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Abstract 

Ordinary differential equations of various types appear in the mathematical modelling 
in mechanics. Differential equations obtained are usually rather complicated nonlinear 
equations. However, using suitable approximations of nonlinearities, one can derive simple 
equations that are either well known or can be studied analytically. A n example of such 
"approximative" equation is the so-called Duffing equation. Hence, the question on the 
existence of a periodic solution to the Duffing equation is closely related to the existence 
of periodic vibrations of the corresponding nonlinear oscillator. 
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Chapter 1 

Introduction 

The study of dynamical systems became a point of interest in recent mathematics and en­
gineering researches. This is because of its essential attribute of being a time evolutionary 
procedure. 

Mathematical modeling is a part of mathematics that mimics a certain result of reality 
by trying to describe and formulate the basic laws of natural sciences given phenomena by 
mathematical equations. In mathematical modeling in mechanics they often find differ­
ential equations of different types. These are mostly relatively complex linear equations, 
which, however, can be converted by a suitable approximation. One such equation is the 
Duffing equation. It is a second order differential equation wi th cubic non-linearity, which 
describes the chaotic behavior of some dynamic systems. 

The Duffing equation in its numerous forms is used to describe many nonlinear sys­
tems. Al though most physical systems can not be accurately described in this way for a 
wide range of operating conditions, such as frequency and amplitude of excitation, this 
equation can in many cases be used as an approximate definition so that their behavior 
can be qualitatively studied.In some cases, a comprehensive study may be conducted for 
low excitation amplitudes. It is in many cases the first step in switching from a linear 
system to a nonlinear one. 

1.1 Motivation 
The first objective is to interpretation of the Duffing equation in connection wi th the 
approximation of nonlinear oscillator. The second goal is the analysis of singular points 
and their stability in case of autonomous Duffing equation. We shall derive the level 
curves and corresponding phase portraits and analyze the existence of periodic solutions 
to the considered Duffing equation in the autonomous case, then we draw and interpret 
the phase portraits. We wi l l find conditions guaranteeing the existence and uniqueness of 
a periodic solution in the non-autonomous case. 

1.2 Structure of the thesis 
This thesis work is organized as follows: Theoretical part and Practical part. 

In second Chapter, We wi l l first show the derivation of Duffing equation from a specific 
mathematical model. Using Newton's 2nd law of motion and the Taylor approximation 
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of the nonlinear term gives the shape corresponding Duffing equation. 
The third Chapter is devoted to the theoretical part which deals wi th the supplement 

knowledge in the theory of dynamical systems. We determine singular points and their 
type and stability. 

The fourth Chapter is devoted to the practical part where we analyze the existence of 
periodic solutions to the considered Duffing equation in the autonomous case, we calculate 
level of Hamiltonian and sketch of corresponding phase portraits. We find conditions 
guaranteeing the existence of a periodic solution in the non-autonomous case and discuss 
the uniqueness of periodic solutions. 

The fifth Chapter is devoted to main conclusion of the work. 
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Chapter 2 

Duffing equation 

In mathematical models of various oscillators, one can find the second order differential 
equation 

y" + 5y'+ ay + (3y3 = 7 sin*, (2.1) 

where a, /?, 7, <5 G M . This equation is the central topics of Duffing's monograph [1] 
published in 1918 and still bears his name today (see also [4]). Equation (3.28) appears, 
for example, when approximating a nonlinearity in the equation of motion of a pendulum 
by Taylor's polynomial of the third order. It can be also interpreted as an equation of 
motion of a forced oscillator wi th a spring whose restoring force is given as a third order 
polynomial. The pendulum is the dynamical prototypical mechanism studied in nonlinear 
dynamics. The standard pendulum consists of a mass suspended from a string of length 
L and fixed at a pivot point P, see F ig . 2.1. The pendulum swings back and forth wi th 
occasional motion when moved to an init ial angle and is released. For simplicity we 
assume that no external damping or driving force is acting on our physical system. We 
also assume negligible mass of the string. The equation of motion for the pendulum can 
be obtained by applying Newton's second law for rotational systems and has the form 

—mgsmUL — mL (2.2) 

B y rearranging the above equation, we wi l l get a nonlinear equation 

g + £ - n « = 0. (2.3, 

If the amplitude of angular displacement is small enough, then the approximation 

n3 

s m 6 ^ 6 - — (2.4) 

is valid. Substituting the value of sin# in equation (2.3), we get 
e" + ^ e - ^ - e 3 = o, (2.5) 

which is a particular case of the Duffing equation (3.28). 
It is clear that equation (2.5) has three constant solutions 6\{t) := 0, 02{t) •= and 
63(1) : = —VQ- A qualitative analysis namely the phase portrait, and the existence of non 
constant periodic solutions to (2.5) w i l l be discussed in Section 4.1. 
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-ring sin 9 

F = m q 

Figure 2.1: The simple pendulum 

Now assume that the pivot point P oscillates vertically; oscillations are given by the 
T-periodic periodic function d: M. —> M.. Then the equation of motion is of the form 

9" + ( | + sin# = 0 

(see, e.g., [9, Section 11, Example 6.5]). App ly ing approximation (2.4), we get 

9" + ( f + <*"(*)) 0 " ^ ( f + d " ^ ) ^ = ° ' ( 2 - 6 ) 

Rewrit ing equation (2.6) in the form of variable u and substituting p(t) := f + d"{t). 

h(t) : = | ( f + d"(t)^J, we obtain the nonautonomous Duffing equation 

u" + p(t)u - h(t)us = 0. (2.7) 

It is clear that equation (2.6) has three constant solutions 9\{t) := 0, 02{t) •= V6, 9?,(t) := 
—\/6 (similarly as equation (2.5)). In Section 4.2 (see Corollary 4.7), we show that, for 
T small enough, equation (2.6) has no non constant T-periodic solution. 
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Chapter 3 

Theoretical part 

In this part, we provide some notions and results which we wi l l need to to analyze the ex­
istence of periodic solutions to Duffing equation in both autonomous and nonautonomous 
cases. 

3.1 Autonomous system of differential equations 
Below we discuss fundamentals of the theory of dynamical systems, which we wi l l need 
in Section 4.1 (see e.g., [7] for review). 

Definition 3.1. Let G C W1 be an open set and / i , / 2 , . . . , fn : G —> M are continuous 
functions. System 

x[ = fi(x1,x2, . . . , x „ ) 

x'2 = / 2 O E I J • • •, xn) 
(3.1) 

Xn fn(x\, X2, • • • , Xnj 

is called an autonomous system of n first order differential equations. 
Differential equations that explicitly depend on time (i.e., x = f(t,x)) are referred as 
nonautonomous differential equations or nonautonomous vector fields. 

