
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

VPN CONTROLLER
VPN KONTROLÉR

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR ONDŘEJ FABIÁNEK
AUTOR PRÁCE

SUPERVISOR Ing. MATĚJ GRÉGR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2019

Brno University of Technology
Faculty of Information Technology

Depar tmen t of In format ion S y s t e m s (DIFS) A c a d e m i c year 2 0 1 8 / 2 0 1 9

Master's Thesis Specification
21892

Student :

P r o g r a m m e :

Tit le:

F a b i a n e k O n d r e j , B e .

In format ion Techno logy Field of s tudy : C o m p u t e r N e t w o r k s a n d C o m m u n i c a t i o n

V P N C o n t r o l l e r

Category : N e t w o r k i n g

Ass ignmen t :

1. S t u d y cur rent a p p r o a c h e s for m a n a g i n g ne twork ing nodes.

2. Des ign a control ler for m a n a g i n g a large n u m b e r of V P N routers. T h e contro l ler shou ld suppor t at least the

fo l lowing features : au thent ica t ion , m a n a g e m e n t of router 's ne tworks , c luster ing routers to d i f ferent g r o u p s ,

moni tor ing routers heal th a n d conf igur ing c u s t o m f i l ter ing rules.

3. Imp lement the control ler a n d eva lua te requ i red funct ional i ty .

4. Ana lyze resul ts a n d d i scuss poss ib le ex tens ions .

R e c o m m e n d e d l i terature:

• R F C 7 0 1 8 : Au to -D iscovery V P N Prob lem S ta temen t a n d Requ i remen ts . V. Manra l , S. H a n n a . S e p t e m b e r

2 0 1 3 . D O I : 1 0 . 1 7 4 8 7 / R F C 7 0 1 8)

• C. Ad j ih et al., "F IT l o T - L A B : A large sca le o p e n exper imenta l loT tes tbed , " 2015 IEEE 2nd World Forum

on Internet of Things (WF-loT), M i lan , 2 0 1 5 , pp. 459 -464 .do i : 1 0 . 1 1 0 9 / W F - l o T . 2 0 1 5 . 7 3 8 9 0 9 8

• T. H u a n g , F. R. Y u , C. Z h a n g , J . L iu , J . Z h a n g a n d Y. L iu , "A Survey on La rge -Sca le So f tware Def ined

N e t w o r k i n g (S D N) T e s t b e d s : A p p r o a c h e s a n d Cha l lenges , " in IEEE Communications Surveys & Tutorials,

vo l . 19, no. 2 , pp. 8 9 1 - 9 1 7 , S e c o n d q u a r t e r 2 0 1 7

Requ i remen ts for the semes t ra l de fence :

• I tems 1 a n d 2.

Deta i led fo rma l requ i rements c a n be found at h t tp : / /www.f i t .vutbr .cz / in fo /szz/

Superv isor : G r é g r M a t ě j , I n g . , P h . D .

H e a d of Depar tment : Kolář D u š a n , doc . Dr. Ing.

Beg inn ing of w o r k : N o v e m b e r 1 , 2 0 1 8

S u b m i s s i o n dead l ine : M a y 2 2 , 2 0 1 9

A p p r o v a l da te : O c t o b e r 3 1 , 2 0 1 8

Master's Thesis Specification/21892/2018/xfabia07 Strana 1 z 1

http://www.fit.vutbr.cz/info/szz/

Abstract
The subject of this diploma thesis is to design architecture and develop implementation of
a flexible, scalable and secure system for managing virtual private networks, which would
provide networking of otherwise possibly disconnected routers and their respective local
networks. While the project is primarily focused around routers of Advantech manufacturer,
support of additional types of devices may be added later on.

Abstrakt
Tato práce se zabývá návrhem architektury a implementací flexibilního, škálovatelného a
bezpečného systému pro správu virtuálních privátních sítích, který by umožnil propojení
jinak nedostupných routerů a zařízení v jejich lokálních sítích. Ačkoli je systém primárně
určen pro použití s routery od výrobce Advantech, podpora jiných zařízení může být později
přidána.

Keywords
V P N , networking, routing, configuration

Klíčová slova
V P N , sítě, směrování, konfigurace

Reference
FABIÁNEK, Ondřej. VPN Controller. Brno, 2019. Master's thesis. Brno University of
Technology, Faculty of Information Technology. Supervisor Ing. Matěj Grégr, Ph.D.

Rozšířený abstrakt
Tato diplomová práce popisuje návrh, implementaci a zhodnocení systému pro propojování
směrovačů a zařízení za nimi do dynamicky konfigurovatelných virtuálních sítí. Pro tyto
účely byly nastudovány existující nástroje pro konfiguraci vzdálených prvků a technologie
pro vytváření V P N sítí. Pozornost byla též věnována podobnému již existujícímu řešení s
názvem SmartCluster.

Systém byl navržen jako hvězdicová topologie, kde jednotlivé směrovače navazují spojení
s centrálním prvkem, který určuje, kdo může komunikovat s kým. Pro jednotlivé směrovače
byla vyvinuta aplikace ve formě tzv. uživatelského modulu, což je speciální balíček, určený
pro vkládání rozšiřujícího softwaru do routerů od výrobce Advantech. Tato aplikace ob
starává navázání komunikace s centrálním prvkem (prostřednictvím OpenVPN) a následně
zpracovává příchozí požadavky.

Jako autentizační mechanismus jsou použity X.509 certifikáty, jenž jsou distribuovány
prostřednictvím další entity, zvané Dispatch server, ke které se každý centrální prvek reg
istruje, a jejímž certifikátem disponuje každý směrovač (je součástí instalace uživatelského
modulu).

Skrze centrální prvek lze směrovače dynamicky dělit do skupin a konfigurovat tak, s
kým mohou komunikovat. Pro každou skupinu lze navíc vkládat firewallová pravidla, jenž
budou ovlivňovat pouze komunikaci v rámci té dané skupiny.

Každý směrovač pro připojení do systému nahlásí seznam svých rozhraní a jejich ak
tuální konfiguraci. Tuto lze kdykoli prostřednictvím centrálního prvku měnit (mezi nas
tavitelné položky spadá např. konfigurace D H C P či IP adresy rozhraní). Každé rozhraní
lze navíc nastavit do jednoho ze 4 následujících módů, ovlivňujícího za ním se nacházející
zařízení:

• Local - zařízení nemají přístup do virtuální sítě a nejsou z ní adresovatelné

• Public - zařízení mají přístup do virtuální sítě a jsou adresovatelné jejich lokálními
IP adresami.

• 1:1 N A T - zařízení mají přístup do virtuální sítě a jsou adresovatelné pod přidělenými
virtuálními adresami. Toto umožňuje, aby spolu komunikovaly prvky, které by v
případě public módu nemohly, protože mají totožné lokální IP adresy.

• Ignored - zařízení nemají přístup do virtuální sítě a centrální prvek nebude sahat
na konfiguraci tohoto rozhraní.

V případě změny konfigurace zařízení, jenž je momentálně offline, si systém změny pamatuje
a doručí je do směrovače v momentě jeho opětovného připojení.

Pro každé nově přidané zařízení je vygenerováno U R L pro přístup na jeho webové
rozhraní skrze existující tunel, prostřednictvím centrální entity, fungující jako proxy server.
Tohoto je docíleno skrze konfigurační soubory webového serveru.

Ke všem zařízení je vedeno množství statistik, zahrnující mimo jiné údaj o množství
procházejících dat (skrze tunel) a jeho aktuální status (zda-li je online).

Ačkoli výsledné řešení obsahuje i webové stránky (pro ovládání centrálního prvku), jejich
tvorba nebyla součástí této diplomové práce, je to produkt třetí strany a nebude v této práci
nijak diskutován.

Po dokončení popisovaného systému byla provedena řada zátěžových testů. Jedná se o
test se 100, 300 a se 600 (simulovanými) směrovací. Pro potřeby těchto testů byla vytvořena
speciální verze uživatelského modulu, jenž je spustitelná na P C . Tento upravený modul

byl následně na několika fyzických strojích spuštěn v mnoha instancích, prostřednictvím
virtualizačního softwaru zvaného Docker. Z naměřených údajů vyplynulo, že systém je velmi
dobře škálovatelný z hlediska zabrané paměti a procesorové zátěže. Nejslabším prvkem se
ukázala být špatně optimalizovaná databáze, což při některých uživatelských akcích nad
velkými počty zařízení způsobuje špatnou odezvu uživatelského rozhraní.

Do budoucna je možné systém rozšířit i o jiné typy spravovaných zařízení. Radu aspektů
systému lze dále výrazně optimalizovat a zkrátit tak trvání některých operací.

V P N Controller

Declaration
I declare that I have prepared this Master's thesis independently, under the supervision of
Ing. Matěj Grégr, Ph.D. Further advice was provided to my by my work colleagues. I listed
all of the literary sources and publications that I have used.

Ondřej Fabiánek
May 21, 2019

Acknowledgements
I hereby want to thank to my supervisor and to everyone who provided me with proffesional
advice.

Contents

1 Introduction 3

2 Analysis of requirements 4
2.1 Architecture overview 4
2.2 Customer Server 4
2.3 Dispatch Server 6
2.4 Routers 6

3 Similar systems and existing tools 7
3.1 Configuration management tools 7

3.1.1 Ansible 7
3.1.2 Puppet 8
3.1.3 N E T C O N F 10

3.2 Current V P N Technologies 11
3.2.1 Virtual Private Network 12
3.2.2 OpenVPN 12
3.2.3 IPsec 13
3.2.4 SoftEther 14

3.3 SmartCluster 15
3.3.1 Tunneling scheme 15
3.3.2 Configuration scheme 16
3.3.3 Communication scheme 16
3.3.4 Important differences 16

3.4 Summary 16

4 System design 18
4.1 Tunneling scheme 18

4.1.1 Setup 18
4.1.2 Addresing 18
4.1.3 Routing 19
4.1.4 Online detection 20
4.1.5 Authentication 20

4.2 Firewall and groups 20
4.2.1 Structure of iptables 21
4.2.2 Group management 21
4.2.3 Custom filtering rules 22

4.3 Router management 23
4.3.1 Communication protocol 24

1

4.3.2 Set L A N operation 24
4.3.3 Routing update operation 26
4.3.4 Reconnect operation 26
4.3.5 Retrieve configuration operation 26

4.4 Security concept 26
4.4.1 Certificate placement 26
4.4.2 Initial actions 27

4.5 Proxy 28
4.6 Transaction system 29

4.6.1 Database 3 0

4.6.2 External A P I 30
4.6.3 Pending configuration 30
4.6.4 Execution of transactions 31
4.6.5 Error handling 31

5 Implementation 32
5.1 External A P I 32
5.2 User module 32
5.3 Customer Server 34
5.4 Dispatch Server 36
5.5 Security measures 36

5.5.1 "Pretending to be a CS" attack 36
5.5.2 IP spoofing 37

6 Stress tests 3 8

6.1 Docker 38
6.2 Fargate 38
6.3 Router agents 39
6.4 Setup 39
6.5 Preparation 39
6.6 Measurements 40
6.7 Scenarios 41

6.8 Results 4 1

7 Conclusion 43

Bibliography 44

2

Chapter 1

Introduction

Many industrial routers, spread all over the world, are placed in remote locations where
the only way to access the internet is through a mobile connection. When a network
administrator needs to access one of these routers, which are often located in busses, trains,
mountains, and other places that are difficult to physically access, he faces a problem:
mobile devices often do not have public IP addresses. They are hidden behind a network
address translation (NAT). Rather than having to always travel to the router or paying more
money for a better deal with the internet service provider, the administrator has several
choices. He could use IPv6 addresses. Those are more plentiful and they are significantly
cheaper. However, since not all internet providers offer IPv6 addresses and the fact that
IPv6 N A T also exists, the cheapest and broadly usable solution can often be the use of a
virtual private network (VPN) . This not only solves the initial problem, but also brings the
advantage of higher security.

