
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UCENI TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

A CONVERTER BETWEEN THE LESS AND SASS
STYLESHEET FORMATS
PŘEKLADAČ MEZI FORMÁTY LESS A SASS

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ATTILA VEČEREK
AUTOR PRÁCE

SUPERVISOR Prof. Ing. TOMÁŠ VOJNAR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2016

Bachelor Project Specification/18602/2015/xvecer 17

Brno University of Technology - Faculty of Information Technology

Depa r tmen t of Inte l l igent S y s t e m s A cadem i c yea r 2015 /2016

Bachelor Project Specification
For: Večerek Atti la

Branch of s tudy: In fo rmat ion Techno logy

T i t le: A Converter between the LESS and SASS Sty lesheet Formats

Ca tego ry : Comp i l e r Cons t ruc t ion

Ins t ruc t ions for project work:
1. Ge t acqua in ted with the LESS and S A S S dynam i c s ty leshee t l anguages and s tudy

the i r d i f ferences.
2. Des ign and imp l emen t parsers f rom both languages into abst rac t s yn tax t rees .
3. Des ign and imp l emen t code genera tors for both l anguages .
4. Ver i fy co r rec tness of the obta ined conver te rs th rough au t oma ted tests .
5. Eva lua te resu l ts of your project and d iscuss poss ib le ex tens ions of the imp l emen ted

Bas ic re ferences:
• Aho , A.V., L am, M.S., Se th i , R., U l lman , J .D.: Comp i l e r s : Pr inc ip les, Techn iques , and

Too ls , Add i son Wes ley , 2006 .
• H ixon , J . : An Int roduct ion To LESS , And Compa r i s on To Sass , In : Smash i n g

Magaz ine , 2 0 1 1 . Ava i l ab le on l ine: h t t p : / /www. smash i ngmagaz i n e . c om/2011 /09
/an- i n t roduc t i on - to - l e s s -and-compar i son- to - sass / .

• Get t ing s ta r ted: An ove rv i ew of Less, how to down load and use, examp l e s and more .
Ava i l ab le on l ine: h t tp: / / lesscss .o rg/ .

Requ i rements for the f i rst s emes te r :
No requ i r ements .

Deta i led fo rma l spec i f i cat ions can be found at h t tp: / /www. f i t . vu tbr . cz / in fo/szz/

The Mas te r Thes i s mus t def ine its purpose , desc r ibe a cur rent s ta te of the art , in t roduce the theore t i ca l and
techn i ca l ba ckg round re l evan t to the p rob l ems so l ved , and spec i fy wha t par ts have been used f r om ear l ie r
pro jec ts or have been t a ken over f r om other sou r ces .

Each s tuden t wi l l hand- in pr in ted as wel l as e lec t ron ic ve r s i ons of the techn i ca l report , an e lec t ron ic ve r s i on of
the comp le t e p r og r am do cumen t a t i o n , p r og r am source f i les, and a funct iona l ha rdware p ro to type samp l e if
des i r ed . The in fo rmat ion in e lec t ron ic f o rm wil l be s to red on a s t anda rd non- rewr i t ab l e m e d i u m (CD-R, DVD-R,
etc.) in f o rma t s c o m m o n at the FIT. In o rder to a l low regu la r hand l i ng , the m e d i u m wil l be secu re l y a t tached to
the pr in ted report .

Supe rv i so r : Vo jnar Tomáš , prof. Ing., Ph.D., DITS FIT BUT

Beg inn ing of work: Novembe r 1, 2015

Date of de l ivery: May 18, 2016

conver te r s .

Petr Hanáček
Associate Professor and Head of Department

http://www.smashingmagazine.com/2011/09
http://lesscss.org/
http://www.fit.vutbr.cz/info/szz/

Abstract
The aim of this thesis is to research the differences between the CSS preprocessor languages,
namely Less and Sass, and find applicable transformation methods to implement a converter
between their dynamic stylesheet formats. A general introduction to the concept of CSS
preprocessors is provided first, which is followed by a thorough description of the Less and
Sass language features. In addition to this, all the discovered differences are stated and
illustrative examples of the invented conversion methods are provided in this work. This is
followed by the description of the design and implementation of the proposed converter. As
a part of the contribution of this thesis, a CSS comparison tool based on abstract syntax tree
transformation has also been developed. Its design is described along the testing procedure
used to verify the invented conversion methods. The last part of the work summerizes the
achieved results and the future directions of the converter.

Abstrakt
Cílem té to bakalářské práce je výzkum rozdílů mezi CSS preprocesorovými jazyky, jmen
ovitě Less a Sass, a nalezení použitelných transormačních metod k implementaci překladače
mezi jejich formáty. Nejprve je předložen koncept CSS preprocesorů a následuje detailní
popis vlastností jazyků Less a Sass. V této práci jsou uvedené všechny zjištěné rozdíly, a
pak jsou představeny nové konverzní metody s demonstrativními příklady. Následuje popis
návrhu a implementace překladače. Součástí této práce je tvorba nástroje pro porovnávání
CSS, který je postaven na základě transformace abstraktního syntaktického stromu. Návrh
komparátoru je popsán spolu s procesem testování, jenž byl použitý pro verifikaci zave
dených konverzních metod. V poslední části práce jsou shrnuty dosažené výsledky a je
navržen budoucí vývoj překladače.

Keywords
CSS preprocessor, Less, Sass, dynamic stylesheets, abstract syntax tree transformation,
CSS comparison

Klíčová slova
CSS preprocesor, Less, Sass, dynamické styly, transformace abstraktních syntaktických
stromů, porovnávání kaskádových stylů

Reference
V E C E R E K , Atti la. A Converter between the LESS and SASS Stylesheet Formats. Brno,
2016. Bachelor's thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Vojnar Tomas.

A Converter between the L E S S and SASS
Stylesheet Formats

Declaration
I hereby declare that the present bachelor's thesis was composed by myself under the
leadership of Be. David Halasz and that the work contained herein is my own. On behalf of
the Faculty of Information Technology, the thesis has been formally led by Prof. Ing. Tomas
Vojnar, Ph.D. I have acknowledged all the sources of information which have been used in
the thesis.

Att i la Večerek
May 17, 2016

Acknowledgements
I would like to thank Be. David Halasz for being a supportive supervisor and Prof. Ing. Tomas
Vojnar, Ph. D. for his expert advice on content editing and typographical arrangements of
this work.

© Att i la Vecerek, 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author's explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction 3

2 CSS Preprocessors 5
2.1 Less 5

2.1.1 Variables 6
2.1.2 Extend 6
2.1.3 Mixins 7
2.1.4 Import Directive 12
2.1.5 Mixin Guards 12
2.1.6 CSS Guards 13
2.1.7 Loops 13
2.1.8 Merge 14
2.1.9 Parent Selectors 14
2.1.10 JavaScript Evaluation 14

2.2 Sass 14
2.2.1 Placeholder Selectors 15
2.2.2 Nested Properties 15
2.2.3 @at-root Directive 16
2.2.4 ©debug, ©warn and ©error 16
2.2.5 Control Directives 17
2.2.6 Function Directives 17

2.3 Difference between Less and Sass 18
2.3.1 Variables 19
2.3.2 Data Types 21
2.3.3 Scoping 22
2.3.4 Extend 23
2.3.5 Mixins 26
2.3.6 Import Directive 35
2.3.7 CSS Guards 36
2.3.8 Loops 36
2.3.9 Merge 37
2.3.10 Parent Selector 37
2.3.11 JavaScript Evaluation 38

2.4 Existing Conversion Possibilities 38

I

3 Design and Implementation «*9

3.1 Parsing 4 0

3.2 A S T Transformation 4 1

3.3 Code Generation 4 3

3.4 Supported Features 4 3

4 Testing 4 5

4.1 Testing Process 4 5
4.2 CSS Compare 4 7

4.2.1 The Inner Representation of Stylesheets 47
4.2.2 Selector Normalization 4 9
4.2.3 Supported CSS Features 4 9

4.3 Test Suite 5 0

5 Conclusion 52
5.1 Discussion of the Achieved Results 52
5.2 Future Directions 5 3

Bibliography 4̂

Appendices 55
List of Appendices 56

A C D Content 5 7

2

Chapter 1

Introduction

Cascading Style Sheet (CSS in short) is a declarative programming language that describes
the way H T M L elements are to be displayed on screen, paper, or in other media. The
larger a CSS stylesheet becomes, the more difficult it is to maintain. To overcome those
maintenance issues, CSS preprocessors have been developed. Many of the popular CSS
frameworks, like Bootstrap and Foundation, have been built using these tools.

Preprocessors like Less, Sass and Stylus have become very popular among web develop
ers. Currently, many of the developers who formerly preferred Less are moving to Sass. The
same applies to some of the CSS frameworks that were developed using Less, i.e. Boot
strap. To facilitate and automate the transition from Less to Sass, a converter between
these stylesheet formats has to be created.

One of the companies that also deal with the challanges of the transition is Red Hat,
Inc. — the world's leading provider of open source solutions — which also proposed and
expertly led this work. In view of the foregoing, the aim of this thesis is to create a converter
between the dynamic stylesheet formats Less and Sass, which could potentially replace the
existing solutions in use. While working on the objectives, it was necessary to get fully
acquainted with the CSS preprocessors and their programming languages as well as study
the differences between them. Conversion methods were found and documented, which can
also be used as a guide for manual transition of Less projects to Sass. The existing con
verters work on a string replacement basis using regular expressions. Experience has shown
that these converters do not return valid results. In practice, this means that developers
still have to rewrite the output stylesheet after the conversion. Our goal is to eliminate or
at least minimize the necessary work after the conversion. In order to achieve this goal,
our converter was designed to use abstract syntax tree transformation methods. In the
converter, we use the engines of the respective CSS preprocessors for parsing the input and
generating the output stylesheets. Finally, as part of this work a CSS comparison tool was
also created to verify the implemented converter. The rest of the thesis is structured as
follows:

In Chapter 2, we will have a look at the CSS preprocessors in general and the reasons of
their existence and need. Secondly, we will briefly characterize Less and Sass. Their main
features will be introduced along with some real-world examples of their usage. Further
more, we will deeply dive into their differences by enlisting all those features of Less that
are problematic from the perspective of conversion. Finally, we will introduce the existing
conversion possibilities that are currently being used in practice. Chapter 3 describes the
implementation, highlights the key steps of the conversion process and names the language

3

features, that are supported by the implemented converter. In Chapter lh we will thor
oughly describe the testing procedures that need to be undertaken in order to verify the
accomplished results.

4

Chapter 2

CSS Preprocessors

Cascading Style Sheets (henceforth, CSS) is the standard language used for defining the
look and feel of structured documents, for instance H T M L and X M L documents []. CSS
is a declarative language and lacks most of the traditional programming constructs, like
variables and functions, which enable code reuse and structured programming. Having said
that, CSS projects may turn difficult to scale and maintain over time, since web developers
have to perform many of the same activities over and over again.

CSS preprocessors, also referred to as precompilers, have been introduced as superset
languages to extend CSS by supporting those missing constructs [9]. Being an extension
of CSS means that valid CSS code is valid preprocessor code, as well. A preprocessor,
in the context of CSS, is a simple transformation tool that takes preprocessor-formatted
file and outputs CSS code that browser understands. There are several existing CSS pre
processors, each introducing its own language. According to SitePoint — a popular online
publisher of books, courses and articles for web developers — in 2014, the two most popular
CSS preprocessors were Syntactically Awesome Style Sheets (henceforth, Sass) and Less.js
(henceforth, Less) [8]. In the following two sections, we will have a brief look at their main
characteristics.

2.1 Less

Less is an open source CSS preprocessor that was created in 2009 by Alexis Sellier. Orig
inally, it was written in Ruby and later it was ported to JavaScript. Today, Less is main
tained by a group of core contributors, with the massive support and involvement of the
community. It runs inside the browser and the well-known cross-platform environments:
Node.js and Rhino [1].

