
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

SECURITY SYSTEM FOR WEB APPLICATION ATTACKS
ELIMINATION
BEZPEČNOSTNÍ SYSTÉM PRO ELIMINACI ÚTOKŮ NA WEBOVÉ APLIKACE

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

Be. DOMINIK VAŠEK

Ing. KAMIL JEŘÁBEK

BRNO 2021

Vysoké učení technické v Brně
Fakulta informačních technologií

Ústav informačních systémů (UIFS) Akademický rok 2020/2021

Z a d á n í d i p l o m o v é p r á c e |||||||||||||||||||||||||
23721

Student: Vašek Dominik, Bc.
Program: Informační technologie
Obor: Počítačové sítě
Název: Bezpečnostní systém pro eliminaci útoků na webové aplikace

Security System for Web Application Attacks Elimination
Kategorie: Bezpečnost
Zadání:

1. Nastudujte různé přístupy detekce nežádoucích požadavků na webové aplikace generované
botnety.

2. S ohledem na nastudované přístupy navrhněte systém, který bude schopný detekovat
a filtrovat nežádoucí požadavky z botnetů na webové aplikace. Systém se bude skládat
z modulu pro reverzní proxy a detekčního serveru.

3. Navržený systém implementujte.
4. Na základě konzultace s vedoucím vyberte a implementujte filtraci alespoň jednoho typu

nežádoucích požadavků.
5. Ověřte schopnost filtrace implementovaného řešení.

Literatura:
• SINGH, Karanpreet; SINGH, Paramvir; KUMAR, Krishan. User behavior analytics-based

classification of application layer HTTP-GET flood attacks. Journal of Network and
Computer Applications, 2018,112: s. 97-114.

• ROVETTA, Stefano; SUCHACKA, Gražyna; MASULLI, Francesco. Bot recognition in a web
store: an approach based on unsupervised learning. Journal of Network and Computer
Applications, 2020, 157: 102577.

• KOCH, William; BESTAVROS, Azer. Hyp3iArmor: reducing web application exposure to
automated attacks. Computer Science Department, Boston University, 2016.

• ALOMARI, Esraa, et al. A survey of botnet-based ddos flooding attacks of application layer:
Detection and mitigation approaches. In: Handbook of research on modern cryptographic
solutions for computer and cyber security. IGI Global, 2016. s. 52-79.

Při obhajobě semestrální části projektu je požadováno:
• Body 1 a 2 včetně.

Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/
Vedoucí práce: Jeřábek Kamil, Ing.
Vedoucí ústavu: Kolář Dušan, doc. Dr. Ing.
Datum zadání: 1. listopadu 2020
Datum odevzdání: 30. července 2021
Datum schválení: 27. října 2020

Zadání diplomové práce/23721/2020/xvasek06 Strana 1 z 1

https://www.fit.vut.cz/study/theses/

Abstract
Nowadays, botnet attacks that a i m to overwhelm the network layer by malformed packets
and other means are usually mit igated by hardware intrusion detection systems. App l i ca
t ion layer botnet attacks, on the other hand, are s t i l l a problem. In case of web applications,
these attacks contain legitimate traffic that needs to be processed. If enough bots partake
in this attack, it can lead to inaccessibility of services provided and other problems, which
i n t u rn can lead to financial loss. In this thesis, we propose a detection and mit igat ion
system that can detect botnet attacks i n realtime using statist ical approach. This system
is d ivided into several modules that together cooperate on the detection and mit igat ion.
These parts can be further expanded. Dur ing the testing phase, the system was able to cap
ture approximately 60% of botnet attacks that often focused on spam, login attacks and
also D D o S . The number of false positive addresses is below 5%.

Abstrakt
Botnet ú toky , k t e r é cílí na síťovou vrs tvu, n a p ř í k l a d poškozenými pakety a j i nými meto
dami, jsou již v dnešn í d o b ě ú s p ě š n ě b lokovány h a r d w a r o v ý m i de t ekčn ími sys témy. P r o
ap l ikačn í vrs tvu to však nep la t í . V kontextu webových ap l ikac í n a p ř í k l a d v id íme , že ú t o k y
od b o t n e t ů obsahuj í čas to s k u t e č n é žádos t i , k t e r é m u s í d a n ý webserver zpracovat. Pokud
se t akového ú t o k u z ú č a s t n í dostatek b o t ů , m ů ž e to vést k nedostupnosti p o s k y t o v a n ý c h
s lužeb, p o p ř í p a d ě š p a t n é funkcional i tě . To v k o n e č n é m důs l edku m ů ž e vést až k finančním
z t r á t á m , pokud je n a p a d e n á s t r á n k a komerčn í . Tato p ráce navrhuje de tekčn í sy s t ém, k t e r ý
je schopen detekovat tyto ú t o k y z b o t n e t ů v r e á l n é m čase na zák ladě s t a t i s t i ckého zpracov
án í provozu. S y s t é m je rozdě len do někol ika čás t í , k t e r é spo lečně tvoř í celou funkcionalitu
a mohou bý t l ibovolně dá le rozšířeny. S y s t é m b y l př i t e s tován í schopen zachytit př ib l ižně
60 % vážnějších ú t o k ů , k t e r é cílily čas to na spam a ú t o k y na př ih lašovací formuláře , ale
t a k é D D o S ú toky . P o č e t falešně poz i t ivn ích adres b y l př i t e s tován í do 5 %.

Keywords
webserver, bot detection, botnet, ddos, mit igat ion

Klíčová slova
webový server, detekce b o t ů , botnet, ddos, zmí rněn í ú t o k u

Reference
V A Š E K , Domin ik . Security System for Web Application Attacks Elimination. Brno , 2021.
Master 's thesis. B rno Univers i ty of Technology, Facul ty of Information Technology. Super
visor Ing. K a m i l J e ř á b e k

Rozšířený abstrakt
Botnet ú t o k y na síťovou vrs tvu jsou již p o m ě r n ě z n á m é . V pos ledn ích dvaceti letech se již
někol ikrá t stalo, že velké n a d n á r o d n í společnos t i byly na několik hodin nebo i dn í bez
př ipo jen í . T y t o ú t o k y cílily na celou infrastrukturu, k t e r á vede k d a n é m u zákazníkovi .
To však v dnešn í d o b ě již nen í příliš m o ž n é , jelikož se používaj í h a r d w a r o v é akce lerá tory .
T y t o akce le rá to ry slouží jako sondy na sít i a dokáž í t akové to ú t o k y odfiltrovat mnohdy
j e š t ě dř ív , než celý ú t o k nabere t akových rozměrů , že p ř eh l t í j edno t l ivé p rvky v sí t i . [32]

Da l š ím p r o b l é m e m jsou pak botnet ú t o k y na ap l ikačn í vrs tvu . T y t o ú t o k y byly po
zorovány již na konci 90. let m i n u l é h o s to le t í . J e d n á se o leg i t imní dotazy, k t e r é ale ne
pocház í od sku t ečných už iva te lů . C í lem je, aby koncový server musel zpracovat co nejvíc
d o t a z ů a tyto dotazy zároveň nebyly odchyceny h a r d w a r o v ý m i řešen ími na síťové v rs tvě .
Nejčastěj i jsou takto n a p a d á n y p rávě webové aplikace, jelikož je p o m ě r n ě s n a d n é změn i t cíl
ú t o k u . M e z i ap l ikačn í ú t o k y ř a d í m e D D o S (d i s t r ibuované o d e p ř e n í s lužby) , spam, ú t o k y
na př ih lašovací formuláře , cross-site scripting, ale t a k é s t ahován í dat za úče lem získání
k o n k u r e n č n í výhody . Cí lem t ěch to ú t o k ů je obvykle poškod i t n ě j a k ý m z p ů s o b e m obsah
d a n ý c h s t r á n e k , nebo n e p ř í m o způsob i t f inanční z t r á t u . [32]