The aim of this diploma thesis is to design and implement a V P N based system that
would allow administrators easy access to such routers, and also provided a way to make
dynamic changes to the topology of the network. Through clustering routers into groups,
the administrator would be able to enable traffic flow between some routers, while denying
it elsewhere, without a regard to whether the affected routers are currently online. Further,
settings of each L A N interface, of every router, will be managed by a central station, and
access into/from the V P N can be granted to devices behind some interfaces and denied
to those behind others. Where 2 or more L A N s use overlapping ranges of IP addresses, a
user may simply set the relevant interfaces into a virtualized mode (on the central station),
upon which they will be assigned ranges of virtual addresses, making the local devices
addressable from the V P N . Those and many other features are described in greater detail
in chapter 2. In chapter 3 can be found examination of similar existing systems and tools.
Their shortcomings and strengths will be evaluated and their usability for our purposes
discussed.

Chapter 4 lays out a solution that can be used for implementation of the desired sys
tem. Various design choices are presented there and the reasoning behind them explained.
Chapter 5 then offers a closer look at a selection of problems that were encountered during
implementation and to how they were resolved.

Chapter 6 is dedicated to assessment of the created system. Various measurements of
performance are conducted and their results discussed.

The solution presented in this paper is tailored primarily for use with routers of Ad-
vantech manufacturer, nevertheless, every attempt will be made to make it possible to add
support for other types of devices in the future.

3

Chapter 2

Analysis of requirements

The final system is intended to meet real life needs of a router-manufacturing company.
For this reason there are several requirements on its architecture and functionality, which
will be introduced in this chapter.

2.1 Architecture overview

The system architecture can be broken down into 3 main components: Customer Server
(CS), which is the central hub where all the devices connect to and where all the manage
ment takes place; Dispatch Server (DS), used for licensing purposes and to help routers
locate their CS; and routers with their respective L A N s , who want to communicate with
each other.

The system must be easily scalable and capable of handling thousands of devices at
the same time. A l l communication between the components must be encrypted and secure
against Man-in-the-middle and other types of attacks. Before any new device is allowed to
participate in communication within the V P N , its identity must first be verified, so as to
prevent any unauthorized and possibly malicious devices from gaining access.

Figure 2.1 shows an overview of the mentioned components. There are 3 main lines of
communication where authentication is important:

• CS to DS - Registration of CS's current IP address.

• DS to router - Passing of information about the CS to which the router belongs.

• Router to CS - Establishment of a secure channel through which all future commu
nication would flow.

IPv6 support will not be included in this thesis. Nevertheless it is planned to be added
later on and as such it needs to be considered during all major decisions.

2.2 Customer Server

This is where the brunt of the work is done. A l l the traffic between connected routers
(and their LANs) flows through CS and is routed from here to where it belongs. It must
allow communication only between the routers that are grouped together. Each router can
be in any number of groups. It must be possible to create new groups, delete them and

4

LAN_1
Device

Figure 2.1: Main components of the system.

to insert/remove devices from them. CS must also support adding and deleting custom
filtering rules, which would be applied on all traffic between devices in the selected group.

CS needs to monitor which routers are online and which are not. Another requirement
is that it must be able to configure router's L A N settings for its non-WAN interfaces,
including D H C P , IP address and netmask.

A l l management operations must be possible even when the connection between CS and
a device is lost. In such scenario, the CS must remember the changes and deliver them to
router when it becomes online. In case of any failures, the system must be able to revert
to a previous state. Whenever a new router is connected, it must declare what non-WAN
configured interfaces it currently has. Only those should be modifiable through CS. Each
individual interface can be used in 1 of the following modes:

• public mode,

• private mode,

• 1:1 N A T mode,

• ignored mode.

Public mode is used when the L A N of which the interface is member, should be visible
within the V P N . Devices that are within the same group (as the router whose interface we
are referring to) can then address members of this L A N under their local IPs, and members
of this L A N gain access into the V P N .

5

Private mode enables remote configuration for the given interface without granting its
L A N access into the V P N . The controller will ensure presence of that configuration on the
router and will attempt to correct any changes done locally. This feature is also present in
public mode.

1:1 NAT mode solves the issue of having multiple L A N s with conflicting IP addresses
that need to communicate with each other. It must make devices behind such interface
addressable under virtual IP addresses, instead of their local ones.

Ignored mode forbids the CS from managing the given interface.
It is required that routers' websites should be accessible from the internet via CS working

as a proxy, therefore some sophisticated web server is probably needed on CS. Deleting or
quarantining a device that is no longer wanted to have access into the system must also be
an option.

2.3 Dispatch Server

The main desired functionality of this component is to help routers to locate their owner's
CS (providing its IP address). It must also provide a way for CS to register its current IP
address there.

A mechanism needs to be designed that would allow DS to recognize what CS does a
given router belong to, so that it can provide him the right address. It must not be possible
to trick DS into revealing address of another customer.

Unlike in case of CS, whose IP address (or domain name) can change, the DS should
always be available at the same public address. Because of this, routers can have its address
pre-configured and through communication with it be able to obtain current address of
their CS. This allows the customer to change address of his CS without any need to go and
reconfigure the routers.

2.4 Routers

The system is primarily designated for use with Advantech routers of v3 generation or
newer. These devices are running a Linux distribution and offer an easy way to install
additional software in the form of packages called "user modules". In theory any C / C + +
written program that runs under Linux can be cross-compiled and installed there as a
user module. However, there are strict storage size limitations that need to be taken into
account. Total space that can be taken by user modules differs across router types, but
at times can be very restrictive and it is desirable to use as little of it as possible for our
purpose.

A l l of the routers already contain within their firmware various networking tools that we
are free to use. Foremost of those is plethora of tunneling software, including OpenVPN,
IPsec and GRE1. Each router can have up to 3 physical Ethernet ports. Most of them
also have a W i F i module, although some do not. A l l of the routers have an interface for
communication through a mobile network.

X G R E - Generic Routing Encapsulation

G

Chapter 3

Similar systems and existing tools

This chapter presents an overview of available tools whose use for major parts of the system
had to be considered. Attention will also be given to researching systems similar to ours to
identify their flaws and to try to learn from them.

3.1 Configuration management tools

The central node (Customer Server) needs to send commands to routers. These commands
may range from simple changes of L A N configuration to arbitrary shell commands whose
need is not yet apparent. Besides flexibility of the communication protocol, 2 more aspects
need to be considered: amount of traffic it produces, and how well it can be combined with
a tunneling technology (it would be detrimental to scaling to have, for example, 2 layers of
encryption where 1 would suffice).

From among many existing applications for remote configuration management, two have
been chosen to be described here as representatives of push-down (Ansible) and pull-down
(Puppet) architecture.

3.1.1 Ansible

Ansible is a simple and yet powerful open source automation tool that can be used for
configuration management, software provisioning and application deployment. Its main
advantage and distinguishing feature is the use of an agentless architecture (it does not
require a special client application to be installed on the devices that we want to manage)
[19].

After setting up its configuration on the central station, it works by running easy to
understand commands that can be aggregated into special scripts called playbooks. On their
execution those are transformed into potentially more complicated, platform specific code
that is executed on remote devices via SSH [32]. OpenSSH (or other implementation of it)
is present in nearly all devices that could be used as routers in our system and therefore its
need is inconsequential. However, to benefit from full strength of Ansible, all clients need
to also have Python installed [14].

The simplicity of usage is achieved through use of so called modules. When construct
ing an Ansible command, the user types in the name of a specific module with a set of
parameters. The complexity is hidden within implementation of that module. It can use
information known about the target's platform to choose how to accomplish its task. The
user types what needs to be done and the module takes care of how [23]. Ansible comes with

7

many different modules, including one that can be used to run arbitrary shell command on
the remote machine. Most modules require Python to be installed on remote devices [14].
There is also possibility of writing a new module when necessary [16].

Each command (task) prints, upon completion, information about its status and results.
To target multiple devices, there is a file containing their IP addresses. The file can be
divided into named sections. To perform a task on multiple remote machines, the name of
a section can be used to select a particular group of devices. It is then executed in parallel
for all targets [15].

When a playbook with multiple tasks is run, it always attempts to complete the current
task for all selected devices before starting another [18]. Behavior on task's failure during
playbook execution is highly customizable. It can skip failed hosts in the remaining tasks,
ignore the failure or abort the playbook's execution altogether. It is also possible to specify
the number of retries for each task and many other parameters.

[root@>centos7 ~]# ansible-playbook /etc/ansible/playbooks/apache.yml

PLay [webservers] ***

GATHERING FACTS ***
ok: [192.168.0.30]
ok: [192.168.0.29]

TASK: [ensure apache i s at the l a t e s t v e r s i o n] ********************************
ok: [192.168.0.29]
ok: [192.168.0.30]

TASK: [replace d e f a u l t index.html f i l e] ***************************************
ok: [192.168.0.30]
ok: [192.168.0.29]

P L A Y RECAP **
192.168.0.29 : c changed=1 unreachable=0 failed=0
192.168.0.30 : c changed=1 unreachable=0 failed=0

Figure 3.1: Example of the output's format when running an ansible playbook.

Ansible supports also a limited use of other ways of communication than SSH. One
example of it would be using httpapi plugin, which enables communication via http(s)
protocol [17]. This, however, requires a client application implementing REST A P I to be
present on the routers [17].

As can be seen in figure 3.1, information about client devices are gathered (this can be
disabled) at the beginning of a playbook's execution. Those facts can then be referred to
through variables in definitions of the tasks that follow.

3.1.2 Puppet

Puppet is an agent-based configuration management tool, available in an open-source ver
sion [24]. It requires Puppet software to be installed on all of the managed machines, called
Puppet agents [24]. Each agent periodically sends data about itself to a central station
(called Puppet master) and pulls down information about relevant configuration changes
[11]. After applying any configuration update, the agent sends in a report informing the
Puppet master about the result [11].

8

Configuration instructions for agents are written in Puppet's custom declarative lan
guage, heavily inspired by Ruby [24]. They are stored on the master station in files called
manifests. Manifests support the use of variables, templates and conditional logic. There
is no direct mapping between separate manifest files and Puppet agents. Rather there is a
single main manifest file (or a directory of files treated as one) that governs all the agents
(usually by importing contents of other manifests) [24].

Whenever any device asks for a configuration update, the manifest files are compiled
into an information package called catalog. Unlike the manifests, a catalog contains only
data relevant to a single device [24].

Figure 3.2: Diagram depicting the Master-Slave architecture of Puppet (reproduced from
[33]).