There are two variants of Less. The client-side variant compiles Less code in real-time in
the browser. It only supports the recent versions of modern browsers (e.g., Chrome, Firefox,
Safari and IE). However, its use in production is not recommended due to performance
implications. For the best performance, it is recommended to compile the Less code on
the server side. On the other hand, this feature comes handy if a developer wants to allow
users to make modifications to a theme and show the result in real-time.

Less is also a declarative language backwards compatible with CSS and its extra fea
tures use existing CSS syntax. Those features turn the old way of developing stylesheets
into a more scalable, extensible and maintainable process by applying the "Don't Repeat
Yourself" (DRY) principle. Some of them will be introduced in the following parts of this

5

chapter. The definitions and examples used in this section were taken from the official
documentation of the language features of Less [2].

2.1.1 Variables

The variables make it possible to control commonly used values in a single location. Their
most significant use case is when defining color palettes for themes. It is a good practice to
create a colors.less file containing all the color variables used in a project.

Scope

CSS is a declarative language and so is Less. Note that variables in Less have a behaviour
much closer to constants since they can only be defined once per execution context. Vari
ables are lazy loaded and do not have to be declared before being used. When defining
a variable twice, the last definition of the variable is used, searching from the current scope
upwards. This is similar to CSS itself where the last property inside a definition is used
to determine the value. This behaviour can be best described through the following code
example.

. l a z y - e v a l - s c o p e {
wid t h : Qvar; // Ovar: 9%
Qa: 97.;

}

Qvar: Qa; // Ovar: 100%
Qa: 1007.;

Example 2.1: Less: Lazy loading

As we can see in Example 2.1, the variable Qvar in the global execution context holds the
value of 100%, whereas the one that is defined in the scope of the .lazy-eval-scope selector
holds the value of 9%. This is caused by the redefinition of @a in the local scope.

2.1.2 Extend

Extend is a Less pseudo-class which merges the selector it is put on with ones that match
what it references. It can be either attached to a selector or placed into a ruleset. It accepts
a selector as a parameter optionally followed by the keyword all. When you specify the all
keyword last in an extend argument it tells Less to match that selector as part of another
selector. Simply said, it will apply the extend on all selectors that contain the selector
sequence specified as the parameter.

In Example 2.2, extend creates new selectors by replacing the element . t e s t with
.replacement. Those newly created selectors are attached to the original list of selectors
containing the specified selector sequence. The output of the example Less code is shown
in Example 2.3.

The classic use case of extend is to avoid using a base class in the H T M L template
and thus making selector inheritance possible just like the class inheritance we know from

G

object-oriented programming. Assume the following example. There is a class bear and its
superclass animal. In H T M L , the use of class bear would be subject to use of the animal
class, as well: Bear. However, using the extend feature, it
is possible to simplify the html and use the class bear without its superclass. It can be
achieved with the Less code found in Example 2.4.

// extend_all. less
. a . b . t e s t ,
. t e s t . c {

c o l o r : orange ;
}

.replacement : e x t e n d (. t e s t a l l) {}

Example 2.2: Less: Extend 'all '

// ext end_ a l l . ess
. a . b . t e s t ,
. t e s t . c ,
.a.b.replacement ,
. r e p l a c e m e n t . c {

c o l o r : orange ;
}

Example 2.3: Output: Extend 'all '

// animals. less
.animal {

b a c k g r o u n d - c o l o r : b l a c k ;
c o l o r : w h i t e ;

}
.bear {

& : e x t e n d (. a n i m a l) *

b a c k g r o u n d - c o l o r : brown ;
}

Example 2.4: Less: Classic use case of extend

2.1.3 Mixins

Mixins are one of those language features provided by Less that keep the code DRY, thus
producing CSS in a more efficient way. Less provides different types of mixins for slightly

7

different use cases but all share the same purpose. Basically, there is no syntactical difference
between a mixin definition and a selector declaration. Mixins are called by specifying the
name of the selector followed by optional parentheses and a mandatory semicolon as shown
in Example 2.5.

// mixins. I ess
• a {

c o l o r : r e d ;
}
#b() {

c o l o r : b l a c k ;
}
. m i x i n - c l a s s {

• a;
}

m i x i n - i d {
#b() ;

}

// mixins. ess
• a {

c o l o r : r e d ;
}
. m i x i n - c l a s s {

c o l o r : r e d ;
}
m i x i n - i d {

c o l o r : b l a c k ;
}

Example 2.5: Less: Mixins Example 2.6: Output: Mixins

Parentheses are optional to use in mixin definitions and they serve as a flag meaning
that the mixin should not be output in the final CSS code as a selector rule as shown in
Example 2.6.

Mixin scope

It is important to understand the way mixins are placed in the scope and which variables
they have access to. If a variable is not available in the mixin, Less will look for its value
in its parent scopes until it reaches the global execution context as seen in Example 2.7. If
the value cannot be found even there, Less will start searching from the caller scope until
it hits the global execution context again. The latter case can be seen in Example 2.8.

Ox: 1;
. m i x i n () {

z - i n d e x : Ox;
}
#namespace {

Ox: 2;
. m i x i n () ;
// outputs: z-index: i;

}

Example 2.7: Variable in parent scope

. m i x i n () {
z - i n d e x : Ox;

}
#namespace {

Ox: 2;
. m i x i n () ;
// outputs: z-index: 2;

}

Example 2.8: Variable in caller scope

8

Parametric Mixins

Mixins can also take arguments, which are variables passed to the block of selectors when
they are called. Less also provides so called named parameters. It means that any parameter
can be referenced by its name without following any special order as shown in Example 2.9.

.mixin(©color: b l a c k ; ©margin: lOpx; ©padding: 20px) {
c o l o r : (§color ;
margin: Omargin;
p a d d i n g : Opadding;

}
. c l a s s l {

. m i x i n ((Smargin: 20px; O c o l o r : # 3 3 a c f e) ;
}
. c l a s s 2 {

. m i x i n (# e f c a 4 4 ; Opadding: 40px);
}

Example 2.9: Less: Parametric mixins using named parameters

Pattern-matching Sometimes developers want to change the behaviour of a mixin, based
on the parameters passed to it. This feature is known as method overloading in object-
oriented programming. In Less, it can be achieved by its pattern-matching feature. A n ex
ample of pattern-matching and its CSS output can be seen in Example 2.10 and 2.11
respectively.

. m i x i n (d a r k ; O c o l o r) {
c o l o r : darken(©color, 107.) ; // color: #6f6f6f

}
. m i x i n (1 i g h t ; O c o l o r) {

c o l o r : lighten(©color. , 107.) ; // color: • #a2a2a2
}
.mixin(@_; O c o l o r) {

d i s p l a y : b l o c k ;
}
©switch: l i g h t ;

. c l a s s {
.mixin(©switch; #888);

}

Example 2.10: Less: Pattern-matching

As seen in the output, the color passed to .mixin was lightened and the class also re
ceived the d i s p l a y : block; declaration. The method overloading in Less behaves slightly

9

different that we are used to. Instead of calling one specific mixin, all the mixins are called
that match the pattern. The underscore variable (@_) plays the role of a wildcard, accepting
any parameter.

. c l a s s {
c o l o r : #a2a2a2;
d i s p l a y : b l o c k ;

>

Example 2.11: Output: Pattern-matching

Mixins as functions

Variables and mixins defined inside a mixin are accessible from the caller scope. However,
they will be overridden by the locally defined or already "mixed in" variables and mixins
with the same name. Only the variables present in caller scopes are protected. The variable
inherited from parent scopes are overridden as shown in Example 2.12 and 2.13.

. m i x i n () {
@s i z e : 20px;
@ d e f i n e d O n l y l n M i x i n : 20px;

>

. c l a s s { / / c a l l e r scope
margin: S s i z e O d e f i n e d O n l y I n M i x i n ;
. m i x i n () ;

>

©size: 15px; // c a l l e r s parent scope -- no protection

Example 2.12: Less: Mixins as funcions

. c l a s s {
margin: 20px 20px;

>

Example 2.13: Output: Mixins as funcions

10

Passing rulesets to mixins

A detached ruleset is a group of CSS properties, nested rulesets, media declarations or
anything else stored in a variable. It can be included into a ruleset or other structures with
its properties being copied into the callers scope. It can be also used as a mixin argument
and pass it around as any other variable. As opposed to mixins, the parentheses after
a detached ruleset call are mandatory. It is useful when defining a mixin that abstracts out
a piece of code in a media query or a non-supported browser class name.

Example 2.14 shows the definition and use of a detached ruleset. Its output CSS can
be seen in Example 2.15.

Q m y - r u l e s e t : {
. m y - s e l e c t o r {

Omedia t v {
b a c k g r o u n d - c o l o r : b l a c k ;

}

}

>;
Omedia (o r i e n t a t i o n : p o r t r a i t) {

Q m y - r u l e s e t () ;
}

Example 2.14: Less: Detached ruleset

Omedia (o r i e n t a t i o n : p o r t r a i t) and t v {
. m y - s e l e c t o r {

b a c k g r o u n d - c o l o r : b l a c k ;
}

}

Example 2.15: Output: Detached ruleset

Scope The scoping is also interesting in case of detached rulesets. Hence, it can also access
the variables and mixins defined in its caller scope. If both scopes contain the same variable
or mixin, declaration scope value takes precedence as seen in Example 2.16. Declaration
scope is the one where the body of detached rulesets is defined.

11

Q d e t a c h e d - r u l e s e t : {
c a l l e r - v a r i a b l e : S c a l i e r - v a r i a b l e ; // variable i s undefined

here
. c a l l e r - m i x i n () ; / / mixin i s undefined here

>;

s e l e c t o r {
// use detached ruleset
Q d e t a c h e d - r u l e s e t () ;

// define variable and mixin needed i n s i d e the detached ruleset
S c a l i e r - v a r i a b l e : v a l u e ;
. c a l l e r - m i x i n () {

v a r i a b l e : d e c l a r a t i o n ;
}

}

Example 2.16: Less: Definition and caller scope visibility

2.1.4 Import Directive

Less can import styles from other style sheets, ©import statements may be treated dif
ferently by Less depending on the file extension and speciefied import options. Only files
having a .ess extension will be treated as CSS imports. In all other cases, the file will be
treated Less file.

2.1.5 M i x i n Guards

Mixin guards are used as conditional mixins. Less has opted to implement conditional
execution of mixins via guards instead of if/else statements, in the vein of ©media query
feature specifications. Example 2.17 shows three mixin definitions of which two are guarded.

.mixin (@a) when (1 i g h t n e s s (@ a) >= 507.) {
b a c k g r o u n d - c o l o r : b l a c k ;

}
.mixin (@a) when (1 i g h t n e s s (@ a) < 50%) {

b a c k g r o u n d - c o l o r : w h i t e ;
}
.mixin (@a) {

c o l o r : @a;
}
. c l a s s l { .mixin(#ddd) }
. c l a s s 2 { .mixin(#555) }

Example 2.17: Less: Mixin guards

12

Additionally, the d e f a u l t function may be used as an alternative to else as shown in
Example 2.18.

.mixin ((3a) when (Oa > 0) { ... }

.mixin ((3a) when (d e f a u l t ()) { . •• } // matches only i f f i r s t
mixin does not, i.e. when @a <= 0

Example 2.18: Less: Default guard

2.1.6 C S S Guards

CSS guards play the same role as mixin guards, the only difference is that they are applied
to CSS selectors instead of mixins.

2.1.7 Loops

In Less a mixin can call itself. Such recursive mixins can be achieved with loops combined
with guard expressions and pattern matching (see Section 2.1.3). A generic example of
using recursive loops is the generation of CSS grid classes as shown in Example 2.19 and
2.20.