Cí lem t é t o d ip lomové p r á c e bylo vy tvo ř i t sy s t ém, k t e r ý je schopen v r e á l n é m čase de
tekovat botnet ú t o k y na webové aplikace a zakroč i t , bude-li to n e z b y t n é . Tento s y s t é m
sleduje logy z webse rve rů a agreguje j edno t l ivé dotazy do časových oken. Z t ě c h t o oken
jsou p o t é e x t r a h o v á n y j edno t l ivé a t r ibuty provozu, jako je p o č e t p o ž a d a v k ů , opakování
p o ž a d a v k ů , odezva, p o č e t spojení , velikost d o t a z ů . V p r v n í čás t i s y s t é m u jsou tato data
p o r o v n á v á n a s k o n t r o l n í m oknem, k t e r é reprezentuje histori i j edno t l i vých a t r i b u t ů . Po
moc í rozložení p r a v d ě p o d o b n o s t i pak sledujeme, jak j edno t l i vá spo jen í vyboču j í z n o r m á l u .
Cí lem je odhalit n a d l i m i t n í chování , k t e r é nen í u už iva te le běžné . J edno t l i vé atr ibuty jsou
p o t é j e š t ě hodnoceny po skup inách , aby se zredukoval p o č e t falešně poz i t ivn ích adres. T y t o
adresy jsou nakonec p ř e d á n y do blokovacího modulu . D r u h á čás t s y s t é m u pak sleduje za
t ížení webserverů a podle toho dynamicky upravuje, j aké adresy budou blokovány. Výs ledná
konfigurace b lokovaných adres je za ložena na d o b ě v ý s k y t u a o d h a l e n é závažnos t i v r á m c i
v y h o d n o c e n í .

P ř i t e s tován í s y s t é m u by l záchy t b o t n e t ů nad r e á l n ý m provozem okolo 60 %. Toto číslo
je závislé na délce s ledování . S y s t é m si p o s t u p n ě buduje seznam blokovaných adres, k t e r ý
m ů ž e dynamicky využ íva t podle za t í žen í webserverů . P ř i t e s tován í se ukáza lo , že velká
čás t b o t ů se objevuje opakovaně . P o č e t falešně poz i t ivn ích adres se pohyboval do 5 %.
V budoucnu je m o ž n é tento s y s t é m dá le rozšíř i t o kontrolu už iva te le a rozš í ření z p ů s o b ů
zmí rněn í ú t o k u . Je t a k é m o ž n o využ í t funkcionali tu tohoto s y s t é m u jako zdroj dat pro
s t rojové učen í a t í m dá le zvýši t de t ekčn í schopnosti.

K a p i t o l a 2 p r o b í r á problemat iku webserverů a b o t n e t ů . K a p i t o l a vysvět lu je využ i t í bot
n e t ů a jak se botnety b ě ž n ě chovají . Rozl i šu jeme zde vzory chování . Dá le se t a k é z a b ý v á m e
způsoby ověření , zda je už iva te l skutečný . Dá le řeš íme existuj ící n á v r h y de tekčn ích sys
t é m ů a jejich p ř í s tupy . Tento s y s t é m je založen na p o z n a t c í c h z [26]. K a p i t o l a 3 p o t é
rozeb í rá detaily s y s t é m u a j edno t l i vých čás t í . S y s t é m se s k l á d á ze dvou čás t í , a sice proxy,
k t e r á odesí lá logy a p ř i j ímá seznam blokovaných adres a de t ekčn ího serveru. K a p i t o l a dále
vysvět lu je o h o d n o c e n í j edno t l i vých a t r i b u t ů a t a k é čás t í s y s t é m u a jejich chování . K a p i t o l a
4 vysvět lu je samotnou implementaci sy s t ému . Popisuje t ř í d n í rozdě len í sy s t ému , paralelis
mus a t a k é řešení na s t r a n ě Nginx webserverů . K o n e č n ě kapi tola 5 popisuje výs ledky
t e s tován í celého sy s t ému . Celý s y s t é m je schopen zpracovat př ib l ižně 125 000 d o t a z ů / m i n
utu v r e á l n é m čase.

Security System for Web Application Attacks Elim
ination

Declaration
I hereby declare that this Master 's thesis was prepared as an original work by the author
under the supervision of Ing. K a m i l J e ř á b e k . The supplementary information was provided
by Ing. M a r t i n Zídek. I have listed a l l the l i terary sources, publications and other sources,
which were used during the preparation of this thesis.

Domin ik Vašek
Ju ly 27, 2021

Contents

1 Introduction 3

2 W e b application botnet detection 5
2.1 Webserver 5

2.1.1 Web applications 6
2.1.2 Webserver implementations 7

2.2 Botnet 7
2.2.1 Botnet applications 8
2.2.2 Botnet attack strategies 10
2.2.3 Web-based bot generations 12
2.2.4 K n o w n botnets 13

2.3 F i l t r a t i on methods 13
2.3.1 At tack detection 13
2.3.2 Bot detection 15
2.3.3 Mi t i ga t i on 17

3 Proposed detection system 18
3.1 Architecture 18

3.1.1 Reverse proxy 19
3.1.2 Decision-making server 20
3.1.3 Infrastructure 20

3.2 Proposed implementat ion 22
3.2.1 Reverse proxy 22
3.2.2 Decision-making server 22

4 Implementation 31
4.1 Communica t ion 31
4.2 Decision-making server 31

4.2.1 System implementat ion 31
4.2.2 Classifier 35
4.2.3 Para l le l i sm 35

4.3 Nginx proxy 36
4.3.1 L o g handling 37
4.3.2 Denylist manipulat ion 38

5 Testing and validation 39
5.1 L o g analysis 39
5.2 Detect ion 40

1

5.2.1 False positives
5.2.2 Real t ime test

5.3 System l imits

6 Conclusion

Bibl iography

A Class diagram

Chapter 1

Introduction

W i t h the ever-increasing number of users on the internet and the number of internet-
connected devices, it is now easier than ever to overload the network or server infrastructure.
This is especially true for web applications, which are usually available to the general public.
There were attempts to hack or disrupt services provided by web applications since the rise
of the internet. Th is can result i n temporary or permanent loss of data, unavailable services
and modified or stolen data. [32]

In the past decade, a number of botnets a iming to overload web applications by depleting
available resources have been detected. The only effective defense against these bots is active
monitor ing and mit igat ion when an attack occurs. This can be done either by dis t r ibut ing
the load over mult iple servers or by detecting and disrupt ing traffic coming from botnets.
The current detection systems are usually proprietary and expensive, since it is s t i l l cheaper
to mitigate such attacks than to invest i n a larger infrastructure that can absorb large botnet
attacks. Other methods of detection consist of active moni tor ing by administrators or
by using I P databases. However, bo th of these approaches are also expensive and therefore
companies tend to look for other solutions. In this thesis, the goal is to detect these flood
attacks in order to mitigate botnet traffic, such as distr ibuted denial of service (DDoS)
without the need for a robust distr ibuted server infrastructure. [26, 32]

Chapter 2 defines the problems of botnets and botnet detection. The first part of this
chapter aims to introduce the current trend in web applicat ion and webserver technologies.
The second part focuses on botnets. It explains the problems created by botnets as well
as the observable behaviour. Last part of this chapter introduces the possible detection
approaches i n ind iv idua l steps. The first one is the attack detection. It aims to find
suspicious traffic that resembles traffic from bots. This step is essential since addi t ional
services such as abuse databases or even log inspection from administrators are expensive.
The second step is the challenging. It aims to sort out the bots by its capabilities, such
as JavaScript support and interaction wi th the webpage.

Chapter 3 introduces a possible architecture of botnet detection system buil t upon
approaches described i n Chapter 2. The proposal consists of a system that implements
the use of a Reverse proxy as a gateway and a Decision-making server that evaluates
the traffic. The selected webserver implementat ion is Nginx . The proposal of the D M S
is divided into modules for easier description. The first module is the D a t a module that
aims to parse the requests and aggregate data for the remaining modules. The second
module is the Performance module. Th is module aims to evaluate the change in webserver
load i n order to spot possible flood attack and increase the response of the system. The th i rd
module is the At t ack detection. It evaluates the ind iv idua l features of the traffic and sets

3

an evaluation for each user. F ina l ly , the last module is the mit igat ion module. Th is module
gathers the results from the previous modules and decides what action w i l l be necessary.

