
T
B R N O U N I V E R S I T Y O F T E C H N O L O G Y
VYSOKÉ U Č E N Í T E C H N I C K É V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA I N F O R M A Č N Í C H T E C H N O L O G I Í

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

E V O L U T I O N A R Y D E S I G N A N D O P T I M I Z A T I O N O F
C O M P O N E N T S U S E D I N H I G H - S P E E D C O M P U T E R
N E T W O R K S
EVOLUČNÍ NÁVRH A OPTIMALIZACE KOMPONENT POUŽÍVANÝCH

VE VYSOKORYCHLOSTNÍCH POČÍTAČOVÝCH SÍTÍCH

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. DAVID GROCHOL
AUTOR PRÁCE

SUPERVISOR prof. Ing. LUKÁŠ SEKANINA, Ph.D.
ŠKOLITEL

B R N O 2019

Abstract
The research presented in this thesis is directed toward the evolutionary optimization

of selected components of network applications intended for high-speed network monitor
ing systems. The research started with a study of current network monitoring systems.
As an experimental platform, the Software Defined Monitoring (SDM) system was cho
sen. Because traffic processing is an important part of all monitoring systems, it was
analyzed in greater detail. For detailed studies conducted in this thesis, two components
were selected: the classifier of application protocols and the hash functions for network flow
processing. The evolutionary computing techniques were surveyed with the aim to optimize
not only the quality of processing but also the execution time of evolved components. The
single-objective and multi-objective versions of evolutionary algorithms were considered and
compared.

A new approach to the application protocol classifier design was proposed. Accurate and
relaxed versions of the classifier were optimized by means of Cartesian Genetic Programming
(CGP) . A significant reduction in Field-Programmable Gate Array (FPGA) resources and
latency was reported.

Specialized, highly optimized network hash functions were evolved by parallel Linear
Genetic Programming (LGP) . These hash functions provide better functionality (in terms
of quality of hashing and execution time) than the state-of-the-art hash functions. Using
multi-objective L G P , we even improved the hash functions evolved with the single-objective
L G P . Parallel pipelined hash functions were implemented in an F P G A and evaluated for
purposes of network flow hashing. A new reconfigurable hash function was developed as
a combination of selected evolved hash functions. Very competitive general-purpose hash
functions were also evolved by means of multi-objective L G P and evaluated using represen
tative data sets. The multi-objective approach produced slightly better solutions than the
single-objective approach. We confirmed that common L G P and C G P implementations
can be used for automated design and optimization of selected components; however, it
is important to properly handle the multi-objective nature of the problem and accelerate
time-critical operations of GP.

Keywords
Evolutionary algorithms, Cartesian Genetic Programming, Linear Genetic Programming,
Network Monitoring, Network Application, Computer Network, Hash Function

Reference
G R O C H O L , David. Evolutionary design and optimization of components used in high-speed
computer networks. Brno, 2019. PhD thesis. Brno University of Technology, Faculty of
Information Technology. Supervisor prof. Ing. Lukas Sekanina, Ph.D.

Abstrakt
Výzkum prezentovaný v této práci je zaměřen na evoluční optimalizaci vybraných kom

ponent síťových aplikací určených pro monitorovací systémy vysokorychlostních sítí. Práce
začíná studiem současných monitorovacích systémů. Jako experimentální platforma byl
zvolen systém S D M (Software Defined Monitoring). Detailně bylo analyzováno zpracov
ání síťového provozu, protože tvoří důležitou součást všech monitorovacích systémů. Jako
demonstrační komponenty pro aplikaci optimálních technik navržených v této práci byly
zvoleny klasifikátor aplikačních protokolů a hashovací funkce pro síťové toky. Evoluční
algoritmy byly zkoumány s ohledem nejen na optimalizaci kvality zpracování dat danou
síťovou komponentou, ale i na čas potřebný pro výpočet dané komponenty. Byly zkoumány
jednokriteriální i vícekriteriální varianty evolučních algoritmů.

B y l navržen nový přístup ke klasifikaci aplikačních protokolů. Přesná i aproximativní
verze klasifikátoru byla optimalizována pomocí C G P (Kartézské Genetické Programování).
Bylo dosaženo výrazné redukce zdrojů a zpoždění v F P G A (Programovatelné Logické Pole)
oproti neoptimalizované verzi.

Speciální síťové hashovací funkce byly navrženy pomocí paralelní verze L G P (Lineární
Genetické Programování). Tyto hashovací funkce vykazují lepší funkcionalitu oproti mod
erním hashovacím funkcím. S využitím vícekriteriální optimalizace byly vylepšeny výsledky
původní jednokriteriální verze L G P . Paralelní zřetězené verze hashovacích funkcí byly im
plementovány v F P G A a vyhodnoceny za účelem hashování síťových toků. Nová rekonfig-
urovatelná hashovací funkce byla navržena jako kombinace vybraných hashovacích funkcí.
Velmi konkurenceschopná obecná hashovací funkce byla rovněž navržena pomocí multikri-
teriální verze L G P a její funkčnosti byla ověřena na reálných datových sadách v prove
dených studiích. Vícekriteriální přístup produkuje mírně lepší řešení než jednokriteriální
L G P . Také se potvrdilo, že obecné implementace L G P a C G P jsou použitelné pro autom
atizovaný návrh a optimalizaci vybraných síťových komponent. Je však důležité zvládnout
vícekriteriální povahu problému a urychlit časově kritické operace GP.

Klíčová slova
Evoluční algoritmy, kartézské genetické programování, lineární genetické programování,
monitorování síťového provozu, síťové aplikace, počítačové sítě, hashovací funkce

C it ace
G R O C H O L , David. Evolutionary design and optimization of components used in high-speed
computer networks. Brno, 2019. PhD thesis. Brno University of Technology, Faculty of
Information Technology. Supervisor prof. Ing. Lukas Sekanina, Ph.D.

3

Evolutionary design and optimization of compo
nents used in high-speed computer networks

Prohlášení
Prohlašuji, že jsem tuto disertační práci vypracoval samostatně pod vedením pana prof.
Ing. Lukáše Sekaniny, Ph.D. Další informace mi poskytli doc. Ing. Jan Kořenek, Ph.D. a
Ing. Mart in Zádník, Ph.D. Uvedl jsem všechny literární prameny a publikace, ze kterých
jsem čerpal.

David Grochol
September 5, 2019

Poděkování
Chtěl bych poděkovat svému školiteli Lukáši Sekaninovi za jeho odborné rady a pomoc
při tvorbě této disertační práce. Dále bych chtěl poděkovat kolegům z ústavu za odborné
konzultace. Poděkování rovněž patři rodině, kamarádům a známým za neutuchající pod
poru během celého studia.

Dále bych chtěl poděkovat projektům, v rámci kterých tato disertační práce vznikla:

• Pokročilé metody evolučního návrhu složitých číslicových obvodů, GA14-04197S

• Architektury paralelních a vestavěných počítačových systémů, FIT-S-14-2297

• Rozvoj kryptoanalytických metod prostřednictvím evolučních výpočtů, GA16-08565S

• IT4Innovations excellence in science, LQ1602

• Pokročilé paralelní a vestavěné počítačové systémy, FIT-S-17-3994

• Pokročilé metody nature-inspired optimalizačních algoritmů a H P C implementace pro
řešení reálných aplikací, LTC18053

Contents

1 Introduction 3
1.1 Research Objectives 4
1.2 Thesis Outline 5

2 State of the Art 6
2.1 Computer Networks 6

2.1.1 T C P / I P Model 6
2.2 Network Monitoring 8

2.2.1 Processing of Network Traffic and Network Flows 10
2.2.2 F P G A Based Accelerators 12

2.3 Hash Function Design 14
2.4 Evolutionary Design 16

2.4.1 Cartesian Genetic Programming 18
2.4.2 Linear Genetic Programming 19
2.4.3 Evolution of Hash Functions 20

2.5 Multi-Objective EAs 20

3 Research Summary 26
3.1 Methodology 26

3.1.1 The Use of Evolutionary Computation Methods 26
3.1.2 Selection of Target Components 27
3.1.3 Validation of Evolved Implementations 27

3.2 Papers 27
3.2.1 Paper I 27
3.2.2 Paper II 28
3.2.3 Paper III 29
3.2.4 Paper IV 30
3.2.5 Paper V 31

3.3 List of Other Papers 31

4 Discussion and Conclusions 33
4.1 Contributions 35
4.2 Future Work 36

Bibliography 37

1

Related Papers 45

I Evolutionary Circuit Design for Fast FPGA-Based Classification of Net
work Application Protocols 45

II Evolutionary Design of Fast High-quality Hash Functions for Network
Applications 55

HIMultiobjective Evolution of Hash Functions for High Speed Networks 64

IV Multi-Objective Evolution of Ultra-Fast General-Purpose Hash Functions 73

V Fast Reconfigurable Hash Functions for Network Flow Hashing in F P G A s 90

2

Chapter 1

Introduction

Many hardware providers have announced a support for 100 gigabit-per-second (Gbps)
networks to overcome current 10-40 Gbps solutions [45, 57, 46]. The 400 Gbps and even
1 Tbps networks will be needed in a few next years, see Fig. 1.1. Commercial companies,
data and supercomputer centers, and other entities around the world are now working to
wards launching 100 Gbps networks in order to benefit from faster communication and wider
bandwidth in high-throughput requesting applications such as high-performance comput
ing, high-quality video streaming or Internet of Things (IoT). Managing 100 Gbps networks
requires more precise performance monitoring (involving bandwidth monitoring, traffic an
alytics and anomaly detection) than in the previous era.

In order to effectively monitor and analyze high-speed networks at the level of packet
contents, software defined monitoring (SDM) concept has been developed [43]. Having less
than 7 ns to process one packet in a 100 Gbps network, S D M performs the analysis using
relatively simple (and so fast) hardware whose functionality (i.e. the rules of operation) are
defined in the software. Unrecognized traffic is then processed by sophisticated algorithms
in the software. The analysis is performed at the level of network flows, where a network
flow is defined as a set of packets (with the same key features) that passed an observation
point in the network during a given time interval.

Because there are only a few nanoseconds to process each packet, monitoring systems
have to be carefully designed and optimized. Traffic monitoring systems perform many
operations with flows (such as an extraction of the information from packet headers and
a deep packet inspection to determine the application protocol) As these operations have
to be executed for each packet in the flow, it is important to provide their efficient (highly
optimized) implementations in high-speed networks.

Evolutionary algorithms (EAs) have successfully been used to design and optimize many
applications. The automated search for a new or an improved piece of software is a typical
task specifically for genetic programming (GP). G P can be used to improve existing soft
ware (e.g. [55]), create or optimize parallel programs (e.g. []) or automate generating full
computer programs (e.g. [1]). In recent years, significant development and progress have
been reported in evolutionary circuit design. In many cases these techniques were capable of
delivering efficient circuit designs in terms of an on-chip area minimization (e.g. [89]), adap
tation (e.g. [40]), fabrication variability compensation (e.g. [90]), and many other properties
(see, for example, many requirements on synthetic benchmark circuits in []).

The main focus of this thesis is the optimization of low-level H W / S W components of
network monitoring systems. It is important to identify the components that significantly
influence performance in currently developed and future implementations of these systems.

3

35M

30M

25M

I
w 15M
ID

10M

I FE ÍGE n o GE 140 GE 1100 GE

IGOGb Capable Switching

Faster servers —• Faster aggregation links
i— 4.0Gb Capable Switching I

x86 Server Forecast by Ethernet Connection Type
IEEE 802.3 HS3G April 20Q7 Interim Meeting

1 OG server driven
Dy TOG LAW-On-Motherboard integration

5M — I

1—i—i—P W T '

• I

O í- N M lij Iß o o o c o o o o o o
O O O O O O O O O O O O O D O O O O O O O
C \ I C N (N Í N C N) C N Í N C N t N] (^ J Í N (N t N Í N J t M t \ l 0 1 C M C N t >] C N

Figure 1.1: The network traffic is increasing rapidiy in the fast years (adopted from [11]).

The seiected components require an optimization or a re-design not oniy in terms of func
tionality but also in terms of latency which is critical for high-speed networks. This thesis
will explore how evolutionary algorithms (in particular genetic programming) can be em
ployed to design and/or optimize selected components of high-speed network monitoring
systems.

1.1 Research Objectives

We hypothesize that by using well-tuned evolutionary algorithms selected components of
high-speed network monitoring systems can automatically be re-designed or optimized to
improve their functionality and optimize other parameters (such as the implementation
cost) in comparison with the state-of-the-art solutions.

The following research objectives were formulated:

1. To study network monitoring systems and identify their components suitable for au
tomated optimization.

2. To define objectives and constrains that are important for an efficient optimization of
the selected components.

3. To propose and implement single- and multi-objective variants of EAs including suit
able fitness functions.

4. To validate the proposed approach and evolved solutions using relevant data sets.

5. To compare evolved solutions with the state-of-the-art implementations.

4

1.2 Thesis Outline

The thesis is composed as a collection of papers. The research contribution is presented
in five peer-reviewed papers that are attached in section Related Papers. The thesis is
organized as follows. Chapter 2 surveys the state-of-the-art. It primarily includes the
principles of network monitoring and evolutionary design of circuits and programs. A
special attention is devoted to the classification of application protocols in hardware and to
the hash function design because these two problems are later selected as the case studies
for this thesis. The research methodology and overview of scientific papers constituting
this thesis is given in Chapter 3. Finally, Chapter 4 concludes the thesis and suggests
possibilities for future research.

5

Chapter 2

State of the Ar t

This chapter provides a necessary background needed to understand the research presented
in this thesis. Chapter 2.1 introduces relevant concepts of computer networks and network
applications that are important for monitoring and security of computer networks. The hash
function design is presented in Chapter 2.3. Chapter 2.4 surveys the principles of genetic
programming including the graph-based and linear-based variants of GP. Multi-objective
approaches for evolutionary algorithms are presented in Chapter 2.5.

2.1 Computer Networks

A computer network is a telecommunication network that provides connections among
end-systems in order to share resources.

Computer networks [] consist of end-systems (such as personal computers, servers,
mobile devices or IoT nodes) and network devices (such as routers, switches, bridges, fire
walls). These devices are connected by different types of links (wired, wireless or optical).
Computer networks can be local, connecting nodes in the boundary of space, or global,
connecting nodes all around the world (the Internet). The basic architecture of a computer
network includes:

• A technology for signal transmission,

• a technology for reliable data transmission and

• an application layer which provides services for users.

Several network architecture models have been proposed. The reference network archi
tecture model is the ISO/OSI model [97], which contains seven layers, namely Physical,
Datalink, Network, Transport, Session, Presentation and Application layers. The most
widespread model is the T C P / I P model, which is based on the ISO/OSI model, but uses a
simpler architecture than the ISO/OSI model. It has only four instead of seven layers used
in the ISO/OSI model. A comparison of these models is shown in Table 2.1.

2.1.1 T C P / I P Mode l

The T C P / I P model [33, 85] has been designed with respect to reliability, independence of
the transmission medium, decentralized and simple implementation. Table 2.1 shows all
the layers and the typical protocols associated with each layer. Each layer uses services

(i

Internet

GET http://www.1it.vutbr.cz

HTTP message

Ethernet frame

Sender

WWW page

WWW server

Receiver

Figure 2.1: Example of the data encapsulation on the Sender side and the data decapsula
tion on the Receiver side.

provided by lower layers. Each layer adds a header or a footer to the data coming from the
higher layers and delegates the encapsulated data to the lower layer for the next processing.
Example of the data encapsulation on the sender side and decapsulation on the receiver
side is shown in Figure 2.1. The lowest layer sends all the data with headers (footers) to a
target device.

Network interface layer defines requirements on physical medium, electrical signals
and optical signals. Examples of the network interface layer implementations are Ethernet,
TokenRing, Frame Relay, F D D I or RS-232C. In addition to these requirements, the network
interface layer defines the methods enabling the access to a physical medium.

Internet layer addresses and routes basic transfer structures (the so-called datagrams)
containing the header and pay load sections. Datagrams are routed using the best-effort
delivery strategy, which tries to find a compromise between the shortest and the fastest
paths through the entire network. If the datagram is lost during its transport via the
network, the sender has to arrange for its re-sending. The internet layer typically uses five
protocols. The Internet Protocol (IP) provides services for transport layer protocols. It
distinguishes devices in the network. Two versions of IP are currently used IPv4 and IPv6,
see Figure 2.2. Next protocols are Address Resolution Protocol (ARP) and Reverse A R P
(RARP) . The A R P translates an IP address to a M A C address and R A R P translates a M A C
address to an IP address. Internet Group Message Protocol (IGMP) is used for logging to
multicast groups. Internet Control Message Protocol (ICMP) sends error messages in the
networks, for example, a device goes offline or a service is unavailable. A l l internet layer
protocols have to be implemented in the operation system.

Transport layer ensures logical connections between processes on the end devices
connected through the IP. The logical connection is identified by a port number. The
transport protocol divides the data coming from the application layer to smaller pieces and
adds a header in order to form a packet. The packets create a sequence which is called the
network flow. The network flow is defined as a set of packets with the same key features
and is passed by an observation point in the network during a given time interval. The
transport layer uses two protocols, (i) The Transmission Control Protocol (TCP) ensures
reliable connections. It means that all the data sent from a sender will be delivered to a
recipient correctly. The T C P adds special packets to the communication to establish the
connection, finish the connection, confirm an acceptance, synchronize all entities, etc. (ii)

7

http://www.1it.vutbr.cz

IPv4 IPv6

Varel Dn 1HL Type oi Service? Total Length

Identification Flags Fragment Offset

Tims to Live Protocol Header cnecksum

Source M d re^

Destination Address

Options Padding

Trafflc Class

S ů u i t e Ad dresů

Figure 2.2: Comparison of IPv4 header (left) and IPv6 header (right).

Table 2.1: Comparison of ISO/OSI model and T C P / I P model.
ISO/OSI model T C P / I P model Group of Layers Examples

Application Layer
Presentation Layer

Session Layer
Application Layer Application Layer Web Pages and

Internet browsers

Transport Layer
Network Layer

Transport Layer
Network Layer

Internetwork Layer T C P / I P Software

Data Link Layer
Physical Layer

Data Link Layer
Physical Layer

Hardware Layer
Ethernet ports, cables
and ethernet drivers

The User Datagram Protocol (UDP), in fact, creates unreliable connections as there is no
mechanism to check if a packet is delivered correctly. The data transfer is faster using U D P
than T C P because there are no additional control packets. U D P is employed by services
which need a fast transmission but can tolerate some undelivered packets, for example,
Video on Demand (VOD), audio stream, etc.

Application layer covers many different application protocols developed for specific
applications. Each protocol uses either T C P or U D P as transport protocol. Well-known
protocols such as H T T P , SMTP, SIP, SSH have a port number assigned. The port numbers
are divided into three ranges. The well-known ports, also known as the system ports, belong
to the interval from 0 to 1023. These applications have to e strictly registered. The second
group of ports (with numbers from 1024 to 49151) is a subject to registration at I A N A
organization. For the last group, with the so-called dynamic (or private) ports in the range
from 49152 to 65535, there are no specific requirements for registration.

2.2 Network Monitoring

The network monitoring is crucial for ensuring the correct functionality of computer net
works. It is based on probing of device states, traffic analysis and collecting traffic informa
tion. Results of monitoring are useful for administrators to improve network security, per
formance and functionality. Two types of network monitoring techniques exist [78, 66, 54].
(i) The active monitoring lies in injecting test traffic into the network and analyzing its
impact. These tests can reveal real-time problems such as packet loss, jitter, insufficient
bandwidth, unknown device status, latency and measure the quality of services (QoS). The

8

Figure 2.3: Schema of a monitoring system architecture.

active monitoring can thus relatively quickly detect network problems. The disadvantages
of the active monitoring are increased network traffic and missing information about the
data in the packed payload because only injected packets are analyzed, (ii) The passive
monitoring is based on an analysis of real network traffic without injecting any new network
traffic. It requires either special network devices to capture the network data or a built-in
support in switches and other network devices. The passive monitoring provides more op
portunities for the analysis than active monitoring. For example, the volume of the data
generated by a device or anomalies in the traffic behavior can be detected. Any specific
application, any user or any specific traffic may be observed and analyzed. The long-term
statistics created from captured data are of a great importance for future infrastructure
planning and upgrades. A monitoring probe is typically inserted between two networks,
see Figure 2.3. The network probes typically send the data to a collector that analyses the
data and distribute them to users or makes certain automatic or semi-automatic actions
such as blocking of specific devices (users), applications or attacks in real-time.

Current high-speed networks operate at lOGbps and 40Gbps. Solutions for lOOGbps
networks have been already demonstrated [43]. The specifications for 400Gbps and even
1 Tbps are under design. High-speed networks require a novel approach to traffic monitoring
because the monitoring systems used in lOGbps networks do not have enough throughput.
A common feature of software implementations of network monitoring systems is that the
monitoring probe is flexible and easily adapts to a given network. However, the software
solution is often insufficient in terms of performance. Hardware implementations of mon
itoring systems, based on field-programmable gate arrays (FPGA) or application-specific
integrated circuits (ASIC), usually have a sufficient throughput but it is often difficult to
adapt them to a certain network or add new monitoring features.

A new approach to high-speed network monitoring known as Software Defined Mon
itoring (SDM) has recently been developed [13,]. The S D M combines hardware and
software approaches. The S D M consists of three fundamental parts: i) a special hardware
card with an F P G A based network monitoring accelerator, ii) a firmware controlling the
data preprocessing in hardware and iii) user applications, see Fig. 2.4. The main benefit

9

User Applications

í Software Defined Monitoring
Software Layer

Basic
Control
Too is

T

ÜibSDM ;

PC A F\:
SZE

Ť Data"
Path

SDM
Controller

I Control
Path

Firmware Layer
NetCOPE
(lOOGbE)

SDM
Acceleration

Firmware

Figure 2.4: Software Defined Monitoring system architecture (adopted from []).

of S D M is its ability to control the hardware preprocessing of network flows by means of
software applications. The control software sets the rules for the hardware accelerator with
respect to the particular flows, groups of flows, devices (users) or selected protocols. It also
sets various actions specifying how to discard packets, collect basic network characteristics,
capture all packets for detailed analysis, etc. A rule or a set of rules is defined to preprocess
each flow. Because the software part has to process only a small portion of the traffic
(already preprocessed and aggregated data) it can be executed on a standard multi-core
processor. About 80% of flows can be processed in hardware after the learning phase of
the S D M system is finished []. However, during the learning phase, the software has to
handle most of the flows.

2.2.1 Processing of Network Traffic and Network Flows

This section briefly describes the flow processing in the S D M system and identifies the most
time-critical operations.

Network Traffic Processing

In the current networks, which are mostly based on T C P / I P model [72], a packet is formed
by headers and payload. Every layer has its own header for identification and processing.
A flow can be uniquely identified by a 5-tuple extracted from these headers: source and
destination internet protocol addresses (IPv4 or IPv6), source and destination ports and
transport protocol (mostly T C P or UDP) . Each flow represents one direction of the com
munication between two applications on the devices. In the flow-based monitoring, we deal
with the basic flow characteristics such as the flow length (the number of packets or bytes)
and timing (the start time, the end time, the duration). These characteristics are often
amended by certain interesting information from an application layer such as the type of
protocol or some information extracted from the payload.

10

Storage and
post-processing

Flow processing

Action for flow

Rules database

Flow Cache

Create flow
in cache

Application Classifier

Flow identificator

Header analyser

Packets

Figure 2.5: Packet processing in monitoring systems such as S D M .

Flow Processing

Fig. 2.5 shows a typical packet processing pipeline in the monitoring systems such as S D M .
At first, the 5-tuple identification of the packet is extracted from packet headers. The
packet is assigned to a flow record if the corresponding flow already exists in the flow cache.
Otherwise, a new flow record is created in the flow cache and rules for the processing of the
packets belonging to this flow are defined. There are different types of rules, for example,
"capture all traffic", "get basic characteristics" or "get advanced characteristics". These
rules can affect complete network traffic, a specific user, a subnet, a specific protocol or a
group of protocols (e.g. communication protocols).

One of the challenges in network monitoring is the identification of application protocols.
The research in the area of application identification has come up with distinct approaches
to identify the applications carried out in the traffic. These approaches differ in the level of
detail that is utilized in the identification method. The most abstract one is the behavioral
analysis [38, 95]. Its idea is to observe only the port numbers and destination of the
connections per each host and then to deduce the application running on the host by its
typical connection signature. If more details per connection are available, the statistical
fingerprinting [] comes into play. In this feature set is collected per each flow
and the assumption is that the values of the feature set vary across applications, and
hence, the applications leave a unique fingerprint. Behavioral and statistical fingerprinting

11

Table 2.2: Characteristics of different speed links. *Packet size is 64 bytes * * C P U fre
quency = 3.6GHz

Link speed Packets* Time to process approximate C P U * *
[Gbps] per second one packet [ns] clocks cycles

1 1 953 125 512.0 1843
10 19 531 250 51.2 184
40 78 125 000 12.8 46
100 195 312 500 5.12 18
400 781 250 000 1.28 5

generally classifies the traffic into the application classes rather than into the particular
applications. The reason is that different applications performing the same task often
exhibit similar behavior. For instance, application protocols such as Oscar (ICQ), M S N
and X M P P (Jabber) transport interactive chat communications, and hence, they exhibit
a similar behavior, which is very hard to differentiate for the monitoring system. The
inability to distinguish applications within the same class is in some situations seen as a
drawback, for example, when it is necessary to block/capture an application while other
applications of the same class have to remain running. The approach utilizing the greatest
level of detail is called deep packet inspection. It identifies applications based on the packet
payload. The payload is matched with known patterns (defined, for example, by regular
expressions) derived for each application [80].

The L7 filter [25] is a popular program for the application protocol identification, which
utilizes regular expressions to describe the application protocols. It performs pattern match
ing in network flows. If a known pattern is matched in the payload, the corresponding appli
cation protocol is assigned to the network flow. Current processors are not powerful enough
to achieve 100 Gbps throughput for the regular expression matching. The throughput of L7
decoder is less than 1 Gbps per one C P U core even for the latest Xeon processors [31, 32].
In order to achieve 100 Gbps throughput, it is necessary to use highly optimized hardware
accelerators.

2.2.2 F P G A Based Accelerators

Table 2.2 shows how requirements on CPUs are growing with increased link speed. As a
processor-based network monitoring is only applicable to 10 Gbps, hardware acceleration is
needed for faster links.

Paxson et al. [] argue that these performance requirements should be met by leveraging
a high degree of possible parallelism that is inherent to network traffic monitoring. F P G A s ,
as well as ASICs, may deliver a vast support of parallelism. However, only F P G A s enable
possibility to prototype and implement critical components for various network applications
at the highest speeds while the optimized ASICs follow broad deployment a few years
later. F P G A s are extensively used in the so-called hardware-accelerated network cards to
implement the first line of network traffic processing such as monitoring, forwarding and
other applications [1, 44].

F P G A s consist of programmable routing network and basic building blocks such as look
up tables (LUTs), registers, and block memories. A particular setup of the routing network
defines the interconnection of these components. The LUTs serve to implement combi
national logic while registers and block memories serve to keep the stateful information.

12

Data
512/M bits"

Data
Data

512 bits Splitter
512/N bits

Pattern
Match 1

Pattern
Match 2

Result 2

Binder
Result

Data
512'N bits

Pattern
Match N

Result N I

Figure 2.6: Increasing the throughput by multiple pattern matching units.

Modern F P G A s contain millions of LUTs and registers and thousands of block memories
with the total capacity of hundreds M B [i]. A l l these components may, theoretical, work
in parallel, independently of each other, and provide enormous computation power with low
energy consumption in tens of Watts per chip. Moreover, F P G A s targeting the network
market provide more than a hundred of high-speed transceivers allowing for connection to
high-speed network links (e.g. high-end Virtex UltraScale-l- F P G A offers up to 4 Tbps of
aggregated transceiver throughput [93]).

The crucial task is to transform a high-level description of the circuit (for example, writ
ten in V H D L or SystemC) into an effective implementation in F P G A from the perspective
of meeting the timing and resource constraints.

In recent years, many researchers have proposed high-speed pattern matching hardware
architectures, which utilize the fine-grained parallelism of F P G A technology. Mapping of
the regular expressions matching to an F P G A was first explored by Floyd and Ullman [26],
who showed that pattern matching realized by a Nondeterministic Finite Automaton (NFA)
can be implemented using a programmable logic array. Sindhu et al. [!] proposed an
efficient mapping of NFAs to F P G A and Clark et al. improved the implementation by a
shared decoder [12, 13] which significantly reduced the amount of consumed logic resources.
The A M T H (At Most Two-Hot encoding) architecture [{] provides another improvement
of the N F A implementation in the F P G A . The combination of one-hot and binary encoding
reduces the amount of flip-flops, representing the N F A states.

Several authors introduced an optimized mapping of Perl Compatible Regular Expres
sions (PCRE) , which are widely used in Intrusion Detection Systems (IDS), to the F P G A .
Sourdis et al. published in [] an architecture that allows for the sharing of character
classes, static sub patterns and introduced components for efficient mapping of constrained
repetitions to the F P G A . L in et al. created an architecture for sharing infixes and suf
fixes [58]. Nevertheless, these optimizations are relevant only for large sets of P C R E s in
IDS systems.

The throughput of a pattern matching circuit is determined by the number of bytes
processed within one clock cycle and frequency of the hardware matching unit. The F P G A
technology limits the maximum frequency to several hundreds of MHz. To increase the
processing speed, the N F A can be modified to process multiple bytes per one clock cy
cle [8]. Unfortunately, with the increasing size of the N F A input, the amount of N F A
transitions grows exponentially. As a result, the hardware matching unit consumes more
F P G A resources and its frequency decreases rapidly.

13

The throughput can be increased by introducing multiple parallel matching units. These
units need additional logic resources and buffers to distribute the network data to the
matching units and join the results. The overhead of parallel processing is illustrated in
Fig. 2.6. First, the splitter has to assign the sequence number for every packet and store the
packet to a buffer. The packet data are then sent with a lower rate to one of the parallel
matching units. The units perform pattern matching and send the results to a binder,
which contains buffers to put the results in the right sequence order.

Introducing the parallel matching units can improve the matching speed up to 100 Gbps,
but only at the cost of significant overhead in terms of latency, F P G A logic resources
and memory buffers. This overhead is avoided by focusing on highly optimized hardware
architectures with high throughput and low latency [59, 60].

2.3 Hash Function Design

Hash functions are often employed in hardware accelerators of network monitoring systems.
They are responsible for searching in the rule table, for distributing data to process units and
for storing the flows data to database. For example, in the distribution unit, a hash function
is called for each packet. In order to maximize the performance of network monitoring
systems, hashing has to be not only of a high quality, but also fast.

A hash function is a mathematical function h that maps an input binary string (of
length ID) to a binary string of fixed length (IR), h : D —>• R, where ID > IR- The
output value is called a hash value or simply hash [50]. The definition of hash function
implies the existence of collisions, i.e. h(d) = h(ď), where d,ď G D are two different input
messages. A n important requirement imposed on hash functions is that a small change in
the input should generate a large change in the output, which is called the avalanche effect.
Good hash functions usually satisfy both criteria - maximizing the avalanche effect and
minimizing the collision rate.

Two major types of hash functions exist, cryptographic and non-cryptographic. The
cryptographic hash functions are suitable for cryptographic applications [86]. They have to
satisfy many requirements, e.g.:

• practical efficiency - for d G D it is computationally efficient to find a hash value
r G R s.t. h(d) = r:

• first preimage resistance (one-way) - for r G R it is computationally infeasible to find
an input value d G D s.t. h(d) = r:

• second preimage resistance (weak collision resistance) - for d G D it is computationally
infeasible to find a value ď G D, s.t. ď / d and h(ď) = h(d);

• collision resistance (strong collision resistance) - it is computationally infeasible to
find two distinct values ď,d G D, s.t. h(ď) = h(d).

These requirements lead to more complicated construction of hash functions and, hence,
the cryptographic hash functions need more time to compute the hash value than the non-
cryptographic hash functions. The cryptographic hash functions have many applications,
for example, in message authentication tools, digital signatures or in other forms of authen
tication.

14

Input message

Message block 1 Message block 2
Message ,_ . ..

block n | P a d d l " 9

Initial
vector

Hash
value

Figure 2.7: Merkle-Damgard construction of hash functions.

The non-cryptographic hash functions have to satisfy weaker requirements, but the
practical efficiency and collision resistance are also important. These properties are often
used to quantify the hashing quality of non-cryptographic hash functions.

Because the input size is usually arbitrary, hash functions are often designed using a
pipelined (Merkle-Damgard) construction, see Fig. 2.7. It means that an input message is
divided into blocks of a fixed size and processed block by block. The block is processed one
at a time with an inside reduction function, each time combining the input block with the
output of the previous round. The size of the output is typically the same as the size of
the hash value. The last round produces the hash value. The last block of the message is
typically padded with zeros to the required size.

The non-cryptographic hash functions have many applications, for example, in hash
tables, search duplication, caches, bloom filters [61, 71, 36]. The hash table is a data
structure used to implement an associative array, a structure which maps keys to values,
see Figure 2.8. Hash tables have many applications, such as database indexing, object
representation in programming languages or sets. Because hash functions produce collisions,
it is necessary to resolve them in the hash tables. A well-known technique is separate
chaining, where each slot in the hash table refers to a linear list that contains the records
having the same hash. While determining the slot for a given input is performed in constant
time, a particular record have to be searched sequentially. Next approach the collision

h(K1)

h(K3)

h(K2)

K1 K1

K2

Figure 2.8: Example of hash table with size 6 slots, utilizing the separate chaining.

15

Hash table Hash table

h i
«h2(Kl) - hl(K3)

K3-

h2
-hl(K2) hl(Kl) hl(K2)

hl (Kl)

Inserting K3 K3 inserted

Figure 2.9: Example of inserting key to hash table with Cuckoo hashing

resolving is the open addressing. This method searches (using some algorithms) for an
alternative position in the hash table, where to store the data. Another approach, cuckoo
hashing [68], uses two hash functions. A key is hashed by both hash functions and the
data are stored to an empty slot indexed by one of them. If both slots are occupied, one
of the keys stored in the table is rehashed by the other hash function and stored there, see
example in Figure 2.9.

Many (non-cryptographic) hash functions have been proposed, for example, DJBHash [6],
DEKHash [], F V N (Fowler-Noll-Vo) [], One At Time and Lookup3 [36]. MurmurHash2
and MurmurHash3, which are utilized in many open source projects, are hash functions
suitable for general hash-based lookup [2]. CityHash is a family of non-cryptographic
hash functions designed for fast hashing of strings []. Additional details are available
in Paper II.

In addition to the general purpose non-cryptographic hash functions, there are also
exist application-specific hash functions. They address specific properties of a particular
application and, therefore, can be better (with respect to these properties) than the general-
purpose hash functions. For hashing of network flows, the so-called X O R folding has been
proposed [9]. Its implementation works with inputs of fixed size and is optimized in terms
of performance.

SHMHasher [] is a framework developed for evaluation of hash functions. It pro
vides a test suite to evaluate the distribution, collision and performance properties of non-
cryptographic hash functions. It contains many hash functions that can be used for a
comparison. We used this framework in Paper V to measure the performance of hash
functions.

2.4 Evolutionary Design

Evolutionary algorithms (EAs) [75] are inspired by the principles of biological evolution
which is seen as an excellent optimization system. EAs are a class of stochastic optimization
algorithms in which a population (a set) of candidate solutions is modified by genetic
operations in order to solve a particular optimization problem. The quality of candidate

16

solutions is evaluated by means of the fitness function. A general evolutionary algorithm
works as follows:

1. Initialize the population of candidate solutions (individuals).

2. Evaluate all individuals to determine their fitness value.

3. If termination conditions are met then stop. The result of E A is the individual with
the best fitness value.

4. By means of a selection method select individuals from the population to a set of
parents.

5. Create a set of offspring by applying genetic operators on the parents:

(a) Reproduction - copy an individual to the offspring set unchanged

(b) Recombination - exchange some parts of two or more individuals

(c) Mutation - randomly modify some parts of an individual

6. Create a new population using the set of parents and offspring

7. Continue with step 2.

Many variants of evolution algorithms have been proposed in the literature, for exam
ple, evolution strategy [], differential evolution [73], genetic algorithm [15] and genetic
programming [52].