. g e n e r a t e - c o l u m n s (4) ;

. g e n e r a t e - c o l u m n s (O n , @i: 1) when (Qi =< Qn) {
.column-@{i} {

wi d t h : (Q i * 1007, / On) ;
}
. g e n e r a t e - c o l u m n s (O n , (Q i + 1)) ;

}

Example 2.19: Less: Loops

. column-1 { w i d t h : 257,; }

. column-2 { w i d t h : 507.; }

.column-3 { w i d t h : 75%; }

.column-4 { w i d t h : 100%; }

Example 2.20: Output: Loops

13

2.1.8 Merge

The merge feature allows for aggregating values1 from multiple properties into a comma or
space separated list under a single property. It is useful for properties such as background
and transform.

2.1.9 Parent Selectors

The & operator represents the parent selector of a nested rule and is most commonly used
when applying a modifying class2 or pseudo-class to an existing selector.

2.1.10 JavaScript Evaluation

Less is capable of evaluating JavaScript code used in its dynamic stylesheets. However, this
feature is not longer documented on the official page of the CSS preprocessor. In order to
use this feature, the JavaScript code has to be enclosed in backticks as shown in Example
2.21

// Ovar = "HELLO WORLD!"

Ovar: ' " h e l l o w o r l d " . t o U p p e r C a s e () + ' ! ' ' ;

Example 2.21: Less: JavaScript Evaluation

2.2 Sass

Sass is an open source project proposed by Hampton Catlin. However, the primary devel
oper and architect of Sass is Natalie Weizenbaum, a software developer at Google. The
second lead developer worth to mention is Chris Eppstein, creator of Compass, the first
Sass-based framework.

The project is implemented in Ruby, although there is a C / C + + port of the Sass engine
created by the original author for efficiency and higher portability []. As opposed to Less,
Sass can be compiled only on the server-side. It can be used in three ways: as a command-
line tool, as a standalone Ruby module, and as a plugin for any Rack-enabled framework,
including Ruby on Rails and Merb.

Sass also offers two syntaxes to choose from. The new main syntax is known as SCSS
(for "Sassy CSS"), and it is a superset of the CSS syntax, meaning that every valid CSS
stylesheet is valid SCSS, as well. SCSS files use the extension .scss.

The second, older syntax is known as Sass — the indented syntax. It is inspired by
Haml — the markup language used to cleanly and simply describe H T M L templates [5] -
and it is intended for people who prefer conciseness over similiarity to CSS. Files in the
indented syntax use the extension .sass.

Sass is able to update the generated CSS every time the original Sass source code
changes and has a strong caching feature implemented. By default, Sass caches compiled

xhttp://lessess.org/features/#merge
2http://lessess.org/features/#parent-selectors-feature

14

http://lessess.org/features/%23merge
http://lessess.org/features/%23parent-selectors-feature

templates and partials, meaning faster re-compilation of large collections of Sass files. The
CSS style being output can be also chosen. Sass offers four different output styles - nested,
expanded, compact and compressed.

In spite of Sass being an imperative language, it shares a lot of features with Less that
work in a very similar manner. They both support the following features:

• nested rules,

• parent selectors,

• variables,

• variable interpolations,

• import directives,

• extend directives and

• mixins.

The following sections will describe those features of Sass that are unique in terms of
comparison to Less. The definitions and examples were taken from the official documenta
tion of Sass [3].

2.2.1 Placeholder Selectors

Sass supports a special type of selector called a "placeholder selector". They are meant
to be used with the ©extend directive. Their purpose is to generate leaner CSS than the
one that would be output using classic selectors instead, since rulesets that use placeholder
selectors will not be rendered to CSS. The behaviour of this feature is similar to the mixins
used with parentheses in Less.

2.2.2 Nested Properties

CSS possesses a few properties that closely relate to each other for instance, f o n t - f a m i l y ,
f o n t - s i z e and font-weight are all in the f o n t "namespace". Sass provides a shortcut
for not having to type out all the closely related properties during their declaration. This
feature is shown in Example 2.22.

.funky {
f o n t : {

f a m i l y : f a n t a s y ;
s i z e : 30em;
weight: b o l d ;

}
}

Example 2.22: Sass: Nested properties

15

2.2.3 @at-root Directive

The @at-root directive causes one or more rules to be emitted at the root of the document,
rather than being nested beneath their parent selectors. By default, @at-root just excludes
selectors. However, it is also possible to use it to move outside of nested directives such as
©media or ©supports. According to the CSS output shown in Example 2.24, the declaration
c o l o r : red; has been moved to the root of the document encased in its original selector
and ©supports directive without the ©media directive as specified in Example 2.23.

Omedia p r i n t {
©supports(transform-style: p r e s e r v e - 3 d) {

#id , .page {
w i d t h : 8 i n ;
O a t - r o o t (w i t h o u t : media) {

c o l o r : r e d ;
}

}
}

}

Example 2.23: Sass: @at-root directive

Omedia p r i n t {
©supports (t r a n s f o r m - s t y l e : p r e s e r v e - 3 d) {

#id , .page {
w i d t h : 8 i n ;

}
}

}
©supports (t r a n s f o r m - s t y l e : p r e s e r v e - 3 d) {

#id, .page {
c o l o r : r e d ;

}
}

Example 2.24: Output: @at-root directive

2.2.4 @debug, © w a r n and @error

Sass also offers a possibility to print values, expressions and messages to the standard error
output stream using three different directives.

The ©debug directive is useful for debugging Sass files that use complicated language
constructs. The ©warn directive prints the value of a Sass expression to the output stream.
It is useful for warning users of deprecations or recovering from minor mixin usage mistakes.
The main distinction between ©warn and ©debug is that a stylesheet trace will be printed

16

out along with the message showing the origin of the warning. The ©error directive throws
a fatal error, including the stack trace. Its usefullness lies in validating arguments to mixins
and functions. However, there is currently no possibility to catch errors.

2.2.5 Control Directives

Sass supports basic control directives and expressions for including styles only under some
conditions or including the same style several times with variations. Opposed to Less
guards (see Section 2.1.4), Sass implemented control directives to use standard keywords
and constructs.

if()

The built-in i f () function returns only one of two specified values based on the given
condition as can be seen in Example 2.25. It can be used as an alternative to ternary
operators.

i f (t r u e , l p x , 2px) => l p x
i f (f a l s e , l p x , 2px) => 2px

Example 2.25: Sass: if() function

@if

The @if directive takes an expression and uses the rules nested beneath it if the expression
evaluates to true. It can be followed by several S e i s e i f statements and one final S e i s e
statement. This works just like the standard if-else-if constructs we are all familiar with.

@for, @each and ©whi l e

While Less implements only one form of loop, Sass offers the flexibility to choose from three
posible ways of implementing iterations.

The @for directive repeatedly ouputs a set of styles. For each repetition, a counter
variable is used to adjust the output 3.

The ©each directive loops through each item of an expression returning a list or a map
and outputs 4 the rules it contains. The data types as list and map will be introduced later,
in the section discussing the differences between Less and Sass 2.3.

The ©while directive takes an expression and repeatedly outputs the nested rules until
the statement evaluates to f a l s e .

2.2.6 Function Directives

Sass implements function directives to return values instead of delegating this behaviour
to mixins as opposed to Less — see Section 2.1.3. The functions can access any globally

3http://sass-lang.com/documentation/file.SASS_REFERENCE.html#_10
4http://sass-lang.com/documentation/file.SASS_REFERENCE.html#each-directive
5http://sass-lang.com/documentation/file.SASS_REFERENCE.html#_12

17

http://sass-lang.com/documentation/file.SASS_REFERENCE.html%23_10
http://sass-lang.com/documentation/file.SASS_REFERENCE.html%23each-directive
http://sass-lang.com/documentation/file.SASS_REFERENCE.html%23_12

defined variable as well as accept arguments like mixins do. The ©return statement must
be called to set the return value of the function. It is recommended to prefix the functions
to avoid naming conflicts. For historical reasons, function names as well as all other Sass
identifiers can use hyphens and underscores interchangeably, thus referring to the same
object.

Example 2.26 shows a function that uses globally defined variables to return the width
of a grid. The output CSS is shown in Example 2.27.

$ g r i d - w i d t h : 40px;
$ g u t t e r - w i d t h : lOpx;

^ f u n c t i o n g r i d - w i d t h ($ n) {
O r e t u r n $n * $ g r i d - w i d t h + ($n - 1) * i l>gutter-width ;

}

s i d e b a r { w i d t h : g r i d - w i d t h (5) ; }

Example 2.26: Sass: Function directive

s i d e b a r {
w i d t h : 240px; }

Example 2.27: Output: Function directive

2.3 Difference between Less and Sass

In this section, we will explore all the syntactic and semantic differences between Less
and Sass that we were able to uncover during our studies of these languages. It will also
describe the solutions we proposed to overcome those differences and thus create equivalent
Sass representation of Less-specific features.

First, in order to have a solid ground for sound transformations between Less and Sass
files, we need to define the equivalence of dynamic stylesheets written in those preprocessor
languages.

Definition 2.1. A Sass file is an equivalent representation of a Less file if and only if the
CSS output produced by the two files is equivalent.

In the following sections, we explain the syntactic and semantic differences between Less
and Sass. Furthermore, we describe how to convert each of the introduced Less language
features into its equivalent Sass representation. Examples of the conversion methods will
also be provided.

18

2.3.1 Variables

The syntactic difference in declaring variables is the leading symbol used for indicating
a variable. In Less, it is the @ symbol, whereas in Sass it is the $ sign. Another difference
can be found in the naming rules of variables. Sass treats the dash (-) and underscore (_)
in the names of variables and mixins as interchangeable.

The only semantic difference we could find is the ability to store different data types.
Less is more dynamic from this perspective, since it allows rulesets to be stored in variables
that can be passed to mixins as arguments. However, Sass implements its own way of
passing rulesets to mixins.

The variables in both languages are capable of storing selectors. However, Sass throws
a syntax error upon trying to store a selector starting with a dot (.) representing a class
identifier. The solution to this problem is to use the built-in function of Sass called unquote
that returns the unquoted form of any string value. It is shown in Example 2.28 and 2.29.

O v a r i a b l e : .bucket;
@ { v a r i a b l e } {

c o l o r : b l u e ;
}

Example 2.28: Less: Variable storing class identifier

$ v a r i a b l e : u n q u o t e (" . b u c k e t ") ;
{ $ v a r i a b l e } {

c o l o r : b l u e ;
}

Example 2.29: Sass: Variable storing class identifier

Variable defaults

Sass offers its users a way to assign values to variables in case they had not been set by
applying the ! d e f a u l t flag just after the assignment.

Variable interpolation

The syntactic difference of this feature can be also seen in Example 2.28 and 2.29. Regard
ing the semantic difference, Sass does not support dynamic imports and variable names.
Hence, the variable interpolation cannot be used in ©import statements and variable names.
However, there is a solution for the latter incompatibility. The global scope should create
a map of variables consisting of the variables defined inside of it using their names as keys
and their references as values. A l l other scopes should create their own local copy of that
global variable rewritten by the merged map of the global and local variable maps as shown
in Example 2.31, which is the equal representation of the Less code shown in Example 2.30.

19

#id {
©another_var: " T h i s i s the c o n t e n t . " ;
Ovar: " a n o t h e r _ v a r " ;
c o n t e n t : ©Ovar;

}

Example 2.30: Less: Variable variables

$__12s__vv: () ;

#id {
$var: " a n o t h e r _ v a r " ;
$ a n o t h e r _ v a r : " T h i s i s the c o n t e n t . " ;
$__12s__vv: map-merge($__12s__vv, (

" v a r " : $var ,
" a n o t h e r _ v a r " : $ a n o t h e r _ v a r

)) ;

c o n t e n t : map-get($__12s__vv, $ v a r) ;
}

Example 2.31: Sass: Variable variables

Variable naming

As earlier mentioned, the dash and underscore characters are treated the same way in
variable, mixin and function identifiers by Sass. To avoid possible naming collision, the
identifiers containing at least one of those characters need to be properly distinguished. In
our opinion, the most straigth-forward solution is to double the first occurence of either the
dash or the underscore character. It is important to choose only one of the interchangable
characters, otherwise the possibility of naming collision would remain as shown in Example
2.32.