Figure 3.3 shows an example of a simple manifest file. Notice the ability to directly
specify dependencies within the manifest. There are 3 modules used: exec, package and
service. Similarly to Ansible, many more modules are available and it is also possible to
write new modules [1]. If we wanted to specify which nodes (agents) are to be affected, we
could specify their names within the manifest.

Agent nodes use a tool called Facter (which can be used as a standalone application)
to collect information about their operating system [24]. Those can be used as variables
within the manifests [5]. After pulling a configuration update, the agent evaluates whether
any actions needs to be taken to achieve the desired state [7]. If the machine already was
configured as desired, then it does nothing [7].

A l l configuration related communication is done via an H T T P S protocol [11]. There
does not seem to be a way to disable encryption and authentication without changes to
Puppet's source code. When adding a new agent, there is a built-in support for creation
and validation of its X.509 certificate. Wi th a single command, the agent generates a key
pair and sends a certificate signing request to the Puppet master [2]. Once it is there, it
awaits to be manually validated by an administrator. Upon validation, the certificate is
automatically signed and delivered back to the agent, who is then ready to start pulling
configuration updates [2].

A Puppet's significant disadvantage is its inability to force an immediate push of con
figuration into the managed devices. It always has to wait for the time of a scheduled pull

9

request (or until someone with access to the agents forces them to pull a new configuration
through a special command) [8].

execute "apt-get update'
exec { "apt-update': exec resource named " apt-update'
command => "/usr/bin/apt-get update" # command t h i s resource w i l l run

}

I n s t a l l apache2 package
package { "apache2':

require => Exec['apt-update '], # require 'apt-update' before i n s t a l l i n g
ensure => i n s t a l l e d .

}

ensure apache2 service i s running
service { 'apaches':

ensure => running,
}

Figure 3.3: Example of a manifest file that ensures that apache2 is installed and running

3.1.3 N E T C O N F

N E T C O N F is a network management protocol. It specifies client-server communication
and the way configuration should be interacted with. It does not, in itself, define syntax for
writing configuration instructions [21]. Y A N G language has been developed and is widely
accepted for this purpose [20]. N E T C O N F ' s main strength is in support of network-wide,
transactional configuration changes. It means that if some network-wide change fails on a
single device, it can automatically revert the change back on all devices and thus keep their
state synchronized [21].

N E T C O N F protocol can be divided into 4 layers, as shown in figure 3.4. The Se
cure Transport layer ensures message delivery that upholds authentication, data integrity,
confidentiality, and replay protection [21]. While these properties are mandatory, N E T
C O N F ' S popular implementation in form of Ubnetconf2 C library offers the option to reuse
an already existing, pre-authenticated transport protocol connection by passing it its file
descriptor [31]. This means that if there already is a secure tunnel, use of N E T C O N F will
not necessarily require creation of a redundant TLS layer within it.

Messages layer provides a mechanism for encoding RPCs (Remote Procedure Calls) and
their replies [21]. Each message is a X M L document, containing a mandatory message_id
parameter, which is used to match requests with responses [21]. Every request must contain
a name of an R P C with its parameters and must later be followed by a reply, detailing
information about the success and possibly also the output of that operation [21].

Operations layer defines a set of operations that can be invoked as R P C [21]. Each
device needs to be running a daemon that handles them (typically by registering callback
functions to a N E T C O N F library). Support of the following basic operations is mandatory
for all devices [21]:

• get - retrieve a running configuration

• get-config - retrieve part of a specified configuration datastore

10

• edit-config

• copy-config

• delete-config

• lock, unlock

• close-session

• kill-session

change parts of a specified datastore

copy an entire datastore into another datastore

delete a datastore

temporarily lock a device's datastore from changes

request graceful termination of a session

force the termination of a session

The list of operations can be expanded via use of N E T C O N F ' s capabilities mechanism
[21]. Each device can, during a session establishment, declare its capabilities. Some of those
modify behavior of basic operations, others add new operations altogether. A n example
of this could be an Event Notifications capability, which adds operations for starting and
canceling subscription to receiving asynchronous event notifications from a device.

Content layer represents the configuration data that are being carried (for example as a
response to get-config operation). N E T C O N F does not define their format and will accept
any textual configuration data [21]. The protocol does, however, define existence of one
or more configuration datastores on each device [21]. Each such datastore is defined as
a complete set of configuration data that is required to get device from its initial default
state into a desired operational state [21]. The protocol does not specify how the datastores
should be implemented. In the base model there is only 1 datastore present: running-config.
Additional datastores may be defined through capabilities [21].

Layer
+ +

(4) | Content |
I I + +

I
+ +

(3) | O p e r a t i o n s I I + +
I

+ +
(2) | Messages | I I + +

I
+ +

(1) | Secure
Transport

+ +

Example
+ +

C o n f i g u r a t i o n
d s t a

4 4

I
4 4

•<edit-config>
I

4 4

I
4 4

<rpc>,
<rpc- r e p l y >

4 4

+ 4
N o t i f i c a t i o n

| data
+ 4

+ 4

| < n o t i f i c a t i o n > |
I I

+ 4

SSH, TLSj BEEP/TL5j SOAP/HTTP/TLS,
I

4

Figure 3.4: N E T C O N F Protocol Layers (reproduced from [21]).

3.2 Current V P N Technologies

Choosing the right underlying V P N protocol will have a great impact on many aspect of
our system. For this reason, relevant characteristics of several different V P N protocols will
be examined.

11

3.2.1 Vir tua l Private Network

Virtual Private Network (VPN) is a generic term that covers the use of public or private
networks to create groups of devices that are separated from other network devices and
that may communicate among themselves as if they were on a private network [13]. Most
(although not all) V P N solutions further enhance the level of separation by providing end-
to-end encryption and thus ensure confidentiality (data remains secret) and integrity (data
remains unaltered) of the transported data [29]. V P N is often used for gaining access to
devices that are otherwise unreachable due to existence of a firewall or N A T (Network
Address Translation) on an intermediary network machine.

Various solutions may differ in their operational layer. There are 2 layers of OSI/ISO
model that a V P N can operate at:

• Data Link layer (L2),

• Network layer (L3).

A V P N that works on layer L2 will encapsulate and transmit data frames. It's similar to
a cable connecting two switches. The V P N has to handle all basic properties of an Ethernet
network: learning M A C addresses, replicating broadcast and multicast frames, etc. Devices
on both ends of a tunnel will have addresses from the same network range. These properties
make L2 design potentially less scalable than L3. On the other hand, when operating on
L3, each side of the connection is on a different subnet and IP packets are routed through
the V P N . Broadcast, messages of A R P and other L2 protocols will generally not get to the
devices on the other end of the tunnel.

Based on the network topology there are 3 types of connections [30]:

• Site-to-Site,

• Host-to-Host,

• Host-to-Site.

Not all tunneling software supports all 3 mentioned types of connection [29].
Among other metrics that need to be considered when selecting a V P N solution are:

• speed (throughput),

• security (cipher suites),

• customization options,

• supported platforms.

3.2.2 O p e n V P N

OpenVPN is a highly customizable, secure and reliable V P N solution that is developed
with an Open Source license [6]. It can be installed on almost all commonly used operating
systems and has an excellent documentation, which makes its setup quite easy.

It can be can be configured to operate on either OSI Layer 2 or OSI Layer 3. OpenVPN
provides peer authentication, data-origin authentication, data integrity, data confidential
ity (encryption), and replay protection through use of X.509 certificates or a pre-shared

12

password. It is possible to turn the security features off and run the OpenVPN without
encryption and authentication [34].

The number of available configuration options is unusually large and allows for an
extensive customization [34]. Among some of its more prominent features are:

• Management console - Server-side interface for collecting V P N statistics, listing
connected devices, kicking devices, etc.

• Event-related scripts - The daemon can be configured to run a given script when
ever certain event happens (e.g. whenever a new device tries to connect) and its
behavior can be influenced through the return values of such scripts.

• Device-specific configuration - The server side can have a separate configuration
for each device and thus have a different set of configuration options to be used in
communication with different devices.

• Push options to clients - The server can push any configuration options to clients
and thus overwrite their local configuration when the need for it arises.

OpenVPN runs fully in user space and is comparatively slower (longer response time
and lesser throughput) than most of its competitors [27].

3.2.3 IPsec

IPsec is a set of network protocols that together ensure secure communication between two
endpoints. Unlike many other protocols and applications, it does not use T L S protocol for
key exchange and for cryptographic algorithm negotiations [22]. Instead, it provides its
own implementation of that functionality. IPsec always operates at OSI Layer 3 [22].

Based on the security needs there are 2 different transfer protocols that IPsec may be
configured to use for communication:

A) Authentication Headers (AH) - provides data origin authentication, data in
tegrity and protection against replay attacks, but no confidentiality [25].

B) Encapsulating Security Payloads (ESP) - provides data origin authentication,
data integrity, protection against replay attacks, and confidentiality [26].

A H or ESP protocol is always used in conjunction with Security Associations (SA)
protocol, which provides algorithms and key exchange mechanisms for obtaining parameters
that are needed by A H and ESP [22]. Authentication is done either via certificates, or
through a pre-shared key, and cannot be disabled [22].

Based on the network topology there are 2 encapsulation modes that IPsec may be
configured to use for communication:

A) Tunnel mode - In this mode, an additional IP header is added on top of the existing
one. This is typically used for site-to-site topology. When used in conjunction with
ESP security protocol, the encapsulated IP address is encrypted and thus the real
destination of the packet cannot be read by anyone while it is traveling between the
sites.

B) Transport mode - This mode is used for host-to-host topology. There is no addi
tional IP encapsulation. Irrespective of the encapsulation mode chosen, when a N A T

13

is on the path between the two end points, a NAT-traversal mode, which encapsulates
the packet with one more U D P header, must be enabled. This is done so that the
N A T can safely modify the header without changing the hash-protected IP header.

IPsec is generally considered to be faster (higher throughput, lower latency) than Open-
V P N when similarly configured [27]. Its ability to encrypt destination IP address puts IPsec
above OpenVPN also in terms of security.

3.2.4 SoftEther

SoftEther is an open-source, multi-protocol V P N software, optimized for high speeds. It can
be run on many different platforms, including Windows, Linux, Mac, iPhone and Android
[10]. The first implementation of SoftEther came out in 2013, which makes it significantly
newer than many of its competitors [10]. Among its main advantages is a support for
many different V P N protocols. This includes its own implementation of OpenVPN protocol
(supports both L2 and L3 functionality), L2TP/IPsec, MS-SSTP, L2TPv3, EtherIP and
a highly speed optimized SoftEther protocol [10]. Encapsulating all these protocols into a
single application enables for more efficient use of computer resources and easier setup than
if they were run all separately.

While host-to-host connections can be kept without having to install SoftEther software
on the client devices (those can continue using other V P N protocols for connecting to the
SoftEther server), when there is a need for a site-to-site topology, SoftEther VPN Bridge
has to be installed on the edge node of each remote site [4]. A n exception is the site where
SoftEther Server is running (as shown in the picture 3.5).

Bridge
Branch #3

Figure 3.5: SoftEther architecture for site-to-site topology reproduced from [?].