System (3.1) can be represented by vector equivalent functions form 

x' = f(x). (3.2) 

Definition 3.2. Solution of equation (3.2) on the interval J C M. we mean a vector 
function x = (x\,X2, • • • ,xn) whose components have continuous derivatives on J and x 
satisfies the system (3.2) for each t G J . 

Definition 3.3. Let XQ G G. Condit ion 

x(0) = x° (3.3) 

is called the init ial (Cauchy) condition. The problem of finding solution to the system 
(3.2) satisfying condition (3.3) is called the init ial (Cauchy) problem. The solution of the 
init ial problem (3.2),(3.3) we denote by ip(-,x°). 
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Remark 1. Let / : I " 1" be a continuous on an open set G. Then the solution x(t) 
of (3.2) can be extended over a maximal interval of existence (e_,e+). Addit ional ly if 
(e_,e +) is a maximal interval of existence, then x(t) tends to the boundary dG of G as 
t —> — e and t —>• +e. 

Theorem 3.4 (Peano's). Let #ie function f defined in G C R N be continuous around 
XQ G G. Then the initial value problem (3.2), (3.3) has at least one solution defined in 
the neighborhood ofO. 

Proof. There are many different proofs available for Peano's theorem. We can classify 
them into two fundamental types: 
(A) Proofs based on the construction of a sequence of approximate solutions (mainly Euler 
Cauchy polygons or Tonelli sequences) which converges to some solution. 
(B) Proofs based on fixed point theorems (mainly Schauder's Theorem) applied to the 
equivalent integral version of (3.2),(3.3) (see, e.g., [10] for review). 

Theorem 3.5 (Picard's). Consider the initial value problem (3.2),(3.3). Suppose that 
f : G —>• W1 is continuous as well as Lipschitz continuous on some neighborhood of 
(Q,x°), then for some e > 0, there exists a unique solution x to the initial value problem 
(3.2),(3.3) on the interval [to — e, to + e]. 

Proof. The proof is based on applying fixed-point theory and transforming the differential 
equation (3.2). B y integrating both sides of (3.2) and applying the condition (3.3), any 
function satisfying the differential equation (3.2) must satisfy the integral equation 

To prove the existence of the solution is obtained by successive approximations(Picard 
iteration). Then by using the Banach fixed point theorem, it can be shown that the 
sequence of "Picard iterates" is convergent and that the l imit is a solution to the problem. 
Then by an application of Gronwall 's lemma, proving the uniqueness.(see, e.g., [11] for 

Remark 2. Picard's theorem proves both existence and uniqueness while Peano's theo­
rem provides a very simple check able condition to ensure the existence of solutions for 
complicated systems of ordinary differential equations. 

Theorem 3.6 ([7, Section 2.4, Theorem 1]). Consider the initial value problem (3.2),(3.3). 
Suppose that f : G —>• Rn is continuous. Then there exists a maximal interval Ixo for each 
point x° G G, for which the initial value problem has a unique solution x, i.e., if initial 
value problem has a solution y on an interval J then J C Ixo and y(t) = x(t) for all t G J . 
Furthermore the maximal interval is open i.e., Ixo = (a, 13). 

Definition 3.7. The interval (a, (3) in Theorem 3.6 is called the maximal interval of 
existence of the solution x of the ini t ial value problem (3.2),(3.3). 

Definition 3.8. Orbit of the solution </?(•, x°) of the system (3.2) on the interval I is set 
of points ip(t,x°), where t G / . 

Proposition 3.9. If x is a solution of (3.2), then for any r G M , x(t + r) is also a 
solution. 

• 

(3.4) 

review • 
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Remark 3. Proposition 3.9 is valid only for autonomous case. 

Definition 3.10. The graph of the solution Lp(-,x°) of the system (3.2) on the interval / 
is set of points (t, ip(t, x0)), where t E I. 

Remark 4. Orbit of solution ip(-,x°) of the system (3.2) is obtained by the projection of 
graph of this solution to M.n. 

Definition 3.11. Let S C M n , then a set of states S is called an invariant set of (3.2),(3.3) 
if for a l l x° G S and for all t G Ixo and t > 0, the solution x of (3.2),(3.3) satifies x(t) G S, 
where Ixo is the maximal interval of existence. 

Definition 3.12. (i) Cycle: A n orbit is said to be a cycle if it corresponds to the 
periodic solution and has the shape of a closed curve. 

(ii) Homoclinical Orbit: A n orbit is said to be homoclinic to an invariant set if it ap­
proaches the invariant set in time evolution asymptotically as times goes up to ± o o . 

(iii) Heteroclinic Orbit: Let Ti and T 2 are two invariant sets. A n orbit is said to be 
heteroclinic if it approaches Ti asymptotically under time evolution as time goes to 
—oo and approaches T 2 asymptotically under time evolution as time goes to +oo. 

In Section 3.1 the definition for the dynamical system have been given for M n . Further 
we wi l l l imit ourselves to space M 2 . 
Consider the autonomous two-dimensional system 

where fi, f2 are continuous functions along wi th the first order partial derivatives on a 
domain G C M 2 . According to Theorem 3.6, the ini t ial problem (3.5),(3.3) has solution 
defined on the maximal interval of existence Ixo and we denote this solution as (p(-,x°). 

Definition 3.13. Ma t r ix 

we call the Jacobi matrix of the function / = f2) at the point x = (xi, x2). 

Definition 3.14. A point x = (x~i,x2) is referred to as fixed or critical or singular or 
equilibrium point of the system (3.5), if fi(x~i,x2) = 0, f2(x~i,x2) = 0. 

Definition 3.15 ([7]). (i) If al l the eigenvalues of Jacobi matrix Df(x) have nonzero 
real part then the critical point x of (3.5) is called hyperbolic fix point. Otherwise, 
it is said to be nonhyperbolic. 

(ii) If some of the eigenvalues of Jacobi matrix Df(x) have positive real part, and others 
have negative real part then the hyperbolic fixed point is called a saddle. 

(iii) If all the eigenvalues of Jacobi matrix Df{x) have positive or negative real part 
then the hyperbolic fix point is called source or sink respectively. 

(iv) If all the eigenvalues of jacobi matrix Df{x) are non zero and purely imaginary then 
the fix point is called a center. 

x[ = fi(xi,x2) 

x'2 = f2(x1,x2) 
(3.5) 
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Definition 3.16. A critical point x of (3.5) is called stable if for all e > 0 there exists 
5 > 0 such that ||a;0 — x\\ < S implies that \\(p(t, x°) — x\\ < e for all t > 0. Otherwise the 
fixed point is said to be unstable. 