Chapter 4 describes the implemented system. The first section of the chapter describes
the communicat ion between parts of the system. The second section describes the imple
mentation of the Decision-making server (D M S) and its features. Last ly, the th i rd section
talks about the Ng inx proxy and necessary steps for the incorporation to the system.

The testing of the system is described i n Chapter 5. F i rs t , the log analysis is described.
Then the observed detection capabilities of the system are demonstrated. Here, we look
at the observed behaviour and results from the ind iv idua l observed features as well as the op
t ima l use-case of the system. Final ly , the l imits of the system are set based on the testing
phase.

4

Chapter 2

Web application botnet detection

In order to better understand the issues of web applicat ion attacks, this chapter intro
duces existing webserver implementations, types of attacks and finally existing mit igat ion
techniques.

2.1 Webserver

A webserver is a type of server that is used to interpret W o r l d W i d e Web (W W W) re
quests. W h e n ta lk ing about a webserver, it is important to respect the difference between
the hardware and the software side of the server. In this thesis, one of our goals is to monitor
the available resources, server load and the accessibility of services provided by the software
side i n order to evaluate the possibil i ty of a D D o S attack.

O n the client-side we can expect a web browser, which sends requests to webservers
and interprets results from the server to users. Web browsers can be uniquely fingerprinted,
which can be used for targeted detection of malicious users. There are also headless web
browsers that lack graphical user interface and are used pr imar i ly for testing purposes.

The load on a webserver consists pr imar i ly of Hypertext Transfer Pro toco l (H T T P)
and Hypertext Transfer Pro toco l Secure (H T T P S) requests. U p o n receiving these requests,
the server-side then initializes a series of tasks in order to complete the request resulting
in asymmetric work load between client-side and server-side of the web. This can be used
to overwhelm the server infrastructure by a smal l number of clients.

Based on the requests, the server-side can perform time-consuming operations, which
can result i n slow response t ime or even inaccessibility of provided content. Such requests
consist of:

• request Structured Query Language (S Q L) tasks:

• disk writes/reads:

• backups.

In modern webserver implementations, we can encounter load balancing modules that can
decrease the server load by dispersing the traffic across mult iple webserver instances. Other
than that, we can also encounter modules which allow traffic pol icing i n order to mainta in
availabil i ty and accessibility of services for legitimate users. [17]

In Figure 2.1, we can see the most common webserver implementations and their market
share over t ime. A s we can see, the Ng inx webserver is steadily on the rise, slowly taking
over the Apache webserver.

5

Yea

Figure 2.1: Share of webserver implementations on the internet. [30]

A s was mentioned earlier, the webservers have asymmetric dis t r ibut ion of workload
between client and server. Even i f this was not the case, considerably more clients requesting
access to the webserver than webserver instances running can be s t i l l expected.

Under normal conditions, the administrator can scale the server infrastructure for
the workload created by usual user's traffic. Th is can be done by observing the work
load over a long period of t ime and al locat ing appropriate resources. However, there are
some instances where the amount of traffic can exceed designed traffic/server capabilities,
thus resulting in downtime or inaccessibility of services. Such instances can consist of a flash
crowd or a D D o S attack created by a botnet.

A flash crowd is a term describing a sudden influx of traffic on a webserver that is not
common, but consists of legitimate users. In contrast to il legitimate traffic from a botnet,
it is desirable to process this traffic even though it might increase the response t ime for a l l
users.

D D o S are attacks that consist of traffic from illegitimate users wi th the intention to dis
rupt services provided by the webserver. [13]

2.1.1 W e b appl icat ions

Web applicat ion is an applicat ion that runs on the webserver. These applications usually
provide a service to the end user. The two main trends of web applications are classic web
sites and web A P I s . A website is a program that utilizes the webserver as well as the browser
on the client side, providing service for the users through G U I . A Web A P I provides an in
terface which can be used for communicat ion between mult iple applications.

G

T y p i c a l use-case of a web applications is:

1. User sends a request to the webserver.

2. P r o x y sends the request to the corresponding webserver.

3. Webserver performs the tasks contained in the request.

4. User receives the results.

Web applications have many advantages. The ma in one being that web applications
are platform independent. Th is means the software engineer implementing the applicat ion
does not need to understand the hardware and software of the client. Addi t ional ly , there
is no need to handle different versions between clients, which can save money by l imi t ing
the amount of maintenance and support required.

Web applications are a common business model today, since they are cheap to develop
and maintain. Furthermore, they are easy to distribute towards the users and are fast and
reliable. [7, 28]

2.1.2 W e b s e r v e r implementa t ions

Currently, there are over a dozen of webserver implementations. However, over 90 percent
of websites use one of the following implementations [30]:

• Apache

Apache is an open-source webserver developed by Apache Software Foundat ion. There
are many existing open-source modules available. Some of its core functions are high
scalability and event-based evaluation. It is currently the leading implementat ion
amongst webservers.

• Nginx

Nginx is the second most popular implementat ion of webserver. There are two ver
sions, namely Ng inx open-source and Ng inx Plus , which is developed by Nginx , Inc.
Nginx was made wi th the intention to replace the older Apache webserver that was
known for high memory consumption and low request throughput.

• Cloudflare

The Cloudflare webserver is a proprietary implementat ion owned and maintained
by Cloudflare, Inc. It is deployed on Cloudflare Content Delivery Network (C D N)
and currently hosts over 17 percent of a l l websites.

• IIS

IIS is solely Windows based proprietary webserver implementat ion from Microsoft.
The IIS has been overtaken by Nginx , dropping from second most used webserver
to fourth place i n the past 10 years.

2.2 Botnet

Botnets are a number of internet-connected devices that can perform a common task such
as a D D o S attack. Mos t botnets consist of devices like routers, IoT devices, computers

7

Figure 2.2: Botnet infrastructures: on the left side is the client-server architecture; the right
side depicts the peer to peer architecture.

or smartphones infected by malware that is controllable by a perpetrator. W i t h the ever-
increasing size of botnets and its potential to disrupt services or cause financial loss to busi
nesses, it is important to dist inguish traffic generated from these botnets from legitimate
user traffic.

There are two types of botnet infrastructure as depicted in Figure 2.2. O n the left side
we can see the client-server architecture and on the right side the peer-to-peer architecture.

Client-server model uses command and control servers that distribute requests to a l l
bots and are controllable by the botmaster. The other approach is peer-to-peer botnets,
which are more resilient to disruption as bots can communicate directly w i th each other.

A bot is a program that can perform some k ind of automated work. We can distinguish
between good bots and bad bots. In web applications, an example of a good bot is a web
crawler, which makes it easier to find information on websites. O n the other side are bad
bots, which a im to disrupt services provided by a website. A n attacker can use a botnet
to deploy an attack by a large number of different bots that can also focus on different
applications running on vic t im's side. In case of web-server applications, there are currently
four distinguishable generations of bots. W i t h each generation comes increased complexity
of available tasks and detection methods. [23]

2.2.1 B o t n e t appl icat ions

A botnet can have a variety of use-cases. A n example of a good use-case is web scraping
or indexing of the world wide web. In contrast are use-cases where botnets are used for
malicious actions such as spam, data theft, val idat ion of leaked data or distr ibuted denial
of service. Some of the popular botnet use-cases are further described below:

8

Web scraping

Web scraping is used to gather information contained on the website. Such infor
mation can consist of e-shop prices, available products or other information. Even
though web scraping is not an attack, it is not always desirable for web administrators
since competi t ion can use this data and cause a loss of revenue. [6]

Web indexing

Web indexing is similar to web scraping, but aims to gain different information.
Web scraping is focused on obtaining specific data for some specific use-case. Web
indexing on the other hand focuses on indexing websites. This is usually done for
easier searching of the website. Web indexing is done by search engines such as Google,
Seznam, B i n g , etc. [6]

Spam

Some bots are made specifically to spread disinformation. Botnets can be used
to spread fake news across the web. Th i s is usually hard to detect without chal
lenging the user, since the botnet can send one message and then go offline. [11]

D a t a theft

W i t h the increasing complexity of botnets, it is possible to use a large botnet to hack
websites. The botnet can use known platform dependent security flaws i n order
to steal sensitive data while staying undetected. These flaws and vulnerabili t ies can
be later used by the hacker. [1]

Cracking

W h i l e botnets can be used to steal data, they can also be used to decipher the cre
dentials of users i n an attempt to steal their account. Th is can be achieved either
by using the stolen hashes of user passwords, which decreases the complexity of hack
ing an account, or by using the large-scale platform of a botnet for a brute force
attack. [1]

Scripting

Botnets can also be used for finding vulnerabili t ies in websites that can be later
exploited by hackers to implement malicious scripts on the attacked webpage. This
can be done for example by checking for X S S injections. [1]

Distr ibuted Denial of Service

D D o S is another type of botnet attack that aims to disrupt services provided by vic
t im , which can result i n loss of revenue or publ ic ly available data. We can distinguish
two methods of D D o S attacks.