Genetic programming (GP) [52, 53] is primarily used for automated design of computer
programs. Candidate programs are represented in memory as syntactic trees in the so-called
tree version of GP. Nodes of the tree represent operations (arithmetic, logic, control etc.)
and leaves contain terminal symbols such as program's inputs or constant values. During
evolution, every candidate program is executed on a training data set in order to obtain its
fitness value. Genetic operators randomly modify one candidate tree (mutation) or two or
more candidate trees (swapping of subtrees) in crossover. The resulting tree is evaluated
using a test set to validate its behavior on unseen data.

Other variants of G P use a different encoding of candidate programs. Cartesian G P
and Linear G P are described in greater detail in the next chapter because they are relevant
for this thesis.

2.4.1 Cartesian Genetic Programming

Cartesian genetic programming (CGP) has been developed by Miller since 1999 [] and has
been utilized in many applications as summarized in monograph [62]. A typical application
of C G P is evolutionary circuit design. The idea of evolvable hardware and automated circuit
design by means of artificial evolution was introduced by Higuchi et al. in 1993 []. A
recent survey of the field covering key subfields (evolutionary hardware design and adaptive
hardware) is available in [79]. In C G P , a candidate solution is modeled as a directed acyclic
graph and represented in a 2D array of nc x nr processing nodes. Each node can perform
one of the n a-input functions specified in - set. The setting of n c , nr and - significantly
influences the performance of C G P [63, 29].

The remaining parameters of C G P are the number of primary inputs (n^), the number
of primary outputs (n 0), and the level-back parameter (L) specifying which columns can

17

z Q - i Q - i Q - z Q -
Figure 2.10: Example of a combinational circuit in C G P with parameters: na = 2, m = 5,
n o = 2, L = 4, nc = 4, n r = 2, - = { A N D (0), OR (1), X O R (2)}. Gates 8, 11 and 12
are not utilized. Chromosome: 2,3,0; 4,3,2; 5,4,1; 2,0,1; 5,7,0; 5,6,1; 0,6,2; 7,6,2; 9, 10. The
last two integers indicate the outputs of the circuit.

be used as inputs for a given gate. The primary inputs are labeled 0 . . . — 1. The outputs
of all nodes are labeled tii — 1... nc • nr + tii — 1 and considered as addresses where the
connections can be fed to. In the chromosome, each n a-input node is then encoded using
na + 1 integers (n a inputs and a node function). Finally, for each primary output, the
chromosome contains one integer specifying the connection address. In C G P , the encoding
is redundant because some nodes, some of their inputs or some primary inputs need not be
used in the phenotype.

Algorithm 1: C G P
Input: C G P parameters, fitness function, original circuit p
Output: The highest scored individual and its fitness

1 P <— CreatelnitialPopulation(p);
2 EvaluatePopulation(P);
3 while (terminating condition not satisfied) do
4
5
6

a <— SelectHighest-scored-individual(P);
i f fitness (a) > fitness (p) then
|_ V <~ a;

P <— {p} U {A offspring of p created by mutation};
EvaluatePopulation(P);

9 return p, fitness(p);

C G P utilizes a search method known as 1 + A, where A is the population size [62]. The
initial population is randomly generated or seeded using conventional solutions. A new
population consisting of A individuals is generated by applying the mutation operator on
the best individual of the previous population. The mutation operator randomly modifies
h integers of the chromosome. The evolution is terminated after producing a given number
of generations or a suitable solution is discovered, see Algorithm 1.

In the standard C G P used for combinational circuit evolution, the number of primary
inputs Hi and outputs n0 is set accordingly to the requirements of the target circuit and
- contains a set of Boolean functions. Figure 2.10 shows an example of a circuit and a
corresponding chromosome.

A candidate circuit is evaluated by checking its responses for all possible input combi
nations. In order to accelerate the fitness function evaluation on a common processor, a
bit-level parallel simulation of a candidate combinational circuit is employed. Contrasted

18

double L G P (double x){
r[0] = x

r[0] * r[0]
r[2] + r[0]
r[l] + r[0]
r[l] + r[4]

}
Figure 2.11: Example of a candidate program in L G P .

to a naive simulation, in which 2ni vectors are sequentially submitted for evaluation (where
Hi is the number of primary inputs), the bit-level parallel simulation exploits the fact that
current processors enable performing bitwise operations over two u>-bit operands in paral
lel [62]. Hence, the input vectors are grouped into u>-bit words and simulated in parallel.
The obtained speedup is w on a u;-bit processor, for example, 64 x on a 64 bit common
personal computer.

Although various new designs have been discovered using the standard C G P , the method
is not directly applicable for the design of large combinational circuits because the fitness
evaluation time grows exponentially with the number of primary inputs. Moreover, the
number of requested fitness evaluations can easily go into millions, even for small (but
nontrivial) circuits such as 4 bit multipliers. This problem has partially been eliminated by
introducing circuit decomposition techniques at the representation level [87, 81] and formal
verification methods in the fitness function [89]. Other successful applications of C G P have
been proposed in domains in which candidate circuits are not evaluated using all possible
input combinations (see, e.g., hash functions [], image operators [88] or classifiers []).

The modern F P G A s contain 4- or 6-inputs LUTs. There are only a few papers dealing
with the evolutionary circuit design at the level of 4-input LUTs [10, 41] and no paper
dealing with 6-input LUTs. Unfortunately, the bit-level parallel simulation is inefficient for
circuits consisting of LUTs because their logic function has to be emulated using a sequence
of binary logic operations. As discussed in Paper I, employing C G P with 6-input LUTs
(each of them encoded using 64 bits in the chromosome) would lead to long chromosomes,
complex search spaces and very inefficient search procedures.

2.4.2 Linear Genetic Programming

Linear genetic programming (LGP) [7, 67, 92] is a variant of G P which uses a linear repre
sentation of candidate programs. Every program is composed of operations (called instruc
tions) that are executed in a register machine. Operands, intermediate results and final
results are stored in registers or in an external memory. Example of a candidate program
is given in Figure 2.11. Linear G P evolves sequences of instructions in a machine language.

A n instruction is typically represented by the instruction code, destination register
and two source registers, for example, [+,rO,rl,r2] represent the operation rO = r l + r2.
The program result is returned in a predefined register. The number of instructions in
a candidate program varies during the evolution, but the minimal and maximal size are
defined. The number of registers available in the register machine is constant. The function

19

set known from G P corresponds with the set of available instructions. The instructions are
general-purpose (e.g., addition and multiplication) or domain-specific (e.g., read sensor 1).
Conditional and branch instructions are important for solving many problems. As in tother
branches of GP, protected versions of some instructions (e.g., a division returning a value
even if the divisor is zero) are employed in order to execute all programs without exceptions
(such as division by zero).

L G P is usually used with a tournament selection, one-point or two-point crossover and
a mutation operator modifying either the instruction type or the register index. Advanced
genetic operators have been proposed for L G P , for example [21, 22].

Like in other G P branches, the most computationally expensive part of L G P is the
fitness function evaluation. In order to obtain the program's fitness score, the candidate
program is executed on a set of training inputs, its outputs are collected and compared
with desired values.

A n individual can contain unused code parts, called introns, which do not affect the
fitness value. However, the introns slow down the program execution. If introns are detected
and eliminated, the evaluation time can be significantly reduced. According to [7], the
existence of introns is important for the evolution process. Introns may act as a protection
that reduces the effect of the variation process on the effective code.

The fitness function is typically focused on functionality, but other parameters of can
didate programs can be optimized, such as the number of used instructions, execution time
or power consumption of the processor.

2.4.3 Evolution of Hash Functions

Hash functions were successfully designed by evolutionary algorithms in recent years. The
main advantage of EAs is that they are capable of producing high-quality hash functions
optimized for a given application domain. Hash functions were evolved with genetic algo
rithms [76], tree G P [], grammatical evolution [] and Cartesian G P [91]. Both scenarios
- application-specific hash functions (see, e.g., [42, 47, 51]) and general-purpose hash func
tions (see, e.g., [24, 39]) - were addressed in the literature. Relevant details are given in
papers II, III, IV and V .

The fitness functions used in EAs developed for hash function design have been mostly
focused only on the quality of hashing, usually expressed in terms of the collisions resistance,
avalanche effect and distribution of outputs. The execution time of hash functions were not
addressed by the G P literature before my research has been initiated.

2.5 Multi-Objective E A s

Previous chapters have dealt with single-objective EAs that produce solutions with respect
to only one objective [18]. In many real-world problems such as the hash function design
problem discussed in chapter 2.4.3, there are two or more optimization objectives that are
conflicting. A simple approach is to combine several objectives into one (scaled) fitness
function. Modern EAs, however, provide many useful techniques for truly multi-objective
optimization [23, 16, 49].

A general multi-objective optimization problem is defined as follows:

20

Table 2.3: Solution relations in a multi-objective approach [23].
relation notation interpretation
strictly dominates x y fn(x) > /n(y)Vn
dominates x ~< y fn{x) > /„(y)Vn A 3i : fi(x) > fi{y)
weakly dominates x -< y fn(x) > /n(y)Vn
incomparable x (I y -.(x if! y) A -.(y ^ x)
indifferent

x ~ y = /n(y)Vn

minimize/maximize = / 2(a;),/ 3(a;), .../„(a;))
subject to > 0, i = 1 , m , (2-1)

where /$ is the objective (fitness) function, n is the number of objectives and x is an
individual, gi and /ij are inequity and equity constraints, where m and p is the number
of constrains. Various multi-objective algorithms have been proposed. These algorithms
use different approaches to combine the optimization criteria and select new candidate
solutions. A straightforward approach is to assign a weight for each fitness function. The
final fitness function is the sum of the weighted fitness values:

n

fitness = y]wjfi(x), (2.2)
i=i

where Wi is the weight for i-th fitness function. Another approach is based on lexicograph
ical sorting, in which individuals are gradually sorted by fitness values according to user
preference. For example, V E G A algorithm [' '] randomly divides the population into n
subsets, where n is the number of objectives. Each subset is evaluated by one fitness func
tion. The new population is formed by individuals from all subsets selected by a selection
algorithm based on the fitness value.

The most successful multi-objective algorithms are based on the principle of Pareto dom
inance. We say that solution x Pareto dominates solution y if the following two conditions
are fulfilled:

1. Solution x is better than solution y in at least one objective.

2. Solution x is no worse than solution y in all objectives (a; -< y).

This is formally captured by relation (the objective is to maximize Fi):

x^y: Vnf„(x) > fn(y) A 3i : fox) > fi{y) (2.3)

Table 2.3 summarizes all important relations between two solutions.
The set of solutions (out of all solutions) that are not dominated by any other solution

forms Pareto-optimal front or Pareto-optimal set. Pareto front can also be constructed using
solutions from a given population, i.e. using a subset of all possible solutions. Fig. 2.12
shows Pareto front (black) containing solutions which dominate the other solutions (white)
in the population. The ultimate goal of the multi-objective algorithm is to find the Pareto-
optimal set of solutions.

Evaluation algorithms utilizing the Pareto dominance employ different strategies to se
lect individuals to the offspring population. Their main purpose is to maintain the diversity

21

f2

o
o

o

0 Non-dominated

O Dominated

o

fl

Figure 2.12: Individuals on the Pareto front (black points) dominate the remaining indi
viduals (white points) in the population. fa and fa have to be minimized.

of the population. Selected multi-objective algorithms are described in detail in the next
paragraphs.

Strength Pareto Evolutionary Algorithm 2

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) was proposed by Zitzler et al. in
2001 [98, 48]. SPEA2 uses two sets of individuals (population and archive). The archive
includes all non-dominated individuals from populations. If the archive is oversized, the
number of individuals in the archive is reduced by the truncation operation; otherwise, if
the archive is undersized, it is filled by the best dominated individual(s) from the popula
tion. The truncation operation performs the nearest neighbor algorithm on the individuals
included in the archive. The individual with a minimal distance to another individual is
chosen to be removed from the archive. The truncation operation removes individuals from
the archive until the required size of the archive is reached.

SPEA2 uses a binary tournament selection with replacement, recombination and muta
tion for creating the offspring population.

Pareto Envelope-based Selection Algorithm II

Pareto Envelope-based Selection Algorithm II (PESA-II) [14, 28] employs a region-based
selection, which enables to reduce the computational time for creating Pareto fronts. The
search space is divided into hyper-boxes. Fitness functions assign every individual to a
hyper-box. Using a standard selection method, a hyper-box is selected. Parents are ran
domly chosen from a given hyper-box and using standard genetic operators (crossover and
mutation) offspring individuals are created. The selection algorithm operates with hyper-
boxes instead of individuals.

22

f2

o
0 Non-dominated
O Dominated

o
Cubojd

o
i+1

o

fl

Figure 2.13: A cuboid used to determine the crowding distance of individual i.
Non-dominated Sorting Genetic Algorithm

One of the most popular multi-objective algorithms is Non-dominated Sorting Genetic
Algorithm II (NSGA-II) proposed by Deb et al. in 2002 [17, 20, 37]. The algorithm is
based on partitioning individuals from population P to non-dominated fronts. First front
F\ contains all non-dominated solutions. Every next front Fi is constructed as Pareto front
for the population but individuals already included in i , F^ 2 - - are not considered. Each
solution is assigned with a rank, which corresponds to the front (prank = i for Fi). A naive
approach to create the non-dominated fronts requires 0 (M i V 3) operations, where M is the
number of objectives and iV is the population size.

The NSGA-II proposes a fast-non-dominated sort, see Algorithm 2, which requires
0(MN2) operations. In this algorithm, the set Sp contains individuals from the popu
lation that are dominated by individual p. The number of individuals which dominate p is
stored in np. Each individual p in the first front has np = 0. Creating next fronts is based
on knowledge of Sp and np. For each solution in Fi, we visit each member q from Sp and

R, r>

Rejected Recombination
Mutation

Figure 2.14: NSGA-II main algorithm step scheme.

23

Algorithm 2: Fast-Non-Dominated-Sort(P)
Input: P - a population
Output: F - a set of fronts of individuals

i F i = «;
2 forall p e P d o

/ * Initialize a l l individuals in population */

3
4
5

6
7

8
9

10
11
12

S p = 0;
n p = 0;
forall q € P do

/ * Compare a l l individuals */
if p -< q then

L 5 p = 5pU{(jf};

else if p y q then

P np + 1;

/ * Create f irs t front from non-dominated individuals */
if np = 0 then

Prank 1 j
F i = F i U {p}\

13 i = 1;
/ * Create fronts of individuals.

14 while F 7̂ 0 do
*/

15
16

17
18
19
20
21

Q = 0;
forall p € Fi do

/ * Remove individuals in front Fj from population and construct
front from non-dominated individuals */

forall q G Sp do
nq = n q - 1;
if n g = 0 then

Qrank i + 1,
Q = Q u { g } ;

i = i + 1;
F = Q;

/ * Return constructed fronts of individuals * /
24 F = (F i , F 2 . . .) ;
25 return F ;

24

Algorithm 3: Crowdmg-Distance-Assignment^
Input: Fi - a set of individuals
Output: / - individuals with their crowding distance value

1 l = \Fi\ ;
2 forall i G Fi do

[_ ^distance 0. 3
4 forall m G M do

/ = sort(Fi, m):

I[^-]distance — I\P\distance — CO;
for i = 2 to (I - 1) do

1[i] distance I [i] distance H ' f m o x j f m i n ^ 3 fmax 1 J m J J 5

9 return /:

decrement the domination value nq = nq — 1. If any member gets n 9 = 0, we put it to the
next front Fi+\. This process continues until all fronts are identified.

The crowding distance assignment algorithm (Algorithm 3), differentiates individuals
inside a front. The algorithm estimates the perimeter of the cuboid formed by the nearest
neighbors to determine the crowding distance ^distance: see F i gure 2.13. The value ^distance
is the average side length of the cuboid. The algorithm requires to sort individuals for each
objective value. The boundary solutions are assigned with an infinite distance value. Other
solutions are represented by a normalized distance of two nearby individuals. The crowding
distance is the sum of these values for each objective. The normalization is computed using
/ ™ m and f^ax values, which are the minimum and maximum values of m-th objective
function.

The main steps of NSGA-II algorithm are shown on Figure 2.14. Parent population Pi
and offspring population Qt, both of size N, are combined to auxiliary population Rt and
sorted using the fast non-dominated sorting algorithm (Alg. 2). Each solution is assigned to
a front. New parent population Pt+i is composed by adding individuals from fronts F\,Fi...
until the number of individuals in the population is N. When the number of individuals
in Pt+i exceeds N, the crowding distance algorithm (Alg. 3) is used to select additional
individuals according to the distance of the parent population Pt+i- A n offspring population
Qt+i is created from Pt+i using standard genetic operation: selection, recombination and
mutation.

Non-dominated Sorting Genetic Algorithm III (NSGA-III) is a new version of NSGA-II
intended for many-objective problems [19, 35]. A many-objective problem has more ob
jectives than a multi-objective problem, typically more than five. The main difference is
in the selection algorithm, where it is important to maintain the diversity of the popula
tion. NSGA-III employs a different strategy for including candidate individuals to the new
population.

25

Chapter 3

Research Summary

This chapter summarizes the research process conducted in order to write this thesis. Chap
ter 3.1 introduces the methodology adopted to fulfill the objectives specified in Chapter 1.
Chapter 3.2 presents selected papers of the author, their abstracts and contributions. Chap
ter 3.3 lists other papers of the author that are not included in this thesis.

3.1 Methodology

The overall objective addressed in this thesis is to improve key parameters of selected compo
nents of high-speed network monitoring systems. Based on our survey of the state-of-the-art
approaches to network monitoring reported in Chapter 2, S D M and its hardware/software
implementation developed in [] has been chosen as a framework suitable for arranging
and performing our experiments.

3.1.1 The Use of Evolutionary Computation Methods

The proposed approach is based on employing well-known G P algorithms; L G P for program
design and C G P for circuit design and optimization. As it is necessary to optimize not only
one parameter of the components (for example, the quality of processing), the proposed
design/optimization approach has to consider more design objectives. In the thesis, two
approaches have been developed:

• a single-objective approach based on constraining one of the objectives (e.g. by spec
ifying the maximum acceptable latency) and optimizing the other objective (e.g. the
quality) and

• a truly multi-objective method optimizing all design objectives together.

In order to accelerate the design process, a parallel L G P implementation has been
developed and evaluated. Moreover, as computing the exact values of some component's
parameters (e.g. the exact program execution time) is relatively time consuming, we had to
cheaply estimate these values to obtain the appropriate fitness value. Because evolutionary
algorithms are non-deterministic heuristics, their outcomes have to be statistically analyzed
and interpreted. It has systematically been done in all the case studies reported in the
papers constituting this thesis.

26

3.1.2 Selection of Target Components

In order to evaluate the proposed EA-based design and optimization approach, we selected
two components - a circuit implementing a simplified application protocol classifier and a
software hash function. We believe that these two components provide many properties
and features that characterize the type of design problems that have to be addressed in
systems such as S D M . The most interesting features are:

• We do not usually know a "perfect implementation" of these components in terms of
functionality. The design of these components is usually based on experimental work
whose objective is to minimize an error metric on various data sets.

• In both cases, performance (in other words, delay) has to be optimized in addition to
the functionality.

• One of the components (the classifier) is implemented as a digital circuit; the second
component (the hash function) is primarily implemented as a software routine. There
is thus an opportunity to investigate if, in principle, the same methodology can be
applied for their design and what are the differences.

• Hash functions are developed as either application-specific or general-purpose func
tions. There is an opportunity to investigate if one evolutionary design method can
lead to acceptable results for both the scenarios.

3.1.3 Validation of Evolved Implementations

EAs require some training data sets in order to establish a fitness value. Other data sets
are needed to validate the evolved solutions. In both our case studies, we used real network
data collected by co-authors of our papers to evaluate and validate the evolved solutions.
We also used additional real world data and synthetic data to evolve general-purpose hash
functions. We implemented state-of-the-art classifiers and hash functions to compare the
results they produce with evolved solutions. In the case of circuit implementations we
employed industrial design tools for F P G A s to obtain the area and delay of evolved circuits.
In the case of hash functions, the execution time was measured on common processors.

3.2 Papers

This chapter presents the papers included in this thesis. For each paper, we present an
abstract, a brief description with motivation and a summary of the main contributions.
Full texts of all the papers are given in section Related Papers.

3.2.1 Paper I

G R O C H O L David, S E K A N I N A Lukas, K O R E N E K Jan, Z A D N I K Martin and K O S A R
Vlastimil. Evolutionary Circuit Design for Fast FPGA-Based Classification of Network
Application Protocols. Applied Soft Computing. Amsterdam: Elsevier Science, 2016, vol.
38, no. 1, pp. 933-941. ISSN 1568-4946.

Author participation: 40%
Journal Impact Factor (IF): 3.541

27

Abstract

The evolutionary design can produce fast and efficient implementations of digital circuits. It
is shown in this paper how evolved circuits, optimized for the latency and area, can increase
the throughput of a manually designed classifier of application protocols. The classifier is
intended for high-speed networks operating at lOOGbps. Because a very low latency is the
main design constraint, the classifier is constructed as a combinational circuit in a field
programmable gate array (F P G A) . The classification is performed using the first packet
carrying the application payload. The improvements in latency (and area) obtained by
Cartesian genetic programming are validated using a professional F P G A design tool. The
quality of classification is evaluated by means of real network data. A l l results are com
pared with commonly used classifiers based on regular expressions describing application
protocols.

Contribution

In order to identify the application (or the application protocol) which the network traffic
belongs to, one has to inspect one or several packets with a payload. The main difficulty is
that the time to process one packet is less than 7ns in the case of modern lOOGbps links.
This work is the extension of our initial work on the classifier design [30]. The main goal of
the work is to show that these circuit classifiers can be optimized by means of Cartesian G P
in order to reduce their latency and resources requirements. The improvements in latency
and area obtained by C G P are validated by professional F P G A design tools. A l l results
are compared with commonly used classifiers on several data sets.

This work introduces a new concept of the hardware classifier which is constructed as
a fast-combinational circuit performing pattern matching over application protocols to be
classified. We proposed accurate and relaxed versions of the classifier. Their circuit opti
mization by means of Cartesian GP led to 48-2% improvement in the area in FPGA (LUTs)
and 19.8% improvement in latency with respect to an accurate human-designed classifier.
Table 6 in Paper I shows results of synthesis for proposed classifiers. In order to compare
the proposed solutions with the state-of-the-art classifiers from the literature, parameters of
Yamagaki/Clark and AMTH circuit classifiers were included to this table. The classifiers
were evaluated on real-network data.

3.2.2 Paper II

G R O C H O L David and S E K A N I N A Lukas. Evolutionary Design of Fast High-quality Hash
Functions for Network Applications. In: G E C C O '16 Proceedings of the 2016 on Genetic
and Evolutionary Computation Conference. New York, N Y : Association for Computing
Machinery, 2016, pp. 901-908. ISBN 978-1-4503-4206-3.

Author participation: 60%
Conference rank: A (Core)

Abstract

High-speed networks operating at lOOGbps pose many challenges for hardware and soft
ware involved in the packet processing. As the time to process one packet is very short the
corresponding operations have to be optimized in terms of the execution time. One of them
is non-cryptographic hashing implemented in order to accelerate traffic flow identification.

28

In this paper, a method based on linear genetic programming is presented, which is capable
of evolving high-quality hash functions primarily optimized for speed. Evolved hash func
tions are compared with conventional hash functions in terms of accuracy and execution
time using real network data.

Contribution

One of the most frequently called functions in the flow processing is the hash function,
which determines a memory address where the data of packet (flow) are stored. The goal
of this work is to propose and evaluate a special hash function for flow hashing which has
a good quality and is faster than the state-of-the-art hash functions. The hash function
is constructed as a sequence of instructions for a C P U by means of a parallel linear G P
exploiting the island model. In order to minimize the execution time, the hash function
is constructed using a limited number of simple instructions. The evolved hash functions
were compared with the hash functions available in the literature on real network datasets.

The paper shows that parallel single-objective LGP is capable of producing special hash
functions for flow hashing. The program size is restricted to 12 instructions which was
determined experimentally. Only simple instructions are used to minimize the execution
time. The fitness function is based on the number of collisions and penalizing a solution
generating many collisions on a given training data set. The evolved hash functions were
compared with 11 hash functions available in the literature on real network data sets. The
quality of hash functions is compared in Tab. 2 in Paper II. The best-evolved hash function
has almost identical quality of hashing as the other hash functions but provides 3% improve
ment to the special network hash function (XORhash). Table 3 in Paper II compares the
execution time of the hash functions on the CPU. The best-evolved hash function provides
26.9% improvement with the respect to the Murmur hash 3, which is typically used in SDM
and which, on the other hand, provides a slightly lower number of collisions.

3.2.3 Paper III

G R O C H O L David and S E K A N I N A Lukas. Multiobjective Evolution of Hash Functions
for High Speed Networks. In: Proceedings of the 2017 I E E E Congress on Evolutionary
Computation. San Sebastian: I E E E Computer Society, 2017, pp. 1533-1540. ISBN 978-1-
5090-4600-3.

Author participation: 70%
Conference rank: B (Core)

Abstract

Hashing is a critical function in capturing and in an analysis of the network flows as its
quality and execution time influences the maximum throughput of network monitoring
devices. In this paper, we propose a multi-objective linear genetic programming approach
to evolve fast and high-quality hash functions for common processors. The search algorithm
simultaneously optimizes the quality of hashing and the execution time. As it is very
time consuming to obtain the real execution time for a candidate solution on a particular
processor, the execution time is estimated in the fitness function. In order to demonstrate
the superiority of the proposed approach, evolved hash functions are compared with hash
functions available in the literature using real-world network data.

29

Contribution

This work extends Paper II by including a multi-objective approach to the evolution pro
cess. The approach is based on the NSGA-II algorithm and linear GP. The multi-objective
algorithm uses two fitness functions. The quality fitness function is taken from the previous
work. The second fitness function estimates the execution time. Another contribution of
this work is a new approach developed to quickly estimate the execution time of a can
didate program. The execution time is estimated as a weighted number of instructions,
where different weights are assigned to different types of instructions, based on their com
plexity. The estimation algorithm takes into account some features of modern CPUs, such
as SIMD (Single Instruction Multiple Data) executions. The evolved hash functions were
compared with hash functions available in the literature and hash functions obtained from
our previous work.

This work resulted in an extension of LGP algorithm with a multi-objective approach.
The quality of the execution time estimation is evaluated using randomly generated pro
grams. The multi-objective method provided many non-dominated hash functions. Some of
them are better than the commonly used hash functions and the specialized hash functions
obtained by using the single-objective LGP with respect to chosen objective.

3.2.4 Paper I V

G R O C H O L David and S E K A N I N A Lukas. Multi-Objective Evolution of Ultra-Fast General-
Purpose Hash Functions. In: European Conference on Genetic Programming 2018. Berlin:
Springer International Publishing, L N C S 10781, 2018, pp. 187-202. ISBN 978-3-319-77553-
1.

Author participation: 70%
Conference rank: B (Core)

Abstract

Hashing is an important function in many applications such as hash tables, caches and
Bloom filters. In the past, genetic programming was applied to evolve application-specific
as well as general-purpose hash functions, where the main design target was the quality
of hashing. As hash functions are frequently called in various time-critical applications,
it is important to optimize their implementation with respect to the execution time. In
this paper, linear genetic programming is combined with NSGA-II algorithm in order to
obtain general-purpose, ultra-fast and high-quality hash functions. Evolved hash functions
show a highly competitive quality of hashing but significantly reduced execution time in
comparison with the state-of-the-art hash functions available in the literature.

Contribution

Paper II and Paper III have dealt with application-specific hash functions. This paper is
focused on general-purpose hash functions that accept variable-length inputs, instead of
a fixed-length input, which we considered in network hash functions. This change in the
specification of hash functions led to the modification of the execution time estimation
algorithm. Hence, the candidate (hash) program has to be wrapped to a loop, in which the
input stream is processed block by block.

The evolved hash functions were compared with hash functions available in the literature
on randomly generated data sets and real-world data sets (user passwords, network data,

30

Twitter and Facebook posts). The evolved hash functions produce a very similar number
of collisions as other good hash functions from the literature on all data sets. However,
evolved hash functions exhibit the shortest execution time in almost all cases on randomly
generated and real-world data sets. They are slower than the special network hash functions,
but faster than the general purpose hash functions when evaluated on the specific network
datasets.

3.2.5 Paper V

G R O C H O L David and S E K A N I N A Lukas. Fast Reconfigurable Hash Functions for Net
work Flow Hashing in F P G A s . In: Proceedings of the 2018 N A S A / E S A Conference on
Adaptive Hardware and Systems. Edinburgh: Institute of Electrical and Electronics Engi
neers, 2018, pp. 257-263. ISBN 978-1-5386-7753-7.

Author participation: 67%
Conference rank: unknown

Abstract

Efficient monitoring of high-speed computer networks operating with a lOOGbps data
throughput requires a suitable hardware acceleration of its key components. We present
a platform capable of automated design of hash functions suitable for network flow hash
ing. The platform employs a multi-objective linear genetic programming developed for the
hash function design. We evolved high-quality hash functions and implemented them in a
F P G A . Several evolved hash functions were combined together in order to form the new
reconfigurable hash function. The proposed reconfigurable design significantly reduces the
area on a chip while the maximum operation frequency remains very close to the fastest
hash functions. The characteristics of evolved hash functions were compared with the state-
of-the-art hash functions in terms of the quality of hashing, chip area and the operation
frequency in the F P G A .

Contribution

Using the methodology developed in Paper II and Paper III, we evolved hash functions
suitable for F P G A implementations. We also introduced reconfigurable hash functions.

The evolved hash functions were translated to VHDL. In order to maximize their through
put, we added synchronization registers to enable pipelined processing. One of the recon
figurable hash functions was constructed using three evolved hash functions. These hash
functions employ similar basic components that can be shared in the FPGA. The proposed
reconfigurable hash function thus needs less than 50 % resources in comparison with the sum
of resources needed to independently implement the three original hash functions.

3.3 List of Other Papers

• G R O C H O L David, S E K A N I N A Lukas, ŽÁDNÍK Martin and KOŘENEK Jan. A
Fast FPGA-Based Classification of Application Protocols Optimized Using Cartesian
GP. In: Applications of Evolutionary Computation. Berlin: Springer International
Publishing, L N C S 9028 , 2015, pp. 67-78. ISBN 978-3-319-16548-6.

Author participation: 50%

31

Conference rank: unknown

• G R O C H O L David. Evoluční hardware v síťových aplikacích. In: Počítačové ar
chitektury a diagnostika P A D 2016. Bořetice: Faculty of Information Technology
B U T , 2016, pp. 57-60. ISBN 978-80-214-5376-0.

Author participation: 100%

Conference rank: unknown

• G R O C H O L David and S E K A N I N A Lukas. Comparison of Parallel Linear Genetic
Programming Implementations. In: Recent Advances in Soft Computing: Proceed
ings of the 22nd International Conference on Soft Computing (M E N D E L 2016) held in
Brno, Czech Republic, at June 8-10, 2016. Cham: Springer International Publishing,
2017, pp. 64-76. ISBN 978-3-319-58088-3.

Author participation: 60%

Conference rank: unknown

32

Chapter 4

Discussion and Conclusions

This chapter summarizes the results presented in this thesis and outlines some possibilities
for a future research.

The research presented in this thesis was directed toward the optimization of selected
components of network applications intended for high-speed network monitoring systems.
The work started with a study of current network monitoring systems. As an experimental
platform, the S D M system was chosen. Because the traffic processing is an important part
of all monitoring systems, it was analyzed in a greater detail. For detailed studies conducted
in this thesis two applications were selected: the classifier of application protocols and the
hash functions for flow processing. The evolutionary computing techniques were surveyed
with the aim to optimize not only the quality of processing, but also the execution time. The
single-objective and multi-objective versions of evolution algorithms were considered. The
gained knowledge was summarized in Chapter 2 and used as background for the following
research.

The research started with the design and optimization of the application protocol clas
sifier. As the S D M required an accurate classification of application protocols, the classifier
was based on deep packet inspection (by means of the application data). The proposed
application protocol classification is based on a pattern matching algorithm, which is a
time-consuming operation, emphasizing the need for a hardware acceleration. The current
approaches require a lot of resources in hardware. A new approach was proposed to clas
sify a small set of protocols in the F P G A (denoted CL-acc in Paper I). The classifier was
synthesized by a professional design tool to an F P G A , see Table 4.1. The final circuit of
the classifier was optimized using C G P (in Table 4.1 denoted as + C G P) , reducing thus
the amount of resources and latency. We also proposed relaxed implementations of the
classifier. CL-cmp is a compromised version of the classifier (showing an additional area
reduction for a small error in classification) and CL-lat is a minimal version of the classifier.
Both relaxed classifiers were optimized by C G P . which enabled us to achieve a significant
reduction of resources and latency. Table 4.1 also shows parameters of the state-of-the-art
classifiers based on finite state machines (Yamagaki/Clark and A M T H) . It can be seen
that the proposed classifiers exhibit significantly better parameters. The accuracy of the
classifiers was verified on real network data. On the other hand, FSM-based classifiers are
more flexible and scalable.

The research continued with the hash function design using L G P . The first special
ized network hash functions (evaluated for flow hashing) were optimized for the quality
of hashing and constructed using a limited number of simple instructions. Single-objective
and multi-objective L P G implementations were proposed for this purpose. Using the multi-

33

Table 4.1: Results of classifiers synthesis for the Xil inx Virtex-7 XC7VH580T F P G A (taken
from Paper I, Table 6).

Classifier LUTs Flip Flop Latency [ns]
CL-acc 2352 0 6.410
CL-acc+CGP 1909 0 6.113
CL-cmp 1549 0 6.093
CL-cmp+CGP 1073 0 5.604
CL-lat 1625 0 5.943
CL- la t+CGP 1217 0 5.139
Yamagaki / Clark 10431 2326 77.504 (16 x 4.844)
A M T H 10547 2190 71.536 (16 x 4.671)

Table 4.2: The average execution time on C P U for network data sets and real-world data
sets (taken from Paper V , Table 7 and 8).

Hash function
Time Im.sl

Hash function Hash function
NetSetl NetSet2 NetSet3 Passwords Facebook Twitter

DJBHash 1.861 5.134 12.724 5438.594 17.331 16.726
DEKHash 1.221 4.373 10.407 5067.882 13.240 13.119
FVNHash 1.301 4.721 9.633 5499.328 14.174 12.767
One At Time 1.769 5.290 12.352 6072.904 15.410 13.955
lookup3 0.925 2.891 7.435 4543.399 12.009 10.919
Murmur2 1.034 3.095 7.925 4464.339 11.723 10.774
Murmur3 1.193 3.215 8.727 4573.453 11.955 10.966
CityHash 0.960 2.625 7.407 4385.625 11.149 10.355
XORHash 0.838 2.318 6.652
GPHash 1.865 4.671 12.558 6389.323 17.966 16.167
EFHash 2.472 13.527 49.495 5101.523 14.304 13.746
NSGAHash l 0.529 2.804 8.507
NSGAHash2 0.527 2.072 6.564
NSGAHash3 0.514 2.779 8.492
NSGAHash4 0.530 2.073 6.219
NSGAHash5 0.534 2.081 6.288
NSGAHash6 0.527 2.083 6.249
NSGAHash7 0.547 2.175 6.449
EvoHashl 0.802 2.569 7.455 4268.402 10.895 9.996
EvoHash2 0.830 2.825 7.835 4277.341 10.832 9.954

objective approach, hash functions (NSGAHashl , NSGAHash2, NSGAHash3, NSGAHash4,
NSGAHash5, NSGAHash6, NSGAHash7) were evolved, showing a better trade-off between
the quality of hashing and the execution time than the state-of-the-art hash functions.
The pipelined versions of network hash functions were implemented for F P G A . A n adap
tive configurable hash function was also created from three evolved hash functions. Several
high-quality general-purpose hash functions (EvoHashl, EvoHash2) were also evolved using
the proposed method.

