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Synopsis

Formal Concept Analysis (FCA) is a field of applied mathematics based on
formalization of the notion of concept from cognitive psychology and has been
widely studied in the last several decades. From a description of objects by their
features FCA derives a hierarchy of concepts which is formalized by a complete
lattice called a concept lattice. We explore some fundamental aspects of FCA.
First, we focus on incremental concept lattice construction and analysis of its
basic step–removal of an incidence–and propose two algorithms for incremental
concept lattice construction. Second, we study generated complete sublattices
and show how their corresponding closed subrelations can be efficiently com-
puted. Lastly, we investigate a new type of subrelations from which a new
formal rectangle type arises, we provide motivation from cognitive psychology
for it and propose a basic theorem for lattices of such rectangles.
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Preface

This thesis focuses on several fundamental tasks in Formal Concept Analysis
and presents new results concerning incremental concept lattice construction
and construction of substructures. Namely, we study how to accommodate the
smallest change in a formal context into its concept lattice. Then, we turn our
attention to the related problem of finding a formal context for a sublattice
that is given by a set of generators. Particular parts of this thesis are based on
the following articles:

[1] KAUER, Martin; KRUPKA, Michal. Removing an Incidence from a Formal
Context. In: BERTET, Karell; RUDOLPH, Sebastian (eds.). Proc. CLA
2014, pp. 195–206.

[2] KAUER, Martin; KRUPKA, Michal. Subset-generated complete sublat-
tices as concept lattices. In: YAHIA, Sadok Ben; KONECNY, Jan (eds.).
Proc. CLA 2015, pp. 11-21.

[3] KAUER, Martin; KRUPKA, Michal. Generating complete sublattices by
methods of formal concept analysis. Int. J. General Systems. 2017, vol.
46, no. 5, pp. 475–489.

The thesis is organized as follows. In the first chapter, we provide short
preliminaries covering basic notions that are used in the following chapters.
The main content of this thesis is split into two parts.

The first part, based on [1], can be found in Chapter 2. It is dedicated to
a fundamental problem in incremental concept lattice construction–removing
an incidence from a formal context. The first section of this chapter covers
basic notions and draws useful correspondences. Building on that, Section 2.2
presents theoretical analysis of the problem at hand together with an algorithm
for recomputing concepts after removal of an incidence. Section 2.3 extends the
analysis and the algorithm by also covering structural changes. Experiments
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providing some insight into the performance of presented method can be found
in Section 2.4. Further possible extensions are described in Section 2.5 and
include removal of an arbitrary preconcept and discussion on possible paral-
lelization. A summary of the first part, together with remarks on related work,
can be found in Section 2.6.

The second part, based on [2, 3], is captured in Chapter 3 and it is de-
voted to the study of generated complete sublattices and subrelations. In the
first section, we show a method for computing a closed subrelation for a gen-
erated complete sublattice without constructing any lattices. Section 3.2 con-
tains experiments with presented method. Although we have an obvious upper
bound for a complexity of our method, we believe that it can be tightened
and Section 3.3 provides some insight into this. In Section 3.4, we identify the
subrelations for which the closure to closed subrelation always exists and for
an arbitrary subrelation we characterize all closed subrelations containing it.
Section 3.5 introduces a new type of formal rectangle, draws its connections
to other types, to block relations and presents two basic theorems for lattices
of such rectangles. Discussion and remarks on related work can be found in
Section 3.6.

Lastly, the thesis is closed by Chapter 4 containing concluding remarks.
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Chapter 1

Preliminaries

In this chapter we provide a brief introduction to Formal Concept Analysis and
other topics related to the content of the following chapters. We will not dwell
on details here as all basic topics have been widely studied and all the details
can be found in the cited sources.

1.1 Partially ordered sets, complete lattices and
closures

Recall that a binary relation R on a set U is a (partial) order, if it satisfies the
following conditions for all elements u, v, w ∈ U :

1. 〈u, u〉 ∈ R (reflexivity)

2. 〈u, v〉 ∈ R and 〈v, u〉 ∈ R implies u = v (antisymmetry)

3. 〈u, v〉 ∈ R and 〈v, w〉 ∈ R implies 〈u,w〉 ∈ R (transitivity)

We usually denote the order relation R by ≤, its inverse R−1 by ≥, and
we write u < v for u ≤ v and u 6= v. Moreover, if it holds either u ≤ v or
v ≤ u for every u, v ∈ V , then we call ≤ a total order. A set U together with
a partial order on U is called a partially ordered set or poset for short. By the
linear extension principle, every partial order ≤ on U can be extended to a
total order � on U such that for every u, v ∈ U , if u ≤ v, then u � v. For
u,w ∈ U , u is called a lower neighbor of w, if u < w and there is no element
v fulfilling u < v < w. In this case, w is called an upper neighbor of u, we
write u ≺ w and we can also read it as w covers u. Lastly, for u,w ∈ U the set
[u,w] = {v ∈ U | u ≤ v ≤ w} is called a closed interval.
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1. Preliminaries

A poset U is called a complete lattice if each subset P ⊆ U has the least
upper bound (supremum) and the greatest lower bound (infimum). We denote
these by ∨P and ∧P , respectively. An element u ∈ U is called ∨-irreducible
(resp. ∧-irreducible) if it cannot be expressed as a supremum of strictly smaller
(resp. greater) elements of U . If the element is not ∨-irreducible (resp. ∧-
irreducible) we call it ∨-reducible (resp. ∧-reducible). A subset V ⊆ U is called
∨-dense (resp. ∧-dense), if each element u ∈ U can be obtained as suprema
(resp. infima) of some elements from V . A subset V ⊆ U is a ∨-subsemilattice
(resp. ∧-subsemilattice, resp. complete sublattice) of U , if for each P ⊆ V it
holds ∨P ∈ V (resp. ∧P ∈ V , resp. {∨P,∧P} ⊆ V ), i.e. the set V is
closed under arbitrary suprema (resp. infima, resp. both previous). A subset
V ⊆ U is called an order-embedded complete lattice, if it is a complete lattice
with the induced order (it does not have to be a sublattice). More details on
order-embedded complete lattices can be found in [4].

For a subset P ⊆ U we denote by C∨P the ∨-subsemilattice of U generated
by P , i.e. the smallest (w.r.t. set inclusion) ∨-subsemilattice of U containing
P . C∨P always exists and is equal to the intersection of all ∨-subsemilattices
of U containing P . The ∧-subsemilattice of U generated by P and the complete
sublattice of U generated by P are defined similarly and are denoted by C∧P
and C∨∧P , respectively. More on posets and lattices can be found in [5].

The operators C∨, C∧ and C∨∧ are closure operators on the set U . Recall
that a closure (resp. interior) operator on a set X is a mapping C: 2X → 2X ,
where 2X is the power-set of X (i.e. the set of all subsets of X), satisfying for
all sets A,A1, A2 ⊆ X

1. A ⊆ C(A) (resp. C(A) ⊆ A),

2. if A1 ⊆ A2, then C(A1) ⊆ C(A2),

3. C(C(A)) = C(A).

An isotone (resp. antitone) Galois connection between two posets U and
V is a pair of isotone (resp. antitone) functions 〈f, g〉 where f : U → V ,
g : V → U satisfying

a ≤ g(b) iff f(a) ≤ b (resp. b ≤ f(a)).

For an isotone (resp. antitone) Galois connection 〈f, g〉 the function composi-
tion g ◦ f , given by (g ◦ f)(u) = g(f(u)), is a closure operator on U and f ◦ g
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1.2. Formal Concept Analysis

is an interior (resp. closure) operator on V . We define isotone (resp. antitone)
Galois connection between two sets U and V as previously defined isotone (resp.
antitone) Galois connection on their respective power-sets equipped with the
subsethood ordering.

1.2 Formal Concept Analysis
Formal Concept Analysis was first introduced by R. Wille in [6] and has been
widely studied ever since. The original motivation has its roots in human psy-
chology and in the Port-Royal logic. Various generalizations and extensions of
FCA were proposed over last years, see [7] for an overview. Our basic reference
is [8].

A (formal) context is a triple 〈X, Y, I〉 where X is a set of objects, Y a set
of attributes and I ⊆ X × Y a binary relation between X and Y specifying for
each object its attributes.

For subsets A ⊆ X and B ⊆ Y we set

A↑I = {y ∈ Y | for each x ∈ A it holds 〈x, y〉 ∈ I},
B↓I = {x ∈ X | for each y ∈ B it holds 〈x, y〉 ∈ I}.

We call ↑I , ↓I derivation operators of I. The pair 〈↑I , ↓I 〉 is an antitone Galois
connection between the sets X and Y , therefore, the operator ↑I↓I is a closure
operator on X and the operator ↓I↑I is a closure operator on Y .

A pair 〈A,B〉 satisfying A↑I = B and B↓I = A is called a (formal) concept
of 〈X, Y, I〉. The set A is called the extent of 〈A,B〉, the set B the intent of
〈A,B〉. We denote Ext(X, Y, I) (resp. Int(X, Y, I)) the set of all extents (resp.
intents) of formal concepts of 〈X, Y, I〉. When there is no danger of confusion,
we can use the term “an extent of I” instead of “the extent of a concept of
〈X, Y, I〉”, similarly for intents, and “a concept of I” instead of “a concept of
〈X, Y, I〉”. If the formal context is fixed we use terms “a concept”, “an extent”
and “an intent”.

Several generalizations of the notion of formal concept have been proposed
over the years. We call a pair 〈A,A↑I 〉 a u-semiconcept and a pair 〈B↓I , B〉 a
t-semiconcept. Combining the previous two notions we get a general notion of
semiconcept [9]. We call a pair 〈A,B〉 satisfying A↑I↓I = B↓I (⇔ B↓I↑I = A↑I )
a protoconcept [10]. Clearly, each semiconcept is also a potoconcept. These
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1. Preliminaries

notions were motivated by their use for efficient description of formal concepts,
namely, each protoconcept describes exactly one formal concept. Also, they
were used to develop Boolean Concept Logic [10]. The most general notion of
preconcept is a pair 〈A,B〉 satisfying A ⊆ B↓I and B ⊆ A↑I [11, 12]. Pre-
concepts are just formal rectangles in our data and motivation for this notion
comes from cognitive psychology, namely, from J. Piaget stating that concepts
originate in child development from images, ideas and preconcepts [13].

A partial order ≤ on the set B(X, Y, I) of all formal concepts of 〈X, Y, I〉 is
defined by 〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1). B(X, Y, I) along with
≤ is called the concept lattice of 〈X, Y, I〉. By the basic theorem on concept
lattices [8, Theorem 3], B(X, Y, I) is a complete lattice with infima and suprema
given by

∧

ι∈I
〈Aι, Bι〉 =

〈⋂

ι∈I
Aι,


 ⋃

ι∈I
Bι



↓I↑I〉

, (1.1)

∨

ι∈I
〈Aι, Bι〉 =

〈
 ⋃

ι∈I
Aι



↑I↓I

,
⋂

ι∈I
Bι

〉
. (1.2)

Moreover, a complete lattice V is isomorphic to B(X, Y, I) if and only if there
are mappings γI : X → V and µI : Y → V such that γI(X) is ∨-dense in V ,
µI(Y ) is ∧-dense in V and xIy is equivalent to γI(x) ≤ µI(y) for all x ∈ X and
all y ∈ Y . In particular, V is isomorphic to B(V, V,≤).

One of immediate consequences of (1.1) and (1.2) is that the intersection of
any system of extents, resp. intents, is again an extent, resp. intent, and that
it can be expressed as follows:

⋂

ι∈I
Bι =


 ⋃

ι∈I
Aι



↑I

, resp.
⋂

ι∈I
Aι =


 ⋃

ι∈I
Bι



↓I

,

for concepts 〈Aι, Bι〉 ∈ B(X, Y, I), ι ∈ I.
Concepts µI(y) = 〈{y}↓I , {y}↓I↑I 〉 where y ∈ Y are called attribute con-

cepts, their extents are called attribute extents and intents are called attribute
intents. According to the previous, each concept 〈A,B〉 is an infimum of some
attribute concepts. More specifically, 〈A,B〉 is the infimum of attribute con-
cepts 〈{y}↓I , {y}↓I↑I 〉 for y ∈ B and A = ⋂

y∈B{y}↓I .
Dually, concepts γI(x) = 〈{x}↑I↓I , {x}↑I 〉 for x ∈ X are called object con-

cepts, they are ∨-dense in B(X, Y, I) and for each concept 〈A,B〉 we have
B = ⋂

x∈A{x}↑I .
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1.2. Formal Concept Analysis

When the set of objects X and the set of attributes Y are fixed, we denote
the concept lattice of 〈X, Y, I〉 just by B(I).

The direct product of formal contexts 〈X1, Y1, I1〉 and 〈X2, Y2, I2〉 is given
by

〈X1, Y1, I1〉 × 〈X2, Y2, I2〉 = (X1 ×X2, Y1 × Y2, K)
where (x1, x2)K(y1, y2)⇔ x1I1y1 or x2I2y2.

The concept lattice of the direct product of some formal contexts is called a
tensor product of concept lattices.

For any set of preconcepts Q ⊆ B(X, Y, I) we set
⊔
Q =

⋃
{A×B | 〈A,B〉 ∈ Q}.

⊔
Q is the subrelation of I equal to the union of rectangles given by preconcepts

from Q.
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Chapter 2

Concept lattice construction by
incidence removals
We open this chapter with a fundamental question about concept lattice con-
struction, specifically, what effect does removing an incidence from a formal
context have on its concept lattice. This question is known as the problem
of “killing a cross” which was coined by R. Wille in the early days of FCA.
Solving this problem is desirable not only from the theoretical but also from
the practical point of view because it leads us to an efficient method of com-
puting concept lattices of two very similar formal contexts. Moreover, it seems
that any incremental method for concept lattice construction has this problem
rooted into it.

Traditionally, we need to recompute whole concept lattice upon the slight-
est change in the input data. Although there have been several incremental
algorithms introduced (see [14, 15, 16, 17, 18, 19] and also [20] for a compari-
son of some of the algorithms) they usually operate on object (resp. attribute)
level. We focus on a finer approach and study the problem of removing a single
incidence from a formal context. Our goal is to provide a detailed analysis of
this problem and based on it we propose two incremental algorithms for an
efficient reconstruction of the concept lattice after the removal.

Throughout this chapter we consider a formal context 〈X, Y, J〉 which re-
sults from a formal context 〈X, Y, I〉 by removing a single incidence 〈x0, y0〉,
i.e. I = J ∪ 〈x0, y0〉 and 〈x0, y0〉 /∈ J . We denote the respective concept lattices
by B(J) and B(I). Because we take the formal context 〈X, Y, I〉 as the starting
point, we call it, and everything related to it (including derivation operators,
B(I), . . . ), initial. Similarly, we call final everything related to the formal con-
text 〈X, Y, J〉. We analyze necessary changes that are to be made in the initial
concept lattice to obtain the final concept lattice.
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2. Concept lattice construction by incidence removals

2.1 Basic notions and correspondences
We start by examining how the derivation operators of initial formal context
(↑I , ↓I ) relate to the ones of final formal context (↑J , ↓J ). In the case where we
remove a single incidence, this relation is quite straightforward as can be seen
in the following lemma.

Lemma 1. For each A ⊆ X and B ⊆ Y it holds

A↑J =



A↑I if x0 /∈ A,
A↑I \ {y0} if x0 ∈ A,

B↓J =



B↓I if y0 /∈ B,
B↓I \ {x0} if y0 ∈ B.

In particular, A↑J ⊆ A↑I and B↓J ⊆ B↓I .

Proof. Immediate from the fact that 〈X, Y, I〉 = 〈X, Y, J ∪ 〈x0, y0〉〉.

It is obvious that not all initial concepts have to be influenced by the removal
and there might be some concepts belonging into both B(I) and B(J). We
call such concepts steady since they remain unchanged and do not require any
reconstruction while computing B(J) from B(I). For this reason, it is important
to identify steady concepts, and crucially, concepts that are not steady, unsteady
for short, because they are the ones we need to reconstruct. As it turns out,
unsteady initial concepts form a bounded sublattice of B(I). This sublattice
is not generally complete and it is equal to the closed interval [γI(x0), µI(y0)].
Therefore, this sublattice (resp. closed interval) is the only part of the concept
lattice we need to focus on while pursuing our goal of computing B(J) based
on B(I).

Lemma 2. A concept c ∈ B(I) is unsteady iff c ∈ [γI(x0), µI(y0)].

Proof. If c = 〈A,B〉 /∈ [γI(x0), µI(y0)], then either x0 /∈ A, or y0 /∈ B. If, for
instance, x0 /∈ A, then by Lemma 1, B = A↑I = A↑J , showing B is the intent
of a d ∈ B(J). Now by Lemma 1,

B↓J =



B↓I = A if y0 /∈ B,
B↓I \ {x0} = A \ {x0} = A if y0 ∈ B

and so d = c. The case y0 /∈ B is dual.
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2.1. Basic notions and correspondences

To prove the opposite direction it is sufficient to notice that c ∈ [γI(x0), µI(y0)]
is equivalent to 〈x0, y0〉 ∈ A×B, excluding the case 〈A,B〉 ∈ B(J).

Remark 3. A well-known result from the lattice theory states that each closed
interval in a lattice is also its sublattice. Moreover, a closed interval in a com-
plete lattice is, by itself, a complete lattice (with the induced order), however
it is not necessarily a complete sublattice. It would be the case if the bounds
of the interval coincide with the bounds of the whole lattice. Throughout this
chapter we usually use the interval terminology to describe the set of all un-
steady initial concepts.

Remark 4. We can construct a formal context K corresponding to the un-
steady initial complete lattice by taking K = ⊔[γI(x0), µI(y0)] and removing
attributes Y \ {x0}↑I and objects X \ {y0}↓I . This should become clearer after
reading the second part of this thesis where we investigate more on the topic of
substructures. Nevertheless, we can readily see that B(K) contains the initial
unsteady interval but the bounds of the lattice does not have to coincide with
the bounds of the interval. Removing said objects and attributes makes those
bounds coincide without changing the elements of the interval because corre-
sponding rows and columns are actually empty in K. Indeed, take an attribute
yj /∈ {x0}↑I and take any incidence 〈xi, yj〉 ∈ I. Such incidence cannot be part
of any unsteady initial concept (so it does not belong to K) due to yj /∈ {x0}↑I .

Lemma 5. If a concept 〈C,D〉 ∈ B(J) is unsteady, then either x0 ∈ C or
y0 ∈ D.

Proof. Using contraposition, if x0 /∈ C and y0 /∈ D we get C↑I = C↑J and
D↓I = D↓J showing steadiness of 〈C,D〉.

Moving forward with our analysis, we are going to chain derivation operators
↑I , ↓I , ↑J , ↓J , however, doing so quickly leads to lack of clarity even in otherwise
simple statements. To help alleviate this problem, we introduce four child
operators �, �,

�, � which we use throughout the rest of this chapter. The idea
behind them is to relate concepts of B(I) to concepts of B(J) in a natural way
that simplifies our analysis.

11



2. Concept lattice construction by incidence removals

Definition 6 (child operators). For concepts c = 〈A,B〉 ∈ B(I), d = 〈C,D〉 ∈
B(J) we set

c� = 〈A�, B�〉 = 〈A↑J↓J , A↑J 〉, c� = 〈A�, B�〉 = 〈B↓J , B↓J↑J 〉,
d� = 〈C�, D�〉 = 〈D↓I , D↓I↑I 〉, d� = 〈C�, D�〉 = 〈C↑I↓I , C↑I 〉.

Evidently, c�, c� ∈ B(J) and d�, d� ∈ B(I). c� (resp. c�) is called the upper
(resp. lower) child of c. It holds d� = d� and it is the (unique) concept from
B(I) containing, as a rectangle, the rectangle represented by d.

Example 7. A basic example of the problem setting can be found in Fig. 2.1
and 2.2. The bold dot in the formal context marks the incidence we are re-
moving. Dashed circles in the initial lattice mark unsteady initial concepts.

I y0 y1 y2
x0 • ×
x1 × ×
x2 ×

Figure 2.1: A formal context
I. The bold dot marks the
incidence 〈x0, y0〉 which is re-
moved in order to obtain J .

c = c�� = c��

d = d�� = d��

d� = d�

c�

c�

Figure 2.2: Two corresponding lattices
B(I) (left) and B(J) (right) where c =
〈{x0, x1}, {y0, y1}〉 and d = 〈{x2}, {y2}〉.

Remark 8. The equality d� = d� would generally not hold if we would work
in the settings where I \ J has more than one element. Also, it is worth noting
that every final concept is a semiconcept of B(I). Moreover, unsteady final
concepts are all proper semiconcepts of B(I).

It is useful to show some basic properties of pairs of child operators 〈�, �〉
and 〈�, �〉 as we use them heavily in our analysis. These properties might
remind you of the properties of Galois connections, and rightfully so, although
the pairs 〈�, �〉 and 〈�, �〉 do not form Galois connections.

12



2.1. Basic notions and correspondences

Lemma 9. The mappings c 7→ c�, c 7→ c�, and d 7→ d� are isotone and satisfy

c ≤ c��, d ≤ d��, c��� = c�, d��� = d�,

c ≥ c��, d ≥ d��, c��� = c�, d��� = d�.

Proof. Isotony follows directly from definition.
Let c = 〈A,B〉. From Lemma 1 we have A↑J ⊆ A↑I . Thus, A = A↑I↓I ⊆

A↑J↓I , whence c ≤ c��. Similarly, for d = 〈C,D〉, D↓J ⊆ D↓I , whence D↓I↑J ⊆
D↓J↑J = D.

To prove c��� = c� it suffices to show that for the extent A of c it holds
A↑J↓I↑J = A↑J . By Lemma 1, we have two possibilities: either A↑J = A↑I , or
A↑J = A↑I \ {y0}. In the first case A↑J↓I↑J = A↑J holds trivially, in the second
case A↑J↓I = A↑J↓J (by the same lemma, because y0 /∈ A↑J ) and A↑J↓I↑J =
A↑J↓J↑J = A↑J . The equality d��� = d� can be proved similarly.

The assertions for lower children are dual.

Remark 10. The reason why the pair 〈�, �〉 does not form an isotone Galois
connection is due to only one direction holding in the following equivalence:

c� ≤ d ⇐⇒ c ≤ d� means by the definition A↑J↓J ⊆ C ⇐⇒ A ⊆ D↓I .

It only holds A↑J↓J ⊆ C =⇒ C↑J = D ⊆ A↑J ⊆ A↑I =⇒ A = A↑I↓I ⊆ D↓I .

Even though the respective pairs of child operators do not form Galois con-
nections, we still obtain closure (resp. interior) operators by their composition
as summarized in the following corollary. We call them compound child opera-
tors.

Corollary 11 (compound child operators). The mappings c 7→ c�� and
d 7→ d�� are closure operators and the mappings c 7→ c�� and d 7→ d�� are
interior operators.

Remark 12. It is a well-known fact (see [21] for more details) that every clo-
sure operator can be obtained as a composition of suitable Galois connection
and it might be tempting to specify it for our compound child operators. Un-
fortunately, we are not able to create a suitable Galois connection just by using
child (resp. derivation) operators. Consider the following example.
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2. Concept lattice construction by incidence removals

I y0 y1 y2 y3
x0 • × ×
x1 × ×
x2

Given formal context.

c1

c2

c2�c1
�

c2
�

The initial and final concept lattices.

Lets us try to find an isotone Galois connection 〈f, g〉 based on child (resp.
derivation) operators that would make up the closure operator ��. By an easy
inspection we find it impossible. At first, notice that all initial concepts are
fixpoints of the closure operator ��. Operators � and � coincide, therefore, we
have no choice in specifying map g. The only choice available lies within the
image of the concept c2 = 〈{x0, x1}, {y0, y1}〉 but by putting f(c2) = c2� we do
not obtain an isotone function.

We now prove a lemma providing several equivalent conditions determining
steadiness of initial concepts. We use it further to illuminate the connection
between child operators and steady concepts.

Lemma 13. The following assertions are equivalent for any c = 〈A,B〉 ∈ B(I).

1. c is steady,

2. A↑I = A↑J ,

3. B↓I = B↓J .

Proof. “2⇒ 3”: by Lemma 1, A ⊆ A↑J↓J = B↓J ⊆ B↓I = A.
“3⇒ 2”: dual.
The other implications follow by definition, since c is steady iff both 2. and

3. are satisfied.

Utilizing the previous lemma, we can characterize steady concepts of B(I)
and B(J) respectively. We already know from the previous observations that
a concept c ∈ B(I) is steady if and only if it does not belong into the interval

14



2.1. Basic notions and correspondences

[γI(x0), µI(y0)]. This turns out to be equivalent of saying that children of c
are–again–exactly c.

Lemma 14 (steady concepts in B(I)). The following assertions are equiv-
alent for a concept c ∈ B(I):

1. c is steady,

2. c /∈ [γI(x0), µI(y0)],

3. c = c�,

4. c = c�,

5. c� = c�.

Proof. Directly from Lemma 13.

Evidently, unsteady final concepts cannot form a closed interval in B(J)
and their actual structure is more general. That being said, it still holds that
a concept d is steady if and only if it is equivalent to each of its children.

Lemma 15 (steady concepts in B(J)). The following assertions are equiv-
alent for a concept d ∈ B(J):

1. d is steady,

2. d = d�,

3. d� is steady.

Proof. Directly from Lemma 13.

Remark 16. The fact that children of a steady concept c are equivalent to c
plays nicely with our terminology.

Equipped with several equivalent characterizations of steady concepts, we
are free to choose a suitable one for a given application. In the following proofs,
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2. Concept lattice construction by incidence removals

we freely use all of the above characterizations, but in algorithms, one should al-
ways choose the less computationally expensive characterization despite having
more complicated formal form.

2.2 Computing the final concepts
Building on basic notions and observations from the previous section, we will
now turn our attention to the problem of computing concepts of B(J) given
concepts of B(I). In the pursuit of this goal, we will make use of the child
operators from the previous section.

We start with a technical lemma stating a relation between extents and
intents of a concept and its children.

Lemma 17. The following holds for c = 〈A,B〉 ∈ B(I) and d = 〈C,D〉 ∈ B(J):
If d = c�, then B ∈ {D,D ∪ {y0}} and if d = c�, then A ∈ {C,C ∪ {x0}}.

Proof. By definition of �, D = A↑J , which is by Lemma 1 either equal to B, or
to B \ {y0}. Similarly for �.

Using the previous lemma we now prove a following theorem which is the
backbone of our algorithm for computing the final concepts from the initial
ones. It states that for each unsteady initial concept there exists exactly one
unsteady final concept such that these two are related via the mappings �, �

or �, �.

Theorem 18. An unsteady concept d ∈ B(J) is a (upper or lower) child of
exactly one concept c ∈ B(I). This concept is unsteady and satisfies c = d� =
d�.