// c o l l i s i o n p o s s i b i l i t y eliminated
@ r h - l i g h t _ g r e e n ; => $ r h - - l i g h t . .green;
@ r h _ l i g h t _ g r e e n ; => $ r h _ l i g h t _ j j r e e n ;

/ / c o l l i s i o n p o s s i b i l i t y remains
@ r h - l i g h t _ g r e e n ; => $ r h - - l i g h t . ..green;
@ r h _ l i g h t _ g r e e n ; => $ r h _ _ l i g h t . ..green;

Example 2.32: Naming collision avoidance

20

2.3.2 Data Types

Both languages support the following main data types:

• numbers (e.g. 1.2, 13, lOpx),

• strings of text, with and without quotes (e.g. "foo", 'bar', baz),

• colors (e.g. blue, #04a3f9, rgba(255, 0, 0, 0.5)),

• list of values, separated by spaces or commas (e.g. 1.5em lem 0 2em; Helvetica, Arial ,
sans-serif).

However, on both sides there are either unsupported or nondifferentiated data types
present. For instance, Less does not differentiate boolean and n u l l types from unquoted
strings and it also does not support map values. On the other hand, the ability to store
rulesets in variables is missing from Sass, where the CSS property values, such as Uni
code ranges and .'important declarations are not differentiated from unquoted strings. Less
implements an individual prototype to distinguish the Unicode range from other values.

Numbers

There is a significant difference with respect to how Less and Sass handle units and number
operations.

Sass supports unit-based arithmetic. Additionally, Sass implements conversion tables
so that any comparable units can be combined. This means, that Sass doeas not operate on
numbers with incompatible units and two numbers with the same unit that are multiplied
together produce square units resulting in invalid CSS value as shown in Example 2.33.
Sass throws an error on attempt to use such a value.

On the other hand, Less is more lenient regarding unit handling during number opera
tions. It takes the first unit found in the expression and executes the expression as if the
remaining numbers were unitless as shown in Example 2.34.

Both Less and Sass implement support for user defined units as a form of future proofing
against changes in the W3C specification.

1 cm * 1 em => 1cm * em // Error: i n v a l i d CSS value
2 i n * 3 i n => 6 i n * i n / / Error: i n v a l i d CSS value
2 i n + 3cm + 2pc => 3.5144357in
3 i n / 2 i n = > 1.5

Example 2.33: Sass: Unit handling

1 cm * lem = > 1 cm
2 i n * 3 i n = > 6 i n
2 i n + 3cm + 2pc => 3.5144357in
3 i n / 2 i n = > 1.5

Example 2.34: Less: Unit handling

21

Precision Another difference in Less and Sass is the number precision they use to calcu
late with. By default, the number precision used by Less is 8 digits after the decimal point,
whereas in Sass it is only 5. However, Sass lets the user define the precision used either
programatically or through a command-line argument.

2.3.3 Scoping

The most significant difference between Less and Sass is the way that each of the com
pared languages handle scoping. According to Matthew Dean, a core member of the team
behind developing Less, Sass is an imperative language, whilst Less is declarative [].
Both languages are extensions to the CSS in terms of syntax. However, the programming
paradigm used in these languages differs. While in a declarative language the programmer
only declares the actions to perform, in an imperative language the modus and the order
of those actions are also defined. There are two challenges to tackle in terms of finding
a conversion method for this difference both originating from the lazy loading feature of
Less.

1. Variables can be used before their declaration. If the given variable or mixin cannot
be found in the caller scope, it will look for its value in the parent scopes until it is
found or the lookup fails after reaching the end of the global scope. If a variable is
defined multiple times in a given scope, the last definition will be used.

2. A variable is evaluated in place of its use according to its definition using the values
of variables reachable from the caller scope. See Example 2.1, where the variable @a
is redefined in the caller scope and thus its new value is used during the evaluation.

A n equivalent representation in Sass can be achieved by performing the following two
actions:

1. Change the order of variable declarations in each scope, so the declaration always
precedes its use.

2. A variable can reference other variables in its declaration, whose value can be over
ridden in local scopes. In such cases, the variable needs to be redeclared in those local
scopes with its original definition as shown in Example 2.35.

$a: 1007,;
$var: $a;

. l a z y - e v a l - s c o p e {
$a: 97.;
$var: $a;

wid t h : $var;
}

Example 2.35: Sass: Lazy loading solution

22

2.3.4 Extend

There is a syntax-related difference in the way the extend feature is used in the languages
being compared. While in Less, it is used like a CSS placeholder, in Sass this feature is
represented by a standalone directive. Less presents two ways to use the extend:

• attached to a selector - it is possible to use multiple extends following each other,

• inside a ruleset - however, still being attached to the parent selector (& symbol) as
seen in Example 2.4.

On the other hand, Sass uses the directive always inside of a ruleset. If there are multiple
attached extends to a selector, Sass would place all of them inside of the ruleset.

Exact matching

By default, Less looks for exact match between selectors when applying its extend feature.
However, it will match selectors regardless of containing single quotes, double quotes, or no
quotes as shown in Example 2.36.

// the following extends w i l l not match the specified selectors
: e x t e n d (a : h o v e r : v i s i t e d) = > a : v i s i t e d : h o v e r
: e x t e n d (. c l a s s) = > * . c l a s s
: e x t e n d (: n t h - c h i l d (n + 3)) = > : n t h - c h i l d (l n + 3)

// however, the following extend w i l l match a l l the specified
selectors

: e x t e n d ([t i t l e = ' i d e n t i f i e r ']) > [t i t l e = ' i d e n t i f i e r '] ,
[t i t l e = " i d e n t i f i e r "] ,
[t i t l e = i d e n t i f i e r]

Example 2.36: Less: Extend only exact matching selectors

Sass, on the other hand, understands the logic behind CSS selectors and is able to tell,
whether two selectors are equal, even if the match is not exact. To create an equivalent
Sass representation for such situations — also seen in Example 2.37 — it is necessary to
remove the affected extends from the Sass code as shown in Example 2.38.

. a . c l a s s {
c o l o r : b l u e ;

}

. t e s t : e x t e n d (. c l a s s) {} // t h i s w i l l NOT match the selector above

Example 2.37: Less: Exact match not found

23

. a . c l a s s {
c o l o r : b l u e ;

}
. t e s t {} // extend should be removed, not an exact match

Example 2.38: Sass: Exact match not found

Multiple extended selectors

In Less, each member of a selector list can have one or multiple extend pseudo-classes
attached to it. Since Sass does not support such a language construct, it is needed to refactor
such a list of selectors to achieve equal CSS output. It can be achieved by segragating the
list of selectors into separate declaration rules of those selectors that have at least one
extend pseudo-class attached to it. A l l extends should be put inside the ruleset. To the
remaining list of selectors — even if it is empty — a placeholder selector (see Section 2.2.1)
should be appended. Afterwards, the created placeholder selector should extend all the
segregated selectors, as demonstrated in Example 2.39 and 2.40.

. b i g - d i v i s i o n : e x t e n d (. d i v i s i o n) ,

. b i g - b a g ,

. b i g - b u c k e t : e x t e n d (. b a g) : e x t e n d (. b u c k e t) {
// body

}

Example 2.39: Less: Multiple extended selectors

. b i g - d i v i s i o n {
©extend . d i v i s i o n ;
©extend '/,_. b i g - b a g ;

}
. b i g - b u c k e t {

©extend .bag;
©extend .bucket;
©extend '/,_. b i g - b a g ;

}
. b i g - b a g , '/,_. b i g - b a g {

// body

}

Example 2.40: Sass: Multiple extended selectors

Placeholder selector Note that placeholder selector names must start with the % char
acter which cannot be followed by the # nor . characters. In addition to these, it cannot

24

contain a * nor whitespace characters. A l l other characters also accepted by selectors can
be used when generating placeholder names.

Extending nested selectors

Less is able to match and extend nested selectors, as opposed to Sass. In order to create
the equal representation of this feature, a new placeholder selector should be created and
used to extend the nested selector. The ruleset of the nested selector should be copied into
the placeholder selector as seen in Example 2.41.

The placeholder name should be generated out of the selector list having the aforemen
tioned rules in mind. The prohibited characters should be escaped by replacing them with
a chosen sequence of characters. This cannot lead to naming collisions, since placeholders
are not specified by Less.

* #a . c l a s s {
c o l o r : b l u e ;

}
7. u n i s#a s . c l a s s {

// placeholder name generated from the selector l i s t
c o l o r : b l u e ;

}
a {

Oextend 7o u n i s #a s. c l a s s ;
}

Example 2.41: Sass: Extending nested selectors

Extend inside © m e d i a rulesets

Based on the language feature specification of both languages, this feature should work the
same way. However, we found a case, where Sass fails its defined behaviour. According to
the Sass language specification, the use of ©extend within ©media (or other CSS directives)
may only extend selectors that appear within the same directive block. However, if the
referenced selector by the ©extend is also present in the outer scope, it fails applying the
©extend rule and throws an error message as demonstarted by Example 2.42 and 2.43.

The raised error can be solved by creating a placeholder selector just like in the example
above and reference it instead of the original selector. The newly created placeholder will
not be present in the outer scope, thereby not leading to the same problem.

25

©media p r i n t {
. s e l e c t o r { // t h i s should be matched - i t i s in the same

d i r e c t i v e
c o l o r : b l a c k ;

}
. s c r e e n C l a s s {

©extend . s e l e c t o r ; // extend i n s i d e media
}

}
. s e l e c t o r { // ruleset on top of s t y l e sheet - extend should

ignore i t
c o l o r : r e d ;

}

Example 2.42: Sass: Extend inside directives

You may not ©extend an o u t e r s e l e c t o r from w i t h i n ©media.
You may o n l y ©extend s e l e c t o r s w i t h i n the same d i r e c t i v e .
From "©extend . s e l e c t o r " on l i n e 6.

Example 2.43: Output: Extend inside directives

The error has been reported to the core contributors of Sass and can be found in the
issue tracker of the repository6.

Extend "all"

In Less, extend can take an optional parameter — the keyword "all". When it is applied,
the extend modifies its behaviour and starts to act exactly like the ©extend diretive of Sass
by matching the selector as part of another selector as shown in Example 2.2.

Duplication detection

Sass implements the selector duplication detection feature. When merging selectors, ©ex
tend is smart enough to avoid unnecessary duplication, i.e. .seriousError.seriousError gets
translated to .seriousError. In addition, it will not produce selectors that cannot match
anything, like #main#footer. On the other hand, Less has no duplication detection imple
mented. Despite the possibly different CSS being generated because of the lack of duplica
tion detection, the equivalence of the stylesheet generators is unaffected.

2.3.5 Mixins

There is a significant difference in the syntax of mixins as language constructs. In Less, all
selectors are implicitly perceived as mixin definitions. On the contrary, Sass defines its own
syntax for defining mixins.

6https://github.com/sass/sass/issues/2058

26

https://github.com/sass/sass/issues/2058

Another syntax-related difference can be found in the set of allowed characters regarding
the mixin names. In Less, any selector can be used as the name for a mixin. However,
Sass does not allow non-alphanumeric characters, except the _ (underscore), in its mixin
identifiers. In addition, the identifier cannot start with a digit.

Scoping

The most significant semantic difference is in the scoping. In Less, the mixin definitions
with the same identifier do not override each other. Actually, Less applies all the matching
mixins of the caller scope. If none are defined, it will search the outer (parent) scopes until
it finds at least one matching mixin and applies all the matching mixins of that scope.