SoftEther protocol operates on port 443 and camouflages itself as a H T T P S traffic.
This lets it pass through most firewalls. It supports IPv6, has no issues with N A T traversal

14

and offers many authentication methods, including pre-shared password, X.509 certificates,
R A D I U S server authentication, and more [9].

According to a testing done in 2013, SoftEther's implementation of OpenVPN protocol
has a higher throughput than the original implementation (approximately 15 % higher for
L3, 10 % higher for L2) [3]. The same tests also revealed that the speed optimized SoftEther
protocol has nearly 10 times higher throughput than OpenVPN [12].

3.3 SmartCluster

SmartCluster is an application with many similarities to the one that will be designed in this
thesis. It can be used to create and manage V P N connections between groups of routers.
It supports monitoring routers' health and also uses 1:1 N A T to enable communication
between devices with identical IP addresses. Among its other prominent features are:

• Access to routers' web interface from browser via SmartCluster proxy.

• Support of Road-Warriors (non-router devices with access into the V P N network).

Currently only routers of a single manufacturer (Advantech) are supported [28].

Figure 3.6: Example of SmartCluster's networking scheme (reproduced from [28]).

3.3.1 Tunneling scheme

SmartCluster uses OpenVPN to implement secure connections between routers (or Road-
Warriors) and the central V P N controller [28]. It operates in tun mode, which encapsulates
OSI Layer 3 (as opposed to tap mode, which would encapsulate OSI Layer 2).

During the initial setup of SmartCluster, the administrator has to specify the netmask
for blocks of virtual IP addresses that will be available for individual routers [28]. If the
mask is too long, there will be not enough addresses for routers with large L A N s . If the
mask is too short, it will put a strict limit on the number of routers that can be added to
the system. It does not support the option of assigning blocks of different size to different
routers [28].

15

3.3.2 Configuration scheme

SmartCluster does not require any special program to be installed on clients [28]. To add
a new router, an administrator has to first set it up on the V P N controller's management
website. After entering necessary configuration details, including router's local and virtual
IP range, he can then proceed to downloading a configuration file. This file is constructed
for that single router and must be manually uploaded there. It contains OpenVPN settings,
together with encryption keys and short shell script which inserts iptables rule, thus imple
menting 1:1 N A T . SmartCluster is designated for use with routers whose firmware has the
ability to apply configuration from a file. After the configuration is applied, an OpenVPN
tunnel is created and the router gains access into the V P N .

3.3.3 Communication scheme

For each router (and Road-Warrior) the administrator can specify what other routers (and
their LANs) it can communicate with [28]. Whenever these settings are modified, Open-
V P N ' s push mechanism is used to update device's routing table. When this happens, tunnels
with the affected devices are restarted for the change to take an effect. The re-establishment
of the tunnels can take up to dozens of seconds.

A l l routers and devices behind them are addressable only by their assigned virtual IP
addresses. To implement 1:1 N A T , it uses an iptables' NETMAP extension on routers.
N-th address in one block of addresses is translated to N-th address of the second one.

3.3.4 Important differences

SmartCluster does not provide dynamic changes of router configuration. To apply any
changes (besides routing table updates), the administrator needs to manually upload a
new configuration to the router [28]. It also does not support creation of custom firewall
rules and does not distinguish individual interfaces [28]. It behaves as if each router were
connected to a single L A N and supported only 1:1 N A T mode.

3.4 Summary

Despite some of the configuration management tools seeming viable at first, each suffers
from its own assortment of issues that make it a sub-optimal solution for our problem.

Puppet's inability to initiate a configuration push, combined with its potentially redun
dant encryption layer is a big problem. It is possible to use very short pull intervals, and
select G R E or other tunneling method that does not provide encryption to solve the second
issue, but then the non-configuration traffic would not be encrypted, which is unacceptable.

Ansible brings the problem with redundant encryption layer too. Since it uses ssh for
all communication, it could prove very costly with high numbers of routers. It also requires
Python to be installed on all of the managed routers. Overall the best solution appears
to be writing a custom application for routers. Configuration changes that will need to be
propagated onto routers are probably sufficiently limited in scope that the utility brought
by existing robust configuration tools does not outweigh their disadvantages. Although
source codes for Ansible and Puppet are publicly available and could be modified for our
purpose, it would require extensive changes and make updates to new versions difficult.

Custom new application can be made very small in size, which is an important require
ment. It can be installed as a user module on routers and with relatively small changes be

16

ported to a different type of device with Linux. Unlike Ansible or Puppet it would not add
additional level of encryption. Using N E T C O N F implementation as a communication pro
tocol would spare some time and remove opportunities for creation of bugs, but given the
fact that a very simple communication protocol is sufficient, it would also cause unnecessary
and significant increase of the module's size.

17

Chapter 4

System design

In this chapter, the information learned from the research of existing technologies will be
used to design all component of the system.

4.1 Tunneling scheme

OpenVPN was chosen as the underlying tunneling method for its huge amount of useful
features and configuration options. Its Open Source license also gives us the freedom
to modify the source code if such need ever arises. Despite SoftEther implementation
having higher throughput, the original implementation was chosen for its superior number
of configuration features.

4.1.1 Setup

OpenVPN tunnel will be created and held active between each router and the Customer
Server (star topology). There shall only be 1 tunnel interface on CS and all routers will
belong into the same virtual network (visibility restrictions can be done on a different level).
The tunneling will be done on OSI layer 3 (tun mode). To make it possible for Windows
clients to be able to connect (when support for road-warriors is added), the server daemon
must use -topology subnet parameter.

For every router, there will be a configuration file present on CS, where client-specific
OpenVPN settings can be stored (enabled by -client-config-dir parameter).

4.1.2 Addresing

By default, each router receives a new virtual IP whenever it re-connects. We will mod
ify this behavior by using -nopool parameter and storing persistent addresses into their
configuration files.

Since we are using topology subnet, instead of specifying a single IP address for each
router, we can specify a whole range of addresses. This is used to assign a block of virtual
addresses to each router. They then use the first IP address from the given block for them
selves and the rest is reserved for devices in their local networks (see 1:1 NAT interface
mode). For the purposes of this thesis, the number of virtual addresses available for devices
behind any given router will be fixed at 254. However, there are no obstacles to implement
ing a more sophisticated address assignment in the future. A l l blocks of virtual addresses
that are assigned to routers, belong to a single huge virtual network. The network address

18

is configurable. Figure 4.1 shows example of the address assignment for the largest possible
network.

Customer Server
10.0.0.1/8

10.0.1.1/24 10.0.2.1/24 10.0.3.1/24 10.255.255.1/24

Figure 4.1: Example of a virtual address assignment for 10.0.0.0/8 network.

4.1.3 Routing

Since all routers will receive virtual IP addresses belonging into the same network, routing
between them can be handled directly by OpenVPN without participation of any external
application. However, to direct traffic meant for some L A N (set in public mode) onto a
specific router, the following actions must be taken by CS:

1. Store the IP address and netmask of that L A N into the particular router's configura
tion file.

2. Add a static route leading into a tunnel.

3. Terminate and re-establish tunnel connection with that router.

The re-establishment of the tunnel is required in order for OpenVPN to apply the
changes done in the device's configuration file. To accomplish restart of a particular tun
nel connection, a device can be kicked through OpenVPN's management console. It will,
however, take a long time before the device notices it and initiates a new connection. The
precise timing is dependent on the interval for ping checks that OpenVPN uses to determine
health of the tunnel, but can take up to over a minute. Rather than configuring smaller
ping intervals, which could lead to unnecessarily many restarts (if internet connectivity is
bad), this problem will be solved by replacing the kick with a control message sent to the
application on router. It will then initiate a restart of the tunnel from the client's side,
which works very fast (usually 3 or 4 seconds until the connection is up again).

The concept, as described so far, enables a packet that enters the tunnel on one router,
to be routed through CS to its destination. Nevertheless, it is not evident that the packet
would actually enter the tunnel. It is often undesirable to have a default gateway on
each router leading into the tunnel. Therefore the routing table of each router needs to
be managed, to only send into the tunnel those packets, whose destination is reachable
through the V P N . There are 3 ways to accomplish this:

19

A) Manage it through OpenVPN client configuration files.

B) Use a routing protocol (OSPF, RIP, . . .) .

C) Manage it through a remote configuration protocol.

The first option would require a restart of the tunnel connection whenever there is a
change to the routing table of some device. The consequence of this would be that after
joining or leaving a group with a device that has at least one interface set into public mode,
connection would have to be restarted with all other devices in that group (those that do
not share any other group with the one who is leaving). The same effect would also be
caused by any member of the group changing settings of its L A N , which is set in public
mode. This is unacceptable.

The second option would require installation of additional software on routers and
wouldn't be that much beneficial over the last option, to mitigate that disadvantage. There
fore the last option (to manage it through the configuration protocol) was chosen, as it is
best suited for our purposes.

4.1.4 Online detection

OpenVPN offers a way for other applications to detect what devices (identified by common
name in their certificate) are currently connected. For this purpose it can create a daemon
(requires -management parameter to be used) that listens on localhost interface and re
sponds to queries with a list of online devices. This method, however, does not suit us. The
raw text returned by the console contains a lot of unnecessary information and is difficult
to parse. Wi th high numbers of routers it might prove computationally demanding to read
it as often as would be necessary. There would also be a delay between a device connecting
and us learning about it.

A superior solution of using -on-connect parameter was chosen instead. As the last
step of each authentication process, OpenVPN will call a custom script, which is given
information about the device through environmental variables. This script will then set the
device as online in the database, and may, if needed, initiate other actions that should be
done in response to it becoming online.

Similar approach was chosen for detection of terminating a connection. A custom script
will be run each time a device disconnect, and set the device in the database as offline.
This will be achieved by using -on-disconnect parameter.

4.1.5 Authentication

A certificate-based method will be used for authentication of routers. The Customer Server
will , for these purposes, provide routers with an X.509 certificate, private key and C A
certificate through a secure channel, before a V P N tunnel may be established.

4.2 Firewall and groups

Iptables application in combination with its extension called ipset was chosen for implement
ing a packet filter, whose task it is to prevent a network traffic flow between ungrouped
devices, and applying custom firewall rules wanted by the user. A server daemon cs-
controller will dynamically add or delete the iptables rules (and ipset entries) to always
reflect the current configuration.

20

4.2.1 Structure of iptables

The iptables consist of 4 tables, each serving a different purpose and offering slightly differ
ent tools. Those are: filter, nat, mangle and raw. Since what we need is to drop misbehaving
packets, all our rules will be placed into the filter table. The filter table contains 3 pre
defined main chains, called: INPUT, OUTPUT, and FORWARD. The cs-controller will
only modify the F O R W A R D chain and leave the other two unchanged. This is done to af
fect just the traffic between the devices themselves, by our rules, and not the communication
between them and the cs-controller. Only a single rule will be added there:

iptables -I FORWARD - i tunO - j cs-service

The rule will apply our custom chain cs-service onto all traffic that arrives from the
tunnel, before it is forwarded to the next host. Within the cs-service is then located the
hierarchy of rules that implement the group concept and a user firewall. The entire packet
filtering logic, which is implemented through iptables, is depicted in Figure 4.2.