A l l evolved hash functions were evaluated on real-world network data sets (see NetSetl,
NetSet2, NetSet3 in Paper V) and common real-world data sets (Passwords, Facebook,

34

Twitter), see Table 4.3. The general-purpose hash functions were further evaluated on
social network and randomly generated data sets. The evolved hash functions exhibit the
same or better quality of hashing, but provide shorter execution time than the state-of-the-
art hash functions.

4.1 Contributions

The section summarizes main contributions presented in this thesis, with respect to the
research objectives formulated in Chapter 1.1:

Classification of application protocols:

• A new approach to the application protocol classifier design was proposed. Accurate
and relaxed versions of the classifier were optimized by means of C G P . A significant
reduction in F P G A resources and latency was reported in Paper I. A possible disad
vantages of the proposed approach is that common classifiers are more flexible and
scalable.

Hash Functions:

• Specialized, highly optimized network hash functions were evolved by parallel L G P .
These hash functions provide better functionality (in terms of quality of hashing and
execution time) than the state-of-the-art hash functions (Paper II).

Table 4.3: The number of collisions for network data sets and real-world data sets (taken
from Paper V , Table 4 and 5).

Hash function
The number of collisions

Hash function Hash function
NetSetl NetSet2 NetSet3 Passwords Facebook Twitter

DJBHash 2835 15113 48925 11663 247 137
DEKHash 2926 15247 49017 14114 357 153
FVNHash 2756 14957 48780 11845 115 115
One At Time 2821 14988 48636 11590 105 138
lookup3 2742 15009 48737 11567 119 107
Murmur2 2800 15050 48749 11637 112 123
Murmur3 2744 14911 48763 11589 103 89
CityHash 2807 14990 48647 11530 122 122
XORHash 2864 15011 48575
GPHash 2777 15052 48750 11634 117 113
EFHash 5317 25266 63175 983806 873270 824153
NSGAHash l 2923 15677 49336
NSGAHash2 2746 15170 48835
NSGAHash3 2689 15575 49292
NSGAHash4 2692 15010 48715
NSGAHash5 2759 14975 48749
NSGAHash6 2650 14839 48680
NSGAHash7 2639 14975 48650
EvoHashl 2849 15185 48652 11871 23 98
EvoHash2 2821 14982 48695 11469 10 1

35

• Using the multi-objective L G P , we evolved a set of non-dominated hash functions
showing better trade-offs between the quality of network flow hashing and the execu
tion time in comparison with the state-of-the-art hash functions (Paper III).

• Parallel pipelined hash functions were implemented in an F P G A and evaluated for
purposes network flow hashing. A new reconfigurable hash function was developed as
a combination of selected evolved hash functions (Paper V) .

• Very competitive general-purpose hash functions were evolved by means of the multi-
objective L G P and evaluated using representative data sets (Paper IV).

We also confirmed that common L G P a C G P implementations can be used for auto
mated design and optimization of selected components; however, it is important to:

• properly handle the multi-objective nature of the problem and

• accelerate time-critical operations (particularly the fitness calculation).

Based on these results, it can be concluded that the initial hypothesis of this research
has been confirmed. The proposed EAs can design and optimize selected components
of network applications of high-speed network monitoring systems and improve their key
parameters.

4.2 Future Work

Based on our experience gained during this research the following future research directions
were identified:

• Network monitoring systems are large and complex systems composed of many com
ponents. It is not a straightforward task to identify the critical components that
should be optimized. Automated identification of such components for evolutionary
re-design/optimization would be of high importance.

• A n automated runtime optimization of components would be useful because the mon
itoring system could be adapted to the actual state of the system. If the optimization
is fast, the component can be optimized for a specific situation or an important subset
of input data.

• If the automated identification of components in network monitoring systems is con
nected to the runtime optimization, the system could adapt different components in
runtime in a variable environment.

• Modern CPUs utilize many complex instructions, including application-specific in
structions, such as hash function (for example Intel C P U : SHA1RNDS4 or A E S D E -
C L A S T) , special floating-point instructions or SIMD instructions (M M X and SSE).
A future research could be focused on identifying a suitable subset of instructions
that can be utilized by L G P ; considering all possible instructions in L G P seems to be
intractable.

• Other H W parts of monitoring systems those implemented in F P G A can be optimized
using a multi-objective C G P . Contrasted to our work based on gate-level circuit op
timization, a future work could deal with LUT-based circuit optimization in order to
obtain more efficient F P G A implementations.

36

Bibliography

[1] Antichi, G.; Giordano, S.; Miller, D.; et al.: Enabling open-source high speed network
monitoring on N e t F P G A . In Network Operations and Management Symposium
(NOMS), 2012 IEEE. Apr i l 2012. pp. 1029-1035.

[2] Appleby, A . : Murmur hash functions. Https://github.com/aappleby/smhasher,
[ONLINE, accessed: 31. 1. 2016].

[3] Appleby, A . : SMHasher. Https://github.com/aappleby/smhasher, [ONLINE,
accessed: 1. 11. 2017].

[4] Becker, K . ; Gottschlich, J.: A I Programmer: Autonomously Creating Software
Programs Using Genetic Algorithms. arXiv preprint arXiv:1709.05703. 2017.

[5] Berarducci, P.; Jordan, D.; Martin, D.; et al.: G E V O S H : Using Grammatical
Evolution to Generate Hashing Functions. In MAICS. 2004. pp. 31-39.

[6] Bernstein, D. J.: Mathematics and computer science. Https://cr.yp.to/djb.html,
[ONLINE, accessed: 31. 1. 2016].

[7] Brameier, M . ; Banzhaf, W.: Linear genetic programming. New York: Springer. 2007.

[8] Brodie, B . C ; Taylor, D. E. ; Cytron, R. K . : A Scalable Architecture For
High-Throughput Regular Expression Pattern Matching. SIGARCH Computer
Architecture News. vol. 34, no. 2. 2006: pp. 191-202. ISSN 0163-5964.

[9] Cao, Z.; Wang, Z.: Flow identification for supporting per-flow queueing. In Computer
Communications and Networks, 2000. Proceedings. Ninth International Conference
on. I E E E . 2000. pp. 88-93.

[10] Cheang, S. M . ; Lee, K . H. ; Leung, K . S.: Applying Genetic Parallel Programming to
Synthesize Combinational Logic Circuits. IEEE Transactions on Evolutionary
Computation, vol. 11, no. 4. 2007: pp. 503-520.

[11] Cisco: The Future Is 40 Gigabit Ethernet. 2016. c l 1-737238-00.

[12] Clark, C ; Schimmel, D.: Efficient Reconfigurable Logic Circuits for Matching
Complex Network Intrusion Detection Patterns. In Field Programmable Logic and
Application, 13th International Conference. Lisbon, Portugal. 2003. ISBN
3-540-40822-3. pp. 956-959.

[13] Clark, C. R.; Schimmel, D. E . : Scalable Pattern Matching for High-Speed Networks.
In IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM).
Napa, California. 2004. pp. 249-257.

37

Https://github.com/aappleby/smhasher
Https://github.com/aappleby/smhasher
Https://cr.yp.to/djb.html

[14] Corne, D. W.; Jerram, N . R.; Knowles, J . D.; et al.: PESA-II : Region-based selection
in evolutionary multiobjective optimization. In Proceedings of the 3rd Annual
Conference on Genetic and Evolutionary Computation. Morgan Kaufmann
Publishers Inc.. 2001. pp. 283-290.

[15] Davis, L . : Handbook of genetic algorithms. 1991.

[16] Deb, K . : Multi-objective optimization using evolutionary algorithms, vol. 16. John
Wiley & Sons. 2001.

[17] Deb, K . ; Agrawal, S.; Pratap, A . ; et al.: A fast elitist non-dominated sorting genetic
algorithm for multi-objective optimization: NSGA-II . In International Conference on
Parallel Problem Solving From Nature. Springer. 2000. pp. 849-858.

[18] Deb, K . ; Deb, K . : Multi-objective Optimization. Boston, M A : Springer US. 2014.
ISBN 978-1-4614-6940-7. pp. 403-449.

[19] Deb, K . ; Jain, H . : A n Evolutionary Many-Objective Optimization Algorithm Using
Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems
With Box Constraints. IEEE Transactions on Evolutionary Computation, vol. 18,
no. 4. Aug 2014: pp. 577-601. ISSN 1089-778X.

[20] Deb, K . ; Pratap, A . ; Agarwal, S.; et al.: A fast and elitist multiobjective genetic
algorithm: NSGA-II . IEEE transactions on evolutionary computation, vol. 6, no. 2.
2002: pp. 182-197.

[21] Defoin Platel, M . ; Clergue, M . ; Collard, P.: Maximum Homologous Crossover for
Linear Genetic Programming. In Genetic Programming, Lecture Notes in Computer
Science, vol. 2610. Springer Berlin Heidelberg. 2003. ISBN 978-3-540-00971-9. pp.
194-203.

[22] Downey, C ; Zhang, M . ; Browne, W . N . : New crossover operators in linear genetic
programming for multiclass object classification. In Proceedings of the 12th annual
conference on Genetic and evolutionary computation. A C M . 2010. pp. 885-892.

[23] Ehrgott, M . : Multicriteria optimization, vol. 491. Springer Science & Business Media.
2005.

[24] Estebanez, C ; Saez, Y . ; Recio, G.; et al.: Automatic design of noncryptographic hash
functions using genetic programming. Computational Intelligence, vol. 30, no. 4.
2014: pp. 798-831.

[25] Filtr , L . : Project W W W Page.
http://17-filter.sourceforge.net/. 2010.

[26] Floyd, R. W.; Ullman, J . D. : The Compilation of Regular Expressions into
Integrated Circuits. J. ACM. vol. 29, no. 3. 1982: pp. 603-622.

[27] Fowler, G.; Vo, P.; Noll, L . C : F V N Hash.
Http://www.isthe.com/chongo/tech/comp/fnv/, [ONLINE, accessed: 31. 1. 2016].

[28] Gadhvi, B . ; Savsani, V . ; Patel, V . : Multi-objective optimization of vehicle passive
suspension system using NSGA-II , SPEA2 and PESA-II . Procedia Technology.
vol. 23. 2016: pp. 361-368.

38

http://17-filter.sourceforge.net/
Http://www.isthe.com/chongo/tech/comp/fnv/

[29] Goldman, B . W.; Punch, W. F.: Analysis of Cartesian Genetic Programming's
Evolutionary Mechanisms. IEEE Transactions on Evolutionary Computation, vol. 19,
no. 3. 2015: pp. 359-373.

[30] Grochol, D.; Sekanina, L . ; Zadnik, M . ; et al.: A Fast FPGA-Based Classification of
Application Protocols Optimized Using Cartesian GP. In Applications of
Evolutionary Computation, 18th European Conference. L N C S 9028. Springer
International Publishing. 2015. pp. 67-78.

[31] Guo, D.; Bhuyan, L . N . ; L iu , B. : A n efficient parallelized L7-filter design for multicore
servers. IEEE/ACM Transactions on Networking, vol. 20, no. 5. 2011: pp. 1426-1439.

[32] Guo, D.; Liao, G.; Bhuyan, L . N . ; et al.: A scalable multithreaded 17-filter design for
multi-core servers. In Proceedings of the 4th ACM/IEEE Symposium on Architectures
for Networking and Communications Systems. A C M . 2008. pp. 60-68.

[33] Hassan, M . ; Jain, R.: High performance TCP/IP networking, vol. 29. Prentice Hall
Upper Saddle River, N J . 2003.

[34] Higuchi, T.; Niwa, T.; Tanaka, T.; et al.: Evolving Hardware with Genetic Learning:
A First Step Towards Building a Darwin Machine. In Proc. of the 2nd International
Conference on Simulated Adaptive Behaviour. M I T Press. 1993. pp. 417-424.

[35] Jain, H . ; Deb, K . : A n Evolutionary Many-Objective Optimization Algorithm Using
Reference-Point Based Nondominated Sorting Approach, Part II: Handling
Constraints and Extending to an Adaptive Approach. IEEE Transactions on
Evolutionary Computation, vol. 18, no. 4. Aug 2014: pp. 602-622. ISSN 1089-778X.

[36] Jenkins, B. : A hash function for hash Table lookup.
Http://www.burtleburtle.net/bob/hash/doobs.html, [ONLINE, accessed: 31. 1.
2016].

[37] Jensen, M . T.: Reducing the run-time complexity of multiobjective EAs: The
NSGA-II and other algorithms. IEEE Transactions on Evolutionary Computation.
vol. 7, no. 5. 2003: pp. 503-515.

[38] Karagiannis, T.; Papagiannaki, K . ; Faloutsos, M . : B L I N C : Multilevel Traffic
Classification in the Dark. SIGCOMM Comput. Commun. Rev., vol. 35, no. 4. 2005:
pp. 229-240.

[39] Karasek, J.; Bürget, R.; Morsky, O.: Towards an automatic design of
non-cryptographic hash function. In Telecommunications and Signal Processing
(TSP), 2011 34th International Conference on. 2011. pp. 19-23.

[40] Kaufmann, P.; Glette, K . ; Gruber, T.; et al.: Classification of Electromyographic
Signals: Comparing Evolvable Hardware to Conventional Classifiers. IEEE Tran.
Evolutionary Computation,, vol. 17, no. 1. 2013: pp. 46-63.

[41] Kaufmann, P.; Plessl, O ; Platzner, M . : EvoCaches: Application-specific Adaptation
of Cache Mappings. In Proceedings of the NASA/ESA Conference on Adaptive
Hardware and Systems (AHS). I E E E Computer Society. 2009. pp. 11-18.

39

Http://www.burtleburtle.net/bob/hash/doobs.html

[42] Kaufmann, P.; Plessl, C ; Platzner, M . : EvoCaches: Application-specific Adaptation
of Cache Mappings. In Adaptive Hardware and Systems (AHS). I E E E CS. 2009. pp.
11-18.

[43] Kekely, L . ; Kučera, J.; Pus, V . ; et al.: Software Defined Monitoring of Application
Protocols. IEEE Transactions on Computers, vol. 65, no. 2. 2016: pp. 615-626.

[44] Kekely, L . ; Pus, V . ; Benacek, P.; et al.: Trade-offs and progressive adoption of F P G A
acceleration in network traffic monitoring. In Field Programmable Logic and
Applications (FPL), 2014 24th International Conference on. 2014. pp. 1-4.

[45] Kekely, L . ; Pus, V . ; Korenek, J.: Software Defined Monitoring of Application
Protocols. In Proceedings of the IEEE INFOCOM 2014 — IEEE Conference on
Computer Communications. 2014. pp. 1725-1733.

[46] Kekely, M . ; Kořenek, J.: Packet Classification with Limited Memory Resources. In In
proceedings 2017 Euromicro Conference on Digital System Design. Institute of
Electrical and Electronics Engineers. 2017. ISBN 978-1-5386-2145-5. pp. 179-183.

[47] Kidoň, M . ; Dobai, R.: Evolutionary design of hash functions for IP address hashing
using genetic programming. In Evolutionary Computation (CEC), 2017 IEEE
Congress on. I E E E . 2017. pp. 1720-1727.

[48] King, R. A . ; Deb, K . ; Rughooputh, H . : Comparison of nsga-ii and spea2 on the
multiobjective environmental/economic dispatch problem. University of Mauritius
Research Journal, vol. 16, no. 1. 2010: pp. 485-511.

[49] Knowles, J.; Corne, D.: On metrics for comparing nondominated sets. In Proceedings
of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600),
vol. 1. I E E E . 2002. pp. 711-716.

[50] Knuth, D. E . : The Art of Computer Programming (Volume 3). 1973.

[51] Kocsis, Z. A . ; Neumann, C ; Swan, J.; et al.: Repairing and optimizing Hadoop
hashCode implementations. In International Symposium on Search Based Software
Engineering. Springer. 2014. pp. 259-264.

[52] Koza, J . R.: Genetic programming as a means for programming computers by
natural selection. Statistics and computing, vol. 4, no. 2. 1994: pp. 87-112.

[53] Koza, J . R.: Human-competitive results produced by genetic programming. Genetic
Programming and Evolvable Machines, vol. 11, no. 3-4. 2010: pp. 251-284.

[54] Landfeldt, B. ; Sookavatana, P.; Seneviratne, A . : The case for a hybrid passive/active
network monitoring scheme in the wireless Internet. In Proceedings IEEE
International Conference on Networks 2000 (ICON 2000). Networking Trends and
Challenges in the New Millennium. Sep. 2000. pp. 139-143.
doi:10.1109/ICON.2000.875781.

[55] Langdon, W . B. ; Harman, M . : Optimizing existing software with genetic
programming. IEEE Transactions on Evolutionary Computation, vol. 19, no. 1. 2015:
pp.118-135.

40

[56] Langdon, W . B. ; Lam, B . Y . H . ; Modat, M . ; et al.: Genetic improvement of G P U
software. Genetic Programming and Evolvable Machines, vol. 18, no. 1. 2017: pp.
5-44.

[57] Liao, G. ; Znu, X . ; Bnuyan, L . : A new server I /O architecture for high speed networks.
In 2011 IEEE 17th International Symposium on High Performance Computer
Architecture. 2011. ISSN 2378-203X. pp. 255-265. doi:10.1109/HPCA.2011.5749734.

[58] L in , C.- tL; Huang, C.-T.; Jiang, C.-P.; et al.: Optimization of Pattern Matching
Circuits for Regular Expression on F P G A . IEEE Trans. Very Large Scale Integr.
Syst. vol. 15, no. 12. 2007: pp. 1303-1310. ISSN 1063-8210.

[59] Matoušek, D.; Matoušek, J.; Korenek, J.: High-Speed Regular Expression Matching
with Pipelined Memory-Based Automata. In 2018 IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). Apr i l
2018. ISSN 2576-2621. pp. 214-214.

[60] Matoušek, D.; Kubiš, J.; Matoušek, J.; et al.: Regular Expression Matching with
Pipelined Delayed Input DFAs for High-speed Networks. 07 2018. pp. 104-110.
doi:10.1145/3230718.3230730.

[61] Maurer, W. D.; Lewis, T. G. : Hash table methods. ACM Computing Surveys
(CSUR). vol. 7, no. 1. 1975: pp. 5-19.

[62] Miller, J . F. : Cartesian Genetic Programming. Springer-Verlag. 2011.

[63] Miller, J . F.; Smith, S. L . : Redundancy and Computational Efficiency in Cartesian
Genetic Programming. IEEE Transactions on Evolutionary Computation, vol. 10,
no. 2. 2006: pp. 167-174.

[64] Miller, J . F.; Thomson, P.: Cartesian Genetic Programming. In Proc. of the 3rd
European Conference on Genetic Programming EuroGP2000, LNCS, vol. 1802.
Springer. 2000. pp. 121-132.

[65] Moore, A . W.; Zuev, D. : Internet Traffic Classification Using Bayesian Analysis
Techniques. In Proceedings of the 2005 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems. S I G M E T R I C S '05. A C M . 2005.
pp. 50-60.

[66] Natu, M . ; Sethi, A . S.: Active Probing Approach for Fault Localization in Computer
Networks. In 2006 4th IEEE/IFIP Workshop on End-to-End Monitoring Techniques
and Services. Apr i l 2006. pp. 25-33. doi:10.1109/E2EMON.2006.1651276.

[67] Oltean, M . ; Grosan, C : A comparison of several linear genetic programming
techniques. Complex Systems, vol. 14, no. 4. 2003: pp. 285-314.

[68] Pagh, R.; Rodler, F . F.: Cuckoo Hashing. In Algorithms — ESA 2001. L N C S 2161.
Springer. 2001. pp. 121-133.

[69] Paxson, V . ; Asanovic, K . ; Dharmapurikar, S.; et al.: Rethinking Hardware Support
for Network Analysis and Intrusion Prevention. In Proceedings of the 1st USENIX
Workshop on Hot Topics in Security. HOTSEC'06 . Berkeley, C A , USA: U S E N I X
Association. 2006. pp. 11-11.
Retrieved from: http://dl.acm.org/citation.cfm?id=1268476.1268487

41

http://dl.acm.org/citation.cfm?id=1268476.1268487

[70] Peterson, L . L . ; Davie, B . S.: Computer networks: a systems approach. Elsevier. 2007.

[71] Pike, G.; Alakuijala, J. : Introducing cityhash. 2011.

[72] Press, C.: CCNA Exploration Course Booklet: Network Fundamentals, Version 4-0.
Pearson Education India.

[73] Price, K . ; Storn, R.: Differential evolution: A simple evolution strategy for fast
optimization. Dr. Dobb's journal, vol. 22, no. 4. 1997: pp. 18-24.

[74] Rechenberg, I.: Evolution Strategy: Optimization of Technical systems by means of
biological evolution. Fromman-Holzboog, Stuttgart, vol. 104. 1973: pp. 15-16.

[75] Rozenberg, G.; Bäck, T.; Kok, J . N . : Handbook of natural computing. Springer. 2012.

[76] Safdari, M . ; Joshi, R.: Evolving Universal Hash Functions Using Genetic Algorithms.
In In Proc. of the Future Computer and Communication. 2009. pp. 84-87.

[77] Schaffer, J. : Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms. 01 1985. pp. 93-100.

[78] Schwaller, P. J.; Bellinghausen, J . M . ; Borger, D. S.; et al.: Methods, systems and
computer program products for network performance testing through active endpoint
pair based testing and passive application monitoring. September 23 2003. uS Patent
6,625,648.

[79] Sekanina, L . : Evolvable hardware. In Handbook of Natural Computing. Springer
Verlag. 2012. pp. 1657-1705.

[80] Sen, S.; Spatscheck, O.; Wang, D. : Accurate, Scalable In-network Identification of
P2P Traffic Using Application Signatures. In Proceedings of the 13th International
Conference on World Wide Web. A C M . 2004. pp. 512-521.

[81] Shanthi, A . P.; Parthasarathi, R.: Practical and scalable evolution of digital circuits.
Applied Soft Computing, vol. 9, no. 2. 2009: pp. 618-624.

[82] Sidhu, R.; Prasanna, V . K . : Fast Regular Expression Matching Using F P G A s . In
FCCM '01: Proceedings of the the 9th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines. I E E E Computer Society. 2001.
ISBN 0-7695-2667-5. pp. 227-238.

[83] Sourdis, I.; Bispo, J.; Cardoso, J . M . P.; et al.: Regular Expression Matching in
Reconfigurable Hardware. Journal of Signal Processing Systems, vol. 51, no. 1. 2008:
pp. 99-121.

[84] Srivani, L . ; Gir i , N . K . ; Ganesh, S.; et al.: Generating synthetic benchmark circuits
for accelerated life testing of field programmable gate arrays using genetic algorithm
and particle swarm optimization. Applied Soft Computing, vol. 27. 2015: pp. 179 -
190.

[85] Staffings, W.: High-speed networks: TCP/IP and ATM design principles, vol. 172.
Prentice hall Englewood Cliffs, N J . 1998.

42

[86] Standard, S. H . : The Cryptographic Hash Algorithm Family: Revision of the Secure
Hash Standard and Ongoing Competition for New Hash Algorithms. 2009.

[87] Stomeo, E. ; Kalganova, T.; Lambert, C : Generalized Disjunction Decomposition for
Evolvable Hardware. IEEE Transaction Systems, Man and Cybernetics, Part B.
vol. 36, no. 5. 2006: pp. 1024-1043.

[88] Vasicek, Z.; Bidlo, M . ; Sekanina, L . : Evolution of efficient real-time non-linear image
filters for F P G A s . Soft Computing, vol. 17, no. 11. 2013: pp. 2163-2180.

[89] Vasicek, Z.; Sekanina, L . : Formal Verification of Candidate Solutions for
Post-Synthesis Evolutionary Optimization in Evolvable Hardware. Genetic
Programming and Evolvable Machines, vol. 12, no. 3. 2011: pp. 305-327.

[90] Walker, J . A . ; Trefzer, M . ; Bale, S. J.; et al.: P A n D A : A Reconfigurable Architecture
that Adapts to Physical Substrate Variations. IEEE Transactiona on Computers.
vol. 62, no. 8. 2013: pp. 1584-1596.

[91] Widiger, H . ; Salomon, R.; Timmermann, D. : Packet classification with evolvable
hardware hash functions-an intrinsic approach. In International Workshop on
Biologically Inspired Approaches to Advanced Information Technology. Springer. 2006.
pp. 64-79.

[92] Wilson, G.; Banzhaf, W.: A comparison of cartesian genetic programming and linear
genetic programming. In Genetic Programming. Springer. 2008. pp. 182-193.

[93] Xil inx: UltraScale Architecture and Product Overview. 2015.

[94] Xi l inx Inc.: UltraScale+ F P G A , Product Tables and Product Selection Guide.
Https: / / www.xilinx.com / support / documentation / selection-guides / ultrascale-plus-
fpga-product-selection-guide.pdf, [ONLINE, accessed: 26. 7.
2019].

[95] Yoon, S.-H.; Park, J.-W.; Park, J.-S.; et al.: Internet Application Traffic
Classification Using Fixed IP-Port. In APNOMS, Lecture Notes in Computer Science,
vol. 5787. Springer. 2009. pp. 21-30.

[96] Yun, S.; Lee, K . : Optimization of Regular Expression Pattern Matching Circuit
Using At-Most Two-Hot Encoding on F P G A . International Conference on Field
Programmable Logic and Applications, vol. 0. 2010: pp. 40-43. ISSN 1946-1488.

[97] Zimmermann, H . : OSI Reference Model - The ISO Model of Architecture for Open
Systems Interconnection. IEEE Transactions on Communications, vol. 28, no. 4.
Apr i l 1980: pp. 425-432. ISSN 0090-6778. doi:10.1109/TCOM.1980.1094702.

[98] Zitzler, E . ; Laumanns, M . ; Thiele, L . : SPEA2: Improving the strength Pareto
evolutionary algorithm. TIK-report. vol. 103. 2001.

43

http://www.xilinx.com

Related Papers

44

Paper I

Evolutionary Circuit Design for
Fast FPGA-Based Classification of
Network Application Protocols

G R O C H O L D a v i d , S E K A N I N A L u k a s , K O R E N E K J a n , Z A D N I K

M a r t i n a n d K O S A R V l a s t i m i l

In: Applied Soft Computing. Amsterdam: Elsevier Science, 2016, vol. 38, no. 1, pp.
933-941. ISSN 1568-4946.

45

Applied Soft Computing 38 (2016) 933-941

E L S E V I E R

Contents lists avai lable at ScienceDirect

Applied Soft Computing

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / a s o c

Evolutionary circuit design for fast FPGA-based classification of
network application protocols1^
D. Grochol, L. Sekanina*, M . Zadnik, J. Korenek, V. Kosar
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence, Bozetechova 2, 61266 Brno, Czech Republic

(D C r o s s M a r k

A R T I C L E I N F O

Article history:
Received 10 July 2015
Received in revised form 1 September 2015
Accepted 24 September 2015
Available online 28 October 2015

Keywords:
Application protocol
Classifier
Cartesian genetic programming
Field programmable gate array

A B S T R A C T

The evolutionary design can produce fast and efficient implementations of digital circuits. It is shown
in this paper how evolved circuits, optimized for the latency and area, can increase the throughput of a
manually designed classifier of application protocols. The classifier is intended for high speed networks
operating at lOOGbps. Because a very low latency is the main design constraint, the classifier is con
structed as a combinational circuit in a field programmable gate array (FPGA). The classification is
performed using the first packet carrying the application payload. The improvements in latency (and
area) obtained by Cartesian genetic programming are validated using a professional FPGA design tool.
The quality of classification is evaluated by means of real network data. All results are compared with
commonly used classifiers based on regular expressions describing application protocols.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Evolutionary algorithms (EAs) are traditionally used in the cir
cuit design community mainly as efficient optimization techniques.
In recent years, significant developments and progress in evolu
tionary circuit design have been witnessed. In many cases these
techniques were capable of delivering efficient circuit designs
in terms of an on-chip area minimization (e.g. [1]), adaptation
(e.g. [2]), fabrication variability compensation (e.g. [3]), and many
other properties (see, for example, many requirements on syn
thetic benchmark circuits in [4]). In this paper, it is exploited
that the evolutionary design can produce fast and efficient circuit
implementations. One of the targets is the circuit latency which
is a crucial parameter in high performance computing and other
applications such as security monitoring of high speed computer
networks or high frequency trading. The objective of this work is
to minimize the latency and area of key circuits needed in a hard
ware accelerator intended for classification of application protocols

* This paper is an extended, improved version of the paper A Fast FPGA-Based
Classification of Application Protocols Optimized Using Cartesian GP presented
at EvoComNet2015 and published in: Applications of Evolutionary Computing,
Proceedings of 18th European Conference, EvoApplications 2015, Copenhagen,
Denmark, April 8-10,2015, LNCS 9028, pp. 67-78, Springer, 2015.

* Corresponding author. Tel.: +420 541141215.
E-mail addresses: igrochol@fit.vutbr.cz (D. Grochol), sekanina@fit.vutbr.cz

(L. Sekanina), izadnik@fit.vutbr.cz (M. Zadnik), korenek@fit.vutbr.cz (J. Korenek),
ikosar@fit.vutbr.cz (V. Kosar).

in high speed networks. The classifier is embedded into a software
defined monitoring (SDM) platform (see details in Section 2) which
is accelerated in a field programmable gate array (FPGA) [5].

In order to identify the application (or the application protocol)
the network traffic belongs to, one has to inspect one or several
packets with a payload. The main difficulty is that the time to pro
cess one packet is less than 7 ns in the case of modern lOOGbps
link. Hence this task has to be performed by specialized hard
ware. In previous work of the authors [6], key circuit components
were developed for an FPGA-based application protocol classifier in
which the area and latency were optimized by means of Cartesian
genetic programming (CGP). The resulting circuit enabled to clas
sify three application protocols (HTTP, SMTP, SSH) using the first
packet carrying the application payload. This circuit, in fact, imple
mented a deterministic parallel combinational signature matching
algorithm in the FPGA.

A more significant latency and area reduction, which will be
crucial for classifiers supporting throughputs beyond lOOGbps, is
possible either by using advanced (faster) hardware or changing
the packet processing scenario. In this paper, a new approach is
proposed with respect to [6] in which small errors in the hardware
protocol classification are tolerated assuming that latency and area
of the classifier are significantly reduced. This concept is supported
by SDM because the traffic unclassified in the hardware can be sent
to the software for detailed processing.

Within this scope, the proposed work focuses on a design and
optimization of three proprietary circuits, operating as applica
tion protocol classifiers, which differ in the quality of classification,

http://dx.doi.org/10.1016/j.asoc.2015.09.046
1568-4946/© 2015 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/asoc
mailto:igrochol@fit.vutbr.cz
mailto:sekanina@fit.vutbr.cz
mailto:izadnik@fit.vutbr.cz
mailto:korenek@fit.vutbr.cz
mailto:ikosar@fit.vutbr.cz
http://dx.doi.org/10.1016/j.asoc.2015.09.046

934 D. Grochol et at. /Applied Soft Computing 38 (2016) 933-941

latency and area. Classifier CL-acc (accuracy) is implemented
according to [6] with the goal to minimize the classification error.
While classifier CL-cmp (compromise) provides a moderate com
promise between the latency, area and classification accuracy,
classifier CL-lat (latency) is highly optimized for a low latency. Each
classifier is evaluated in the task of classification of four protocols
(HTTP, SMTP, SSH, and SIP) we deem most crucial from the per
spective of network monitoring. It should be noted that SIP has not
been considered in the initial study [6].

The main contribution of this paper is to show that these cir
cuit classifiers can be optimized by CGP in order to significantly
reduce their latency and resources requirements. The classification
algorithm is not optimized by CGP. The improvements in latency
(and area) obtained by CGP are validated using a professional FPGA
design tool. The quality of classification is evaluated by means of
real network data. All results are compared with commonly used
classifiers based on regular expressions describing application pro
tocols. Contrasted to [6], in which only key components of one
classifier were implemented and optimized, complete FPGA imple
mentations of three classifiers are evaluated.

The rest of the paper is organized as follows. Section 2 briefly
surveys the field of traffic analysis in high speed networks, accel
erated network technologies using FPGAs and evolutionary circuit
design. Section 3 provides a specification of the classifier and net
work data used for the evaluation. In Section 4, the proposed
hardware classifier and its approximations are introduced. Carte
sian genetic programming is presented as a digital circuit design
and optimization method in Section 5. Section 6 describes the
implementation steps taken and the results in terms of area and
latency in the FPGA. Finally, the quality of classification is assessed
in terms of precision and recall. Conclusions are given in Section 7.

2. Relevant work

This paper deals with several different research areas - network
traffic analysis in high speed networks, FPGA technology, fast pat
tern matching and evolutionary circuit design. The purpose of this
section is to provide an appropriate introduction to them and to
their intersections which are relevant for the target application.

2.2. Traffic analysis in high speed networks

An abstract yet detailed network traffic visibility is a key pre
requisite to network management, including tasks such as traffic
engineering, application performance monitoring and network
security monitoring. In recent years the diversity and complexity
of network applications and network threats have grown sig
nificantly. This trend has rendered monitoring of network and
transport layer insufficient and it has become important to extend
the visibility into the application layer, primarily to identify the
application (or the application protocol) the traffic belongs to. The
port numbers are no longer reliable application differentiators due
to new emerging applications utilizing ports dynamicaly or to
applications evading the firewalls by hiding behind well-known
port numbers or utilizing port numbers defined by users [7].

The research in the area of application identification has come
up with distinct approaches to identify applications carried in the
traffic. These approaches differ in the level of detail that is utilized
in the identification method. The most abstract one is behavioral
analysis [8,9], Its idea is to observe only the port number and des
tination of the connections per each host and then to deduce the
application running on the host by its typical connection signature.
If more details per connection are available, statistical fingerprint
ing [10] comes into play. In this case, a feature set is collected per
each flow and the assumption is that the values of the feature set

vary across applications and hence they leave a unique fingerprint.
Behavioral and statistical fingerprinting generally classifies traffic
to application classes rather than to particular applications. The rea
son is that different applications performing the same task exhibit
similar behavior. For instance, application protocols such as Oscar
(ICQ), MSN, XMPP (Jabber) transport interactive chat communica
tions and hence exhibit a similar behavior, which makes it very
hard to differentiate between them. The inability to distinguish
applications within the same class is seen as a drawback in some
situations when, for example, it is necessary to block a particular
application while allowing others in the same class. The approach
utilizing the greatest level of detail is a deep packet inspection. It
identifies applications based on the packet payload. The payload
is matched with known patterns (defined, for example, by regular
expressions) derived for each application [11].

The application identification poses several on-going chal
lenges. The identification process is bound to keep pace with ever
increasing link speeds (for example, the time to process each packet
is less than 7 ns in the case of a lOOGbps link). Another challenge
is represented by the growing number of protocols (i.e., the appli
cation identification must address trends such as new emerging
mobile applications or applications moving into the network cloud
[12]). Some deployments of application identification also require
prompt (near real-time) identification to enable implementation of
traffic engineering or application blocking [13].

Hardware acceleration (e.g. utilizing an FPGA) is often employed
to speed up network processing [14,15], including the application
identification directly on the network card. An FPGA renders it
possible to utilize various pattern matching algorithms to iden
tify applications. However, pattern matching may exhibit several
constraints, that is, the high cost to process wide data inputs
(which is the case for high throughput buses in FPGA) and the high
complexity and overhead of a pattern matching algorithm which
consumes valuable hardware resources or constrains the achiev
able frequency.

These drawbacks are addressed by alternative methods which
look for constants and fixed-length strings (for brevity they are
called the signatures in the paper) rather than regular expressions
(e.g. [16]). This paper builds upon this strategy and envisions a
hardware-software codesign approach in which a simple circuit
labels the traffic belonging to applications of interest with some
probability of false positives while software can subsequently han
dle and check the labeled traffic with a more complex algorithm
effectively. This approach is supported by the software defined
monitoring concept [5]. Software defined monitoring employs
sophisticated processes running in the software to subsequently
install rules in the hardware (network card). While it is not pos
sible (or at a very high cost) to process all traffic in the software,
the application identification is offloaded into the hardware. The
offload not only reduces the host memory and processor load but it
also increases the expressive strength of the SDM rules. The target
applications range from application-specific forwarding and traffic
shaping to traffic monitoring and blocking.