However, Sass does not implement such a behaviour. We have identified two approaches
in terms of finding a conversion method for this difference:

Fusion This approach merges all the matched mixin definitions into a single definition that
will be applied upon calling the mixin.

Enumeration Enumeration converts each of the matched definitions into an individual
mixin definition and instead of calling only one mixin, all the created mixins will be
called in the order Less would execute them. However, the naming of the mixins
should be reasonably resolved, i.e. by appending a serial number to them.

Both the aforementioned approaches will be used in order to not only provide an equal but
also a readable and user-friendly Sass representation of the mixin features.

Access to variables Another difference to be solved is the handling of locally undefined
variables. If a variable is undefined in the local scope of the mixin, both stylesheet generators
will start to look for the value in the parent scope moving towards the global execution
context. If the value cannot be found, Sass throws an error announcing that the variable is
not defined. However, Less does not stop there. It will also take a look at the caller scope.

To solve this difference, there are two cases that need to be further investigated:

1. The variable is defined in one of the parent scopes of the mixin declaration.

2. The variable is defined in the caller scope or one of its parent scopes.

In the first case, no action has to be taken, since both Less and Sass apply the same
default behaviour and will take the value of the variable found in one of the parent scopes
as shown in Example 2.44 and 2.45.

In the second case, the parameter list of the mixin should be extended by the locally
undefined variable. When calling this mixin, the missing variable should be passed along
with the other parameters as demonstrated in Example 2.46 and 2.47. This method will be
used in conjunction either with fusion or enumeration whenever the conditions of this
case are met.

27

Ox: 1;
. m i x i n () {

z - i n d e x : Ox; // x -= 1
}
#namespace {

. m i x i n () ;
}

$x: 1;
Omixin _ _ c l a s s _ _ m i x i n () {

z - i n d e x : $x;
}
#namespace {

©include _ _ c l a s s _ _ m i x i n () ;
}

Example 2.44: Less: Parent scope Example 2.45: Sass: Parent scope
variable variable

.a(0a) {
z - i n d e x : 0

}

#namespace {
@x: 1;
. a C ' v a l ") ;

}

x;
©mixin _ _ c l a s s _ _ a ($ a , $x) {

z - i n d e x : $x;
}
#namespace {

$x: 1;
©include _ _ c l a s s _ _ a (" v a l " ,

$x: $ x) ;
}

Example 2.46: Less: Caller scope Example 2.47: Sass: Caller scope
variable variable

Selectors as mixins

In case of selectors as mixins, fusion will be applied. The name of the created mixin should
be properly sanitized based on the regulations set by the parser of Sass. The conversion of
this feature is shown in Example 2.48 and 2.49.

• a {
// body

}
• a() {

// d i f f e r e n t body

}
. c l a s s {

• a ()
}

Example 2.48: Less: Selector as mixin

©mixin _ _ c l a s s _ _ a {
// body of .a selector
// body of . a () mixin

}
• a {

// body

}
. c l a s s {

©include c l a s s _ _ a ;
}

Example 2.49: Sass: Selector as mixin

28

#outer {
. i n n e r {

c o l o r : r e d ;
}

}
• c {

#outer > . i n n e r ;
}

Example 2.50: Less: Namespacing

Omixin _ _ i d _ _ o u t e r _ _ c l a s s _ _ i n n e r {
// the body of the namespaced mixin

}
#outer {

. i n n e r {
//body

}
}
• c {

©include _ _ i d _ _ o u t e r _ _ c l a s s _ _ i n n e r ;
}

Example 2.51: Sass: Namespacing

Namespaces

Selectors in Less can behave like mixins and they can also be nested. Hence, Less offers
a way to organize the defined mixins using the namespacing feature. Sass cannot organize
its mixin definitions in such means. The solution is to copy the mixin definition and place
it outside the namespace. The identifier of the copied mixin should reflect the namespacing
structure as shown in Example 2.50 and 2.51.

Namespace and mixin guards

Less implements guards similar to CSS and its ©media and ©supports conditions instead
of control directives as it is in case of Sass. The solution is to convert the guards to an equal
representation of @if statements. The created control directive should be placed inside of
the mixin definition encasing its content in both the namespace and mixin guard cases as
demonstrated in Example 2.52 and 2.53. In case of namespace guards, all of the mixin
definitions placed inside of the namespace should inherit the created control directive.

29

#namespace when (@mode=huge) {
. m i x i n () {

// body

}
}

Example 2.52: Less: Namespace and mixin gurads

3mixin __id__namespace
Q i f $mode == huge {

// body
}

c l a s s _ _ m i x i n () {

}

Example 2.53: Sass: Namespace and mixin gurads

Important keyword

Less implements a shorthand for marking all property values defined in a particular mixin
as ! important. There is no language construct in Sass that would make this feature
possible to reproduce. However, it can be solved by creating an extra parameter called
$ 12s important with a default value set to n u l l as shown in Example 2.54 and 2.55.
In order to keep the converted Sass code as clean as possible, this extra parameter should
be added only to mixins that are called with the ! important keyword.

• f o o () {
c o l o r : # f f f ;

}
. i m p o r t a n t {

. foo () ! i m p o r t a n t ;
}

Example 2.54: Less: The [important keyword

30

Omixin c l a s s _ f o o ($ _ _ 1 2 s _ _ i m p o r t a n t : n u l l) {
c o l o r : # f f f #{! f _ _ 1 2 s _ _ i m p o r t a n t } ;

}
. i m p o r t a n t {

©include c l a s s _ f o o ($ _ _ 1 2 s _ _ i m p o r t a n t : ! i m p o r t a n t) ;
}

Example 2.55: Sass: The [important keyword

Parametric mixins

To create an equal representation of parametric mixins, enumeration will be used. Fusion
cannot be applied in this case because the arguments can be set with default values. In
addition, each mixin can specify a different value for the same argument. To resolve the
naming of the parametric mixins, each of the converted mixin should be provided with
a serial number appended to its name as seen in Example 2.57, which is the equal Sass
representation of Example 2.56.

. m i x i n (O c o l o r ; ©value: u p p e r c a s e) {
// body

}
. m i x i n (O c o l o r ; ©value: 2; ©margin: 2) {

// body

}
. s e l e c t o r {

.mixin(#008000);
}

Example 2.56: Less: Parametric mixins

Omixin _ _ c l a s s _ _ m i x i n 1 ($ c o l o r , l v a l u e : u p p e r c a s e) {
// body

}
Omixin _ _ c l a s s _ _ m i x i n 2 ($ c o l o r ; l v a l u e : 2; $margin: 2) {

// body
}
. s e l e c t o r {

©include _ _ c l a s s _ _ m i x i n _ _ l (#008000) ;
©include _ _ c l a s s _ _ m i x i n _ _ 2 (#008000) ;

}

Example 2.57: Sass: Parametric mixins

31

© a r g u m e n t s variable The ©argument variable has a special meaning inside Less mixins.
It contains all the arguments passed to it, when it was called. Sass does not implement
such a special variable, thus it needs to be created by the converter. It should create the
variable $arguments that will have a simple list containing all the parameters specified in
the mixin definition as shown in Example 2.58.

(Smixin c l a s s _ b o x - s h a d o w ($ x : 0 , $y: 0 , $ b l u r : l p x , $ c o l o r : #000) {

$arguments: ($x, $y, $ b l u r , $ c o l o r) ;
// body

}

Example 2.58: Sass: ©arguments variable

Omixin _ _ c l a s s _ _ m i x i n ($ s w i t c h , $ c o l o r) {
@if $ s w i t c h == dark {

c o l o r : d a r k e n ($ c o l o r , 10%);

} Oelse i f $ s w i t c h == l i g h t {
c o l o r : l i g h t e n ($ c o l o r , 107,);

}

d i s p l a y : b l o c k ;
}

$ s w i t ch: 1 i g h t ;
. c l a s s {

O i n c l u d e _ _ c l a s s _ _ m i x i n ($ s w i t c h , #888);
}

Example 2.59: Sass: Pattern matching

Pattern matching In Less, different types of mixins exist and all possess a particular
behaviour. One of those is pattern matching. This feature can be seen as an abstraction
of a hypothetical switch directive demonstrated in Example 2.10. The converter should
identify the mixins implementing this feature and apply the fusion approach to merge
them into one mixin definition. This feature can be then converted into the @if-@else if
Sass control directive as shown in Example 2.59. The body of the mixin definition that
accepts a wildcard parameter should be placed outside of the created control directive, since
it would be always called.

32

.unlock(©value) { // outer mixin
©value: 2 * Ovalue;
.doSomething () { // nested mixin

d e c l a r a t i o n : Ovalue;
}

}
#namespace {

. u n l o c k (5) ; // unlock doSomething mixin

.doSomething () ; // mixin defined in doSomething became c a l l a b l e

}

Example 2.60: Less: Nested mixins

©mixin _ _ c l a s s _ _ u n l o c k (l v a l u e) {
l v a l u e : 2 * l v a l u e ;
//body

}
Omixin _ _ c l a s s _ _ d o S o m e t h i n g (l v a l u e) {

l v a l u e : 2 * l v a l u e ;
d e c l a r a t i o n : l v a l u e ;

}
#namespace {

©include _ _ c l a s s _ _ u n l o c k (5) ;
©include _ _ c l a s s _ _ d o S o m e t h i n g (5) ;

}

Example 2.61: Sass: Nested mixins

Nested mixins

Nested mixins are syntactic constructs, that are not allowed in Sass. Those constructs
should be detached and placed into the context of their parent mixin. The detached mixins
can reference variables that are defined in their former parent mixin. In such case, those
variables should be imported into the definition body of the detached mixin, as well. In
addition, they should also inherit all the parameters of their parent mixin, so they could
be called with the same parameters as shown in Example 2.60 and 2.61. That way can we
ensure that the detached mixins will have access to the same context as if they were nested.
However, the drawback of this method is the redundant code it creates, and thus breaking
the D R Y principle.

Mixins as functions

A l l mixins in Less possess a default behaviour. The variables and mixins defined inside of
them are reachable from the caller scope. Due to this feature, it is necessary to modify the
way the converter handles the scoping difference.

33

If a variable or a mixin is not defined in the caller scope, the converter should look first
inside of the definition of all mixins being called in the caller scope before moving to the
outer scopes. In case the variable definition is found in one of those mixins, a function di
rective should be created out of that definition and named after the missing variable. After
that, the referenced variable should be replaced by a function call. The created function,
as well as the mixins, can reference to variables defined in the caller scope. In such case the
same principle should be applied as in Example 2.47. The parameter list of the function
should be extended by the undefined variables, i.e. the variable @x in Example 2.62 and 2.63.

. m i x i n () { Omixin _ _ c l a s s _ _ m i x i n ($ x) {
©width: 1007. / @x; $width: 1007, / $x;
// body // body

} }
. c a l l e r { ^ f u n c t i o n w i d t h ($ x) {

@x: 3; O r e t u r n 1007. / $x;
. m i x i n () : • }
w i d t h : (§width; . c a l l e r {

} $x: 3;
©include _ _ c l a s s _ _ m i x i n ($ x)
w i d t h : w i d t h ($ x) ;

}

Example 2.62: Less: Mixins as functions Example 2.63: Sass: Mixins as functions

Passing rulesets to mixins

Both in Less and Sass it is possible to pass rulesets to mixins. Less uses detached rulesets,
whereas Sass uses content blocks. The main difference is, that Less is able to pass multiple
rulesets to a mixin via parameters, since detached rulesets can be stored in variables as
demonstrated in Example 2.64. On the other hand, Sass does not support rulesets as data
type. It can pass only one content block to the mixin, which is accessed via a special
directive inside of that mixin - the ©content directive as shown in Example 2.65.