The first one is vulnerabi l i ty attack i n which the perpetrator sends malformed packets
to the v i c t i m i n an attempt to crash an applicat ion or used protocol. However, this
type of attack is pr imar i ly avoidable by fixing vulnerabilities.

The second method aims to starve the v i c t i m of resources. Th is is usually done
by sending a large number of requests to a specified target on a scale that is not man
ageable by available resources. We can divide such attacks into two groups. The first
one is network layer D D o S ; the second is applicat ion layer D D o S . Figure 2.3 depicts
a D D o S attack leading to inaccessibility of services for legitimate users. [25]

9

Figure 2.3: A D D o S attack on a server: Due to the i l legitimate bot traffic, the webserver
is overloaded, resulting in inaccessible services for legitimate users.

D D o S does not focus on applicat ion layer only. Other than the vulnerabi l i ty and
starvation of the applicat ion layer, the divis ion is also between which T C P / I P layer
is under attack. Namely, the division is between the network layer and the applicat ion
layer. In the network layer, the perpetrator aims to overload the network infrastruc
ture of targeted v i c t im . This is usually done by packet flooding of targeted network
in the magnitude of hundreds of gigabits per second. The most common types of at
tack include I C M P and I P protocols. Nowadays, these types of attacks are mostly
mitigated by hardware infrastructure such as A S I C / F P G A firewalls. [21]

Denia l of Service on App l i ca t ion layer consists of resource-consuming tasks requested
by perpetrator. These requests consist of legitimate user traffic, thus can pass through
network layer D D o S protection. The perpetrator aims to drain server resources
as mentioned in Section 2.1. This can lead to slower response times for legitimate
users or even unavailabil i ty of services [32].

Dis t r ibuted DoS attacks focus on the need to process requests by the endpoint i n larger
quantities. Since these attacks are dis tr ibuted over a large network of fake clients,
they can even perform standard requests in order to masquerade as regular user
traffic. Therefore, these distr ibuted DoS , s imilar ly to classic applicat ion layer DoS ,
consume available resources. This can cause slow response t ime or even inaccessibility
for legitimate users, which can lead to loss of revenue, loss of data, etc. [21]

2.2.2 B o t n e t a t tack strategies

H T T P botnet attacks usually consist of some common pattern that is distinguishable from
legitimate user traffic. Th is is further discussed in [26], where different botnet patterns

10

are described. This dis t inct ion is also proposed by Mazebol t [14]. The ma in reason for
the comparison of flood strategies is that most flood attacks are under the threshold of rate
l imi t ing . Thus, the detection system has to look at the traffic patterns. In this section, we
w i l l discuss the patterns of botnet traffic. These patterns consist of G E T Floods , which are
spread across mult iple addresses. This is possible because the at tacking bots are usually
part of a botnet and therefore can distribute the otherwise over-the-limit patterns across
mult iple addresses. Bots are not always capable of behaving the same way as legitimate
users and miss the randomness of legitimate users.

The H T T P F l o o d can be distinguished by the request itself. The flood consists of re
quests using the H T T P / H T T P S protocol. Most common are G E T and P O S T requests.
H T T P floods usually lead to inaccessibility of the server and thus loss of revenue. This
usually happens due to D D o S , however even scraping bots or spam/sniffing botnets can
cause such outcome. [32]

Some of the more common patterns are described below:

• Dynamic

Dynamic flood changes the requests for the webserver. Th is is done for example
by adding randomly generated suffix to the U R L or traversing the website (similar
to scraping). Us ing this approach, the flood attack can hide some statistical features
of the traffic. [14]

• Constant

This type of flood attack has constant request rate and is simple to detect even
at lower request rates. The attack is based on sending requests at a constant rate,
which can consist of one request sent periodical ly or mult iple requests. Th is is usually
done i n an attempt to stay under detection of D D o S prevention systems by keeping
the request rates low. [26]

• R a n d o m

The bots generate requests i n random time intervals, thus making the detection
harder. The goal of this strategy is to avoid detection by t ime intervals by send
ing random bursts of traffic throughout the attack durat ion. [26]

• Slowloris

Slowloris, also known as low and slow is a botnet attack that aims to obtain a l l avail
able resources of the webserver. The idea is to slowly open thousands of connections
and keeping them alive by only a few requests per minute. If enough bots partake in
this attack, it can be undetectable especially i n the beginning. [32]

• Flash

The idea is to momentari ly overload the webserver. The goal is to make an event
similar to flash crowd and t ry to skip past the detection mechanisms of the server.
This pattern can also be used for establishing the system l imi ts . [26]

• Same page

The botnet continuously sends requests for one page. The botnets can t ry to hide
from intrusion detection by staying i n popular webpage set and therefore mainta in
the attack for longer periods of t ime. [26]

11

• Continuous

Requests w i th high workload on the webserver are sent by the botnet i n low rates,
a iming to slow the response t ime of the webserver. [26]

2.2.3 W e b - b a s e d bot generations

Radware [23] and Datadome [5] both describe the evolution of botnets using generations
as described in this subsection. There are currently four distinguishable generations. Each
new generation is harder to detect and is pract ical ly undetectable by methods for earlier
generation bots. A detailed description of mit igat ion methods follows i n Section 2.3.2.

• First generation

Firs t generation bots usually consist of a series of scripted tasks for c U R L / W g e t
requests. Other than for the D D o S attack, they are also often used for web scraping.

Mitigation: These bots are easy to identify as they do not use cookies or Java
Script. In order to mitigate such attacks, it is necessary to either block I P addresses
or use user agents.

• Second generation

Second generation bots are based on headless web browsers such as Chrome or Firefox.
The main difference i n contrast to first generation is that these can uti l ize cookies
and also execute JavaScript tasks. Th is generation is often used for automatic testing
but can be also used for skewing statistics.

Mitigation: Unl ike the first generation, this generation can perform JavaScript tasks:
however, it can be identified through its browser and device information. In case
of an attack, similar attributes across the botnet can be expected. Even though
headless web browsers are usually detectable by some common characteristics, an at
tacker can attempt to hide these characteristics. Therefore, if the recognition fails, it
is op t imal to send captcha.

• T h i r d generation

In contrast to previous generations, it is impossible to dist inguish these bots wi th
out observing client's interactions. This generation employs fully operational web
browsers and can emulate human-like behaviour based on linear mouse movements,
keystrokes, etc. However, they are missing the randomness of human interaction.

Mitigation: It is necessary to implement a captcha challenge or behavioural analysis
comparing to legitimate user traffic.

• Fourth generation

The last generation is almost indistinguishable from legitimate user traffic. These bots
show randomness similar to human behaviour. Addi t ional ly , a periodic change of user
agents and source I P address is expectable from these bots, which makes mit igat ion
harder. Four th generation bots can use low and slow attacks in order to pass through
mit igat ion methods.

Mitigation: To combat these bots, it is necessary to implement intent-based be
havioural analysis and detect differences between legitimate user traffic and bot traf
fic.