Definition 3.17. A critical point x of (3.5) is called asymptotically stable if it is stable and 
there exists an r > 0 such that for every x° G G holds ||a;0 — x\\ < r =^ l im^oo \\<p(t, x°) — 
x\\ = 0. 

Remark 5. F ixed points of the system (4.4),(4.5) can be classified by looking at the charac­
teristics of equilibrium linearization i.e., the type of equilibria can be defined by measuring 
the Jacobian matrix at each of the system's equilibrium points, and then determining the 
resulting eigenvalues, so the behavior of the system can be calculated in the neighborhood 
of each equilibrium point (qualitatively determined, or even quantitatively). 

Theorem 3.18 ([7, Section 2.9]). Let the function f = ( / i , / 2 ) defined in G C R 2 be 
continuous and f(x0) = 0. Further, suppose that there is a real valued function V G C1(G) 
satisfying V(x0) = 0 and V(x) > 0 if x ^ x0. 
Then 

• if V(x) < 0 for all x G G, xo is stable, 

• ifV(x) < 0 for all x G G \ {xo}, xo is asymptotically stable, 

• if V(x) > 0 for all x G G \ {x0}, x0 is unstable, 
where 

V(x) = Vx1(x1,x2)fi(x1,x2) + V^2(x1,X2)f2(xi,x2) for x = {xux2) G G. 

Theorem 3.19. If x is a hyperbolic equilibrium point of (3.2) then it is stable if all of 
the eigenvalues of the matrix Df{x) have negative real part and it is unstable if all of the 
eigenvalues of Df{x) have positive real part. 

3.1.1 Hamiltonian system 
Let G C R 2 and let H G C2(G). A system of the form 

_ dH(xl,x2) 

(3.6) 
dx2 

, _ dH(x1,x2) 
-2 dxi 

is called the Hamiltonian system with 1 degree of freedom on G. We wi l l consider the 
init ial condition again together wi th the system (3.6), 

x(0) = x°. 

The Hamiltonian system (3.6) is a special case of the system (3.5), where 

dH(x1,x2) dH(x1,x2) 
fi{x1,x2) = , hix^xt)-

OX2 OXi 

Definition 3.20. Let c e l . The level Xc of the function H is the set of points (xi,x2) G 
G satisfying the equation 

H(xl,x2) = c. 
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Theorem 3.21 ([7, Section 2.14, Theorem 1]). Let x° G G and ip(-,x°) be the solution of 
the system (3.6) along with the initial condition (3.3) at maximal interval Ixo C M . Then 
for every t G Ixo 

H(V(t,x°)) = H(x°). 

Remark 6. Hamiltonian has the meaning of total energy in physical models. 
Theorem 3.21 tells that the values of Hamiltonian remains constant along the orbit 

of any solution of Hamiltonian system. Also, the system (3.6) conserves energy. 

Corollary 3.22. The levels Xc of Hamiltonian H consists of the orbits of the system 
(3.6). 

It follows from the result of Corollary 3.22 that the level of Hamiltonian containing 
singular points {x~i,x2) of the system (3.6) is a set of points {x\,x2) G G satisfying 

H(x1,x2) = H(xi,x2). 

In addition, each orbit of the system (3.6) is contained in some level of hamiltonian H. 
We can determine the orientation of of the orbits of the phase portraits of system (3.6) 
by Isocline method and the types of singular points by linearization method. 
Remark 7. The ordinary differential equation can be solved by graphical method which 
is Isoclines. The isoclines for a differential equation of the form x' = f(x), are lines in 
(xi,x2) plane obtained by setting right hand side i.e., f(x) equal to a constant. B y this 
method, for different constants we get a series of lines along which the solution curve 
have same gradient. The slope field can be visualized by calculating the gradient for each 
isocline. 

The Jacobi matrix of the system (3.6) at the point (xi,x2) is of the shape 

3(x1,x2) 
\ - 0 ( x i , x 2 ) -J£jL-(Xl,X2)J 

(3.7) 

It is possible to decide the singular point x of the system (3.6) by using the determination 
of the jacobi matrix (3.7). 

Theorem 3.23 ([7, Section 2.14, Theorem 2]). Let x = (x~i,x2) G G be the singular point 
of (3.6). 
Then 

• if det( J(x~i, x2)) <0,x is the saddle of the system (3.6), 

• if det(J(x~i,x2)) > 0,x is the center of the system (3.6). 

Second order differential equations of the form x" + f(x) = 0 are possible to convert 
into so-called conservative system, which is a special type of Hamiltonian system. A 
system of shape 

x r x % , . (3.8) 

is conservative system, where / : M. —>• M. is continuously differentiable function. The 
Hamiltonian of system (3.8) has the form 

H(Xl,x2) = $+ r f(s)ds (3.9) 
2 Jo 

for (xi,x2) G M . 
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3.2 Periodic problem for second-order differential equa­
tion 

Consider the periodic problem 

« " = / ( * , « ) , (3.10) 

u(a)=u(b), u'(a)=u'(b), (3.11) 

where a < b and / : [a, b] —>• R is a continuous function. 

Definition 3.24. A function u: [a,b] —>• R is said to be a solution to problem (3.10). 

(3.11) if it is continuous together with its first and second derivatives, satisfies 

u"(t) = f(t,u(t)) f o r t e [a, 6], 

and meets periodic conditions (3.11). 

Definition 3.25. A function u : R —> R of is called T-periodic if u(t + T ) = u(t) for all 
t e R . 

To derive effective solvability conditions for problem (3.10), (3.11) various existence 
results can be applied. One of possible approaches is the so-called method of lower and 
upper functions. 

Definition 3.26. A function a: [a, b] —> R , continuous together wi th its first and second 
derivatives, is said to be a lower function of problem (3.10), (3.11) if 

(i) a"{t) > f(t,a(t)) for all t e [a,b]. 
(ii) a(a) = a(b), a'(a) > a'{b). 

A function j3: [a, b] —> R , continuous together wi th its first and second derivatives, is said 
to be an upper function of problem (3.10), (3.11) if 

(i) P"{t) < f{t, f3(t)) for all te[a,b\. 
(ii) /3(a) = /3{b), P'{a) < P'{b). 

If the pair (a, (3) of lower and upper functions is well-ordered in the sense of condition 
(3.12) , then problem (3.10), (3.11) possesses a solution without any additional assumption 
on / . More precisely, the following theorem holds. 

Theorem 3.27 ([2, Chapter I, Theorem 1.1]). Assume that a and (3 are the lower and 
upper functions of problem (3.10), (3.11), respectively, such that 

a{t)<P{t) forte[a,b]. (3.12) 

Then the problem (3.10), (3.11) has at least one solution u such that 

a(t) < u{t) < (3{t), Vt G [a, 6]. 