2.2. FPGAs in network applications

Performance requirements are growing due to the increasing
volume and rates of network traffic. Paxson et al. [17] argue that
these performance requirements should be met by leveraging a
high degree of possible parallelism that is inherent to network
traffic monitoring. FPGAs as well as ASICs may deliver such a vast
support of parallelism. However, only FPGAs render it possible to
prototype and implement critical application components for vari
ous network applications at the highest speeds while the optimized
ASICs follow after broad deployment a few years later on. FPGAs
are thus extensively used in the so-called hardware-accelerated

D. Grochol et all Applied Soft Computing 38 (2016) 933-941 935

network cards to implement the first line of network traffic process
ing, such as monitoring, forwarding and other applications [18,19],

FPGAs include a high spectrum of components, but the fol
lowing components are crucial for the purposes of this paper.
FPGAs consist of routing network and basic building blocks such
as look-up tables (LUTs), registers and block memories. The par
ticular setup of the routing network defines the interconnection of
these components (i.e. the layout of the circuit). The LUTs serve to
implement combinational logic while registers and block memo
ries serve to keep the stateful information. Modern FPGAs contain
millions of LUTs and registers and thousands of block memories.
All these components may, in theory, work in parallel independet
of each other providing enormous computation power with a low
energy consumption in tens of Watts. Moreover, FPGAs targeting
the network market include more than a hundred of high-speed
transceivers allowing for connection to high speed network links
(e.g. high-end Virtex UltraScale+ FPGA offers up to 4Tbps of aggre
gated transceiver throughput [20]). The crucial task is to transform
a high-level description of the circuit (for example, written in VHDL
or SystemC) into an effective implementation in FPGA from the
perspective of meeting the timing and resource constraints.

2.3. Fast pattern matching

The L7 filter [21] is a popular program for application protocol
identification, which utilizes regular expressions to describe appli
cation protocols. It performs pattern matching in network flows.
If a known pattern is matched in the payload, the corresponding
application protocol is assigned to the network flow. Current pro
cessors are not powerful enough to achieve lOOGbps throughput
for regular expression matching. The throughput of L7 decoder is
less than 1 Gbps per one CPU core even for the latest Xeon process
ors. In order to achieve 100 Gbps throughput, it is necessary to use
highly optimized hardware architectures.

In recent years, many researchers have proposed high-speed
pattern matching hardware architectures, which utilize the fine
grained parallelism of FPGA technology. Mapping of regular expres
sions matching to an FPGA was first explored by Floyd and Ullman
[22], who showed that a Nondeterministic Finite Automaton (NFA)
can be implemented using a programmable logic array. Sindhu et al.
[23] proposed efficient mapping of NFAs to FPGA and Clark et al.
improved the mapping by a shared decoder [24,25] which signifi
cantly reduced the amount of consumed logic resources. The AMTH
(At Most Two-Hot encoding) [26] architecture improves NFA map
ping to the FPGA. The combination of one-hot and binary encoding
reduces the amount flip-flops, which represent NFA states.

Several papers introduced optimized mapping of Perl Compati
ble Regular Expressions (PCRE), which are widely used in Intrusion
Detection Systems (IDS). Sourdis et al. published in [27] an archi
tecture that allows for the sharing of character classes, static
subpatterns and introduced components for efficient mapping of
constrained repetitions to the FPGA. Lin et al. created an archi
tecture for sharing infixes and suffixes [28]. Nevertheless, these
optimizations are relevant only for large sets of PCRE in IDS systems.
In this work, a small set of regular expressions without counting
constraints and other advance PCRE constructions is only used.
Therefore, these optimizations are not considered in the evaluation
of proposed architectures.

The throughput of pattern matching is determined by the
amount of bytes processed within one clock cycle and frequency
of the hardware matching unit. The FPGA technology limits the
maximum frequency to several hundreds of MHz. To increase the
processing speed, the NFA can be modified to process multiple bytes
per one clock cycle [29]. Unfortunately, with the increasing size of
the NFA input, the amount of NFA transitions grows exponentially.

Data fc
Pattern Result 1 ^

512/N MiT Match 1

•ala fc
Pattern Result 2 ^

Splitter
512/N bits Match 2

Binder Splitter Binder

Data fc Pattern Result IN
51 2/N bits Match N ^ — ^

F i g . 1. Increasing the throughput by multiple pattern matching units.

As a result, the hardware matching unit consumes much more FPGA
resources and the frequency decreases rapidly.

The throughput can be increased by multiple parallel matching
units. These units need additional logic resources and buffers to
distribute network data to the matching units and join the results.
The overhead of parallel processing is shown in Fig. 1. First, the
splitter has to assign the sequence number into every packet and
store the packet to the buffer. The packet data are then sent with
a lower rate to parallel matching units. The units perform pattern
matching and provide the results to the binder, which needs buffers
to order the results in the right sequence order.

It can be seen that the parallel matching units can scale the
matching speed up to 100 Gbps throughput, but only at the cost of
significant overhead in terms of latency, FPGA logic resources and
memory buffers. This overhead is avoided by focusing on highly
optimised hardware architectures with high throughput and low
latency.

2.4. Evolutionary circuit design

The idea of evolvable hardware and automated circuit design
by means of artificial evolution was introduced by Higuchi et al.
in 1993 [30]. A recent survey of the field covering key subfields
(evolutionary hardware design and adaptive hardware) is avail
able in [31]. Significant progress in the evolution of digital circuits
is connected with Cartesian genetic programming which has been
developed by Miller since 1999 and utilized in many applications
as documented in the recent monograph [32]. Since only combina
tional circuits will be evolved in this work, CGP is a natural choice.

CGP is a form of genetic programming in which candidate
designs are represented using directed oriented graphs (see a
detailed description in Section 5). In the standard CGP used for
combinational circuit evolution, each candidate circuit is directly
mapped into a chromosome consisting of a string of integers and
evaluated by applying all possible input vectors. Although var
ious new designs have been discovered using CGP, the method
is not directly applicable for the design of large combinational
circuits because the fitness evaluation time grows exponentially
with the number of primary inputs. Moreover, the number of
evaluations can easily go into the millions, even for small (but non-
trivial) circuits such as multipliers. This problem has partially been
eliminated by introducing circuit decomposition techniques at the
representation level [33,34] and formal verification methods in the
fitness function [1]. Other successful applications of CGP have been
proposed in domains in which candidate circuits are not evaluated
using all possible input combinations (see e.g. hash functions [35],
image operators [36] or classifiers [2]).

In order to accelerate the fitness function evaluation on a
common processor, a bit-level parallel simulation of candidate
combinational circuits is employed. Contrasted to a naive simula
tion, in which 2k vectors are sequentially submitted for evaluation
(where k is the number of primary inputs), the bit-level parallel
simulation exploits the fact that current processors enable per
forming bitwise operations over two w-bit operands in parallel.

936 D. Grochol et al. /Applied Soft Computing 38 (2016) 933-941

T a b l e 1

The flows corresponding to the application protocols in data sets.

Data set CESACO CESPIO DATASET SIP

Protocol Count flows Count flows [%] Count flows Count flows [%] Count flows Count flows [%]

HTTP 1914 38.12 15060 52.29 134 2.41
SMTP 4 0.08 34 0.12 10 0.18
SSH 1 0.02 0 0.00 14 0.25
SIP 0 0 0 0 5204 93.42
Others 3102 61.78 13705 47.59 208 3.74
All 5021 100.00 28799 100.00 5570 100.00

Hence the input vectors are grouped into w-bit words and simu
lated in parallel. The obtained speedup is w on a w-bit processor, for
example, 64 on a common personal computer. Even if this approach
is taken, a typical CGP run could take tens of minutes for a circuit
with 8 inputs and 8 outputs.

There are only a few papers dealing with evolutionary circuit
design at the level of 4-input LUTs [35,37] and no paper dealing
with 6-input LUTs. Unfortunately, the bit-level parallel simula
tion is inefficient for circuits consisting of LUTs because their logic
function has to be emulated using a sequence of binary logic oper
ations. Moreover, employing CGP with 6-input LUTs (each of them
encoded using 64 bits in the chromosome) would lead to long
chromosomes, complex search spaces and very inefficient search
procedures. Hence two-input gates represent the dominant option
when CGP is applied to the evolution of complex circuits.

3. Requirements and network data

In order to design, implement and evaluate an FPGA-based
application protocol classifier, its basic parameters and an envi
ronment in which it will be operated have to be specified.

3.1. Specification of the classifier

The classifier has to distinguish among four application pro
tocols (HTTP, SMTP, SSH and SIP) which represent an important
portion of the network traffic and play an important role in traf
fic monitoring. Remaining protocols will be classified as unknown.
Because the primary goal is achieving a very low latency, only sig
natures of the first packet carrying the application payload will be
defined and utilized in the classifier architecture. The classifier will
operate in an FPGAon a 512 bit bus to meet the lOOGbps through
put. The application payload may start at nearly arbitrary offset
(byte of a word) on the bus and the application (protocol) must
be identified each clock cycle to keep pace even with the shortest
incoming packets of 64 bytes.

The classifier will be constructed manually - as a combinational
circuit with a low latency. CGP will be applied to optimize its key
subcircuits to reduce the latency and area. An observation is uti
lized that a circuit which is well optimized by a commercial FPGA
synthesis tool can further be re-synthesized and re-optimized by
CGP to improve its parameters (see example circuits created by
this approach in [36]). Such a classifier will be considered as a fully
functional solution (CL-acc).

Further area and latency improvement are obtained if the
requirement of full functionality can be relaxed. Hence we will
also propose and evaluate classifiers (CL-cmp and CL-lat) showing
a shorter latency and smaller area. Providing such approximations
is currently a hot topic in computer engineering. The approach is
called approximate computing and its goal is to investigate how
computer systems can be made better - more energy efficient,
faster, and less complex by relaxing the requirement that they are
exactly correct [38],

3.2. Network data

The data which has to be classified are common network data
(available in the pcap format). In our case, complete network
data sets with anonymized IP addresses are utilized, collected on
CESACO link (connecting CESNET and ACONET networks) and CES
PIO link (connecting CESNET and PIONIER networks), see Table 1.
Because SIP and SSH are not adequately present in these data sets,
another, dedicated data set (DATASET SIP) with a high presence of
SIP records was employed.

For example, the available record from CESPIO contains 43 M
packets, where percentages are 78.72% for TCP, 20.58% for UDP,
0.18% for ICMP and 0.53% others. One can observe that only TCP and
UDP are relevant for our purposes. The packet traces were analyzed
using Scapy. In the case of HTTP, SMTP and SSH, which operate over
TCP, the third or the fourth packet of the TCP connection is usually
considered as the first packet containing the application payload.
The L7 filter [21] was utilized as a reference classifier to annotate
each connection in the data set.

The resulting data sets, which can be used for evaluation pur
poses, are available in the JSON format. Each record contains the
source IP and port, the destination IP and port, the transport proto
col number, and the whole packet encoded using base64 (see Fig. 2).
Table 1 gives the mix of considered protocols in our data sets.

4. Proposed classifiers

This section describes the analytical approach taken in order to
construct the proposed classifiers. Detailed hardware architecture
of the classifiers is then presented.

4. 1. Deterministic classification

Because the classification utilizes only the start of the payload,
several initial bytes of considered application protocols were ana
lyzed and characters were identified which are unique in these
protocols. Table 2 shows the unique signatures that were identi
fied for considered protocols. The longest signature of the CL-acc
contains 10 characters (bytes). Signatures of classifier CL-cmp are
constructed from those used in CL-acc in such a way that they are
reduced to the first 4 characters, which leads to less complex hard
ware. Further area and latency reduction is expected in classifier CL-
lat which operates with signatures containing at least 3 characters,
but each of them has to exist in at least two signatures of CL-acc.

{
"dIP": "192.168.0.2",
"dPort": 80,
" data": " R0VUIC9zaXRlcy9kZWZhdWx0L3RoZWllcy9mcmFtZWR5bmFtaWMv...
"id": "(' 192.168.0.1', '192.168.0.2', 52217, 80)",
"trProto": 6,
"protocol": "HTTP",
"sIP": " 192.168.0.1",
"sPort": 52217

},

F i g . 2 . Example of record in the data set.

D. Grochol et all Applied Soft Computing 38 (2016) 933-941 937

T a b l e 2

Unique signatures in considered application protocols.

Protocol CL-acc CL-cmp CL-lat

"GET /" "GET " "*ET /"
"PUT /" "PUT" "*UT /"
"POST /" "POST" "*0S* /"

HTTP "HEAD /" "HEAD" "*EA* /"
"TRACE /" "TRAC" "T*ACE**"
"DELETE /" "DELE" "*E**TE**"
"OPTIONS /" "OPTI" "**TI*NS""

"INVITE " "INVI" "*N*ITE"
"REGISTER " "REGI" "*E*IS*E*"

SIP
"CANCEL " "CANC" "C**CE*"

SIP "MESSAGE " "MESS" "*ESS"E"
"SUBSCRIBE " "SUBS" "SU*SC***E*"
"NOTIFY " "NOTI" "*OTI**"

SSH "SSH-" "SSH-" "SS*-"

SMTP "220 "
"220-"

"220 "
"220-"

"220 "
"220-"

T a b l e 3

CL-acc: mapping functions in the coders. The * symbol means: "not utilized in a
particular coder". a> stands for "otherwise".

Coder 1 Coder 2 Coder 3 Coder 4 Output

Space Space Space Space 00000011
/ / / / 00000101
2 2 0 - 00000110
A A A B 00001001
C E B c 00001010
D G E D 00001100
E L G E 00010001
F N H 1 00010010
G 0 1 R 00010100
H P L S 00011000
1 R N T 00100001
M S S * 00100010
N T T * 00100100
0 U V * 00101000
P Y * * 00110000
R * * * 01000001
S * * * 01000010
T * * * 01000100
(0 (0 (0 (0 00000000

These classifiers can be constructed as combinational circuits
by means of a decoder. However, they have to correctly manage
the cases in which the signatures appear at various offsets within
the frame due to preceding protocol headers, which is a natural
situation in real network traffic data.

4.2. Classifiers in hardware

The hardware architecture utilizes a 512 bit bus to transfer
protocol frames. Each frame starts with the headers of low-level
protocols such as Ethernet, IPv4 or IPv6, TCP or UDP. As a result, the
start of the application payload may appear with certain offsets on
the bus, namely 2 bytes from the position 0 or with 2 + 4/c bytes,
where k = 1 16.

All three versions of the classifier are constructed according to
Fig. 3 which also shows that the circuit classifier consists of three
levels of combinational logic.

In the first level, one coder is connected to each byte of the word
(64 coders, in total). There are four types of the coders (cl, c2, c3,
c4) because of the 4-byte offsets. Each coder implements a mapping
from the set of characters allowed for the given position to a set of 8-
bit values in which just 2 bits are not zeros. The mapping functions
of the coders in CL-acc, CL-cmp and CL-lat are given in Tables 3-5.

This remapping implemented by coders allows for a fast signa
ture detection in the subsequent level of comparators. All possible
occurrences of the application data within the input word are thus
processed in parallel.

The second level consists of comparators. In the case of CL-acc,
each of them compares the outputs of ten coders (note that the
longest signature contains 10 characters) with the unique patterns
identified for the considered application protocols. If a particular
application protocol is detected then its 4-bit code is visible at the
output of the comparators (0001 - HTTP, 0010 - SMTP, 0100 - SSH,

Input buffer

512b

r
/b /'& /'b / ' s / ' s y's /b /b /'b ,'b / fB /b I's / ' s ,'b / 'b /fB ,fB / ' a /'b ,'b j's

C3 C4 c l C2 C3 C4 c l C2 C3 C4 c l C2 C3 C4 c l C2 C3 C4 c l C2 C3 C4

$ Is -Is 1* b Is Is Is Is Is- Is Is \ t» <tr Is Is«Is & Is i*

>
' a

c l C2

^ t ^ 10 x 8b 10 x8b
\ 10 x8b '

Comparator
Comparator

\ 10 x 8b

Comparator
Comparator

\ 10 x 8b

Comparator
Comparator

J
F i g . 3 . Classifier CL-acc as a combinational circuit.

938 D. Grochol et al. /Applied Soft Computing 38 (2016) 933-941

T a b l e 4

CL-cmp: mapping functions in the coders.

Coder 1 Coder 2 Coder 3 Coder 4 Output

2 2 0 Space 00000011
C A A - 00000101
D E B C 00000110
G N G D 00001001
H 0 H E 00001010
I P L I 00001100
M R N S 00010001
N S S T 00010010
0 U T * 00010100
P * V * 00011000
R * * * 00100001
S * * * 00100010
T * * * 00100100
(O (0 (0 CO 00000000

T a b l e 5

CL-lat: mapping functions in the coders.

Coder 1 Coder 2 Coder 3 Coder 4 Output

Space / Space Space 00000011
/ 2 0 - 00000101
2 E A C 00000110
C N Ľ I 00001001
E S S s 00001010
S 0 T * 00001100
T U * * 00010001
(0 (0 (0 (0 00000000

1000 - SIP, 0000 - unknown). In the case of CL-cmp (CL-lat, respec
tively) the circuit is simplified as only 4 (9, respectively) coders
are employed. Finally, at the third level, all 4-bit codes are fed to
an OR gate which indicates a presence of the detected application
protocols or unknown protocol (0000).

5. Coder evolution using CCP

Based on our previous experience, it is assumed that parameters
of a circuit optimized by a professional FPGA design software can
be improved if CGP is employed [36], As the whole classifier is a
relatively complex circuit to be optimized, it is proposed to evolve
its components - 64 (combinational) coders. Each of the coder types
cl, c2, c3 and c4 will be evolved by CGP separately. The standard
CGP is used as defined in [32],

In CGP, a candidate circuit is modeled as a directed acyclic graph
and represented in a 2D array of nc x nr processing nodes. Each
node is capable of performing one of the nQ-input functions speci
fied in r set. The setting of nc, nr and T significantly influences the
performance of CGP [39,40], Current FPGAs utilize 6-input LUTs
as building blocks of all circuits. However, employing CGP with
6-input nodes (each of them encoded using 2 6 = 64 bits in the chro
mosome) would lead to long chromosomes, complex search spaces
and so inefficient search procedures. It is proposed to optimize the
coders at the level of 2-input nodes (encoded using up to 4 bits)
and let the professional circuit synthesis software implement the
resulting optimized circuits using 6-input LUTs in the FPGA.

The remaining parameters of CGP are the number of primary
inputs (n,), the number of primary outputs (n0), and the level-back
parameter (L) specifying which nodes can be used as inputs for a
given gate. The primary inputs and the outputs of nodes are labeled
0... n c • n r + rij - 1 and considered as addresses which connections
can be fed to. In the chromosome, each two-input node is then
encoded using three integers (an address for the first input; an
address for the second input; a node function). Finally, for each pri
mary output, the chromosome contains one integer specifying the

F i g . 4 . Example of a combinational circuit in CGP with parameters: iii = 5, n 0 = 2,
L=4, nc =4, n, = 2, T = {AND (0), OR (1), XOR (2)}. Gates 8,11 and 12 are not utilized.
Chromosome: 2,3,0; 4,3,2; 5,4,1; 2,0,1; 5,7,0; 5,6,1; 0,6,2; 7,6,2; 9, 10. The last two
integers indicate the outputs of the circuit.

connection address. Fig. 4 shows an example and a corresponding
chromosome.

The chromosome size is (na + \)nrnc + n0 genes (integers). The
main feature of this encoding is that the size of the chromosome is
constant for a given n,, n0,na, nr and nc. However, the size of circuits
represented by such chromosomes is variable as some nodes can
remain disconnected. The nodes which are included into the circuit
after reading the chromosome are called the active nodes.

The search is performed using a simple search strategy (1 + A.),
where X. is the number of offspring circuits created by mutation
from one parent [32]. The initial population is randomly generated.
A new population consisting of k individuals is generated by apply
ing the mutation operator on the best individual of the previous
population. The mutation operator randomly modifies h integers
of the chromosome. The evolution is terminated after producing a
given number of generations.

In the case of combinational circuits, the fitness value of a can
didate circuit is defined as [31]

{ b when b < n02n>,

(1)
b + (ncnr - z) otherwise,

where b is the number of correct output bits obtained as response
for all possible assignments to the inputs, z denotes the number of
gates utilized in a particular candidate circuit and ncnr is the total
number of available gates. It can be seen that the last term ncnr - z is
considered only if the circuit behavior is perfect,
The second term can be modified to optimize other circuit param
eters.

Latency is one of the key parameters of classification. After per
forming numerous experiments which are reported in Section 6.2
as well as in [6], it was recognized that the minimum latency is 12 A
(where A is delay of a two-input gate) if fully functional coders
are requested. Hence latency is not explicitly optimized in our
approach; however, its maximum value is implicitly determined
by n c = 12.

6. Results

The experimental evaluation consists of the following steps:
(1) conventional implementation of the proposed classifiers; (2)
CGP-based optimization of selected subcomponents (coders); (3)
resynthesis of the classifiers with optimized subcomponents; (4)
verification of the quality of classification.

6.1. Conventional implementation

Three circuits corresponding to classifiers CL-acc, CL-cmp and
CL-lat were behaviorally described in VHDL and synthesized into
the Xilinx Virtex-7 XC7VH580T FPGA using Xilinx ISE Project nav
igator 14.4 tool. The target FPGA contains 6-input LUTs whose
latency is 0.043 ns. The circuit latency was set as the main optimiza
tion target for the synthesis tool. Parameters of the resulting circuits
which are considered as reference conventional implementations
in the context of this paper are given in Table 6. One can observe

D. Grochol et all Applied Soft Computing 38 (2016) 933-941 939

T a b l e G

Results of synthesis for the Xilinx Virtex-7 XC7VH580T FPGA.

Classifier LUTs Flip flop Latency [ns]

CL-acc 2352 0 6.410
CL-acc+CGP 1909 0 6.113
CL-cmp 1549 0 6.093
CL-cmp + CGP 1073 0 5.604
CL-lat 1625 0 5.943
CL-lat + CGP 1217 0 5.139

Yamagaki/Clark 10,431 2326 77.504 (16 x 4.844)
AMTH 10,547 2190 71.536 (16 x 4.671)

that CL-lat is less complex and faster than CL-cmp and CL-cmp is
less complex and faster than CL-acc.

6.2. Optimization by CGP

There are four types of coders in each of the three classifier cir
cuits (Fig. 3). These 8-input/8-output coders are optimized by CGP
operating at the gate level. The setting of CGP parameters is forced
by the specification or it can be considered as typical for CGP. The
reasons for the chosen parameter values are as follows: n, = 8 and
n 0 = 8 directly follows from the specification; n c = 12 reflects our
strategy to restrict the maximum delay to 12A; nr = 50 is used to
provide a sufficient redundancy at the level of genotype assuming
that evolved circuits will contain about 30-50 active gates [39]; I
is restricted to one logic level in order to generate compact circuits
and enable the deep pipeline processing in future implementations;
k = 4 is a recommended value for CGP [39,32]; and h = 5 corresponds
with the mutation probability 5/(12-50) = 0.00833, i.e. with the
typical values 0.001 - 0.01 used for the mutation across almost all
other studies [32]. In the case of determining the function set, we
compared CGP utilizing all logic functions over two inputs except
logic constants (which will be denoted T) against a reduced func
tion set containing logic functions {a, b, -> a, -> b, a v b, a a b, a© b}.
In addition to the completeness of the reduced function set (i.e. - \
v and a are included), the xor function (©) is supported to enable
the xor decomposition which is very useful for optimizing the xor
intensive logic functions. The initial population is seeded using ran
domly generated circuits.

In total, circuits for 24 specifications (3 classifiers x 4 coders
x 2 versions of function set) were evolved. In order to obtain basic
statistics, each run consisting of 5 million generations was repeated
20 times. The number of gates, obtained at the end of CGP runs

I I 1 I 1 1 1 r
Quartiles !=

90 -

SO -

70 -

30 -

I I I I I I I I

cl cl-reduce c2 c2-reduce c3 c3-reduce c4 c4-reduce

F i g . 6 . The number of gates obtained at the end of 20 CGP runs for four coders of
classifier CL-cmp. 'Reduce' stands for 'reduced set of gates'.

devoted to a particular specification, are presented in form of box-
plots in Fig. 5 (CL-acc), Fig. 6 (CL-cmp) and Fig. 7 (CL-lat). Boxplots
used in these figures contain the minimum, first quartile, median,
third quartile and maximum.

The experiments confirmed our assumption that the optimized
coders of CL-lat are less complex than those optimized for CL-cmp
and CL-acc. It can also be seen that the usage of the complete func
tion set consistently gives more compact coders than the reduced
function set despite the fact that the search space is more complex.

In order to determine the impact of the CGP optimization to sub
sequent circuit synthesis and optimization conducted by means
of a professional FPGA design tool, VHDL implementations of all
coders evolved by CGP for CL-acc were developed and synthetized
for the FPGA. The number of LUTs is presented in form of boxplots
in Fig. 8. The most important observation is that the most com
pact FPGA implementations of coders are obtained if the circuit
description entering the FPGA synthesis process contains the gates
from reduced function set. It is quite unintuitive with respect to
boxplots shown in Fig. 5-7. This interesting result deserves further
investigations which are beyond the scope of this paper.

An analysis of optimized circuits is presented for c2 which is
a middle-size coder. When optimized for the accurate CL-acc, the

cl-reduce c2 c2-recu:e c3 c3-"educe c4 c4-redu:e

F i g . 5. The number of gates obtained at the end of 20 CGP runs for four coders (cl,
c2, c3 and c4) of classifier CL-acc. 'Reduce' stands for 'reduced set of gates'.

F i g . 7 . The number of gates obtained at the end of 20 CGP runs for four coders of
classifier CL-lat. 'Reduce' stands for 'reduced set of gates'.

940 D. Grochol et al. /Applied Soft Computing 38 (2016) 933-941

Quartdes c

F i g . 8 . The number of LUTs obtained for four coders of classifier CL-acc. 'Reduce'
stands for 'reduced set of gates'.

most compact implementation of c2 consists of 59 gates (62 gates in
the case of the reduced set of gates). When it is approximated for CL-
lat, the most compact implementation requires only 29 gates (35
gates in the case of the reduced set of gates), which is an important
reduction. At the level of LUTs, the reduction provided for CL-lat is
not so remarkable because only one LUT was saved (7 versus 6 LUTs)
if the FPGA synthesis starts with circuits evolved using the full gate
set (T). However, if the FPGA synthesis starts with circuits evolved
for the reduced gate set, the resulting implementation contains 3
LUTs (for CL-acc) and 2 LUTs for the most relaxed case (CL-lat).
Considering the fact that 64 coders have to be implemented into
the FPGA, the obtained resources reduction is significant.

6.3. Classifier resynthesis using optimized coders

The most compact implementations of coders were translated
to VHDL and utilized in the VHDL code of classifiers CL-acc, CL-cmp

and CL-lat. These modified classifiers were synthesized with the
same setting as reported in Section 6.1.

The results of synthesis are labeled using '+CGP" and given in
Table 6. Both crucial circuit parameters (latency and area expressed
as the number of LUTs) were significantly improved by CGP for all
classifiers.

Enabling approximate classification (CL-lat and CL-cmp) whose
implementation is further optimized by CGP led to 48.2% improve
ment in area (LUTs) and 19.8% improvement in latency with respect
to a solution (CL-acc) which would be produced by a conventional
signature-based approach.

In order to compare the proposed solution with the state of the
art classifiers from the literature, parameters of Yamagaki/Clark
and AMTH circuit classifiers were included to Table 6. These classi
fiers accurately implement the L7-filter (for considered protocols)
by means of optimized finite state machines. The main conclusion
is that CL-lat optimized by CGP exhibits the area (LUTs) and latency
one order of magnitude lower than Yamagaki/Clark and AMTH.

6.4. Quality of classification

The quality of classification was evaluated offline, utilizing
a software model that has been developed for the proposed
classifiers. The evaluation was performed using all three data sets
in which we considered traces containing first payload packets.
The output of our classifiers was verified against the L7 filter which
provides 100% correct results for considered protocols. Precision
and Recall metrics were calculated:

Precision

Recall

TruePositive
TruePositive + FalsePositive

TruePositive
TruePositive + FalseNegative

(2)

(3)

Precision informs us how many packets assigned to a given class
are truly correctly assigned. Fig. 9 shows the quality of classification
for the worst case - classifier CL-lat. It can be seen that HTTP, whose
representation is rich in our data sets, is classified perfectly. The
reason for lower percentages of Precision in the case of SMTP is the

HTTP SIP

• accurancy
recall

SSH S M T P

CESftCO (ESP JO

F i g . 9 . Precision and Recall percentages for four classified protocols on three data sets obtained using CL-lat.

D. Grochol etat./ Applied Soft Computing 38 (2016) 933-941 941

fact that considered signatures are relatively short and can easily
appear inside of other protocol packets. As the subsequent packet
processing is done in software precisely the incorrectly classified
protocols will be recognized anyway. The software task is simpler
than that of the original one. The software must only verify the
labelled traffic and dismiss false positives.

Considering the whole SDM, which the proposed classifiers are
targeted for, the Recall is even a more important metrics. High
Recall values indicate that if a given application protocol is present
in the traffic data, it is detected with almost 100% probability and
thus no information is lost. Fig. 9 does not give any data for SSH in
CESACO and SIP in CESACO and CESPIO. The reason is that there are
no relevant records in these data sets.

7. Conclusions

It was shown how evolved circuits, optimized for the latency
and area, can significantly increase the throughput of a manually
designed classifier of application protocols. This paper introduced
a new concept of hardware classifier which is composed as a fast
combinational circuit performing signature matching where the
signatures are designed according to the protocols to be classi
fied. Its accurate implementation (CL-acc) was then relaxed and
approximate classifiers CL-cmp and CL-lat were proposed with
reduced area and latency. Key components of all classifiers were
optimized by CGP with the aim of further area and latency reduc
tion. This led to 48.2% improvement in area (LUTs) and 19.8%
improvement in latency with respect to CL-acc. Finally, the pro
posed classifiers were compared with state of the art circuits
accurately implementing the L7-filter and reported improvement
in area and latency by one order of magnitude. The proposed solu
tion is capable of a fast detection of key application protocols using
a single packet only. It exhibits excellent Recall values (no moni
tored application protocols are missed). The proposed classifier will
be used in the SDM framework, which will handle detailed packet
processing to improve the precision parameter of the hardware
classifier.

Acknowledgments

This work was supported by the Czech science Foundation
project 14-04197S.

References

[1] Z. Vasicek, L Sekanina, Formal verification of candidate solutions for post-
synthesis evolutionary optimization in evolvable hardware, Genet. Program.
Evol. Mach. 12 (3) (2011) 305-327.

[2] P. Kaufmann, K Glette,T. Gruber, M. Platzner,J.Torresen, B. Sick, Classification
of electromyographic signals: comparing evolvable hardware to conventional
classifiers, IEEETran. Evol. Comput. 17 (1) (2013) 46-63.

[3] J.A. Walker, M. Trefzer, S.J. Bale, A.M. Tyrrell, Panda: a reconfigurable architec
ture that adapts to physical substrate variations, IEEE Trans. Comput. 62 (8)
(2013)1584-1596.

[4] L. Srivani, N.K. Giri, S. Ganesh, V. Kamakoti, Generating synthetic benchmark
circuits for accelerated life testing of field programmable gate arrays using
genetic algorithm and particle swarm optimization, Appl. Soft Comput. 27
(2015) 179-190.

[5] L. Kekely, J. Kucera, V. Pus, J. Korenek, A. Vasilakos, Software defined monitoring
of application protocols, IEEE Trans. Comput. (2015) 1-14, http://dx.doi.org/10.
1109/TC.2015.2423668.

[6] D. Grochol, L Sekanina, M. Zadnik, J. Korenek, A fast FPGA-based classifica
tion of application protocols optimized using Cartesian GP, in: Applications
of Evolutionary Computation, 18th European Conference, LNCS 9028, Springer
International Publishing, 2015, pp. 67-78.

[7] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, M. Faloutsos, Is P2P dying or
just hiding? in: Global Internet and Next Generation Networks, Globecom 2004,
Dallas, Texas, 2004.

[8] T. Karagiannis, K. Papagiannaki, M. Faloutsos, Blinc: multilevel traffic classifi
cation in the dark SIGCOMM Comput. Commun. Rev. 35 (4) (2005) 229-240.

10

S.-H. Yoon, J.-W. Park, J.-S. Park, Y.-S. Oh, M.-S. Kim, Internet application traffic
classification using fixed IP-port, in: APNOMS, Vol. 5787 of Lecture Notes in
Computer Science, Springer, 2009, pp. 21-30.
A.W. Moore, D. Zuev, Internet traffic classification using Bayesian analysis tech
niques, in: Proceedings of the 2005 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS '05, ACM,
2005, pp. 50-60.
S. Sen, O. Spatscheck, D. Wang, Accurate, scalable in-network identification of
p2p traffic using application signatures, in: Proceedings of the 13th Interna
tional Conference on World Wide Web, ACM, 2004, pp. 512-521.
A. Tongaonkar, R. Keralapura, A. Nucci, Challenges in network application iden
tification, in: Presented as Part of the 5th USENIX Workshop on Large-Scale
Exploits and Emergent Threats, USENIX, Berkeley, CA, 2012.
L Bernaille, R. Teixeira, K. Salamatian, Early application identification, in:
Proceedings of the 2006 ACM CoNEXT Conference, ACM, New York, NY, USA,
2006, pp. 6:1-6:12.
N. Zilberman, Y. Audzevich, G. Covington, A. Moore, NetFPGA SUME: toward
lOOGbps as research commodity, Micro, IEEE 34 (5) (2014) 32-41.
S. Friedl, V. Pus, J. Matousek, M. Spinier, Designing a Card for 100 Gb/s Network
Monitoring, Tech. Rep., CESNET, 2013.
B. -C. Park, Y. Won, M.-S. Kim, J. Hong, Towards automated application signature
generation for traffic identification, in: Network Operations and Management
Symposium, 2008. NOMS 2008, IEEE, 2008.
V. Paxson, K. Asanovič, S. Dharmapurikar, J. Lockwood, R. Pang, R. Sommer, N.
Weaver, Rethinking hardware support for network analysis and intrusion pre
vention, in: Proceedings of the 1st USENIX Workshop on Hot Topics in Security,
HOTSEC06, USENIX Association, Berkeley, CA, USA, 2006, p. 11 http://dl.acm.
org/citation.cfm?id=1268476.1268487.
G. Antichi, S. Giordano, D. Miller, A. Moore, Enabling open-source high speed
network monitoring on NetFPGA, in: Network Operations and Management
Symposium (NOMS), 2012 IEEE, 2012, pp. 1029-1035.
L Kekely, V. Pus, P. Benacek, J. Korenek, Trade-offs and progressive adoption of
FPGA acceleration in network traffic monitoring, in: 2014 24th International
Conference on Field Programmable Logic and Applications (FPL), 2014, pp. 1-4.
Xilinx, Ultrascale Architecture and Product Overview, 2015.
L Filtr, Project WWW Page, 2010 http://17-filter.sourceforge.net/.
R.W. Floyd, J.D. Ullman, The compilation of regular expressions into integrated
circuits, J. ACM 29 (3) (1982) 603-622.
R. Sidhu, V.K. Prasanna, Fast regular expression matching using FPGAs, in: FCCM
'01: Proceedings of the 9th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, IEEE Computer Society, 2001, pp. 227-238.
C. Clark, D. Schimmel, Efficient Reconfigurable Logic circuits for matching com
plex network intrusion detection patterns, in: 13th International Conference on
Field Programmable Logic and Application, Lisbon, Portugal, 2003, pp. 956-959.
C.R. Clark, D.E. Schimmel, Scalable pattern matching for high-speed networks,
in: IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), Napa, CA, 2004, pp. 249-257.
S. Yun, K. Lee, Optimization of regular expression pattern matching circuit
using at-most two-hot encoding on FPGA, in: International Conference on Field
Programmable Logic and Applications, 2010, pp. 40-43.
I. Sourdis, J. Bispo, J.M.P. Cardoso, S. Vassiliadis, Regular expression matching
in reconfigurable hardware, J. Signal Process. Syst. 51 (1) (2008) 99-121.
C.-H. Lin, C.-T. Huang, C.-P. Jiang, S.-C. Chang, Optimization of pattern matching
circuits for regular expression on fpga, IEEE Trans. Very Large Scale Integr. Syst.
15(12)(2007)1303-1310.
B.C. Brodie, D.E. Taylor, R.K. Cytron, A scalable architecture for high-throughput
regular expression pattern matching, SIGARCH Comput. Archit. News 34 (2)
(2006)191-202.
T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, T. Furuya, Evolving hardware
with genetic learning: a first step towards building a darwin machine, in: Proc.
of the 2nd International Conference on Simulated Adaptive Behaviour, MIT
Press, 1993, pp. 417-424.
L Sekanina, Evolvable hardware, in: Handbook of Natural Computing, Springer
Verlag, 2012, pp. 1657-1705.
J.F. Miller, Cartesian Genetic Programming, Springer-Verlag, 2011.
E. Stomeo, T. Kalganova, C. Lambert, Generalized disjunction decomposition for
evolvable hardware, IEEE Trans. Syst. Man Cybern. B 36 (5) (2006) 1024-1043.
A. P. Shanthi, R. Parthasarathi, Practical and scalable evolution of digital circuits,
Appl. Soft Comput. 9 (2) (2009) 618-624.
P. Kaufmann, C. Plessl, M. Platzner, EvoCaches: application-specific adaptation
of cache mappings, in: Proceedings of the NASA/ESA Conference on Adaptive
Hardware and Systems (AHS), IEEE Computer Society, 2009, pp. 11-18.
Z. Vasicek, M. Bidlo, L. Sekanina, Evolution of efficient real-time non-linear
image filters for FPGAs, Soft Comput. 17 (11) (2013) 2163-2180.
S.M. Cheang, K.H. Lee, K.S. Leung, Applying genetic parallel programming to
synthesize combinational logic circuits, IEEE Trans. Evol. Comput. 11 (4) (2007)
503-520.
H. Esmaeilzadeh, A. Sampson, L. Ceze, D. Burger, Neural acceleration
for general-purpose approximate programs, Commun. ACM 58 (1) (2015)
105-115.
J.F. Miller, S.L Smith, Redundancy and computational efficiency in Cartesian
genetic programming, IEEE Trans. Evol. Comput. 10 (2) (2006) 167-174.
B. W. Goldman, W.F. Punch, Analysis of Cartesian genetic programming's evo
lutionary mechanisms, IEEE Trans. Evol. Comput. 19 (3) (2015) 359-373.

http://dx.doi.org/10
http://dl.acm
http://17-filter.sourceforge.net/

Paper II

Evolutionary Design of Fast
High-quality Hash Functions for
Network Applications

G R O C H O L D a v i d a n d S E K A N I N A L u k a s

In: GECCO '16 Proceedings of the 2016 on Genetic and Evolutionary Computation Con
ference. New York, N Y : Association for Computing Machinery, 2016, pp. 901-908. ISBN
978-1-4503-4206-3.