Proof. Let d = 〈C,D〉. Since d is unsteady, then either C↑I 6= C↑J , or D↓I 6=
D↓J . Suppose C↑I 6= C↑J and set A = C, B = C↑I . By Lemma 1, x0 ∈ C,
y0 /∈ D and B = D ∪ {y0}. By the same lemma, A = C = D↓J = D↓I , whence
A is an extent of I. Thus, c = 〈A,B〉 ∈ B(I) and it is unsteady because x0 ∈ A
and y0 ∈ B (Lemma 2). Since D = C↑J = A↑J , d = c�. A = C yields c = d�.

We prove uniqueness of c. By Lemma 17, if for c′ = 〈A′, B′〉 ∈ B(I) we have
d = c′�, then either B′ = D, or B′ = D ∪ {y0}. The first case is impossible,
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2.2. Computing the final concepts

because it would make D an intent of I and, consequently, d a steady concept.
The second case means c′ equals c above. There is a third case left: if d = c′�,
then C = B′↓J . Since x0 ∈ C, we have y0 /∈ B′ (Lemma 1). Thus, C = B′↓I

(Lemma 1 again). Consequently, C↑I = B′ and since y0 /∈ B′, B′ = C↑J

(Lemma 1 for the last time). Thus, d = c′, which is a contradiction with
unsteadiness of d.

The case D↓I 6= D↓J is proved dually (in this case we obtain d = c�).

The theorem leads to the following simple way of constructing B(J) from
B(I). For each c ∈ B(I) the following has to be done:

1. If c is steady, then it has to be added to B(J).

2. If c is not steady, then each its unsteady child, i.e. each unsteady element
of {c�, c�}, has to be added to B(J).

This method ensures that all proper elements will be added to B(J) (i.e. no
element will be omitted) and each element will be added exactly once.

Steady (resp. unsteady) concepts can be identified by any means proposed
previously. The following lemma shows a simple way of determining whether
a child of an unsteady initial concept is steady. It also describes the role of
fixpoints of the compound child operators.

Lemma 19. Let c be an unsteady concept of B(I). Then

– c� is unsteady iff c is a fixpoint of ��,

– c� is unsteady iff c is a fixpoint of ��.

Proof. If c� is not steady, then c = (c�)� by Theorem 18. On the other hand,
if c� is steady, then c�� = c� by Lemma 15, which rules out c�� = c, because
in that case c would be equal to c�, which would make it steady by Lemma 14.

The proof for c� is dual.

Example 20. In Fig. 2.5-2.10 we can see several examples of formal contexts
with initial concepts of different types w.r.t. compound child operators.

The proposed method is utilized in Algorithm 1 which computes the final
concepts from the initial ones but does not take into the account the ordering.
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2. Concept lattice construction by incidence removals

I y0 y1 y2
x0 • × ×
x1
x2

Figure 2.5: The least concept
is unsteady. It is a fixpoint of
both operators and it has two
unsteady children 〈∅, {y0, y1, y2}〉
and 〈{x0}, {y1, y2}〉.

I y0 y1 y2 y3
x0 • × × ×
x1 × ×
x2 × ×
x3 × ×

Figure 2.6: Several non-trivial
unsteady concepts are fixpoints
of both operators. There is a
clear pattern where each concept
〈{x0, xi>0}, {y0, yi>0}〉 have two un-
steady children, 〈{xi}, {y0, yi}〉 and
〈{x0, xi}, {yi}〉.

I y0 y1 y2
x0 • ×
x1 × ×
x2 ×

Figure 2.7: The concept
〈{x0, x1}, {y0, y2}〉 is a fix-
point of �� but not ��

and has an unsteady child
c� = 〈{x1}, {y0, y1}〉.

I y0 y1 y2
x0 • ×
x1 × × ×
x2

Figure 2.8: The concept
〈{x0, x1}, {y0, y1}〉 is a fixpoint of
�� but not �� and has an unsteady
child c� = 〈{x0, x1}, {y1}〉.

I y0 y1 y2
x0 •

x1 × ×
x2

Figure 2.9: The concept
〈{x0, x1}, {y0}〉 is not a fix-
point of any operator and so has
no unsteady children.

I y0 y1 y2 y3 y4
x0 • × ×
x1 × × ×
x2 ×
x3 × × ×
x4 ×

Figure 2.10: The two concepts,
〈{x0, x1}, {y0, y1}〉, 〈{x0, x3}, {y0, y3}〉,
are not fixpoints of any operator and
so have no unsteady children.

Time complexity of Algorithm 1 is clearly O(|B(I)||X||Y |) in the worst case
scenario. Indeed, the number of unsteady concepts is at most equal to |B(I)|
and the computation of operators ��, �� can be done in O(|X| · |Y |) time. It
is worth noting that the time complexity is heavily affected by the size of the
interval [γI(x0), µI(y0)] which can be much smaller than the size of B(I).
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2.3. Computing the final lattice

Algorithm 1 Transforming concepts of B(I) into concepts of B(J).
procedure TransformConcepts(B(I))
B(J)← B(I);
for all c = 〈A,B〉 ∈ [γI(x0), µI(y0)] do
B(J)← B(J) \ {c};
if c = c�� then
B(J)← B(J) ∪ {c�};

if c = c�� then
B(J)← B(J) ∪ {c�};

return B(J);

Remark 21. While implementing Algorithm 1 one should be aware of some
possible optimizations. First, in order to compute the results of derivation
operators, which are basis for computing child operators, we can use Lemma 1
and use already provided extents and intents. Second, tests like c = c�� can
be actually performed without computing the corresponding compound child
operators. For example, it is sufficient to compute c� and compare its extent
to the extent of c. This comes as a direct consequence of presented results.

2.3 Computing the final lattice
In order to analyze structural changes in a concept lattice after removal of an
incidence we need to investigate additional properties of the closure operator
�� and the interior operator ��. We focus mostly on their fixpoints.

Remark 22. It is worth noting that the set of all fixpoints of �� within induced
order is itself a complete lattice but it is generally not a complete sublattice of
B(I). It is in fact ∧-subsemilattice of B(I). We can make a dual observation
about the set of all fixpoints of ��. These observations follows from well-known
mathematical theorems such as Knaster-Tarski Theorem [22].

Putting together several characterizations of steady concepts we obtain the
following lemma postulating that steady initial concept is always fixpoint of
both compound child operators.
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2. Concept lattice construction by incidence removals

Lemma 23. Each steady concept is a fixpoint of both �� and ��.

Proof. Follows directly from Lemma 14 and Lemma 15.

By contraposition, the previous lemma states that if a concept is not a fix-
point of �� or ��, then it is unsteady, i.e. it is part of the interval [γI(x0), µI(y0)].

Since �� is an interior operator and �� is a closure operator on B(I) we
have for each c ∈ B(I), c�� ≤ c ≤ c��. Therefore, we can consider the closed
interval [c��, c

��] ⊆ B(I) and explore properties of concepts in it.

Lemma 24. For any c ∈ B(I), each concept from [c��, c
��] \ {c} is steady.

Proof. First we prove that either c�� equals c, or is its upper neighbor. Let
c = 〈A,B〉. By definition, the intent of c�� is equal to A↑J↓I↑I . By Lemma
1, A↑J ∈ {B,B \ {y0}}. Thus, A↑J↓I↑I ∈ {B,B \ {y0}}. If it equals B, then
c�� = c. Otherwise the intents of c and c�� differ in exactly one attribute,
which makes c and c�� neighbors. Also notice that in this case c�� is steady
because its intent does not contain y0 (Lemma 2).

Now let c′ ≤ c�� be unsteady. If c = c��, then c′ ≤ c. If c < c��, then c is
unsteady (Lemma 23) whereas c�� is steady. Unsteady concepts in B(I) form
a closed interval (Lemma 14). Thus, c′ ∨ c is unsteady and should be less than
c��. Hence, c′ ∨ c = c (c is a lower neighbor of c��), concluding c′ ≤ c again.

In a similar way we obtain c′ ≥ c for each unsteady c′ ≥ c��.

The following lemma shows an important property of sets of fixpoints of
compound child operators in the unsteady initial sublattice. Namely, the set of
fixpoints of �� is a lower set whereas the set of fixpoints of �� is an upper set.

Lemma 25. Let c ∈ B(I) be an unsteady concept. If c is a fixpoint of ��, then
each c′ ≤ c is also a fixpoint of ��. If c is a fixpoint of ��, then each c′ ≥ c is
also a fixpoint of ��.

Proof. Let c = c�� and c′ ≤ c. If c′ is steady, then the assertion follows
by Lemma 23. Suppose c′ is unsteady. By extensivity and isotony of ��,
c′ ≤ c′�� ≤ c�� = c. Thus, c′�� is unsteady (Lemma 2) and c′�� = c′ by
Lemma 24. The case c = c�� is dual.
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2.3. Computing the final lattice

The above results provide an interesting insight into the structure of our
fixpoints. This helps us restrict possible cases that we need to take into con-
sideration when designing Algorithm 2 which computes the lattice B(J), i.e.
final concepts together with information about their ordering. The algorithm
is more complicated than the previous one. We provide a short description of
the algorithm, together with some examples. Note that for the sake of read-
ability we will leave out most dual parts of similar cases as well as references
to used lemmas.

The algorithm processes all unsteady initial concepts in a bottom-up direc-
tion using an arbitrary linear extension of the ordering on B(I), i.e. an ordering
� such that if c1 ≤ c2, then c1 � c2. Each concept is either modified (by remov-
ing x0 from the extent or y0 from intent), or disposed of entirely. Sometimes,
new concepts are created. All concepts also get updated lists of their upper
and lower neighbors. Now, let c = 〈A,B〉 be an arbitrary unsteady concept
from B(I) (c ∈ [γI(x0), µI(y0)]).

If c = c��, c = c��, then c has two unsteady children c� ≤ c�.

- The concept c will “split” into its two children. The concept c� = 〈A \
{x0}, B〉 will be a lower neighbor of the concept c� = 〈A,B \ {y0}〉.

- If for a lower neighbor cl of c it holds cl = cl
��, cl 6= cl��, then it will be

a lower neighbor of c�. It is necessary to check whether c� and cl�� will
be neighbors. It certainly holds cl�� ≤ c� but there can be a concept k,
such that cl�� ≤ k ≤ c�. Dually for upper neighbors.

- If for an unsteady neighbor cn of c it holds cn = cn
��, cn = cn��, i.e.

the same conditions as for c (cn will split into cn�, cn�), then c�, cn�

and c�, cn� will be neighbors.

- All other upper (resp. lower) neighbors will be neighbors of c� (resp. c�).

If c = c�� and c 6= c��, then c has one unsteady child c�.

- We have c� = 〈A,B \ {y0}〉, i.e. c loses y0 from its intent.

- If for an upper neighbor cu it holds cu = cu��, cu 6= cu
�� (cu will lose x0

from its extent), then cu and d will become incomparable. It is necessary
to check whether c��, cu and c, cu

�� should be neighbors (again, there
can be a concept between them).
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2. Concept lattice construction by incidence removals

If c 6= c�� and c = c��, then c has one unsteady child c�.

- We have c� = 〈A \ {x0}, B〉, i.e. c loses x0 from its extent.

If c 6= c�� and c 6= c��, then c has no unsteady child and vanishes.

- It is necessary to check whether c�� and c�� should be neighbors (again,
a concept can exist between them).

- Denote by U the set of all upper neighbors of c except for c�� and similarly
by L the set of all lower neighbors of c except for c��. There are no
fixpoints of �� in U and there are no fixpoints of �� in L. Therefore,
U,L ⊆ [γI(x0), µI(y0)].

- Concepts from U and L will not be neighbors. They will either become
incomparable or either one will vanish.

- It holds ∀cl ∈ L : cl ≤ c ≤ c��, but it is necessary to check if there is
a concept between them. Similarly, it holds ∀cu ∈ U : c�� ≤ c ≤ cu but
again, it is necessary to check if there is a concept between them.

Example 26. In Fig. 2.11-2.14, we can see some examples of transformations
of unsteady concepts (depicted with dashed circles) from B(I) into concepts of
B(J).

In Algorithm 2 we assume that following functions are already defined:

• UpperNeighbors(c) - returns upper neighbors of c;

• LowerNeighbors(c) - returns lower neighbors of c;

• Link(c1, c2) - introduces neighborhood relationship between c1 and c2;

• Unlink(c1, c2) - cancels neighborhood relationship between c1 and c2.

The number of iterations in TransformConceptLattice is at most
|B(I)| which occurs when each initial concept is unsteady. In each iteration,
tests c = c�� and c = c�� are performed and one of the procedures Split-
Concept, RelinkReducedIntent, UnlinkVanishedConcept is called.
It can be easily seen that the tests can be performed quite efficiently and do
not add to the time complexity.

22



2.3. Computing the final lattice

Algorithm 2 Transforming the lattice B(I) into the lattice B(J).
procedure LinkIfNeeded(c1, c2)

if @k ∈ B(I) : c1 < k < c2 then
Link(c1, c2);

procedure SplitConcept(c)
d1 = c�; d2 = c�;
Link(d1, d2);
for all u ∈ UpperNeighbors(c) do

Unlink(c, u); Link(d2, u);
for all l ∈ LowerNeighbors(c) do

Unlink(l, c); Link(l, d1);
for all u ∈ UpperNeighbors(c) do

if u 6= u�� then
Unlink(d2, u); Link(d1, u); LinkIfNeeded(d2, u��);

for all l = 〈C,D〉 ∈ LowerNeighbors(c) do
if y0 /∈ D then

Unlink(l, d1); Link(l, d2); LinkIfNeeded(l��, d1);
return d1, d2;

procedure RelinkReducedIntent(c)
for all u = 〈C,D〉 ∈ UpperNeighbors(c) do

if u 6= u�� then
Unlink(c, u);
LinkIfNeeded(c��, u); LinkIfNeeded(c, u��);

procedure UnlinkVanishedConcept(c)
for all u ∈ UpperNeighbors(c) do

Unlink(c, u); LinkIfNeeded(c��, u);
for all l ∈ LowerNeighbors(c) do

Unlink(l, c);

procedure TransformConceptLattice(B(I))
for all c = 〈A,B〉 ∈ [γI(x0), µI(y0)] from least to largest w.r.t. v do

if c = c�� and c = c�� then . Concept will split.
B(I)← B(I) \ {c};
B(I)← B(I) ∪ SplitConcept(c);

else if c 6= c�� and c = c�� then . Extent will be smaller.
A← A \ {x0};

else if c = c�� and c 6= c�� then . Intent will be smaller.
RelinkReducedIntent(c);
B ← B \ {y0};

else if c 6= c�� and c 6= c�� then . Concept will vanish.
B(I)← B(I) \ {c};
UnlinkV anishedConcept(c);
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cl��

cl = cl
��

cu = cu��

cu
��

cl��

clcu

cu
��

Figure 2.11: The concepts cu, cl be-
come incomparable.

cl��

cl = cl
��

c = c�� = c��

cu = cu��

cu
��

cl��

cl
c�

c�cu

cu
��

Figure 2.12: The concept c “splits”
into its children.

c�� cl = cl
��

c

c�� cu = cu��

c�� cl

c�� cu

Figure 2.13: The concept c vanishes.

c�� cl = cl
��

c

c�� cu = cu��

c�� cl

c�� cu

Figure 2.14: The concept c vanishes.
There is already another concept be-
tween its children.

The most time consuming among the above three procedures is SplitCon-
cept. It iterates through all upper (which can be bounded by |X|) and lower
(which can be bounded by |Y |) neighbors of the concept c. For each of the
neighbors it might be necessary to check if the interval between the neighbor
and a certain other concept is empty (and we should make a new edge). This
can be done by checking intents/extents of its neighbors.

The above considerations lead to the result that time complexity of Algo-
rithm 2 is in the worst case O(|B(I)| · |X|2 · |Y |).

Remark 27. We can apply several optimizations to Algorithm 2, however, we
omit them in the description for the sake of readability. For example, for the
test whether a concept is a fixed point of operator �� (��) we actually do not
need to compute the application of the operator and we can use some easier to
compute, however equivalent, characterization. Another example is the check if
there is a concept between a pair of comparable concepts. This check is provably
searching for a steady concept in several cases (see Lemma 24). Taking this into
consideration could speed up the search. Also note, in Algorithm 2, unsteady
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initial concepts are processed in an arbitrary linear extension of the initial
ordering. That means that a concept will be processed only after all its lower
neighbors are already processed. In general, it is not necessary to go through
the initial concepts in this manner. One can easily design an algorithm, based
on presented results, which will go through the concepts in any manner. We
chose this processing order because it makes the description of the algorithm
easier.

Example 28. An execution of Algorithm 2 on the concept lattice of the formal
context from Fig. 2.10 is depicted in Fig. 2.15-2.18. Each picture captures
the state after transformation of an unsteady concept. Unsteady concepts are
drawn with dashed circles.

y2

x1 x0

y4

x3

c1 c2

y1

x2

y0 y3

x4

Figure 2.15: The initial state of B(I) for the formal context from Fig. 2.10.
We see the unsteady interval [γI(x0), µI(y0)] containing four unsteady concepts
γI(x0), c1, c2 and µI(y0). Our algorithm starts at the bottom, so at first we
transform the concept γI(x0). It holds γI(x0)�� = 〈∅, Y 〉 and γI(x0)�� = γI(x0)
hence γI(x0) will lose y0 from its intent. We also fix the neighborhood relation
of γI(x0).

2.4 Experiments

We provide some insight into performance of our algorithms as well as some
experimental evaluation. Comparing our algorithms to the traditional algo-
rithms that recompute the whole final lattice does not make much sense as the
difference proved to be immense in our preliminary experiments. This is caused
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y2

x1 x0

y4

x3

c1 c2

y1

x2

y0 y3

x4

Figure 2.16: Now we transform the concept c1. We have c1�� = γI(x1) and
c1

�� = µI(y1). Therefore, c1 will vanish and we have to link steady concepts
γI(x1) and µI(y1) as well as γI(x1) and µI(y0). We do not have to fix neigh-
borhood relation of γI(x0) as it was fixed in the previous step.

y2

x1 x0

y4

x3

c2

y1

x2

y0 y3

x4

Figure 2.17: A mirror case of the previous step from Fig. 2.16. We transform
concept c2 which will in fact vanish.

by the obvious advantage of incremental methods as we usually need to recom-
pute only a small portion of the initial lattice. Moreover, we can make use of
previously computed concepts instead of just discarding them. Performance of
our algorithms depends heavily on the size of unsteady initial interval. Hence,
we provide experiments focusing on sizes of intervals corresponding to selected
incidences. We used real world datasets as well as synthetic data. The former
were taken from UC Irvine Machine Learning Repository1 with an exception
of dataset Drinks [23]. In order to obtain bivalent attributes we rescaled the

1http://archive.ics.uci.edu/ml/index.php
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y2

x1 x0

y4

x3

y1

x2

y0 y3

x4

Figure 2.18: The transformation of the last unsteady concept µI(y0). It holds
µI(y0)�� = µI(y0) and µI(y0)�� = 〈X, ∅〉 meaning that µI(y0) will lose x0 from
its extent. The neighborhood relation was already fixed in previous steps.

y2

x1 x0

y4

x3

y1

x2

y0 y3

x4

Figure 2.19: We transformed all unsteady concepts and arrived at the final
concept lattice B(J).

attributes (as usual) using nominal scaling [8]. The details of used datasets can
be found in Table 2.1.

For our experiments we selected a random incidence 10000 times and recorded
the size of the corresponding interval. We provide maximal and average sizes
as percentages of size of the whole concept lattice.

Remark 29. Evidently, not all intervals are determined by a single incidence
but we are not interested in such intervals here.
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Mushrooms 8124 22 119 238710
Nursery 12960 8 32 183079
Post 90 9 25 1523
Zoo 101 17 28 379

Drinks 68 25 25 320

Table 2.1: Properties of datasets used in our experiments.

The results on real world datasets can be found in Table 2.2. We can see
that for the larger datasets (Mushrooms and Nursery) the average size of the
selected interval is well below 0.5%. For the smaller datasets, it is significantly
larger although still within the 10%.

Max size (%) Avg size (%)

Mushrooms 4.46 0.46
Nursery 0.14 0.11
Post 8.27 3.92
Zoo 33.51 6.93

Drinks 51.56 8.83

Table 2.2: Sizes of intervals for real world data corresponding to randomly
selected incidences.

The synthetic datasets were randomly generated with a fixed density (2%,
5%, 10%, 15%, 20%, 25%) and consisted of 500 objects and 100 attributes.
The results can be seen in Table 2.3. All the recorded sizes, except for one,
were withing 1%. Interestingly, both maximal and average size seems to be
decreasing w.r.t. increasing density.

Remark 30. The results from Table 2.3 seem surprising as intuition might
suggest that denser the context the larger the intervals corresponding to in-
cidences. Indeed, consider an incidence 〈x0, y0〉 in a context 〈X, Y, I〉 where
{x0}↑I = Y and {y0}↓I = X. In such scenario we have B(I) = [γI(x0), µI(y0)],

28



2.5. Extensions

i.e. the corresponding interval is equal to the whole concept lattice. Such case
seems to be more probable in a dense context.

Density (%) Max size (%) Avg size (%)

2 1.73 0.47
5 0.86 0.25
10 0.73 0.18
15 0.75 0.15
20 0.72 0.14
25 0.78 0.14

Table 2.3: Sizes of intervals for synthetic data corresponding to randomly se-
lected incidences.

The results suggest that an interval corresponding to a randomly selected
incidence usually contains only a fraction of concepts w.r.t. the whole concept
lattice. Recall, performance of our algorithms depends heavily on this size.
Algorithm 1 can perform very well, especially if we take into consideration that
the optimized version of the algorithm in fact computes just two derivation
operators and two set comparisons in each iteration.

2.5 Extensions
This section is dedicated to investigation of various extensions of our method.
In contrast with previous sections, we chose to approach this one in a less
formal manner for the sake of readability. Instead of introducing more techni-
cal lemmas we usually provide more readable, although informal, descriptions.
Nevertheless, every part of this section is based on firm foundations laid by
the previous sections and given informal descriptions are sufficient for inferring
corresponding formal forms.

First, we fix the set of objects X and the set of attributes Y . For the sake of
readability we denote formal contexts of the form 〈X, Y, Ii〉 with just the name
of the corresponding relation, e.g. we denote by I1 a formal context 〈X, Y, I1〉.
If a formal context I2 results from a formal context I1 by removing a single
incidence, we equip the child operators between such formal contexts with the
greater index between the two formal contexts, e.g. �2 , �2 , �2 , �2 .
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2. Concept lattice construction by incidence removals

A natural extension of our method for removing an arbitrary number of
incidences stems from repeated runs of the presented algorithms, i.e. removing
incidences one by one. We obtain a sequence of formal contexts I = I0 → I1 →
I2 → · · · → In = J where Ik = Ik+1 ∪ {〈xik+1 , yjk+1〉}. Evidently, there exist
child operators between each pair of adjacent formal contexts and according
to our extended notation we equip them with the greater index between the
two formal contexts. We call initial (resp. final) concept unsteady if it is un-
steady w.r.t. any removal step. To truly enlighten this, we provide a graphical
representation in Fig. 2.20. By removing incidences one by one we are able to
remove arbitrary number of incidences from any formal context.

I = I0 I1

�1
, �1

�1
, �1

I1 I2

�2
, �2

�2
, �2

I2 . . .

�3
, �3

�3
, �3

. . . In = J

�n
, �n

�n
, �n

Figure 2.20: Removing n incidences one by one. We have Ik = Ik+1 ∪
{〈xik+1 , yjk+1〉}.

Now, we take a closer look at compositions of child operators. At first, we
focus on the simplest case, i.e. I = I0 → I1 → I2 = J . In this scenario, we
can calculate a composition of a child operator, e.g. �1�2 or �2�1 , in a simple
manner just by using the initial or final derivation operators as shown in the
Lemma 31. Using the idea of this lemma repeatedly yields an easy way to
calculate compositions of each type of child operator.

Lemma 31. Let I0, I1, I2 be formal contexts where Ik = Ik+1 ∪ {〈xik+1 , yjk+1〉}.
For c ∈ B(I0), d ∈ B(I2) we have

c�1�2 = 〈A↑I2↓I2 , A↑I2 〉, c�1�2 = 〈B↓I2 , B↓I2↑I2 〉,
d�2�1 = 〈D↓I0 , D↓I0↑I0 〉, d�2�1 = 〈C↑I0↓I0 , C↑I0 〉.

Proof. We only show the part for c�1�2 as the other cases are similar or dual.
Let c = 〈A,B〉 ∈ B(I0). By the definition of child operator � we have c�1�2 =
〈A↑I1↓I1↑I2↓I2 , A↑I1↓I1↑I2 〉. It is sufficient to show that A↑I1↓I1↑I2 = A↑I2 . In the
cases where either c or c�1 is steady, the equation holds trivially. Suppose that
both mentioned concepts are unsteady. Thus, we have A↑I2 = A↑I1 \ {yj2} =
A↑I1↓I1↑I1 \ {yj2} = A↑I1↓I1↑I2 by Lemma 1.
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2.5. Extensions

We already know that we can remove incidences one by one and now we
show that it is also possible to remove an arbitrary number of incidences from
an object in a single step (see Example 33). In fact, the presented method works
practically as is by taking I = J ∪ {〈xi, yj1〉, 〈xi, yj2〉, . . . , 〈xi, yjn〉} (J does not
contain any of the incidences we are removing) and unsteady concepts to be
from the union of all intervals determined by the removed incidences. To see
this is indeed the case, consider removing the incidences one by one. We show
that if an unsteady (w.r.t. any removal) concept c has two unsteady children,
one of them will always remain steady (w.r.t. all consecutive removals) and
the other can have at most one unsteady (w.r.t. any removal) child. This,
together with already proven correctness of a single removal step shows that
every concept of J can be computed using child operators.

Now, without loss of generality we can assume that i = 0 (we can freely
reorder the objects) obtaining a sequence of formal contexts as in Fig. 2.20
where Ik = Ik+1 ∪ {〈x0, yjk+1〉}. Suppose that in k-th step there is an unsteady
concept c = 〈A,B〉 with two unsteady children, namely c�k

= 〈A \ {x0}, B〉
and c�k = 〈A,B \ {yjk}〉. We notice immediately that c�k

is steady and will
remain steady in all consecutive steps due to not having x0 in its extent. Now,
the question is, if c�k can have two unsteady children in any of the consecutive
steps. Without loss of generality (we can freely reorder the removals), we
can assume unsteadiness of c�k in the next immediate step. For the sake of
readability we put (B \ {yjk}) = D and we show the steadiness of (c�k)�k+1 .
By the definition, (c�k)�k+1 = 〈D↓k+1 , D↓k+1↑k+1〉. Utilizing Lemma 1 we obtain
D↓k+1 = D↓k \ {x0} = A \ {x0} and also D↓k+1↑k+1 = (A \ {x0})↑k+1 = D↓k+1↑k

showing (c�k)�k+1 = c�k
. Thus, c�k can only lose some attributes from its

intent and, in borderline cases, it may vanish entirely. Lemma 31 ensures us
that all the children may be computed by the same formulas as in the definition
of child operators where we take I = I0 as the initial and J = In as the final
formal context.