For the linear second-order equation 

u" + q(t)u = ho(t) (3.13) 

wi th continuous q, h0: [a, b] —> R plenty of results are known. In Section 4.2, we wi l l need 
Propositions 3.28 and 3.35 stated below. Recall that by a solution to (3.13) we understand 
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a function u: [a, b] —> R , which is continuous together with its first and second derivatives 
and satisfies equation (3.13) everywhere on [a, b}. 

The first proposition concerns a number of zeros of solutions to equation (3.13). In 
Section 4.2, we wi l l need the following statement, which is usually referred as Lyapunov's 
theorem. 

Proposition 3.28 ([3, Chapter X I , Corollary 5.1]). Assume that the homogeneous equa­
tion 

u" + q(t)u = 0 (3.14) 

has a nontrivial solution possessing two zeros. Then 

rb[q(t)]+dt>-^-, (3.15) 
o — a 

where 

m + = m+M. 
Second proposition concerns the so-called third Fredholm's theorem for the problem 

(3.13), (3.11). It is a consequence of general results which are discussed in Chapter X I I 
of [3]. 

Consider the nonhomogeneous system of n linear differential equations 

y'= A(t)y + g(t), (3.16) 

where A is a continuous on [a, b] matrix function (in general, complex-valued) and g is 
a continuous on [a, b] vector function. Corresponding homogeneous system is of the form 

y' = A{t)y. (3.17) 

In addition, consider the two-point boundary condition 

My(a) - Ny(b) = 0, (3.18) 

where M, N are constant n x n matrices. The boundary condition (3.18) covers, in 
particular, 

• periodic condition 
y(a) = y(b), 

if M, N are the identity matrices, 
• ini t ial condition in the point a 

y{a) = 0, 

if M is the identity matrix and TV is the zero matrix, 
• ini t ial condition in the point b 

y{b) = 0, 

if TV is the identity matrix and M is the zero matrix, 

• the so-called Cauchy-Nicoletti conditions 

yi(a) = 0, . . . , yk(a) = 0, yk+i(b) = 0, . . . , yn{b) = 0, 

where k G { 1 , . . . , n — 1}. 
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Proposition 3.29 ([3, Chapter X I I , Theorem 1.1]). Let M, N be such that the n x 2n 
matrix (M,N) is of rank n. Then (3.16) has a solution y satisfying (3.18) for every 
nonhomogeneous term g if and only if problem (3.17), (3.18) has no nontrivial solution; 
in which case y is unique and there exists a constant K, independent of g, such that 

\y(t)\\ < K I" \\g(s)\\ds, Vte[a,b]. 
J a 

Now, a nature question is: What happens if problem (3.17), (3.18) has a nontrivial 
solution? 

Consider the systems adjoint to (3.16), (3.17) 

z' = -A*(t)z-h(t), (3.19) 

z' = -A*(t)z, (3.20) 

where A* is the complex conjugate transpose of A, i.e., A* = AT, and h is a continuous 
on [a, b] vector function. Moreover, consider the boundary condition 

Pz{a) - Qz{b) = 0, (3.21) 

where P, Q are constant n x n matrices. If y is a solution to (3.16) and z is a solution to 
(3.19), then Green's formula yields 

b g(s) • z(s) - y(s) • h(s)\ ds = y(b) • z(b) - y(a) • z(a), (3.22) 

where the dot denotes scalar multiplication (see [3, Chapter IV , Lemma 7.2]). One can 
show that, if M, Q are nonsingular, then necessary and sufficient for (3.18), (3.21) to 
imply 

y(b) • z{b) - y(a) • z(a) = 0 (3.23) 

in (3.22) is that 
MP* - NQ* = 0 (3.24) 

holds. In general, we have 

Lemma 3.30 ([3, Chapter X I I , Lemma 1.2]). Let M, N be such that r a n k ( M , N) = n. 
Then, there exist n x n matrices P, Q satisfying rank(P, Q) = n, (3.24), and having 
property that the relations (3.18), (3.21) imply (3.23) (the pairs of vectors z(a), z{b) 
satisfying (3.21) are independent of the choice of P, Q). 

Boundary condition (3.21) satisfying the conditions of Lemma 3.30 is called the adjoint 
boundary condition to (3.18). Correspondingly, the problems (3.17), (3.18) and (3.20), 
(3.21) are called adjoint problems. 

Lemma 3.31 ([3, Chapter X I I , Lemma 1.3]). Let M, N be such that r a n k ( M , N) = n and 
P, Q be constant matrices such that boundary condition (3.21) is adjoint to (3.18). Then, 
problems (3.17), (3.18) and (3.20), (3.21) have the same number of linearly independent 
solutions. 

We are in a position to formulate the existence results for the problem (3.16), (3.18) 
provided that the homogeneous problem (3.17), (3.18) has a nontrivial solution. 
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Proposition 3.32 ([3, Chapter X I I , Theorem 1.2]). Let M, N be such that r a n k ( M , N) = 
n and let (3.17), (3.18) and (3.20), (3.21) be adjoint problems. Suppose that (3.17), 
(3.18) has exactly k linearly independent solutions yi, • • • ,yk o,nd let z\,..., Zk be linearly 
independent solutions to problem (3.20), (3.21). Then, system (3.16) has a solution yo 
satisfying (3.18) if and only if 

[bg(s)-zj(s)ds = 0, Vj = l,...,k. (3.25) 
J a 

In this case, solutions of problem (3.16), (3.18) are given 

Ho + onyi H akyk, 

where ai,..., a*, are arbitrary constants. 

Now we apply Propositions 3.29 and 3.32 to the nonhomogeneous periodic problem 
(3.13), (3.11). It is clear that problem (3.13), (3.11) can be rewritten as problem (3.16), 
(3.18), in which 

and 

M = N = ( \ f], (3.27) 

and that the following lemma holds. 

Lemma 3.33. Let A and g be defined by (3.26) and let (3.27) hold. 
Ifu is a solution to problem (3.13), (3.11), then the vector function (u,u') is a solution 

to problem (3.16), (3.18). 
Conversely, if (2/1,2/2) is a solution to problem (3.16), (3.18), then y[ = y2 and y\ is 

a solution to problem (3.13), (3.11). 

Therefore, Proposition 3.29 yields the so-called Fredholm's alternative for periodic 
problem (3.13), (3.11). 

Proposition 3.34. Problem (3.13), (3.11) has a unique solution for an arbitrary nonho­
mogeneous term ho if and only if the corresponding homogeneous problem (3.14), (3.11) 
has only the trivial solution. 

The complex conjugate transpose of the matrix function A given by (3.26) is of the 
form 

A*(t)=(^ f o r t e [a, b]. 