55

Evolutionary Design of Fast High-quality Hash Functions
for Network Applications

David Grochol
Brno University of Technology

Faculty of Information Technology
IT4lnnovations Centre of Exce l lence

B o ž e t ě c h o v a 2
Brno, C z e c h Republic

igrochol@fit.vutbr.cz

ABSTRACT
High speed networks operating at 100 Gbps pose many chal
lenges for hardware and software involved in the packet pro
cessing. As the time to process one packet is very short
the corresponding operations have to be optimized in terms
of the execution time. One of them is non-cryptographic
hashing implemented in order to accelerate traffic flow iden
tification. In this paper, a method based on linear genetic
programming is presented, which is capable of evolving high-
quality hash functions primarily optimized for speed. Evolved
hash functions are compared with conventional hash func
tions in terms of accuracy and execution time using real
network data.

CCS Concepts
•Networks —> Network monitoring; •Computing method
ologies —> Search methodologies; Genetic programming;

Keywords
Linear Genetic Programming, Network applications, Hash
function

1. INTRODUCTION
We are witnessing a significant progress in the develop

ment of high speed computer networks. Data centers are
running at 10 gigabit-per-second (Gbps) speeds and mov
ing to 40 Gbps. Solutions for 100 Gbps are already avail
able. New network applications, new security threats and
the growing communication speeds are major current chal
lenges for precise and accurate network monitoring. As it
turns out that networks have to be monitored at the appli
cation layer, it is crucial to identify the application (or the
application protocol) which the traffic belongs to [24]. The
current practice in the area of network monitoring is based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO '16, July 20-24, 2016, Denver, CO, USA

© 2016 ACM. ISBN 978-1-4503-4206-3/16/07.. .$15.00
DOI: http://dx.doi.org/10.1145/2908812.2908825

Lukas Sekanina
Brno University of Technology

Faculty of Information Technology
IT4lnnovations Centre of Excel lence

Boze techova 2
Brno, C z e c h Republic

sekanina@fit.vutbr.cz

on flow measurements, where the flow is uniquely identi
fied by five parameters within a certain time period: source
and destination IP address, source and destination port and
transport protocol. This means that each packet has to be
processed. In order to identify the application (or the ap
plication protocol) the network traffic belongs to, one has
to inspect one or several packets with a payload. The main
difficulty is that the time to process one packet is less than
7 ns in the case of modern 100 Gbps links.

The most promising approach capable of solving this prob
lem is software defined monitoring (SDM) [16]. The idea of
S D M is that most traffic can be processed in hardware using
relatively simple (ad so fast) logic circuits whose function
ality (i.e. the rules of operation) can be controlled from
software. Unrecognized traffic, which in practice represents
only a fraction of the whole traffic, is then analyzed by so
phisticated algorithms in software. According to [16], about
80% of flows can be processed in hardware after a learning
phase of the S D M system is finished. However, during the
learning phase, the software has to handle most of the flows.

One of the most frequently called functions from the soft
ware implementation is a hash function, which assigns a
memory address (slot) where the data of a given flow are
stored to the input flow. A good hash function should ex
hibit some properties (see more in Section 2.1), in particular,
the number of collisions have to be minimal for the data of
a given target domain. In the case of S D M , there is another
important requirement—obtaining of the hash (i.e. the out
put of the hash function) has to be very fast. The reason is
that even if most of traffic is processed in hardware, a rela
tively intensive data stream (about 20 Gbps) has still to be
processed in software. Moreover, the hash function is typi
cally called several times in order to obtain desired address
because the memory addressing system is designed as hi
erarchical, for example, in the cuckoo hashing scheme [22].
Hence it is important to optimize not only the quality of
hashing, but also the execution time.

The goal of the paper is to propose and evaluate a method
capable of providing high quality and easy-to-compute hash
functions for S D M . As hash functions are sequences of in
structions, it is natural to utilize linear genetic programming
(LGP) for their design. In order to minimize the execution
time, candidate hash functions are constructed using simple
instructions such as addition and logic operations. L G P is
implemented as a parallel evolutionary algorithm exploiting
the island model, i.e. there are several independent popu-

901

mailto:igrochol@fit.vutbr.cz
mailto:permissions@acm.org
http://dx.doi.org/10.1145/2908812.2908825
mailto:sekanina@fit.vutbr.cz

lations evolved separately that are exchanging some genetic
material according to a predefined pattern. Evolved hash
functions are analyzed in terms of the quality and execution
time. They are also compared with 11 hash functions avail
able in the literature using the real network data collected
in our computer network.

The rest of the paper is organized as follows. Section 2
briefly surveys the principles of hash functions, L G P and
evolutionary design of hash functions. The proposed ap
proach to the evolutionary design of hash functions using
L G P is introduced in Section 3. Section 4 presents the ob
tained results in terms of properties of evolved hash func
tions, their quality and execution time. Conclusions are
given is Section 5.

2. R E L A T E D W O R K
This section covers relevant research conducted in the area

of hash function design and evolutionary design using L G P .

2.1 Hash functions
A hash function is a mathematical function h that maps

an input binary string (of length D) to a binary string of
fixed length (R), h : 2D -> 2R, where D » R. The output
value is called hash value or simply hash [17].

Hash functions have many applications, for example, hash
tables, caches and cryptography primitives employ them.
Hash functions are primarily used in hash tables to quickly
locate a data record if its search key is given. The hash func
tion is then used to map the search key to an index which
gives the place in the hash table where the corresponding
record is located.

The quality of the hash function primarily determines
the access time to data and table load factor that can be
achieved for a given memory size. A n important require
ment on hash functions is that a small change in the input
should generate a large change in the output. This is called
the avalanche effect. The definition of hash function implies
the existence of collisions, i.e. h(x) = h(y), where x, y are
two input messages such that x ^ y. The optimization of
hash functions usually involves both criteria - maximizing
the avalanche effect and minimizing the collision rate.

There are two types of hash functions, cryptographic and
non-cryptographic hash functions. Cryptographic hash func
tions are used in security applications. Their basic property
is that they are considered practically impossible to invert,
that is, to recreate the input data from their hash values

h(Kl) .

K l K3 K l K3

h(K3) 1

h(K2)

Figure 1: Hash table with separate chaining.

double L G P (double x){

m = X

r[2] = r[0] * r[0]
r[l] = r[2] + r[0]
r[3] = r[l] + r[0]
r[3] = r[3] + r[2]
r[0] = r[2] * r[l]
r[l] = r[l] + r[4]
r[0] = r[0] + r[3]
r[0] = r[l] * r[0]
return rO

}

Figure 2: Example of L G P individual.

alone. Cryptographic hash functions have to fulfill addi
tional requirements, for example, first preimage resistance
and collision resistance [19]. These requirements lead to a
more complicated construction procedure and the hash func
tion needs more time to compute the hash value.

Non-cryptographic hash functions, which this paper deals
with, are typically used for fast lookup in hash tables [17]
and they are much easier to design [20]. Various approaches
have been developed to handle the collisions. For example,
a separate chaining method manages a list of records having
the same hash, see Fig . 1. Each slot in the table refers to
a linear list where the data are stored. The hash value is
computed for a given key and the data are stored to the first
empty slot in the list addressed by the hash. This method
is widely used, because it needs only elementary data struc
tures and simple operations on lists. Other methods resolv
ing the collisions are, for example, open addressing, linear
probing, and cuckoo hashing.

Many (non-cryptographic) hash functions have been pro
posed, for example, DJBHash [4], D E K H a s h [17], F V N
(Fowler-Noll-Vo) [12], One A t Time and Lookup3 [13]. Mur-
murHash2 and MurmurHash3, which are utilized in many
open source projects, are hash functions suitable for gen
eral hash-based lookup [1]. City Hash is a family of non-
cryptographic hash functions designed for fast hashing of
strings [23]. For hashing of the network flows, the so-called
X O R folding has been proposed [6].

2.2 Linear Genetic Programming
Linear genetic programming [5, 21, 27] uses a linear rep

resentation of computer programs. Every program is com
posed of operations called instructions and operands stored
in registers. Example of a candidate program is given in Fig
ure 2. There are essentially two types of linear G P : machine
code GP, where each instruction is directly executable by
the C P U , and interpreted linear GP, where each instruction
is executable by a virtual machine (simulator) implemented
for a given processor.

A n instruction is typically represented by the instruction
code, destination register and two source registers, for exam
ple, [+, rO, r l , r2] is representing the operation rO = rl + r2.
The input data are stored in predefined registers or in an
external memory. The result is returned in a predefined
register. The number of instructions in a candidate pro
gram is variable, but the minimal and maximal values are
defined. The number of registers available in a register ma-

902

chine is constant. The function set known from G P corre
sponds with the set of available instructions. The instruc
tions are general-purpose (e.g. addition and multiplication)
or domain-specific (e.g. read sensor 1). Conditional and
branch instructions are important for solving general prob
lems. Protected versions of instructions (e.g. a division
returning a predefined value even if the divisor is zero) are
employed in order to execute all programs without invoking
exceptions such as division by zero.

New candidate programs are created using standard ge
netic operators such as crossover and mutation operating
over lists of instructions. Advanced genetic operators have
been proposed for L G P , for example [7, 9].

The most computationally expensive part of L G P is the
fitness function evaluation. In order to obtain program's
quality, the candidate program is executed with a set of
training inputs, program's outputs are collected and com
pared with desired values. In a multi-objective scenario,
non-functional program parameters such as the number of
instructions can be optimized together with the functional
ity. We will employ a specific approach, see Section 3.3.

A n individual can contain unused code parts, called bloat,
which do not affect the fitness value. However, the bloat
slows down the program execution. If bloat is detected and
deleted, the evaluation time can significantly be reduced.

Parallel implementations of E A s are very popular because
it is not usually difficult to parallelize the E A and obtained
speedup can be significant. Parallel processing can be in
troduced at different levels of L G P : a parallel evaluation of
candidate solutions, a parallel evaluation of training vectors
or a parallel search in separate subpopulations.

A parallel L G P based on the island model operates with
several subpopulations (the so-called islands) in which the
evolution is conducted separately, but occasional exchange
of the genetic material is permitted. The communication
between islands can be either synchronous or asynchronous.
As the evaluation of population(s) on different islands may
consume different time, the asynchronous approach enables
the islands to exchange genetic material when it is ready, i.e.
the faster islands do not have to wait for the slower islands
as in the case of synchronous communication.

2.3 Evolution of hash functions
In order to evaluate a hash function, a data set has to

be applied and its key characteristics such as the number of
collisions and the output distribution have to be computed.
The quality of hashing on a particular data set then serves
as the fitness score.

In papers [11, 10], G P employed the avalanche effect as
the fitness criterion. In another work, the number of colli
sions was the main optimization target [14]. Cryptographic
hash functions were evolved by means of gene expression
programming in [25]. Hash functions tailored for a hard
ware implementations were obtained in [26]. Recently, non-
cryptographic hash functions based on linear and non-linear
feedback shift registers were evolved with the aim of effi
cient hardware implementation in F P G A s . It was shown
that evolved solutions can achieve better table load factor
in comparison with human-created solutions [8]. Finally,
cache mapping functions, which can be considered as special
instances of hash functions were evolved to optimize param
eters of processor cache for a particular application [15].

3. HASH FUNCTION DESIGN
The main goal of this paper is to evolve using L G P a

special hash function for hashing of network flows by means
of a hash table with separate chaining.

3.1 Towards fast hashing
Each network flow is uniquely identified in IPv4 by a

5-tuple (source IP address (32 b), destination IP address
(32 b), source port (16 b), destination port (16 b) and trans
port protocol (8 b)). In S D M , the network flow identifier has
a constant length of 104 bits. As the target hash function
has to accept only the 104 bit input, there is an opportunity
to create a simple specialized hash function with good pa
rameters. Universal hash functions consume the input data
'block by block' and the blocks are sequentially processed
in a loop. Restricting the input to 104 bits enables to pro
cess the whole input string in one step, without any loops,
which would significantly contribute to our key objective—
shortening the execution time.

The second factor influencing the execution time is the in
struction (function) set. Universal hash functions typically
contain instructions such as logical X O R , addition, multipli
cation and rotation. The most computationally expensive
operation is multiplication. Hence our objective wil l be to
evolve multiplication less hash functions.

Finally, the number of instructions to be executed influ
ences the execution time. After many experiments with
L G P , we learned that sufficiently good hash functions re
quire less than 12 instructions. Rather than applying a mul-
tiobjective L G P searching for a good compromise between
the execution time and quality of hash functions, we pro
pose to use a single-objective L G P in which the goal is to
maximize the quality of hashing assuming that the program
size is restricted. The validity of this approach is discussed
in Section 4.3.

3.2 Parallel L G P and its parameters
The proposed implementation utilizes the island-based asyn

chronous parallel L G P model with a ring topology. Af
ter a predefined number of generations, every island sends
the best individuals to its neighbors. A l l islands try to re
ceive new individuals from other islands in every generation.
Newly incoming individuals replace randomly chosen indi
viduals of the population. However, the best individual of a
given subpopulation is never replaced. The individuals are
sent as integer array messages. In our case, the implemen
tation is based on M P I [18]. L G P is employed in the style
of [5].

The program size is restricted to contain up to 12 instruc
tions. The set of constants consists of prime numbers that
are commonly used in cryptographic hash function SHA-2
[2]. The function set includes the addition, logical X O R and
right rotation. Note that right rotation and left rotation are
interchangeable [11]. A l l L G P parameters are summarized
in Table 1. They were chosen carefully on the basis of many
experiments. The impact of some of them on the process of
evolution will be discussed in Section 4.

3.3 Initialization and fitness function
The initial population is randomly generated. In order to

calculate the fitness score, the responses have to be calcu
lated for all training vectors. In this process, every training
vector is used to initialize the registers of a candidate hash

903

Table 1: L G P parameters
Parameter Value
Population size 200
Crossover probability 90%
Mutation probability 15%
Program length 12
Registers count/type 8/32 b - int
Constants {0x6a09e667, 0xbb67ae85,

0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c,
0xlf83d9ab, 0x5be0cdl9,
0x428a2f98, 0x71374491}

Instruction set {RightRotation, X O R , +}
Tournament size 4
Maximum number 1000
of generations
Crossover type One-point
Migration period 40 generations

function. A l l registers are 32 bit. The dimension of a train
ing vector is reduced before starting the evolution to 3 x 32
bits in such a way that the source and destination IP ad
dresses remain in the original format and a new 32 bit vector
is created from the source and destination port (sp, dp) and
transport protocol (tp) according to formula

((sp « 16) V dp) ©tp.

As real traffic contains especially two types of transport pro
tocol (T C P and U D P) there is not a significant loss of infor
mation using this reduction of input vector. As this modi
fication reduces the input space, it makes the hash function
evolution easier.

The fitness function is based on counting the number of
collisions. Let Ki inputs (keys) be mapped into i-th memory
slot by a candidate hash function h. Then the fitness f(h)
is defined as

s

f{h) = J^ffi, where (1)
i=i
r o if Ki < i

9 1 = 1 H%f i f * i > 2 (2)

and s is the number of memory slots. This function penal
izes candidate individuals showing many collisions and long
lists in the hash table with separate chaining. Shorter lists
in the table wil l lead to faster lookup. Lower fitness values
mean better solutions. Example: Consider that two inputs
are assigned to slot i = 5, three inputs are assigned to slot
i = 12 and 0 or 1 inputs are assigned to the remaining slots.
Then f(h) = 2 2 + (2 2 + 3 2) = 17.

4. EXPERIMENTS AND RESULTS
This section introduces the network data used for the eval

uation and a set of hash functions that will be compared
with evolved hash functions. The experimental evaluation
is focused on a basic statistical evaluation of L G P . Then, the
quality and time of execution of evolved non-cryptographic
hash functions intended for a hash table with separate chain
ing are analyzed.

4.1 Network Data
Experiments will be performed with three data sets con

taining 20,000 (DataSetl), 50,000 (DataSet2) and 100,000
(DataSet3) identifiers of network flows. These sets were col
lected using a network monitoring device installed in our
computer network in different days and are considered as
the representative data for our network. There are no du
plicate records in these data sets. DataSetl is used as a
training set for L G P . IP addresses and transport protocol
are converted to the decimal format which is used in our
data sets (Figure 3).

4.2 Hash functions used for comparison
Evolved hash functions wil l be compared with human-

created hash function DJBHash, D E K H a s h , One A t Time,
Lookup3, F V N H a s h , Murmur2, Murmur3, CityHash, a spe
cial hash function X O R H a s h optimized for network flows [6]
and evolved hash functions available in the literature GPHash
[10, 11] and EFHash [14]. A 16 bit hash table with separate
chaining is employed for testing all functions. As conven
tional hash functions typically produce a 32-bit hash value,
we created a 16-bit output using X O R folding [6].

4.3 Analysis of L G P Setting
The evolution has been carried out using 1, 2, 4, 8 and

16 independent islands (i.e. cores) on a 16-core processor
enabling the parallel processing and communication using
M P I .

In order to obtain basic statistics, 20 independent L G P
runs were performed, each taking 1000 generations (on each
island). In other words, the total time allocated for the
evolution is almost identical independently of the number
of islands, but the number of generated individuals is lin
early depending on the number of islands. The objective
is to investigate how the quality of results is depending on
available cores. The progress of evolution can be seen as
the median value (out of 20 runs) in Figure 4. While the
individuals were significantly improving for 100 generations,
only small improvements are visible after 200 generations.
Hence enabling 1000 generations for these experiments was
more than sufficient.

The boxplots shown in Fig. 5 give the fitness value after
1000 generations spent by L G P executed with a different
number of islands. Boxplots used in this figure represent
the minimum, first quartile, median, third quartile and max
imum. The experiments confirmed our assumption that if
more islands are involved a better solution can be obtained,
because more individuals are generated (in total) and ex
changed among the islands. It has to be emphasized that
we are not interested in an analysis of the speedup obtained
by a parallel implementation in this case.

Fig. 6 shows the number of instructions that were really

192.79.52.199,192.229.91.12,80,4236,TCP

i
3226416327,3236256524,80,4236,6

Figure 3: Example of conversion between a real net
work record and training vector.

904

Figure 4: The progress of the best fitness score as median out of 20 independent runs on a different number
of islands.

utilized in the programs created randomly for the initial pop
ulation and in the programs of the final population. Please
note that the instructions which did not contribute to the
fitness (i.e. bloat) were removed. Even if the maximum pro
gram size is limited to 20 instructions, the median number
of used instructions is less than 12. This analysis justifies
our initial choice to limit the number of instructions to 12.

4.4 Evolved hash functions
From evolved solutions, two interesting hash functions

were chosen for a detailed analysis. L G P H a s h l (see the
C code in Fig . 7) is the best scored hash function from all

the runs. The second hash function selected is LGPHash2
(see the C code in Fig . 8) which is very simple. It ranked
in the first quartile for 16 islands. It has to be noted that
we removed all instructions not contributing to the fitness
from evolved genotypes before creating the source codes in
C which are presented in the paper.

In order to evaluate the impact of multiplication in the in
struction set and the impact of increasing the number of in
structions, we repeated our experiments (i) with a modified
function set in which the multiplication was permitted and
(ii) with up to 20 instructions allowed in the hash function.

Island count

Figure 5: The best fitness values obtained from 20
independent runs on 1, 2, 4 , 8 and 16 islands.

Final Fina
populat ion populat ion

{12 inst) {20 Inst)

Figure 6: The number of instructions that were uti
lized in the initial population and final population if
the program size is limited to 12 and 20 instructions.

905

unsigned int L G P H a s h l (unsigned int * input){
r[0] = input [0]
r[l] = input [1]
r[2] = input [2]

r[l] = r[l] + r[2]
r[2] = r[l] + r[2]
r[4] = r[0] + r[2]
r[0] = r[l] + r[4]
r[3] = 0x5BE0CD19
r[2] = rotr(r[3], r[4])
r[0] = r[0] + r[2]
r[0] = 0xA54FF53A + r
return rO © (rO >> 16)

}
Figure 7: Evolved hash function L G P H a s h l .

unsigned int LGPHash2 (unsigned int * input){
r[0] = input [0]
r[l] = input [1]
r[2] = input [2]

r[0] = r[0] © r[l]
r[0] = r[2] + r[0]
return rO © (rO >> 16)

}
Figure 8: Evolved hash function LGPHash2.

Evolved hash functions showing the best fitness value out of
all runs—LGPhashMult (Fig. 9) for (i) and LGPhash20inst
(Fig. 10) for (ii)—will be reported for comparison.

4.5 Collision test
Evolved hash functions as well as the hash functions ob

tained from the literature have been implemented in C pro
gramming language and compiled with the identical com
piler setting. A l l tests were then preformed using these im
plementations.

Table 2 gives the number of collisions for all hash functions
on three data sets. The best values are typed with bold font.
It can be seen that the number of collisions is very similar for

unsigned int LGPhashMult (unsigned int * input){
r[0] = input [0]
r[l] = input [1]
r[2] = input [2]

r[6] = r[2] + r[0]
r[7] = 0xA54FF53A
r[5] = rotr(r[l], r[6])
r[6] = r[l] © r[5]
r[4] = r[6] * r[0]
r[7] = rotr(r[l], r[7])
r[6] = rotr(r[7], r[4])
r[3] = r[6] + r[2]
r[0] = r[3] + r[0]
return rO © (rO >> 16)

}
Figure 9: Evolved hash function LGPhashMult .

unsigned int LGPhash20inst (unsigned int * input){
r[0] = input [0]
r[l] = input[l]
r[2] = input [2]

r[6] = rotr(r[l], r[2])
r[l] = r[l] © r[0]
r[7] = r[l] + r[4]
r[7] = r[7] + r[6]
r[l] = rotr(r[7], r[6])
r[0] = r[4] + r[6]
r[5] = r[l] + r[0]
r[7] = r[5] + r[2]
r[4] = rotr(r[l], r[l])
r[4] = r[7] © r[4]
r[0] = r[0] © r[4]
return rO © (rO >> 16)

}
Figure 10: Evolved hash function LGPhash20inst.

Table 2: The number of collisions.

Hash function The number of collisions Hash function
DataSetl DataSet2 DataSet3

DJBHash 2835 15113 48925
D E K H a s h 2926 15247 49017
F V N H a s h 2756 14957 48780
One A t Time 2821 14988 48636
lookup3 2742 15009 48737
Murmur2 2800 15050 48749
Murmur3 2744 14911 48763
City Hash 2807 14990 48647
X O R H a s h 2864 15011 48575
GPHash 2777 15052 48750
EFHash 5317 25266 63175
LGPhashl 2667 15031 48680
LGPhashS 2746 15170 48835
LGPhashMul t 2769 14975 48715
LGPhash20inst 2761 14980 48755

all the hash functions except EFHash. It can be concluded
that evolved hash functions that are composed of simple
instructions exhibit the quality almost identical with other
hash functions. Neither enabling multiplication (LGPhash
Mult) nor more instructions (LGPhash20inst) have led to a
considerable reduction in the number of collisions.

4.6 The execution time
The execution time of hash functions (i.e. their imple

mentations in C) was measured on the Intel X E O N E5-2630
processor. Table 3 gives the average execution time obtained
from 20 independent runs for all vectors of a given data
set. Differences between the run times on the same data
sets are very small which can be documented on detailed
boxplots depicted in Fig. 11, where we compared the best
evolved hash functions and the fastest conventional function
XORHash .

The proposed special construction of loop-less and multipli
cation-less hash functions produced the faster solution. En
abling the multiplication definitely increases the execution
time, but as the number of instructions is limited to length
12, evolved hash function containing the multiplication is

906

Table 3: The average execution time.

Hash function
DataSetl

Time [ms]
DataSet2 DataSet3

DJBHash 1.783 5.036 13.254
D E K H a s h 1.592 4.591 12.199
F V N H a s h 1.678 4.647 12.373
One A t Time 2.365 6.269 15.763
lookup3 1.275 3.736 9.931
Murmur2 1.314 3.820 10.153
Murmur3 1.590 4.434 11.568
City Hash 3.089 7.883 19.237
X O R H a s h 0.913 3.174 8.708
GPHash 1.936 6.229 15.813
EFHash 2.323 16.282 56.921
LGPhashl 0.818 3.039 8.446
LGPhashS 0.756 2.852 8.057
LGPhashMul t 0.912 3.349 9.096
LGPhash20inst 0.916 3.242 8.954

Table 4: Overall quality of hash functions

Hash function
DataSetl

Quality (Q)
DataSet2 DataSet3

DJBHash 1.005 1.004 1.006
D E K H a s h 1.012 1.012 1.012
F V N H a s h 0.999 0.998 1.001
One A t Time 1.003 1.001 1.000
lookup3 0.999 1.000 0.999
Murmur2 1.001 1.001 1.000
Murmur3 0.999 0.998 1.001
City Hash 1.003 0.999 0.998
X O R H a s h 1.007 0.999 0.997
GPHash 1.001 1.003 1.000
EFHash 1.338 4.045 6.312
LGPhashl 0.996 1.002 0.999
LGPhash2 0.999 1.003 1.001
LGPhashMul t 1.000 0.998 1.000
LGPhash20inst 0.998 0.998 1.000

still faster than other hash functions. If 20 instructions can
be used, the execution time is prolonged proportionally to
the number of instructions in the candidate program.

4.7 Overall quality of hash functions
The Compilers, Principles, Techniques book [3] proposes

the following formula for evaluating the hash function qual
ity:

E
3=0

M * » j + l) / 2
(n/2m)(n + 2m - 1)' (3)

where bj is the number of items assigned to j '-th slot, m
is the number of slots, and n is the total number of items.
The numerator estimates the number of slots a hash function
should visit to find the required value. The denominator is
the number of visited slots for an ideal function that puts
each item into a random slot. A n ideal function produces
the outputs with almost random distribution probability. If
the hash function is ideal the formula should return 1, and a
good quality is between 0.95 and 1.05. If Q is greater than

XORHash L G P h a s h l LGPhash2 LGPhashMul t LGPhash20inst

Hash function

Figure 11: The execution time of selected hash func
tions on DataSet3 calculated from 20 runs.

1, there are more collisions. If the number is smaller, there
are less collisions than randomly distributing function.

From Table 4 it can be seen that evolved hash functions,
despite the fact that they are composed of simple instruc
tions, show very good quality according to the Q function [3].
This measurement indicated that enabling the multiplica
tion and more instructions in programs has only a very small
impact on the quality of hashing.

5. CONCLUSIONS
A method based on L G P was proposed which is capable

of evolving high-quality and fast hash functions intended for
network applications. In order to evolve desired hash func
tions, the function set was composed of simple instructions
and the program size was restricted to 12 instructions. The
fitness function was based on counting the number of col
lisions and penalizing candidate hash functions generating
many collisions.

The best evolved hash functions were compared with 11
hash functions available in the literature. In order to provide
a fair comparison, all hash functions were implemented in C,
compiled for the same processor and executed several times
to obtain the average execution time and quality.

In terms of the execution time, the best evolved hash func
tion L G P h a s h l provides 10.4%, 4.2% and 3.0% improvement
on DataSets 1, 2 and 3 against the fastest available hash
function XORHash [6] while the number of collisions was re
duced by 6.8% for DataSetl and slightly increased by 0.1%
and 0.2% for DataSets 2 and 3. L G P h a s h l and XORHash
perform almost identically according to the Q quality func
tion. The obtained speedup seems to be small, but one has
to consider that the hash function is called many times and
total savings are very valuable. Moreover, L G P h a s h l re
duced the execution time by 48.5%, 31.4% and 26.9% for
DataSets 1, 2 and 3 with respect to Murmur3 hash func
tion, which is typically used in S D M and which, on the other
hand, provides a slightly lower number of collisions.

We observed that by enabling the multiplication or by
increasing the program size, the number of collisions can
be improved only insignificantly, but the execution time in
creased by 5-10%.

In our future work, we plan to analyze the impact of

907

pipeline processing and instruction scheduling which could
influence the execution time on a particular processor. We
wil l also test evolved hash functions in a S D M system.

Acknowledgment
This work was supported by the Czech science foundation
project 14-04197S.

6. REFERENCES
[1] Murmur hash functions.

https: //github. com/aappleby /smhasher.
[2] Secure hashing. http://csrc.nist.gov/groups/ST/

toolkit / secure_hashing. html.
[3] A . V . Aho, R. Sethi, and J . D . Ullman. Compilers,

Principles, Techniques. Addison Wesley, 1986.
[4] D . J . Bernstein. Mathematics and computer science.

https://cr.yp.to/djb.html.
[5] M . Brameier and W . Banzhaf. Linear genetic

programming. Springer, New York, 2007.
[6] Z. Cao and Z. Wang. Flow identification for

supporting per-flow queueing. In Proc. of the Ninth
International Conference on Computer
Communications and Networks, pages 88-93. I E E E ,
2000.

[7] M . Defoin Platel, M . Clergue, and P. Collard.
Maximum homologous crossover for linear genetic
programming. In Genetic Programming, volume 2610
of Lecture Notes in Computer Science, pages 194-203.
Springer Berlin Heidelberg, 2003.

[8] R. Dobai and J . Korenek. Evolution of
non-cryptographic hash function pairs for fpga-based
network applications. In 2015 IEEE Symposium Series
on Computational Intelligence, pages 1214-1219.
I E E E , 2015.

[9] C. Downey, M . Zhang, and W . N . Browne. New
crossover operators in linear genetic programming for
multiclass object classification. In Proceedings of the
12th annual conference on Genetic and evolutionary
computation, pages 885-892. A C M , 2010.

[10] C. Estebanez, J . C. Hernandez-Castro, A . Ribagorda,
and P. Isasi. Evolving hash functions by means of
genetic programming. In Proceedings of the 8th annual
conference on Genetic and evolutionary computation,
pages 1861-1862. A C M , 2006.

[11] C. Estebanez, J . C. Hernandez-Castro, A . Ribagorda,
and P. Isasi. Finding state-of-the-art
non-cryptographic hashes with genetic programming.
In Parallel Problem Solving from Nature-PPSN IX,
pages 818-827. Springer, 2006.

[12] G. Fowler, P. Vo, and L . C. Noll . F V N Hash,
http: / / www.isthe. com/chongo / tech / comp/fhv/.

[13] B . Jenkins. A hash function for hash table lookup,
http://www.burtleburtle.net/bob/hash/doobs.html.

[14] J . Karasek, R. Burget, and O. Morsky. Towards an
automatic design of non-cryptographic hash function.
In 34th International Conference on
Telecommunications and Signal Processing (TSP),
pages 19-23. I E E E , 2011.

[15] P. Kaufmann, C. Plessl, and M . Platzner. EvoCaches:
Application-specific Adaptation of Cache Mappings.

In Adaptive Hardware and Systems (AHS), pages
11-18. I E E E CS, 2009.

[16] L . Kekely, J . Kucera, V . Pus, J . Korenek, and
A . Vasilakos. Software defined monitoring of
application protocols. IEEE Transactions on
Computers, 65(2):615-626, 2016.

[17] D . E . Knuth. The art of computer programming
(volume 3). 1973.

[18] E . Lusk, S. Huss, B . Saphir, and M . Snir. M P I : A
message-passing interface standard, 2009.

[19] W . Mao. Modern cryptography: theory and practice.
Prentice Hal l Professional Technical Reference, 2003.

[20] W . D . Maurer and T. G . Lewis. Hash table methods.
ACM Computing Surveys (CSUR), 7(1):5-19, 1975.

[21] M . Oltean and C. Grosan. A comparison of several
linear genetic programming techniques. Complex
Systems, 14(4):285-314, 2003.

[22] R. Pagh and F . F . Rodler. Cuckoo hashing. In
Algorithms - ESA 2001, L N C S 2161, pages 121-133.
Springer, 2001.

[23] G. Pike and J . Alakuijala. Introducing cityhash, 2011.
[24] A . Tongaonkar, R. Keralapura, and A . Nucci.

Challenges in network application identification. In
Presented as part of the 5th USENIX Workshop on
Large-Scale Exploits and Emergent Threats, Berkeley,
C A , 2012. U S E N I X .

[25] S. Varrette, J . Muszynski, and P. Bouvry. Hash
function generation by means of gene expression
programming. Annates UMCS, Informatica,
12(3):37-53, 2013.

[26] H . Widiger, R. Salomon, and D. Timmermann. Packet
classification with evolvable hardware hash functions -
an intrinsic approach. In Second International
Workshop on Biologically Inspired Approaches to
Advanced Information Technology, BioADIT 2006,
pages 64-79, 2006.

[27] G. Wilson and W . Banzhaf. A comparison of cartesian
genetic programming and linear genetic programming.
In Genetic Programming, volume 4971 of Lecture
Notes in Computer Science, pages 182-193. Springer,
2008.

908

http://csrc.nist.gov/groups/ST/
https://cr.yp.to/djb.html
http://www.isthe
http://www.burtleburtle.net/bob/hash/doobs.html

Paper III

Multiobjective Evolution of Hash
Functions for High Speed
Networks

G R O C H O L D a v i d a n d S E K A N I N A L u k a s

In: Proceedings of the 2017 IEEE Congress on Evolutionary Computation. San Sebastian:
I E E E Computer Society, 2017, pp. 1533-1540. ISBN 978-1-5090-4600-3.