Many modern Linux distributions have IP forwarding disabled and it may be necessary
to enable it first, before the rule becomes functional. The following command ensures that:

echo 1 > /proc/sys/net/ipv4/ip_forward

4.2.2 Group management

Only the routers that are placed in the same group shall be able to communicate with each
other (and with devices behind those routers). Each networking group will be represented
by one rule in the cs-service chain. A l l these rules wil l execute jumps into a single cs-fw
chain, if the source and destination address both belong to devices in the same group. The
following symbolic rules show the structure of the cs-service chain in greater detail:

iptables -I cs-service -m conntrack — c t s t a t e ESTABLISHED - j ACCEPT
iptables -I cs-service -m set -set <grp_l> src -set <grp_l> dst - j cs-fw

iptables -I cs-service -m set -set <grp_N> src -set <grp_N> dst - j cs-fw
iptables -I cs-service - j DROP

The first rule significantly reduces the computational overhead by removing traversal of
most of the rules for packets belonging to already established communication streams. The
last rule drops all packets that are sent between devices that do not share any group.

To implement the concept of groups without using an excessive number of rules, an
extension of iptables called ipset was chosen. Ipset is a tool that enables large numbers of
networks to be referenced from within a single iptables rule. Unlike normal iptables chains,
which are stored and traversed linearly, IP sets are stored in indexed data structures, making
lookups very efficient even when dealing with large sets.

The cs-controller will create and manage an IP set for each group. It will contain
addresses of all routers within that group, together with addresses of those L A N s that were
made public. If there are any changes in group membership, only the IP set needs to be
modified to implement them.

Table 4.1 shows all group operations and their respective iptables implementations.
Note that these will be modified further in the chapter about customizable firewall.

21

Figure 4.2: Diagram outlining the decision logic for packet filtering.

4.2.3 Custom filtering rules

A user can add rules that will be applied on traffic within some group, however he cannot
use them to grant some device access into a group that it is not member of. If two devices
share more than one group for which there exist custom filtering rules, rules from all such
groups will be applied to the traffic between them.

To add support for creating custom filtering rules, a previously mentioned iptables'
cs-fw chain shall be utilized. Its structure will be similar to cs-service chain:

iptables -I cs-fw -m set -set <grp_l> src -set <grp_l> dst - j fw-grp_l

iptables -I cs-fw -m set -set <grp_N> src -set <grp_N> dst - j fw-grp_N
iptables -I cs-fw - j ACCEPT

22

Operation Implementation

Join group • Update IP set of the group.

Leave group • Update IP set of the group.

Create group • Create an IP set.

• Insert 1 rule into cs-service chain.

Delete group • Remove 1 rule from cs-service chain.

• Delete an IP set.

Table 4.1: Depiction of how the basic operations for management of groups can be imple
mented.

Every group shall have its own chain, where filtering rules will be stored. The only
allowed action for these filters is DROP. If no filter within one group chain matches a
packet, the execution returns into cs-fw, and other group chains may be traversed. Thus,
filters from multiple groups may be applied if some devices share more than one group.

Note the last rule, which accepts all traffic that was not dropped by any of the custom
filters. It represents the default firewall policy. By changing it to DROP, and custom filters
to ACCEPT, the default policy could be switched.

A n unfortunate effect of having a rule that executes ACCEPT on established connections
in the higher level chain (cs-service) is that when a new filter is added, it does not affect
traffic that is marked as established in conntrack. However, once all such connection expire,
it will be applied without exception.

4.3 Router management

Only those router settings, which are directly tied to the functionality of the V P N controller,
will be remotely managed. To implement it, a simple application (user module) shall be
created and installed on every router. This application will be handling requests it receives
from the Customer Server.

The control messages sent between the CS and routers will travel through an encrypted
tunnel. As such, a simple T C P connection will be used for communication. At any time
there will always be at most 1 T C P connection open with a particular (validated) router.
This T C P connection will be closed right after a response from the router is received (or
after timeout) and re-opened only when a new request needs to be delivered.

To prevent unauthorized devices from manipulating routers through the application,
the daemon listening on routers will be bound to tun interface and compare the source
address of incoming messages with the one it expects CS to have (always the first address
of the virtual network).

Whenever a router's status changes from offline to online, the cs-controller will send him
a message, containing all configuration information needed to reach the expected state. This
mechanism will , to a limited extent, protect routers' configuration from unwanted changes
by their local administrators.

23

Operation Implementation

Create group

•
•

Create an IP set.

Insert 1 rule into cs-service chain.

• Create a new group chain.

• Insert 1 rule into cs-fw chain.

Delete group

•
•

Remove 1 rule from cs-service chain.

Delete an IP set.

• Delete a group chain.

• Delete 1 rule from cs-fw chain.

Add custom filter • Insert 1 rule into the given group's chain.

Delete custom filter • Delete 1 rule from the given group's chain.

Table 4.2: Implementation of group operations after custom filtering rules are introduced.

4.3.1 Communication protocol

JSON (JavaScript Object Notation) was chosen as the format for encoding of the message
content. Each message is divided into blocks. Every block represents one request, which the
router must handle, together with its parameters. After receiving a message, the daemon
will attempt to handle each request and send back a response. The response shall contain
information about the success of the operation and possibly also additional information for
each block.

Every message must also contain information about the version of the protocol, to make
it possible to detect routers with deprecated version of the user module.

Table 4.3 shows the requests types that need be supported by the user module.

4.3.2 Set L A N operation

While cs-controller has to distinguish between 4 different modes, in which router's interface
can be operating, the router does not. Router is not even informed about what the new
mode is. It will take the same action when setting a L A N into public mode as when setting it
into private mode. This action includes changing the appropriate settings file and restarting
its related system services.

Setting an interface into ignored mode can be disregarded on router's side entirely,
because it only affects the behavior of cs-controller and does not lead to creation of any
message for router.

1:1 NAT mode not only modifies L A N settings, but it also causes creation of several
iptables rules on router. It uses N E T M A P extension of iptables to create a mapping between
a range of virtual addresses and the local network. Currently there are up to 253 virtual

24

Type Parameters Description

Setup L A N

• Interface name.

• IP and netmask.

• D H C P enabled.

• D H C P pool range.

• (virtual_ip, netmask).

Configures L A N settings of a
single interface. When pa
rameters virtual_ip and net-
mask are present, 1:1 N A T is
configured.

Routing update • Routes to add.

• Routes to delete.

Creates and/or deletes static
routes, leading into the tun
nel.

Reconnect
Restarts the OpenVPN con
nection.

Retrieve configuration
Retrieves a list of supported
interfaces, together with their
current configuration.

Table 4.3: Types of requests that are sent to routers and must be implemented by the
application that runs there.

addresses allocated for each router and it is up to the user how he will divide them between
the interfaces. If he decides to give all of them to a single interface, 3 rules will be created:

1. A rule for translating destination address of packets, which are coming from the
tunnel, from virtual IP address to local IP address.

2. Rule that prevents translation of the virtual IP address that belongs to the router it
self. Without this, the address translation would prevent cs-controller from contacting
the router.

3. A rule for translating source address of packets (from real to virtual), which are
coming from the specific interface and are heading into the tunnel.

However, there is a problem. The 3rd rule needs to be placed into POSTROUTING
chain (or one of its sub-chains) of a nat table. It has to be the nat table because we
want to use NETMAP target, which cannot be used in other tables. It also has to be a
POSTROUTING chain, because it's the only place, where the output interface is known
(and we want to affect specifically those packets that are heading into the tunnel interface).
Unfortunately, while the output interface is known here, the input interface is not. So we
cannot directly create a N E T M A P rule that would affect only packets that are heading into
the tunnel and came from a specific interface. To get around this problem, one additional
rule will be introduced. In the PREROUTING chain of the mangle table (here the input
interface is known), a rule will be added, which will mark each packet that comes from
the specified interface. The rule in the POSTROUTING chain will then check the input
interface by matching only those packets that have been marked.

25

4.3.3 Routing update operation

Whenever a new L A N becomes accessible or inaccessible to a router (because of a change
in group membership or through change in some device's L A N settings), the router is sent
a message, telling it to add or remove a particular route. This management of routes is
needed only for L A N s that are behind interfaces configured in 'public' mode. Interfaces
operating in 1:1 N A T mode use virtual IP addresses (from the block of addresses that are
assigned to the given router), and as such belong to a single huge virtual network that can
be routed into a tunnel with a single rule, and do not require routing updates.

4.3.4 Reconnect operation

The purpose of the Reconnect request is to restart a tunnel in order for changes done to
OpenVPN client file (stored on CS) to take an effect. This could also be done by forcefully
terminating the connection from the CS's side, however, it would take significantly longer
time before the connection would be automatically re-established.

4.3.5 Retrieve configuration operation

Whenever a new router is added to the system, the cs-controller will send it a request for
retrieving its L A N configuration. In response to this request, the router will send a list
of the names of interfaces that it supports and their current configuration. Any interface,
which is used as a default gateway, will not be reported with the others. This is to prevent
cs-controller from managing such interface and offering a way to accidentally cut away our
access to that device.

4.4 Security concept

Before any new router is added into the system, several security-related actions need to
occur. While the CS leaves verification of the router to the user (there is a manual validation
required before it gains access into the system), the router also needs to be able to verify
that it is contacting the real CS and not one belonging to an attacker. To achieve this, the
router begins by contacting a Dispatch Server, asking for the CS's certificate. This is just a
one steps in a long list of actions and exchanged messages, which result in the router being
successfully added into the system.

4.4.1 Certificate placement

The entire security concept is based around combination of manual validation and X.509
certificates. Some of the certificates come with the application, some are created on start
up and still others are received during runtime. Table 4.4 shows for each entity, what
certificates and keys will get into its possession at some point in time. Certificates and keys
that begin with " CS_" are a special case. They are installed on CS during the installation
process, but unlike DS certificate, they are added into the installation package by the
administrator of the Customer Server. This is not the best way of importing own key pairs,
but it is sufficient as a proof of concept. A l l UCS_" certificates are signed by CS_CA
(where CS_CA is an exception - it is either self-signed, or signed by a third party C A) .

Each router will have 2 different key pairs of its own. When the user module is started
for the first time (or when keys are deleted), it creates Router_ TLS key and a self-signed

26

certificate. This key pair is then used for communication with DS and with CS. The other
key pair it receives from the Customer Server and uses it only for OpenVPN. This key pair
includes a certificate signed by CS_CA.

Entity Comes with in
stallation

Created on start
up

Comes after start-up

Router DS_crt Router_TLS_crt ,
Router_TLS_key

Router_OVPN_cr t ,
Router_OVPN_key,
C S _ C A _ c r t ,
C S _ T L S _ c r t

Customer Server C S _ C A _ c r t ,
C S _ C A _ k e y ,
C S _ O V P N _ c r t ,
C S _ O V P N _ k e y ,
C S _ T L S _ c r t ,
CS_TLS_key ,
C S _ W E B _ c r t ,
C S _ W E B _ k e y
DS_crt

R o u t e r T L S_crt

Dispatch Server DS^crt ,
DS_key

C S _ T L S _ c r t

Table 4.4: Placement of keys and certificates.