Moreover, the boundary condition (3.18) with M, N given by (3.27) is, in fact, the 
periodic condition y(a) = y(b). One can show that the adjoint of the periodic condition 
y{a) = y{b) is equivalent to the periodic condition z(a) = z(b) and, thus, we put 
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Observe that 
(2/1,2/2) is a solution to problem (3.17), (3.18) 

t (3-28) 

(2/2, _ 2 / i ) is a solution to problem (3.20), (3.21). 

Since g is given by (3.26), for any solution z = (zi, z2) to system (3.20), we have 

g(s) • , ( . ) d . = / ; (Js)) • d . = / \ ( S ) , 2 ( S ) d , (3.29) 

Therefore, on account of (3.28), (3.29), and Lemma 3.33, Proposition 3.32 implies 

Proposition 3.35. Problem (3.13), (3.11) has a solution if and only if the condition 

rb 
u0(s)h0(s)ds = 0 

holds for every solution u0 to homogeneous problem (3.14), (3.11) 
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Chapter 4 

Periodic solutions to Duffing 
equation 

In this part, we study the existence as well as uniqueness of T-periodic solutions to the 
equation 

u" = -p(t)u + h(t)us, (4.1) 

where p,h: K. —> K. are continuous T-periodic functions. B y a solution to equation (4.1) 
on the interval I C M., as usual, we understand a function u: I —> M , which is continuous 
together wi th its first and second derivatives and satisfies equation (4.1) everywhere on I. 
A solution to (4.1), which is defined and T-periodic on M., is referred to as a T-periodic 
solution to (4.1). 

4.1 Autonomous equation 
We first consider equation (4.1) in which both p and h are constant functions. In other 
words, we consider the Duffing equation (2.5) introduced in Section 2, i.e., the equation 

y" = -ay + by3, (4.2) 

where a and b are constants. The signs of coefficients a and b determines the type of 
oscillation. 
The general solution of (4.2) for a > 0 and b > 0, associated wi th closed phase trajectories, 
is expressed in terms of the Jacobi elliptic sine as 

y{t) = Asniut, k), (4.3) 

where A is the amplitude of the oscillations, u = y a — and k — y y ^ is the modulus 

of the elliptic sine. The expression (4.3) is valid for A < .f^, i.e., k < 1. It describes \b\-
periodic oscillations with period A K ^ , where K(k) is the full elliptic integral of the first 
kind. For k —> 1 the oscillation period tends to infinity and y(t) tends to the expression 
of the motion along separatrix between two points is described by the following equation 

(see, e.g.,[4] or [5] for review). 
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We wi l l provide the analytic description of all orbits in the phase portraits in F ig . 4.7 
on p. 36. 
Equation (4.2) can be rewritten as Hamiltonian system in the following way. Let 

Xi 
x2 

y, 

Then 

x. X2, 

x'2 = —ax\ + bx\. 

(4.4) 

(4.5) 

Thus, in view of (3.9), we have the Hamiltonian as following 

H(x1,x2) = \<c\ + °^x\ - for xi,x2e 

In Section 4.1.1-4.1.3, we wi l l assume that a > 0, b > 0. 

(4.6) 

4.1.1 Equi l ibr ium points 
The equilibrium points of the system (4.4),(4.5) can be obtained by solving the following 
algebraic equations 

x2 

—ax\ + bx\ 

0, 

0. 

Clearly, x = (0,0), x = (+^/f, 0) and x = (—^/|, 0) are the only equilibrium points of 

(4.4),(4.5). Since we have f(xi,x2) = (x2, —ax\ + bxf), the derivatives are 

Df(x) 
0 1 

-a + 3bxf 0 
, Df {0,0) 

0 1 
-a 0 

0 1 
2a 0 

and 
0 1 

2a 0 

Thus, according to Definition 3.15 in Section 3.1 the equilibrium point (0,0) is a center 
and (+y^f J o) , {~\f^i o) a r e saddles. The stability of any hyperbolic equilibrium point x 
of (4.4),(4.5) is determined by the signs of the real parts of the eigenvalues of the matrix 
Df(x). Therefore, according to Theorem 3.19 the hyperbolic equilibrium points (+y^f > o) 

and ( — ^ / f ^o) a r e unstable. Since, the equilibrium point XQ = (0,0) is nonhyperbolic so 
we wi l l apply Theorem 3.18. 
Consider the system (4.4),(4.5) where the continuous function q(xi) = ax\ — bx\ satisfies 
X\q{x\) > 0 for X \ ^ 0, | x i | < w | . The total energy of the system (3.9) 

x fxi 

H(x1,x2) = -1 + / q(s)ds 
2 Jo 
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serves as a Liapunov function for this system. 
Since 

TTI \ 1 2 2 (a b 2 \ H{X!, x2) — -x2 +xl I - - I 

3£/<$(0, 0) such that H(x\,X2) > 0 for all (xi ,X2) G Ug , | x i | < y^f, 
hence, 

H(xl,x2) = q(x1)x2 + x2[(-q(x1)] = 0 V [xl,x2\ G M 2 . 

The energy is constant on the solution curves and the origin (0, 0) is a stable equilibrium 
point. 

4.1.2 Level curves and orbits of system (4.4), (4.5) 
Following ideas described in Section 3.1.1, we get the Hamiltonian system (4.4),(4.5) and 
the Hamiltonian (4.6). 
Let us briefly describe another approach, how to get the form of the Hamiltonian. 
The equation (4.2), equivalent to the conservation system having an energy function which 
is constant on orbits. 
Consider 

x + ax — bxs = 0, 

without loss of generality, multiply it by x 

x (x + ax — bx3^j = x.0, 

or 
xx + axx — bxx = 0. 

which can be written as 

hence. 

or 

-x 

-x2 

+ 2X -x constant 

1 
:Xn + -x1 -2 - • 2 - 4 ^ = C ' ( 4 7 ) 

Equation (4.7) shows that the unforced, undamped Duffing oscillator has a first integral 
or more precisely a function c of dependent variables whose level curve give the orbits 
equation (4.2), or if we think of kinetic energy as where the mass m has been scaled 
to be 1, the potential energy as V{x\) = \x\ — \x\ and the total energy c of the system. 
The Duffing unforced, undamped oscillator is a Hamiltonian System. 
It follows from Corollary 3.22 in Section 3.1.1 that in order to describe the orbits of sys­
tem (4.4), (4.5), we need set Xc = {(xi,x2) G M 2 : H(xi,x2) = c}, where c is admissible 
constant. The magnitude of c is very important because the phase portrates qualitively 
depends on it. The level of Hamiltonian corresponding equilibria (or fixed points) y\ = 0 
of (4.2) is H(Vl, 0) = 0 and to equilibria y2)3 = ±Jf of (4.2) is H(y2j3, 0) = J . 
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Figure 4.1: Level curves of potential Energy Function V{x\). 