64

Multi-objective Evolution of Hash Functions for
High Speed Networks

D a v i d G r o c h o l and L u k a s Sekanina
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Brno, Czech Republic
Email : igrochol@fit.vutbr.cz, sekanina@fit.vutbr.cz

Abstract—Hashing is a critical function in capturing and
analysis of network flows as its quality and execution time
influences the maximum throughput of network monitoring
devices. In this paper, we propose a multi-objective linear
genetic programming approach to evolve fast and high-quality
hash functions for common processors. The search algorithm
simultaneously optimizes the quality of hashing and the execution
time. As it is very time consuming to ohtain the real execution
time for a candidate solution on a particular processor, the
execution time is estimated in the fitness function. In order to
demonstrate the superiority of the proposed approach, evolved
hash functions are compared with hash functions available in the
literature using real-world network data.

I. I N T R O D U C T I O N

Many hardware providers have announced support for 100
gigabit-per-sec on d (Gb/s) networks to overcome current 10-
40 Gb/s solutions. Commercial companies, data and super
computer centers, and other entities around the world are
now working towards launching 100 Gb/s networks in order
to benefit from faster communication and wider bandwidth
for high-throughput requesting applications such as high-
performance computing or high-quality video streaming. Man
aging 100 Gb/s networks, however, requires more precise per
formance monitoring (involving bandwidth monitoring, traffic
analytics and anomaly detection) than in the previous era.

In order to effectively monitor and analyze high speed
networks til the level of packet contents, software defined
monitoring (S D M) concept has been developed []]. Having
less than 7 ns to process one packed in a 100 Gb/s network,
S D M performs the analysis using relatively simple (and so
fast) hardware whose functionality (i.e. rules of operation) arc
defined in software. Unrecognized traffic is then processed by
sophisticated algorithms in software. The analysis is performed
at the level of flows, where one flow is defined by five
parameters within a certain lime period: source and destination
IP address, source and destination port and transport protocol.
A memory address (slot) where the data of a given flow are
stored is computed with a suitable hash function.

In our previous work, we employed linear genetic pro
gramming (L G P) to evolve high-quality hash functions for
the software part of S D M [2]. In a s ingle-objective design
scenario and using real-world network traffic data, we obtained
hash functions comparable in terms of quality of hashing, but
faster than the state of the art hash functions. The objective
for L G P was to minimize the number of collisions a given

candidate hash function produces. A s the hash function is
called very often, it has to be very fast. However, the execution
time of hash functions was not optimized. We just imposed
an indirect constraint on the execution time requesting that the
genotype must contain fewer than 12 instructions. Only simple
elementary instructions such as addition and logic operations
were allowed in the chromosome to minimize the execution
time.

The goal of this paper is to show that if the execution time of
a candidate hash function is formulated as a design objective
together with the quality of hashing and the evolutionary de
sign is performed with a multi-objective L G P , even better hash
functions than those reported in paper [2] can be obtained.
We propose and analyze an approach capable of estimating
the execution time of a candidate hash function in the fitness
function. The total execution time is estimated as the number
of utilized instructions, where different weights are assigned
to different types of instructions to reflect their different
complexity. Scheduling and parallel execution of instructions
on modern pipelined processors are also considered,

The estimated execution time and the number of collisions
are then used as fitness functions in a muIti-objective design
algorithm based on L G P and N S G A - I L Evolved hash functions
from the final Pareto front are compared with 11 hash func
tions available in the literature and 2 hash functions evolved
in [2] using real-world network data.

The rest of the paper is organized as follows. Section 11
introduces the concept of hashing and hash function design.
L G P and its utilization for hash function design in our pre
vious approach is presented in Section III. Drawbacks of the
previous approach are analyzed in Section III-C, The proposed
multi-objective method is introduced in Section IV. Section V
summarizes the experiments performed in order to evaluate the
proposed method and compare resulting hash functions with
existing solutions. Conclusions are given in Section VI ,

II. H A S H F U N C T I O N D E S I G N

This section surveys the principles of hash function de
sign and their utilization in S D M . A s this paper is devoted
to software implementations of hash functions on common
processors, circuit implementations of hash functions created
for hardware parts of S D M (such as [3|) wi l l not further be
discussed. Moreover, we wi l l not consider cryptographic hash

978-1 -5090-4601-0/17/$31.00 © 2 0 1 7 I E E E
1533

mailto:igrochol@fit.vutbr.cz
mailto:sekanina@fit.vutbr.cz

functions that have to exhibit additional properties [4]. They
are thus irrelevant for S D M .

A hash function is a mathematical function h that maps an
input binary string (of length D) to a binary siring of fixed
length (R), h : 1D - J - 2R, where D » B,. The output value
is called hash value or simply hash |5].

The main purpose of hash functions is to locate (in constant
time) a data record for a given search key, avoiding thus a
sequential or log-time search in data records [5]. The quality
of hash function is given in terms of the access time to data and
table load factor (for a given memory size). The definition of
hash function implies the existence of collisions, i.e. h{x) =

h(y), where x, y are two input messages such that x ^ y.

Good hash functions generate a big change in the output for a
small change in the input. This is called the avalanche effect.

The hash function is typically called several times in order
to obtain desired address because the memory addressing
system can be designed as hierarchical, for example, in the
cuckoo hashing scheme [6]. Hence, it is important to optimize
not only the quality of hashing, but also the execution time,
which is crucial for S D M as the hash function is called very
often. Note that the worst case packet processing time is 7 ns
for 100 Gb/s networks.

rig. 1. Hash table with separate chaining.

Collisions introduced by a hash function can be managed in
different ways in hash tables [7]. The most popular approach
is a separate chaining method which operates a list of records
having the same hash, see Fig . 1. Each slot in the table is
pointing to a linear list where the data are stored. The hash
value is computed for a given key and the data are stored
to the first empty slot in the list addressed by the hash. The
advantage is that the meihod requires only basic data structures
and simple operations on lists.

The literature provides us with various implementations
of hash functions including DJBHash [8], D E K H a s h [5],
F V N (Fowler-Noll-Vo) [9], One At Time, Lookup3 [10],
MurmurHash2, MurmurHash3 111] and CityHash [12J, For
hashing of the network flows, the so-called X O R folding has
been proposed [13].

III. P R E V I O U S W O R K O N E V O L U T I O N O F H A S H F U N C T I O N S

Genetic programming (GP) has been used to provide various
hash functions. The fitness function reflecting the quality

double L G P (double x){
r[0] = x

r[2] = r[0] * r[0]
r [l] = r[2] + r[0]
r[3] = r [l] + r[0]
r[4] = r [l] + r[2]
r[0] = r[4] + r[3]
return r[0]

Fig. 2, Example of L G P individual.

of hashing is usually based on measuring the avalanche ef
fect [14], [15] or the number of collisions [16]. Cryptographic
hash functions were designed with gene expression program
ming in [17]. Circuit-based hash functions were obtained
in 118]. Hash functions are also employed in cache memories.
An example of GP-based optimization of hash functions for
particular applications is given in [19].

This section briefly presents L G P and our previous single-
objective LGP-based approach for the design of fast hash
functions in S D M [2], In particular, it analyzes weaknesses
of the method that motivated the research presented in this
paper.

A. Linear Genetic Programming

Linear genetic programming (LGP) [20], [21], [22] is a
form of genetic programming in which candidate programs
are encoded as sequences of instructions and executed on a
register machine. Example of a candidate program is given in
Figure 2.

In L G P , every instruction typically includes an operation
(instruction code), one or two source registers and a destination
register. One-register instructions operate with one register as
the destination register (e.g. 7-0 = read sensor(); load constant
to register r l etc.). Two-register instructions operate with
one source and one destination register (e.g. rO = $in(rl);

rO = bitwise_rotation(rl)). Three-register instructions op-
crate with two source registers and one destination register
(e.g. rO = r l + r2) . The number of instructions in a candidate
program is variable, but the minimal and maximal values
are usually defined. The number of registers available in a
register machine is constant. The result is returned in a se
lected register. The function (instruction) set contains general-
purpose {e.g. addition and multiplication) and domain-specific
(e.g. read sensor) instructions. L G P is usually used with basic
genetic operators (tournament selection, crossover, mutation).
However, advanced genetic operators were also proposed, for
example [23], [24].

B. LGP for Hash Function Design

In our previous work [2], L G P was used to deliver a special
hash function for hashing of network flows by means of a
hash table with separate chaining. Each network flow can be
uniquely identified by a 5-tuple. For IPv4, the 5-tuple contains

1534

source and destinations IP address (2 x 32 bits), source and
destination ports (2 x 16 bits) and transport protocol (8 bits).
As the network flow identifier has a constant length of 104
bits in S D M , the hash function evolved by L G P accepts only
104 bits. Restricting the input lo 104 bits enabled to process
the whole input string in one step, without sequential reading
the input data and multiple executions of the hash function,
shortening thus the execution time.

In order to even simplify the problem, the 104 bit input
vector was reduced to 3 x 32 bits in such a way that the source
and destination IP addresses remain in the original format and
a new 32 bit vector is created from the source and destination
port (sp, dp) and transport protocol (tp) according to formula

((sp« 16) V dp)

N o significant loss of information was reported after applying
this simple approach.

L G P operated with a 32 bit register machine. Universal hash
functions typically contain instructions such as logical X O R ,
addition, multiplication and rotation. Hence, we included these
operations lo our instruction set. Randomly created programs
composed of these instructions constituted the initial popula
tion. We used standard genetic operators such as tournament
selection, one-point crossover and mutation.

A single objective search was guided by the fitness function
reflecting the quality of hashing. Let Ki inputs (keys) be
mapped into i-th memory slot by a candidate hash function h.

Then the fitness f(h) was defined as the weighted number of
collisions:

f(h) y ^ f f i , where
i=]
f 0 if Ki < 1

(I)

(.2)

where s is the number of memory slots. This function clearly
penalized candidate hash functions showing many collisions
and thus long lists in the hash table with separate chaining.
The objective was to minimize f{h).

The execution time was controlled indirectly, by formulat
ing a constraint that the maximum chromosome size is 12
instructions.

C. Lessons Learned

Experiments reported in [2] confirmed that L G P can evolve
hash functions for S D M (i) that show at least the same quality
of hashing as common hash functions and (ii) that are faster
than these common functions. In order to perform a fair
comparison with conventional hash functions that arc available
at the level of C code, evolved hash functions as well as 11
common hash functions were implemented in C , compiled
(with the code optimization parameter -03) for the same
processor and executed many limes to obtain the average exe
cution time and quality on three data sets. One of the evolved
hash functions, LGPhash 1. reduced the execution time by
35% on average with respect to Murmur3 hash function [11],

which is typically used in S D M . These results were obtained
with the instruction set consisting of addition, X O R and
shift operations. Enabling the multiplication operator in the
instruction set improved the quality of hashing insignificantly,
but ihe execution time increased by 5-10%. N o improved was
obtained by increasing the maximum chromosome size to 20
instructions.

Although we evolved good hash functions, we revealed the
following drawbacks after detailed examination of the results:
(1) As the chromosome could contain up to 12 instructions,
we generated short and fast programs, but we did not optimize
the execution time. Resulting hash functions were selected
manually, on the basis of their functionality solely, i.e. we
potentially overlooked faster hash functions showing good
quality. Figure 3 reports the number of evolved hash functions
(y-axis) with a particular execution time (x-axis) in a 200
member L G P population. The execution time is the average
time from 20 independent runs of a particular hash function
compiled for a target processor (Intel X E O N E5-2620v3) and
executed using a test set. The execution time of most hash
functions is concentrated in the 1 ins - 2 ms interval, where
we were looking for the best-performing hash functions for our
comparisons. However, (here exist much faster hash functions
as seen around and below 1 ms on the x-axis.

10'

£ 1 0 '

10° •I I
to0

10'
Time [ms|

Fig. 3. The number of hash functions with a particular execution time in a
200 member L G P population.

(2) Counting the number of instructions in the fitness
funeiion can only indirectly reflect ihe execution time. The
reason is that particular instructions have different execution
times that have to be reflected in the correct estimate of the
total execution time of the hash function. We measured the
execution lime of randomly generated 1 million instruction
programs consisting of just one type of instructions and
observed that multiplication is 3 times more expensive than
other instructions used in hash functions. This observation is

1535

consistent with cloek cycles performed for given instructions
by our processor.

(3) As modern processors introduce parallel processing at
the level of instruction execution, real exceuiion time depends
on how (he instructions are seheduled for parallel hardware
pipelines. Kor example, if there are no dependencies between
the instructions they can be executed in parallel, reducing thus
significantly the total execution time of the hash function.

(4) The total execution time elearly depends on the quality
of the hash function because fast but weak hash functions wi l l
generate many collisions and additional sequential processing
of items in the hash table. Hence, a multi-objective optimiza
tion approach is needed.

IV. M U L T I - O B J E C T I V E E V O L U T I O N O F H A S H F U N C T I O N S

In order to eliminate the drawbacks reported in the previous
section and evolve hash functions showing good tradeoffs
between the execution lime and quality of hashing, we wi l l
construet the search algorithm as a multi-objective L G P mini
mizing two objectives: (i) the number of collisions (according
to eq. 1) and (ii) the execution time. As it is very time
consuming to obtain the real exeeution time for a candidate
solution on a partieular processor, the execution time wi l l be
estimated.

A. Execution Time Estimation

At the level of chromosome, the number of instructions
can be restricted as recommended in [2]. However, a candi
date fixed-size program can still contain unused code parts,
called bloat, which do not affect the fitness value (result).
There are two types of unused instructions. In the first case,
there are instructions whose result is not used by any other
instruction (structural redundancy). In the second case, there
are instructions whose execution does not affect contents
of registers (semantic redundancy). The proposed algorithm
estimates the execution time as the number of instructions that
wil l be executed when the candidate program is compiled and
redundant instructions are removed. Note that multiplication
is counted with weight 3, but this is omitted in the pseudo
codes to keep them more readable. It is assumed that there is
one register containing the output value.

Algorithm 1 removes structurally redundant instructions. In
a candidate program p, last instruction i which modifies the

Algorithm 1: Execution lime estimation (simple)
Input: Candidate program p
Output: The number of used instructions

1 used-instructions = 0;
2 used-registers <— Insert(output-register);
3 while { i <r- getLastlnstruction(p)) do
4 if DestinationRegister(i) 6 used-registers then
5 used-registers « - Insert(source-registers(i));

6 Increment(used-instructions);

remove instruction i from p;

return used-instructions;

output register is detected. Then, destination and source reg
isters of instruction ? are inserted to a set of used registers. In
the next step, the algorithm moves backward in the candidate
program and checks i f a given instruction uses some registers
from the set of used registers as the destination register. If
so, source registers of such instruction are inserted to the set
of used instructions. Every instruction affecting content of the
output register thus increases the number of used instructions.
Weights are assigned to some instructions to reflect their
higher complexity.

Algorithm 2 performs a basic semantic analysis of a can
didate program. It also captures the instruction level paral
lelism [25| known as S I M D (Single instruction multiple data).
S I M D processing refers to a mechanism that enables to process
multiple data with a single instruction. Modern C P U s can
typically process 256 bits at once which means thai eight 32-
bit operations can be executed in one instruction instead of
executing 8 instructions sequentially.

First, Algorithm 2 employs Algorithm 1 to remove struc
turally redundant instructions. In the next step, it is determined
for all instructions when they can be executed. The A S A P (As
Soon As Possible) routine checks if some source registers of

Algorithm 2: Execution time cslimalion (advanced)
Input: Candidate program p
Output: The number of used instructions

1 used-instructions = 0;
2 r <- remove structurally redundant instructions from p

using A l g . l ;
3 M create matrix for instructions;
4 fur i in r d«
5 M using A S A P and A L A P routines to determine

when i can be executed;

(, while (Some instructions) exist in M) do
I <- find in M all instructions of the same type
which can be executed together;

s remove I from M ;
<> i ncre men t(u sed- i n s true ti o n s);

to return used-instructions;

Step of program

/ l \ A A 4 h\
Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

t t t t
Execute instructions

Fig, 4. Example of scheduling for a program given in K g . 2. Instructions 3
and 4 can be executed together.

1536

HorvoptlmlEatle

S « 7 9 9 ID 11 LZ 19 14 15 IB IT lft 19 29 31 ZZ 29 24 25
Number of instructions

XT 2ft 29 99 91 9Z 99 94 95 95 97

Fig. 5. The number of instructions in assembly code for 400 randomly generated programs containing 1 - 39 instructions, where the number of instructions
was calculated according to Algorithm I (the median shown in green) and Algorithm 2 (the median is shown in blue). The size of non-optimizable programs
is shown using the black line.

instruction i are modified by some previous instructions. These
dependences are marked in matrix M. A l l instructions from
the beginning up to this modification can be executed together
with instruction i. If the destination register of instruction i

is used in some previous instruction j as destination register,
instruction j is deleted from M, because insiruciion i modifies
the dcsiination register without using iis value. The A L A P (As
Late As Possible) routine checks if the destination register of
instruction i is used in some following instructions as a source
register. If so, it is marked in M. If it is used as a destination
register, instruction i is removed from M, because its value
is not used. A l l instructions up to this modification can be
executed together with instruction i. A S A P and A L A P identify
all instructions thai can be executed together.

In the next step, the algorithm identifies those instructions
(of the same type) that can be executed together using one
S I M D instruction on the C P U . It sequentially determines the
largest overlaps of instructions, removes them from M and
increases the number of used instructions. The routine is
repeated until some instruction(s) exist in matrix M. Example
of scheduling for the program given in F ig . 2 is shown in
Fig . 4. In this case, only instructions 3 and 4 can be executed
together. The last instruction has to be executed independently.
The total number of instructions estimated by Algorithm 2 is

4. Algorithm 1 outputted 5 instructions (the weights reflecting
the different complexity of instructions are not considered in
our example).

In order to validate the proposed method, we compared
the number of instructions produced by the C compiler for
programs whose size was estimated by Algorithm 1 and
Algorithm 2. We randomly generated 400 programs containing
exactly k instructions according to Algorithm 1. Wc repealed
the experiment, but the program size was assigned by Algo
rithm 2. The idea behind this experiment is that programs
containing exactly k instructions according to Algorithm 1
have to be on average shorter in tenns of assembly code
generated by the C compiler than programs containing exactly
k instructions according to Algorithm 2. The reason is that
Algorithm 2 can eliminate semantic redundancy and parallel
operations and hence "more instructions" arc needed to reach k
instructions in the random program generator. Fig. 5 compares
Algorithm 1 and Algorithm 2 for k = 1 . . . 39 instructions.
F ig . 5 also contains the size of assembly code for manually
created programs that are known to be non-optimizable by the
compiler {black line). As the compiler adds some additional
instructions, the assembly code size (y-axis) is slightly greater
than estimated numbers (x-axis).

1537

unsigned inl N S G A H a s h l f'inpuO-j
r[0], r[l], r[2] = input;

r[01 = r[0] + r[2]:
return rO © (rO >> 16);

}

unsigned in t NSGAHash2 (*inpm)-j
r[0), rtU, r[2] = input;

r[4] = r[1] © rfO];
rl0| = rl41 + r|2);
return rO ••• (rf) >> In);

unsigned int NSGAHash3 (sinptit){
r[0], r[l], r[2] = input;

r[l] = rutr<r[0], 12);
rl3] = r[4]+r[2];
r[0] = r[l] + r[3];
return rO © (rO >> 16);

}

unsigned inl NSGAHash7 (*input){
r[0], r[l], r[2] = input;

r[3] = rotr(r[2), 3);
r[51 = rotr(r[t]. 3);
r[4] = r[u] * r|5];
r[5] = rotr<r[4], 11);
r[0] = rl5J e rl3J;
rLUJ = r[4J + rLUJ;
return rO © (rf) >> 16);

}

unsigned inl NSGAHash4 (*inpul){
r[0], t i l] , r[2] = input;

t[l] = rotrfrf 11, 22);
r[6] = r[0] * r[6];
r[3] = r[2J + r[6];
r[0] = rfl] + r[31;
return rO © (rO » 16);

}
NSliAHilsIri

unsigned int NSGAHashS (*inpul){
r[0J, r[l], r[2J = input:

unsigned inl NSGAHashfi (*inpul){
r|0], r l l] , r[2| = input:

r[4] = r[l] © r[0J:
r[l] = rotrtr[4], 22);
r[6] = r[0] + i[6];
r[3] = r[2]+r[6j:
r[0J = r[l] + r[31;
return rO © (rO >> 16):

r[7] = rotr{r[0], 7);
r|4] = r | l] © r [0] ;
r[t] = rotr(r[4], 22);
r|6] = r|7] © r|6|;
r[3] = r[2] + r[6J;
r[0] = rl l] + r[31;
return rO ® (rO >> 16):

Fig. 6. Evolved hash functions from the non-dominated set in Fig. 7.

T A B L Ľ I
L G P P A R A M E T E R S

Parameter Value
Population size 2ÜÜ
Crossover probability 90%
Mutation probability 1.Ť '•'<
Program length 20
Registers eount/type 8/32 b - int
Constants {0x6a09e667, 0xbb67ae8_S,

0x3e6ef372, 0xa54ffi3a,
Ox5IOe527f, 0x91)0 568 8c.
0xlf83d9ab, OxSbeOol 19,
0x428a2f98. 0x71374491}

Instruction set {RigtilRotation (1), X O R (1), + (1), * (3)}
(weight)
Tournament size 4
Maximum number 1000
of generations
Crossover type One-point

B. LGP and NSGA-ll

The proposed implementation is based on L G P as used in
paper [2], but the search is conducted by means of N S G A -
II [26]. The maximum program size is 20 instructions in order
to provide more opportunities to find good tradeoffs. The func
tion set includes typical instructions for hash function design
(addition, multiplication, logical X O R and right rotation). The
set of constants consists of the values that arc used in the
initial phase ol cryptographic hash function S H A - 2 [27|.

The initial population is randomly generated. Two fitness
functions are employed lo measure (i) the collisions (according
to eq. 1) and (ii) the execution time (according to Algorithm 2).
A l l training vectors have to be evaluated to obtain the fitness
score.

V. E X P E R I M E N T S A N D R E S U L T S

The experimental evaluation deals with evolved hash func
tions and their analysis in terms of quality of hashing and
execution lime. Results wi l l be compared with conventional
hash functions and hash functions evolved in |2J.

A. Network Data

The network data used in our experiments were collected
with a network monitoring device installed in our research
computer network. Network data were divided into three data
sets containing 20,000 (DataSetl), 50,000 (DataSct2) and
100,000 (DataSet3) identifiers of network flows. Note that the
identifiers of network flows are unique. DataSetl is used as a
training set for L G P .

B. Hash Functions Used for Comparison

The comparison is intended for the hash table with separate
chaining. Evolved hash functions wi l l be compared with
human-created hash function D.IBHash, D E K H a s h , One At
Time, Lookup3, EVNHash , Murmur2, Murmur3, CityHash,
a special hash function X O R H a s h optimized for network
(lows [13], evolved hash functions available in the literature
(GPHash [15], [14] and EFHash [16]) and the best hash
functions L G P H a s h l and LGPHash2 evolved for network
flows by L G P in [2]. A 16 bit hash table with separate chaining
is employed for testing all functions. A s conventional hash
functions typically produce a 32-bit hash value, we created a
16-bit output using X O R folding [13].

C. Resulting Pareto fronts

In order to obtain the best setup of the algorithm, many
independent runs with different parameters of the algorithm

1538

were performed. Considering the obtained results and param
eters given in paper [2|, we used for final experiments the
setting which is summarized in Tab. I. Note that all L G P runs
reported in [2] stagnated after about 200 generations.

Fig . 7 shows Pare to fronts obtained from 30 independent
runs of L G P . Results of one of the runs, which contains the
best obtained solutions according to particular objectives (i.e.
a solution showing minimum collisions and a solution showing
the minimum number of instructions) were chosen for a
detailed inspection. The corresponding Pareto front containing
7 unique hash functions is given in F ig . 7 (blue squares).
For example, N S G A H a s h l (see the C code in Fig . 6) is the
hash function consisting of just one instruction. Its quality of
hashing is not acceptable. On the other hand, N S G A H a s h 7
(see the C code in Fig . 6) provides the best quality of hashing
(in the selected run), but its execution time is the longest one.

D, The Number of Collisions

The hash functions obtained from literature and evolved
hash functions were implemented in C programming language
and compiled with the identical compiler settings. A l l tests
were then performed with these implementations to ensure
fair comparisons.

Table II gives the number of collisions for all hash functions
on all data sets for 16 bit hash table. The best values are typed
in bold. It can be seen ihat the multi-objective L G P provides
hash functions with a very similar number of collisions as
other hash functions, but there are solutions (NSGAHash6 and
NSGAHash7) which excel over all available hash functions.

E. The Execution Time

Table III reports the average execution time obtained from
20 independent runs over all data sets. Note that hash functions
having low number of instructions {such as N S G A H a s h l ,
NSGAHash2) do not show the shortest execution time. The
reason is that the number of collisions produced by these hash

T A B L E it
T H E N U M B E R O F C O L L I S I O N S .

Hash function
The number of collisions

Hash function
DataSetl DataSet2 DataSet3

DJBHash 2835 15113 48925
DEKHash 2926 15247 49017
FVNHash 2756 14957 48780
One At Time 2821 14988 48636
lookups 2742 15009 48737
Murmur2 2800 15050 48749
Murmur3 2744 14911 48763
CilyHash 2807 14990 48647
XORHash 2864 15011 48575
GPHash 2777 15052 48750
EFHash 5317 25266 63175
LGPhashl 2667 15031 48680
LGPhash2 2746 15170 48835
NSGAHash 1 2923 15677 49336
NSGAHash 2 2746 15170 48835
NSGAHash3 2689 15575 49292
NSGAHash4 2692 15010 48715
NSGAHash5 2759 14975 48749
NSGAHash6 2650 14839 48680
NSGAHash7 2f,39 14975 48650

T A B L E 111
T H E A V E R A G E E X E C U T I O N T I M E .

Hash function
DataSetl

Time [ms\
DataSet2 DataSet3

DJBHash 1.069 3.608 9.690
DEKHash 0.890 3.210 8.647
FVNHash 1.021 3.546 9.556
One At Time 1.361 4,568 12.024
lookup3 0.721 2,670 7.473
Mumiur2 0.787 2.868 7.871
Murmur3 0.929 3.304 8.892
CilyHash 0.760 2.736 7.603
XORHash 0.649 2.390 6.774
GPHash 1.448 4.749 12.406
EFHash 1.871 13,560 48.132
LGPhash 1 0.591 2.913 6.588
LGPhash2 0.561 2.182 6.336
NSGAHashl 0.568 2.871 8.642
NSGAHash2 0.560 2.182 6.334
NSGAHashS 0.541 2,871 8.500
NSGAHash4 0.561 2.168 6.267
NSGAHash5 0.564 2.191 6.394
NSGAHash6 0.559 2.192 6.369
NSGAHash7 0.593 2.295 6.883

3600 3800 4000 4200
Weighted number of collisions (1)

functions is higher which means that more time is needed
to accommodate incoming items in the table. NSGAHash4
provides the shortest execution lime because a good tradeoff
between the number of collisions and the complexity of the
hash function was discovered. N S G A H a s h 4 is even better than
hash functions LGPhash l and LGPhash2 discovered by means
of a single-objective L G P in [2].

E Overall Quality of Hash Functions

The quality of hashing can be expressed according to [28]
as:

Q

m — 1

i=0

bj{bj+ l)/2

[n/2m)(n + 2m - 1)'
(3)

Fig. 7. Pareto fronts obtained from 30 independent runs. Selected hash where b} is the number of items assigned to j - t h slot, m is
functions (blue squares) are given in Fig. 6. the number of slots, and n is the total number of items. The

1539

T A B L E [V

O V E R A L L Q U A L I T Y O F H A S H F U N C T I O N S .

Ha;,h function
DataSctl

Quality (Q)
DataSct2 DataSct3

DJBHash 1.005 1.004 1.006
DEKHash 1.012 1.012 1.012
FVNHash 0,999 0.998 1.001
One At Time 1.003 1.001 1,000
lookup3 0.999 1.000 0,999
Murmur2 1.001 I.O01 1.000
Murmur3 0.999 0.998 1.001
CityHash 1.003 0.999 0.998
XORHash 1.007 0.999 0,997
GPHash 1.001 1.003 1.000
EFHash 1.338 4.045 6.312
LGPhashl 0.996 1.O02 0.999
LGPhash2 0.999 1.003 1.001
NSGAHashl 1.010 1.476 1.566
NSGAHash2 0.999 1.003 1.001
NSGAHashl 0.996 1.470 1.560
NSGAHash4 0.996 0.999 1.998
NSGAHash5 0.998 0.998 1,000
NSGAHash6 0,992 0.995 0.999
NSGAHash7 0.993 0.999 1.001

numerator estimates the number of slots a hash function should

visit to rind the require value. The denominator is the number

of visited slots for an ideal function that puts each item into

a random slot. A n ideal function produces the outputs with a

nearly random distribution probability. If the hash function is

ideal, the formula should return 1, a good quality is between

0.95 and 1.05.

According to this criterion, evolved hash functions as well

as conventional hash functions were evaluated. The Q score

follows the trend of the quality indicator used in L G P (the

number of collisions) as we travel along the Pareto front.

V I . C O N C L U S I O N S

We proposed a multi-objective linear genetic programming

approach to evolve fast and high-quality hash functions for

common processors programmed as network flow monitoring

devices. It was shown using real world network data that

the proposed method provides better compromise solutions

(in terms of execution time and quality of hashing) than

commonly used hash functions and specialized hash functions

evolved with a single-objective L G P . Our future work wi l l be

devoted to integrating the evolved hash functions to the S D M

concept,

A C K N O W L E D G M E N T S

This work was supported by the Czech science foundation

project GP16-08565S.

R E F E R E N C E S

[1] L . Kekely, J. Kučera, V. Pus, .1. Korenek, and A. Vasilakos, "Software
defined monitoring of application protocols," IEEE Transactions on
Computers, vol. 65, no. 2, pp. 615-626, 2016.

[2] D. Groehol and L . Sekanina, "Evolutionary design of fast high-quality
hash functions for network applications," in Proc. of the 2016 Genetic
and Evolutionary Compulation Conference. A C M , 2016, pp. 901-908.

[3] R. Dubai, J. Korenek, and L . Sekanina, "Adaptive development or hash
functions in fpga-based network routers," in 2016 IEEE Symposium
Series on Computational Intelligence. IEEE Computati onal 1 n te 11 i gen ce
Society, 2016, pp. 1-8.

[4] W. Mao, Modern cryptography: theory and practice. Prentice Hall
Professional Technical Reference, 2003.

[5] D. E. Knuth, "The art of computer programming (volume 3)," 1973.
[6] R. Pagh and F. F. Rodler, "Cuckoo hashing," in Algorithms ESA 2001,

ser. L N C S 2161. Springer, 2001, pp. 121-133,
17] W. D. Maurer and T, G. Lewis, "Hash table methods." ACM Computing

Surveys (CSUR). vol. 7, no. I, pp. 5-19, 1975.
[8] D . J. Bernstein, "Mathematics and computer science,"

https://cr.yp.to/djb.html, [ONLINE, accessed: 31. 1. 2016],
[9] G. Fowler, P. Vo, and L, C, Noll, '"FVN Hash,"

http://www.isthe.com/chongo/tech/comp/fnv/. | ONLINE, accessed:
31. 1. 2016J.

[10] B. Jenkins, "A hash function for hash table lookup,"
http://www.burtleburtle.net/bob/hash/doobs.html, [ONLINE, accessed:
31. 1. 2016].

Ill] "Murmur hash functions." https://github.com/aappleby/smliasher, | O N -
L1NE, accessed: 31. I. 2016],

[12] G. Pike and J. Alakuijala, "Introducing cilyhash," 2011.
[13] Z . Cao and Z . Wang, "Flow identification for supporting per-ilow queue-

ing," in Computer Communications and Networks, 2000. Proceedings.
Ninth International Conference on. IEEE, 2000, pp. 88-93,

[14] C . Estcbancz, J. C. Hernandez-Castro. A . Ribagorda. and P. Lsasi. "Find
ing state-of-the-art non-cryptographic hashes with genetic program
ming," in Parallel Problem Solving from Nature-PPSN IX. Springer,
2006, pp. 818-827.

115] C . Ľstebanez. J. C . Hernandez-Castro, A . Ribagorda, and P. lsasi,
"Evolving hash functions by means of genetic programming," in Pro
ceedings of the 8th annual conference on Genetic and evolutionary
computation. A C M , 2006, pp. 1R61-1862.

[16] J. Karasek, R. Burget, and O. Morsky, 'Towards an automatic design
of non-cryptographic hash function," in Telecommunications and Signal
Processing (TSP), 2011 34th International Conference on. 1ĽĽĽ, 2011,
pp. 19-23.

[17] S. Varrette, J. Muszynski, and P. Bouvry, "Hash function generation by
means of gene expression programming," Annates UMCS, Informatica,
vol, 12, no. 3, pp. 37-53, 2013.

[18] H. Widiger, R. Salomon, and D. Timmermann, "Packet classification
with evolvable hardware hash functions - an intrinsic approach," in
Biologically Inspired Approaches to Advanced Information Technology,
Second International Workshop, BioADIT 2006, 2006, pp. 64-79.

[19] P. Kaufmann, C. Plessl, and M . Platzner, "EvoCaches: Application-
specific Adaptation of Cache Mappings," in Adaptive Hardware and
Systems (AHS). 1ĽĽĽ CS. 2009. pp. 11-18.

|20] M . Bramcicr and W. Banzhaf, Linear genetic programming. New York:
Springer, 2007.

[21] M . Ollean and C. Grosan, "A comparison of several linear genetic
programming techniques," Complex Systems, vol. 14, no, 4, pp. 285-
314, 2003.

|22] G. Wilson and W. Banzhaf, "A comparison of cartesian genetic pro
gramming and linear genetic programming." in Genetic Programming.
Springer, 2008, pp. 182-193.

[23] M . Defoin Plalel, M . Clergue, and P. Collard, "Maximum homologous
crossover for linear genetic programming," in Genetic Programming,
scr. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2003, vol. 2610, pp. 194-203.

[24] C. Downey. M . Zhang, and W. N. Browne, "New crossover operators
in linear genetic programming for multiclass object classification," in
Proceedings of the 12th annua! conference on Genetic and evolutionary
computation. A C M , 2010, pp. 885-892,

[25] D. W, Wall. Limits of instruction-level parallelism. A C M , 1991, vol. 19,
no. 2.

[26] K. Deb. S. Agrawal, A . Pratap, and T. Meyarivan, "A fast elitist non-
dominated sorting genetic algorithm for mul ti-objective optimization:
Nsga-ii," in International Conference on Parallel Problem Solving Prom
Nature. Springer, 2000, pp. 849-858.

|27] "Secure hashing," http://csrc.nist.gov/groups/ST/toolkit/sccurc_hashing-
.html, [ONLINE, accessed: 31. I. 2016],

[28] A . V. Aho, R. Sethi, and J. D. Ullman, Compilers, Principles, Tech
niques. Addison wesley, 1986.

1540

https://cr.yp.to/djb.html
http://www.isthe.com/chongo/tech/comp/fnv/
http://www.burtleburtle.net/bob/hash/doobs
https://github.com/aappleby/smliasher
http://csrc.nist.gov/groups/ST/toolkit/sccurc_hashing-

Paper I V

Multi-Objective Evolution of
Ultra-Fast General-Purpose Hash
Functions

G R O C H O L D a v i d a n d S E K A N I N A L u k a s

In: European Conference on Genetic Programming 2018. Berlin: Springer International
Publishing, L N C S 10781, 2018, pp. 187-202. ISBN 978-3-319-77553-1.