12

2.2.4 K n o w n botnets

Botnets usually attack by at tempting to use as many bots as possible to send requests to
the attacked domain. The use of botnets can be bought in order to commence an attack
on specific websites. The name of the botnet is often decided by the malware that created
the bots, however different entities can control these bots. Some of the well-known botnets
are:

• M i r a i

M i r a i is a botnet that runs on L i n u x devices and pr imar i ly targets smart home de
vices. The malware is spread by scanning IP addresses and at tempting to log into
poorly secured devices that are accessible from outside using default login credentials.
The number of infected devices wi th the M i r a i malware is in the mil l ions. [4]

• Chameleon

Chameleon is a botnet that runs on Windows devices. A t least 120 thousand devices
were detected as infected. The goal of this botnet was to generate traffic similar to user
traffic, generating ad revenue. The botnet also included pr imit ive user interaction. [24]

• Cyclone

Cyclone botnet is known for k i l l ing other bots from the system it infects. Mos t ly used
for H T T P Floods . [8]

• N i to l

Botnet that runs on Windows and is located mostly i n C h i n a . In 2012, many com
puters sold in C h i n a were infected by this botnet. In total , over 50% of a l l botnet
traffic i n 2012 came from this botnet. Nowadays, there are several other botnets based
on this one. [8]

2.3 Fil trat ion methods

Botnet detection is a complex problem. H a r d baselining, which consists of setting hard
l imits for specific features of the traffic, is not the solution and should be used only when
the attack is already occurring, since this can lead to a large number of false positives.
In order to correctly classify the traffic, a soft decision should be made first. Such soft
decisions can be made by observing a series of parameters of the user traffic, which is then
evaluated and further action, such as challenging, is carried out where necessary. This
section discusses possible ways of bot and botnet detection.

2.3.1 A t t a c k detect ion

Attack detection is the first step i n finding botnet attacks. The goal of attack detection
is to flag malicious traffic. W h i l e this results i n false positives, these clients can be further
challenged. This can be done through bot detection techniques, which is further discussed
in Subsection 2.3.2.

In modern systems, attack detection is done either through monitor ing and active inter
vention from the administrators, or by specialized systems that attempt to detect and mit
igate such attacks. It is, however, not always possible. Addi t ional ly , proprietary implemen
tations can be black box, which means that the client does not always know if the reported

13

false positive rate is accurate or i f the system is effective. Al lowl i s t ing and denylisting
can be also used for decision-making i n some cases. M a n y bots are defined as good bots,
such as web crawlers, that are essential for websites i n order to gain user awareness. S im
ilarly, there are many bots operating on specific I P address ranges that can be mitigated
by denylisting.

There are many approaches proposed and tested in research papers considering the at
tack detection and mit igat ion of botnet attacks. Usually, it is done either through machine
learning or statist ical evaluation and dynamic baselining. Even though it is possible to cre
ate a heuristic analysis, such analysis is not suitable for botnet attacks since they are always
evolving [34]. The following section introduces some of the existing proposals.

Similarity-based approach

This method [31] takes into consideration flash crowds that can be hard to dist inguish
from botnets. It is done by considering the need for botnets to be either as large as flash
crowds, or more commonly, use higher request frequency or request large payload. Another
important attr ibute is s imilar i ty between flows, where botnets often consist of a single pre
programmed sequence of tasks to complete. Based on the similarity, the authors created
the flow correlation coefficient, which can distinguish botnets from flash crowds wi th high
accuracy and was based on four features: popularity, request rate, t ransi t ion probabil i ty
from one page to another and object size. However, even though it had promising results
w i th high accuracy, the solution was not suitable for realtime use and was unsuccessful
i n dist inguishing flash crowds from botnets.

H T T P G E T requests per IP address (H R P I)

Another method, H R P I [21], looks at the chain of successive H T T P G E T requests. It takes
into consideration the number of H T T P G E T requests over a t ime period per IP address.
Usually, the dis t r ibut ion of IP addresses is scattered over the internet, in case of botnets,
it was observed that these infected addresses can be clustered. Th is method can be used
to distinguish a flash crowd from botnet attack. K a l m a n filter is used to process the traffic
matr ix as a whole and make the estimation. The previous t ime interval is then used
i n contrast to the new interval. Lastly, these data are used for classification i n a Support
Vector Machine trained by Adapt ive Auto-Regressive function. Th is method achieved high
detection efficiency and flexibility.

Detection using Analyt ica l hierarchical process

In contrast to most methods which mainly focus on traffic patterns extracted directly from
request headers, [27] proposed to look into log files of webservers. Th is method gathers
relevant information from logs that are then used for deciding whether or not the attack
occurred. Detect ion of suspicious user ac t iv i ty is done through Dempster-Shafer theory
of evidence. Th is method also brings low processing t ime and high accuracy wi th low false
alarms. The results are s imilar to other existing approaches.

S E N T R Y

S E N T R Y model [33] aims to reduce the application-layer D D o S through challenge-response
approach. The approach attempts to analyse the physical bandwidth of an attacker, dynam
ically adapt to various workload scenarios and finally block suspicious requests. The client

14

requests are first sent to a moderator which challenges the client. The client then answers
wi th its bandwidth resources, which are then compared to the actual request. If the chal
lenge is successful, the client's further communicat ion continues direct ly wi th the webserver.
Th is method can therefore effectively capture slow read/send attacks.

User behaviour analytics-based classification

Last but not least, [26] proposed to observe four characteristics that would differentiate bots
from legitimate users. The detection is based on log evaluation, s imilar ly to [27]. The detec
t ion is based on two sets of t ime windows, large t ime window of 120 seconds and smal l time
window of 30 seconds. The large t ime window consists of four smal l windows; therefore,
the attack detection is 120 seconds. The detection focuses on machine-learning strategies,
where it observes several bot-specific behaviours. The authors propose that i n order to ex
haust webserver services, botnets usually need to increase their request rates in contrast
to legitimate users. Another proposed cri terion is response index, which considers the dif
ficulty to process a user request. Popular i ty index is used to observe popular i ty of web
pages, since 10% of a l l web pages receive 90% of to ta l traffic [2]. Legi t imate users usually
request these webpages. Botnets on the other hand do not know this subset of hot pages,
which can lead to different browsing dis t r ibut ion i n contrast to legitimate users. F ina l ly ,
the last observed cri terion is repetit ion index. Legit imate users are not keen on requesting
same pages mult iple times in a short period of t ime. These observed strategies alongside
machine-learning provided a detection rate of up to 99%.

2.3.2 B o t detect ion

In modern web applications, we can always expect some sort of a bot to browse our website.
Since not a l l bots are malicious, we should first distinguish between good bots and bad bots.
Web crawlers such as Googlebot used for website indexing usually publ ish their IP address
range. These bots are hosted w i t h their own I P address. Thus, we can use an IP address
of these bots as a deciding factor by al lowlist ing these addresses.

B a d bots, on the other hand, can use IoT devices and other infrastructure, which
can use N A T , V P N , or other proxy services. T h i s means that in contrast to known bots
used for indexing, it is not always feasible to use an I P address for dist inguishing these
bots. In this case, we can use browser fingerprinting. The fingerprinting returns a unique
identification of the at tacking device. However, some malicious bots are hard to fingerprint,
which results i n the need to deny list a t tacking IP addresses. Some companies also provide
databases of infected IP addresses, which can be further used for denylisting. Anyway, these
databases are usually expensive to use, and therefore it is essential to use such services only
when necessary.

W h e n an attack occurs, we should check user-agents for cookies, JavaScript support,
web browser characteristics, and finally observe the behaviour of clients. Th is is done
i n order to determine if the client is a bot or a legitimate user. B o t h Radware [23] and
Datadome [5] describe the mit igat ion methods for ind iv idua l bot generations as below:

• Cookies

Nowadays cookies are mostly used to quickly tel l web browsers or user sessions apart.
Cookies are stored in a web browser and can be requested by webserver at any time.
Because of this, checking if a web browser supports cookies is the simplest and least
resource consuming way to check for simple bots such as first-generation bots.

15

JavaScript

M o d e r n web browsers rely heavily on JavaScript . JavaScript is being interpreted
at client-side; therefore, it can be used for a large variety of tests. The in i t i a l test
for JavaScript is to check whether or not the web browser even supports JavaScript ,
since first-generation bots do not support it .

Captcha is another use for JavaScript . It works by challenging bots to do simple
tasks that would not be a problem for a human. Captchas can also measure the time
it took to be completed. This method is often used for challenging third-generation
bots and is often accompanied by movement pattern tracking i n order to better te l l
apart human and bot behaviour.