Case 1: c = 0. Now we wi l l analytically describe the set X0. From (4.6) we obtain, 

2 ^ 2 ^ 4 r\ 

which yields 
2 _ _ 2 , ^ 4 

— (XX ̂  ~\ 2*^i* 

For the values of x i , we have the following condition, 

—ax\ + -Xi > 0 

(4.8) 

(4.9) 

thus, 

x l ( - a + - x l ) > 0 . 

This inequality is satisfied if either x\ = 0 or —a + | x f > 0. If x i = 0, then (4.8) yields 
X2 = 0, which corresponds to equilibrium (0,0) of system (4.4), (4.5), i.e., to equilibrium 
j / i = 0 of equation (4.2). If 

b 

i.e., 

-a + -xi > 0, 

it follows from (4.9) that the level curve X0 contains the following two orbits 

/ 2 b~A ^ /2a 
X2 = ±\l-ax{ + -x\ , X i > W y , 
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Figure 4.2: Level curve XQ of (4.6) for a = 1 = b. 

2 b A / 2 a 

x2 = ±\l-ax{ + -x\ , X i < - W y . 

The lever curve X0 is shown in F ig . 4.2. 

2 

Case 2: c— jr. Now we wi l l analytically describe the set X ^ . From equation (4.6), we 

can write 

1 2 B _4 
iy> I iy> rr>' 

2 2 2 i 4 I 

.1 •) 

a 
46' 

„2 , b A 
a X l + 2Xl + 26' 

6 / 4 2a 2 a 2 

2 r 1 " t X i + ^ 

(7 

9 a 
^ 2 

V 2 

Hence, the level curve X^ contains equilibria (y^fjO) , ( — y ^ f ' ^ ) a n < ^ s * x o r b i t s a s 

lowing, 

X2 

a 
6 ' 
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n 1 

A 
\ 

1 n 

-1 

9 

Figure 4.3: Level curves of (4.6) for a = b = 1. 
4b 

The corresponding level curve is shown in F ig . 4.3. 

Case 3: c > | r . Consider H(xi,X2) = c, we obtain 

1 2 . ° 2 ^ 4 
2^2 "r 2 i 4 i ~~ 5 

x\ = -axj + ^xj + 2c. (4.10) 

From this we obtain the condition 

-ax\ + ^x\ + 2c > 0, 
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9 b A a2 a2 

- ^ + - 2 ^ + 2 b - 2 b + 2 C * °' 
6 / 9 a\2 a2 

2 ay a2 — Abe 

Since c > | r , clearly. 

bj 

a 2 - 46c 

(4.11) 

?>2 

< 0 

and thus, inequality (4.11) is satisfied for any x\ G M . Therefore the corresponding orbits 
are 

> 
V *-\ 

V / 
\ / / > ^— — \ _ 
\ / \ / 

0 

9 

Figure 4.4: Level curves Xc of (4.6) for a = b = 1 and c = T | , c = 1 

.7; 2 

:?;2 

-x\ — ax2 + 2c , X \ G 

-xf — axf + 2c , X \ G M . 

The corresponding level curve is shown in F ig . 4.4. 

Case 4: c < 0. Just as in case 3, we get (4.10) and the condition (4.11). Since c < 0, 
condition (4.11) is satisfied iff 

/ a2 — 4bc 
b2 
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A > -b + 
a a2 — Abe 

b2 

F i | — 

So the corresponding orbits following. 

a a2 — Abe 

\ b + i ^ ^ -

I f f Z 

/ 7 \ \ // f 

1 // / 

0 f Xi 

l / / l 

I 9 

y 

-Z 

Iff \ w 
Figure 4.5: Level curves A c of (4.6) for a = b = 1 and c = —1, c = — y/2, c = —4. 

X2 

X2 

±J-xj — ax2 + 2c , x\ > 
a a2 — Abe 

\ b + y ~ b 2 ' 

± y -x\ — ax2 + 2c , X\ < —» 
a a2 — Abe 

\ b + i — b ^ -

The corresponding level curve is shown in F ig . 4.5. 

2 

Case 5: 0 < c < | r . Just as in case 3, we get (4.10) and the condition (4.11). Since 
0 < c < fr , condition (4.11) is satisfied iff either 

or 

/ a2 - Abe 
IP-

la2 - Abe 
b2 
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Hence, we have the following three orbits 

X-2 

X2 

X-2 

±J-xj — ax2 + 2c , x\ > 

± y -xf — ax\ + 2c 

a a2 — Abe 
\ b + y b2 ' 

±J-xf — ax2 + 2c , X \ < 
a a2 — Abe 

a a2 — Abe 

\ b + s i ^ ^ ~ X l -

a a2 — Abe 

Vb + i^2—-

and the corresponding level curves are shown in F ig . 4.6. 

i I * 

1 
1 

i \ \ \ ) \ X: 

r 

- 1 
- 1 

1 1 

Figure 4.6: Level curves Xc of (4.6) for a = b = 1 and c = 0.001, c = 0.15, c = 0.25, 
c = 0.40, c = 0.499. 
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4.1.3 Phase portrait for the Duffing equation, solutions of (4.2) 
In the previous section we provided analytical description of all orbits of the hamiltonian 
system (4.4), (4.5) corresponding to the Duffing equation (4.2). Moreover, in Figs. 4.2-4.6, 
level curves of hamiltonian (4.6) are shown. 

It allows us to illustrate the phase portrait for the Duffing equation (4.2), see F ig . 4.7. 
Therefore, without knowledge of exact form of solutions, we can claim that the Duffing 

Figure 4.7: Phase portrait for Duffing equation (4.2) for a = 1, b 

equation (4.2) has the following types of solutions: 

• three constant solutions 

yi(t)=0, y2(t) 
a 

6 ' 
2/3 (t) 

corresponding to the critical points (0, 0), ( y § , 0) and ( — y | , 0) of the hamiltonian 
system (4.4), (4.5). The constant solution shown in F ig . 4.7 by a black dot is stable 
and the solutions shown by red dots are unstable. 
periodic sign-changing solutions, they correspond to black cyclic curves in the phase 
portrait F ig . 4.7. 
heteroclinic solutions y±, resp. y5, corresponding to red curve, resp. red curve, in 
the phase portrait F ig . 4.7, which satisfies 

t lirn^ yA(t) = -sJl, hm^ y4(t) = ^ | 

and 

l im y5(t) = J l i m y5(t) = - J°-. 