73

Multi-objective Evolution of Ultra-Fast
General-Purpose Hash Functions

David Grochol^ -* and Lukas Sekanina

IT4Innovations Centre of Excellence, Faculty of Information Technology,
Brno University of Technology, Božetěchova 2, 612 66 Brno, Czech Republic

{igrochol,sekanina}@fit.vutbr.cz

Abstract. Hashing is an important function in many applications such
as hash tables, caches and Bloom filters. In past, genetic programming
was applied to evolve application-specific as well as general-purpose hash
functions, where the main design target was the quality of hashing. As
hash functions are frequently called in various time-critical applications,
it is important to optimize their implementation wi th respect to the exe
cution time. In this paper, linear genetic programming is combined with
N S G A - I I algorithm in order to obtain general-purpose, ultra-fast and
high-quality hash functions. Evolved hash functions show highly com
petitive quality of hashing, but significantly reduced execution time in
comparison with the state of the art hash functions available in literature.

1 Introduct ion

Hash functions are highly nonlinear functions assigning a relatively short numer
ical representation to an arbitrary data record of a predefined structure and size.
Hash functions are frequently used in many applications of computer science and
engineering such as hash tables, caches and Bloom filters. Hash functions are eval
uated with respect to two fundamental properties: (i) quality of hashing - which
can be defined in different ways (see Sect. 2.1) and (ii) complexity, which is highly
correlated with the execution time. Some additional properties are crucial for
the so-called cryptographic hash functions, but this paper only deals with non-
cryptographic hash functions. As the design of a good hash function is tricky and
requires a lot of insight and experience, evolutionary algorithms (genetic program
ming (GP) in particular) have been employed to accomplish this task.

The existing body of literature dealing with evolutionary design of hash func
tions is relatively rich; however, except paper [1] none of them is explicitly ori
ented to the optimization of the time of execution (latency or delay in other
words) which becomes crucial in contemporary high end applications such as
high speed network monitoring, big data indexing and finding duplicate records.

In the literature, the latency is usually considered as a constraint and the
optimization goal is to maximize the quality of hashing. The hash function design
problem is then formulated as a single objective design problem.

© Springer Internat ional P u b l i s h i n g A G , part of Springer Nature 2018
M . Cas te l l i et a l . (Eds .) : E u r o G P 2018, L N C S 10781, pp. 187-202, 2018.
h t tps : / /doi .org/10.1007/978-3-319-77553- l_12

<8)
C h e c k fo r
u p d a t e s

https://doi.org/10.1007/978-3-319-77553-l_12

188 D . Grochol and L . Sekanina

In some cases, hash functions are evolved as application-specific functions
and evaluated in a very specific environment [1-4], providing thus much bet
ter solutions in particular applications than the so called general-purpose hash
functions. For example, a multi-objective evolutionary design approach focusing
not only on the quality of hashing, but also on the execution time has been
proposed for network flow hashing [1]. In this case, evolved hash functions had a
fixed-size input (96 bits) and consisted of a linear sequence of instructions which
is executed just once to obtain the hash.

The goal of this paper is to present and evaluate a multi-objective evolu
tionary approach for the design of high-quality and ultra-fast general-purpose
hash functions. The main difference with respect to [1] is that the resulting hash
functions are capable of accepting multiple fc-bit inputs (in order to be general-
purpose ones) and the evaluation is performed on various principally different
test sets such as randomly generated data, network flow records, passwords and
Facebook and Twitter data. The proposed approach is based on linear genetic
programming (LGP) combined with a multi-objective NSGA-II algorithm, where
the objectives are the number of collisions (after embedding the hash function
to a hash table) and the execution time. As measuring the real execution time
on a particular machine is time consuming (during the evolution), the execu
tion time is estimated according to the number and type of instructions used by
a particular candidate hash function. In order to estimate this value for mod
ern processors, a specialized procedure is developed which considers not only
the complexity of instructions, but also their scheduling on SIMD architectures.
Evolved hash functions are compared in terms of quality of hashing and execu
tion time with 8 human-designed and 2 evolved general-purpose hash functions
available in the literature.

The rest of the paper is organized as follows. Section 2 briefly introduces the
principles of hash functions and previous work on evolving hash functions. The
proposed multi-objective method is introduced in Sect. 3. Section 4 describes our
results from the experiments performed in order to evaluate the proposed method
and compare resulting hash functions with existing solutions. Conclusions are
given in Sect. 5.

2 Related W o r k

In this section, the principles of hash functions are presented and evolutionary
approaches developed to the design of hash functions are briefly surveyed.

2 . 1 H a s h Funct ions

A hash function is a mathematical function h that maps an input binary string
(of length k) to a binary string of fixed length (/), h : 2fc —>• 2l, where k » I.
The output value is called hash value or simply hash [5]. The definition of hash
function implies the existence of collisions, i.e. h(x) = h(y), where x, y are two
input messages such that x / t/. One of desirable properties of hash functions

Multi-objective Evolution of Ultra-Fast General-Purpose Hash Functions 189

is that similar input vectors produce completely different outputs. This is called
the avalanche effect.

The most important application of hash functions is the hash table [6]. Based
on the key (the input to the hash function) a particular row (index) of the table
is activated and data are read/stored from/to a memory slot with that index. In
order to handle collisions (different data mapped to the same index), a separate
chaining method, cuckoo hashing, coalesced hashing and other techniques have
been developed. In the case of the separate chaining method, a list of records
having the same hash is operated for each index of the table. A newly entered
data record is then stored to the first empty item of the list connected to the
particular index. If there is at most one occupied record at index i then the time
complexity of lookup is 0(1); if n records exist then the complexity is 0(n) for
the i-th index.

The quality of non-cryptographic hash functions is given in terms of the col
lision resistance (good hash functions generate a minimum number of collisions),
avalanche effect, distribution of outputs, execution time and table load factor
(for a given memory size). The hash function is typically called several times in
order to obtain desired address because the memory addressing system can be
designed as hierarchical, for example, in the cuckoo hashing scheme [7].

2.2 H a s h F u n c t i o n Des ign

Non-cryptographic hash functions are mostly used in hash tables [6]. Other
important applications are Bloom filters [8], geometric hashing [9], coherency
sensitive hashing [10,11] etc. A common approach to the automatic hash function
design is to apply a general construction procedure such as the Merkle-Damgard
construction. The literature provides us with various implementations of general-
purpose human-created hash functions including DJBHash [12], D E K H a s h [5],
F V N (Fowler-Noll-Vo) [13], One At Time, Lookup3 [14], MurmurHash2, Mur
mur Hash3 [15] and CityHash [16].

Evolutionary approaches have been primarily focused on the non-cryptograp
hic hash function design and evolved with genetic algorithms [17], tree G P [18],
linear G P [1], grammar evolution [19] and Cartesian G P [20]. They can further
be divided according to the purpose, i.e. either application-specific hash func
tions [1,21] or general-purpose hash functions [18,22]. The difference lies in the
input data size and the evaluation approach. The fitness function is usually based
on measuring the avalanche effect [23,24] or the number of collisions [1,22].

3 Mul t i -objec t ive Linear G P in Hash Funct ion Design

As target hash functions are optimized with respect to the execution time, it
is natural to represent them at the level of machine instructions. Hence, linear
genetic programming in which candidate programs are represented as sequences
of instructions for a register machine [25-27] is employed to evolve hash functions.
In order to ensure a multi-objective design, L G P is connected with NSGA-II as
introduced in [1]. This section deals with proposed representation and evaluation
of candidate hash functions.

190 D . Grochol and L . Sekanina

3.1 C a n d i d a t e P r o g r a m Process ing

General-purpose hash functions are typically constructed using instructions such
as logical functions (e.g. X O R , A N D , OR) , addition, multiplication and rotation.
These instructions then define the instruction set for L G P . The initial popula
tion is generated randomly using these instructions. As the size of the input is
arbitrary in the case of general-purpose hashing, it is necessary to partition the
input stream into several blocks and process them sequentially. Since the loop
responsible for reading the input is always present, it makes no sense to evolve
it. We will evolve just the body of the loop. Figure 1 shows that a candidate
hash function is called in each iteration to read a new block and combine it with
intermediate results obtained from processing the previous blocks. Particularly
in this case, 32 bits are copied from the input stream to register r[l] in each
iteration. The resulting hash is produced to register r[0].

Fig . 1. Framework for candidate program evaluation. In this case, £i 32 bit data input
is read in each iteration.

3.2 Qua l i ty of H a s h i n g

Inspired in [1], the quality of hashing is measured in terms of the number of
collisions. Let Ki inputs (keys) be mapped into i-th memory slot by a candidate
hash function h. Then the fitness f(h) is defined as the weighted number of
collisions:

unsigned int candidateProgram (*input){
r[0] = input [0];

F O R (i = 1; i < length(input); i++){
r[l] = input [i];

<Candidate program>

}
return r[0] © (r[0] » 3 2) ;

}

s

(1)
i=l

where s is the number of memory slots. This function clearly penalizes can
didate hash functions showing many collisions at one slot. The objective is to
minimize f(h).

Multi-objective Evolution of Ultra-Fast General-Purpose Hash Functions 191

A l g o r i t h m 1. Execution time estimation
Input: Candidate program p
Output: The number of used instructions

c RotateCodeOutputRegisterLast(p);
used-instructions = 0;
previous-used-instructions = 0;
used-registers <— Insert (output-register);
while previous-used-instructions == used-instructions do

previous-used-instructions = used-instructions;
used-instructions = 0;

1

2

3

4
5
6

7
8

9

10

11

12

13

while (i getLastlnstruction(cp)) do
if DestinationRegister(i) G used-registers then

used-registers <— Insert(source-registers(i));
Increment (used-instructions);

remove instruction i from c p ;

14 return RotateBack(used-instructions);

3.3 E x e c u t i o n T i m e E s t i m a t i o n

As hash functions are very frequently called in some applications, it is important
to optimize them with respect to the execution time. In order to capture features
of modern processors supporting the Single Instruction Multiple Data (SIMD)
paradigm, a method performing the execution time estimate takes into account
not only the number of instructions and their type, but also their eventual par
allel processing (which in principle reduces the execution time). In L G P , not
all instructions of a candidate program contribute to the result. There are two
types of redundant instructions. Firstly, the genotype may contain instructions
whose output is not consumed by any other instruction (the so-called structural
redundancy). Secondly, there could be instructions used in the phenotype, but
not contributing to the resulting value. For example, if the code contains r[5] =
r[l] + r[0]; r[5] = r[2] + r[0], the first instruction can be removed. The algorithm
developed to estimate the execution time removes unused instructions in the first
step and, in the second step, it identifies those instructions that can be executed
in parallel.

Because we evolve the body of a loop and the evolved code is executed
multiple times, we cannot use the same approach as [1] (i.e. analyzing the algo
rithm from the last to the first instruction and removing unused instructions)
to estimate the execution time. The reason is that unused instructions of one
iteration can be important in the next iteration. Hence, Algorithm 1, removing
the unused instructions, has more steps. Firstly, the instructions of the candi
date program have to be rotated to a state in which the output register of the
hash function is at the last position of the program. The program is analyzed in
rounds, until all used instructions are not marked. Then unused instructions can

192 D . Grochol and L . Sekanina

be removed. Finally, the resulting code has to be rotated back, because the next
step performs instruction scheduling and the order of instructions is important
(see Algorithm 1). Example is presented in Fig. 2.

We exploit the instruction level parallelism [28] enabling to process multiple
data with a single instruction. Modern C P U s can typically process 256 bits at
once which means that eight 64-bit operations can be executed in one instruction
instead of executing 4 instructions sequentially. As introduced in [1], instruction

Candidate program

Rotate
= rO + r 6 ;

c2 - E-7 + r 2 ;
r » =• r 4 r 4 ;
r 3 - r 4 r O ;
r S = r 9 - r 6 ;
i " = E 2 - E 8 ;
i-1 • t i • E 2 ;

5 - r4 + E 5 ;

rt = i2 + EO;
: Z CS * E 2 ;
ca ZD - E 3 ;

= rO r l ;
:• : - r 5 + r 3 ;
i : : - r 7 - r O ;

= r l - r 4 ;
E 9 = r 2 * i ! ;

If

r 3 = r 4 + E 5 ;

1-9 • 12 + r O ;
r 2 « r 9 - r 2 ;
r 8 = l- 1 t 5 ;
E 3 = EO eli
E 3 = i 5 - i :•;
E 3 » E7 - r O ;
E 2 - E l + r 4 ;
E 9 = C2 E 5 ;

-rO = I] : • i
r 2 = E7 - C2l
c9 = E 4 r 4 ;
r 3 - E 4 r O ;
r S - E 9 ;

= r 2 + : : ;

EO = i 3 - i 2 ;

Mark
= C4 - r 5 ; c3 = r 4 • r 5 ;

r 9 r2 + r O ; Mark r 9 = r2 + EO;
r2 - r 9 r 2 ; Mark r 2 = r 9 * 12;
E 8 = rO + r S ; (next run) re = rO + E 5 ;

' r 3 = i 0 ell • r 3 = [: ' ell
i a = i '. - rl: E - E 5 * E 3 ;
E3 E7 - r O ; E3 - E l

+ EO;
x 2 = r l + r 4 ; r2 - r l + I*;
:• 9 = /„": E 5 ; E9 = E2 ' E 3 ;
r O = rO + r £ ; rO = rO + r i ;
t 2 = n + r 2 ; r2 = r7 + E 2 ;
E9 = E4 r 4 j r& - z4 * et;
r 3 • r 4 r O j c3 r4 ' r O ;
r 5 :• 9 r 6 ; r 5 - r 9 * E 6 ;
r 7 = I-.. + r B ; * 7 = r2

+ EB;
rO = r8 r 2 ; rO = r a - r 2 ;

r 2 = r7 * r 2 ; D r t m r t W r t rO = EO + Ctl Rotate
r 9 - r< - : :4; r ^ t ! l ' I U V B r 2 = r 7 + r 2 j
r 2 + r 2 ;
r 9 r4 r 4 ;
r S = L' 9 - r 6 ;
E 7 = i 2 + E 8 ;

: ; = E G * E 2 ;

: 9 = i 2 - EO;
i a - t : + E 5 ;

: 2 = r : E 4 ;

r 9 = r 4
r5 = r 9
r l = r 2
rO = r 8
r 9 • r 2
E 2 = E 9
rG = rO
E2 - r l

r 4 ;
r ö ;
E 8 ;

c 2 ; .
EO;
r 2 ;
E 5 ;
E 4 ;

A S A P / A L A P

- <-- r 2 ;

r f l r 4 ;

f - r S * r 6 ;

= i : : J T 8 ;

cC = r S ft r 2 ;

CS = r 2 t r O ;

t - = r O r 5 ;

CS = E l +

AA A A A

W V V V

- r 2 r O ;

•j 2 r » * r2,-

t i = r f l r S ;
E 2 = E l + r 4 ;

EO = E0 - r 6 ; "
E 2 = E7 E 2 ;
l 1 - E 4 * E 4 ;
ES = E 9 - r 6 ;
E 7 = E 2 + : -• r
(•:: = r l r 2 ;

Find

r2 = r7 + r2 ;
r9 - ri A. r4 ;
r5 = r9 r6; rO = r8 r2;
rl - r2 + r8; r9 = r2 + rO;
r8 - rO rb; r2 = r l + r4;

Fig . 2. Removal of unused instructions consists of rotating the candidate program to a
configuration in which output register rO is at position of the last instruction, identifying
used instructions (in bold), removing unused instructions and rotating the code back.
The optimized code is then scheduled for parallel execution. The final program consists
of 5 steps in which 1, 1, 2, 2 and 2 instructions are executed in parallel.

Multi-objective Evolution of Ultra-Fast General-Purpose Hash Functions 193

unsigned hit EvoHashl (*input){
r[0] = input[0];

F O R (i = 1; i < length(input); i++){
r[l] = input[i];
r[8] - r[3] © r[l];
r[5] - 0xA54FF53A;
r[2] - r[5] + r[8];
r[4] = r[l] * r[6]i
r[0] = r[2] I r[2];
r[3]=r[4] | r[2];

}
return rO © (rO >> 32);

}

unsigned int EvoHash2 (*input){
r[0] = input [0];

F O R (i = I; i < length(input); i++){
r[l] = input [i];
r[4] = r[2] © r[5];
r[2] = r[l] + r[4];
r[0] = r[0] + r[4];

}
return rO © (rO >> 32);

}

Fig . 3. Evolved hash functions that were selected from Pareto front in Fig. 4.

scheduling lies in determining when the instructions can be executed based on
analyzing dependences among them. The A S A P (As Soon As Possible) and
A L A P (As Late As Possible) routines are employed for this purpose. Figure 2
shows that in our example, the optimized 8-instruction program is finally exe
cuted in 5 steps in which 1, 1, 2, 2 and 2 instructions are executed in parallel.

3.4 Search A l g o r i t h m

A common version of L G P (with tournament selection, single-point crossover
and mutation) is combined with NSGA-II [29]. According to [1], the maximum

Table 1. LGP parameters.

Parameter Value
Population size 100
Crossover probability 90%
Mutation probability 15%
Program length 12
Registers count/type 8/64 b - int
Constants {0x6a09e667, 0xbb67ae85, 0x3c6ef372,

0xa54ff53a, 0x510e527f, 0x9b05688c,
0xlf83d9ab, 0x5be0cdl9, 0x428a2f98,
0x71374491}

Instruction set
(weight)

{ADD (1), MUL (3), XOR (1), OR (1)}

Tournament size 4
Maximum number
of generations

100

Crossover type One-point

194 D . Grochol and L . Sekanina

program size is limited to 12 instructions. The function set contains those oper
ations that are typical for the hash function design (XOR, A N D , OR, addition,
multiplication and right rotation). As multiplication is more complex than the
remaining instructions, its execution time is counted with weight 3 in the pro
grams. Common hash functions contain various "magic" constants. We extracted
those appearing in the initial phase of hash function SHA-2 [30] and included
them to the set of constants available in L G P . The setup for L G P is summarized
in Table 1. NSGA-II is employed to find the best trade-offs between the number
of collisions (according to Eq . 2) and estimated execution time for a training set
(see Sect. 4).

4 Experiments and Results

This section describes the data sets used for evaluation, experiments and their
analysis in terms of quality of hashing and execution time. Results will be com
pared with hash functions from the literature.

4.1 D a t a Sets

In order to evaluate candidate hash functions on different types of problems, we
used (i) randomly generated data and (ii) real-world data coming from network
flows, user passwords, and Facebook and Twitter posts.

We randomly generated the training data set (using a random text generator)
in such a way that it contains 200,000 vectors with a random size ranging from 16
to 1024 characters. The best-evolved hash functions and the hash functions taken
from the literature were then compared using 9 different randomly generated test
data sets (Datasetl-9) whose parameters are summarized in Table 2.

In the case of real-world data, data sets Net set 1-3 are formed from identifiers
of network flows (source and destination IP addresses, source and destination
ports and transport protocol). The size of each input vector is 96 bits (see details
in [1]). The Passwords data set contains 10 million user passwords. Every pass
words consists of 5 to 16 characters. Finally, Facebook and Twitter data sets
contain 1 million posts from selected social network groups. These posts are in
English, German, Hungarian, Czech and Slovak languages.

4.2 H a s h Funct ions U s e d for C o m p a r i s o n

Evolved hash functions will be compared with human-created hash function
DJBHash, D E K H a s h , One At Time, Lookup3, FVNHash , Murmur2, Mur-
mur3, CityHash and evolved hash functions available in the literature (GPHash
[23,24] and EFHash [22]). A 32-bit hash table is used for testing all func
tions. A direct comparison with [1] is possible only for the specific data sets
used in [1]. Application-specific hash functions (XORhash, N S G A H a s h l , N S G A -
Hash2, NSGAHash3, NSGAHash4, NSGAHash5, NSGAHash6, NSGAHash7 [1])
operate with a 96-bit input and produce a 16 bit hash value. Evolved hash func
tions produce a 32 bit hash value. The X O R folding is used for reduction from
32 to 16 bits.

Multi-objective Evolution of Ultra-Fast General-Purpose Hash Functions 195

Table 2. Da ta sets.

Name Number of vectors Length [bytes]

Dataset l 100,000 64

Dataset2 100,000 128

Dataset3 100,000 256

Dataset4 100,000 512

Dataset5 100,000 1024

Dataset6 100,000 2048

Dataset7 1,000,000 16 - 4096

Dataset8 1,000,000 16 - 4096

Netset l 20,000 12

Netset2 50,000 12

Netset3 100,000 12

Passwords 10,000,000 5 - 1 6

Facebook 1,000,000 3 - 280

Twit ter 1,000,000 3 - 5000

Q 1 1 — i — I -) 1 1 1—i—| 1 1 — i — r - | 1 1 1—|—| 1 1—i—r—| 1 1 — i — i — | 1 1 — i — r - | 1 1—i—I—

0 10° 101 102 102 104 105 105 107

Number of collisions

Fig . 4. Pareto fronts obtained from 100 independent runs of L G P . The size of the circle
represents the number of identical solutions with the same properties. Selected hash
functions (blue squares) are given in F ig . 3. (Color figure online)

196 D . Grochol and L . Sekanina

4.3 Resu l t ing Pareto Fronts

As we used the same parameters of L G P as [1], we do not report the impact of
L G P parameters on the equality of evolution. The main focus is on a comparison
of key parameters of evolved hash functions with existing hash functions.

We performed 100 independent runs of our multi-objective L G P and plotted
in Fig. 4 parameters of all solutions appearing on the (100) final Pareto fronts.
As many identical trade-offs were discovered in several (independent) runs, we
plotted them using a circle whose diameter depends on the number of such cases.
From all these designs, we selected two the most frequently occurring candidates
(blue squares) and analyzed their properties in greater detail. EvoHashl (see the
C code in Fig. 3) produces zero collisions on the training data set, but includes
relative many instructions. EvoHash2 (see the C code in Fig. 3) shows the best
trade-off between the number of instructions and the number of collisions.

Since there are no clear outliers on Pareto fronts and the designs showing
desired trade-offs are represented by larger circles (i.e. there are many good solu
tions), we can conclude that the proposed algorithm produces stable solutions.
It can be seen in Fig. 4 that there are almost no solutions showing 101 — 104

collisions. Our explanation for this behavior is that there are only a few discrete
points for the second objective (the number of instructions) and these points are
already covered by good solutions.

4.4 T h e N u m b e r of Coll is ions

The hash functions from the literature introduced in Sect. 4.2 were implemented
in C programming language and compiled with the same compiler setting as
evolved hash functions. Al l tests were then carried out with these implementa
tions to ensure fair comparisons. The evaluation of all these hash functions was
performed on an Intel Xeon E5-2620v3 processor running at 2.4 GHz.

Table 3. The number of collisions for randomly generated data sets.

Hash funct ion The number of coll isions

D a t a S e t l DataSet2 DataSet3 DataSet4 DataSe t5 DataSet6 DataSe t7 DataSet8

D J B H a s h 0 3 0 1 1 3 132 116

D E K H a s h 60004 90000 90000 90000 90000 90000 122 118

F V N H a s h 0 4 1 1 1 0 115 122

One A t T i m e 1 2 2 2 1 1 108 115

lookup3 1 0 0 2 1 2 122 111

M u r m u r 2 1 1 1 0 3 3 125 126

M u r m u r 3 2 0 2 1 1 3 114 111

C i t y H a s h 3 1 1 1 1 0 125 111

G P H a s h 1 1 1 1 0 0 115 102

E F H a s h 38137 53488 63353 64983 65119 65209 799933 799825

E v o H a s h l 2 2 2 1 1 1 133 116

EvoHash2 1 1 0 3 3 1 119 108

Multi-objective Evolution of Ultra-Fast General-Purpose Hash Functions 197

Table 3 gives the number of collisions for all randomly generated datasets for
a 32 bit hash table. The best values are typed in bold; the second best values in
bold-italic. It can be seen that hash functions evolved by L G P produce a very
similar number of collisions as other hash functions from the literature; except
DEKHash and EFHash where many collisions are visible. From the point of view
of the number of collisions, evolved hash functions are as good as the other hash
functions. The same phenomenon can be observed for real-world data sets (see
Tables 4 and 5).

4.5 T h e E x e c u t i o n T i m e a n d Performance

Tables 6, 7, 8 show the average execution time obtained from 50 independent
runs of all hash functions on all data sets. The task is to compute a hash value
for each vector of a given dataset. The evolved hash functions exhibit the shortest
execution time in almost all cases. Similar parameters show Google's CityHash.

Table 4. The number of collisions for network data from [1].

Hash function The number of collisions

Net Set 1 NetSet2 NetSet3

D J B H a s h 2835 15113 48925

D E K H a s h 2926 15247 49017

F V N H a s h 2756 14957 48780

One A t Time 2821 14988 48636

lookup3 2742 15009 48737

Murmur 2 2800 15050 48749

Murmur 3 2744 14911 48763

Ci tyHash 2807 14990 48647
X O R H a s h 2864 15011 48575

G P H a s h 2777 15052 48750

E F H a s h 5317 25266 63175

N S G A H a s h l 2923 15677 49336

N S G A H a s h 2 2746 15170 48835

N S G A H a s h 3 2689 15575 49292

N S G A H a s h 4 2692 15010 48715

N S G A H a s h 5 2759 14975 48749

N S G A H a s h 6 2650 14839 48680

N S G A H a s h 7 2639 14975 48650

EvoHash l 2849 15185 48652

EvoHash2 2821 14982 48695

198 D . Grochol and L . Sekanina

Table 5. The number of collisions for real-world data sets.

Hash function The number of collisions

Passwords Facebook Twit ter

D J B H a s h 11663 247 137

D E K H a s h 14114 357 153

F V N H a s h 11845 115 115

One A t Time 11590 105 138

lookup3 11567 119 107

Murmur 2 11637 112 123

Murmur 3 11589 103 89
CityHash 11530 122 122

G P H a s h 11634 117 113

E F H a s h 9983806 873270 824153

EvoHash l 11871 23 98

EvoHash2 11469 10 1

Evolved EvoHash2 is slightly faster (4%) than CityHash, but significantly faster
(2x) than very popular Murmur hash 3.

Table 7 shows that the application-specific hash functions have a shorter exe
cution time for the network data sets. But evolved hash functions are faster than
the best conventional hash functions (CityHash, lookup3).

Finally, we compared all hash functions in terms of throughput that can be
obtained by SMHasher [31]. This is a test suite designed to test performance
properties of non-cryptographic hash functions. In the Bulk speed test (with

Table 6. The average execution time for randomly generated data sets.

Hash funct ion E x e c u t i o n t ime [ms]

D a t a S e t l DataSet2 DataSet3 DataSet4 DataSet5 DataSet6 DataSe t7 DataSet8

D J B H a s h 19.56 32.914 45.311 72.31 126.081 231.675 2556.226 2554.123

D E K H a s h 12.907 19.352 28.141 46.975 81.419 156.839 1875.878 1872.019

F V N H a s h 17.354 31.694 48.371 83.761 155.702 294.259 3223.727 3220.844

One A t T i m e 20.208 36.895 57.667 100.993 189.24 360.009 3918.302 3916.603

lookup3 12.867 22.685 28.403 42.581 72.585 125.851 1437.492 1433.961

M u r m u r 2 12.06 20.332 25.718 36.065 60.202 102.426 1195.029 1190.402

M u r m u r 3 12.863 21.622 27.796 40.367 68.557 119.167 1368.135 1363.745

C i t y H a s h 10.906 18.591 20.344 24.807 36.806 54.535 683.363 679.325

G P H a s h 25.497 47.418 80.294 147.286 283.533 550.774 5949.786 5948.746

E F H a s h 24.394 41.66 69.332 127.822 246.387 479.26 5237.982 5237.599

E v o H a s h l 10.383 17.084 19.056 23.897 35.508 55.838 685.604 681.327

EvoHash2 1 0 . 3 8 5 1 7 . 4 1 1 1 9 . 0 2 2 2 3 . 8 2 5 5 3 . 1 3 2 3 7 . 3 3 4 6 5 9 . 1 8 5 6 5 6 . 6 4 7

Multi-objective Evolution of Ultra-Fast General-Purpose Hash Functions 199

Table 7. The average execution time for network data from [1].

H a s h function T i m e [ms]

N e t S e t l NetSet2 NetSet3

D J B H a s h 1.861 5.134 12.724

D E K H a s h 1.221 4.373 10.407

F V N H a s h 1.301 4.721 9.633

One A t T i m e 1.769 5.290 12.352

lookup3 0.925 2.891 7.435

M u r m u r 2 1.034 3.095 7.925

M u r m u r 3 1.193 3.215 8.727

C i t y H a s h 0.960 2.625 7.407

X O R H a s h 0.838 2.318 6.652

G P H a s h 1.865 4.671 12.558

E F H a s h 2.472 13.527 49.495

N S G A H a s h l 0.529 2.804 8.507

N S G A H a s h 2 0.527 2 . 0 7 2 6.564

N S G A H a s h 3 0 . 5 1 4 2.779 8.492

N S G A H a s h 4 0.530 2.073 6.219

N S G A H a s h 5 0.534 2.081 6.288

N S G A H a s h 6 0.527 2.083 6.249

N S G A H a s h 7 0.547 2.175 6.449

E v o H a s h l 0.802 2.569 7.455

E v o H a s h 2 0.830 2.825 7.835

262144 byte keys), evolved hash functions EvoHashl and EvoHash2 outper
formed the remaining hash functions (Table 9).

Table 8. The average execution time for real-world data sets.

Hash function Time [ms]
Passwords Facebook Twitter

DJBHash 5438.594 17.331 16.726
DEKHash 5067.882 13.240 13.119
FVNHash 5499.328 14.174 12.767
One At Time 6072.904 15.410 13.955
lookup3 4543.399 12.009 10.919
Murmur2 4464.339 11.723 10.774
Murmur3 4573.453 11.955 10.966
CityHash 4385.625 11.149 10.355
GPHash 6389.323 17.966 16.167
EFHash 5101.523 14.304 13.746
EvoHashl 4268.402 10.895 9.996
EvoHash2 4277.341 10.832 9.954

200 D . Grochol and L . Sekanina

Table 9. Speed test according to SMHasher [31].

B u l k speed test - 262144-byte keys - M i B / s e c

Hash funct ion Al ignmen t

0 1 2 3 4 5 6 7

D J B H a s h 1268.27 1271.40 1271.40 1271.40 1271.40 1271.40 1271.40 1271.40

D E K H a s h 1906.95 1907.01 1907.02 1907.01 1907.00 1907.06 1907.06 1907.05

F V N H a s h 953.63 953.63 953.63 953.63 953.63 953.63 953.63 953.63

O n e A t T i m e 634.20 634.12 634.12 634.15 634.14 634.12 634.15 634.14

lookup3 2750.08 2735.18 2735.27 2735.29 2749.80 2735.26 2735.20 2735.14

M u r m u r 2 3813.36 3780.15 3780.15 3780.15 3813.46 3780.25 3780.25 3780.25

M u r m u r 3 7476.99 7332.31 7335.21 7332.47 7333.44 7334.75 7332.51 7334.79

C i t y H a s h 15450.42 14386.41 14370.53 14389.85 14390.17 14372.77 14385.49 14400.47

G P H a s h 475.67 475.68 475.68 475.69 475.69 475.68 475.68 475.69

E F H a s h 543.60 543.59 543.59 543.58 543.60 543.58 543.59 543.59

E v o H a s h l 15121.84 14661.90 14662.12 14663.13 14662.58 14662.96 14662.41 14662.68

EvoHash2 1 7 5 7 8 . 2 9 1 6 7 2 6 . 2 1 1 6 7 2 6 . 4 4 1 6 7 2 5 . 2 7 1 6 7 3 0 . 3 3 1 6 7 2 6 . 5 0 1 6 7 2 7 . 0 8 1 6 7 2 8 . 0 4

5 Conclusions

In this paper, we proposed and evaluated a multi-objective evolutionary design
approach in which L G P is combined with NSGA-II algorithm in order to
obtain general-purpose, ultra-fast and high-quality hash functions. This pro
posal addressed current needs of IT industry which seeks for high quality, but
ultra fast hash functions. The fitness function was based on (i) the number of col
lisions with penalization for candidate hash functions producing many collisions
and (ii) the execution time.

The best evolved hash functions were compared with 10 hash functions from
literature. In terms of quality, evolved hash functions produce almost the same
number of collisions as other good hash functions. In terms of the execution
time and performance, a hash function improving parameters of a high quality
conventional solution (CityHash) was discovered.

Our future work will be devoted to improving the design framework (in terms
of supporting other objectives and accelerating the design process) and detailed
testing of evolved hash functions in other real-world applications.

Acknowledgments. This work was supported by the Czech science foundation
project 16-08565S. The authors would like to thank Dr. Mar t i n Zadnik for his valuable
comments to this research.

References

1. Grochol, D . , Sekanina, L . : Multiobjective evolution of hash functions for high speed
networks. In: Proceedings of the 2017 I E E E Congress on Evolutionary Computa
tion, pp. 1533-1540. I E E E Computer Society (2017)

Multi-objective Evolution of Ultra-Fast General-Purpose Hash Functions 201

2. Dobai, R. , Korenek, J . , Sekanina, L . : Adaptive development of hash functions in
F P G A - b a s e d network routers. In: 2016 I E E E Symposium Series on Computational
Intelligence, pp. 1-8. I E E E Computational Intelligence Society (2016)

3. K idon , M . , Dobai, R.: Evolutionary design of hash functions for ip address hashing
using genetic programming. In: 2017 I E E E Congress on Evolutionary Computation
(C E C) , pp. 1720-1727. I E E E (2017)

4. Kocsis, Z . A . , Neumann, G , Swan, J . , Epitropakis, M . G , Brownlee, A . E . I . ,
Haraldsson, S.O., Bowles, E . : Repairing and optimizing hadoop hashCode imple
mentations. In: Le Goues, C , Yoo, S. (eds.) S S B S E 2014. L N C S , vol. 8636, pp.
259-264. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09940-8_22

5. Knu th , D . E . : The A r t of Computer Programming, vol. 3 (1973)
6. Maurer, W . D . , Lewis, T . G . : Hash table methods. A C M Comput. Surv. (C S U R)

7(1), 5-19 (1975)
7. Pagh, R. , Rodler, F . F . : Cuckoo hashing. In: auf der Heide, F . M . (ed.) E S A 2001.

L N C S , vol. 2161, pp. 121-133. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44676-1-10

8. Song, H . , Dharmapurikar, S., Turner, J . , Lockwood, J . : Fast hash table lookup
using extended bloom filter: an aid to network processing. S I G C O M M Comput.
Commun. Rev. 35(4), 181-192 (2005), https://doi.org/10.1145/1090191.1080114

9. Lamdan, Y . , Wolfson, H . J . : Geometric hashing: a general and efficient model-based
recognition scheme (1988)

10. Korman, S., Av idan , S.: Coherency sensitive hashing. I E E E Trans. Pattern A n a l .
Mach. Intell. 38(6), 1099-1112 (2016)

11. Datar, M . , Immorlica, N . , Indyk, P., Mir rokn i , V . S . : Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry, S C G 2004, pp. 253-262. A C M , New York
(2004), https://doi.org/10.1145/997817.997857

12. Bernstein, D . J . : Mathematics and computer science, https:/ /cr.yp.to/djb.html.
Accessed 31 Jan 2016

13. Fowler, G , Vo, P., Nol l , L . C . : F V N Hash, http:/ /www.isthe.com/chongo/tech/
comp/fnv/ . Accessed 31 Jan 2016

14. Jenkins, B . : A hash function for hash table lookup, http://www.burtleburtle.net/
bob/hash/doobs.html. Accessed 31 Jan 2016

15. Appleby, A . : Murmur hash functions, https://github.com/aappleby/smhasher.
Accessed 31 Jan 2016

16. Pike, G , Alakuijala, J . : Introducing cityhash (2011)
17. Safdari, M . , Joshi, R.: Evolving universal hash functions using genetic algorithms.