It is possible for more than one distinct unsteady concept from B(I0) to
be mapped (via composition of child operators) to a single unsteady concept
d ∈ B(In). However, it can be easily seen that d�n...�1 = d�n...�1 (see Re-
mark 32) and so d�n...�1 = d�n...�1 = c for exactly one concept c ∈ B(I0). Thus,
according to our method, d will be taken care of only while processing the con-
cept c. Dually, we can show that it is possible to remove an arbitrary number
of incidences from an attribute in a single step.
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2. Concept lattice construction by incidence removals

Remark 32. In the case of removing incidences from a single object, say
〈x0, yji〉 where i ∈ {1, . . . , n}, we obtain d�n...�1 = d�n...�1 for d = 〈C,D〉 ∈
B(In). If d remains steady, the equality is trivial. Supposed that d is not steady.
By Lemma 31 we have d�n...�1 = 〈C↑I0↓I0 , C↑I0 〉 and d�n...�1 = 〈D↓I0 , D↓I0↑I0 〉.
We show D↓I0 = C↑I0↓I0 . First, we obtain C = D↓In ⊆ D↓I0 ⇒ C↑I0↓I0 ⊆ D↓I0 .
Second, it holds D↓I0 = D↓In ∪ {x0} = C ∪ {x0} ⊆ C↑I0↓I0 ∪ {x0}. How-
ever, it is easy to see that x0 ∈ C↑I0↓I0 . This is because x0 ∈ D↓In ⊆ D↓I0

and ⋃n
i {yji} ⊆ {x0}↑I0 and also C↑I0 ⊆ ⋃n

i {yji} ∪ D together showing x0 ∈
(⋃ni {yji} ∪D)↓I0 ⊆ C↑I0↓I0 .

Example 33. An example illustrating the removal of four marked incidences
one by one is depicted in Fig. 2.22. The corresponding formal context can be
found in Fig. 2.21. We obtain a sequence of formal contexts I = I0 → I1 →
I2 → I3 → I4 = J where Ik = Ik+1 ∪ {〈x1, yk+1〉}. It also illustrates the idea
behind the removal of an arbitrary number of incidences from a single object
(focus on the upper child of c1).

I y1 y2 y3 y4 y5
x1 • • • • ×
x2 × × × × ×
x3 × ×

Figure 2.21: The initial context with dots marking incidences to be removed.

c1

c2

c1�1

c1
�1

c2

c1�1

c1
�1�2

c2

c1�1

c2

c1�1

c2�4

c2
�4

Figure 2.22: Concept lattices corresponding to formal contexts resulting from
removing marked incidences from the formal context from Fig. 2.21, starting
with the initial and ending with the final one where c1 = 〈{x1, x2}, Y 〉 and
c2 = 〈X, {y4, y5}〉.

We can go one step further and remove an arbitrary preconcept at once.
This is now an easy extension of the case for removing an arbitrary number
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2.5. Extensions

of incidences from a single object and its justification is very similar to it.
Therefore we provide only a brief explanation. Consider removing incidences
of a given preconcept in several steps such that in each step we remove all
given incidences from a single object. Now, if in one of these steps an unsteady
concept splits, i.e. it has two unsteady children, we can easily see that the upper
child is steady and will remain steady due to not having any of the attributes
corresponding to removed incidences in its intent. On the other hand, the lower
child might still be unsteady w.r.t. any consecutive step. Nevertheless, it can
never split as its upper child remains steady (see the previous paragraph for
detailed explanation as this is practically its dual case).

Moving onwards, we consider removing arbitrary incidences at once based
only on the concepts and derivation operators of the initial and final formal
context. Take the formal context in Fig. 2.23. It is easy to derive the least
and the greatest concept but there is no possibility to derive the intermediate
concept using just our selected tools. Another way to easily see why this is
impossible is to consider the formal context from Fig. 2.24. Evidently, given
this formal context we would need to be able to derive 24 final concepts from a
single initial concept.

I y1 y2 y3 y4
x1 × × × ×
x2 × × • •

x3 × • • •

x4 × • • •

Figure 2.23: It is not obvious
how to efficiently derive the concept
〈{x1, x2}, {y1, y2}〉 from the concept
〈X, Y 〉.

I y1 y2 y3 y4
x1 • × × ×
x2 × • × ×
x3 × × • ×
x4 × × × •

Figure 2.24: The concept lattice has
to transform from the smallest pos-
sible into the largest.

Having found the limit for our extensions, we now turn our attention to
the possibility of concurrently removing two–or more–incidences. In the case of
corresponding intervals having no connection to each other (empty intersection
and no neighborhood relation between any of the concepts), we can use pre-
sented algorithms concurrently without any modification. Lemma 34 provides
a stronger condition, namely, a way to determine if corresponding intervals
contain any comparable elements across them. In a more general case where
the corresponding intervals have empty intersection (see Lemma 36) but there
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2. Concept lattice construction by incidence removals

are connections between them, we would need to make some adjustments to
the algorithms. Namely, we have to be careful with some special cases as can
be seen in Example 37. In the most general case of non-empty intersection of
corresponding intervals, we need to apply the transformations one by one in an
arbitrary order for the elements from the intersection. Note that the intersec-
tion itself is also a closed interval (resp. sublattice). For Algorithm 2 we would
need to make some adjustments in the way we are reconstructing the lattice
structure, e.g. we can not assume the processing order which we used to make
the description easier.

Lemma 34. Let [c1, c2] and [d1, d2] be two closed intervals from B(X, Y, I).
Then there exist comparable concepts c ∈ [c1, c2] and d ∈ [d1, d2] iff c1 ≤ d2

or c2 ≤ d1.

Proof. Trivial, if there exist concepts c ∈ [c1, c2] and d ∈ [d1, d2] such that c ≤ d

we get c1 ≤ c ≤ d ≤ d2 and similarly for the dual case. The opposite direction
is obvious.

Remark 35. The exact condition for running our algorithms concurrently with-
out any problem seems to be computationally more expensive and might not
be worth using. Nevertheless, it might be useful to state it properly: unsteady
intervals together with the set of the results of application of compound child
operators to the concepts of the intervals should have an empty intersection.
If this condition is fulfilled, we do not have to consider special cases like in
Example 37.

Lemma 36. Let c1 = 〈A1, B1〉 ≤ d1 = 〈C1, D1〉 and c2 = 〈A2, B2〉 ≤ d2 =
〈C2, D2〉 ∈ B(X, Y, I). Then it holds

[c1, d1] ∩ [c2, d2] 6= ∅ iff 〈A1 ∪ A2, D1 ∪D2〉 is a preconcept.

Proof. “⇒”: Suppose [c1, d1] ∩ [c2, d2] 6= ∅, then there exists a concept c =
〈A,D〉 ∈ [c1, d1] ∩ [c2, d2] and so c1 ≤ c and c2 ≤ c. Thus A1 ⊆ A and A2 ⊆ A

so A1 ∪A2 ⊆ A. Similarly, we obtain D1 ∪D2 ⊆ D proving 〈A1 ∪A2, D1 ∪D2〉
is preconcept.
“⇐”: Assuming 〈A1 ∪ A2, D1 ∪ D2〉 to be a preconcept implies D1 ∪ D2 ⊆
(A1 ∪ A2)↑I and so 〈(A1 ∪ A2)↑I↓I , (A1 ∪ A2)↑I 〉 ∈ [c1, d1] ∩ [c2, d2].
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Based on the ideas above we can now summarize what kind of changes to a
formal context we are able to handle with our method.

• Removal of an arbitrary preconcept at once.

• Addition of an object (resp. attribute) can be achieved by adding full
row (resp. column) to the underlying formal context. Evidently, this has
no effect on the structure of the concept lattice (it just adds the object
to all concepts). At last, we can remove unwanted incidences at once.

• Removal of an object (resp. attribute) can be done by removing all its
incidences at once and afterwards removing the resulted empty row (resp.
column). This is easy as we just have to check the greatest (resp. smallest)
concept.

• Arbitrary change in an object (resp. attribute) is just a combination of
the cases above (removal and addition).

Example 37. Let us have a formal context from Fig. 2.25. Consider removing
incidences 〈x1, y1〉, 〈x2, y3〉 concurrently and take I = I1 ∪ 〈x1, y1〉, I = I2 ∪
〈x2, y3〉, J = I1 ∩ I2 where 〈x1, y1〉 /∈ I1 and 〈x2, y3〉 /∈ I2. The intervals
determined by the incidences have empty intersection but there is a connection
between them. The problem arises from concepts c2 and c3 transforming into
the same concept. Fig. 2.26 shows concepts lattices B(I) and B(J).

I y1 y2 y3
x1 • ×
x2 × •

Figure 2.25: The initial context with dots marking incidences to be removed.

2.6 Discussion and related work
We analyzed changes in a concept lattice caused by removal of a single incidence
from the associated formal context. We proved some theoretical results and
presented two algorithms with time complexities O(|B| · |X| · |Y |) (Algorithm
1; without structure information) and O(|B| · |X|2 · |Y |) (Algorithm 2; with
structure information).
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c1 c2

c3

c1�1
= c�1�2

(c2
�2)�1 = (c3�1

)�2

Figure 2.26: The initial and final concept lattice corresponding to the formal
context from Fig. 2.25. The intervals [c1, c3] and [c2, c2] have empty intersection
but there is a connection between them.

There exist several algorithms for incremental computation of concept lat-
tice [14, 15, 16, 17, 18, 19] and they are usually based on adding/removing
objects or attributes. Our approach is new in that we focus on the finer prob-
lem of recomputing a concept lattice after the removal of just one incidence.
We believe that this problem is inherently rooted into every incremental al-
gorithm for concept lattice construction. Amongst mentioned algorithms, the
algorithm proposed by Nourine and Raynaud in [18] has the lowest time com-
plexity of O((|Y | + |X|) · |X| · |B|). However, experiments presented in [15]
indicate that this algorithm sometimes performs slower than some algorithms
with time complexity O(|B| · |X|2 · |Y |). In the case of our algorithms, presented
experiments indicate that the size of the interval of unsteady concepts is usually
relatively small, which substantially reduces the overall processing time of our
algorithms.

We also looked into some possible extensions of our method and showed
how it can be used to remove an arbitrary number of incidences from a single
object (resp. attribute) at once. It turns out that we are also able to remove
an arbitrary preconcept at once. Moreover, we are able to do it without any
additional overhead. There is also the possibility of chaining applications of our
algorithms providing a method to remove arbitrary incidences from a formal
context. Utilizing these ideas we arrive at a general method for updating a
concept lattice upon an arbitrary change in the underlying formal context.

The dual problem, adding an incidence to a formal context, does not share
some nice properties as the problem of removing, e.g. the set of all unsteady
final concepts has a more general structure than a closed interval and also not
all unsteady initial concepts can be computed by the child operators.
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Chapter 3

On sublattices and subrelations

One of basic theoretical results of FCA states a correspondence between closed
subrelations of a formal context and complete sublattices of the corresponding
concept lattice [8]. In this chapter, we study the related problem of construct-
ing the closed subrelation for a complete sublattice generated by given set of
elements.

A subrelation J ⊆ I is called a closed subrelation of I [8] if each concept of
〈X, Y, J〉 is also a concept of 〈X, Y, I〉. There is the following correspondence
between closed subrelations of I and complete sublattices of B(X, Y, I). For
each closed subrelation J ⊆ I, B(X, Y, J) is a complete sublattice of B(X, Y, I),
and for each complete sublattice V ⊆ B(X, Y, I) there exists a closed subrelation
J ⊆ I such that V = B(X, Y, J).

Throughout this chapter we consider a formal context 〈X, Y, I〉, its concept
lattice B(X, Y, I), a set of concepts P ⊆ B(X, Y, I) and a complete sublattice
V ⊆ B(X, Y, I) generated by the set P (i.e. V = C∨∧P ). Elements of P
are called generators. We already know that there exists a closed subrelation
J ⊆ I with the concept lattice B(X, Y, J) equal to V . We show a method of
constructing J without the need of constructing B(X, Y, I) first. We propose
an efficient algorithm implementing the method and show illustrative examples
and results of experiments.

We also investigate additional related problems. For a general subrelation
K ⊆ I, we study the possibility of finding the least closed subrelation containing
K. The problem does not always have a solution as the system of closed
subrelations of I is not a closure system. We identify an important type of
subrelations for which the solution always exists. We also provide some results
on closed subrelations J ⊇ K and their associated concept lattices.
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From the investigation of subrelations a new type of formal rectangle arises.
Such rectangles might serve as formalization of some notions from the field
of cognitive psychology. We investigate properties of such formal rectangles
and outline their relation to already known types. We also show that they are
related to block relations. Lastly, we show how they can be structured into a
lattice and we propose a basic theorem for lattices of such rectangles.

3.1 Closed subrelations for generated sublat-
tices

Let us have a formal context 〈X, Y, I〉 and a subset P of its concept lattice.
Denote by V the complete sublattice of B(X, Y, I) generated by P (i.e. V =
C∨∧P ). Our goal is to find, without computing the lattice B(X, Y, I), the
closed subrelation J ⊆ I whose concept lattice B(X, Y, J) is equal to V .

If B(X, Y, I) is finite, V can be obtained by alternating applications of the
closure operators C∨ and C∧ on P : we set V1 = C∨P , V2 = C∧V1, . . . , and,
generally

Vi =




C∨Vi−1 for odd i,
C∧Vi−1 for even i.

(3.1)

The sets Vi are
∨-subsemilattices (for odd i) resp. ∧-subsemilattices (for even

i) of B(X, Y, I). Once Vi = Vi−1, we have the complete sublattice V . This
situation is illustrated in Fig. 3.1 and Fig. 3.2.

C∨P = V1 V2

C∧

V2 V3

C∨

V3 Vi−1 = Vi = V
. . .

Figure 3.1: One way to compute a (finite) complete sublattice generated by a
set P stems from alternating computations of closures C∨ and C∧ as given by
(3.1).

Remark 38. Note that for infinite B(X, Y, I), V can be infinite even if P is
finite. Indeed, denoting FL(P ) the free lattice generated by P [24, 25, 26]
and setting X = Y = FL(P ), I = ≤ we have FL(P ) ⊆ V ⊆ B(X, Y, I).
B(X, Y, I) is the Dedekind-MacNeille completion of FL(P ) [8], we identify P
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1

2 1

1 4

6 3

5 1

1

Figure 3.2: Computing the closures C∨ and C∧ on a complete lattice. Bold
dots mark the generators. Numbers mark the smallest i for which an element
is contained in Vi.

with a subset of FL(P ), and P and FL(P ) with subsets of B(X, Y, I) as usual.
Now, if |P | > 2, then FL(P ) is infinite [25], and so is V .

We always consider sets Vi together with the appropriate restriction of
the ordering on B(X, Y, I). For each i > 0, Vi is a complete lattice that is
order-embedded into B(X, Y, I) (but it is generally not a complete sublattice
of B(X, Y, I)).

In what follows, we construct formal contexts with concept lattices isomor-
phic to the complete lattices Vi, i > 0. By doing so, we obtain a sequence
of formal context as shown in Fig. 3.3. We start by finding a formal context
corresponding to the complete lattice V1. Let K1 ⊆ P × Y be given by

〈〈A,B〉, y〉 ∈ K1 iff y ∈ B. (3.2)

As we can see, rows in the context 〈P, Y,K1〉 are exactly intents of concepts
from P .
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C∨P = V1 V2

C∧

V2 V3

C∨

V3 Vi−1 = Vi = V
. . .

Vi−1 = Vi = V

B(K1)

∼ =

B(K1) B(K2)
∼ =

B(K2) B(K3)

∼ =

B(K3) B(Ki−1) = B(Ki)
. . .

∼ =

B(K1)

K1

↔

B(K2)

K2

↔

K3

B(K3)

↔

Ki−1 = Ki

B(Ki−1) = B(Ki)

. . .

↔

Figure 3.3: We compute a sequence of formal contexts Ki (i > 0) in order
to obtain the closed subrelation with concept lattice equal to the complete
sublattice generated by a set of concepts P .

Example 39. A basic example of a formal context 〈X, Y, I〉 (Fig. 3.4) and the
corresponding formal context 〈P, Y,K1〉 (Fig. 3.5) for P = {〈{x1}, {y1, y2}〉,
〈{x2}, {y2, y3}〉}.

I y1 y2 y3
x1 × ×
x2 × ×
x3 ×

Figure 3.4: A formal con-
text 〈X, Y, I〉. We take P =
{〈{x1}, {y1, y2}〉, 〈{x2}, {y2, y3}〉}.

K1 y1 y2 y3
c1 × ×
c2 × ×

Figure 3.5: The corresponding for-
mal context 〈P, Y,K1〉 for Fig. 3.4.

Lemma 40. The concept lattice B(P, Y,K1) and the complete lattice V1 are
isomorphic. The isomorphism assigns to each concept 〈B↓K1 , B〉 ∈ B(P, Y,K1)
the concept 〈B↓I , B〉 ∈ B(X, Y, I).

Proof. Concepts from V1 are exactly those with intents equal to intersections of
intents of concepts from P . The same holds for concepts from B(P, Y,K1).

Next, we describe formal contexts for complete lattices Vi, i > 1. All of
the contexts are of the form 〈X, Y,Ki〉, i.e. they have the set X as the set of
objects and the set Y as the set of attributes (the relation K1 is different in
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this regard). The relations Ki for i > 1 are defined in a recursive manner:

for i > 1, 〈x, y〉 ∈ Ki iff



x ∈ {y}↓Ki−1↑Ki−1↓I for even i,
y ∈ {x}↑Ki−1↓Ki−1↑I for odd i.

(3.3)

Lemma 41. For each i > 1,

1. Ki ⊆ I,

2. Ki ⊆ Ki+1.

Proof. We prove both parts for even i; the assertions for odd i are proved
similarly.

1. Let 〈x, y〉 ∈ Ki. From {y} ⊆ {y}↓Ki−1↑Ki−1 (which is true for both the
special case i − 1 = 1 and the case i − 1 > 1) we get {y}↓Ki−1↑Ki−1↓I ⊆ {y}↓I .
Thus, x ∈ {y}↓Ki−1↑Ki−1↓I implies x ∈ {y}↓I , which is equivalent to 〈x, y〉 ∈ I.

2. As Ki ⊆ I, we have {x}↑Ki
↓Ki
↑I ⊇ {x}↑Ki

↓Ki
↑Ki = {x}↑Ki . Thus, y ∈

{x}↑Ki yields y ∈ {x}↑Ki
↓Ki
↑I .

We can see that the definitions of Ki for even and odd i > 1 are dual. In
what follows, we prove properties of Ki for even i and give the versions for odd
i without proofs. Also, we always assume that i is a positive integer unless
otherwise specified.

First, we show two basic properties of Ki that are equivalent to the defini-
tion. The first one says that Ki can be constructed as a union of some specific
rectangles, the second one is a bit technical and it is used frequently in what
follows. It shows how to construct Ki by individual columns (resp. rows).

Lemma 42. Let i > 1.

1. If i is even, then Ki = ⊔
y∈Y 〈{y}↓Ki−1↑Ki−1↓I , {y}↓Ki−1↑Ki−1 〉. If i is odd,

then Ki = ⊔
x∈X〈{x}↑Ki−1↓Ki−1 , {x}↑Ki−1↓Ki−1↑I 〉.

2. If i is even, then for each y ∈ Y , {y}↓Ki = {y}↓Ki−1↑Ki−1↓I . If i is odd,
then for each x ∈ X, {x}↑Ki = {x}↑Ki−1↓Ki−1↑I .

Proof. We prove only the assertions for even i.
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1. The “⊆” inclusion is evident. We now prove the converse inclusion. If
〈x, y〉 ∈ ⊔y′∈Y 〈{y′}↓Ki−1↑Ki−1↓I , {y′}↓Ki−1↑Ki−1 〉, then there is y′ ∈ Y such that
x ∈ {y′}↓Ki−1↑Ki−1↓I and y ∈ {y′}↓Ki−1↑Ki−1 . The latter implies {y}↓Ki−1↑Ki−1 ⊆
{y′}↓Ki−1↑Ki−1 , whence {y′}↓Ki−1↑Ki−1↓I ⊆ {y}↓Ki−1↑Ki−1↓I . Thus, x belongs to
{y}↓Ki−1↑Ki−1↓I and by definition, 〈x, y〉 ∈ Ki.

2. Follows directly from the obvious fact that x ∈ {y}↓Ki if and only if
〈x, y〉 ∈ Ki.

Remark 43. Informally, we can think of creating the sequence of formal con-
texts Ki as follows: for even i, we obtain the formal context Ki by stretching
attribute intents of Ki−1 over I; if i is odd, we stretch object extents of Ki−1

over I. Another way of thinking about what happens at each iteration is the
following: for even i we are fixing extents and for odd i we are fixing intents.
Thinking in these informal terms could help with understanding the presented
method.

A direct consequence of 2. of Lemma 42 is the fact that for every Ki we
have either Ext(Ki) ⊆ Ext(I) or Int(Ki) ⊆ Int(I) as proven in the following
lemma.

Lemma 44. If i is even, then each extent of Ki is also an extent of I. If i is
odd, then each intent of Ki is also an intent of I.

Proof. Let i be even. 2. of Lemma 42 implies that each attribute extent of Ki

is an extent of I. Thus, the lemma follows from the fact that each extent of Ki

is an intersection of attribute extents of Ki.

The statement for odd i is proved similarly except for i = 1 where it follows
by definition.

There are several correspondences between the derivation operators of the
contexts I and Ki and we provide some of them in the next lemma. Specifically,
depending on the index i either attribute intents or object extents remain intact
in Ki+1.
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Lemma 45. Let i > 1. If i is even, then for each y ∈ Y it holds

{y}↓Ki−1↑Ki−1 = {y}↓Ki
↑Ki = {y}↓Ki

↑I .

If i is odd, then for each x ∈ X we have

{x}↑Ki−1↓Ki−1 = {x}↑Ki
↓Ki = {x}↑Ki

↓I .

Proof. We prove the assertion for even i. By Lemma 44, {y}↓Ki is an extent
of I. The corresponding intent is

{y}↓Ki
↑I = {y}↓Ki−1↑Ki−1↓I↑I = {y}↓Ki−1↑Ki−1 (3.4)

(by Lemma 44, {y}↓Ki−1↑Ki−1 is an intent of I). Moreover, asKi ⊆ I (Lemma 41),
we have

{y}↓Ki
↑Ki ⊆ {y}↓Ki

↑I . (3.5)

We prove {y}↓Ki−1↑Ki−1 ⊆ {y}↓Ki
↑Ki . Let y′ ∈ {y}↓Ki−1↑Ki−1 . It holds

{y′}↓Ki−1↑Ki−1 ⊆ {y}↓Ki−1↑Ki−1

(↓Ki−1↑Ki−1 is a closure operator). Thus, {y}↓Ki−1↑Ki−1↓I ⊆ {y′}↓Ki−1↑Ki−1↓I and
so by 2. of Lemma 42, {y}↓Ki ⊆ {y′}↓Ki . Applying ↑Ki to both sides we obtain
{y′}↓Ki

↑Ki ⊆ {y}↓Ki
↑Ki , proving y′ ∈ {y}↓Ki

↑Ki .
This, together with (3.4) and (3.5), proves the lemma.

The following lemma helps us find isomorphisms between concept lattices
of 〈X, Y,Ki〉 and subsemilattices Vi. It also allows us to draw correspondences
between the derivation operators of Ki and I.

Lemma 46. Let i > 1 be even. Then for each intent B of Ki it holds B↓Ki =
B↓I . Moreover, if B is an attribute intent (i.e. there is y ∈ Y such that
B = {y}↓Ki

↑Ki ), then 〈B↓Ki , B〉 is a concept of I.
If i > 1 is odd, then for each extent A of Ki it holds A↑Ki = A↑I . If A is an

object extent (i.e. there is x ∈ X such that A = {x}↑Ki
↓Ki ), then 〈A,A↑Ki 〉 is a

concept of I.
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Proof. We prove the assertion for even i. Let B be an intent of Ki. It holds
B = ⋃

y∈B{y} (obviously) and hence B = ⋃
y∈B{y}↓Ki

↑Ki (since ↓Ki
↑Ki is a

closure operator). Therefore (2. of Lemma 42 and Lemma 45),

B↓Ki =

 ⋃

y∈B
{y}



↓Ki

=
⋂

y∈B
{y}↓Ki =

⋂

y∈B
{y}↓Ki−1↑Ki−1↓I

=

 ⋃

y∈B
{y}↓Ki−1↑Ki−1



↓I

=

 ⋃

y∈B
{y}↓Ki

↑Ki



↓I

= B↓I ,

proving the first part.
Now let B be an attribute intent of Ki, B = {y}↓Ki

↑Ki . By the first already
proven part we have B↓I = {y}↓Ki

↑Ki
↓I = {y}↓Ki

↑Ki
↓Ki = {y}↓Ki . By Lemma 45,

B↓I↑I = {y}↓Ki
↑I = {y}↓Ki

↑Ki = B.

We already know that the sequence of formal contexts Ki (i > 1) is non-
decreasing and now we show that for even i we have Int(Ki−1) ⊆ Int(Ki) and
for odd i we have Ext(Ki−1) ⊆ Ext(Ki).

Lemma 47. Let i > 1 be even. Then every intent of Ki−1 is also an intent of
Ki. If i > 1 is odd, then every extent of Ki−1 is also an extent of Ki.

Proof. Technically almost identical to the first part of the proof of Lemma 46,
we show that for an intent B of Ki−1 (i is even) we have B↓Ki = B↓I . The rest
follows immediately from Lemma 41.

Among other things, Lemma 46 (together with Lemma 47) shows that
for even (resp. odd) i > 1 concepts of Ki are t-semiconcepts (resp. u-
semiconcepts) of I. Indeed, for even i we have for an intent B of Ki the equality
B↓Ki = B↓I which means that 〈B↓Ki , B〉 = 〈B↓I , B〉 is a t-semiconcept of I.
Similarly for odd i.

Now we turn our attention to complete lattices Vi defined above. We have
already shown in Lemma 40 that the complete lattice V1 and the concept lattice
B(P, Y,K1) are isomorphic. Now we give a general result for i > 0.

Lemma 48. For each i > 0, the concept lattice B(P, Y,Ki) (for i = 1) resp.
B(X, Y,Ki) (for i > 1) and the complete lattice Vi are isomorphic. The isomor-
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phism is given by 〈B↓Ki , B〉 7→ 〈B↓I , B〉 if i is odd and by 〈A,A↑Ki 〉 7→ 〈A,A↑I 〉
if i is even.

Proof. We proceed by induction on i. The base step i = 1 has been already
proven in Lemma 40. We will do the induction step for even i, the other case
is dual.