Another difference is, that while in Less it is possible to define mixins inside of a de
tached ruleset, Sass cannot do the same with its content block. In Less, this feature leads to
a special behaviour of the detached rulesets. Both definition and caller scopes are available
to them. If both scopes contain the same variable or mixin, the declaration scope value
takes precedence. In addition, by including a detached ruleset into any other structure
(e.g. another ruleset or mixin definition) all its properties (including the defined mixins
and variables) will be accessible to the scope the detached ruleset had been included into.
Using this feature, it is possible to dynamically call different implementations of the same
mixin by calling the detached ruleset in different scopes. Sass cannot call mixins dynami
cally. Due to these characteristics of detached rulesets, we have not found an effective way

- which would not break the D R Y principles — to convert this feature into an equal Sass
representation. After consultation with Red Hat, we decided to find an effective conversion
method during the future work on the converter, since they do not use this feature of Less
in their projects.

34

. a p p l y - t o - i e 6 - o n l y (O c o n t e n t) { Omixin a p p l y - t o - i e 6 - o n l y {
O c o n t e n t () ;

}
. a p p l y - t o - i e 6 - o n l y ({

Ocontent ;
}
©include a p p l y - t o - i e 6 - o n l y {

#logo { #logo {
c o l o r : # f f f ; c o l o r : # f f f ;

> >
>

Example 2.64: Less: Detached ruleset Example 2.65: Sass: Passing content
block

2.3.6 Import Directive

Both stylesheet generators implement the ©import directive for importing other files that
are either CSS or another dynamic stylesheet. However, there are certain restrictions in
Sass regarding this feature.

The imported file will be compiled as CSS, if:

• its extension is .ess,

• the filename begins with http://,

• the filename is a url(),

• the ©import has any media queries.

If none of the above conditions are met and the extension is .scss or .sass, then the
named Sass or SCSS file will be imported. If there is no extension, Sass will try to find
a file with that name and one of the sass extensions and import it. If the extension is any
other, than .ess, .scss or .sass, Sass will not be able to read it, even if it contains valid Sass
code. However, Less treats those files as if they were valid Less files and will try to compile
them. To solve the difference, the converter will have to append a .scss or .sass extension
to those filenames.

Import options

Less implements the following options that modify the behaviour of the ©import directive:

• reference Compiles a Less file but does not include it into the final output.

• inline Includes the source file in the output without processing it.

• less Treats the import as a Less file regardless its extension.

• ess Treats the import as a CSS file regardless its extension.

• once Includes the file only once (default behaviour).

• multiple Includes the file even if it had been previously imported.

35

• optional Continues in compilation if the file is not found.

More than one keyword per ©import is allowed in Less. However, Sass natively supports
only the options once and reference, where the former is the default behaviour, too. The
latter option can be achieved by using Sass p a r t i a l s . A l l the other options cannot be
reproduced in a Sass. However, the converter may manipulate the imported file extensions
in order to achieve same results. The converter may even omit the ©import directives
containing the optional keyword if the file being imported cannot be found.

There is no known way to reproduce the funcionality of the inline option in Sass.

2.3.7 C S S Guards

Guards can be also applied to CSS selectors in Less. The Sass representation of these
guards is an enclosing @if directive. However, if the guard is appended to a base-level rule
containing the parent-selector-referencing character (&), Sass should omit that selector and
enclose only its child rules as shown in Example 2.66 and 2.67.

Qmy-option: t r u e ; $my-option: t r u e ;

& when (Omy-option = t r u e) { O i f $my-option ==
b u t t o n { b u t t o n {

c o l o r : w h i t e ; c o l o r : w h i t e ;
} }
a { a {

c o l o r : b l u e ; c o l o r : b l u e ;
} }

} }

Example 2.66: Less: CSS guard Example 2.67: Sass: CSS guard

2.3.8 Loops

Loops in Less are achieved through recursively called guarded mixins as shown in Example
2.69. This behavior can be also reproduced in Sass using the @if control directive as
demonstrated in Example 2.69.

. g e n e r a t e - c o l u m n s (4) ;

. g e n e r a t e - c o l u m n s (O n , Q i : 1) when (0 i =< On) {
.column-0{i} {

wi d t h : (0 i * 1007, / On) ;
}
. g e n e r a t e - c o l u m n s (O n , (Q i + 1)) ;

}

Example 2.68: Less: Loops

36

3mixin g e n e r a t e - c o l u m n s ($ n , $ i : 1) {
Q i f $ i <= $n {

.column-#{$i} {
w i d t h : ($ i * 1007. / $n);

}
O i n c l u d e g e n e r a t e - c o l u m n s ($ n , ($ i + 1)) ;

}
}

^ i n c l u d e g e n e r a t e - c o l u m n s (4) ;

Example 2.69: Sass: Loops

2.3.9 Merge

This feature is unique to Less. I have not found a solution, that could express such a feature
using the existing language constructs of Sass, despite of the fact that Sass possesses a wide
range of built-in functions for list manipulation.

2.3.10 Parent Selector

Parent selector reference is available in both languages. They work absolutely the same
way with one exception. Sass is unable to use multiple parent selector references joined by
an empty string (&&) — shown in Example 2.70. The solution is to create a "placeholder
variable", which stores the value of the parent selector and use its interpolated form instead.
It can be seen in Example 2.71.

. l i n k {
& + & {

c o l o r : r e d ;
}
& & {

c o l o r : g r e e n ;
}
ki t {

c o l o r : b l u e ;
}
, & i s h {
c o l o r : cyan ;

}
}

Example 2.70: Less: Parent selector

. l i n k {
$__12s__parent: &;
& + & {

c o l o r : r e d ;
}
& & {

c o l o r : g r e e n ;
}
&#{$__12s__parent} {

c o l o r : b l u e ;
}
&, & i s h {

c o l o r : cyan;
}

}

Example 2.71: Sass: Parent selector

37

2.3.11 JavaScript Evaluation

Sass is not able to evaluate JavaScript, at all. Hence, the JavaScript code has to be evaluated
by the converter and the returned value must be output in the generated Sass code, instead.
The equivalent Sass representation of Example 2.21 can be seen in Example 2.72.

$var: "HELLO WORLD!";

Example 2.72: Sass: Parent selector

2.4 Exist ing Conversion Possibilities

There are several existing transformation tools between Less and Sass already being used
in practice. However, they all are based on a string replacement method using regular
expressions which turned out to be imprecise and thus insufficient mainly because of the
semantic differences and different language characteristics that we mentioned in the pre
vious sections. We presented the methods to rewrite most of the Less language features
into an equal Sass representation. We also learnt, that some of the features cannot be
expressed using the Sass language constructs due to essential differences in the character
between declarative and imperative programming paradigms and their conversion would be
unemcient and breaking the D R Y princpiles.

Using the string replacement conversion tools in many cases results in an incomplete
and incompatible conversion that needs a lot of manual afterwork. These tools are great for
small projects that use only the elementary features of Less. However, an approach based
on abstract syntax tree transformation (henceforth, AST) yields a much more precise result
according to our experience. Such tool could be used for converting larger projects that use
several of the more advanced Less features.

In the following chapter we will describe the design and implementation of such a con
verter.

38

Chapter 3

Design and Implementation

This chapter describes the design and implementation of the converter proposed in this
work. The goal of the converter is to transform dynamic stylesheets written in Less into their
Sass representation. We have implemented the converter in Ruby and partly in JavaScript.
Ruby has been choden for the following two reasons:

• It is a very expressive object-oriented programming language.

• Sass is also implemented in Ruby.

At the time of writing, Sass is already an eight years old project and throughout this time,
it has been ported to several languages. For instance, the LibSass project implemented
the Sass engine in C / C + + which makes the compilation a lot faster. However, the main
development of the project still uses Ruby.

Less and Sass are the two most popular CSS preprocessors of our time with a lot of
contributors. New features are coming on a regular basis. In order to stay up-to-date with
both projects, thus lowering the maintainability costs, we have decided to use the engines
of both Less and Sass heavily throughout the conversion process, even though it has a big
impact on the performance of the converter.

The proposed conversion process is outlined in Figure 3.1 and can be devided into three
major parts:

Parsing In this phase, the input Less code is being processed by the converter and is
transformed into an abstract syntax tree by the Less engine.

Transformation During the transformation phase, the Less A S T is modified and then
converted into an equal Sass A S T representation. Here, the Sass engine is used to
create the A S T representing the generated Sass code.

Code generation Finally, the Sass engine is used again to convert the generated A S T
into a human readable code, which is the final output of our converter.

In the following sections, we will describe the way each of the major parts is designed,
the reasons behind this particular design was chosen as well as optimizations that can be
applied to further improve the performance of the converter.

39

transform

convert

parse unparse

Figure 3.1: The conversion process

3.1 Parsing

The input of the parsing phase is a dynamic stylesheet written in Less, and the output
is a Ruby object representing the A S T of the input stylesheet. It is the most unemcient
part of the conversion process. A part of the parser had to be implemented in JavaScript,
since the original parser engine of Less.js is used to return the A S T of the input. During
this process, the input is processed seven times in total. In order to create a Ruby object
representation of the A S T , the following steps have to be taken:

1. A JavaScript program called less_parser.js has been written to parse the input Less
code. This program serves as a wrapper around the parser of the Less engine. Since
our converter is developed in Ruby, it is necessary to call the wrapper program through
a system method call. The Kernel module of Ruby implements several methods (i.e.
Kernel#system, Kernel^ ') for running commands in a subshell. We use its backticks
method 1 to call Node.js — a JavaScript runtime built on Chrome's V8 Javascript
engine — that runs our wrapper program as shown in Example 3.1.

2. The wrapper program calls the parser of the Less engine, which processes the input
for the first time and returns an object representing the A S T of the Less code.

3. The tree obtained in step 2 is further traversed by the visitor method of the wrapper
program. This method appends a new property to each of the visited objects. The
property stores the name of the prototype the object inherits from. It is a costly
operation but needed. Otherwise, the converter written in Ruby would not have
access to these information.

4. The modified tree from step 3 is converted into a JSON string then printed to the
standard output and thus returned by the wrapper program.

5. The system call method reads the output data and stores it in the s t r i n g _ a s t variable
as shown in Example 3.1.

xhttp://ruby-doc.org/core-2.3.1/Kernel.html#method-i-60

40

http://ruby-doc.org/core-2.3.1/Kernel.html%23method-i-60

6. In order to be able to traverse the A S T in our converter, the JSON string is necessary
to be parsed back into a JSON object.

7. To be able to manipulate and transform the Less A S T received from the input effi
ciently, the converter implements classes representing each node type of the A S T 2 .
The type of node is given by the added property in step 3.

In this final step, the previously received JSON object is visited in a pre-order walk.
During this process the aforementioned classes of the converter are used to recreate
the nodes based on their types and thus transform the JSON object into a Ruby object
representing the Less A S T , which is returned by the parsing phase of the conversion.

s t r i n g _ a s t = 'node p a t h / t o / l e s s _ p a r s e r . j s p a t h / t o / i n p u t . l e s s '

Example 3.1: Ruby: Using Node.js to run the wrapper program

The A S T in its new form is easier to manipulate. The objects, it is composed of, are
instantiated from classes that implement their own specific transformation and conversion
methods.

As stated earlier, the parsing process is very inefficient due to multiple tree traversals
and 10 operations. To optimise this process, a custom parser implemented in Ruby is
needed which would directly yield the required object representation of the Less A S T , thus
reducing the total number of tree traversals as well as the 10 operations to one.

3.2 A S T Transformation

The input of the transformation phase is an object representing the Less A S T , and the
output is an object representing the Sass A S T . In both cases, the object references the root
node of the tree.

During the transformation process, the Less A S T is manipulated and converted into its
Sass representation using the Sass engine. The Less and Sass engines both implement pro
totypes or classes, respectively, representing the nodes of their A S T . However, they do not
implement the same nodes. The language contructs of Sass are represented differently than
the ones of Less. The difference between the representations is solved by the conversion
methods implemented by the Less nodes of the converter. Those methods return the ade
quate Sass node representation, which is created using the Sass node classes implemented
by the Sass engine3.