Web browser characteristics

This method is used for headless web browsers. Since second generation bots sup
port JavaScript , we cannot rely on s imply checking JavaScript functionality. Rather,
we can check the characteristics of the web browser.

The characteristics used to tel l headless web browsers apart from standard web
browsers are the following [10, 29]:

— User-agent contains str ing representing headless browser:

— App l i ca t ion version:

— Navigator.webdriver unset;

— Available plugins;

— Inconsistency between notifaction.permission and navigator.permissions.query;

— T ime elapsed;

— Outer dimensions of webbrowser set to zero.

Interaction based

A large por t ion of bots is able to interact w i th websites through user interface. The in
teraction however is rather simple. Most bots use straight lines and quick responses
to send requests i n contrast to legitimate users. W i t h observation of the user inter
action, it is possible to distinguish these bots from legitimate users without the need
for deeper understanding behaviour of users.

Intent based

M o d e r n bots often manifest human-like behaviour. Pr imar i ly , they add randomness
of human interaction into their interaction wi th websites. Th i s makes them harder
to detect. Simple interaction-based analysis is often insufficient, since it focuses
on the random interaction behaviour of the user. For successful detection, it is nec
essary to observe the user behaviour over a long period of t ime i n order to determine
the purpose of the client vis i t ing the website. Th is is often done i n collaboration
w i t h semi-supervised learning that aims to accordingly classify human interactions
versus bot interactions. [22]

16

2.3.3 M i t i g a t i o n

We can use several approaches for mit igat ion of botnet attacks. Some of the mit igat ion
methods are dropping traffic or traffic pol icing. Traffic dropping consists of dropping a l l
connections from specific user. O n the other hand, traffic pol icing consists of slowing
the connections or cut t ing over-the-limit traffic. Th is allows access to suspicious users while
decreasing their impact on the webserver. Another mit igat ion method is to set a threshold
per I P address. Th is might be problematic w i th mobile network traffic, since it heavily uses
N A T . The goal of the mit igat ion is to reduce the number of requests on webserver. [15]

For a large number of webserver instances, we can distribute server load across multiple
servers. This can also reduce the impact of a botnet attack. If combined w i t h an attack
detection system, we can combine dis t r ibut ion of traffic w i th traffic classification. This
results in lower risk of false positives, since we can serve clients that behave like bots. Even
though this can result i n higher delay for false positives, we are usually s t i l l able to serve
their requests while maintaining stabil i ty for legitimate users that are correctly classified
by the detection system. [17, 16]

17

Chapter 3

Proposed detection system

The previous chapter focused on the problematics of webservers and botnets and the neces
sary steps for the accurate dis t inct ion of bots and humans. This chapter discusses proposal
of a system based on the obtained information and also what w i l l be necessary i n indi
v idua l parts of the system. In the first section, we discuss the architecture of the system.
The second part discusses the system i n further detail , proposing the implementation.

3.1 Architecture

webserver

Figure 3.1: Archi tecture hiding the infrastructure from users behind the R P , consisting of
a webserver and a D M S .

There are several approaches for the implementation. One possible approach consists solely
of a webserver module that would implement the fi l tration and detection of a l l traffic.
A l though this approach is easy to implement, it is not quite scalable. Addi t ional ly , keep
ing the decision-making on the webserver increases the load on the server, which could
increase overall latency. The other approach is to use a reverse proxy (R P) alongside
a decision-making server (D M S) . Th is solution is depicted i n Figure 3.1. The R P consists
of a webserver module, such as a Ng inx module that would send necessary traffic infor-

18

mation to the D M S . Based on these data, the D M S can classify the traffic and return
corresponding response for the traffic to the server running the R P .

3.1.1 Reverse p r o x y

Reverse proxy is a type of server that receives traffic from the clients and transfers it to cor
responding webserver, as we can see i n Figure 3.2. In contrast to forward proxy, which
is i n front of the client, the R P sits at the server-side and thus can be usually managed
by the administrator. A good use of R P is when we want to hide the webserver infrastruc
ture, since clients think that a l l traffic comes from the proxy. In fact, the traffic traverses
through the proxy to the corresponding destination. [3]

user

Figure 3.2: A n example of R P : the traffic is being passed through the R P , h iding the in
frastructure behind.

The R P can be used i n various scenarios such as load-balancing, web acceleration
through data compression and caching, as well as security, where it can be used as a firewall
hiding infrastructure or filtering incoming traffic. Th is is especially valuable since it de
creases the number of t ime-consuming requests sent towards the webserver. Because of this,
a good approach for traffic classification would be to use a R P in front of the webserver,
which can pass the traffic through or send addi t ional information about the traffic towards
a D M S server that would classify the traffic and decide the next steps. [20]

Nginx is a webserver engine that has over the last decade became one of the leading
webserver implementations. It can be used i n various scenarios, such as a R P , load balancer,
mai l proxy, or H T T P cache. Furthermore, the Nginx P r o x y is also compatible w i th Apache.

A l though not being the first webserver implementation, Ng inx was created to address
the c lOk problem. It is a problem that comes from creating threads for ind iv idua l clients
and fast exhaustion of available hardware resources. This problem made it difficult for
webservers to simultaneously serve more than ten thousand connections. W h i l e Ng inx
uses threads, it is buil t on event-driven architecture. Th is means that mult iple clients

19

can be processed by same thread. The goal is to use non-blocking operations wi th com
mon threads where possible and create new threads for blocking operations [12]. Other
than asynchronous processing, Ng inx also brings large scalabili ty thanks to load balancing
methods where mult iple Ng inx instances can be running across mult iple servers providing
the same content. [19]

Nginx is available i n open-source and plus versions. W h i l e both versions can use com
munity implemented modules, the plus version already contains many addi t ional functions.
B o t h implementations consist of load balancer, webserver and R P .

Currently, the Ng inx R P is available for plus and open-source versions. Since it is already
implemented, a good approach would be to use the existing implementat ion and further
expand it by a module that would add necessary functions for the D M S [18].

Since this thesis is about keeping the hosted websites available for clients, it is also
important to mention the Nginx load balancing methods i n more detail . The load balancing
is used to distribute load from clients across available webserver instances w i t h the goal
of reducing latency and serving a l l clients. Server weight can be set for some balancing
methods, taking server resources into consideration. Wi thou t addi t ional modules, there
is bui l t - in support for several balancing methods [17]:

• R o u n d robin - Th is is the default method which distributes the load evenly.

• Least connections - Sends new requests to the server w i th least active connections.

• IP Hash - Resul t ing webserver is decided based on hash of clients IP address.

• Generic Hash - L ike IP hash, but the hash str ing is custom and can take multiple
client's attributes into consideration.

• Least T i m e - Th is method is available in P lus version. Webserver is chosen based
on its latency.

• R a n d o m - The webserver is chosen by pseudorandom function based on administra
tor settings.

3.1.2 D e c i s i o n - m a k i n g server

The goal of the D M S should be to gather traffic information from proxies or ind iv idua l
webservers and use it for decision-making. The chosen action can be either one of the mi t i
gation techniques, where the D M S sends request to the R P to halt or slow incoming traffic
for some malicious users, or to further challenge the user. The challenge part could be done
by an external service, such as captcha, since thanks to the D M S , most of the traffic w i l l
be cleared from the challenge part, reducing the costs of challenging using external ser
vices. Other method could be to create a custom challenge module that would challenge
the clients where necessary wi th help of the webserver.

3.1.3 Infras tructure

The proposed architecture as seen on Figure 3.3 consists of a R P , a webserver and a D M S .
The goal is to observe and perform the mit igat ion outside of the webserver. Th is way we can
reduce the load of the webserver without the need to interfere wi th existing configuration.

In the first step, we want to add a R P that would send a l l traffic upstream to the web
server, i f it is not already present i n front of the webserver, but also send access logs

20

to the D M S . The D M S can later also use the proxy for its mit igat ion techniques, since
the user sees only the proxy.