As Vi = C∧Vi−1, we have to

1. show that the set W = {〈A,A↑I 〉 | A is an extent of Ki} is a subset of
B(X, Y, I), containing Vi−1 and

2. find for each 〈A,A↑Ki 〉 ∈ B(X, Y,Ki) a set of concepts from Vi−1 whose
infimum in B(X, Y, I) has extent equal to A.

1. By Lemma 44, each extent of Ki is also an extent of I. Thus, W ⊆
B(X, Y, I). If 〈A,B〉 ∈ Vi−1, then by the induction hypothesis B is an intent
of Ki−1 (i − 1 is odd). By Lemma 46 and Lemma 47, B↓Ki = B↓I = A is an
extent of Ki and so 〈A,B〉 ∈ W .

2. Denote B = A↑Ki . For each y ∈ Y , {y}↓Ki−1↑Ki−1 is an intent of Ki−1. By
Lemma 42 and the induction hypothesis,

〈{y}↓Ki , {y}↓Ki−1↑Ki−1 〉 = 〈{y}↓Ki−1↑Ki−1↓I , {y}↓Ki−1↑Ki−1 〉 ∈ Vi−1.

Now, the extent of the infimum (taken in B(X, Y, I)) of these concepts for y ∈ B
is equal to ⋂y∈B{y}↓Ki = B↓Ki = A.

If X and Y are finite, then 2. of Lemma 41 implies that there is a num-
ber n > 1 such that Kn+1 = Kn. Denote this relation by J . According to
Lemma 48, there are two isomorphisms of the concept lattice B(X, Y, J) and
Vn = Vn+1 = V . We will show that these two isomorphisms coincide and
B(X, Y, J) is actually equal to V .

Lemma 49. B(X, Y, J) = V .

Proof. Let 〈A,B〉 ∈ B(X, Y, J). It suffices to show that 〈A,B〉 ∈ B(X, Y, I).
As J = Kn+1 = Kn, we have J = Ki for some even i and also J = Ki for
some odd i. We can therefore apply both parts of Lemma 46 to J and get
A = B↓J = B↓I and B = A↑J = A↑I .
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Corollary 50. The relation J ⊆ I as defined above is a closed subrelation of I.

Algorithm 3 uses our results to compute the subrelation J for given 〈X, Y, I〉
and P .

Algorithm 3 Computing the closed subrelation J .
Require: formal context 〈X, Y, I〉, subset P ⊆ B(X, Y, I)
Ensure: the closed subrelation J ⊆ I whose concept lattice is equal to C∨∧P

Generate(K1) . K1 is given by (3.2)
procedure Generate(J)

i← 1
repeat

L← J
i← i+ 1
if i is even then

J ← {〈x, y〉 ∈ I | x ∈ {y}↓L↑L↓I}
else

J ← {〈x, y〉 ∈ I | y ∈ {x}↑L↓L↑I}
until i > 2 & J = L
return J

Lemma 51. Algorithm 3 is correct and terminates after at most max(|I|+1, 2)
iterations.

Proof. Correctness follows from Lemma 49. The terminating condition ensures
that we compare J and L only when they are both subrelations of the con-
text 〈X, Y, I〉 (after the first iteration, L is a subrelation of 〈P, Y,K1〉 and the
comparison would not make sense).

After each iteration, L holds the relation Ki−1 and J holds Ki (3.3). Thus,
except for the first iteration, we have L ⊆ J before the algorithm enters the ter-
minating condition (Lemma 41). As J is always a subrelation of I (Lemma 41),
the number of iterations is not greater than |I|+1. The only exception is I = ∅.
In this case, the algorithm terminates after 2 steps due to the first part of the
terminating condition.

Example 52. We now demonstrate execution of Alg. 3. Let 〈X, Y, I〉 be the
formal context from Fig. 3.6 (left). The associated concept lattice B(X, Y, I)
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3.1. Closed subrelations for generated sublattices

is depicted in Fig. 3.6 (right). Let P = {c1, c2, c3} where c1 = 〈{x1}, {y1, y4}〉,
c2 = 〈{x1, x2}, {y1}〉, c3 = 〈{x2, x5}, {y2}〉 are concepts from B(X, Y, I). These
concepts are depicted in Fig. 3.6 by filled dots.

I y1 y2 y3 y4 y5
x1 × ×
x2 × × ×
x3 × ×
x4 ×
x5 ×

y1 y3

x2

x5 x4

y2

y4
x1 x3

y5

Figure 3.6: Formal context 〈X, Y, I〉 (left) and concept lattice B(X, Y, I) to-
gether with a subset P ⊆ B(X, Y, I), depicted by filled dots (right).

First, we construct the context 〈P, Y,K1〉 (3.2). Rows in this context are
intents of concepts from P (see Fig. 3.7, left). The concept lattice B(P, Y,K1)
(Fig. 3.7, center) is isomorphic to the ∨-subsemilattice V1 = C∨P ⊆ B(X, Y, I)
(Fig. 3.7, right).

K1 y1 y2 y3 y4 y5
c1 × ×
c2 ×
c3 ×

y3, y5

c2

y1

y4
c1

c3

y2

y1 y3

x2

x5 x4

y2

y4
x1 x3

y5

Figure 3.7: Formal context 〈P, Y,K1〉 (left), the concept lattice B(P, Y,K1)
(center) and the ∨-subsemilattice C∨P ⊆ B(X, Y, I), isomorphic to
B(P, Y,K1), depicted by filled dots (right).

It is easy to see that elements of B(P, Y,K1) and corresponding elements of
V1 have the same intents.

Next step is to construct the subrelation K2 ⊆ I. By (3.3), K2 consists
of elements 〈x, y〉 ∈ X × Y satisfying x ∈ {y}↓K1↑K1↓I . The concept lattice
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B(X, Y,K2) is isomorphic to the ∧-subsemilattice V2 = C∧V1 ⊆ B(X, Y, I).
K2, B(X, Y,K2), and V2 are depicted in Fig. 3.8.

K2 y1 y2 y3 y4 y5
x1 × ×
x2 × × •

x3 • •

x4 •

x5 ×

x5

x1 x2

x3, x4

y3, y5

y1

y4

y2

y1 y3

x2

x5 x4

y2

y4
x1 x3

y5

Figure 3.8: Formal context 〈X, Y,K2〉 (left), the concept lattice B(X, Y,K2)
(center) and the ∧-subsemilattice V2 = C∧V1 ⊆ B(X, Y, I), isomorphic to
B(X, Y,K2), depicted by filled dots (right). Elements of I \K2 are depicted by
dots in the table.

The subrelation K3 ⊆ I is computed again by (3.3). K3 consists of elements
〈x, y〉 ∈ X×Y satisfying y ∈ {x}↑K2↓K2↑I . The result can be viewed in Fig. 3.9.

K3 y1 y2 y3 y4 y5
x1 × ×
x2 × × ×
x3 • •

x4 •

x5 ×

x5

x1 x2

x3, x4

y5

y1

y4

y2

y3

y1 y3

x2

x5 x4

y2

y4
x1 x3

y5

Figure 3.9: Formal context 〈X, Y,K3〉 (left), the concept lattice B(X, Y,K3)
(center) and the ∨-subsemilattice V3 = C∨V2 ⊆ B(X, Y, I), isomorphic to
B(X, Y,K3), depicted by filled dots (right). Elements of I \ K3 are depicted
by dots in the table. As K3 = K4 = J , it is a closed subrelation of I and
V4 = C∧V3 = V3 is a complete sublattice of B(X, Y, I).

Notice that already V3 = V2 but K3 6= K2. We cannot stop and have to
perform another step. After computing K4 we can easily check that K4 = K3.
We thus obtained the desired closed subrelation J ⊆ I and V4 = V3 is equal to
the desired complete sublattice V ⊆ B(X, Y, I).

48



3.1. Closed subrelations for generated sublattices

In our method, the relation K1 differs from the other relations Ki for i > 1
in that it is a subset of P ×Y instead of X×Y . In the last part of this section,
we present a modification of the method which replaces K1 with a subrelation
K ′1 ⊆ I given by

K ′1 =
⊔
P, (3.6)

where ⊔P is a union of rectangles determined by elements of P . The following
lemma shows that after this replacement our method gives the same result as
before.

Lemma 53. Let K ′1 = ⊔
P and L = {〈x, y〉 ∈ X × Y | x ∈ {y}↓K′1

↑K′1
↓I}. Then

L = K2.

Proof. By (3.3), it suffices to show that for each y ∈ Y , {y}↓K1↑K1 = {y}↓K′1
↑K′1 .

This is equivalent to saying that for each y′ ∈ Y the conditions

{y}↓K1 ⊆ {y′}↓K1 (3.7)

and

{y}↓K′1 ⊆ {y′}↓K′1 (3.8)

are equivalent. By the definition of K1, (3.7) is satisfied iff y ∈ B implies y′ ∈ B
for each 〈A,B〉 ∈ P .

Now, suppose (3.7) holds and let x ∈ {y}↓K′1 . We have 〈x, y〉 ∈ K ′1 = ⊔
P .

Therefore, there is a concept 〈A,B〉 ∈ P such that x ∈ A and y ∈ B. By the
assumption, we have also y′ ∈ B, whence 〈x, y′〉 ∈ K ′1, proving (3.8).

To prove the converse implication, suppose there is a concept 〈A,B〉 ∈ P
satisfying y ∈ B. By (3.8), A ⊆ {y}↓K′1 ⊆ {y′}↓K′1 . Thus, y′ ∈ B and we have
proved (3.7).

Note that the subrelation K ′1 lacks the important property of the relation
K1 presented in Lemma 44. Namely, intents of K ′1 need not be intents of I.
Consequently, the concept lattice of K ′1 does not have to be isomorphic to the
complete lattice V1, the property the relation K1 has due to Lemma 48.
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Remark 54. Even with the theoretical drawback of the relation K ′1 it might be
beneficial to use it while implementing our method because we obtain a unified
type of all contexts involved, i.e. all with the same set of objects and attributes.

The above lemma allows for a slight modification of Alg. 3. We present it
in Alg. 4. This algorithm uses the same procedure Generate as Alg. 3 but
calls it with the relation K ′1 instead of K1.

Algorithm 4 Computing the closed subrelation J , alternative version.
Require: formal context 〈X, Y, I〉, subset P ⊆ B(X, Y, I)
Ensure: the closed subrelation J ⊆ I whose concept lattice is equal to C∨∧P
return Generate(⊔P )

Example 55. Let 〈X, Y, I〉 and P be the same as in Example 52. As we can see,
K ′1 = ⊔

P = K2. We have {x2}↑K′1 = {y1, y2}. This illustrates the mentioned
fact that, in contrast to the subrelation K1, intents of K ′1 need not be intents
of I.

The first iteration in Alg. 4 does not add any incidences to the built subrela-
tion. However, as i = 2 at this stage, the algorithm does not stop and proceeds
to the next iteration. From that, the execution continues exactly the same way
as Alg. 3.

3.2 Experiments
Time complexity of Alg. 3 (and its variant Alg. 4) is clearly polynomial w.r.t. |X|
and |Y |. In Lemma 51 we proved that the number of iterations is less than or
equal to |I| + 1. Our experiments indicate that this number might be much
smaller in the practice. We used synthetic as well as real world datasets. More
details about used datasets can be found in Section 2.4 and in Table 2.1.

The first batch of experiments involved real world datasets. The size of the
set of generators P was given by percentage of corresponding number of con-
cepts. For each size of P we randomly selected its elements 1000 times, ran our
algorithm, and measured the number n of iterations, after which the algorithm
terminated. The results for Mushrooms dataset can be seen in Table 3.1. For
Nursery dataset, the results can be found in Table 3.2. Immediately, we can
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see that the average as well as maximal number of iterations seems to be de-
creasing w.r.t. increasing size of the set of generators. The peak in the number
of iterations is in both cases achieved for a very small size of P , namely 0.003%
and 0.005%. We recognized this trend in other datasets too.

|P |(%) Max n Avg n |P |(%) Max n Avg n |P |(%) Max n Avg n

0.003 16 7.81 0.040 8 4.57 0.40 6 3.4
0.005 12 7.48 0.050 7 4.48 0.45 5 3.30
0.010 10 6.13 0.10 6 4.44 0.5 5 3.33
0.015 10 5.8 0.15 6 4.28 1 4 3.25
0.020 12 5.23 0.20 6 4.01 2 4 3.22
0.025 8 4.91 0.25 6 3.95 3 4 3.11
0.030 8 4.69 0.30 6 3.62 4 4 2.99
0.035 8 4.57 0.35 6 3.6 5 4 2.89

Table 3.1: The results of experiments on Mushrooms dataset. The size of P
is given by a percentage of the size of the concept lattice. There was no case
where selected P generated the whole concept lattice.

|P |(%) Max n Avg n |P |(%) Max n Avg n |P |(%) Max n Avg n

0.003 10 3.17 0.040 4 3.03 0.40 3 3
0.005 20 7.32 0.050 3 3 0.45 3 2.99
0.010 10 5.41 0.10 3 3 0.5 3 3
0.015 7 4.28 0.15 3 3 1 3 2.99
0.020 6 3.68 0.20 3 3 2 3 2.99
0.025 5 3.27 0.25 3 3 3 3 2.99
0.030 5 3.14 0.30 3 3 4 3 2.98
0.035 4 3.01 0.35 3 3 5 3 2.91

Table 3.2: The results of experiments on Nursery dataset. The size of P is given
by a percentage of the size of the concept lattice. Interestingly, we started to
generate the whole concept lattice while selecting only 0.015% of its elements.
By selecting 0.05% or more, we always generated the whole concept lattice.

Interestingly, while using Mushrooms dataset we never generated the whole
concept lattice in our experiments. On the other hand, for Nursery dataset,
we started generating it as soon as we hit 0.015% as the size of P and we

51



3. On sublattices and subrelations

always generated the whole concept lattice once the size of P was greater than
or equal to 0.05%. This alludes to a question about the cause of this disparity.
One possible answer is that the concept lattice of Mushrooms dataset has more
intricate structure and more irreducible elements (we can not generate them
from other elements).

As can be seen from the first batch of experiments on real world datasets,
we usually obtain the highest number of iterations with a very small number of
generators. Hence, for the rest of the experiments we chose to take fixed sizes
of P , i.e. the size of P is no longer given as a percentage. Indeed, as we can
see in Table 3.3 and 3.4 the peak occurs when we take |P | ≈ 10.

|P | Mushrooms Nursery
Max n Avg n Max n Avg n

3 9 3.39 6 2.27
4 18 4.77 8 2.59
5 17 6.34 9 3.36
6 18 7.51 14 4.37
7 14 7.27 12 4.78
8 19 7.77 16 5.99
10 12 7.63 18 7.45
15 12 6.84 10 5.94
20 10 6.32 8 5.18
25 11 6.2 7 4.56

Table 3.3: The results of experiments on larger real world datasets. The size
of P is fixed, i.e. it is no longer given as a percentage. The whole lattice was
generated only once, specifically for Nursery dataset and |P | = 25.

Lastly, we ran several experiments on synthetic datasets. Our synthetic
contexts were randomly generated with fixed density and contained 500 objects
and 100 attributes. For each density we generated 1000 formal contexts. For
each such context and each fixed size of P we randomly selected generators
100 times and recorded the maximal and average number of iterations of our
algorithm across all generated contexts. The results can be found in Table 3.5
and 3.6.

Investigating the results on synthetic data, we can observe the peak in
both maximal and average number of iterations shifting from |P | ≈ 10 to
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|P | Post Zoo Drinks
Max n Avg n Max n Avg n Max n Avg n

3 8 2.81 8 2.92 8 3.09
4 16 3.77 11 3.68 12 3.6
5 24 5.40 13 4.20 9 3.90
6 28 7.35 12 4.46 9 4.15
7 25 8.76 12 4.68 10 4.15
8 24 9.31 13 4.94 9 4.13
10 28 9.51 11 5.06 9 4.11
15 18 7.78 11 4.85 10 4.06
20 15 6.82 9 4.72 8 3.75
25 13 6.42 11 4.43 8 3.53

Table 3.4: The results of experiments on smaller real world datasets. The size
of P is fixed, i.e. it is no longer given as a percentage. In none of the cases P
generated the whole concept lattice.

Density 5% 10% 20%
|P | Max n Avg n All Max n Avg n All Max n Avg n All

3 3 2.06 0 3 2.07 0 3 2.12 0
4 6 2.23 0 8 2.29 0 8 2.47 0
5 8 2.52 0 20 2.71 0.09 28 3.76 2.92
6 20 2.94 0.08 25 3.65 2.34 27 6.34 23.7
7 22 3.64 0.95 26 5.70 17.38 28 8.44 67.73
8 26 5.15 8.37 22 8.28 57.46 21 7.53 92.55
10 26 9.38 61.4 20 8.07 97.72 10 5.97 99.76
15 16 7.95 99.98 8 6.00 100 6 4.40 100
20 8 6.20 100 6 5.45 100 5 4.01 100
25 8 6.00 100 6 4.29 100 4 4.00 100

Table 3.5: The results of experiments on synthetic contexts with densities 5%,
10% and 20%. The column “All” specifies percentage of cases in which P
generated the whole concept lattice.

|P | ≈ 6 with increasing density of contexts. Interestingly, the peak in the
average number of iterations seems slightly decreasing w.r.t. density, being
9.38 for |P | = 10 and 7.76 for |P | = 6.
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Density 30% 40% 50%
|P | Max n Avg n All Max n Avg n All Max n Avg n All

3 3 2.16 0 3 2.19 0 18 2.23 0
4 29 2.75 0 37 3.17 0 30 3.62 0
5 28 5.26 7.6 37 6.11 6.7 35 6.78 3.75
6 28 7.78 31.39 28 7.91 25.61 40 7.76 15.12
7 26 7.78 64.69 27 7.24 50.97 22 6.86 34.95
8 20 6.54 85.13 22 6.14 73.64 20 5.98 56.49
10 9 5.35 98.81 12 4.97 95.32 10 4.80 88.05
15 6 4.03 100 5 4 99.99 8 4 99.97
20 4 4 100 4 3.99 100 4 3.98 100
25 4 3.99 100 4 3.93 100 4 3.70 100

Table 3.6: The results of experiments on synthetic contexts with densities 30%,
40% and 50%. The column “All” specifies percentage of cases in which P
generated the whole concept lattice.

From the results we can see that the average number of iterations is very
small compared to the number of objects and attributes. The maximal number
of iterations is also small compared to the size of corresponding context. Both
values usually peak for very small sizes of P and there is also an apparent
decreasing trend for number of iterations for increasing size of P . Also, we
observed the highest number of iterations being achieved for fixed sizes of P ,
no matter the size of the concept lattice.

The small average number of iterations for both synthetic and real world
datasets indicates good performance for our algorithm as it just computes the
closures of objects (resp. attributes) in its iterations.

3.3 The question of complexity

We already showed in Lemma 51 the obvious upper bound for the number of
iterations of Algorithm 3. However, we believe this bound is loose and can be
tightened. Our belief is that the number of iterations is in fact bounded by
the sum of objects and attributes, i.e. O(|X|+ |Y |), however, the proof of this
claim is a matter of future research. Nevertheless, we provide some examples of
contexts containing certain patterns that can lead to a relatively high number
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of iterations together with some insight into those patterns. We focus on the
finite cases in this section.

For now, let us think about the iterations as closures on the subsemilattices
instead of operations over formal contexts. Since our goal is to bound the num-
ber of iterations by the sum of objects and attributes, we focus on ∨-irreducible
and ∧-irreducible elements (we are working with finite cases here). It is easy
to see that every such closure has to add a new element otherwise the next
immediate closure would start with the exact same set of elements as before,
therefore it would be already closed w.r.t. this closure and the algorithm would
terminate. Indeed, in the worst case scenario, we add an element with each
closure and at the same time, it should be in such a way that minimizes sizes
of ∨-irreducible and ∧-irreducible sets. Let us have Vi = C∧Vi−1, making i
even and let i > 2. It is easy to see that each element added in such itera-
tion would be ∨-irreducible in Vi, otherwise it would have been added in the
previous iteration. The problem now is that such concepts can make some pre-
viously ∨-irreducible elements ∨-reducible. The case for odd i is dual. Check
Example 57 for a concrete example.

Remark 56. A tempting idea for showing a bound of the number of iterations
of our algorithms is to consider free lattices [24, 25, 26]. However, this idea
just strengthens our belief in the bound O(|X|+ |Y |). This is due to so called
Whitman condition [24] and its consequences. One such consequence states
that every element of a lattice satisfying Whitman condition (satisfied by free
lattices) is either ∨-irreducible or ∧-irreducible and we know that the number
of such elements is a lower bound for the size of the underlying formal context.

Example 57. In Fig. 3.10 we can see a lattice with marked set of generators P
and C∨∧P is equal to the whole lattice. Computing closures yields subsemilat-
tices Vi and numbers next to the elements indicates the least index i for which
Vi contains the corresponding element. Notice how previously ∨-irreducible or
∧-irreducible elements are changed into reducible ones by adding new elements.

Example 58. In Fig. 3.11-3.16 we can see a formal context with marked set
of generators P and first several iterations of our algorithm on such formal
context. The number of iterations in this case is 10. In each step (except for
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1

1 4 2 1

2 1 3 1 1

1 1

1

Figure 3.10: A lattice where for each element e, the numeric label marks the
least index i such that e ∈ Vi. Generators are marked with bold dots.

the final ones) we generate a new concept. However, depending on the step
number, such concept does not posses the correct extent or intent (w.r.t. the
initial formal context). The following iteration fixes that, however, by doing so
generates another new concept with the same issue.

Example 59. The formal context in Fig. 3.18 enlarges the formal context from
Fig. 3.11. There is a clear pattern that can be further extended in a similar
fashion. Let X be the set of objects and Y the set of attributes. Taking marked
concepts as the set of generators, the number of iterations for such formal
contexts can be calculated as 2|Y | − 5. Since |X| = |Y | + 1, we obtain the
following inequality 2|Y | − 5 < 2|Y |+ 1 showing that the number of iterations
in such contexts is always strictly less than the sum of objects and attributes.

In Fig. 3.19 we can see a formal context extending the pattern from Exam-
ple 58 with more attributes and we can extend it further in this fashion. Now,
consider enlarging our pattern (same as Fig. 3.18), by letting selected object
concepts of x1, x2, x3 and x4 to have not five, but ten attributes in their intents
(we also need to add ten more object to accommodate our pattern). In this
scenario, the number of iterations is 72 which is strictly greater than the sum
of objects and attributes (in this case 66).
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I y1 y2 y3 y4 y5 y6 y7
x1 × × ×
x2 × × ×
x3 × × × × × ×
x4 × × × × ×
x5 × × × ×
x6 × × ×
x7 × ×
x8 ×

Figure 3.11: The initial formal con-
text. Elements of P , i.e. genera-
tors, are marked with rectangles.

K1 y1 y2 y3 y4 y5 y6 y7
× × ×

× × ×
×

Figure 3.12: The formal context
K1, its objects are elements of P .
Rows are their intents.

K2 y1 y2 y3 y4 y5 y6 y7
x1 × × ×
x2 × × ×
x3 × × × × • •

x4 ×
x5 ×
x6 ×
x7 ×
x8 ×

Figure 3.13: The second iteration
generates a new concept, namely,
the object concept of x3. However,
its intent is not correct.

K3 y1 y2 y3 y4 y5 y6 y7
x1 × × ×
x2 × × ×
x3 × × × × × ×
x4 × • • • •

x5 ×
x6 ×
x7 ×
x8 ×

Figure 3.14: Fixing the object con-
cept of x3 generates additional con-
cept, specifically, attribute concept
of y6 (although it does not posses
correct extent).

K4 y1 y2 y3 y4 y5 y6 y7
x1 × × ×
x2 × × ×
x3 × × × × × ×
x4 × • • × ×
x5 ×
x6 ×
x7 ×
x8 ×

Figure 3.15: A similar situation as
for the second iteration but for ob-
ject concept of x4.

K5 y1 y2 y3 y4 y5 y6 y7
x1 × × ×
x2 × × ×
x3 × × × × × ×
x4 × × × × ×
x5 × • •

x6 ×
x7 ×
x8 ×

Figure 3.16: Now, the following it-
erations should already be obvious.
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1

2 1

1 4

6 3

5 8

10 7

9 1

1

Figure 3.17: A concept lattice corresponding to the formal context from
Fig. 3.11. Numbers mark iterations in which concepts appear for the first
time (might be prior the fix of its extent/intent). The generators are marked
with bold dots.

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11
x1 × × × × ×
x2 × × × × ×
x3 × × × × × × × × × ×
x4 × × × × × × × × ×
x5 × × × × × × × ×
x6 × × × × × × ×
x7 × × × × × ×
x8 × × × × ×
x9 × × × ×
x10 × × ×
x11 × ×
x12 ×

Figure 3.18: A formal context extending the pattern from Fig. 3.11.

3.4 Closed subrelations containing arbitrary re-
lation

Procedure Generate from Algorithm 3 accepts any subrelation of I as its
parameter so it does make sense to investigate what output it generates upon
receiving an arbitrary subrelation of I. Interestingly, the next lemma shows
that no matter what subrelation the procedure is called with, it always outputs
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y1 . . . y22
x1 × × × × × ×
x2 × × × × ×
x3 × × × × ×
x4 × × × × ×

...

× × × × × × × × × ×
× × × × × × × × × × × × × × × × ×
× × × × × × × × × × × × × × ×
× × × × × × × × × × × × ×
× × × × × × × × × × ×
× × × × × × × × ×
× × × × × × ×
× × × × ×
×

x14 × × ×

Figure 3.19: A formal context further extending the pattern from Fig. 3.18.

a closed subrelation of I. This may come as a surprise due to the fact that
closed subrelations do not form a closure system.

Lemma 60. For any subrelation K ⊆ I, the subrelation Generate(K) is
a closed subrelation of I.

Proof. For the relation L = {〈x, y〉 ∈ X × Y | x ∈ {y}↓K↑K↓I}, the attribute
extent {y}↓L of any attribute y is equal to {y}↓K↑K↓I and hence is an extent
of I. Therefore, each extent of L is, as an intersection of attribute extents, an
extent of I (we have already used this argument before).

Now, for the subset P of the dual concept lattice B(Y,X, I−1) consisting
of concepts whose intents are equal to extents of L, Alg. 3 outputs a closed
subrelation of I−1. This subrelation is evidently equal to the inverse of the
subrelation Generate(K).

The above result alludes to some questions about closed subrelations con-
taining a given subrelation K ⊆ I. Namely, 1. whether there is the least such
subrelation, and 2. what can be said about these subrelations and their concept
lattices in general.

As mentioned in [8], the intersection of a system of closed subrelations needs
not be a closed subrelation. Therefore, the system of all closed subrelations of I
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is not a closure system and, consequently, there does not exist a closure operator
assigning to each subrelation K ⊆ I the least greater closed subrelation. Thus,
the answer to the first question is, at least in general, negative. However, in
what follows, we show that for some important type of subrelations of I (which
we have already met) the answer is positive. Regarding the second question,
we provide some basic results.