4.4.2 Initial actions

Figure 4.3 shows in numbered steps, what communication will occur after a new Customer
Server is installed. Note that for each component, the certificates and keys that came with
its installation are displayed next to it. Individual steps are in further detail described as
follows:

1. After a new CS is started, it will send a registration request via T L S connection to the
Dispatch Server (DS). This is possible because CS has DS's certificate. This will create
a new entry in the database located at the DS, storing the following information:

• CS's external IP address,

• CS's UID (Unique ID, different for each Customer Server),

• CS's certificate.

2. While the CS could authenticate the DS in the previous step, since it knew its certifi
cate in advance, the same is not true for the DS. The customer who runs the CS has
his own key pair (imported during installation of the CS), that we do not have access
to, and will contact us via email or telephone to identify his registration request,
stored in the database. Once a license is issued for the customer, the matched record
in the database will then manually be set as Validated and becomes available for step
3.

27

3. After the installation and start of the user module in a router (and after each restart),
it will contact the DS and ask for a certificate and IP of its CS. This communication
will occur within a T L S channel. Unlike in case of CS, the router can verify identity
of the Dispatch Server right from the start, because its certificate will come with
installation of the user module. This is possible because there will be only 1 DS
across all customers (while there may be many CSs). On the other hand, DS is not
capable of verifying identity of the router, but this is not a concern, because DS does
not provide anything that would need to be kept secret. If the DS gives details about
a CS to an attacker, then the attacker's router still needs to be manually validated
on CS, before it can do any harm.

4. To decide what CS the router belongs to, the Dispatch Server uses a unique ID (UID)
that the router sends in its message. The UID comes with installation of the user
module, but can be changed any time if needed. For this UID the Dispatch Server
looks up an appropriate address and certificate of a Customer Server, and sends it
back to the router. If the CS isn't validated on DS, then a negative response is sent
instead and the router repeats its request after a pre-set amount of time has passed
There is a reason why UID can be stored into the router during installation of a
user module, but CS's certificate cannot. It is because this certificate isn't created
or known until the customer sets up his CS, while the UID and DS's certificate are
known before that.

5. Once the router receives details about its CS, it starts sending it queries about whether
it is validated or not. These queries are sent in a configurable interval, which is set
on the CS and delivered to the router in each response. A U D P protocol without any
security layer is used for this polling to minimize use of CS's resources. When the CS
receives first of those queries, it creates a new entry in its database, storing the SSL
certificate there.

6. Until the router is manually validated on the CS, it will be receiving negative responses
and repeat sending the validation requests. After router's validation, a positive re
sponse is given and the router proceeds to step 7.

7. Once the router is validated by a user, the CS generates a new OpenVPN certificate
and key. The router then attempts to create a secure connection and the CS uses the
certificate, which the router sends in its T L S handshake, to look-up whether it is one
of the validated routers. If it is so, then the CS sends him the OpenVPN certificate,
key and CS_CA certificate, which are necessary for establishing O V P N connection.

8. The router creates an OpenVPN tunnel with the CS. This connection remains open
indefinitely.

4.5 Proxy

To make full use of tunnels between V P N controller and routers, the Customer Server shall
serve as a proxy server that redirects https requests onto the routers. Since the system is
not meant to be a full configuration management tool (although it will manage parts of
it), this feature provides administrators a way to browse routers' full web interface from
anywhere in the internet.

28

*cs_certificate
*cs_private_key

Figure 4.3: Diagram of communication between the main components. For each entity, a
list of the resources that come with its installation is displayed.

For each new router with access into the V P N , a unique U R L will be generated. Even
though each router's website is protected by a login and password, to maintain higher
security, their U R L must be difficult (if not impossible) to guess. At the same time it is
desirable to make it apparent, what router the U R L refers to. For this reason, the following
format was chosen:

<virtual_ip> - <30_rnd_letters> . <2nd_level_domain> . <lst_level_domain>

For proxy access to work, it requires an appropriate record to be present in a publicly
available domain name server (DNS). Apache2 web server was chosen as the tool for imple
menting redirections of web requests. For each router, there will be a VirtualHost record
within a separate configuration file. Those files will then be imported into the Apache's
main configuration file. Thus, if proxy access to some router needs to be removed, it suffices
to remove one file (no parsing of configuration is necessary), and issue a reload command
to Apache.

4.6 Transaction system

As a method for managing the cs-controller from external applications (web pages, scripts),
a database table of transactions was chosen. This provides serialization to all incoming
requests. Since many operations affect the models of multiple routers, it would be extremely
complicated to execute them in parallel. The transaction system also provides persistence

29

to those requests that cannot be executed immediately (for example those that require a
router to be online).

4.6.1 Database

A n SQLite relational database was chosen over the more complex databases like MySQL or
PostgreSQL. We don't need a network access to the database. There will also not be many
database operations that would need to be done concurrently. In fact, our requirements are
fully met by SQLite and there is no need to use more complicated engines that would, in
all likelihood, operate more slowly under our conditions than this simple but fast C library.

4.6.2 External A P I

A l l external requests for creation of transactions will go through a single interface called
External API. The task of this interface is to validate the parameters of requests and then
prepare and write transactions into the database. In case of any errors, it will propagate an
error string through an exception back to the caller, so that the precise reason of failure can
be displayed. This layer detects any errors that have something to do with improper input
from the user (for example if he/she attempts to assign overlapping network addresses to
multiple L A N s in public mode). Figure 4.4 shows how External A P I fits to the rest of the
system.

C "N

Apache/proxy files

v J

Database CS-controller CS-controller OVPN client files

Iptables/Ipset Routes

Website
on-connect/

on-disconnect
scripts

Figure 4.4: CS architecture overview

4.6.3 Pending configuration

For those parts of configuration that require synchronization with router, the database must
not only hold information about the current state (what is configured on router right now),

30

but also the information about the future state (what configuration user wants there). The
future state of a configuration is called pending configuration. This is specifically required
for L A N settings and static routes. Each pending configuration has its own database table.
A user will always be displayed the pending configuration. If it does not exist, he will be
shown the current configuration.

4.6.4 Execution of transactions

The main loop of cs-controller will periodically load all transactions from the database
and execute them. The transactions may be divided into 2 categories: those that require
communication with routers and those that do not. If a transaction requires communication
with router, a pending configuration will be created and the transaction deleted. If a new
pending configuration is to be created while another one already exists, the new one will
overwrite the old one. If a communication with router isn't required, the transaction will
be immediately executed and then also deleted.

For each router that has at least 1 pending configuration, is online and doesn't already
have a delivery thread, a new thread will be created, whose goal it is to communicate the
changes to the router. After the router sends back a response, the thread is closed and the
pending configuration is changed into a permanent configuration.

Execution of transactions of a particular router is skipped while there exists its delivery
thread. The existence of the thread will normally be very short and the temporary skipping
of transactions should not negatively affect the user experience. This small concession
decreases the complexity of the system. If it wasn't done this way, it would be necessary to
allow having multiple pending configurations of the same type for each router. A pending
configuration may only be created through a transaction, never directly.

4.6.5 Error handling

When a transaction fails due to a problem on the side of the Customer Server (for example
failure of some database operation), the information about the error is logged into a syslog
file and the transaction is marked as failed. The failed transaction then remains in the
database (for debugging purposes), but is ignored by the cs-controller. This can be done
because unlike the pending configurations, the existing transactions are not visible to the
user in any way. If an operation fails due to a problem on the side of the router, the
associated pending configuration, which is visible to the user, is marked as failed. The user
can then change the configuration, which will lead to replacement of the failed pending
configuration with a new one.

31

Chapter 5

Implementation

As a programming language was chosen C++, because most user modules for routers are
written in C / C + + and there exist several C libraries for Advantech routers that could
be needed in the future. After choosing this language, it was advantageous to also write
Customer Server and Dispatch Server with that, so that the code can be re-used across the
entities. Although a website is an integral part of the system, its implementation will not
be discussed here, because it was created fully by a third party. The same is also true for
an installation script and a build system.

5.1 External A P I

The A P I between the CS-controller and other applications is divided into 2 layers (shown
in figure 5.1). The inner layer is a C + + class ExtClientApi that implements checks of the
input. It also handles creation of transactions and reading of data from D B . If any other
action needs to be taken in response to an A P I call, it would also be placed here. The outer
layer consists of multiple classes, whose sole purpose is to make methods of the inner layer
available from different scripting languages. Currently 2 languages are supported:

• PHP (needed for website),

• Python 3 (needed for regression tests).

This outer layer of the A P I receives arguments from the caller (usually script) wrapped in
a special class, different for each language. It converts the arguments into common C++
types, calls a method of ExtClientApi and passes it the converted parameters. Third party
libraries Python/Cv and PHP-cpp2 were used to implement this. The reason for using
Python for regression tests (instead of php, which was already needed for the website) is to
make use of a pre-existing test framework, available within the company.

5.2 User module

The main loop within the routers' user module is implemented as a finite-state machine
shown in figure 5.2. Before this loop is started, several actions occur.

• Daemonizing activities are performed.
1docs.python.org/3/c-api
2 www. php-cpp. com

32

Database ExtClientApi

PhpClientApi

PyClientApi

Figure 5.1: Architecture scheme with both A P I layers.

• Syslog is initialized.)

Also, a self-signed certificate and key are generated with the use of OpenSSL binary.
This is, however, done only once, as it is placed within the module's installation script.
From the all states shown in figure 5.2, the most time is usually spent inside the s_listening
state. This is where all incoming messages are handled. Function select() with a timeout is
used there, so that when there are no messages for a long period of time, a piece of a code
that checks the state of OpenVPN tunnel can be run. Those checks are currently done by
scanning log messages of the OpenVPN daemon. If, for example, CS migrates to a new
address, the user module is able to eventually arrive back into s_getting_cs_ip state and
obtain the new IP address from the Dispatch Server.

Figure 5.2: F S M representation of the router's main loop..

33

Web UI

As a method of configuring the router module (user needs to fill in the address of the
Dispatch Server), simple web pages were created for routers. It was done through the use
of cgi scripts, since that is the standard way of creating web UI for user modules. There
are 3 different pages:

• Page with the logs of the user module,

• Page with the logs of the OpenVPN,

• Configuration page (can be seen in figure 5.3).

VPN Portal

OpenVPN Tunnel

Configuration

VPN Connection

Customization

Return

(5 Enable

Dispatch Server IP

Dispatch Server Port

10.76.0.77

I 1 5 7 B 6

CS Side Channel SSL Port I 6 7 8 9

CS Side Channel UDPPort | 4 2 5 5 1

Control Channel Port 11111

Syslog Level

A p p l y

Debug

Figure 5.3: User interface for the router module.

5.3 Customer Server

The main daemon is named vpnportal-cs and it is implemented as a systemd service. On
its start-up, several initialization actions are executed via a shell init script, including:

• Start of OpenVPN.

• Creation of main iptables chains.

When the service is stopped, everything related to the daemon is flushed from iptables
and ipsets, and OpenVPN is terminated. Static routes do not need to be erased, because
once the OpenVPN is stopped and tunnel goes down, they are removed automatically by
the operating system. Any messages that need to be printed, are printed via the syslog()
function. When printing a message, 4 different priority levels are used:

• Debug,

34

• Warning,

• Error,

• CriticalError (Leads to immediate shut down of the service).