The D M S consists of four main modules. The data module should export data from
the syslog messages, attack detection module should classify the traffic, performance mon
itor module should observe the webserver load and finally the mit igat ion module, whose
main purpose is the decision-making based on the available information. The mit igat ion
module can also invoke the Challenge module, which should challenge the flagged users.

> - ° - q >
ffic in Traffic in\

Figure 3.3: D iag ram of the proposed infrastructure.

21

3.2 Proposed implementation

In this section the parts of the system are further decomposed depicting steps that are nec
essary for the implementation. Furthermore, some addi t ional features that could increase
the overall efficiency of the system are also discussed.

3.2.1 Reverse p r o x y

The proxy module is already implemented i n the Ng inx environment, as well as the syslog
module. However, as we can see in Figure 3.3, the D M S is expected to send requests for
the R P . The requests consist of user challenges that can be done through the R P , but also
blocking of flagged traffic. In this case, we can use the implemented h t tp_access_modu le
and rate-limit module of Nginx . Nevertheless it w i l l be necessary to expand these modules
wi th an interface that can be controlled by the D M S . Such expansion can be also done
by an external script that would feed the necessary data to these modules. This approach
w i l l increase the sustainabili ty of the code, since maintained modules w i l l be used.

3.2.2 D e c i s i o n - m a k i n g server

The ma in part of this proposal is the implementat ion of the D M S . The proposal can be seen
in Figure 3.3, more detailed version is described i n the following section. In this proposal,
the system is divided into four main modules to easily demonstrate the ind iv idua l function
ality of the system.

D a t a module

A s we can see i n Figure 3.4, the D M S should consist of several modules that should co
operate on the botnet detection and mit igat ion tasks. The first, data module, consists
of a syslog server that can receive syslog messages from mult iple reverse proxies. In best
case, we should be able to serve mult iple reverse proxies w i th one instance of D M S . The ac
curacy of evaluation is based on the amount of legitimate user traffic contained in the logs.
Therefore, we should first strip bots that report themselves as bots from the evaluation.
Another part of the data module is the data parser that w i l l extract a l l necessary traffic in
formation from the logs for ind iv idua l tests. These data w i l l be then split into t ime windows
that w i l l be sent into attack detection module to be evaluated. The parser w i l l also provide
information about the performance of the webservers and the changes i n active connections.
Other data, such as I P addresses, w i l l be sent to the mit igat ion module. Response time
and connection information w i l l also be sent to performance monitor module.

22

Messag ;ages , L

Messages « c o m p o n e n t »
Data module

g]

« c o m p o n e n t » ^]
Syslog server

Messages

« c o m p o n e n t » ^]
Data parser

7
Data

« c o m p o n e n t »
Time aggregation

- 0 - ? -
Data

• O
Data

o o
IP address

Connection status
Response time

IP address Response time Connection status

Figure 3.4: D iag ram of the D a t a module

Performance monitor module

Performance monitor, as seen in Figure 3.5, looks at the response t ime and number of active
connections. The response latency can fluctuate based on the complexity of requests as well
as the number of requests being processed by the webserver.

There are two approaches for the load estimation. The first one being static baselines,
which can be set based on the webserver capabilities or desired behaviour. Th is can serve
as a fail-safe i n case of attacks that a i m to drain the server resources over a long period
of t ime. The second one is a probabil ist ic approach that evaluates the current latency
and number of active connections i n contrast to the past. B o t h of these attributes should
be evaluated separately and the result should be based on the highest severity. Th is can
be then used by the mi t igat ion module for decision-making.

For this evaluation, the requests need to be aggregated into decision time-windows
representing the workload over a short period of t ime. The final size of the t ime window
should be decided based on testing, since we need to use the smallest window possible
that would s t i l l provide sufficient information. A decision t ime window of 10 seconds that
would be compared to a control t ime window of 60 seconds w i l l be assumed dur ing this
proposal. Tests based on statical base-lining can use the size of the decision window.
However, tests based on statist ical evaluation need a control window as a comparison.
In case of a sudden congestion of traffic, i.e. a D D o S or a F la sh flood, we can expect
a sudden increase i n server resources consumption. Th is can be best i l lustrated by a normal
dis tr ibut ion. We can calculate the standard deviation a using Equa t ion 3.1 and the mean
value /j, using Equa t ion 3.2 from the last control window.

23

Response time Connection status

« c o m p o n e n t »
Performance monitor module

Response time

« c o m p o n e n t »
Latency parser

Latency

Connection status

« c o m p o n e n t »
Active connections

Connections

« c o m p o n e n t » ^
Load estimate L i

ions -v

Severity

Figure 3.5: Diagram of the proposed Performance monitor module.

1 *

i=l

1 N
N ^

i=l

(3.1)

(3.2)

The control window w i l l consist of last six decision windows. The change of severity can
be based on the distance from the fx. Since we know the fx and 7, we can use this information
to decide i n which segment of the E m p i r i c a l rule is the value located. The proposed severity,
which is based on the E m p i r i c a l rule, can be seen i n Figure 3.6. This information can then
be used to dynamical ly adjust the severity.

Connect ion class Severity
P (X <fi-2a) - 3
P (A » - 2<T < X < /x - 3a) - 2
P (/ i - 1CT< X < ß-2a) - 1

P (A » - la <X</i + la) 0

P (/ i + lo- < X < /x + 2a) +1
P (/ X + 2CJ < X < /x + 3a) +2
P(/x + 3a < X) +3

Figure 3.6: Proposed severity evaluation based on normal distr ibut ion.

24

Attack detection module

The attack detection module consists of five main observed features and their classification.
The request rate is further divided into three observed features. The final output of this
module is a score of each connection, which should be further interpreted by the mit igat ion
module as depicted in Figure 3.7. Some of the selected features are based on [26], which
is described i n Chapter 2.3.1. The selection was done in order to get high accuracy and fast
detection rates. The features w i l l be evaluated i n t ime windows that should be set based
on detection rates. Addi t ional ly , while some of the selected features observe the same
patterns, the proposed approach for evaluation is different. The goal is to use two time
windows: decision t ime window and control t ime window, which is larger and consists
of several past decision windows. The size of these windows should be refined by testing
the model . The features and classification are further described below:

- Q -

Data Data

« c o m p o n e n t »
Attack detection module

« c o m p o n e n t »
Browsing repetition

« c o m p o n e n t » ^]
Request rate

« c o m p o n e n t » ^]
Popularity rate

« c o m p o n e n t » ^]
Bandwidth index

« c o m p o n e n t » ^]
Response index

Classification data

« c o m p o n e n t » ^]
Classifier

Score

Score

Figure 3.7: Diagram of the proposed At t ack detection module.

• Request evaluation

For request rate evaluation, it is possible to use per connection and per I P evaluation.
Since it is quite common to see massive network address translat ion nowadays, for

25

example i n mobile provider networks, the use of per connection vs per I P basis should
be decided based on further testing. There can be a problem of bots creating new
connections for each request, mimick ing the N A T usage.

The first idea is that botnets are not large enough to successfully flood the webserver.
The only exception being super-botnets that are much larger and usually perform
attacks that can swap the at tacking bots and decrease the request rate i n order
to stay below the detection threshold. Webservers are usually buil t for their user base:
therefore larger webservers can be harder to flood wi th normal sized botnets. Usually,
we can expect increased request rate in contrast to normal user traffic, in some cases
even decreased request rate. This can happen either because the botnets are unaware
of the actual user traffic or because they are at tempting to overload the webserver
by gradually increasing their request rate. [26] also proposes that the request rate
is affected by the time necessary for the user to process received data.

The second idea is that some botnets might attempt to stay below the rate baselining
by keeping more active connections or by holding these connections active below detec
t ion rate by keeping pre-set request rates. W i t h legitimate users we can usually expect
different behaviour. Thus, an addi t ional observed features consist of the request sim
ilari ty (RS) , which should take into consideration the request rate behaviour between
connections as well as the history s imilar i ty (HS) that compares history of the con
nection. The R S computes the difference of decision t ime windows between current
and remaining connections based on Equa t ion 3.3. Th is value is then divided by al l
possible connections to obtain the index of similarity.

RS = ^ i = 1 '-u-c't'-'-L-u-H'-; ^ g-j YliLi identical(i)

The identical^) function finds connections that have identical request rate as the cur
rent one.