Definition 61 (block relation). A super-relation L ⊇ I is called a block
relation of I if for each x ∈ X and y ∈ Y , {x}↑L is an intent and {y}↓L is an
extent of I.

Definition 62 (semi-closed subrelation). We call a subrelation L ⊆ I semi-
closed if for each x ∈ X and y ∈ Y , {x}↑L is an intent and {y}↓L is an extent
of I.

The definition of semi-closed subrelation resembles closely the definition
of a block relation [8, 27]. The only difference is that semi-closed relations
are subrelations whereas block relations are super-relations of I. Semi-closed
subrelations share many properties with block relations. We summarize some
of them below. We omit proofs as they are technically exactly the same as
proofs of corresponding properties of block relations which can be found in [8,
27, 28].

Remark 63. Despite what the name “semi-closed” might suggest, concepts of
such subrelations are not generally semiconcepts of the initial relation. Indeed,
check Example 76 for a counterexample. The name was chosen so it emphasizes
the fact that such subrelations are in a sense closed as you can see in the
following.

Lemma 64. L ⊆ I is a semi-closed subrelation iff each intent of L is also an
intent of I and each extent of L is also an extent of I.

Lemma 65. The system of all semi-closed subrelations of I forms a closure
system in I.
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3.4. Closed subrelations containing arbitrary relation

We denote by CIV the closure operator associated with the closure system
of all semi-closed subrelations of I. Algorithm 5 computes the value of CIV for
any subrelation L ⊆ I. The same algorithm for block relations has been shown
in [28].

Algorithm 5 Computing CIV
Require: subrelation L ⊆ I
Ensure: CIVL
i← 1
repeat

L′ ← L
i← i+ 1
if i is even then

L← {〈x, y〉 ∈ X × Y | x ∈ {y}↓L′↑I↓I}
else

L← {〈x, y〉 ∈ X × Y | y ∈ {x}↑L′↓I↑I}
until i > 2 & L = L′

return L

Obviously, every closed subrelation of I is also semi-closed. Thus, we obtain
a first property of closed subrelations containing K.

Lemma 66. If J is a closed subrelation of I and K ⊆ J , then CIVK ⊆ J .

Proof. Follows from basic properties of closure operators and from the fact that
J is semi-closed: K ⊆ J implies CIVK ⊆ CIVJ = J .

The following lemma shows that despite the fact that closed subrelations
do not form a closure system, in some important cases, there exists the least
closed subrelation containing K.

Lemma 67. Let K = ⊔
P for some P ⊆ B(X, Y, I). Then CIVK is a closed

subrelation of I and the concept lattice of CIVK is equal to C∨∧P . CIVK can
be computed by procedure Generate of Alg. 3.

Proof. We show that for each y ∈ Y , {y}↓K↑K = {y}↓K↑I . Denote by Py the set
of all concepts 〈A,B〉 ∈ P such that y ∈ B. We have {y}↓K = ⋃

〈A,B〉∈Py
A.
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Thus (unions and intersections are always taken over all 〈A,B〉 ∈ Py),

{y}↓K↑K =
(⋃

A
)↑K =

⋂
A↑K =

⋂
A↑I =

(⋃
A
)↑I = {y}↓K↑I .

Therefore, the first iteration in Generate and Alg. 5 are identical.
Now, let K1 be the same as in Sec. 3.1, i.e. given by (3.2). According to

Lemma 53, the closed subrelation J for C∨∧P can be computed by means of
Alg. 3. By Lemma 45 and Lemma 42, for each i > 1, Ki is equal to the union of
rectangles given by some concepts of I. Thus, the above finding on K applies
to all subrelations Ki, i > 1, and all iterations in Generate and Alg. 5 are
identical. This proves that J = CIVK. The rest follows from Lemma 49.

Remark 68. Due to the previous lemma, it is easy to see that for a L ⊆ I such
that each concept of L is a protoconcept of I there exists the closure to the
least closed subrelation. This is due to the fact that every protoconcept of I
uniquely determines a concept of I. Every closed subrelation containing L has
to contain these concepts and the rest follows immediately from Lemma 67.

For each concept 〈A,B〉 of a semi-closed subrelation of I, A is an extent
and B an intent of I (there need not be any special relationship between A and
B, i.e., in general, B 6= A↑I and A 6= B↓I ). We call such preconcepts interval-
preconcepts and denote the set of all interval-preconcepts of I by IV(X, Y, I).

Remark 69. The name interval-preconcepts was chosen because it shows two
defining properties of such rectangles: 1. they are preconcepts, 2. they uniquely
determine an interval in the corresponding concept lattice.

Interval-preconcepts are ordered the same way as preconcepts [11, 12], i.e.
for each 〈A,B〉, 〈C,D〉 ∈ IV(X, Y, I) we have 〈A,B〉 ≤ 〈C,D〉 iff A ⊆ C and
D ⊆ B.

Lemma 70. IV(X, Y, I) together with the above ordering is a complete lattice
with infima and suprema given by the same formulas as in (1.1) and (1.2).

Proof. For infima: For any system 〈Aι, Bι〉, ι ∈ I, of interval-preconcepts, the
tuple

〈⋂
ι∈I Aι, (

⋃
ι∈I Bι)↓I↑I

〉
is evidently an interval-preconcept as well. Let

〈C,D〉 be another interval-preconcept, less than or equal to 〈Aι, Bι〉 for each
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ι ∈ I. We have C ⊆ Aι for each ι ∈ I, whence C ⊆ ⋂
ι∈I Aι. Similarly,

D ⊇ ⋃
ι∈I Bι. Since D is an intent, it also holds D ⊇ (⋃ι∈I Bι)↓I↑I and the

proof is finished. The proof for suprema is similar.

For any semi-closed subrelation L of I, the concept lattice B(X, Y, L) is a
subset of IV(X, Y, I). The following lemma characterizes all such subsets.

Lemma 71. 1. For any semi-closed subrelation L ⊆ I, B(X, Y, L) is a complete
sublattice of IV(X, Y, I).

2. A complete sublattice U ⊆ IV(X, Y, I) is equal to B(X, Y, L) for some
semi-closed subrelation L ⊆ I iff for each 〈A,B〉, 〈C,D〉 ∈ U ,

A ⊆ C iff D ⊆ B. (3.9)

It holds L = ⊔
U .

Proof. 1. Directly by Lemma 70.
2. Condition (3.9) is satisfied for all concept lattices. Thus, it suffices to

show the converse implication, namely that if (3.9) holds, then U = B(X, Y, L)
for L = ⊔

U . Let 〈A,B〉 ∈ U . Condition (3.9) ensures that A×B is a maximal
rectangle in L. Therefore, 〈A,B〉 ∈ B(X, Y, L) and so U ⊆ B(X, Y, L).

To prove the converse inclusion, we show that each object concept of B(X, Y, L)
belongs to U . This is sufficient as each concept is the supremum of a set of
object concepts and U is a complete lattice. Let x ∈ X be an object and
let Sx = {〈C,D〉 ∈ U |x ∈ C}. Since 〈X,X↑I 〉 ∈ Sx, Sx is nonempty. For
〈A,B〉 = ∧

Sx we have x ∈ A by (1.1) and Lemma 70. Furthemore, if y ∈ Y
satisfies 〈x, y〉 ∈ L, then there is 〈C,D〉 ∈ Sx such that y ∈ D. Therefore (1.1),
y ∈ B and so B = {x}↑L . Now let x′ ∈ A. If for y ∈ Y it holds 〈x′, y〉 ∈ L,
then 〈x′, y〉 ∈ 〈C,D〉 for the same 〈C,D〉 ∈ Sx for which 〈x, y〉 ∈ 〈C,D〉. Thus,
x′ ∈ B↓L and so A = B↓L . We conclude that 〈A,B〉 ∈ B(X, Y, L) is the object
concept of the object x. As 〈A,B〉 = ∧

Sx, it holds 〈A,B〉 ∈ U by completeness
and the proof is finished.

Remark 72. In the case of semi-closed subrelations, we don’t have a one-to-one
correspondence between semi-closed subrelations of I and complete sublattices
of IV(X, Y, I). Check the following section for more details.
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In the last lemma of this section, we give a characterization of all complete
sublattices of the concept lattice B(X, Y, I) such that for each sublattice, the
associated closed subrelation of I contains given subrelation K ⊆ I.

Before introducing the lemma, we will need some preliminary results. Each
interval-preconcept 〈A,B〉 of I determines a closed interval in the concept lat-
tice B(X, Y, I), namely the interval [〈A,A↑I 〉, 〈B↓I , B〉]. This correspondence
between interval-preconcepts of I and closed intervals in B(X, Y, I) is evidently
bijective. For each semi-closed subrelation L ⊆ I we denote by SL the sys-
tem of all closed intervals of B(X, Y, I) determined by concepts of L (which
are interval-preconcepts of I). This system corresponds to the concept lattice
B(X, Y, L). Thus, the above Lemma 71 can be used for further investigation of
the structure of SL.

Lemma 73. Let K ⊆ I be an arbitrary subrelation, U ⊆ B(X, Y, I) a complete
sublattice with the associated closed subrelation J ⊆ I. Then J ⊇ K iff U has
nonempty intersection with each interval from the system SCIVK.

Proof. As we know by Lemma 66, the condition J ⊇ K is equivalent to J ⊇
CIVK. The latter condition means that for each interval-preconcept 〈A,B〉 ∈
B(X, Y,CIVK) there is a concept 〈C,D〉 ∈ B(X, Y, J) such that A ⊆ C and
B ⊆ D, which is equivalent to 〈C,D〉 ∈ [〈A,A↑I 〉, 〈B↓I , B〉].

We already know that procedure Generate always outputs a closed sub-
relation given any subrelation K ⊆ I. However, dual computation, i.e. in-
terchanging parts for even and odd indices, might lead to a different result.
Notice that by executing the first two iterations of the procedure it is already
determined what the result will be. This is because after running two iterations
the intermediate resulting context can be written as a union of some concepts
of I (Lemma 42). In fact, it is already decided after the first iteration as it
leaves us with either correct intents or extents. Thus, to see what the result is
going to be, we can focus just on the first iteration. Due to Lemma 73 we know
how concepts of K determine closed intervals of B(I). Now, the result depends
on which concepts we choose from corresponding intervals. Taking procedure
Generate as is, the first iteration selects the upper bounds of all such inter-
vals. Dual computation selects the lower bounds. Note that this selection can
have an effect on the size (w.r.t. ⊆) of the result (see Example 74).
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Example 74. In Fig. 3.20 we can see three formal contexts. Bold dots in the
formal context K (resp. Jd) mark incidences of the initial formal context I that
are not present in K (resp. Jd). Execution of Generate(K) leads to J . Dual
computation results in Jd and we have Jd ⊂ J .

K y1 y2
x1 × •

x2 •

x3 ×

J y1 y2
x1 × ×
x2 ×
x3 ×

Jd y1 y2
x1 × ×
x2 •

x3 ×

Figure 3.20: Three formal contexts showing that dual computation of
Generate(K) can lead to a smaller (w.r.t. ⊆) closed subrelation.

3.5 Interval-preconcepts
We already met interval-preconcepts in the previous section where we studied
them especially due to their connection to semi-closed and closed subrelations.
Now, we take a closer look on such rectangles. We showed that they can be
ordered in the same way as preconcepts and together with this ordering the set
of all interval-preconcepts of a given formal context forms a complete lattice.

Interval-preconcepts have two defining properties: 1. they are preconcepts,
2. they uniquely determine an interval in the corresponding concept lattice.
The second property plays a crucial role in our motivation to study such formal
rectangles. First, we focus on a motivation from psychology and show where
interval-preconcepts can fit in the theory of concepts. Second, we provide a
more formal motivation relating interval-preconcepts to block relations.

There has been quite a lot of work done in the field of cognitive psychol-
ogy concerning concepts especially in last 70 years (see [29] for a quick and
[30] for a comprehensive overview). Nowadays, there are several definitions of
concept in cognitive psychology that are sometimes almost contradictory and
some approaches actually reject any definition of concept as it is impossible to
define (see also [31]). They argue that for any such definition there exist an
example (usually natural and very simple) that does not conform to it [32].
Nevertheless, we cannot possibly hope to mathematically define a notion that
we are unable to grasp even with the help of vagueness of our language. There-
fore, the notion of formal concept is based on the definition of concept from
The Classical Theory of Concepts which dates back to antiquity to Plato [32].
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It accepts a definition of concept as a structured mental representation that
encodes necessary and sufficient conditions for its application. By application,
we usually mean the ability to decide if an object is part of a concept or not,
i.e. the process of categorization in the terms of cognitive psychology.

Accepting our notion of formal concept as a mathematical representation of
the classical definition of concept leaves us with several possible interpretations
of the notion interval-preconcept. In the study of concept acquisition, we can
look at them as possible stages of the learning process. In formal terms, we
represent a whole interval of concepts as a single entity and we are yet to
acquire knowledge that would let us draw distinctions between concepts in this
interval. We can also look at interval-preconcepts as on a kind of prototypical
instances of a concept. Consider the following example that is formally captured
in Figure 3.21. A child, lets call him Adam, living in a household with a
single animal, a dog called Thor. For Adam, the concept of animal might be
represented by a formal concept containing only Thor in its extension and his
features in its intension. The features he is able to recognize might not be
all the features of Thor but some subset of them. Adam might ignore some
features because they seem unimportant at that point, it is because Adam
has not yet seen any other animal except for Thor. Afterwards, Adam meets
another dog, Loki, of a different breed and in order to distinguish between the
two dogs he has to acknowledge some differentiating features and assimilate
them to the concept containing Thor. The original concept containing only
Thor in its extension and features now shared by both dogs in its intension
becomes interval-preconcept and can be looked upon as a kind of prototype.

Other possible application of interval-preconcepts stems from the necessity
of ignorance. It has been argued (see [30]) that people make adjustment to
their process of categorization depending on current circumstances. One such
adjustment includes ignorance of some features. This prevents overwhelming
our mind and speeds up the process of categorization. By restraining the set
of features only to a valid intension of a more general concept we obtain a way
of thinking about more specific concepts in more general, but coherent, terms.

The second part of our motivation is purely formal. We have a new type
of formal rectangle that arises from a notion of semi-closed subrelation which
is closely related to the notion of block relation. We explore their connection
and investigate potential areas where interval-preconcepts can help to represent
more complex notions whilst providing a different viewing angle.
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Adam · · · woofs fur · · ·
...

Thor × ×
...

Adam · · · woofs fur long tail pointy ears · · ·
...

Thor × × ×
Loki × × ×
...

Figure 3.21: State of the relevant part of Adam’s knowledge, before and af-
ter meeting Loki, represented as a part of a formal context. The concept
〈{Thor}, {woofs, fur}〉, marked by the box, of the former formal context is an
interval-preconcept of the latter formal context.

Definition 75 (interval-preconcept). An interval-preconcept of a formal
context 〈X, Y, I〉 is a preconcept 〈A,B〉 such that A = A↑I↓I and B = B↓I↑I .

To better understand relations of interval-preconcepts to other well-known
types of rectangles we provide a summary in Fig. 3.22 and 3.23. Moreover, in
Example 76 we can find proper instances of all types of rectangles.

A ⊆ B↓ A = A↑↓

B ⊆ A↑
A↑↓ = B↓ B = A↑ A = B↓

B = B↓↑

preconcept ×
protoconcept × ×

interval-preconcept × ×
u-semiconcept × × ×
t-semiconcept × × ×
formal concept × × × × ×

Figure 3.22: A formal context of different types of formal rectangles and their
properties.

Example 76. In Fig. 3.24 we can see proper examples of different types of
formal rectangles. For example, we are able to identify a proper interval-
preconcept 〈{x2}, {y2}〉. Obviously, it is not a formal concept. It also easy
to see why it is not a protoconcept: {x2}↑I↓I = {x2} 6= {x1, x2, x3} = {y2}↓I .
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formal concept

interval-preconcept

A = A↑↓, B = B↓↑
protoconcept

A↑↓ = B↓

t-semiconcept

A = B↓

u-semiconcept

B = A↑

preconcept

A ⊆ B↓, B ⊆ A↑

Figure 3.23: The concept lattice corresponding to the formal context from the
Fig. 3.22 showing relations between different types of formal rectangles.

I y1 y2 y3
x1 ×
x2 × × ×
x3 × ×

Figure 3.24: Different types of formal rectangles can be found in this context.
We can identify following examples: a proper preconcept 〈{x2}, {y3}〉, a proper
interval-preconcept 〈{x2}, {y2}〉, a proper protoconcept 〈{x3}, {y3}〉 and proper
semiconcepts 〈{x3}, {y2, y3}〉 and 〈{x2, x3}, {y3}〉.

The notion of interval-preconcept originates from our investigation of semi-
closed subrelations. Such relations are defined similarly to block relations,
however they are subrelations as opposed to being super-relations. Thus, we in-
vestigate the relation between interval-preconcepts and block relations. Recall,
each interval-preconcept 〈A,B〉 ∈ IV(X, Y, I) uniquely determines an interval
in the concept lattice B(I), namely, [〈A,A↑I 〉, 〈B↓I , B〉]. We now show how a
block relation corresponds to a set of interval-preconcepts.
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3.5. Interval-preconcepts

Lemma 77. Let L ⊇ I be a block relation, then for each 〈A,B〉 ∈ B(L),
c = 〈B↓I , A↑I 〉 is an interval-preconcept of I. Denote RL the set of all such
interval-preconcepts. RL is an order-embedded complete lattice in IV(X, Y, I)
with infima and suprema given by:

∧

ι∈I
〈Aι, Bι〉 =

〈(⋃

ι∈I
A↑I
ι

)↓K↑K↓I

,

(⋃

ι∈I
Bι

)↓I↑I
〉
, (3.10)

∨

ι∈I
〈Aι, Bι〉 =

〈(⋃

ι∈I
Aι

)↑I↓I

,

(⋃

ι∈I
B↓I
ι

)↑K↓K↑I
〉
. (3.11)

Proof. From 〈A,B〉 ∈ B(L) we have A = A↑I↓I , B = B↓I↑I and since B↓I ⊆
B↓K = A it holds A↑I ⊆ B↓I↑I . Similarly we obtain B↓I ⊆ A↑I↓I proving
〈B↓I , A↑I 〉 ∈ IV(X, Y, I).

Denote ρ : B(K) → RL and put ρ(〈A,B〉) = 〈B↓I , A↑I 〉. ρ is evidently a
bijection with inverse ρ−1(〈A,B〉) = 〈B↓I , A↑I 〉. ρ is order-preserving since for
〈A,B〉 ≤ 〈C,D〉 ∈ B(K) we have A ⊆ C (resp. D ⊆ B) implying C↑I ⊆ A↑I

(resp. B↓I ⊆ D↓I ) showing ρ(〈A,B〉) ≤ ρ(〈C,D〉). Similarly we can show that
ρ−1 is also order-preserving. Thus, RL is a complete lattice isomorphic to B(K).

Now, we prove only 3.10 as 3.11 is dual. Let us have 〈Aι, Bι〉 ∈ RL for ι ∈ I.
We have

∧

ι∈I
〈Aι, Bι〉 = ρ(

∧

ι∈I
ρ−1(〈Aι, Bι〉))

= ρ(
∧

ι∈I
〈B↓I

ι , A
↑I
ι 〉)

= ρ

〈⋂

ι∈I
B↓I
ι ,

(⋃

ι∈I
A↑I
ι

)↓K↑K
〉

=
〈(⋃

ι∈I
A↑I
ι

)↓K↑K↓I

,

(⋂

ι∈I
B↓I
ι

)↑I
〉

=
〈(⋃

ι∈I
A↑I
ι

)↓K↑K↓I

,

(⋃

ι∈I
Bι

)↓I↑I
〉
.

Evidently, the converse direction does not generally hold, i.e. not all subsets
of IV(X, Y, I) correspond to block relations. Check Examples 79 and 80 for a
simple counterexamples.
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3. On sublattices and subrelations

Corollary 78. Let V ⊆ IV(X, Y, I) we have V = RL for some block relation
L ⊇ I iff V is an order-embedded complete lattice in IV(X, Y, I) such that for
each 〈A,B〉, 〈C,D〉 ∈ V

A ⊆ C iff D ⊆ B. (3.12)

and L = ⋃
〈A,B〉∈V (B↓I × A↑I ).

Example 79. Recall that a binary relation θ on a complete lattice V is called
a complete tolerance if it is reflexive, symmetric and compatible with suprema
and infima, i.e. we have

xιθyι for ι ∈ I ⇒
(∨

ι∈I
xι

)
θ

(∨

ι∈I
yι

)
and

(∧

ι∈I
xι

)
θ

(∧

ι∈I
yι

)
.

We call a subsetW of V a block if xθy holds for all x, y ∈ W andW is maximal
(w.r.t. ⊆). There is a 1-1 correspondence between complete tolerances of B(I)
and block relations of I.

Consider the formal context from Fig. 3.25 (the one on the right side),
corresponding concept lattice is depicted in Fig. 3.26. Take V = {〈∅, {y4}〉}.
Concepts from corresponding interval are drawn with dashed circles.

Evidently, there is no block relation K for which V = RK as the smallest
complete tolerance containing this interval (determined by interval-preconcept
〈∅, {y4}〉) as a block also includes interval corresponding to the interval-preconcept
〈{x2}, {y2}〉.

I y1 y2 y3 y4
x1 × ×
x2 × × ×
x3 ×

y1 y2 y3 y4
x1 × × × ×
x2
x3

Figure 3.25: A formal context I where we take V = {〈∅, {y4}〉}. Creating a
relation in the same way as in Corollary 78 does not result in a block relation
of I.

Example 80. Consider the formal context from Fig. 3.27. Corresponding con-
cept lattice is depicted in Fig. 3.28 and interval-preconcept lattice can be seen
in Fig. 3.31. Take V = {〈∅, {y1}〉, 〈{x1}, {y2}〉, 〈{x3}, ∅〉}. Now, create a rela-
tion L in the same way as in Corollary 78. We can see from Fig. 3.27 that we
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x2

y1, y3

x1

y4

x3

y2

Figure 3.26: Concept lattice corresponding to formal context from Fig. 3.25
where concepts from selected interval are drawn with dashed circle.

obtain a block relation. However, V does not form an order-embedded complete
lattice as there is no upper bound for V . Nevertheless, there exists a closure
for V and it also contains interval-preconcept 〈∅, Y 〉. However, by adding it,
the resulting set will not satisfy condition (3.12).

I y1 y2 y3
x1 × × •

x2 • × •

x3 ×

Figure 3.27: A formal context I where we take V =
{〈∅, {y1}〉, 〈{x1}, {y2}〉, 〈{x3}, ∅〉}. Incidences marked with bold dots are
added in the same way as in Corollary 78. We obtain a block relation of I.

x3

y3x2

y2

x1

y1

Figure 3.28: Concept lattice corresponding to formal context from Fig. 3.27.

We already showed that the set of all interval-preconcepts IV(X, Y, I) of
given context is a complete lattice. Now, we show how to create a formal context
K such that its concept lattice is isomorphic to IV(X, Y, I). For this purpose
we adopt the following notation. For any set A we put A = {x | x ∈ A}.
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3. On sublattices and subrelations

Lemma 81. For a formal context 〈X, Y, I〉 we have IV(X, Y, I) ∼= B(X ∪
X,Y ∪ Y ,KI) where

KI = {〈x, y〉, 〈x, y〉, 〈x, y〉 | x ∈ X, y ∈ Y and 〈x, y〉 ∈ I} ∪X × Y .

Proof. It can be easily seen from the construction that concepts of B(K) are
of the form 〈A ∪ C,D ∪ B〉 where A ⊆ C and D ⊆ B and 〈A,B〉, 〈C,D〉 ∈
B(I). The rest follows immediately form the fact that interval-preconcepts and
intervals of B(I) are in a 1-1 correspondence.

Interestingly, the previous construction turns out to be equivalent to the
direct product of the formal context 〈X, Y, I〉 and formal context from Fig. 3.29.

y1 y2
x1
x2 ×

Figure 3.29: A formal context with the concept lattice isomorphic to a three
element chain.

Corollary 82. For a formal context 〈X, Y, I〉 we have

IV(X, Y, I) ∼= B(〈X, Y, I〉 × 〈{x1, x2}, {y1, y2}, {〈x2, y2〉}〉).

The previous means that IV(X, Y, I) is isomorphic to a tensor product of
certain concept lattices. Therefore, we can use any result about tensor product
of concept lattices to investigate properties of IV(X, Y, I). Now, we provide a
basic theorem on interval-preconcept lattices.

Theorem 83 (Basic Theorem on Interval-preconcept Lattices). The
interval-preconcept lattice IV(X, Y, I) is a complete lattice in which infima and
suprema are given by:

∧

ι∈I
〈Aι, Bι〉 =

〈⋂

ι∈I
Aι,

(⋃

ι∈I
Bι

)↓I↑I
〉
, (3.13)

∨

ι∈I
〈Aι, Bι〉 =

〈(⋃

ι∈I
Aι

)↑I↓I

,
⋂

ι∈I
Bι

〉
. (3.14)
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In general, a complete lattice V with an element p admits an isomorphism
α with interval-preconcept lattice IV(X, Y, I) with α(p) = 〈∅↑↓, ∅↓↑〉 if and only
if there exist mappings γ : X → V and µ : Y → V where

D∨ =
⋃

x∈X
{γ(x), γ(x) ∧ p} is supremally dense in V , (3.15)

D∧ =
⋃

y∈Y
{µ(y), µ(y) ∨ p} is infimally dense in V , (3.16)

such that for any x ∈ X, y ∈ Y it holds

xIy ⇔ γ(x) ≤ µ(y)⇔ γ(x) ∧ p ≤ µ(y) ∧ p⇔ γ(x) ∨ p ≤ µ(y) ∨ p. (3.17)

Proof. The first part is proven in Lemma 70. We now focus on the second part.
For the rest of this proof, denote

Dp
∨ =

⋃

x∈X
{γ(x) ∧ p},

Dp
∧ =

⋃

y∈Y
{µ(y) ∨ p}.

“⇒”: We have an isomorphism α between V and IV(X, Y, I). First, we
prove the statement for the special case V = IV(X, Y, I). Put

γ(x) = 〈{x}↑I↓I , {x}↑I 〉,
µ(y) = 〈{y}↓I , {y}↓I↑I 〉.

We show that D∨ is ∨-dense, the proof for D∧ is dual. First, recall that object
concepts, i.e. elements of γ(X), are ∨-dense in B(I) and so every extent can be
formulated in the terms of object extents. Now, since α(p) = 〈∅↑↓, ∅↓↑〉 and due
to the already proven first part we see that elements of Dp

∨ = ⋃
x∈X{γ(x)∧p} =

⋃
x∈X{〈∅↑I↓I , {x}↑I 〉}, i.e. they have the smallest extent and object intents.