Abstract syntax tree

Figure 3.2 shows an extract from the structure of the Less A S T . There are 34 different node
types and each of them are composed of other nodes. Literal nodes like AnonymousNode,

2https://github.com/less/less.js/tree/master/lib/less/tree
3https://github.com/sass/sass/tree/stable/lib/sass/tree

41

https://github.com/less/less.js/tree/master/lib/less/tree
https://github.com/sass/sass/tree/stable/lib/sass/tree

ColorNode and UnitNode are the leaves of the tree. The complete tree structure would be
too immense for including it whole.

Each node of the tree represents a syntactic construct, e.g. ruleset, variable declaration,
expresssion, unit value, etc. and has its own transformation method implemented based on
its environment.

• parent 1
0..1

• parent•

Environment

+ parent: Environment
+ static_var_def_rules : Array<RuleNode>
+ dynamic_var_def_rules : Array<RuleNode>
+ other_rules : Array<RuleNode>
+ rest: Array<Node>
+ mixin_call_rules : Array<RuleNode>

+ set_environment (Array<Node>): Void
+ build (): Void
+ get_ordered_child_nodes (): Array<Node>
+ variable_defined? (String): Boolean
+ find_variable_defnnition_if_dynamic (String): RuleNode

0..1

_ l _
Node

- parent: Node
- children : Array<Node>
- ref_vars : Array<String>
- env: Environment

- << (Node) : Void
- == (Node): Boolean
- each (): Void
- transform (): Void
- to_sass (): Void
- creates_context? (): Boolean
— Z£ IS—

RulesetNode

t t
0..* 0..*

RuleNode SelectorNode SelectorNode

Figure 3.2: A S T decomposition

Environment In order to convert some of the Less language features, variable values and
mixin parameters are needed to be evaluated. The implementation of environments and
their ability to interpret Less code serve this purpose.

The environment represents the lexical scope of the given node and it is created in the
transformation phase of the conversion process. Each created environment has a reference
to its parent environment except the global one which sits on the bottom of the execution
stack. A new environment is created whenever a node is traversed that represents a new
scope, e.g. RulesetNode, MixinDefinitionNode, DetachedRulesetNode, etc.

Transformation process

The transformation can be described as a two step process:

1. A semantic preservation transformation is performed on top of the Less A S T . It means
that both the original and the transformed A S T would yield an equal Less stylesheet.
During that process, the order, naming and parameter list of some declarations may
change without affecting the CSS output generated by the dynamic stylesheet. In
this step, the execution context — also called environment — is set up. The process

42

traverses the whole A S T in a pre-order walk and applies the respective transformation
method on the nodes. A pre-order walk is applied because of the variable and param
eter evaluation, which proceeds from the top of the execution stack to its bottom.

2. The altered A S T is traversed one more time and the nodes are converted into their
Sass representation. However, the traversal is performed in a post-order walk this
time, so the Sass A S T gets built from the bottom to the top, since the Sass nodes
must be instantiated using their child nodes as parameters.

3.3 Code Generation

The input of the code generation phase is a Sass A S T , and the output is one or more Sass
dynamic stylesheets.

Sass supports two syntaxes — SCSS and Sass — and implements a converter between
them. In this phase, we use the code generation capabilities of the Sass engine and its
methods that generate Sass code in the respective syntaxes from the input A S T . The
optional argument —TARGET SYNTAX can be specified in order to tell the converter,
which of the possible syntaxes should be applied in the code generation process. The default
syntax is SCSS.

Less stylesheets can reference multiple other stylesheets by importing them and so does
Sass. In the code generation process, all the included stylesheets will be output, as well.
The Sass A S T is recursively traversed in a pre-order walk. The code generation process
consists of the following steps:

1. The tree is traversed node by node until an ImportNode is found or the last leaf node
is reached.

2. If an ImportNode is found, the code generation method is also called on the A S T of
the stylesheet it references. After that, the tree traversal continues as stated in step 1.

3. When the end of the tree is reached, Sass code is generated from the A S T according
to the selected syntax.

3.4 Supported Features

The Less to Sass converter, in its current state, is able to convert the following syntactic
constructs and language features:

• selectors,

• CSS properties,

• CSS values including variables,

• variable interpolations,

• variable definitions,

• lazy loading.

43

Lazy loading

The lazy loading feature of Less is solved by importing the affected variable definitions
according to Example 2.35. In the next step, the child nodes of each environment are put
into a specific order:

1. static variable definitions, i.e. $a: 100%;

2. dynamic variable definitions, i.e. $var: $a;

3. all the rest, i.e. ©media, ©import directives,

4. rulesets (selectors with their declarations, mixin definitions),
i.e. .a, .b { c o l o r : red; },

5. mixin calls, i.e. . l a z y - e v a l - s c o p e () ; .

Using this specific order, we can ensure that variables and mixins are not referenced
neither called before their definition.

44

Chapter 4

Testing

In this chapter, we describe the way we tested our converter. We first describe the process
of testing we adopted. Then, we introduce the tool we created for our testing purposes and
describe its design and implementation. Finally, in Section 4.3, we show the applied test
suite and discuss the results of the test.

4.1 Testing Process

In order to verify the results of the converter, we compare the generated Sass stylesheet
with the input Less code according to Definition 2.1. Our testing process thus consists of
three steps described in Figure 4.1.

1. The input is converted into a Sass stylesheet.

2. Both the input and the generated Sass code are compiled, and each of them returns
a CSS stylesheet.

3. These stylesheets are compared using a suitable CSS comparing tool, which returns
t r u e or f a l s e .

There are several possibilities to compare CSS stylesheets with each other. Some of the
existing tools are CSS Comparer by Alan Hart 1 and CSSCompare by Bert Johnson 2. Only
the latter example is an open source project, thus we could not examine the source code
of both projects. However, based on our experience, they both share the same principle.
They use string-based comparison, which is quite efficient in combination with some CSS
postprocessor, like PostCSS 3 .

CSS postprocessors are able to normalize CSS files by eliminating the possible redun
dancy in selectors, sort these selectors alphabetically and also compress the files by re
moving unnecessary whitespaces. However, this kind of solution is not reliable, since CSS
stylesheets with different design can lead to equivalent H T M L output. For instance, Exam
ple 4.2 is equal to that of Example 4.1 because the second compound selector overrides the
first selector definition and causes .a to receive the green color. Also, both specified paths

xhttp://www.alanhart.co.uk/tools/compare-css.php
2https://github.com/bertjohnson/CSSCompare
3https://github.com/postcss/postcss

45

http://www.alanhart.co.uk/tools/compare-css.php
https://github.com/bertjohnson/CSSCompare
https://github.com/postcss/postcss

Input:

Less code convert Sass code ,

compile

Boolean

compile

CSS code CSS code

CSS
Compare

Figure 4.1: Testing procedure

are relative and would be evaluated the same way. The quotes used to wrap the paths do
not affect the evaluation, either. When declaring the font-family CSS property, the use of
wrapping quotes is also optional. However, these CSS stylesheets would not be evaluated
as equal using the aforementioned tools.

.a, .b {
c o l o r : g r e e n ;
background-image: u r l (" p a t h / t o / f i l e . j p g ") ;
f o n t - f a m i l y : Times New Roman;

}

Example 4.1: CSS: Simple example

.a { c o l o r : r e d ; }

.a, .b {
c o l o r : g r e e n ;
background-image: u r l (' . / p a t h / t o / f i l e . j p g ') ;
f o n t - f a m i l y : "Times New Roman";

Example 4.2: CSS: Overriding example

Another possibility is to use regression testing that compares two CSS stylesheets graph-

46

ically. The CSS files are applied on the same H T M L template, which is then rendered in
the same arbitrary browser. After that, a screenshot is taken of both rendered pages. The
images are compared pixel by pixel with a certain tolerance. This method is used at Red
Hat, the proposing company of this thesis. According to its employees, this method is very
slow and unreliable. In our opinion, this kind of testing is inaccurate and could lead to false
results due to the ©media CSS directives. Multiple screenshots may be taken at different
screen sizes in order to reliably test the ©media directives specified in the CSS stylesheets
when using this testing procedure. However, the duration of testing would increase in
proportion to the number of different conditions specified in the given CSS stylesheets.

In summary, our research regarding the CSS comparison tools showed that the existing
solutions are either unreliable or too slow. This led us to the conclusion that a custom tool
should be built as a part of the contribution of this thesis that is independent of H T M L
templates and is able to normalize not only the CSS selectors but also the values. In order
to do so, it is necessary to define what does equality between two CSS stylesheets mean.

Definition 4 .1 . Two CSS stylesheets are equal if and only if their evaluation by the same
arbitrary interpreter returns identical results.

Below, we describe our own approach and tool called CSS Compare for comparing CSS
stylesheets according to Definition 4.1.

4.2 CSS Compare

CSS Compare is our AST-based comparison engine that is able to interpret CSS stylesheets
according to the W3 specifications4 and compare the results. We have built it for testing
purposes of the Less to Sass converter. It is an open source project hosted on Gi tHub 5

and written in Ruby. It is also published on RubyGems.org, the gem hosting service of the
Ruby community and can be accessed via the address https://rubygems.org/gems/css_
compare.

We have decided to use the Sass engine for parsing and comparing purposes, since any
valid CSS code can be also interpreted as valid SCSS code. Hence, the Sass parser engine
is a suitable fit for the comparison tool, which works in the following way:

1. The tool receives two CSS stylesheets as input.

2. Both stylesheets are parsed and their abstract syntax tree is created.

3. These trees are traversed and interpreted. The product of the interpretation is the
inner representation of the stylesheets in the form of a hash.

4. Finally, the hashes get compared.

4.2.1 The Inner Representation of Stylesheets

A CSS stylesheet defines the look and position of D O M objects in the browser under different
©media and ©support conditions. Based on these conditions, the adequate property value
is applied to the D O M objects matching the specified CSS selectors.

4https://www.w3.org/Style/CSS/current-work
5https://github.com/vecerek/css_compare

47

http://RubyGems.org
https://rubygems.org/gems/css_
https://www.w3.org/Style/CSS/current-work
https://github.com/vecerek/css_compare

The process of CSS interpretation creates the inner representation of CSS stylesheets
according to the W3C specifications. Basically, it is a hash of selectors, which are defined in
the CSS stylesheet. Each selector is represented as a key-value pair. The key is the name of
the selector, whereas the value is another hash containing the properties declared under the
particular selector. Each property is also represented in the form of key-value pairs. The
key is the name of the property, whereas the value is another hash containing the defined
©media conditions and the value of the particular property under the given condition. If the
same property is declared multiple times under the same selector and ©media condition, its
value is overwritten by the last declaration in the hash of ©media conditions and property
values. The inner representation of the CSS code specified in Example 4.3 is shown in
Example 4.4 in form of JSON.

.a > .b: f i r s t - c h i l d { c o l o r : r e d ; }
Omedia (min-width: 768px) {

.a > .b: f i r s t - c h i l d { c o l o r : g r e e n ; }
}

Example 4.3: CSS: Inner representation

{
It .a > . b : f i r s t - c h i l d " : {

" c o l o r " : {
" a l l " : " r e d " ,
" (m i n - w i d t h : 768px)": "green"

}
}

}

Example 4.4: JSON: Inner representation

In the interest of simplicity, the CSS values (red and green) demonstrated in Example
4.4 are output in the form they have been specified in the CSS stylesheet shown in Example
4.3. However, CSS Compare stores the property values as objects enclosing the Sass nodes
obtained during the parsing phase of the comparison. The advantage of CSS values being
stored as nodes over strings is that the operation of equation can be redefined. That way,
the CSS values can be compared in their normalized forms.

The CSS values demonstrated in Example 4.5 are equal according to the W3C specifi
cations. Firstly, both the specified paths in the u r l () function are evaluated relatively to
the location of the CSS file declaring these values. Secondly, the use of single and double
quotes is interchangable — in case the leading and trailing quotes are of the same type.
Furthermore, when declaring font-family names, the use of quotes is optional. Finally, the
use of extra whitespaces does not change the way the values are evaluated.

