)
s e l f . a — F a l s e
s e l f , aaaa = Fa l se
s e l f . n s e c — Fa l se
s e l f . s t a t u s — [1 ,1 ,1] #chekc if query was sent , 0 for sent
s e l f , ctx — ub ctx()
s e l f . s e tContext ()
s e l f , my data — 1 i s t ()

f o r i i n r a n g e (3) :
s e l f , my data . append ({ 'done f l a g ' : Fa l se , ' a r b i t r a r y ' : " object " , ' s e rver ' : address , '

s i t e ' : None})

c l a s s d e v i c e :

nameservers = se t ()

d e f addNameserver (s e 1 f , nameserver) :
s e l f . nameservers . add (nameServer (nameserver))

d e f init (s e l f , name) :
s e l f , name — name

c l a s s unboundConf :

forward — [
c h e c k S i t e s = [" i s c . o r g " ,

" n i c . c z " ,
"dnssec—deployment .org" ,
" i n t e r n e t s o c i e t y . o r g " ,
"dnssec—tools . org "]

d e f confForward (s e l f) :
subprocess . check output ("echo —e \"#Generated by DNSSEC watcher \nnameserver 127.0 .0 . 1 \

nnameserver : : 1 \ " >
/ e t c / r e s o l v . c o n f " ,
s h e l l = T r u e)

servers = ""

f o r f i n s e l f . f o r w a r d :
f o r n i n f. nameservers:

i f (n . a a n d n .aaaa a n d n . nsec) :
s ervers — servers + " " + s t r (n . address)

i f s e r v e r s :
subprocess . check output (" unbound —c o n t r o l forward " + servers , s h e l l —True)
subprocess . check output (" unbound —c o n t r o l f lush zone . " , s h e l 1—True)

d e f checkNameServers (s e l f) :
s i t e l n d e x — random . r a n d i n t (0 , l e n (s e l f . c h e c k S i t e s) — 1)
f o r f i n s e l f . f o r w a r d :

f o r n i n f. nameservers:
n . sendQueries (s e l f . c h e c k S i t e s [s i t e l n d e x])
t ime , s leep (0.5)

d e f moduleCheck (s e l f) :
modules — s t r (subprocess . check output (" unbound —c o n t r o l get opt ion module — conf ig " , s h e l l -

True))
i f (" i n t e r a t o r " no t i n modules or " v a l i d a t o r " no t i n modules) :

subprocess . check output (" unbound —c o n t r o l set opt ion module—config: v a l i d a t o r
i t e r a t o r " , s h e l l —True)

tcpupstream — s t r (s u b p r o c e s s . check output (" unbound —c o n t r o l get opt ion tcp —upstream" ,
s h e l l = T r u e))

i f ("yes" not i n t c p u p s t r e a m) :
subprocess . check output (" unbound —c o n t r o l set opt ion tcp —upst ream : yes", s h e l 1—True)

d e f r e t r i e v e N a m e S e r v e r s (s e l f) :
f o r conn i n Net work Manager . Net work Manager . A c t i v e C o n n e c t i o n s :

49

http://isc.org
http://nic.cz
http://internetsociety.org

s e t t i n g s — conn. C o n n e c t i o n . G e t S e t t i n g s Q
f o r dev i n conn . Devices :

i f (dev . D eviceTy pe ! — 13): #fi It er o ut bridge interface
s e l f . forward . append (device (dev . I n t e r f a c e))
i f ('Nameservers ' i n d i r (dev . Ip4Conf ig))

f o r ns i n dev . Ip4Conf ig . Nameservers
i f (n s != "127 .0 .0 .1" a n d ns != • : : ! •) :

s e l f . forward [— 1] . addNameserver (ns)
i f ('Nameservers ' i n d i r (dev . Ip6Conf ig))

f o r ns i n dev . Ip6Conf ig . Nameservers
i f (ns != "127 .0 .0 .1" a n d ns ! = • : : ! •) :

s e l f . forward [— 1] . addNameserver (ns)

d e f f r w (s e l f) :
f o r f i n s e l f . f o r w a r d :

p r i n t (f . name)
f o r n i n f. nameservers:

p r i n t (n . a d d r e s s)
p r i n t (n . a)
p r i n t (n . a a a a)
p r i n t (n . n s e c)

p r i n t ()

d e f init (s e l f) :
s e l f . r e t r i e v e N a m e S e r v e r s ()

d e f rece ive s i g n a l (signum , s tasudock) :

u — unbound Conf()
u . checkNameServers ()
waitResponse (u)
u . confForward ()
u . frw ()

d e f wait Re s ponse (c) :

counter — 0
p e r s i s t — True
w h i l e (p e r s i s t a n d (counter <— 10)):

f o r f i n c . forward :
f o r ns i n f. nameservers:

f o r i i n r a n g e (3) :
i f ns. s ta tus [i] —— 0 a n d ns . my data [i] [' done flag '] = Fa l se :

ns . s t a t u s [i] = ns. process ()
f o r md i n ns . my data :

i f no t md [' done flag '] :
p e r s i s t — Fa l se

count er—c o unt er + l
t ime , s leep (0.1)

d e f main () :
subprocess . check out put ("echo —e \"#Generated by DNSSEC watcher \nnameserver 12 7 .0 .0 . 1 \

nnameserver : : 1 \ " >
/ e t c / r e s o l v . c o n f " ,
s h e l l = T r u e)

s i g n a l . s i g n a l (s i g n a l . SIGUSR1 , r ece ive s i g n a l)
u — unbound Conf()

with o p e n (' / home / t e s t u s e r / Documents / Network Manager / pi d ' ' w ') as f :
f. w r i t e (s t r (os . ge tp id ()))

u . module Check ()
u . checkNameServers ()
waitResponse (u)
u . confForward ()
u . frw ()

w h i l e True :
time . s leep (3)

i f name —— ' main ' :
main ()

50