Now, it can be easily seen that every element of IV(X, Y, I) can be written as
suprema of elements from D∨ = γ(X)∪Dp

∨. Specifically, extents are taken care
of by elements of γ(X) and intents by Dp

∨.
Now, we prove the equalities (3.17). We have to show the equality of the

following:

1. xIy,

2. γ(x) ≤ µ(y),
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3. On sublattices and subrelations

3. γ(x) ∧ p ≤ µ(y) ∧ p,

4. γ(x) ∨ p ≤ µ(y) ∨ p.

“1 ⇒ 2”: xIy ⇒ {y} ⊆ {x}↑I ⇒ {x}↑I↓I ⊆ {y}↓I ⇒ γ(x) ≤ µ(y) since both
γ(x), µ(y) are concepts.
“2 ⇒ 3”: γ(x) ≤ µ(y)⇒ γ(x) ∧ p ≤ µ(y) ∧ p.
“3. ⇒ 4.”: γ(x) ∧ p ≤ µ(y) ∧ p ⇔ 〈∅↑I↓I , {x}↑I 〉 ≤ 〈∅↑I↓I , {y}↓I↑I 〉 ⇒ {y}↓I↑I ⊆
{x}↑I ⇒ {x}↑I↓I ⊆ {y}↓I ⇒ 〈{x}↑I↓I , ∅↓I↑I 〉 ≤ 〈{y}↑I , ∅↓I↑I 〉 ⇔ γ(x) ∨ p ≤
µ(y) ∨ p.
“4⇒ 1”: γ(x)∨p ≤ µ(y)∨p⇔ 〈{x}↑I↓I , ∅↓I↑I 〉 ≤ 〈{y}↓I , ∅↓I↑I 〉 ⇒ x ∈ {x}↑I↓I ⊆
{y}↓I ⇒ xIy.

More generally, if V ∼= IV(X, Y, I) and β : IV(X, Y, I) → V is an isomor-
phism, we define mappings γ and µ as

γ(x) = β(〈{x}↑I↓I , {x}↑I 〉),
µ(y) = β(〈{y}↓I , {y}↓I↑I 〉).

and we can prove the required properties of the mappings in a similar fashion
to the above. This concludes this part of the proof.

“⇐”: Conversely, we start with a complete lattice V and mappings γ and
µ satisfying properties stated above and we define

α : V → IV(X, Y, I)

by
α(v) = 〈{x ∈ X | γ(x) ≤ v}, {y ∈ Y | v ≤ µ(y)}〉.

Before we demonstrate that α is well-defined, we show several equalities that
we use in the rest of the proof. Also note that α is evidently order-preserving.

γ(x) ∧ p ≤ v ⇔ γ(x) ∧ p ≤ v ∧ p, (3.18)
v ≤ µ(y) ∨ p⇔ v ∨ p ≤ µ(y) ∨ p, (3.19)

γ(x) ≤ µ(y) ∨ p⇔ xIy ⇔ γ(x) ∧ p ≤ µ(y), (3.20)

where x ∈ X, y ∈ Y and v, p ∈ V . The first two equalities follow trivially from
the properties of lattices. The third is a direct consequence of the first two and
equalities (3.17).
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Next, we show that for v ∈ V we have

v ∨ p =
∨
{γ(x) ∨ p | γ(x) ≤ v}, (3.21)

v ∧ p =
∨
{γ(x) ∧ p | γ(x) ∧ p ≤ v}. (3.22)

The first equality holds due to the existence of A ⊆ γ(X) and C ⊆ Dp
∨ such that

v = ∨(A∪C) since v∨p = (∨A)∨ (∨C)∨p = ∨
A∨p due to ∨C ≤ ∨Dp

∨ ≤ p.
The second one is obtained immediately from (3.18), ∨-density of D∨ and from
the fact v ∧ p ≤ p.

Lastly, we use the following equalities in the rest of the proof:

v ≤ µ(y)⇔ v ∧ p ≤ µ(y), (3.23)
γ(x) ≤ v ⇔ γ(x) ≤ v ∨ p. (3.24)

We prove the first equality, the second is dual. Left to right direction is trivial.
Now, we show the converse also holds. By (3.22) we have v ∧ p = ∨{γ(x) ∧
p | γ(x) ∧ p ≤ v} and v = (v ∧ p) ∨ (∨{γ(x) | γ(x) ≤ v}) due to ∨-density of
D∨. We assumed v∧ p ≤ µ(y) and since γ(x) ≤ v implies γ(x)∧ p ≤ v and due
to equality γ(x) ∧ p ≤ µ(y)⇔ γ(x) ≤ µ(y) (3.20), we arrive at v ≤ µ(y).

Now, we investigate how derivation operators can be read in V , let v ∈ V :

for A = {x ∈ X | γ(x) ≤ v} we have A↑I = {y ∈ Y | v ≤ µ(y) ∨ p},
for C = {x ∈ X | γ(x) ∧ p ≤ v} we have C↑I = {y ∈ Y | v ≤ µ(y)},
for D = {y ∈ Y | v ≤ µ(y)} we have D↓I = {x ∈ X | γ(x) ∧ p ≤ v},
for B = {y ∈ Y | v ≤ µ(y) ∨ p} we have B↓I = {x ∈ X | γ(x) ≤ v}.

We prove the first two statements, the others are dual. For the first one, we
know v ≤ µ(y)∨p⇔ v∨p ≤ µ(y)∨p and from the previous v∨p = ∨

x∈A γ(x)∨p
(3.21) and also xIy ⇔ γ(x) ∨ p ≤ µ(y) ∨ p proving the first statement. The
second one follows directly from (3.22) and (3.23). Now, it should be fairly
easy to see that A, C are extents and B, D are intents. Specifically, we have
A↑I = B and B↓I = A. Similarly, C↑I = D and D↓I = C.

We are now well equipped to continue our proof and we start by showing that
α is well-defined, i.e. for v ∈ V we show that α(v) is an interval-preconcept of I.
This comes directly from our investigation of derivation operators. Moreover,
for the element p we obtain α(p) = 〈∅↑I↓I , ∅↓I↑I 〉.

Now, lets define
ω : IV(X, Y, I)→ V
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by

ω(〈A,B〉) =
(∨

x∈A
γ(x)

)
∨

 ∨

x∈B↓I
γ(x) ∧ p


 .

Mapping ω is obviously order-preserving since for 〈A,B〉 ≤ 〈C,D〉 we get
A ⊆ C and D ⊆ B ⇒ B↓I ⊆ D↓I .

Lastly, we show that ω = α−1:

ω(α(v)) = ω(〈{x ∈ X | γ(x) ≤ v}, {y ∈ Y | v ≤ µ(y)}〉)

=
(∨

x∈A
γ(x)

)
∨

 ∨

x∈B↓I
γ(x) ∧ p




=

 ∨

{x∈X|γ(x)≤v}
γ(x)


 ∨


 ∨

{x∈X|γ(x)∧p≤v}
γ(x) ∧ p




= v,

where A = {x ∈ X | γ(x) ≤ v} and B = {y ∈ Y | v ≤ µ(y)}. The previous
holds due to ∨-density of D∨ and our investigation of derivation operators.

Remark 84. The above basic theorem on interval-preconcept lattices can also
be deduced from the results concerning tensor products in [8]. However, we
present it here more specifically for our special case and provide it in similar
wording to other basic theorems of other rectangle types. Also note that The-
orem 83 does not specify the structure of interval-preconcept lattices and this
flaw is rectified in Theorem 89.

We can immediately make several observations from the basic theorem and
its proof. First, there are actually three isomorphisms between B(I) and certain
parts of IV(X, Y, I), namely, intervals [〈∅↑I↓I , ∅↓I 〉, p], [p, 〈∅↓I , ∅↓I↑I 〉] and the
complete sublattice IV(X, Y, I) ∩ B(I). Second, we only need as many labels
for IV(X, Y, I) as for B(I). Third, each element of IV(X, Y, I) is associated
with two extents and two intents of I and it is easy to read them from the
lattice.

Remark 85. There are some similarities between the basic theorem on interval-
preconcept lattices and the basic theorem on preconcept lattices [12]. Mainly,
the necessity of the “center” element p. For preconcept lattices, the element p is
a singular element lesser or equal the supremum of all atoms (upper neighbors
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of the least element) and greater or equal the infimum of all coatoms (lower
neighbors of the greatest element). Even though the element p has similar role
in both theorems, in the case of interval-preconcept lattices we do not have a
simple unique description for it.

Example 86. In Fig. 3.30 we can see a formal context 〈X, Y, I〉 and the corre-
sponding formal context 〈X ∪X,Y ∪ Y ,KI〉 (Lemma 81) with concept lattice
isomorphic to interval-preconcept lattice of 〈X, Y, I〉. The interval-preconcept
lattice IV(X, Y, I) is drawn in Fig. 3.31 and the concept lattice B(I) can be
found in Fig. 3.28.

I y1 y2 y3
x1 × ×
x2 ×
x3 ×

KI y1 y2 y3 y1 y2 y3
x1 × × × ×
x2 × ×
x3 × ×
x1 × × × × ×
x2 × × × ×
x3 × × × ×

Figure 3.30: A formal context I and corresponding formal context KI as given
by Lemma 81. The concept lattice B(I) can be found in Fig. 3.28.

p x3

y3

x2

y2

x1

y1

Figure 3.31: The interval-preconcept lattice IV(X, Y, I) corresponding to the
formal context from Fig. 3.30.
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We conclude this section with some final observations about the structure
of interval-preconcept lattices.

Theorem 87.

IV(I) ∼= 〈{〈c1, c2〉 ∈ B(I)× B(I) | c1 ≤ c2},v〉,

where 〈c1, c2〉 v 〈c3, c4〉 iff c1 ≤ c3 and c2 ≤ c4.

Proof. Denote IB = 〈{〈c1, c2〉 ∈ B(I)× B(I) | c1 ≤ c2},v〉 and define

α : IV(I)→ IB

by
α(〈A,B〉) = 〈〈A,A↑I 〉, 〈B↓I , B〉〉.

Evidently α is the required isomorphism. Indeed, it is obviously well-defined, bi-
jective and order-preserving with order-preserving inversion α−1(〈〈A,B〉, 〈C,D〉〉)
= 〈A,D〉.

Corollary 88. A complete lattice V isomorphic to the upper half of a Cartesian
product W ×W (i.e. the subset of W ×W containing all pairs 〈u, v〉 where
u, v ∈ W and u ≤ v) of some complete lattice W is isomorphic to IV(W,W,≤).

We call the complete lattice V from the previous corollary an upper tri-
angular complete lattice (of W). Lastly, we present a second version of basic
theorem on interval-preconcept lattices. In this version, we properly identify
the structure of interval-preconcept lattices and obtain the theorem in a more
familiar form.

Theorem 89 (Second Basic Theorem on Interval-preconcept Lattices).
The interval-preconcept lattice IV(X, Y, I) is an upper triangular complete lat-
tice of B(X, Y, I) in which infima and suprema are given by:

∧

ι∈I
〈Aι, Bι〉 =

〈⋂

ι∈I
Aι,

(⋃

ι∈I
Bι

)↓I↑I
〉
, (3.25)

∨

ι∈I
〈Aι, Bι〉 =

〈(⋃

ι∈I
Aι

)↑I↓I

,
⋂

ι∈I
Bι

〉
. (3.26)
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In general, an upper triangular lattice V of W admits an isomorphism α

with interval-preconcept lattice IV(X, Y, I) if and only if there exist mappings
γ : X → V and µ : Y → V such that

D∨ =
⋃

x∈X
{γ(x), γ(x) ∧ p} is supremally dense in V , (3.27)

D∧ =
⋃

y∈Y
{µ(y), µ(y) ∨ p} is infimally dense in V , (3.28)

where p = 〈∨ ∅,∧ ∅〉 and for any x ∈ X, y ∈ Y it holds

xIy ⇔ γ(x) ≤ µ(y)⇔ γ(x) ∧ p ≤ µ(y) ∧ p⇔ γ(x) ∨ p ≤ µ(y) ∨ p, (3.29)

in particular, V ∼= IV(W,W,≤).

Proof. The proof follows from above observations, the proof of Theorem 83 and
the fact that α(p) = α(〈∨ ∅,∧ ∅〉) = 〈∅↑↓, ∅↓↑〉.

3.6 Discussion and related work
An obvious advantage of our result on generating complete sublattices is that
we avoid computation of any lattices and instead we work exclusively with
contexts. In fact, our goal is to compute the closed subrelation corresponding
to the given generated complete sublattice. The actual computation of the
sublattice, if necessary, can be done with any well-known efficient algorithm
for concept lattice construction. This should lead to shorter computation time,
especially if the generated sublattice V is substantially smaller than B(X, Y, I).

In Lemma 51, we give an upper estimation of the number of iterations of our
algorithms. It seems that this estimation could be improved. We provide some
insight into the problem of complexity in Section 3.3 and outline situations
that lead to a relatively high number of iterations. Nevertheless, at the time
of writing, we were not able to construct any example with the number of
iterations greater than O(|X|+ |Y |).

As far as related work goes, we are aware of only one published algorithm
for generating sublattices [33]. Unfortunately, we cannot do any comparison as
the algorithm in question is not correct. It does not always output a sublattice.
In fact, it outputs an order-embedded lattice containing the generators which
does not necessarily have to be a sublattice. In order to compare the result of
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our method with the one presented in [33] we would need to look at the result of
our algorithm as on an order-embedded lattice, which it certainly is. However,
this does not make any sense due to the fact, that order-embedded lattices
do not form a closure system. This means that for a given set of generators
there does not have to exist the smallest order-embedded lattice containing the
generators. The algorithm from [33] is based on the following false claim: Given
an element e ∈ U and a set P ⊆ U the smallest element s ∈ U such that e ≤ s

and s ∈ C∨∧P can be expressed as s = ∧{p ∈ P | e ≤ p}. Check Fig. 3.32 for
a counterexample for this claim.

p1 p3

p2

v

Figure 3.32: A counterexample for the claim that is the basis of the algorithm in
[33], P = {p1, p2, p3}. According to the claim, p2 should be the smallest element
such that it is greater or equal to v and it belongs to the C∨∧P . However, such
element is actually p1 ∨ v = (p1 ∨ p3) ∧ p2.

We also looked into the problem of characterizing all closed subrelations
containing an arbitrary subrelation. We introduced a notion of semi-closed
subrelation which is similar to that of block relation. In contrast with closed
subrelations, semi-closed subrelations form a closure system. We showed how
this notion can be used to solve the problem at hand. We also used it to identify
an important type of subrelations for which we can always find a unique smallest
closed subrelation containing it.

Investigation of semi-closed subrelations leads to a definition of interval-
preconcepts which are a new type of formal rectangles. Interval-preconcepts
uniquely determine an interval in the original concept lattice and they have a
close relation to block relations and so to lattice factorization. We showed that
together with the same ordering as preconcepts, they form a complete lattice.
We studied properties of interval-preconcepts and we presented two versions of
basic theorem on interval-preconcept lattices.
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Chapter 4

Conclusion

We analyzed the basic step in incremental lattice construction–removal of an
incidence–and based on this analysis we proposed two incremental algorithms
for updating concepts and the corresponding concept lattice. As this is the
smallest possible change in a formal context, we believe that this problem is in
some form present in every incremental lattice construction method.

The performance of our algorithms depends heavily on the size of the order-
embedded complete lattice (resp. interval) that contains exactly the concepts
that are affected by the removal. Our experiments showed that the size of this
interval is usually very small compared to the whole lattice. Combining it with
proposed optimizations, the algorithm for updating concepts in fact computes
two derivation operators and two set equality tests for each concept from the
identified interval. Further extending presented method, we were able to remove
an arbitrary preconcept at once without any additional overhead. By investi-
gating possible extensions of our results, we arrived at a general method for
updating a concept lattice upon an arbitrary change in the underlying context.

Afterwards, we focused on studying substructures, specifically complete sub-
lattices generated by a set of elements. As it turns out, there is an efficient way
of computing the closed subrelation corresponding to a complete sublattice gen-
erated by a set of elements. Computing such closed subrelation provides a full
description of the corresponding generated complete sublattice and the actual
construction of it, if necessary, can be done via any well-known efficient algo-
rithm. Experiments with our method showed its efficiency and provided some
insight into parameters that have an impact on its performance. Interestingly,
the peak in the complexity of our method was achieved with small fixed sizes
of the set of generators, i.e. the number of generators did not depend on the
size of the lattices in these experiments.
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4. Conclusion

The algorithm we proposed actually computes a closed subrelation for any
given subrelation and in some sense the result seems minimal. This motivated
us to further investigate this since it is in contrast with well-known result pos-
tulating that closed subrelations do not form a closure system. We introduced
the notion of semi-closed subrelations that are more general than closed sub-
relations and indeed form a closure system. Using this notion we were able
to identify an important type of subrelations for which there always exists the
smallest closed subrelation containing given subrelation.

Our investigation of concepts of semi-closed relation lead us to a definition
of a new type of formal rectangle that we call interval-preconcept. As most
well-known types of formal rectangles have motivation in cognitive psychology,
so does interval-preconcept and we showed some scenarios where it can serve
as a formalization of some notion from cognitive psychology. We also explored
their relations to other well-known types of formal rectangles and to block
relations that are used for lattice factorization. Lastly, we showed how they
can be structured into a complete lattice and proposed two versions of basic
theorem on interval-preconcept lattices.
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Synopsis – Formal Concept Analysis (FCA) is a field of applied mathematics
based on formalization of the notion of concept from cognitive psychology and
has been widely studied in the last several decades. From a description of objects
by their features FCA derives a hierarchy of concepts which is formalized by a
complete lattice called a concept lattice. We explore some fundamental aspects of
FCA. First, we focus on incremental concept lattice construction and analysis of
its basic step–removal of an incidence–and propose two algorithms for incremental
concept lattice construction. Second, we study generated complete sublattices
and show how their corresponding closed subrelations can be efficiently computed.
Lastly, we investigate a new type of subrelations from which a new formal rectangle
type arises, we provide motivation from cognitive psychology for it and propose a
basic theorem for lattices of such rectangles.



Chapter 1
Preliminaries

In this chapter we provide a brief introduction to Formal Concept Analysis and
other topics related to the content of the following chapters. We will not dwell on
details here as all basic topics have been widely studied and all the details can be
found in the cited sources.

1.1 Partially ordered sets, complete lattices and closures

Recall that a binary relationR on a set U is a (partial) order, if it satisfies reflexivity,
antisymmetry and transitivity. We usually denote the order relation R by ≤, its
inverse R−1 by ≥, and we write u < v for u ≤ v and u 6= v. Moreover, if it holds
either u ≤ v or v ≤ u for every u, v ∈ V , then we call ≤ a total order. A set
U together with a partial order on U is called a partially ordered set or poset for
short. For u,w ∈ U , u is called a lower neighbor of w, if u < w and there is no
element v fulfilling u < v < w. In this case, w is called an upper neighbor of u, we
write u ≺ w and we can also read it as w covers u. Lastly, for u,w ∈ U the set
[u,w] = {v ∈ U | u ≤ v ≤ w} is called a closed interval.

A poset U is called a complete lattice if each subset P ⊆ U has the least upper
bound (supremum) and the greatest lower bound (infimum). We denote these
by
∨
P and

∧
P , respectively. An element u ∈ U is called

∨
-irreducible (resp.∧

-irreducible) if it cannot be expressed as a supremum of strictly smaller (resp.
greater) elements of U . If the element is not

∨
-irreducible (resp.

∧
-irreducible)

we call it
∨
-reducible (resp.

∧
-reducible). A subset V ⊆ U is called

∨
-dense (resp.∧

-dense), if each element u ∈ U can be obtained as suprema (resp. infima) of some
elements from V . A subset V ⊆ U is a

∨
-subsemilattice (resp.

∧
-subsemilattice,

resp. complete sublattice) of U , if for each P ⊆ V it holds
∨
P ∈ V (resp.

∧
P ∈ V ,

resp. {∨P,∧P} ⊆ V ), i.e. the set V is closed under arbitrary suprema (resp.
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1.1. Partially ordered sets, complete lattices and closures

infima, resp. both previous). A subset V ⊆ U is called an order-embedded complete
lattice, if it is a complete lattice with the induced order (it does not have to be a
sublattice). More details on order-embedded complete lattices can be found in [1].

For a subset P ⊆ U we denote by C∨P the
∨
-subsemilattice of U generated

by P , i.e. the smallest (w.r.t. set inclusion)
∨
-subsemilattice of U containing

P . C∨P always exists and is equal to the intersection of all
∨
-subsemilattices

of U containing P . The
∧
-subsemilattice of U generated by P and the complete

sublattice of U generated by P are defined similarly and are denoted by C∧P and
C∨∧P , respectively. More on posets and lattices can be found in [2].

The operators C∨, C∧ and C∨∧ are closure operators on the set U . Recall
that a closure (resp. interior) operator on a set X is a mapping C : 2X → 2X ,
where 2X is the power-set of X (i.e. the set of all subsets of X), satisfying for all
sets A,A1, A2 ⊆ X

1. A ⊆ C(A) (resp. C(A) ⊆ A),

2. if A1 ⊆ A2, then C(A1) ⊆ C(A2),

3. C(C(A)) = C(A).

An isotone (resp. antitone) Galois connection between two posets U and V is
a pair of isotone (resp. antitone) functions 〈f, g〉 where f : U → V , g : V → U

satisfying

a ≤ g(b) iff f(a) ≤ b (resp. b ≤ f(a)).

For an isotone (resp. antitone) Galois connection 〈f, g〉 the function composition
g◦f , given by (g◦f)(u) = g(f(u)), is a closure operator on U and f ◦g is an interior
(resp. closure) operator on V . We define isotone (resp. antitone) Galois connection
between two sets U and V as previously defined isotone (resp. antitone) Galois
connection on their respective power-sets equipped with the subsethood ordering.

3



1. Preliminaries

1.2 Formal Concept Analysis

Formal Concept Analysis was first introduced by R. Wille in [3] and has been widely
studied ever since. The original motivation has its roots in human psychology
and in the Port-Royal logic. Various generalizations and extensions of FCA were
proposed over last years, see [4] for an overview. Our basic reference is [5].

A (formal) context is a triple 〈X,Y, I〉 where X is a set of objects, Y a set of
attributes and I ⊆ X × Y a binary relation between X and Y specifying for each
object its attributes.

For subsets A ⊆ X and B ⊆ Y we set

A↑I = {y ∈ Y | for each x ∈ A it holds 〈x, y〉 ∈ I},
B↓I = {x ∈ X | for each y ∈ B it holds 〈x, y〉 ∈ I}.

We call ↑I , ↓I derivation operators of I. The pair 〈↑I , ↓I 〉 is an antitone Galois
connection between the sets X and Y , therefore, the operator ↑I↓I is a closure
operator on X and the operator ↓I↑I is a closure operator on Y .

A pair 〈A,B〉 satisfying A↑I = B and B↓I = A is called a (formal) concept of
〈X,Y, I〉. The set A is called the extent of 〈A,B〉, the set B the intent of 〈A,B〉.
We denote Ext(X,Y, I) (resp. Int(X,Y, I)) the set of all extents (resp. intents) of
formal concepts of 〈X,Y, I〉. When there is no danger of confusion, we can use the
term “an extent of I” instead of “the extent of a concept of 〈X,Y, I〉”, similarly
for intents, and “a concept of I” instead of “a concept of 〈X,Y, I〉”. If the formal
context is fixed we use terms “a concept”, “an extent” and “an intent”.

Several generalizations of the notion of formal concept have been proposed
over the years. We call a pair 〈A,A↑I 〉 a u-semiconcept and a pair 〈B↓I , B〉 a
t-semiconcept. Combining the previous two notions we get a general notion of
semiconcept [6]. We call a pair 〈A,B〉 satisfying A↑I↓I = B↓I (⇔ B↓I↑I = A↑I ) a
protoconcept [7]. Clearly, each semiconcept is also a potoconcept. These notions
were motivated by their use for efficient description of formal concepts, namely, each
protoconcept describes exactly one formal concept. Also, they were used to develop
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1.2. Formal Concept Analysis

Boolean Concept Logic [7]. The most general notion of preconcept is a pair 〈A,B〉
satisfying A ⊆ B↓I and B ⊆ A↑I [8, 9]. Preconcepts are just formal rectangles in
our data and motivation for this notion comes from cognitive psychology, namely,
from J. Piaget stating that concepts originate in child development from images,
ideas and preconcepts [10].

A partial order ≤ on the set B(X,Y, I) of all formal concepts of 〈X,Y, I〉 is
defined by 〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1). B(X,Y, I) along with ≤
is called the concept lattice of 〈X,Y, I〉. By the basic theorem on concept lattices
[5, Theorem 3], B(X,Y, I) is a complete lattice with infima and suprema given by

∧

ι∈I
〈Aι, Bι〉 =

〈⋂

ι∈I
Aι,

(⋃

ι∈I
Bι

)↓I↑I
〉
, (1.1)

∨

ι∈I
〈Aι, Bι〉 =

〈(⋃

ι∈I
Aι

)↑I↓I

,
⋂

ι∈I
Bι

〉
. (1.2)

Moreover, a complete lattice V is isomorphic to B(X,Y, I) if and only if there are
mappings γI : X → V and µI : Y → V such that γI(X) is

∨
-dense in V , µI(Y ) is∧

-dense in V and xIy is equivalent to γI(x) ≤ µI(y) for all x ∈ X and all y ∈ Y .
In particular, V is isomorphic to B(V, V,≤).

Concepts µI(y) = 〈{y}↓I , {y}↓I↑I 〉 where y ∈ Y are called attribute concepts,
their extents are called attribute extents and intents are called attribute intents.
According to the previous, each concept 〈A,B〉 is an infimum of some attribute
concepts. Dually, concepts γI(x) = 〈{x}↑I↓I , {x}↑I 〉 for x ∈ X are called object
concepts, they are

∨
-dense in B(X,Y, I).

When the set of objects X and the set of attributes Y are fixed, we denote the
concept lattice of 〈X,Y, I〉 just by B(I).

For any set of preconcepts Q ⊆ B(X,Y, I) we set
⊔
Q =

⋃
{A×B | 〈A,B〉 ∈ Q}.

⊔
Q is the subrelation of I equal to the union of rectangles given by preconcepts

from Q.
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Chapter 2
Concept lattice construction by incidence
removals

We open this chapter with a fundamental question about concept lattice construc-
tion, specifically, what effect does removing an incidence from a formal context
have on its concept lattice. This question is known as the problem of “killing a
cross” which was coined by R. Wille in the early days of FCA. Solving this problem
is desirable not only from the theoretical but also from the practical point of view
because it leads us to an efficient method of computing concept lattices of two
very similar formal contexts. Moreover, it seems that any incremental method for
concept lattice construction has this problem rooted into it.