positive unbounded from above solutions corresponding to blue color curve in the 
phase portrait F ig . 4.7. 
negative unbounded from below solutions corresponding to blue color curve in the 
phase portrait F ig . 4.7. 
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sign-changing unbounded increasing solutions corresponding to green color curve 
in the phase portrait F ig . 4.7. 
sign-changing unbounded decreasing solutions corresponding to green color curve 
in the phase portrait F ig . 4.7. 
positive, increasing and unbounded solution y6 corresponding to T1 curve in the 
phase portrait F ig . 4.7 such that 

positive, decreasing and unbounded solution y^ corresponding to T 2 curve in the 
phase portrait F ig . 4.7 such that 

negative, increasing and unbounded solution y% corresponding to T 3 curve in the 
phase portrait F ig . 4.7 such that 

negative, decreasing and unbounded solution y9 corresponding to T 4 curve in the 
phase portrait F ig . 4.7 such that 
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4.2 Nonautonomous equation 
It follows from the results of the previous section that, for any T > 0, autonomous 
equation (4.2) wi th a,b > 0 has a positive T-periodic solution. Indeed, equation (4.2) 
wi th a, b > 0 has a positive equilibrium which is obviously a T-periodic solution to (4.2) 
for any T > 0. The first question discussed in this section is the existence of a positive 
T-periodic solution to nonautonomous equation (4.1). 
Let us start with a simple lemma. 

Lemma 4.1. If u is a T-periodic solution to equation (4.1), then the restriction M|[O,T] is 
a solution to the periodic problem 

u" = -p(t)u + h(t)u\ 

u(0) = u ( T ) , u'(0) = u'{T). 1 ' ' 

Conversely, if u is a solution to problem (4.12), then the T-periodic extension of u to the 
whole real axis is a T-periodic solution to equation (4.1). 

This lemma implies that there is one-to-one correspondence between T-periodic solu­
tions of the equation (4.1) on the real axis and solutions of the corresponding boundary 
value problem on the interval of the length T . Now we want to find some conditions 
on the functions p and h guaranteeing that the equation (4.1) has at least one positive 
T-periodic solution. 

B y virtue of Lemma 4.1, it follows from [8, Corollary 4.1] the following proposition. 

Proposition 4.2. Let 

h(t) > 0, p(t) > 0 forteR , h(t) ^ 0, (4.13) 

and 
4 

T 
Then, equation (4.1) has at least one positive T-periodic solution. 

0 < fTp(t)dt < 
Jo 

We wi l l show that if the functions p, h are positive, then the hypothesis f0

T p{t)dt < 
in Proposition 4.2 can be omitted. To prove the existence of a positive solution to equation 
(4.1), we apply Lemma 4.1 and Theorem 3.27 wi th a := 0, b := T , and 

f(t, x) := -p(t)x + h(t)xs. 

If we construct a pair of well-ordered lower and upper functions for the periodic problem 
(4.12) and if the lower function satisfies a(t) > 0, then by Theorem 3.27 it follows that 
there exists at least one positive T-periodic solution to the periodic problem (4.12). 

Proposition 4.3. Let 0 < m < M be such that 

mh(t) < p{t) < Mh(t) for all t e R. (4.14) 

Then, equation (4.1) has at least one positive T-periodic solution. 

38 



Proof. Let 

a(t) : = V m , f3(t) := \[M for £ G [0,T]. 

It follows from (4.14) that 

m/i(*) < p(t) for t G [0,T]. 

We can rewrite the above equation as following 

-pit) + mh{t) < 0, 

-p(t)y/m + h(t)(y/m)3 < 0, 

-p(t)Vm + h(t)(Vmf < (Vm)", 

and, thus, 

-p{t)a{t) + h(t)as(t) < a"(t) for all t G [0,T\. (4.15) 

Similarly, for the function (3 

Mh(t) > p(t) for t G [0,T]. 

We can rewrite the above equation as following 

-p{t) + Mh{t) > 0, 

-p(t)y/M + h(t)(y/M)3 > 0, 

-p[t)^M + h[t){VMf > (VM)", 

and, thus, 
-p(t)/3(t) + h(t)/3s(t) > p"(t) for all t G [0,T]. (4.16) 

Combining (4.15) and (4.16) and using the hypothesis 0 < m < M, we conclude that a 
and j3 are positive lower and upper functions of problem (4.12) satisfying 

a(t)<P(t) f o r £ G [ 0 , T ] . 

Therefore, it follows from Theorem 3.27 that problem (4.12) has a solution u such that 
a(t) < u{t) < /3(t) for t G [0,T]. 
Consequently, Lemma 4.1 yields that equation (4.1) possesses at least one positive T-
periodic solution. • 

Now we provide an effective condition guaranteeing the existence of a positive T-
periodic solution to (4.1). 

Theorem 4.4. Let pit) > 0, h(t) > 0 for t 6 R . Then, equation (4.1) has at least one 
positive T-periodic solution. 

Proof. Since we assume that the functions p and h are strictly positive and continuous, 
we can put 

m:=min{gl: t e [ 0 , T | } , 

and 

M : = m a x | ^ | | : £ G [ 0 , T ] j . 

Then 0 < m < M and the condition 

mh{t) < p{t) < Mh{t) for all t e M 

holds. Therefore, the conclusion of the theorem follows from Proposition 4.3. • 
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It follows from Theorem 4.4 that if the functions p, h are positive, then the hypothesis 

[p(t)dt<^ (4.17) 

in Proposition 4.2 can be omitted. 
O n the other hand, under the assumption (4.17), we can provide some further information 
about solutions to equation (4.1). Following the idea provided in [6] we arrive at the next 
theorem. 

Theorem 4.5. Let condition (4.13) hold and 

Tp(t)dt<^. (4.18) 

Then, equation (4.1) has at most one positive T-periodic solution. Moreover, any non-
trivial T-periodic solution to equation (4.1) is either positive or negative. 

Proof. Suppose on contrary that ui, u2 are positive T-periodic solutions to equation (4.1) 
such that u2{to) > Uiito) (without loss of generality) for some t0 G M . Then either 

u1(t)<u2(t) V i 6 R . 

or there exists 7 e R such that 
«1(7) = «2(7)- (4-19) 

Case 1: ux(t) < u2{t), V i e i . 
Since U\ and u2 are the solutions so they satisfy equation (4.1), i.e., 

< ( t ) + [p ( t ) - / i ( tX(* ) ]« i (* ) = 0, V t e [ o , T ] , 

u'2\t) + [p{t)-h{t)u\{t)}u2{t) = 0, V t e [ 0 , T ] . 