After the init script finishes initialization actions and starts the main daemon, the
following actions are taken:

1. Syslog connection is initialized. Signal handlers are registered. Database is initialized
(values like ' time_of_star£).

2. Rules for iptables, entries for ipsets, and static routes are created, based on the
network and L A N setting information from D B .

3. IP address and certificate are registered at DS (OpenSSL library is used for secure
communication).

4. A sub-process called SideChannelDaemon is created via fork(). The purpose of this
daemon is to respond to incoming validation queries from the routers. It uses a
shell script to generate new OpenVPN keys and certificates for routers that ask for
them. For each incoming request/query, a new thread that will handle it is created.
However, the certificate generation script can't be run multiple times in parallel and
is thus considered a critical section, which is enforced via locking of std::mutex.

5. The main loop is entered, where the process starts executing transactions and sending
commands to routers. To prevent creation of inconsistent state on service shut-down,
a custom function was created as a handler of incoming SIGTERM signal. This
function will only set a global variable SIGTERMARRIVED, which is periodically
checked by both processes. Once a change of this variable is detected, a safe shut
down is carried out.

The main loop of vpnportal-cs has the following structure:

1. Response messages from routers are taken from an object of class Delivery Service,
whose task it is to oversee communication with routers.

2. For those requests that succeeded on routers, their related pending configuration is
changed in the database into permanent configuration. For those that failed, an error
flag is set in their pending configuration.

3. Any transactions belonging to online routers are loaded from D B .

4. Those transactions that do not require communication with routers are immediately
executed and deleted.

5. Those transactions that do require communication with routers lead to creation of
pending configuration in D B .

6. If there are any pending configurations, messages for routers are created.

7. For each router with a message, a communication thread is created.

35

Statistics

Various statistics about the system are collected and may be displayed on the Customer
Server's web page. Based on the way they are collected, there are 2 types of statistics
(although web accesses them both in the same way - through PhpClientApi):

1. Statistics that can be read/inferred from the current state of the database (number
of online devices, number of network entries, uptime, etc.).

2. Statistics that are read from OpenVPN's management console (throughput for each
device, global throughput).

A separate C++ application was created to handle all statistics-related queries. Based
on the parameters given, it prints relevant statistics in structured format. It uses T C P
connection to read data from OpenVPN's management console (which is listening on a lo-
calhost interface). To access necessary data, "status 2" command is sent via the connection
and then the answer is read from the socket, parsed and printed.

5.4 Dispatch Server

Dispatch server is implemented as a sysmted service vpnportal-ds. It is a simple, small
application, consisting of a single loop, where it handles incoming requests. It uses sqlite3
database for storing data about Customer Servers and OpenSSL library for T L S communi
cation.

5.5 Security measures

During the implementation, several new potential security vulnerabilities of the system were
discovered and had to be analyzed.

5.5 . 1 "Pretending to be a C S " attack

A n attacker that would get access to a router A , which is in a group with router B, could,
in theory, craft a message that would look like the one that Customer Server sends when it
wants to change router's configuration. The attacker would then send such a request to the
router A and make it change its L A N configuration or do anything else that the protocol
supports at the time. This attack is relatively easy to execute, it requires only:

• Knowledge of the protocol.

• Knowledge of the port where the routers are listening.

• Access to one of the routers that are grouped together.

To remove this vulnerability, a check of source IP address was added to handling an
incoming message on routers. Since the address of a CS is always known by the router (at
that stage), it is possible to drop any control message whose source address does not match
it.

36

5.5.2 IP spoofing

IP spoofing means creation of a packet with a false source IP address. It was postulated,
that someone with access to one of the routers could bypass the concept of groups by
faking the source IP address of a packet. The theory was, that since iptables rules on a
Customer Server work on the bases of looking at source and destination IPs, it would allow
this packet to reach a device that is in a different group. However, after thoroughly testing
it, the conclusion was reached that this is not possible. The OpenVPN would drop any
packet whose source IP is not among the L A N s that the given router is responsible for. It
knows which routers are responsible for what LANs , because this information is stored in
the OpenVPN client files.

37

Chapter 6

Stress tests

The system must undergo a series of stress tests in order to measure how well it scales with
increased number of client devices. It is also important to find out where its bottleneck
is. For these purposes, a modified version of the routers' user module will be compiled
for P C . Every such user module, called router agent, will then be run in its own virtual
container through an application called Docker. Several test scenarios will be conducted
and performance measured for a setup with 100, 350 and 600 router agents.

6.1 Docker

Docker is a virtualization software used for running small packages of software called con
tainers. Containers differ from virtual machines in the fact that they are very lightweight,
because they share OS's kernel across multiple instances. They are created from executable
files called images. When building a new Docker image, a special configuration file Dock-
erfile first needs to be prepared and the following options specified:

• What existing image to use as a template for this one's OS.

• What actions to execute when a new container is started from this image.

• What additional layers of changes to add on top of the template during creation of
image.

6.2 Fargate

Originally, Amazon's Fargate service was considered for running all the router agents. It
is a cloud service that offers an easy way to start and manage high numbers of Docker
containers. One of its advantages is the ability to precisely define the amount of resources
that each instance would have. It also makes it easy to decrease or increase number of
instances at any time and provides management of their log files. However, it turns out
that a crucially needed parameter -cap-add (passed when starting a new Docker container)
is not currently supported by this service. Without this, the OpenVPN within the container
wouldn't function properly and the idea of using Fargate service had to be abandoned.

38

6.3 Router agents

The user module created for P C differs from the original in its reactions to requests from the
Customer Server. It will skip modifications of settings, restarts of services and other actions
that are normally done in response to various requests. Instead, it will just send back a
positive response. A special case is a response where the router sends back a list of the
interfaces it supports and their current configuration. This response will be hardcoded to 2
made up interfaces with randomly chosen settings. One additional change is in generation
of a unique name (used for generation of an SSL certificate), for which an application called
status is normally used. This application is present only in real routers and to simulate its
behavior, a BASH script was created and added into our Docker image. Its purpose is to
print router's serial number, which the script generates randomly.

Ubuntu 16.04 was chosen as a template for the Docker image. Through a Dockerfile,
additional software, including rsyslog, ping , openvpn, openssl and a P C version of the user
module had to be installed. The final size of the image is approximately 240 M B . When
starting a container (instance of the image), the following parameters must be used for
OpenVPN to function properly:

1) ~cap-add=NET_ADMIN
2) —device=/dev/net/tun

6.4 Setup

Amazon's EC2 cloud service was used for hosting a Customer Server and a Dispatch Server.
Both were installed and run on a single virtual machine, whose specifications can be seen
in table 6.1.

Instance
type

Processor Cores Memory
Network

performance

T2.large 3.0 GHz Intel Scalable Processor 4 16 G B Moderate 1

Table 6.1: Spefications of the Amazon's instance that was used for hosting both CS and
DS.

Docker containers were hosted across several different machines on multiple locations.
Since very little resources are needed for each router agent, it was possible to host hundreds
of such agents per computer. The specifications of the machines used can be seen in table
6.2.

A l l the machines that were mentioned (including the one hosting DS and CS) were
using Ubuntu 18.04 as their operating system. Devices that would normally be located
behind routers will be ignored in the stress test. From the load it puts CS under, there is
no noticeable difference between having those devices behind routers, and generating traffic
directly from the router agents.

6.5 Preparation

Before the tests could be conducted, a long list of scripts needed to be prepared to automate
as many tasks as possible. Otherwise the amount of attention and work required would

39

ID Processor Cores Memory

Laptopl (virtual
machine)

Intel(R) Core(TM) i7-8750H @ 2.20 GHz 6 13 G B

P C I (virtual
machine)

Intel(R) Xeon(R) E3-1245 v5 @ 3.50GHz 4 16 G B

Amazon 1
(t2.micro)

3.3 GHz Intel Scalable Processor 1 1 G B

Table 6.2: Specifications of the machines that were used for hosting router agents.

make those tests extremely difficult and time consuming. The scripts were used for the
following tasks:

• Starting and stopping X docker containers on a given machine.

• Measuring time it takes until routers are all online and synchronized.

• Assigning L A N s to all routers.

• Initiating ping between all routers.

• Creating networks and populating them with routers.

• Creating X firewall rules for all networks

• Validating all devices.

Also, since the OpenVPN does not, per default, support a netmask higher than /16
(which would allow only 255 routers, since for each router there are 255 reserved addresses),
a patched version was created and this limitation removed. A l l tests were then conducted
with a netmask of /8.

6.6 Measurements

The following statistics were measured. In the brackets are listed the tools that were used
for its measurement.

• used memory (top),

• processor's load (top),

• throughput (nload),

• time (custom scripts / manual measurements).

A l l the measurements were done on the Customer Server. Memory usage was measured
for the system as a whole, not for specific processes. Throughput information was collected
for 2 interfaces: tun (traffic going through the OpenVPN tunnel) and eth (traffic outside of
the tunnel + traffic inside the tunnel).

40

6.7 Scenarios

For each setup with a different number of routers, multiple test scenarios were conducted
to see how the system behaves under different circumstances. Measurements were taken for
every one of them. The main scenarios were:

• A l l routers are asking for validation.

• Validating all routers at once.

• A l l routers are connected via OpenVPN, but idle (no operations are currently done
by any user and none or minimal traffic is generated by routers).

• Routers are generating traffic by flooding pings at each other (while randomly divided
into 10 networks).

• Setting L A N into public mode on all devices at once.

6.8 Results

In total, tests with 3 different numbers of routers were run, which should be enough to
see the trends. In the end it was not possible to do very precise measurements and all the
results should be taken only as approximations of what the real performance would be. Due
to time difficulty of re-doing these tests and fixing problems, the highest number of devices
that was completed in time for this thesis is 600.

During the execution of the stress tests, several flaws in the implementation were en
countered, improved and the tests then re-run. What will be discussed here are the results
after the most critical issues were fixed. These included:

• Running out of file descriptors (reaching the system limit) - This was fixed
by setting a limit on the maximum number of concurrent communication threads.

• Database operations failing due to reaching a timeout, while waiting on a
database lock - This was partially fixed by increasing the timeout.

• Website being sometimes very slow and unresponsive - This problem occurred
when too many write operations kept the database locked for a long period of time. It
was partially fixed by making the main daemon handle transactions in smaller bursts
and sleeping for a moment after each.

As can be seen from tables 6.3 and 6.4, the memory usage was relatively small and
scaled very well with increasing numbers of routers. The C P U load was spiking at 0.92
during execution of operations (like changing L A N to all devices at once), but kept around
0.00 once the cs-controller finished its work. Even during the ping flood scenario, the C P U
load didn't get over 0.05. A n interesting statistic is the amount of OpenVPN overhead
during the ping test. While 8200 Kb / s was going through the tunnel, the total traffic
going through its physical interface was 13600 Kb / s . When CS was restarted while 600
devices were connected, it took approximately 7 minutes until all devices came back online
and synchronized (although 500 of them were online within 2-3 minutes). When validating
600 devices, it took 4 minutes until they were all online and synchronized.

41

Scenario
Memory usage

[MB]
(100 routers)

Memory usage
[MB]

(350 routers)

Memory usage
[MB]

(600 routers)

Routers are asking for
validation.

292 258 339

Routers are connected
but idle.