Traditionally, we need to recompute whole concept lattice upon the slightest
change in the input data. Although there have been several incremental algorithms
introduced (see [11, 12, 13, 14, 15, 16] and also [17] for a comparison of some of the
algorithms) they usually operate on object (resp. attribute) level. We focus on a
finer approach and study the problem of removing a single incidence from a formal
context. Our goal is to provide an analysis of this problem and based on it we
propose two incremental algorithms for an efficient reconstruction of the concept
lattice after the removal.

Throughout this chapter we consider a formal context 〈X,Y, J〉 which results
from a formal context 〈X,Y, I〉 by removing a single incidence 〈x0, y0〉, i.e. I =
J ∪ 〈x0, y0〉 and 〈x0, y0〉 /∈ J . We denote the respective concept lattices by B(J)
and B(I). Because we take the formal context 〈X,Y, I〉 as the starting point, we
call it, and everything related to it (including derivation operators, B(I), . . . ),
initial. Similarly, we call final everything related to the formal context 〈X,Y, J〉.
We analyze necessary changes that are to be made in the initial concept lattice to
obtain the final concept lattice.
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2.1. Basic notions

2.1 Basic notions

It is obvious that not all initial concepts have to be influenced by the removal and
there might be some concepts belonging into both B(I) and B(J). We call such
concepts steady since they remain unchanged and do not require any reconstruction
while computing B(J) from B(I). For this reason, it is important to identify steady
concepts, and crucially, concepts that are not steady, unsteady for short. As it turns
out, unsteady initial concepts form a bounded sublattice of B(I). This sublattice
is not generally complete and it is equal to the closed interval [γI(x0), µI(y0)].
Therefore, this sublattice is the only part of the concept lattice we need to focus
on while pursuing our goal of computing B(J) based on B(I).

Lemma 1. A concept c ∈ B(I) is unsteady iff c ∈ [γI(x0), µI(y0)].

We introduce four child operators �,�,�,� which we use throughout the rest
of this chapter. The idea behind them is to relate concepts of B(I) to concepts of
B(J) in a natural way that simplifies our analysis.

Definition 2 (child operators). For concepts c = 〈A,B〉 ∈ B(I), d = 〈C,D〉 ∈
B(J) we set

c� = 〈A�, B�〉 = 〈A↑J↓J , A↑J 〉, c� = 〈A�, B�〉 = 〈B↓J , B↓J↑J 〉,
d� = 〈C�, D�〉 = 〈D↓I , D↓I↑I 〉, d� = 〈C�, D�〉 = 〈C↑I↓I , C↑I 〉.

Evidently, c�, c� ∈ B(J) and d�, d� ∈ B(I). c� (resp. c�) is called the upper
(resp. lower) child of c. It holds d� = d� and it is the (unique) concept from B(I)
containing, as a rectangle, the rectangle represented by d.

Lemma 3 (compound child operators). The mappings c 7→ c�� and d 7→
d�� are closure operators and the mappings c 7→ c�� and d 7→ d�� are interior
operators.

7



2. Concept lattice construction by incidence removals

2.2 Computing the final concepts

Building on notions and observations from the previous section, we will now turn
our attention to the problem of computing concepts of B(J) given concepts of B(I).

Theorem 4. An unsteady concept d ∈ B(J) is a (upper or lower) child of exactly
one concept c ∈ B(I). This concept is unsteady and satisfies c = d� = d�.

The theorem leads to the following simple way of constructing B(J) from B(I).
For each c ∈ B(I) the following has to be done:

1. If c is steady, then it has to be added to B(J).

2. If c is not steady, then each its unsteady child, i.e. each unsteady element of
{c�, c�}, has to be added to B(J).

This method ensures that all proper elements will be added to B(J) (i.e. no element
will be omitted) and each element will be added exactly once.

The following lemma shows a simple way of determining whether a child of
an unsteady initial concept is steady. It also describes the role of fixpoints of the
compound child operators.

Lemma 5. Let c be an unsteady concept of B(I). Then

– c� is unsteady iff c is a fixpoint of ��,

– c� is unsteady iff c is a fixpoint of ��.

The proposed method is utilized in Algorithm 1 which computes the final con-
cepts from the initial ones but does not take into the account the ordering.

Time complexity of Algorithm 1 is clearly O(|B(I)||X||Y |) in the worst case
scenario. Indeed, the number of unsteady concepts is at most equal to |B(I)|
and the computation of operators ��,�� can be done in O(|X| · |Y |) time. It is
worth noting that the time complexity is heavily affected by the size of the interval
[γI(x0), µI(y0)] which can be much smaller than the size of the whole lattice B(I).
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Algorithm 1 Transforming concepts of B(I) into concepts of B(J).
procedure TransformConcepts(B(I))
B(J)← B(I);
for all c = 〈A,B〉 ∈ [γI(x0), µI(y0)] do
B(J)← B(J) \ {c};
if c = c�� then
B(J)← B(J) ∪ {c�};

if c = c�� then
B(J)← B(J) ∪ {c�};

return B(J);

There are several optimizations that we can apply to Algorithm 1, e.g. in order
to compute results of derivation operators, we can use already provided extents
and intents. Also, tests like c = c�� can actually be performed without computing
the corresponding compound child operators.

2.3 Computing the final lattice

In order to analyze structural changes in a concept lattice after removal of an
incidence we need to investigate additional properties of the closure operator ��

and the interior operator ��. We focus mostly on their fixpoints.

Lemma 6. Each steady concept is a fixpoint of both �� and ��.

Lemma 7. For any c ∈ B(I), each concept from [c��, c��] \ {c} is steady.

The following lemma shows an important property of sets of fixpoints of com-
pound child operators in the unsteady initial sublattice. Namely, the set of fixpoints
of �� is a lower set whereas the set of fixpoints of �� is an upper set.

Lemma 8. Let c ∈ B(I) be an unsteady concept. If c is a fixpoint of ��, then each
c′ ≤ c is also a fixpoint of ��. If c is a fixpoint of ��, then each c′ ≥ c is also a
fixpoint of ��.

9



2. Concept lattice construction by incidence removals

The above results provide an interesting insight into the structure of our fix-
points. This helps us restrict possible cases that we need to take into consideration
when designing Algorithm 2 which computes the lattice B(J). The time complexity
of Algorithm 2 is in the worst case O(|B(I)| · |X|2 · |Y |).

In Algorithm 2 we assume that following functions are already defined:

• UpperNeighbors(c) - returns upper neighbors of c;

• LowerNeighbors(c) - returns lower neighbors of c;

• Link(c1, c2) - introduces neighborhood relationship between c1 and c2;

• Unlink(c1, c2) - cancels neighborhood relationship between c1 and c2.

Example 9. An execution of Algorithm 2 on the concept lattice of the formal
context from Fig. 2.1 is depicted in Fig. 2.2-2.6. Each picture captures the state
after transformation of an unsteady concept. Unsteady concepts are drawn with
dashed circles.

2.4 Experiments

We provide some insight into performance of our algorithms as well as some ex-
perimental evaluation. Comparing our algorithms to the traditional algorithms
that recompute the whole final lattice does not make much sense as the difference
proved to be immense in our preliminary experiments. This is caused by the obvi-
ous advantage of incremental methods as we usually need to recompute only a small
portion of the initial lattice. Moreover, we can make use of previously computed
concepts instead of just discarding them. Performance of our algorithms depends
heavily on the size of unsteady initial interval. Hence, we provide experiments
focusing on sizes of intervals corresponding to selected incidences. We used real
world datasets as well as synthetic data. The former were taken from UC Irvine
Machine Learning Repository1 with an exception of dataset Drinks [18]. In order

1http://archive.ics.uci.edu/ml/index.php
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Algorithm 2 Transforming the lattice B(I) into the lattice B(J).
procedure LinkIfNeeded(c1, c2)

if @k ∈ B(I) : c1 < k < c2 then
Link(c1, c2);

procedure SplitConcept(c)
d1 = c�; d2 = c�;
Link(d1, d2);
for all u ∈ UpperNeighbors(c) do

Unlink(c, u); Link(d2, u);
for all l ∈ LowerNeighbors(c) do

Unlink(l, c); Link(l, d1);
for all u ∈ UpperNeighbors(c) do

if u 6= u�� then
Unlink(d2, u); Link(d1, u); LinkIfNeeded(d2, u��);

for all l = 〈C,D〉 ∈ LowerNeighbors(c) do
if y0 /∈ D then

Unlink(l, d1); Link(l, d2); LinkIfNeeded(l��, d1);
return d1, d2;

procedure RelinkReducedIntent(c)
for all u = 〈C,D〉 ∈ UpperNeighbors(c) do

if u 6= u�� then
Unlink(c, u);
LinkIfNeeded(c��, u); LinkIfNeeded(c, u��);

procedure UnlinkVanishedConcept(c)
for all u ∈ UpperNeighbors(c) do

Unlink(c, u); LinkIfNeeded(c��, u);
for all l ∈ LowerNeighbors(c) do

Unlink(l, c);

procedure TransformConceptLattice(B(I))
for all c = 〈A,B〉 ∈ [γI(x0), µI(y0)] from least to largest w.r.t. v do

if c = c�� and c = c�� then . Concept will split.
B(I)← B(I) \ {c};
B(I)← B(I) ∪ SplitConcept(c);

else if c 6= c�� and c = c�� then . Extent will be smaller.
A← A \ {x0};

else if c = c�� and c 6= c�� then . Intent will be smaller.
RelinkReducedIntent(c);
B ← B \ {y0};

else if c 6= c�� and c 6= c�� then . Concept will vanish.
B(I)← B(I) \ {c};
UnlinkV anishedConcept(c);

11
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I y0 y1 y2 y3 y4
x0 • × ×
x1 × × ×
x2 ×
x3 × × ×
x4 ×

Figure 2.1: A formal
context with four un-
steady concepts.
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y0 y3

x4

Figure 2.2: The initial
state of the concept lat-
tice.
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y0 y3
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Figure 2.3: The transfor-
mation of γI(x0).
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y1
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y0 y3

x4

Figure 2.4: The concept
c1 vanishes.
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x1 x0
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y1

x2
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Figure 2.5: The concept
c2 vanishes.

y2

x1 x0

y4

x3

y1

x2

y0 y3

x4

Figure 2.6: The transfor-
mation of µI(y0).

to obtain bivalent attributes we rescaled the attributes (as usual) using nominal
scaling [5]. The details of used datasets can be found in Table 2.1.

For our experiments we selected a random incidence 10000 times and recorded
the size of the corresponding interval. We provide maximal and average sizes as
percentages of size of the whole concept lattice.

The results on real world datasets can be found in Table 2.2. We can see that
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Ob
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ep
ts

Mushrooms 8124 22 119 238710
Nursery 12960 8 32 183079
Post 90 9 25 1523
Zoo 101 17 28 379

Drinks 68 25 25 320

Table 2.1: Properties of datasets used in our experiments.

for the larger datasets (Mushrooms and Nursery) the average size of the selected
interval is well below 0.5%. For the smaller datasets, it is significantly larger
although still within the 10%.

Max size (%) Avg size (%)

Mushrooms 4.46 0.46
Nursery 0.14 0.11
Post 8.27 3.92
Zoo 33.51 6.93

Drinks 51.56 8.83

Table 2.2: Sizes of intervals for real world data corresponding to randomly selected
incidences.

The synthetic datasets were randomly generated with a fixed density (2%, 5%,
10%, 15%, 20%, 25%) and consisted of 500 objects and 100 attributes. The results
can be seen in Table 2.3. All the recorded sizes, except for one, were withing
1%. Interestingly, both maximal and average size seems to be decreasing w.r.t.
increasing density.

The results suggest that an interval corresponding to a randomly selected inci-
dence usually contains only a fraction of concepts w.r.t. the whole concept lattice.

13



2. Concept lattice construction by incidence removals

Density (%) Max size (%) Avg size (%)

2 1.73 0.47
5 0.86 0.25
10 0.73 0.18
15 0.75 0.15
20 0.72 0.14
25 0.78 0.14

Table 2.3: Sizes of intervals for synthetic data corresponding to randomly selected
incidences.

Algorithm 1 can perform very well, especially if we take into consideration that the
optimized version of the algorithm in fact computes just two derivation operators
and two set comparisons in each iteration.

2.5 Extensions

In this section we give a brief and informal description of selected extensions of
our method. A natural extension of our method for removing an arbitrary number
of incidences stems from repeated runs of the presented algorithms, i.e. removing
incidences one by one. We obtain a sequence of formal contexts I = I0 → I1 →
I2 → · · · → In = J where Ik = Ik+1 ∪ {〈xik+1 , yjk+1〉}. Evidently, there exist child
operators between each pair of adjacent formal contexts. We call initial (resp.
final) concept unsteady if it is unsteady w.r.t. any removal step. By removing
incidences one by one we are able to remove arbitrary number of incidences from
any formal context.

It is also possible to remove an arbitrary number of incidences from an object
in a single step. In fact, the presented method works practically as is by taking I =
J∪{〈xi, yj1〉, 〈xi, yj2〉, . . . , 〈xi, yjn

〉} (J does not contain any of the incidences we are
removing) and unsteady concepts to be from the union of all intervals determined
by the removed incidences. To see this is indeed the case, consider removing
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I = I0 I1

�1
, �1

�1
, �1

I1 I2

�2
, �2

�2
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I2 . . .

�3
, �3

�3
, �3

. . . In = J

�n
, �n

�n
, �n

Figure 2.7: Removing n incidences one by one. We have Ik = Ik+1∪{〈xik+1 , yjk+1〉}.

the incidences one by one. We observe that if an unsteady (w.r.t. any removal)
concept c has two unsteady children, one of them will always remain steady (w.r.t.
all consecutive removals) and the other can have at most one unsteady (w.r.t. any
removal) child. We can also show that every concept of B(I) can be computed by
the same formulae as in the definition of the child operators. The case for removing
an arbitrary number of incidences from an attribute in a single step is dual.

We can go one step further and remove an arbitrary preconcept at once. This is
now an easy extension of the case for removing an arbitrary number of incidences
from a single object (resp. attribute) and its justification is very similar to it.

Moving onwards, we consider removing arbitrary incidences at once based only
on the concepts and derivation operators of the initial and final formal context. We
can easily see that this is not possible. Consider a contranominal scale of size n,
i.e. a formal context 〈{1, 2, . . . , n}, {1, 2, . . . , n}, 6=〉. Evidently, given such context
we would need to be able to derive 2n final concepts from a single initial concept.

Having found the limit for our extensions, we now turn our attention to the
possibility of concurrently removing two–or more–incidences. The exact condition
for running our algorithms concurrently without any problem seems to be compu-
tationally more expensive and might not be worth using. Nevertheless, it might be
useful to state it properly: unsteady intervals together with the set of the results
of application of compound child operators to the concepts of the intervals should
have an empty intersection.
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Based on the ideas above we can now summarize what kind of changes to a
formal context we are able to handle with our method.

• Removal of an arbitrary preconcept at once.

• Addition of an object (resp. attribute) can be achieved by adding full row
(resp. column) to the underlying formal context. Evidently, this has no effect
on the structure of the concept lattice (it just adds the object to all concepts).
At last, we can remove unwanted incidences at once.

• Removal of an object (resp. attribute) can be done by removing all its inci-
dences at once and afterwards removing the resulted empty row (resp. col-
umn). This is easy, just check the greatest (resp. smallest) concept.

• Arbitrary change in an object (resp. attribute) is just a combination of the
cases above (removal and addition).

2.6 Discussion and related work

We analyzed changes in a concept lattice caused by removal of a single incidence
from the associated formal context. We showed selected theoretical results and
presented two algorithms with time complexities O(|B| · |X| · |Y |) (Alg. 1; without
structure information) and O(|B| · |X|2 · |Y |) (Alg. 2; with structure information).

There exist several algorithms for incremental computation of concept lattice
[11, 12, 13, 14, 15, 16] and they are usually based on adding/removing objects or
attributes. Our approach is new in that we focus on the finer problem of recomput-
ing a concept lattice after the removal of just one incidence. We believe that this
problem is inherently rooted into every incremental algorithm for concept lattice
construction. Amongst mentioned algorithms, the algorithm proposed by Nourine
and Raynaud in [15] has the lowest time complexity of O((|Y | + |X|) · |X| · |B|).
However, experiments presented in [12] indicate that this algorithm sometimes per-
forms slower than some algorithms with time complexity O(|B| · |X|2 · |Y |). In the
case of our algorithms, presented experiments indicate that the size of the interval
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of unsteady concepts is usually relatively small, which substantially reduces the
overall processing time of our algorithms.

We also looked into some possible extensions of our method and showed how
it can be used to remove an arbitrary number of incidences from a single object
(resp. attribute) at once. It turns out that we are also able to remove an arbitrary
preconcept at once. Moreover, we are able to do it without any additional overhead.
There is also the possibility of chaining applications of our algorithms providing a
method to remove arbitrary incidences from a formal context. Utilizing these ideas
we arrive at a general method for updating a concept lattice upon an arbitrary
change in the underlying formal context.

The dual problem, adding an incidence to a formal context, does not share
some nice properties as the problem of removing, e.g. the set of all unsteady
final concepts has a more general structure than a closed interval and also not all
unsteady initial concepts can be computed by the child operators.
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Chapter 3
On sublattices and subrelations

One of basic theoretical results of FCA states a correspondence between closed
subrelations of a formal context and complete sublattices of the corresponding
concept lattice [5]. In this chapter, we study the related problem of constructing
the closed subrelation for a complete sublattice generated by given set of elements.

A subrelation J ⊆ I is called a closed subrelation of I [5] if each concept
of 〈X,Y, J〉 is also a concept of 〈X,Y, I〉. There is the following correspondence
between closed subrelations of I and complete sublattices of B(X,Y, I). For each
closed subrelation J ⊆ I, B(X,Y, J) is a complete sublattice of B(X,Y, I), and for
each complete sublattice V ⊆ B(X,Y, I) there exists a closed subrelation J ⊆ I

such that V = B(X,Y, J).
Throughout this chapter we consider a formal context 〈X,Y, I〉, its concept

lattice B(X,Y, I), a set of concepts P ⊆ B(X,Y, I) and a complete sublattice
V ⊆ B(X,Y, I) generated by the set P (i.e. V = C∨∧P ). Elements of P are
called generators. We already know that there exists a closed subrelation J ⊆ I

with the concept lattice B(X,Y, J) equal to V . We show a method of construct-
ing J without the need of constructing B(X,Y, I) first. We propose an efficient
algorithm implementing the method and show illustrative examples and results of
experiments.

We also investigate additional related problems. For an arbitrary subrelation
K ⊆ I, we study the possibility of finding the least closed subrelation containingK.
The problem does not always have a solution as the system of closed subrelations of
I is not a closure system. We identify an important type of subrelations for which
the solution always exists. We also provide some results on closed subrelations
J ⊇ K and their associated concept lattices.

From the investigation of subrelations a new type of formal rectangle arises.
Such rectangles might serve as formalization of some notions from the field of cog-
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nitive psychology. We investigate properties of such formal rectangles and outline
their relation to already known types. We also show that they are related to block
relations. Lastly, we show how they can be structured into a lattice and we propose
a basic theorem for lattices of such rectangles.

3.1 Closed subrelations for generated sublattices

Let us have a formal context 〈X,Y, I〉 and a subset P of its concept lattice. Denote
by V the complete sublattice of B(X,Y, I) generated by P (i.e. V = C∨∧P ). Our
goal is to find, without computing the lattice B(X,Y, I), the closed subrelation
J ⊆ I whose concept lattice B(X,Y, J) is equal to V .

If B(X,Y, I) is finite, V can be obtained by alternating applications of the
closure operators C∨ and C∧ on P : we set V1 = C∨P , V2 = C∧V1, . . . , and,
generally

Vi =





C∨Vi−1 for odd i,
C∧Vi−1 for even i.

(3.1)

The sets Vi are
∨
-subsemilattices (for odd i) resp.

∧
-subsemilattices (for even i)

of B(X,Y, I). Once Vi = Vi−1, we have the complete sublattice V .

C∨P = V1 V2

C∧

V2 V3

C∨

V3 Vi−1 = Vi = V
. . .

Figure 3.1: One way to compute a (finite) complete sublattice generated by a set
P stems from alternating computations of closures C∨ and C∧ as given by (3.1).

We always consider sets Vi together with the appropriate restriction of the or-
dering on B(X,Y, I). For each i > 0, Vi is a complete lattice that is order-embedded
into B(X,Y, I) (but it is generally not a complete sublattice of B(X,Y, I)).

In what follows, we construct formal contexts with concept lattices isomorphic
to the complete lattices Vi, i > 0. By doing so, we obtain a sequence of formal
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3. On sublattices and subrelations

context as shown in Fig. 3.2. We start by finding a formal context corresponding
to the complete lattice V1. Let K1 ⊆ P × Y be given by

〈〈A,B〉, y〉 ∈ K1 iff y ∈ B. (3.2)

As we can see, rows in the context 〈P, Y,K1〉 are exactly intents of concepts from P .

C∨P = V1 V2

C∧

V2 V3

C∨

V3 Vi−1 = Vi = V
. . .

Vi−1 = Vi = V

B(K1)

∼ =

B(K1) B(K2)

∼ =

B(K2) B(K3)

∼ =

B(K3) B(Ki−1) = B(Ki)
. . .

∼ =

B(K1)

K1

↔

B(K2)

K2

↔

K3

B(K3)

↔
Ki−1 = Ki

B(Ki−1) = B(Ki)

. . .

↔

Figure 3.2: We compute a sequence of formal contexts Ki (i > 0) in order to
obtain the closed subrelation with concept lattice equal to the complete sublattice
generated by a set of concepts P .

Next, we describe formal contexts for complete lattices Vi, i > 1. All of the
contexts are of the form 〈X,Y,Ki〉, i.e. they have the set X as the set of objects
and the set Y as the set of attributes (the relation K1 is different in this regard).
The relations Ki for i > 1 are defined in a recursive manner:

for i > 1, 〈x, y〉 ∈ Ki iff
{

x ∈ {y}↓Ki−1↑Ki−1↓I for even i,
y ∈ {x}↑Ki−1↓Ki−1↑I for odd i.

(3.3)

Lemma 10. For each i > 1,
1. Ki ⊆ I,

2. Ki ⊆ Ki+1.

Remark 11. Informally, we can think of creating the sequence of formal contexts
Ki as follows: for even i, we obtain the formal context Ki by stretching attribute
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intents of Ki−1 over I; if i is odd, we stretch object extents of Ki−1 over I. Another
way of thinking about what happens at each iteration is the following: for even i
we are fixing extents and for odd i we are fixing intents. Thinking in these informal
terms could help with understanding the presented method.

Lemma 12. For each i > 0, the concept lattice B(P, Y,Ki) (for i = 1) resp.
B(X,Y,Ki) (for i > 1) and the complete lattice Vi are isomorphic. The isomor-
phism is given by 〈B↓Ki , B〉 7→ 〈B↓I , B〉 if i is odd and by 〈A,A↑Ki 〉 7→ 〈A,A↑I 〉 if
i is even.

If X and Y are finite, then 2. of Lemma 10 implies that there is a number
n > 1 such that Kn+1 = Kn. Denote this relation by J . According to Lemma 12,
there are two isomorphisms of the concept lattice B(X,Y, J) and Vn = Vn+1 = V .
These two isomorphisms coincide and in fact B(X,Y, J) = V .

Corollary 13. The relation J ⊆ I as defined above is a closed subrelation of I and
B(X,Y, J) = V .

Algorithm 3 Computing the closed subrelation J .
Require: formal context 〈X,Y, I〉, subset P ⊆ B(X,Y, I)
Ensure: the closed subrelation J ⊆ I whose concept lattice is equal to C∨∧P

Generate(K1) . K1 is given by (3.2)
procedure Generate(J)

i← 1
repeat

L← J
i← i+ 1
if i is even then

J ← {〈x, y〉 ∈ I | x ∈ {y}↓L↑L↓I}
else

J ← {〈x, y〉 ∈ I | y ∈ {x}↑L↓L↑I}
until i > 2 & J = L
return J
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Lemma 14. Algorithm 3 is correct and terminates after at most max(|I| + 1, 2)
iterations.

Example 15. We now demonstrate execution of Alg. 3. Let 〈X,Y, I〉 be the
formal context from Fig. 3.3 (left). The associated concept lattice B(X,Y, I) is
depicted in Fig. 3.3 (right). Let P = {c1, c2, c3} where c1 = 〈{x1}, {y1, y4}〉,
c2 = 〈{x1, x2}, {y1}〉, c3 = 〈{x2, x5}, {y2}〉 are concepts from B(X,Y, I). These
concepts are depicted in Fig. 3.3 by filled dots.

I y1 y2 y3 y4 y5
x1 × ×
x2 × × ×
x3 × ×
x4 ×
x5 ×

y1 y3

x2

x5 x4

y2

y4
x1 x3

y5

Figure 3.3: Formal context 〈X,Y, I〉 (left) and concept lattice B(X,Y, I) together
with a subset P ⊆ B(X,Y, I), depicted by filled dots (right).

K1 y1 y2 y3 y4 y5
c1 × ×
c2 ×
c3 ×

y3, y5

c2

y1

y4
c1

c3

y2 y1 y3

x2

x5 x4

y2

y4
x1 x3

y5

Figure 3.4: Formal context 〈P, Y,K1〉 (left), the concept lattice B(P, Y,K1) (center)
and the

∨
-subsemilattice C∨P ⊆ B(X,Y, I), isomorphic to B(P, Y,K1), depicted

by filled dots (right).
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3.1. Closed subrelations for generated sublattices

K2 y1 y2 y3 y4 y5
x1 × ×
x2 × × •

x3 • •

x4 •

x5 ×

x5

x1 x2

x3, x4

y3, y5

y1

y4

y2 y1 y3

x2

x5 x4

y2

y4
x1 x3

y5

Figure 3.5: Formal context 〈X,Y,K2〉 (left), the concept lattice B(X,Y,K2) (cen-
ter) and the

∧
-subsemilattice V2 = C∧V1 ⊆ B(X,Y, I), isomorphic to B(X,Y,K2),

depicted by filled dots (right). Elements of I \K2 are depicted by dots in the table.

K3 y1 y2 y3 y4 y5
x1 × ×
x2 × × ×
x3 • •

x4 •

x5 ×

x5

x1 x2

x3, x4

y5

y1

y4

y2

y3

y1 y3

x2

x5 x4

y2

y4
x1 x3

y5

Figure 3.6: Formal context 〈X,Y,K3〉 (left), the concept lattice B(X,Y,K3) (cen-
ter) and the

∨
-subsemilattice V3 = C∨V2 ⊆ B(X,Y, I), isomorphic to B(X,Y,K3),

depicted by filled dots (right). Elements of I \K3 are depicted by dots in the table.
As K3 = K4 = J , it is a closed subrelation of I and V4 = C∧V3 = V3 = V .