Therefore, 

u2(t) + [p(t) - h(t)u\(t)]u2(t) = h(t)u3

2(t) - h(t)u\(t)u2(t) Vt G [0,T] (4.20) 

which gives us, 

<{t) + [p(t) - h(t)ul(t)}u2(t) = h(t)[uj(t) - ul(t)}u2(t) V t e [0,T]. (4.21) 

It is clear that U\ is a positive solution to the homogeneous problem (3.11), (3.14) wi th 

q(t) •= p(t) - h{t)u\{t), a = 0,b = T, 

and u2 is a solution to the non-homogeneous problem (3.11),(3.13) wi th 

q{t) := pit) - h{t)u\{t), h0(t) := h{t)[u\{t) - u\{t)]u2{t), a = 0, b — T. 

Therefore, Proposition 3.35 yields 

/ T « i ( t ) / i ( t ) [ ^ ( t ) - u2At)}u2{t)dt = 0. (4.22) 
Jo 

Since,/i(t) > 0, Ui(t) > 0, u2

2{t) - u\{t) > 0 and u2{t) > 0, it follows from (4.22) that 
h(t) = 0 , which is a contradiction to our hypothesis. 
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Case 2: 37 e R such that (4.19) holds. Define, 

w(t) := u2(t) - u i ( í ) , g(í) := p(t) - h(t)[(u2

2(t) + Ul(t)u2(t) + ul(t))} forieR. (4.23) 

We have 

u>(t) = 0, 

w"{t) = -p(t)u2(t) + h{t)u\{t) + p ( í ) « i ( í ) - h{ť)u\{ť) 

= -p{t)w{t) + h{t)[u3

2{t) - ul{t)} 

= -p(t)w(t) + h(t)[(u2(t) - Ul(t))(u2

2(t) + Ui(í)«2(í) + «?(*))] 

= ~b(*) - K^i^lif) + «i(*)«2(i) + «?(*))] w( í ) for í e R . 

Since 

we get 

which implies 

0 < h(t)(u2

2(t) + ui(i)u2(f) + «?(*)) for í e 

q(t)<p(t), 

[q(t)]+<p(t), V i e l , 

because p(t) > 0 for £ e R . Now 

w"(t) + q(t)w(t) = 0, Vt G [7,7 + ^] 

w ( 7 ) = 0 , w ( 7 + T) = 0, 

^ 0 on [7,7 + 21-

Hence, Proposition 3.28 with a = 7, 6 = 7 + T yields 

7 + T 4 
[g(*)]+d* > - . 

A s we have, pit) > [q(t)]+ for t G R, so 

n+T n + T n+i n+i 
/ P(t)dt > / .dť 

7 

4 
> T 

The integral have same value for each interval of length T since p is T-periodic, and, thus, 

t n+T 4 
p(t)dt = / p(t)dt>-, (4.24) 

which contradicts (4.18). Hence, equation (4.1) has at most one positive T-periodic 
solution. 
Now, we wi l l prove that every nontrivial T-periodic solution to (4.1) is either positive or 
negative. Suppose on the contrary that equation (4.1) has a nontrivial T-periodic solution 
u, which has zero value at some point ti, i.e. u(ti) = 0. 
Then 

u"{t) = -\p{t) - h{t)u2{t)]u{t) for t e R. (4.25) 

41 



Define 
q(t) := p(t) - h(t)u2(t) for t G R. 

Similarly as above we get 

[?(£)]+ < p(*) for t G M 

and rewriting equation (4.25), we obtain 

u"(t) + q(t)u(t) =0, V t G + T ] , 

= 0, u(*x + T) = 0, u ( * ) ^ 0 , on [ * i , £ i + T ] . 

B y Proposition 3.28, 
h+T 4 

[q(t)]+dt > - . 

Therefore. 

7p{t)dt = [tl+T p(t)dt 
Jti 

ti+T 

> I' [q(t)]+dt 
Ju 
4 

> 
which contradicts (4.18). So every nontrivial T-periodic solution to equation u" = 
—p(t)u + h(t)u3 is either positive or negative. • 

Combining Theorem 4.4 and 4.5, we get 

Theorem 4.6. Let pit) > 0, h[t) > 0 , V t e R and the condition (4.18) hold. Then 
equation (4.1) has exactly three T-periodic solutions (positive, negative, and trivial). 

Now we provide a corollary for equation (2.6) derived in Section 2. 

L Corollary 4.7. Let 0 < T < 2 y - and d : R —> M. be a T-periodic function, which is 
continuous together with its first and second derivatives and satisfies 

f- + d"{t) > 0 for t e R , d"{t) ^ - f . (4.26) 

Then, equation (2.6) /ias exactly three T-periodic solutions 

0i(t) := 0, 92{t) := >/6, 03(*) := (4.27) 

Proof It is clear that the functions 9i,92, and #3 given by (4.27) are solutions to equation 
(2-6). 
Put 

p{t) := | + d"(t), h(t) •=\{ji + <*"(*)) for * e R . 

Then hypothesis (4.26) yields (4.13) and, moreover, 

i «W = l ( f + d " W ) d t = f r s r -

Consequently, the conclusion of the corollary follows from Theorem 4.5. • 
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We conclude this section by the following considerations. It follows from Section 4.1.3 
that equation (2.5), i.e., 

e" + ^ e - ^-e3 = o. 
L 6L 

has periodic non-constant solutions wi th unknown periods. B y Theorem 4.5, these periods 
can be estimated from below. 

Corollary 4.8. Let 9 be a non-constant T-periodic solution to equation (2.5). Then 9 
changes its sign and 

T > 2 W - . (4.28) 

Proof. Pu t 

Then (4.13) holds and 

(J 

p ( * ) : = f , Kt):=j- f o r t e M . 
L bL 

fTp(t)dt = %T. (4.29) 
Jo L 

It follows from Section 4.1.3 that the solution 9 changes its sign. Moreover, Theorem 4.5 
yields 

<7™ 4 
—T > — 
L T 

and, thus, estimate (4.28) is satisfied. • 
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Chapter 5 

Conclusion 

In this work, we discussed stability of singular points, existence and uniqueness of periodic 
solutions to nonautonomous Duffing equation, we drew phase portraits and level curves for 
different intervals and interpreted them. A s for the analysis itself, it was first necessary to 
derive the equation of motion of a certain oscillator using Newton's second law. We then 
replaced nonlinear term using the Taylor polynomial and we thus obtained the required 
differential equation. The thi rd chapter of this work was devoted to the theoretical part of 
the thesis which deals wi th the definitions of basic concepts from the theory of autonomous 
and nonautonomous systems differential equations. The concept of hamiltonian and its 
levels. The last chapter was devoted to the analysis of the periodic solutions to Duffing 
equation. The work discussed all possible cases that for the Duffing equation could occur. 
For each case, singular points were determined. Subsequently, the sets of orbits for each 
case were calculated and corresponding level curves were drawn and taken using Desmos 
Graphing calculator. 
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