18

u r l (" . / p a t h / t o / f i l e . j p g ") == u r l (' p a t h / t o / f i l e . j p g ')
"Times New Roman" : == Times New Roman
rgb(0,0,0) == r g b (0 , 0, 0)

Example 4.5: CSS: Value normalization

4.2.2 Selector Normalization

In order to build an exact comparison tool, CSS selectors have to be normalized, as well.
The selectors specified in Example 4.6 refer to the same group of D O M objects.

. a. a == . a

. l i n k : v i s i t e d : h o v e r == . l i n k : h o v e r : v i s i t e d
*:hover == :hover

Example 4.6: CSS: Selector normalization

To normalize the CSS selectors, the following two operations have to applied:

• The redundancy in selector sequences should be removed. A selector sequence is a list
of selector elements separated by an empty string.

• The elements of the selector sequences should be put in a defined order. That order
has been assambled as follows:

1. Universal selector (*).

2. Element selector, i.e. div.

3. Id selector, i.e. #id.

4. Class selector, i.e. .class.

5. Pseudo-selector, i.e. :first-child.

Attribute selectors like [type="text"] are always tied to the preceding selector element.
In addition, the selector elements should be also put in an alphabetical order within
the same group of elements.

4.2.3 Supported C S S Features

CSS compare supports the comparison of the following list of CSS features:

• CSS selectors,

• color values6 (e.g. #f00 = = rgb(255,0,0) == r e d = = cmyk(0,100,100,0)),

6For color comparison, we use the Ruby gem called color: https://github.com/halostatue/color

49

https://github.com/halostatue/color

• ©media directive (also nested),

• ©import directive (also conditioned),

• ©font-face directive,

• ©namespace directive,

• ©charset directive,

• ©keyframes directive,

• ©supports directive,

• ©page directive.

To further enhance CSS Compare, there are several improvements that can be imple
mented.

© m e d i a and © s u p p o r t s condition evaluation

In the current state of the project, these conditions are stored as strings. However, they
should be evaluated and normalized similar to selectors.

Shorthand CSS property decomposition

CSS defines properties as shorthands for several other properties. For instance, the border
property is a shorhand for border-width, b o r d e r - s t y l e and b o r d e r - c o l o r properties.
To evaluate the CSS selector in an exact manner, these shorthand properties should be
decomposed and stored in their basic form.

4.3 Test Suite

Our converter has not yet been applied to any major nor popular CSS framework im
plemented in Less. The test suit consists of short Less files (henceforth, examples), each
demonstrating the use of a single language feature. We have written these examples in
order to test the specific conversion methods of the supported language features. Table 4.1
shows the results of these tests and the size of the files. It also describes the performance
of the comparison as well as the speed at which each phase of the conversion process is
executed.

The examples can be divided into four categories based on the kind of the language
features they contain:

• Comments Examples 1 and 2 contain block and line comments, respectively.

• CSS features In examples 3 to 11, CSS features like color values, dimensions and
selectors are being tested. Example 11 contains the CSS properties enlisted in the
CSS reference7 of W3Schools, which is tested regularly with all major browsers.

• Variable interpolation Examples 12 to 18 contain several examples of variable
interpolations in various contexts, i.e. property names, selectors and strings.

7http://www.w3s chools.com/c s s r e f /

50

http://www.w3s

• Variables and values In examples 19 to 23 variable definitions with various values
(i.e. single quoted, double quoted strings and various color values) are being tested.

The performance of the converter and its parts has been measured using the Bench
mark 8 module of Ruby. A l l tests have been run 100 times and the average values are being
shown in the table. The received data confirmed our assumption regarding the inefficiency
of the parsing phase of the conversion process, which has been discussed in Section 3.1.

Less file (1) (2) (3) (4) (5) (6) (7)
1 block comment.less P 4 272.09 127.20 0.13 0. .03 0.01
2 line_comment. less P 2 268.91 127.06 0.12 0. .03 0.02
3 color_values. less P 7 289.36 134.54 0.29 0. .11 0.32
4 dimension_values. less P 6 292.48 133.88 0.25 0. .08 0.29
5 empty_select or .less P 2 277.02 136.17 0.26 0. .05 0.01
6 font_face.less P 5 286.49 134.27 0.19 0. .06 0.08
7 font_values .less P 5 318.50 134.28 0.25 0. .06 0.13
8 gradient_functions. less P 4 319.81 139.15 0.30 0. .11 0.20
9 keyframes, less P 5 303.65 133.29 0.24 0. .09 0.07

10 transition_values.less P 4 299.13 143.01 0.30 0. .05 0.12
11 properties_by_type.less P 240 411.82 186.61 4.92 1. .75 6.86
12 lazy_loading.less P 11 303.30 140.10 0.31 0. .08 0.20
13 lazy_loading_2. less P 12 307.84 141.84 0.46 0. .09 0.13
14 lazy_loading_3. less P 15 311.50 138.06 0.69 0. .12 0.13
15 multiple_interpolations.less P 6 308.60 135.88 0.29 0. .10 0.09
16 properties.less P 7 319.59 143.72 0.29 0. .07 0.24
17 selectors.less P 6 290.65 133.16 0.19 0. .06 0.16
18 selectors_expanded .less P 6 284.45 136.02 0.17 0. .07 0.15
19 ur Is.less P 6 289.20 132.88 0.32 0. .08 0.12
20 basic, less P 6 285.12 133.37 0.23 0. .05 0.17
21 double_quoted_string.less P 6 284.89 140.72 0.20 0. .05 0.12
22 single_quoted_string.less P 6 289.67 132.72 0.20 0. .06 0.11
23 unquoted_string.less P 6 287.07 132.47 0.23 0. .06 0.10
24 values, less P 15 290.62 139.17 0.59 0. .20 0.02

Table 4.1: Test Suite Performance

(1) Passed/Failed
(2) Number of lines
(3) Total test time [ms]
(4) Parsing time [ms]
(5) Transformation time [ms]
(6) Code generation time [ms]
(7) Comparison time [ms]

'http://ruby-doc.org/stdlib-1.9.3/libdoc/benchmark/rdoc/Benchmark.html

51

http://ruby-doc.org/stdlib-1.9.3/libdoc/benchmark/rdoc/Benchmark.html

Chapter 5

Conclusion

The goal of this work was to study the differences between the two most popular CSS
preprocessors of our time, namely Less and Sass, and implement a converter between them.
During the work, all of the differences have been explored, and several ways have been
found to transform specific language constructs and features from one dynamic stylesheet
language to the other.

It was shown that all of the language features can be reproduced in the target dynamic
stylesheet language. However, the Less feature called detached ruleset — discussed in
Section 2.1.3 and Section 2.3.5 under the pararaphs Passing rulesets to mixins — would be
too costly to transform into its Sass representation as well as impractical due to breaking
the D R Y principle that is followed by both of the CSS preprocessor languages. After
consultation with Red Hat, the proposing company of this thesis, we have decided to find
an efficient conversion approach during the future work on the project. The converter is
needed for the project called Patternfly 1, which is built on top of the popular CSS framework
called Bootstrap 2. Currently, neither of the frameworks use the aforementioned feature of
Less.

To be able to verify the results of the converter, a custom AST-based comparison
tool has also been built. This tool might be a more reliable and faster alternative to the
presented existing solutions to comparing CSS stylesheets, which are based on either string
comparison or graphical comparison methods. Our CSS comparison tool itself is a great
benefit to developers who convert or optimize dynamic stylesheets on a regular basis and
struggle with the verification of their work.

5.1 Discussion of the Achieved Results

The existing converters are based on string replacement methods using regular expressions,
which cannot lead to full value conversions due to the different nature of declarative and
imperative programming languages — Less and Sass, respectively. The converter described
in this work supports the conversion of language features like lazy loading that cannot
be adequatly converted by the existing solutions to the dynamic stylesheet conversion.
However, the full support of some major features (i.e. mixins and extend) discussed in
Section 2.1 is still missing. Therefore, our converter cannot be successfully applied on the
aforementioned CSS frameworks.

xhttps://github.com/patternfly/patternfly
2https://github.com/twbs/bootstrap

52

https://github.com/patternfly/patternfly
https://github.com/twbs/bootstrap

Until the work on the remaining unsupported language features is finished, developers
can use the conversion methods introduced in Chapter 2.3 as a guide to manually convert
those features.

5.2 Future Directions

In order to eliminate the manual afterwork that follows the conversion of Less stylesheets
to their Sass representation, the conversion methods of the currently unsupported language
features need to be implemented.

Also, there are several opportunities to improve the performance of the converter. The
most significant improvement could be reached by implementing a custom Less parser,
which could lead to a five times faster parsing process of the converter compared to the
current solution.

The converter can be further used to implement Ruby on Rails plugins that automate
the conversion of Less stylesheets in web development projects using tools like Bower.js and
Rails Assets.

The knowledge gained during the research of language differences between Less and Sass
may greatly support the development of a bidirectional converter.

53

Bibliography

[1] Getting started: A n overview of less, how to download and use, examples and more.
„ h t t p : / / l e s s c s s . o r g / " .

[2] Less: Language features, „ h t t p : / / l e s s c s s . o r g / f e a t u r e s / " .

[3] Sass documentation.
„ h t t p : / / s a s s - l a n g . c o m / d o c u m e n t a t i o n / f i l e . S A S S_REFERENCE . h t m l " .

[4] Sass: Libsass. „ h t t p : / / s a s s - l a n g . c o m / l i b s a s s " .

[5] Hampton Catlin, Natalie Weizenbaum, and Norman Clarke. About haml.
„ h t t p : / / h a m l . i n f o / a b o u t . h t m l " .

[6] World Wide Web Consortium. Style activity statement.
„ h t t p s : / / w w w . w 3 . o r g / S t y l e / A c t i v i t y " , 2014.

[7] Matthew Dean. Less: The world's most misunderstood ess pre-processor.
„ h t t p s : / / g e t c r u n c h . c o / 2 0 1 5 / 1 0 / 0 8 /
less- the-worlds-most-misunders tood-css-pre-processor /" , October 2015.

[8] Jacob Gube. 6 current options for ess preprocessors.
„ h t t p : / / w w w . s i t e p o i n t . c o m / 6 - c u r r e n t - o p t i o n s - e s s - p r e p r o c e s s o r s / " ,
November 2014.

[9] Davood Mazinanian and Nikolaos Tsantalis. A n empirical study on the use of ess
preprocessors. Technical report, Department of Computer Science and Software
Engineering Concordia University, Montreal, Canada, 2016.

54

http://lesscss.org/
http://�http://lesscss.org/features/
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://�http://sass-lang.com/libsass
http://haml.info/about.html
https://www.w3.org/Style/Activity
https://getcrunch.co/2015/10/08/
http://www.sitepoint.com/6-current-options-ess-preprocessors/

Appendices

55

List of Appendices

A C D Content

Appendix A

C D Content

/ess compare/ The directory contains the source code of CSS Compare vO.2.0. It has
been released under the M I T license and can be also accessed at the U R L address
https://github.com/vecerek/css_compare/tree/vO.2.0.

/doc/ The directory contains the source files of the technical report written in WT^K.. The
files can be compiled using Makefile.

/examples/ A directory containing several Less files that can be converted to Sass stylesheets
using the less2sass converter.

/Iess2sass/ The directory contains the source code of Less2Sass vO.1.1. It has been re
leased under the M I T license and can be also accessed at the U R L address https:
/ /github.com/vecerek/less2sass /tree /v0.1.1.

/ R E A D M E The manual containing further information regarding the installation and
testing.

/xvecer!7 technical report.pdf The P D F file of this technical report.

57

https://github.com/vecerek/css_compare/tree/vO.2.0