290 391 581

Clicked "validate" for
all routers.

297 347 756

Set L A N to public
mode for all routers.

304 403 601

Ping flood (tun: 8200
Kb/s , eth: 13600

Kb/s) .
295 428 598

Table 6.3: Measurements of total used memory during various test scenarios.

Scenario
C P U load

(100 routers)
C P U load

(350 routers)
C P U load

(600 routers)

Routers are asking for
validation. 0.0 0.0 0.03

Routers are connected
but idle.

0.0 0.0 0.01

Clicked "validate" for
all routers.

0.92 2.43 3.46

Set L A N to public
mode for all routers.

0.36 0.83 0.93

Ping flood (tun: 8200
Kb/s , eth: 13600

Kb/s) .
0.02 0.03 0.05

Table 6.4: Measurements of averagel C P U load during various test scenarios.

42

Chapter 7

Conclusion

In this diploma thesis, various approaches and tools for managing large numbers of routers
were studied. Remote configuration tools Ansible, Puppet and N E T C O N F library were
examined and described in detail. Various tunneling software were studied and their features
listed. Strengths and weaknesses of SmartCluster, an already existing application similar
to the one that would be created, were pointed out and discussed.

A system for managing large numbers of VPN-connected routers was then designed
and implemented. It has a star topology, with one central entity to which all routers are
connecting. It uses OpenVPN as the bases for creating tunnels and builds on top of it. It
supports dynamic clustering of routers together into separated groups and offers a way to
add or delete firewall rules that would affect only the selected groups. It provides a range
of statistics about traffic, and displays online status for each router. A l l communication is
secured via the use of certificates, which are securely distributed to routers through a single
trusted server. For each new router that is added into the system, an U R L is generated for
accessing the router's web interface through the tunnel, where the central entity works as
a proxy server. Whenever a new router is added into the system, configuration of its L A N s
is retrieved and displayed. Each L A N can be reconfigured through the central entity. If a
router is offline at the time when its configuration is changed, both the old configuration
and the new one are temporarily available to the user, until the router comes back online
and the changes are delivered. The user can manage what L A N s should be accessible from
the virtual network, and what L A N s should not, by setting them into one of 4 modes.
A client application for routers, called user module, was implemented, and needs to be
installed on routers before they can start interacting with the system.

The whole system underwent a series of stress tests with 100, 350 and 600 (simulated)
routers, with the conclusion that memory usage and C P U load scale quite well and a
strong machine should probably easily handle even thousands of connected routers. The
only issue being slow responsiveness of the application when an operation is executed for
large numbers of routers at once. This is due to lack of optimization and should probably
be easy to improve in the future.

There are many ways how the current application could further be improved. Currently
there is support only for routers of Advantech manufacturer. However, the user module
was successfully modified to run on P C (with some limitations), and with small effort, it
should be possible to port it to any device that uses a Linux distribution as its operating
system.

43

Bibliography

[1] Ansible module development: getting started. [Online; accessed 05.01.2019].
Retrieved from: https: //docs.ansible.com/ansible/latest/dev_guide/
developing_modules_general.html

[2] Certificate authority and SSL. [Online; accessed 05.01.2019].
Retrieved from: https: //puppet.com/docs/puppet/6.0/ssl_certificates.html

[3] Design and Implementation of SoftEther VPN. [Online; accessed 05.01.2019].
Retrieved from: https://www.softether.org/4-docs/9-research/
Design_and_Implementation_of_SoftEther_VPN

[4] Differences between VPN Server and VPN Bridge. [Online; accessed 05.01.2019].
Retrieved from: https:
//www.softether.org/4-docs/l-manual/5._Sof tEther_VPN_Bridge_Manual/
5.3_Differences_between_VPN_Server_and_VPN_Bridgey

[5] Facter 101. [Online; accessed 05.01.2019].
Retrieved from: https: //puppet.com/blog/facter-part-1-facter-101

[6] Frequently asked questions - Licensing. [Online; accessed 05.01.2019].
Retrieved from: https: //openvpn.net/vpn-server-resources/frequently-
asked-quest ions-licensing/

[7] Overview of Puppet's architecture. [Online; accessed 05.01.2019].
Retrieved from: https: //puppet.com/docs/puppet/5.5/architecture.html

[8] Running Puppet on nodes. [Online; accessed 05.01.2019].
Retrieved from: https: //puppet.com/docs/pe/2017.3/run_puppet_on_nodes.html

[9] SoftEther VPN Essential Architecture. [Online; accessed 05.01.2019].
Retrieved from: https://www.softether.org/4-docs/l-manual/
2._SoftEther_VPN_Essential_Architecture/2.2_User_Authentication

[10] SoftEther VPN Project. [Online; accessed 05.01.2019].
Retrieved from: https://www.softether.org/

[11] Subsystems: Agent/master HTTPS communications (platform manual). [Online;
accessed 05.01.2019].
Retrieved from:
https: //puppet, com/docs/puppet/5.2/subsystem_agent_master_comm.html

44

http://docs.ansible.com/
https://www.softether.org/4-docs/9-research/
http://www.softether.org/4-docs/l-manual/5._Sof
http://openvpn.net/vpn-server-resources/
https://www.softether.org/4-docs/l-manual/
https://www.softether.org/

[12] Ultimate Powerful VPN Connectivity. [Online; accessed 05.01.2019].
Retrieved from: h t tps :
//www. sof te ther .org/ 1-f eatures/ l ._Ultimate_Powerf ul_VPN_Connectivi ty

[13] Anderson, L . ; Madsen, T.: Provider Provisioned Virtual Private Network (VPN)
Terminology. [Online; accessed 05.01.2019].
Retrieved from: h t t p s : / / t o o l s . i e t f . o r g / h t m l / r f c 4 0 2 6

[14] Ansible Installation Guide. [Online; accessed 05.01.2019].
Retrieved from: h t tp s : / / docs . ans ib l e . com/ans ib l e / l a t e s t /
i n s t a l l a t i o n _ g u i d e / i n t r o _ i n s t a l l a t i o n . h t m l

[15] Asynchronous Actions and Polling. [Online; accessed 05.01.2019].
Retrieved from:
h t tps : / /docs , ans ib le . com/ansible/2.5/user_guide/playbooks_async. html

[16] Building a simple module. [Online; accessed 05.01.2019].
Retrieved from: h t tps :
/ / docs.ansible.com/ansible/2.3/dev_guide/developing_modules_general.html

[17] Httpapi Plugins. [Online; accessed 05.01.2019].
Retrieved from:
h t tps : / / docs .ans ib le .com/ans ib le / la tes t /p lug ins /h t tpap i .h tml

[18] Intro to Playbooks. [Online; accessed 05.01.2019].
Retrieved from:
h t tps : / / docs .ansible .com/ansible / la tes t /user_guide/playbooks_intro .html

[19] The benefits of agentless architecture. [Online; accessed 05.01.2019].
Retrieved from:
https://www. ansible .com/hubfs/pdfs/Benefi ts-of-Agentless-WhitePaper .pdf

[20] Bjorklund, M . : YANG - A Data Modeling Language for the Network Configuration
Protocol. [Online; accessed 05.01.2019].
Retrieved from: h t t p s : / / t o o l s . i e t f . o r g / h t m l / r f c 6 0 2 0

[21] Chisholm, S.; Trevino, H . : NETCONF Event Notifications. [Online; accessed
05.01.2019].
Retrieved from: h t t p s : / / t o o l s . i e t f . o r g / h t m l / r f c 5 2 7 7

[22] Frankel, S.; Krishnan, S.: IP Security (IPsec) and Internet Key Exchange (IKE).
[Online; accessed 05.01.2019].
Retrieved from: h t t p s : / / t o o l s . i e t f . o r g / h t m l / r f c 6 0 7 1

[23] Geerling, J.: Make your ansible play book flexible, maintainable, and scalable. [Online;
accessed 05.01.2019].
Retrieved from: h t tps : / /www.ansible.com/blog/make-your-ansible-playbooks-
f l ex ib l e -ma in t a inab le -and - sca l ab l e

[24] Kanies, L . : Puppetl. [Online; accessed 05.01.2019].
Retrieved from: https://www.aosabook.org/en/puppet.html

45

http://softether.org/
https://tools.ietf.org/html/rfc4026
https://docs.ansible.com/ansible/latest/
http://docs.ansible.com/
http://docs.ansible.com/
http://docs.ansible.com/
https://www
http://ansible.com/hubfs/pdfs/Benef
https://tools.ietf.org/html/rfc6020
https://tools.ietf.org/html/rfc5277
https://tools.ietf.org/html/rfc6071
http://www.ansible.com/blog/make-your-ansible-playbooks-
https://www.aosabook.org/en/puppet.html

[25] Kent, S.: IP Authentication Header. [Online; accessed 05.01.2019].
Retrieved from: https://tools.ietf.org/html/rfc4302

[26] Kent, S.; Atkinson, R.: IP Encapsulating Security Payload (ESP). [Online; accessed
05.01.2019].
Retrieved from: https://tools.ietf.org/html/rfc2406

[27] Kotuliak, L; Rybár, P.; Trúchly, P.: Performance Comparison of IP sec and TLS
Based VPN Technologies. [Online; accessed 05.01.2019].
Retrieved from: https://www.researchgate.net/publication/
254015270_Performance_comparison_of_IPsec_and_TLS_based_VPN_technologies

[28] Kraft, M.; Hilgner, L.: SmartCluster Application Note, (2015). [Online; accessed
05.01.2019].
Retrieved from: http://www.infopulsas.lt/files/eshop/358/
lSmartCluster_Application_note_20151026.pdf

[29] Lewis, M.: Comparing, Designing, and Deploying VPNs. Cisco Press. 2006.
Retrieved from: https://www.researchgate.net/publication/
240918687_Comparing_Designing_and_Deploying_VPNs

[30] Manral, V.; Hanna, S.: Auto-Discovery VPN Problem Statement and Requirements.
[Online; accessed 05.01.2019].
Retrieved from: https://tools.ietf.org/html/rfc7018

[31] NETCONF library for clients and servers. [Online; accessed 05.01.2019].
Retrieved from: https: //netopeer.liberouter.org/doc/libnetconf2/devel/
group client session.html

[32] Reshma, A.: What Is Ansible? - Configuration Management And Automation With
Ansible. [Online; accessed 05.01.2019].
Retrieved from: https://www.edureka.co/blog/what-is-ansible/

[33] Saurabh: Puppet Tutorial - One Stop Solution For Configuration Management.
[Online; accessed 05.01.2019].
Retrieved from: https://www.edureka.co/blog/puppet-tutorial/

[34] Yonan, J.: Reference manual for OpenVPN 2.4- [Online; accessed 05.01.2019].
Retrieved from: https:
//openvpn.net/community-resources/ref erence-manual-f or-openvpn-2-4/

46

https://tools.ietf.org/html/rfc4302
https://tools.ietf.org/html/rfc2406
https://www.researchgate.net/publication/
http://www.infopulsas.lt/files/eshop/358/
https://www.researchgate.net/publication/
https://tools.ietf.org/html/rfc7018
http://liberouter.org/
https://www.edureka.co/blog/what-is-ansible/
https://www.edureka.co/blog/puppet-tutorial/