In: International Conference on Future Computer and Communication, I C F C C
2009, pp. 84-87, A p r i l 2009

18. Estebanez, C , Saez, Y . , Recio, G , Isasi, P.: Automatic design of noncryptographic
hash functions using genetic programming. Comput. Intell. 30(4), 798-831 (2014)

19. Berarducci, P., Jordan, D . , Mar t in , D . , Seitzer, J . : Gevosh: using grammatical
evolution to generate hashing functions. In: M A I C S , pp. 31-39 (2004)

20. Widiger, H . , Salomon, R., Timmermann, D . : Packet classification wi th evolvable
hardware hash functions - an intrinsic approach. In: Ijspeert, A . J . , Masuzawa,
T. , Kusumoto, S. (eds.) B i o A D I T 2006. L N C S , vol. 3853, pp. 64-79. Springer,
Heidelberg (2006). https://doi.org/10.1007/11613022_8

21. Kaufmann, P., Plessl, C , Platzner, M . : EvoCaches: application-specific adaptation
of cache mappings. In: Adaptive Hardware and Systems (AHS) , pp. 11-18. I E E E
CS (2009)

https://doi.org/10.1007/978-3-319-09940-8_22
https://doi.org/10
https://doi.org/10.1145/1090191.1080114
https://doi.org/10.1145/997817.997857
https://cr.yp.to/djb.html
http://www.isthe.com/chongo/tech/
http://www.burtleburtle.net/
https://github.com/aappleby/smhasher
https://doi.org/10.1007/11613022_8

202 D . Grochol and L . Sekanina

22. Karasek, J . , Burget, R. , Morsky, O.: Towards an automatic design of non-
cryptographic hash function. In: 2011 34th International Conference on Telecom
munications and Signal Processing (TSP) , pp. 19-23. I E E E (2011)

23. Estebanez, C , Hernandez-Castro, J .C . , Ribagorda, A . , Isasi, P.: Finding state-of-
the-art non-cryptographic hashes wi th genetic programming. In: Runarsson, T.P . ,
Beyer, H . - C , Burke, E . , Merelo-Guervos, J . J . , Whitley, L . D . , Yao, X . (eds.) P P S N
2006. L N C S , vol. 4193, pp. 818-827. Springer, Heidelberg (2006). ht tps: / /doi .org/
10.1007/11844297_83

24. Estebanez, C , Hernandez-Castro, J .C . , Ribagorda, A . , Isasi, P.: Evolving hash
functions by means of genetic programming. In: Proceedings of the 8th Annua l
Conference on Genetic and Evolutionary Computation, pp. 1861-1862. A C M
(2006)

25. Brameier, M . , Banzhaf, W . : Linear Genetic Programming. Springer, New York
(2007) . https://doi.org/10.1007/978-0-387-31030-5

26. Oltean, M . , Grosan, C : A comparison of several linear genetic programming tech
niques. Complex Syst. 14(4), 285-314 (2003)

27. Wilson, G . , Banzhaf, W . : A comparison of cartesian genetic programming and
linear genetic programming. In: O 'Nei l l , M . , Vanneschi, L . , Gustafson, S., Esparcia
Alcazar, A . I . , De Falco, I., Delia Cioppa, A . , Tarantino, E . (eds.) E u r o G P 2008.
L N C S , vol. 4971, pp. 182-193. Springer, Heidelberg (2008). https://doi.org/10.
1007/978- 3- 540- 78671- 9_16

28. Wal l , D . W . : Limits of Instruction-level Parallelism, vol. 19. A C M , New York (1991)
29. Deb, K . , Agrawal, S., Pratap, A . , Meyarivan, T.: A fast elitist non-dominated sort

ing genetic algorithm for multi-objective optimization: N S G A - I I . In: Schoenauer,
M . , Deb, K . , Rudolph, G . , Yao, X . , Lut ton, E . , Merelo, J . J . , Schwefel, H.-P. (eds.)
P P S N 2000. L N C S , vol. 1917, pp. 849-858. Springer, Heidelberg (2000). https:/ /
doi.org/10.1007/3-540-45356-3_83

30. NIST: Secure hashing, https://csrc.nist.gov/projects/hash-functions. Accessed 10
Oct 2017

31. Appleby, A . : Smhasher, https://github.com/aappleby/smhasher. Accessed 1 Nov
2017

https://doi.org/
https://doi.org/10.1007/978-0-387-31030-5
https://doi.org/10
http://doi.org/10.1007/3-540-45356-3_83
https://csrc.nist.gov/projects/hash-functions
https://github.com/aappleby/smhasher

Paper V

Fast Reconfigurable Hash
Functions for Network Flow
Hashing in F P G A s

GROCHOL David and SEKANINA Lukas
In: Proceedings of the 2018 NASA/ESA Conference on Adaptive Hardware and Systems.
Edinburgh: Institute of Electrical and Electronics Engineers, 2018, pp. 257-263. ISBN
978-1-5386-7753-7.

90

2018 N A S A / E S A Conference on Adaptive Hardware and Systems (AHS)

Fast Reconfigurable Hash Functions for Network
Flow Hashing in FPGAs

D a v i d G r o c h o l and L u k a s Sekanina
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Brno, Czech Republic
Emai l : igrochol@fit.vutbr.cz, sekanina@fit.vutbr.cz

Abstract—Efficient monitoring of high speed computer net
works operating with a 100 Gigabit per second (Gbps) data
throughput requires a suitable hardware acceleration of its key
components. We present a platform capable of automated de
signing of hash functions suitable for network flow hashing. The
platform employs a multi-objective linear genetic programming
developed for the hash function design. We evolved high-quality
hash functions and implemented them in a field programmable
gate array (FPGA). Several evolved hash functions were com
bined together in order to form a new reconfigurable hash func
tion. The proposed reconfigurable design significantly reduces the
area on a chip while the maximum operation frequency remains
very close to the fastest hash functions. Properties of evolved hash
functions were compared with the state-of-the-art hash functions
in terms of the quality of hashing, area and operation frequency
in the FPGA.

I. I N T R O D U C T I O N

Current high-speed computer networks can achieve a 100
Gigabit per second (Gbps) throughput and even 400 Gbps
links w i l l be available in the near future. A t these speeds,
detailed packet processing becomes a challenging problem.
Fast packet processing is especially important in network
security and monitoring systems, where any packet unseen
by the monitoring system because of the system's insufficient
performance can affect the quality of monitoring or disallow
the detection of security threats. In order to achieve a 100
Gbps throughput, every packet has to be processed in less than
7 ns. It means that a single C P U core can only execute a few
instructions to perform this job, which is far from needed.
Hence, application-specific hardware accelerators have been
developed to provide sufficient performance.

This paper deals with an automated design of ultra-fast
hash functions that are crucial in these accelerators. In par
ticular, hash functions wi l l be developed for the software
defined monitoring (S D M) platform. S D M performs network
monitoring and analysis using relatively simple (and so fast)
configurable circuits implemented in a field programmable
gate array (FPGA) . These circuits are configured by means of
a software application whose purpose is to offload all time-
critical packet processing tasks to hardware and perform only
sophisticated analysis and other tasks that are not suitable for
the hardware acceleration.

In S D M , the network traffic is analyzed at the level of
network flows. A network flow is a sequence of packets from a
source device to a destination, for example, a network flow can

978-l-5386-7753-7/18/$31.00 © 2018 I E E E

contain a specific transport connection or a media stream. One
flow is defined by five parameters within a certain time period:
source and destination IP address, source and destination port
and transport protocol. These parameters w i l l be referred to
as a. flow identifier. The role of hashing is to assign a memory
slot (containing the data of a given flow) to the flow identifier
extracted from network traffic.

The objective of this work is to develop and evaluate
new hash functions suitable for network flow hashing in
the F P G A . We wi l l also explore possibilities of developing
the reconfigurable hash functions whose implementation is
motivated by recent attacks on traffic monitoring systems
that use a hash function to distribute the network traffic (i.e.
flow processing) on several cores. If the attacker can reveal
how the network traffic is distributed, (s)he can generate a
specific traffic from some IP addresses (and so flows) in such
a way that (almost) all traffic is intentionally directed by
the hash function to one core, the core becomes overloaded,
some flows are dropped and thus remain invisible for security
monitoring. However, i f a reconfigurable hash function is
supported, another configuration of the hash function can
quickly be activated when one core becomes overloaded. This
w i l l change the unwanted workload distribution to the original
status and keep the monitoring system working. In order to
minimize the time spent in the less secure configuration, the
system has to be adapted at the hardware level.

The proposed solution wi l l be developed in the following
steps, (i) We wi l l introduce a genetic programming (GP) based
system implemented for the evolutionary design of desired
hash functions, (ii) Hash functions evolved with this system
w i l l be implemented in an F P G A , evaluated on several data
sets and compared with conventional hash functions in terms
of the quality of hashing, the area used in the F P G A and the
maximal operation frequency, (iii) Finally, we wi l l propose
and evaluate a new reconfigurable hash function that combines
selected parts of evolved hash functions in order to reduce the
implementation cost.

The rest of the paper is organized as follows. Section II in
troduces the area of hash functions and their design, including
the evolutionary hash function design. Section III presents a
platform capable of automated evolutionary designing of hash
functions suitable for network flow hashing. The approach uti
lized for the F P G A implementation of hash functions that were
evolved by means of the platform is presented in Section IV .

257

mailto:igrochol@fit.vutbr.cz
mailto:sekanina@fit.vutbr.cz

This section also deals with the development and experimental
evaluation of a reconfigurable hash function. Conclusions are
given in Section V .

II. H A S H F U N C T I O N S

A hash function is a mathematical function h that maps an
input binary string (of length k) to a binary string of fixed
length (I), h : 2 f c —> 2l, where k » I. The output value is
called hash value or simply hash [1]. If h(x) = h(y), where
x and y are two inputs and x ^ y, the so-called collision
is reported. Next section w i l l describe one of the collision-
handling methods that we employ in our application.

We wi l l only deal with non-cryptographic hash functions
in this paper. In the case of cryptographic hash functions,
additional requirements (such as a pre-image resistance) are
imposed on them, but these requirements are not relevant in
our context.

A. Hash table

Fig . 1 shows how hash function h is used in a hash table,
which is a data structure implementing an associative array [2].
Based on the input data (a key), the hash function computes
a hash, i.e. an index into the array of slots, where the desired
data can be found. Ideally, the hash function w i l l address a
unique slot, but collisions have to be handled in real-world
applications. For this purpose, the separate chaining method,
cuckoo hashing, coalesced hashing and other techniques have
been developed. In the case of the separate chaining method,
a linear list of records having the same hash is constructed
and managed for each index of the table. If there is at most
one occupied record at index i then the time complexity of
lookup is constant; otherwise, it is linear with respect to the
number of records at a given index.

hiei -
h(K2) >.

B. Design techniques

If a hash function is needed for a given application, the de
signer can either choose one of general-purpose hash functions
available in the literature (such as DJBHash [3], D E K H a s h [1],
F V N (Fowler-Noll-Vo) [4], One A t Time, Lookup3 [5], Mur-
murHash2, MurmurHash3 [6] and CityHash [7]) or develop a
new application-specific hash function.

Hash functions are usually designed by applying a general
construction procedure such as the Merkle-Damgard con
struction [8]. However, a lot of approaches based on the
evolutionary design principles have been introduced in re
cent years. Their main advantage is that they are capable
of producing high-quality hash functions optimized for a
given application domain. Hash functions were evolved with
genetic algorithms [9], tree G P [10], linear G P [11], [12],
grammar evolution [13] and Cartesian G P [14]. Both scenarios
- application-specific hash functions (see, e.g., [15], [12], [16],
[17]) and general-purpose hash functions (see, e.g., [10], [18])
- were addressed in the literature.

The fitness function is usually based on measuring the
avalanche effect [19], [20] or the number of collisions [12],
[18]. The execution time optimization has been explicitly
addressed in [11], [12], where the hash function design was
formulated as a multi-objective design problem.

C. Hashing in FPGAs

F P G A implementations of adaptive hash functions were
developed for various network applications such as network
routing [21], caching [22] and IP filtering [23]. For example,
the hash function for IP filtering computes 12-bit hashes in 43
clock cycles for 32-bit inputs. Because of pipelined processing,
one hash can be produced in each clock cycle, which gives
260 mil l ion hashes per second, i.e. 3.8 ns per hash [23]. This
is more than sufficient for 400 Gbps links.

For comparative purposes of this paper, we implemented
in F P G A two hash functions: X O R H a s h and SipHash. The
X O R H a s h was developed for hashing of the network flows. It
is based on the so-called xor folding, in which the components
of the flow identifier are shifted by a predetermined number
of bits and then summed by means of the xor function [24].
These implementations lead to high-speed pipelined structures.
SipHash is a family of pseudorandom functions optimized
for short inputs. Target applications include network traffic
authentication and hash-table lookups [25]. A V H D L imple
mentation is available at https://131002.net/siphash

Fig. 1. Hash table with separate chaining.
H I . P L A T F O R M F O R H A S H F U N C T I O N D E S I G N

The quality of non-cryptographic hash functions is evaluated
based on their collision resistance (good hash functions should
generate a minimum number of collisions), the avalanche ef
fect (similar input vectors should produce completely different
outputs), the distribution of outputs, the execution time and the
table load factor (for a given memory size).

In our previous work, we developed a platform for evolu
tionary design of hash functions that are suitable for network
flow hashing within the S D M concept [12]. The objective
was not only to evolve high quality hash functions for this
application, but also to optimize the execution time as the
hash function is called very often.

258

https://131002.net/siphash

A. Network flow hashing

The hash function is constructed for the hash table in which
the collisions are handled with the separate chaining method.
In IPv4, a network flow is defined using 104 bits representing
the source IP address (32 b), the destination IP address (32 b),
the source port (16 b), the destination port (16 b) and the
transport protocol (8 b). In order to reduce the execution time,
these inputs are processed in parallel, i.e. the hash function
would consume 104 input bits. We proposed to reduce the
dimension of the input vector to 3 x 3 2 = 96 bits in such
a way that the source and destination IP addresses remain in
the original format and a new 32 bit vector is created from
the source and destination port (sp, dp) and transport protocol
(tp) according to formula [11]

((sp « 16) V dp) © tp.

As the real traffic especially contains two types of transport
protocol (TCP and U D P) , there is not a significant loss
of information using this reduction of the input vector. In
addition, the input vector fits into three 32 bit registers which
makes its processing straightforward on a common 32 bit
processor. Finally, the resulting hash is represented on 16 bits.

B. Linear genetic programming

Linear genetic programming (LGP) [26], [27], [28] evolves
computer programs that are represented as sequences of in
structions for a register machine. The input and output program
values are stored in the registers or in an external data memory.
In our case, no external memory is needed because the 96 bit
input can be stored in three registers (rO, r l and r2) and the
resulting hash is in the register rO. The remaining registers are
initialized to 0. The number of registers available in the register
machine is constant. Each instruction is typically represented
by the instruction code, destination register and two source
registers, for example, [xor, r4, r l , r2] is representing the
operation r4 = r l xor r2. Based on many experiments, a
very restricted instruction set containing the addition, mul
tiplication, logical X O R and right rotation was employed in
our experiments. In some experiments, multiplication is even
avoided to reduce the execution time of the resulting hash
function. The impact of (not)supporting the multiplication
on the execution time and quality of hashing was analyzed
in [11]. The program size is restricted to contain only several
instructions (usually less than 20) in order to force L G P to
create short programs.

L G P typically operates with 200 individuals in the popula
tion, one-point crossover with probability 90 %, mutation prob
ability 15% and tournament selection [11], [12]. The register
machine contains eight 32 bit registers. In our experiments,
1000 generations are produced in each L G P run.

C. Fitness functions

Two objectives can be optimized by the proposed platform:
the quality of hashing and the execution time of a hash
function.

In order to evaluate a candidate hash function, it is executed
with a set of flow identifiers. Executing the hash function leads
to inserting the flow identifiers to the hash table and creating
appropriate lists for al l slots showing a collision. Let Ki inputs
(keys) be mapped into i-th memory slot by a candidate hash
function h. Then the fitness f(h) is defined as the weighted
number of collisions:

.S'

j=i

f 0 i f Ki < 1
5 1 = \ E f 4 i 2 i f ^ > 2 (2)

and s is the number of memory slots. This function clearly
penalizes candidate hash functions showing many collisions
and thus long lists in the hash table with separate chaining.
The following example demonstrates the fitness evaluation:
Consider that two flow identifiers are assigned to slot i = 3,
three input identifiers are assigned to slot i = 10 and 0 or
1 input is assigned to the remaining slots (s = 20). Then
f(h) = 2 2 + (2 2 + 3 2) = 17. The objective is to minimize
f(h).

Candidate programs usually contain redundant instructions.
For example, they could contain instructions whose result is
not used by any other instruction or whose execution does
not affect contents of the registers. These instructions can
be removed. As modern processors support S I M D (Single
Instruction Multiple Data) processing via the S S E and A V X
extensions, we re-arrange the candidate programs to fit this
scheme [12]. For example, modern C P U s can typically process
256 bits at once which means that eight 32-bit operations
can be executed in one instruction instead of executing eight
instructions sequentially. The execution time of a candidate
program then corresponds to the number of blocks of instruc
tions, where one block contains all instructions that can be
executed in parallel.

In a multi-objective scenario implemented by means of
the N S G A - I I algorithm [29], L G P thus tries to minimize
the number of collisions and the number of instructions (or
instruction blocks) [12].

D. Results

The network data used in experiments were collected with a
network monitoring device installed in our research computer
network. The network data were divided into three data sets
containing 20,000 (DataSetl), 50,000 (DataSet2) and 100,000
(DataSet3) identifiers of network flows. Note that the iden
tifiers of network flows are unique. DataSetl is used as a
training set for L G P .

F ig . 2 shows all Pareto fronts (the weighted number of
collisions vs. the number of instructions in C code) obtained
from 30 independent runs of L G P . We identified seven hash
functions N S G A H a s h l - NSGAHash7 covering the Pareto
front for a further analysis.

Evolved hash functions and selected conventional hash
functions were implemented in C and compiled with the

259

T A B L E I

T H E N U M B E R O F C O L L I S I O N S . IV. H A S H F U N C T I O N S IN F P G A

The number of coll isions
Hash function DataSet l DataSet2 DataSet3
D J B H a s h 2835 15113 48925
D E K H a s h 2926 15247 49017
F V N H a s h 2756 14957 48780
One A t T i m e 2821 14988 48636
lookup3 2742 15009 48737
M u r m u r 2 2800 15050 48749
Murmur3 2744 14911 48763
C i t y H a s h 2807 14990 48647
G P H a s h 2777 15052 48750
E F H a s h 5317 25266 63175
X O R H a s h 2864 15011 48575
SipHash 2835 14934 48622
N S G A H a s h l 2923 15677 49336
N S G A H a s h 2 2746 15170 48835
N S G A H a s h 3 2689 15575 49292
N S G A H a s h 4 2692 15010 48715
N S G A H a s h 5 2759 14975 48749
N S G A H a s h 6 2650 14839 48680
N S G A H a s h 7 2639 14975 48650
m i x H a s h 2716 15006 48716

T A B L E I I

T H E A V E R A G E E X E C U T I O N T I M E O N I N T E L X E O N E 5 - 2 6 2 0 V 3

Hash function
DataSet l

T i m e [ms]
DataSet2 DataSet3

D J B H a s h 1.069 3.608 9.690
D E K H a s h 0.890 3.210 8.647
F V N H a s h 1.021 3.546 9.556
One A t T i m e 1.361 4.568 12.024
lookup3 0.721 2.670 7.473
M u r m u r 2 0.787 2.868 7.871
Murmur3 0.929 3.304 8.892
C i t y H a s h 0.760 2.736 7.603
G P H a s h 1.448 4.749 12.406
E F H a s h 1.871 13.560 48.132
X O R H a s h 0.649 2.390 6.774
S ipHash 4.061 10.147 23.442
N S G A H a s h l 0.568 2.871 8.642
N S G A H a s h 2 0.560 2.182 6.334
N S G A H a s h 3 0.541 2.871 8.500
N S G A H a s h 4 0.561 2.168 6.267
N S G A H a s h 5 0.564 2.191 6.394
N S G A H a s h 6 0.559 2.192 6.369
N S G A H a s h 7 0.593 2.295 6.883
m i x H a s h 0.566 2.178 6.352

identical compiler settings. These implementations were then
used to evaluate the number of collisions (Table I) and C P U
execution time (Table II) on test data sets.

Table II gives the average execution time needed to process
all data sets 20 times. NSGAHash4 provides the shortest
execution time because a good tradeoff between the number
of collisions and the complexity of the hash function was
discovered by L G P .

In summary, it was shown using real world network data that
the proposed platform can provide high-quality compromise
solutions (in terms of the execution time and the quality of
hashing) in comparison with commonly used hash functions
and specialized hash functions available in the literature.

The hash functions evolved by L G P were optimized with
respect to the number of collisions and the execution time on
a C P U . L G P also tried to maximize the number instructions
that can be executed in parallel. This property is useful from
the hardware perspective as the evolved functions contain
arithmetic operations that can be executed in parallel and the
execution time can thus be minimized.

A. FPGA implementation

We analyzed evolved hash functions N S G A H a s h l - N S -
GAHash7 and created their V H D L structural implementations
according to evolved programs. In order to maximize the
operation frequency, we inserted synchronization registers to
enable the pipelined processing. Examples of resulting im
plementations are shown for NSGAHash4 , NSGAHash5 and
N S G A H a s h 6 in Fig . 3, 4 and 5. The network flow description
is provided in 32 bit registers iO, i l and i2. Each stage of
the pipeline contains a 32 bit function (such as addition,
logic operation, rotation or no operation) followed by a 32
bit register R. Rotation is implemented by reconnecting the
input signals according to a given bit count, i.e. no special
function such as a barrel shifter is needed. The resulting 16
bit hash value is obtained from a 16 bit X O R function.

N S G A H a s h l - NSGAHash7 were synthesized using X i l l i n x
ISE 14.4 tool for three different X i l i n x F P G A s , namely
Spartan-6 (xc6slxl50), Virtex-6 (xc6vlx550t) and Virtex-7
(xc7vx550t). Table III summarizes all important parameters:
the latency, the number of look-up tables (LUTs) , the number
of flip-flops (FFs), delay and maximum operation frequency.
In order to provide examples of conventional hash functions,
we also implemented X O R H a s h [24] and SipHash [25] and
listed their parameters in Table III. It has to be noted that
other conventional hash functions are more complex than the
selected functions and their hardware implementation would
not bring any advantages to our target application. One can
observe that evolved hash functions are more compact than
conventional hash functions (the number of L U T s and FFs
was significantly reduced) and exhibit a small initial latency
of 2^1 clock cycles. The execution time is comparable with
X O R H a s h , but SipHash is much slower than evolved hash
functions.

B. Re configurable hash function

In order to design a reconfigurable hash function that could
be used in the security use-case sketched in Section I, a
natural solution would be to implement desired hash func
tions on the F P G A and select one of them by means of a
multiplexer. Detailed analysis of NSGAHash4 , NSGAHash5
and N S G A H a s h 6 shown in Fig . 3, 4 and 5, however, revealed
that these hash functions are structurally very similar. We took
into account this fact and designed a new reconfigurable hash
function (RecoHash) that contains all these hash functions. The
multiplexers are carefully placed and used to switch among
subcircuits of these hash functions rather than the whole
hash functions. RecoHash has four different configurations,

260

14

12

tu
o
u
Ü
21

IC

—

zu

E

0
3200

• 14
• 12
• 11
• 3

• 7

• 6
• 5

• 4- +
N S G /

NS

>.Hash7

GAHashfi

• 11
• 3

• 7

• 6
• 5

NSGAHa:

tJSGAH.

ih5

ash4

* 4
• 3

2
^ N S G A h .: h

N S G A H a ; ,Jl2

1

N S G A h a s h l

• 1

3400 3600 3800 4000 4200
The weighted number of collisions

4400 4600

unsigned inl NSt;AHnsh4 (input){
r[D). r [l l . r[2] = input;

r[l] = rotitfl], 22);
rl3J = f[2J + r[0J;
rlOl = r [l j + r[3J;
m u m r|0J fr|0] » 161:

}
unsigned inl NSfiAHashS (inpul);

r f n i . r f l l . r[2] = input;

r[4] = r [l] S r lO] ;
r [l] = rcjtr|rl4], 22),
r[3] = r[2] + r[01;
m = r [l j + r[3];
return rfO] * <r[CJ » 16);

}
unsigned mi NSGAHoshd (inpurij

rfO], r [l] , r[2] = input;

r[7] = rqtrfrfO], 7);
r[41 = r [l l * i(0]i
r[11 = rotr(r[4]> 22);
r[3] = r[2] + r[7];
r[0] =r[J]+ r[3];
return r[0] ffl (r|G] » 16);

• ̂

J '

RuL
(22)

Fig. 2. Resulting Pareto fronts created from 30 independent runs of LGP.

u
II" 31]

Output
reduction

Fig. 3. Pipelined implementation of NSGAHash4.

r

-r

1221

I
I
I O u t p u t

reduct ion

Fig. 4. Pipelined implementation of NSGAHash5.

implementing NSGAHash4 (mode 00), NSGAHash5 (mode
01), N S G A H a s h 6 (mode 10) and mixHash (mode 11), where
mixHash is a mixture of the former functions.

The synthesis results given in Table III clearly show the
main benefits of RecoHash. For example, in the case of the
implementation in Virtex-7, its size (144 L U T s) is significantly
smaller than the sum of the L U T s needed to implement its core
hash functions (80 + 112 + 112 = 304 LU Ts) . The same also
holds for FFs (144 < 3 x 122). The max. operation frequency
of RecoHash is very close to the fastest hash functions.

Figure 7 shows all key parameters (LUTs , delay and
the number of collisions) for all evolved hash functions,
conventional hash functions and RecoHash. The number of
collisions is given for the most challenging DataSet3. Because
of the pipeline structure, evolved hash functions exhibit a very
similar delay. The only exception is NSGAHash7 which is
more complex due to multipliers that were implemented by
D S P blocks available in the F P G A .

Finally, by means of 1 mil l ion input vectors we analyzed
how many flows are hashed by RecoHash to the same index
by means of its different configurations. As these numbers are

261

T A B L E III

S Y N T H E S I S R E S U L T S F O R D I F F E R E N T T Y P E S O F X I L L I N X F P G A S . * N S G A H A S H 7 U S E S 3 D S P B L O C K S F O R M U L T I P L I C A T I O N

Hash function
F P G A Type Latency

Number
of L U T s

Number
of FFs

Delay
[ns]

max. frequency
[M H z]

Spartan-6 4 989 521 10.501 95.23
S ipHash Virtex-6 4 1061 521 6.449 155.06

Virtex-7 4 1061 521 5.469 182.84
Spartan-6 7 291 228 2.395 417.54

X O R H a s h Virtex-6 7 291 228 1.771 564.65
Virtex-7 7 291 228 1.594 627.35
Spartan-6 2 48 48 3.133 319.18

N S G A H a s h l Virtex-6 2 48 48 1.452 688.71
Virtex-7 2 48 48 1.353 739.10
Spartan-6 3 80 112 2.358 424.09

N S G A H a s h 2 Virtex-6 3 80 112 1.766 566.25
Virtex-7 3 80 112 1.589 629.33
Spartan-6 2 48 48 3.133 319.18

N S G A H a s h 3 Virtex-6 2 48 48 1.452 688.71
Virtex-7 2 48 48 1.353 739.10
Spartan-6 3 80 112 3.133 319.18

N S G A H a s h 4 Virtex-6 3 80 112 1.766 566.25
Virtex-7 3 80 112 1.589 629.33
Spartan-6 3 112 112 3.170 315.46

N S G A H a s h 5 Virtex-6 3 112 112 1.766 566.25
Virtex-7 3 112 112 1.589 629.33
Spartan-6 3 112 112 3.170 315.46

N S G A H a s h 6 Virtex-6 3 112 112 1.766 566.25
Virtex-7 3 112 112 1.589 629.33
Spartan-6 4 80* 161 11.541 86.65

N S G A H a s h 7 Virtex-6 4 80* 161 6.208 161.08
Virtex-7 4 80* 161 5.432 184.09
Spartan-6 4 144 240 3.049 327.98

RecoHash Virtex-6 4 144 240 1.766 566.25
Virtex-7 4 144 240 1.589 629.33

Bit
A D D R Rat

(22)

' 11* -31] 1 1 lit/ . I
/ " |

V
Out

1 / *
Out

1 18b/ . 1
1 ' ' 10-L3) 1
I |

Output
reduction 1 1

F i g . 5. Pipel ined implementation o f N S G A H a s h 6 .

very low (e.g., 0.0021% for NSGAHash4 and NSGAHash5 ;
0.0017% for NSGAHash4 and NSGAHash6 ; and 0.0008% for
NSGAHash5 and NSGAHash6) , we concluded that RecoHash
provides significantly different hash values in its operation
modes.

V. C O N C L U S I O N S

Motivated by the recent need for the high-speed network
flow processing in F P G A s , we proposed efficient hardware
implementations of hash functions for an F P G A , including a
reconfigurable hash function. The proposed solution exploits a
multi-objective L G P capable of designing and optimizing not

r , "X

F i g . 6. Reconfigurable hash function RecoHash.

only the quality of hashing, but also the execution time of hash
functions. Because of these properties, evolved hash functions
(i.e. sequences of instructions) could directly be translated
to a V H D L structural description, synthesized and evaluated
on several F P G A s . Compared with conventional solutions,
evolved implementations require less area in the F P G A while
the maximum operation frequency is slightly higher.

We exploited the structural similarity of several hash func
tions and combined them together to create a reconfigurable

262

Z 600 -
_

_
£ 400

. SipHash

XORHash

/
N5GAHash7

, NSGAHasht
/ / RecoHash

NSGAHashS
NSGAHash2

N S G A H a s h l

NSGAHash3 .

48600 48700 48800 48900 49000 49100 49200 49B00
The number of coll isions

SipHash

XORHash
NSGABashe

£GAHash4
/ NSGAHash5

NSGAHash3

V
N S G A H a s h l

RecoHash m l x H a 5 h

48600 4B700 48800 4B900 49000 49100 49200 49300
The number of coll isions

F i g . 7. Parameters of implementations of hash functions in Vir tex-7. The
number of coll isions is given for DataSet3.

hash function RecoHash. RecoHash requires less area in the
F P G A than any solution based on multiplexing of the available
hash functions. RecoHash can also be used as a building block
of more complex hashing schemes.

The quality of hashing was evaluated with the data coming
from real network flows. In our future work, we plan to
integrate selected hardware implementations of hash functions
into S D M system and evaluate them in the real online scenario.

A C K N O W L E D G M E N T S

This work was supported by The Ministry of Education,
Youth and Sports of the Czech Republic I N T E R - C O S T
project LTC18053. The authors would like to thank Dr. Martin
Zadnik for his valuable comments to this research.

R E F E R E N C E S

[1] D. E. Knuth , The Art of Computer Programming (Volume 3), 1973.
[2] W. D. Maurer and T. G. Lewis , "Hash table methods," ACM Computing

Surveys (CSUR), vo l . 7, no. 1, pp. 5-19, 1975.
[3] D . J . Bernstein, "Mathematics and computer science,"

https://cr.yp.to/djb.html.
[4] G. Fowler, P. V o , and L . C N o l l , " F V N Hash,"

http://www.isthe.com/chongo/tech/comp/fnv/.
[5] B . Jenkins, " A hash function for hash table lookup,"

http://www.burtleburtle.net/bob/hash/doobs.html.

[6] A . Appleby, " M u r m u r hash functions,"
https://github.com/aappleby/smhasher.

[7] G . P ike and J . Alakui ja la , "Introducing cityhash," 2011.
[8] R . C . Merk le , "Secrecy, authentication, and public key systems," P h . D .

dissertation, Stanford University, 1979.
[9] M . Safdari and R. Joshi , " E v o l v i n g universal hash functions using

genetic algorithms," in In Proc. of the Future Computer and Communi
cation, 2009, pp. 84-87 .

[10] C . Estebanez, Y . Saez, G . Recio , and P. Isasi, "Automatic design of
noncryptographic hash functions using genetic programming," Compu
tational Intelligence, vo l . 30, no. 4, pp. 798-831 , 2014.

[11] D . Grocho l and L . Sekanina, "Evolut ionary design of fast high-quality
hash functions for network applications," i n Proc. of the 2016 Genetic
and Evolutionary Computation Conference. A C M , 2016, pp. 901-908.

[12] , "Mult iobject ive evolution of hash functions for h igh speed net
works," in Proceedings of the 2017 IEEE Congress on Evolutionary
Computation. I E E E Computer Society, 2017, pp. 1533-1540.

[13] P. Berarducci , D . Jordan, D . Mar t in , and J . Seitzer, "Gevosh: Us ing
grammatical evolution to generate hashing functions." in MAICS, 2004,
pp. 31-39 .

[14] H . Widiger, R. Salomon, and D . Timmermann, "Packet classification
wi th evolvable hardware hash functions-an intrinsic approach," in In
ternational Workshop on Biologically Inspired Approaches to Advanced
Information Technology. Springer, 2006, pp. 64-79 .

[15] P. Kaufmann, C . Plessl , and M . Platzner, "EvoCaches : Appl ica t ion-
specific Adaptation of Cache Mappings ," in Adaptive Hardware and
Systems (AHS). I E E E C S , 2009, pp. 11-18.

[16] M . K i d o n and R . Doba i , "Evolut ionary design o f hash functions for ip
address hashing using genetic programming," in Evolutionary Compu
tation (CEC), 2017 IEEE Congress on. I E E E , 2017, pp. 1720-1727.

[17] Z . A . Kocs i s , G . Neumann, J . Swan, M . G . Epitropakis, A . E . Brownlee,
S. O . Haraldsson, and E . Bowles , "Repair ing and opt imizing hadoop
hashcode implementations," in International Symposium on Search
Based Software Engineering. Springer, 2014, pp. 259-264.

[18] J . Karasek, R. Burget, and O . Morsky , "Towards an automatic design
of non-cryptographic hash function," in 34th Int. Conf. on Telecommu
nications and Signal Processing (TSP), 2011, pp. 19-23.

[19] C . Estebanez, J . C . Hernandez-Castro, A . Ribagorda, and P. Isasi, " F i n d
ing state-of-the-art non-cryptographic hashes wi th genetic program
ming," in Parallel Problem Solving from Nature-PPSN IX. Springer,
2006, pp. 818-827.

[20] C . Estebanez, J . C . Hernandez-Castro, A . Ribagorda, and P. Isasi,
" E v o l v i n g hash functions by means of genetic programming," i n Pro
ceedings of the 8th annual conference on Genetic and evolutionary
computation, 2006, pp. 1861-1862.

[21] R . Salomon, H . Widiger, and A . Tockhorn, " R a p i d evolution o f time-
efficient packet classifiers," in 2006 IEEE International Conference on
Evolutionary Computation, 2006, pp. 2793-2799.

[22] E . Damiani , A . G . B . Tettamanzi, and V . L ibera l i , "On- l ine evolution
of fpga-based circuits: a case study on hash functions," in Proc. of the
First NASA/DoD Workshop on Evolvable Hardware, 1999, pp. 26-33 .

[23] R . Doba i , J . Korenek, and L . Sekanina, "Evolut ionary design of hash
function pairs for network filters," Applied Soft Computing, vo l . 56,
no. 7, pp. 173-181, 2017.

[24] Z . Cao and Z . Wang, " F l o w identification for supporting per-flow queue-
ing," i n Computer Communications and Networks, 2000. Proceedings.
Ninth International Conference on. I E E E , 2000, pp. 88-93.

[25] J.-P. Aumasson and D . J . Bernstein, "Siphash: A fast short-input P R F , "
in Progress in Cryptology - INDOCRYPT 2012. Springer, 2012, pp.
489-508 .

[26] M . Brameier and W . Banzhaf, Linear genetic programming. N e w York:
Springer, 2007.

[27] M . Oltean and C . Grosan, " A comparison of several linear genetic
programming techniques," Complex Systems, vo l . 14, no. 4, pp. 2 8 5 -
314, 2003.

[28] G . W i l s o n and W. Banzhaf, " A comparison of cartesian genetic pro
gramming and linear genetic programming," in Genetic Programming.
Springer, 2008, pp. 182-193.

[29] K . Deb, A . Pratap, S. Agarwal , and T. Meyar ivan, " A fast and elitist
multiobjective genetic algorithm: N S G A - I I , " IEEE transactions on evo
lutionary computation, vo l . 6, no. 2, pp. 182-197, 2002.

263

https://cr.yp.to/djb.html
http://www.isthe.com/chongo/tech/comp/fnv/
http://www.burtleburtle.net/bob/hash/doobs.html
https://github.com/aappleby/smhasher