In our method, the relation K1 differs from the other relations Ki for i > 1 in
that it is a subset of P × Y instead of X × Y . In the last part of this section, we
present a modification of the method which replaces K1 with a subrelation K ′1 ⊆ I
given by

K ′1 =
⊔
P, (3.4)

where
⊔
P is a union of rectangles determined by elements of P . We can easily

show that after this replacement our method gives the same result as before. Note
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3. On sublattices and subrelations

that the subrelation K ′1 lacks one important property of the relation K1. Namely,
intents of K ′1 need not be intents of I. Consequently, the concept lattice of K ′1 does
not have to be isomorphic to the complete lattice V1, the property the relation K1

has due to Lemma 12.

Algorithm 4 Computing the closed subrelation J , alternative version.
Require: formal context 〈X,Y, I〉, subset P ⊆ B(X,Y, I)
Ensure: the closed subrelation J ⊆ I whose concept lattice is equal to C∨∧P
return Generate(

⊔
P )

3.2 Experiments

Time complexity of Alg. 3 (and its variant Alg. 4) is clearly polynomial w.r.t. |X|
and |Y |. In Lemma 14 we showed that the number of iterations is less than or
equal to |I|+1. Our experiments indicate that this number might be much smaller
in the practice. We used synthetic as well as real world datasets. More details
about used datasets can be found in Section 2.4 and in Table 2.1.

The first batch of experiments involved larger real world datasets (Mushrooms
and Nursery). The size of the set of generators P was given by percentage of
corresponding number of concepts. For each size of P we randomly selected its
elements 1000 times, ran our algorithm, and measured the number n of iterations,
after which the algorithm terminated. In both cases we recognized that the peak
in average as well as in the maximal number of iterations was achieved for a very
small sizes of P . Also both values seemed decreasing w.r.t. increasing size of P .
Therefore, in all following experiments we focused on fixed small sizes of P and the
results can be found in Tables 3.1 and 3.2.

We also ran several experiments on synthetic datasets. Our synthetic contexts
were randomly generated with fixed density and contained 500 objects and 100
attributes. For each density we generated 1000 formal contexts. For each such
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3.2. Experiments

|P | Mushrooms Nursery
Max n Avg n Max n Avg n

3 9 3.39 6 2.27
4 18 4.77 8 2.59
5 17 6.34 9 3.36
6 18 7.51 14 4.37
7 14 7.27 12 4.78
8 19 7.77 16 5.99
10 12 7.63 18 7.45
15 12 6.84 10 5.94
20 10 6.32 8 5.18
25 11 6.2 7 4.56

Table 3.1: The results of experiments on larger real world datasets. The size of P
is fixed, i.e. it is no longer given as a percentage. The whole lattice was generated
only once, specifically for Nursery dataset and |P | = 25.

|P | Post Zoo Drinks
Max n Avg n Max n Avg n Max n Avg n

3 8 2.81 8 2.92 8 3.09
4 16 3.77 11 3.68 12 3.6
5 24 5.40 13 4.20 9 3.90
6 28 7.35 12 4.46 9 4.15
7 25 8.76 12 4.68 10 4.15
8 24 9.31 13 4.94 9 4.13
10 28 9.51 11 5.06 9 4.11
15 18 7.78 11 4.85 10 4.06
20 15 6.82 9 4.72 8 3.75
25 13 6.42 11 4.43 8 3.53

Table 3.2: The results of experiments on smaller real world datasets. The size of P
is fixed, i.e. it is no longer given as a percentage. In none of the cases P generated
the whole concept lattice.
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3. On sublattices and subrelations

context and each fixed size of P we randomly selected generators 100 times and
recorded the maximal and average number of iterations of our algorithm across all
generated contexts. The results can be found in Table 3.3 and 3.4.

Density 5% 10% 20%
|P | Max n Avg n All Max n Avg n All Max n Avg n All

3 3 2.06 0 3 2.07 0 3 2.12 0
4 6 2.23 0 8 2.29 0 8 2.47 0
5 8 2.52 0 20 2.71 0.09 28 3.76 2.92
6 20 2.94 0.08 25 3.65 2.34 27 6.34 23.7
7 22 3.64 0.95 26 5.70 17.38 28 8.44 67.73
8 26 5.15 8.37 22 8.28 57.46 21 7.53 92.55
10 26 9.38 61.4 20 8.07 97.72 10 5.97 99.76
15 16 7.95 99.98 8 6.00 100 6 4.40 100
20 8 6.20 100 6 5.45 100 5 4.01 100
25 8 6.00 100 6 4.29 100 4 4.00 100

Table 3.3: The results of experiments on synthetic contexts with densities 5%, 10%
and 20%. The column “All” specifies percentage of cases in which P generated the
whole concept lattice.

Investigating the results on synthetic data, we can observe the peak in both
maximal and average number of iterations shifting from |P | ≈ 10 to |P | ≈ 6 with
increasing density of contexts. Interestingly, the peak in the average number of
iterations seems slightly decreasing w.r.t. density, being 9.38 for |P | = 10 and 7.76
for |P | = 6.

From the results we can see that the average number of iterations is very small
compared to the number of objects and attributes. The maximal number of iter-
ations is also small compared to the size of corresponding context. Both values
usually peak for very small sizes of P and there is also an apparent decreasing
trend for number of iterations for increasing size of P . We observed the highest
number of iterations for fixed sizes of P , no matter the size of the concept lattice.
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3.3. Closed subrelations containing arbitrary relation

Density 30% 40% 50%
|P | Max n Avg n All Max n Avg n All Max n Avg n All

3 3 2.16 0 3 2.19 0 18 2.23 0
4 29 2.75 0 37 3.17 0 30 3.62 0
5 28 5.26 7.6 37 6.11 6.7 35 6.78 3.75
6 28 7.78 31.39 28 7.91 25.61 40 7.76 15.12
7 26 7.78 64.69 27 7.24 50.97 22 6.86 34.95
8 20 6.54 85.13 22 6.14 73.64 20 5.98 56.49
10 9 5.35 98.81 12 4.97 95.32 10 4.80 88.05
15 6 4.03 100 5 4 99.99 8 4 99.97
20 4 4 100 4 3.99 100 4 3.98 100
25 4 3.99 100 4 3.93 100 4 3.70 100

Table 3.4: The results of experiments on synthetic contexts with densities 30%, 40%
and 50%. The column “All” specifies percentage of cases in which P generated the
whole concept lattice.

3.3 Closed subrelations containing arbitrary relation

Procedure Generate from Algorithm 3 accepts any subrelation of I as its param-
eter so it does make sense to investigate what output it generates upon receiving
an arbitrary subrelation of I. Interestingly, the next lemma shows that no matter
what subrelation the procedure is called with, it always outputs a closed subrela-
tion of I. This may come as a surprise due to the fact that closed subrelations do
not form a closure system.

Lemma 16. For any subrelation K ⊆ I, the subrelation Generate(K) is a closed
subrelation of I.

The above result alludes to some questions about closed subrelations containing
a given subrelation K ⊆ I. Namely, 1. whether there is the least such subrelation,
and 2. what can be said about these subrelations and their concept lattices in
general.
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3. On sublattices and subrelations

As mentioned in [5], the intersection of a system of closed subrelations needs
not be a closed subrelation. Therefore, the system of all closed subrelations of I
is not a closure system and, consequently, there does not exist a closure operator
assigning to each subrelation K ⊆ I the least greater closed subrelation. Thus,
the answer to the first question is, at least in general, negative. However, in what
follows, we show that for some important type of subrelations of I (which we have
already met) the answer is positive.

Definition 17 (semi-closed subrelation). We call a subrelation L ⊆ I semi-
closed if for each x ∈ X and y ∈ Y , {x}↑L is an intent and {y}↓L is an extent
of I.

The definition of semi-closed subrelation resembles closely the definition of a
block relation [5, 19]. The only difference is that semi-closed relations are subrela-
tions whereas block relations are super-relations of I.

We denote by CIV the closure operator associated with the closure system of
all semi-closed subrelations of I. Algorithm 5 computes the value of CIV for any
subrelation L ⊆ I. The same algorithm for block relations has been shown in [20].

Algorithm 5 Computing CIV
Require: subrelation L ⊆ I
Ensure: CIVL
i← 1
repeat

L′ ← L
i← i+ 1
if i is even then

L← {〈x, y〉 ∈ X × Y | x ∈ {y}↓L′↑I↓I}
else

L← {〈x, y〉 ∈ X × Y | y ∈ {x}↑L′↓I↑I}
until i > 2 & L = L′

return L
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3.3. Closed subrelations containing arbitrary relation

Lemma 18. If J is a closed subrelation of I and K ⊆ J , then CIVK ⊆ J .

The following lemma shows that despite the fact that closed subrelations do
not form a closure system, in some important cases, there exists the least closed
subrelation containing K.

Lemma 19. Let K =
⊔
P for some P ⊆ B(X,Y, I). Then CIVK is a closed

subrelation of I and the concept lattice of CIVK is equal to C∨∧P . CIVK can be
computed by procedure Generate of Alg. 3.

For each concept 〈A,B〉 of a semi-closed subrelation of I, A is an extent and B
an intent of I (there need not be any special relationship between A and B, i.e.,
in general, B 6= A↑I and A 6= B↓I ). We call such preconcepts interval-preconcepts
and denote the set of all interval-preconcepts of I by IV(X,Y, I).

Interval-preconcepts are ordered the same way as preconcepts [8, 9], i.e. for
each 〈A,B〉, 〈C,D〉 ∈ IV(X,Y, I) we have 〈A,B〉 ≤ 〈C,D〉 iff A ⊆ C and D ⊆ B.

Lemma 20. IV(X,Y, I) together with the above ordering is a complete lattice with
infima and suprema given by the same formulas as in (1.1) and (1.2).

Lemma 21. 1. For any semi-closed subrelation L ⊆ I, B(X,Y, L) is a complete
sublattice of IV(X,Y, I).

2. A complete sublattice U ⊆ IV(X,Y, I) is equal to B(X,Y, L) for some semi-
closed subrelation L ⊆ I iff for each 〈A,B〉, 〈C,D〉 ∈ U ,

A ⊆ C iff D ⊆ B. (3.5)

It holds L =
⊔
U .

Notice that each interval-preconcept 〈A,B〉 of I determines a closed interval
in the concept lattice B(X,Y, I), namely the interval [〈A,A↑I 〉, 〈B↓I , B〉]. This
correspondence between interval-preconcepts of I and closed intervals in B(X,Y, I)
is evidently bijective. For each semi-closed subrelation L ⊆ I we denote by SL the
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3. On sublattices and subrelations

system of all closed intervals of B(X,Y, I) determined by concepts of L (which
are interval-preconcepts of I). This system corresponds to the concept lattice
B(X,Y, L). Thus, the above Lemma 21 can be used for further investigation of the
structure of SL.

Lemma 22. Let K ⊆ I be an arbitrary subrelation, U ⊆ B(X,Y, I) a complete
sublattice with the associated closed subrelation J ⊆ I. Then J ⊇ K iff U has
nonempty intersection with each interval from the system SCIVK .

We already know that procedure Generate always outputs a closed subrelation
given any subrelation K ⊆ I. However, dual computation, i.e. interchanging parts
for even and odd indices, might lead to a different result. Notice that by executing
the first iteration as it leaves us with either correct intents or extents. Due to
Lemma 22 we know how concepts ofK determine closed intervals of B(I). Now, the
result depends on which concepts we choose from corresponding intervals. Taking
procedure Generate as is, the first iteration selects the upper bounds of all such
intervals. Dual computation selects the lower bounds. Note that this selection can
have an effect on the size (w.r.t. ⊆) of the result.

3.4 Interval-preconcepts
Now, we take a closer look on interval-preconcepts. We already showed that they
can be ordered in the same way as preconcepts and together with this ordering the
set of all interval-preconcepts of a given formal context forms a complete lattice.

Interval-preconcepts have two defining properties: 1. they are preconcepts, 2.
they uniquely determine an interval in the corresponding concept lattice. The
second property plays a crucial role in our motivation to study such formal rect-
angles. First, we focus on a motivation from psychology and show where interval-
preconcepts can fit in the theory of concepts. Second, we provide a more formal
motivation relating interval-preconcepts to block relations.

There has been quite a lot of work done in the field of cognitive psychology
concerning concepts especially in last 70 years (see [21] for a quick and [22] for
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3.4. Interval-preconcepts

a comprehensive overview). Nowadays, there are several definitions of concept in
cognitive psychology that are sometimes almost contradictory and some approaches
actually reject any definition of concept as it is impossible to define (see also [23]).
They argue that for any such definition there exist an example (usually natural and
very simple) that does not conform to it [24]. Nevertheless, we cannot possibly hope
to mathematically define a notion that we are unable to grasp even with the help
of vagueness of our language. Therefore, the notion of formal concept is based on
the definition of concept from The Classical Theory of Concepts which dates back
to antiquity to Plato [24]. It accepts a definition of concept as a structured mental
representation that encodes necessary and sufficient conditions for its application.
By application, we usually mean the ability to decide if an object is part of a concept
or not, i.e. the process of categorization in the terms of cognitive psychology.

Accepting our notion of formal concept as a mathematical representation of
the classical definition of concept leaves us with several possible interpretations of
the notion interval-preconcept. In the study of concept acquisition, we can look at
them as possible stages of the learning process. In formal terms, we represent a
whole interval of concepts as a single entity and we are yet to acquire knowledge
that would let us draw distinctions between concepts in this interval.

Other possible application of interval-preconcepts stems from the necessity of
ignorance. It has been argued (see [22]) that people make adjustment to their pro-
cess of categorization depending on current circumstances. One such adjustment
includes ignorance of some features. This prevents overwhelming our mind and
speeds up the process of categorization. By restraining the set of features only to a
valid intension of a more general concept we obtain a way of thinking about more
specific concepts in more general, but coherent, terms.

The second part of our motivation is purely formal. We have a new type
of formal rectangle that arises from a notion of semi-closed subrelation which is
closely related to the notion of block relation. We explore their connection and
investigate potential areas where interval-preconcepts can help to represent more
complex notions whilst providing a different viewing angle.
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3. On sublattices and subrelations

Definition 23 (interval-preconcept). An interval-preconcept of a formal con-
text 〈X,Y, I〉 is a preconcept 〈A,B〉 such that A = A↑I↓I and B = B↓I↑I .

To better understand relations of interval-preconcepts to other well-known types
of rectangles we provide a summary in Fig. 3.7 and 3.8. Moreover, in Figure 3.9
we can find proper instances of all types of rectangles.

A ⊆ B↓ A = A↑↓

B ⊆ A↑ A↑↓ = B↓ B = A↑ A = B↓
B = B↓↑

preconcept ×
protoconcept × ×

interval-preconcept × ×
u-semiconcept × × ×
t-semiconcept × × ×
formal concept × × × × ×

Figure 3.7: A formal context of different types of formal rectangles.

formal concept

interval-preconcept

A = A↑↓, B = B↓↑
protoconcept

A↑↓ = B↓

t-semiconcept

A = B↓

u-semiconcept

B = A↑

preconcept

A ⊆ B↓, B ⊆ A↑

Figure 3.8: The concept lattice corresponding to the formal context from the
Fig. 3.7 showing relations between different types of formal rectangles.
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3.4. Interval-preconcepts

I y1 y2 y3
x1 ×
x2 × × ×
x3 × ×

Figure 3.9: Different types of formal rectangles can be found in this context.
We can identify following examples: a proper preconcept 〈{x2}, {y3}〉, a proper
interval-preconcept 〈{x2}, {y2}〉, a proper protoconcept 〈{x3}, {y3}〉 and proper
semiconcepts 〈{x3}, {y2, y3}〉 and 〈{x2, x3}, {y3}〉.

The notion of interval-preconcept originates from our investigation of semi-
closed subrelations. Such relations are defined similarly to block relations, however
they are subrelations as opposed to being super-relations. Thus, we investigate the
relation between interval-preconcepts and block relations. Recall, each interval-
preconcept 〈A,B〉 ∈ IV(X,Y, I) uniquely determines an interval in the concept
lattice B(I), namely, [〈A,A↑I 〉, 〈B↓I , B〉]. We now show how a block relation cor-
responds to a set of interval-preconcepts.

Lemma 24. Let L ⊇ I be a block relation, then for each 〈A,B〉 ∈ B(L), c =
〈B↓I , A↑I 〉 is an interval-preconcept of I. Denote RL the set of all such interval-
preconcepts. RL is an order-embedded complete lattice in IV(X,Y, I) with infima
and suprema given by:

∧

ι∈I
〈Aι, Bι〉 =

〈(⋃

ι∈I
A↑I
ι

)↓K↑K↓I

,

(⋃

ι∈I
Bι

)↓I↑I
〉
, (3.6)

∨

ι∈I
〈Aι, Bι〉 =

〈(⋃

ι∈I
Aι

)↑I↓I

,

(⋃

ι∈I
B↓I
ι

)↑K↓K↑I
〉
. (3.7)

Evidently, the converse direction does not generally hold, i.e. not all subsets of
IV(X,Y, I) correspond to block relations.

Lemma 25. Let V ⊆ IV(X,Y, I) we have V = RL for some block relation L ⊇
I iff V is an order-embedded complete lattice in IV(X,Y, I) such that for each
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3. On sublattices and subrelations

〈A,B〉, 〈C,D〉 ∈ V

A ⊆ C iff D ⊆ B. (3.8)

and L =
⋃
〈A,B〉∈V (B↓I ×A↑I ).

We already showed that the set of all interval-preconcepts IV(X,Y, I) of given
context is a complete lattice. Now, we show how to create a formal context K such
that its concept lattice is isomorphic to IV(X,Y, I). For this purpose we adopt
the following notation. For any set A we put A = {x | x ∈ A}.

Lemma 26. For a formal context 〈X,Y, I〉 we have IV(X,Y, I) ∼= B(X ∪X,Y ∪
Y ,KI) where KI = {〈x, y〉, 〈x, y〉, 〈x, y〉 | x ∈ X, y ∈ Y and 〈x, y〉 ∈ I} ∪X × Y .

Interestingly, the previous construction turns out to be equivalent to the direct
product of the formal context 〈X,Y, I〉 and formal context from Fig. 3.10.

Definition 27. The direct product of formal contexts 〈X1, Y1, I1〉 and 〈X2, Y2, I2〉
is given by

〈X1, Y1, I1〉 × 〈X2, Y2, I2〉 = (X1 ×X2, Y1 × Y2,K)

where (x1, x2)K(y1, y2)⇔ x1I1y1 or x2I2y2.

The concept lattice of the direct product of some formal contexts is called a tensor
product of concept lattices.

y1 y2
x1
x2 ×

Figure 3.10: A formal context with the concept lattice isomorphic to a three ele-
ment chain.

Corollary 28. For a formal context 〈X,Y, I〉 we have

IV(X,Y, I) ∼= B(〈X,Y, I〉 × 〈{x1, x2}, {y1, y2}, {〈x2, y2〉}〉).
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3.4. Interval-preconcepts

The previous means that IV(X,Y, I) is isomorphic to a tensor product of certain
concept lattices. Therefore, we can use any result about tensor product of concept
lattices to investigate properties of IV(X,Y, I). Now, we provide a basic theorem
on interval-preconcept lattices.

Theorem 29 (Basic Theorem on Interval-preconcept Lattices). The interval-
preconcept lattice IV(X,Y, I) is a complete lattice in which infima and suprema are
given by:

∧

ι∈I
〈Aι, Bι〉 =

〈⋂

ι∈I
Aι,

(⋃

ι∈I
Bι

)↓I↑I
〉
, (3.9)

∨

ι∈I
〈Aι, Bι〉 =

〈(⋃

ι∈I
Aι

)↑I↓I

,
⋂

ι∈I
Bι

〉
. (3.10)

In general, a complete lattice V with an element p admits an isomorphism α

with interval-preconcept lattice IV(X,Y, I) with α(p) = 〈∅↑↓, ∅↓↑〉 if and only if
there exist mappings γ : X → V and µ : Y → V where

D∨ =
⋃

x∈X
{γ(x), γ(x) ∧ p} is supremally dense in V , (3.11)

D∧ =
⋃

y∈Y
{µ(y), µ(y) ∨ p} is infimally dense in V , (3.12)

such that for any x ∈ X, y ∈ Y it holds

xIy ⇔ γ(x) ≤ µ(y)⇔ γ(x) ∧ p ≤ µ(y) ∧ p⇔ γ(x) ∨ p ≤ µ(y) ∨ p. (3.13)

We can immediately make several observations from the basic theorem. First,
there are three isomorphisms between B(I) and certain parts of IV(X,Y, I), namely,
intervals [〈∅↑I↓I , ∅↓I 〉, p], [p, 〈∅↓I , ∅↓I↑I 〉] and the complete sublattice IV(X,Y, I) ∩
B(I). Second, we only need as many labels for IV(X,Y, I) as for B(I). Third, each
element of IV(X,Y, I) is associated with two extents and two intents of I and it
is easy to read them from the lattice. Note that Theorem 29 does not specify the
structure of interval-preconcept lattices and this flaw is rectified in Theorem 32.
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3. On sublattices and subrelations

We conclude this section with some final observations about the structure of
interval-preconcept lattices.

Theorem 30. We have IV(I) ∼= 〈{〈c1, c2〉 ∈ B(I) × B(I) | c1 ≤ c2},v〉, where
〈c1, c2〉 v 〈c3, c4〉 iff c1 ≤ c3 and c2 ≤ c4.

Corollary 31. A complete lattice V isomorphic to the upper half of a Cartesian
product W×W (i.e. the subset of W×W containing all pairs 〈u, v〉 where u, v ∈W
and u ≤ v) of some complete lattice W is isomorphic to IV(W,W,≤).

We call the complete lattice V from the previous corollary an upper triangular
complete lattice (of W).

Theorem 32 (Second Basic Theorem on Interval-preconcept Lattices).
The interval-preconcept lattice IV(X,Y, I) is an upper triangular complete lattice
of B(X,Y, I) in which infima and suprema are given by:

∧

ι∈I
〈Aι, Bι〉 =

〈⋂

ι∈I
Aι,

(⋃

ι∈I
Bι

)↓I↑I
〉
, (3.14)

∨

ι∈I
〈Aι, Bι〉 =

〈(⋃

ι∈I
Aι

)↑I↓I

,
⋂

ι∈I
Bι

〉
. (3.15)

In general, an upper triangular lattice V of W admits an isomorphism α with
interval-preconcept lattice IV(X,Y, I) if and only if there exist mappings γ : X → V

and µ : Y → V such that

D∨ =
⋃

x∈X
{γ(x), γ(x) ∧ p} is supremally dense in V , (3.16)

D∧ =
⋃

y∈Y
{µ(y), µ(y) ∨ p} is infimally dense in V , (3.17)

where p = 〈∨ ∅,∧ ∅〉 and for any x ∈ X, y ∈ Y it holds

xIy ⇔ γ(x) ≤ µ(y)⇔ γ(x) ∧ p ≤ µ(y) ∧ p⇔ γ(x) ∨ p ≤ µ(y) ∨ p, (3.18)

in particular, V ∼= IV(W,W,≤).
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3.5. Discussion and related work

3.5 Discussion and related work

An obvious advantage of our result on generating complete sublattices is that we
avoid computation of any lattices and instead we work exclusively with contexts. In
fact, our goal is to compute the closed subrelation corresponding to the given gen-
erated complete sublattice. The actual computation of the sublattice, if necessary,
can be done with any well-known efficient algorithm for concept lattice construc-
tion. This should lead to shorter computation time, especially if the generated
sublattice V is substantially smaller than B(X,Y, I).

In Lemma 14, we give an upper estimation of the number of iterations of our
algorithms. It seems that this estimation could be improved. At the time of
writing, we were not able to construct any example with the number of iterations
greater than O(|X|+ |Y |).

As far as related work goes, we are aware of only one published algorithm for
generating sublattices [25]. Unfortunately, we cannot do any comparison as the
algorithm in question is not correct. It does not always output a sublattice.

We also looked into the problem of characterizing all closed subrelations con-
taining an arbitrary subrelation. We introduced a notion of semi-closed subrela-
tion which is similar to that of block relation. In contrast with closed subrelations,
semi-closed subrelations form a closure system. We showed how this notion can be
used to solve the problem at hand. We also used it to identify an important type
of subrelations for which we can always find a unique smallest closed subrelation
containing it.

Investigation of semi-closed subrelations leads to a definition of new type of
formal rectangles which we call interval-preconcepts. They uniquely determine
an interval in the original concept lattice and they have a close relation to block
relations and so to lattice factorization. We showed that together with the same
ordering as preconcepts, they form a complete lattice. We studied properties of
interval-preconcepts and we presented two versions of basic theorem on interval-
preconcept lattices.
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Chapter 4
Conclusion

We analyzed the basic step in incremental lattice construction, removal of an in-
cidence, and based on this analysis we proposed two incremental algorithms for
updating concepts and the corresponding concept lattice. As this is the smallest
possible change in a formal context, we believe that this problem is in some form
present in every incremental lattice construction method.

The performance of our algorithms depends heavily on the size of the order-
embedded complete lattice (resp. interval) that contains exactly the concepts that
are affected by the removal. Our experiments showed that the size of this interval
is usually very small compared to the whole lattice. Combining it with some op-
timizations, the algorithm for updating concepts in fact computes two derivation
operators and two set equality tests for each concept from the identified interval.
Further extending presented method, we were able to remove an arbitrary precon-
cept at once without any additional overhead. By investigating possible extensions
of our results, we arrived at a general method for updating a concept lattice upon
an arbitrary change in the underlying context.

Afterwards, we focused on studying substructures, specifically complete sublat-
tices generated by a set of elements. As it turns out, there is an efficient way of
computing the closed subrelation corresponding to a complete sublattice generated
by a set of elements. Computing such closed subrelation provides a full description
of the corresponding generated complete sublattice and the actual construction of
it, if necessary, can be done via any well-known efficient algorithm. Experiments
with our method showed its efficiency and provided some insight into parameters
that have an impact on its performance. Interestingly, the peak in the complexity
of our method was achieved with small fixed sizes of the set of generators, i.e. the
number of generators did not depend on the size of the lattices in these experiments.

The algorithm we proposed actually computes a closed subrelation for any
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given subrelation and in some sense the result seems minimal. This motivated us
to further investigate this since it is in contrast with well-known result postulating
that closed subrelations do not form a closure system. We introduced the notion of
semi-closed subrelations that are more general than closed subrelations and indeed
form a closure system. Using this notion we were able to identify an important
type of subrelations for which there always exists the smallest closed subrelation
containing given subrelation.

Our investigation of concepts of semi-closed relation lead us to a definition of a
new type of formal rectangle that we call interval-preconcept. As most well-known
types of formal rectangles have motivation in cognitive psychology, so does interval-
preconcept and we showed some scenarios where it can serve as a formalization of
some notion from cognitive psychology. We also explored their relations to other
well-known types of formal rectangles and to block relations that are used for lattice
factorization. Lastly, we showed how they can be structured into a complete lattice
and proposed two versions of basic theorem on interval-preconcept lattices.
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