The H S on the other hand looks at the difference of the same connection. It takes
the request rate for ind iv idua l connections of the current decision t ime window. These
are then compared wi th a l l the past decision t ime windows that are present i n the con
t ro l t ime window, as we can see i n Equa t ion 3.4. The result is the difference between
request rates of ind iv idua l windows. Based on the number of windows that the con
nection was holding this constant request rate we can then make the evaluation.

HS = max — m i n (3.4)

The R i represents an array of request rates for ind iv idua l connections i n time.

Final ly , the request evaluation is based on the fact that most users of the same
website w i l l have similar, but not same, request rates. Th is behaviour corresponds
to the normal dis t r ibut ion function. Therefore s imilar ly to the Performance moni
tor module 3.2.2, the aggregated information from the control window can be used
to compute the fx and a. Then the E m p i r i c a l rule can be applied i n order to clas
sify the possibil i ty of such traffic i n the decision window. The proposed severity can
be seen in Figure 3.8. A s we can see, the lower request rates are not interesting in this

26

case, therefore we can omit the lower bound. This information can be addi t ional ly
used to observe the request behaviour of the user i n t ime.

Connect ion class Severity
P (X < / X + 1ct) 0

P (M + lo- < X < 11 +2a) 1
P(/x + 2a < X < fi +3a) 2
P(/x + 3 c r < X) 3

Figure 3.8: Proposed request probabil i ty severity based on normal distr ibut ion.

• Popularity evaluation

Popular i ty evaluation assumes that most traffic of a website is aimed at a smal l subset
of webpages. Th is idea is based on [2], who came up w i t h the information that 90%
of a l l traffic requests target only 10% of the websites content. The popular i ty index
based on this information then uses the assumption that botnets can not te l l these
top pages apart from other pages available on the website. The i r behaviour should
therefore lead to less top page hits, i n contrast to legitimate users. The computat ion
can be seen in Equa t ion 3.5, which was first proposed i n [26]. A n example can
be when a web browser requests addi t ional resources based on the page the client
requests. Mal ic ious bots might avoid these resources since they are not interesting
for the purpose of the attack.

8 is computed as a number of hits i n the hotpage list vs a l l page requests for the con
nection.

• Response evaluation

Response t ime represents the t ime it takes for the webserver to process and answer
to the user's request. W h i l e legitimate users might request some time-consuming
operations, usually it is dispersed among the rest of their requests, or is balanced
by the number of requests sent to the webserver over the period of t ime from that
specific client. Compar ing the response t ime between the control t ime window of the
webserver and the decision t ime window of the connection could indicate whether or
not the user is a t tempting to send more time-consuming requests for the webserver
than other users. S imi lar ly to the Request evaluation, it is expectable that most
response t ime of users would correspond to the normal dis t r ibut ion. Therefore we
can use the E m p i r i c a l rule and classify according to Figure 3.8.

• Bandwidth evaluation

In order for the botnet to make the server inaccessible for legitimate users, it needs
to either send a large number of requests, or overload the server through other means,
such as the size of requested information. Therefore, another observed feature should
be bandwidth rate, where we compare the user's traffic over a per iod of t ime to other
users. In this case, we should look at the average size of user requests. Legit imate
users w i l l usually send mult iple smal l sized requests before requesting larger objects,

(3.5)

27

which should disperse the average load of ind iv idua l users. Mal ic ious bots a iming
to dra in the server resources are however expected to a im to stay below the request
rate threshold therefore min imiz ing the dispersion of the average bandwidth size.
The proposed approach consists of the average size of request i n decision window
of the connection x and the average size over the control window. The result is then
statistically evaluated according to Figure 3.8.

• Repeti t ion evaluation

Last but not least, the browsing repetit ion feature checks whether the user requested
same data mult iple times over a short period of t ime. The idea stems from user's be
haviour, where we often see users open mult iple webpages, but they rarely open the
same page mult iple times in a short period of t ime. In case of bots however, it is pos
sible to open the same webpages in a short period if they are traversing the webpages
randomly [26]. Or , more commonly, when the bots are at tempting to D D o S the web
site or make some malicious spam/ login attack. Since this information is obtained
from the log, we can get the number of unique requests per connection i n the deci
sion t ime window and then divide this by the number of a l l requests. Th is approach
is depicted i n Equa t ion 3.6.

REP = 1- S L ^ g W (3.6)

The uniqueQ function returns 1 for unique requests and 0 i f mult iple same requests
occurred.

The E m p i r i c a l Rule can be used to evaluate the results of the repetit ion to better
reflect the current state. The addi t ional advantage of this use-case in contrast to static
baselining is that it reflects the websites request pattern.

• Classification

After extracting the features, it is necessary to classify the results. There are sev
eral approaches, the simplest being a heuristic analysis, using static baselining that
would classify the traffic based on obtained data. More advanced solution would
be to use these data in combination wi th machine learning. Th is solution however
encounters the problem that the machine learning algori thm first needs some flagged
traffic, which can be later used for learning. Another solution is to first statist ically
interpret these data before using a heuristic analysis or machine learning classificator
on the statist ically evaluated results. The most suitable classification would be to use
the statist ical evaluation in combinat ion wi th machine learning classifier. Th i s way,
the classifier should be able to spot traffic patterns that are otherwise hard to detect.
However before a machine learning approach, it is necessary to first create a suitable
classification, which would be able to capture enough results for the basis of the ma
chine learning. The result of the classifier should be the final evaluation of ind iv idua l
connections that w i l l be then used i n mit igat ion module.

Since the evaluation of the tests already counts on the use of statist ical analysis of in
d iv idual features based on the probabil i ty dis t r ibut ion, the implementat ion w i l l first
focus on this part and then prepare the classifier in such a way that it can detect suit
able amount of botnet attacks. The first part w i l l consist of heurist ical /behavioural

28

analysis that can be later made more efficient by implementing machine learning
strategies, such as the Bayes Regression.

Mitigat ion module

The mit igat ion module should ideally consist of challenge and mit igat ion procedures. A s we
can see in Figure 3.9, the proposed mit igat ion module is d ivided into three main parts, which
are described i n this subsection.

Severity Severity

Score

«component»
Mitigation module

Score

«component» ^]
Mitigation action

6 — o -
Score Challenge

a

Action Action

Response Response

IP address IP address

«component» ^]
Deny list

«component»
Challenge module a - 0 - o - o

Challenge Challenge

Figure 3.9: Diagram of the proposed Mi t iga t ion module.

• Denylist

W h i l e the mit igat ion module aims to classify the traffic according to available data,
some addresses might already be denylisted. Therefore, a denylist that can store
the I P addresses of at tacking networks, date, expirat ion of the denylisting and also
the severity is necessary. This information can later be sent to the proxy to block or
slow already detected spurious traffic.

Addi t ional ly , some internet service providers publ ish lists of IP addresses that are of
ten used i n botnet attacks. These lists can be also obtained and added into the denylist
to prevent the attack before it occurs.

• Challenging module

The challenging module should ideally consist of four steps, as was described i n F i g
ure 2.3.2. The idea is to gradually test bot generations un t i l it is clear the user
is not a bot. If the challenging determines that the user is a bot, we can then
denylist its IP address for a period of t ime based on the re-occurrence of the attack
as well as the severity of the attack. Other approach would be to use paid extension

29

such as Google Captcha that could also verify uncertain connections. However, this
module w i l l not be implemented because of the difficulty to implement and appropri
ately verify and test this system. Therefore, this module is added into the proposal
of the system and the system can be later extended for l imi t ing the number of false
positives while increasing the detection score. Th is can be achieved since the used
classifiers can work i n a more strict environment.

• Decision-making

The main part of the mit igat ion module is the decision-making. This part should take
al l the available information from the deny list, performance monitor and attack detec
t ion module in order to determine whether the user is a bot. Th is module should work
mainly on dynamic thresholding, combining the evaluations from the other modules
and dynamical ly changing the thresholds, updat ing the deny list and sending the up
dated information to the proxy for mit igat ion.

30

Chapter 4

Implementation

The implementat ion aims to evaluate webserver traffic i n realtime as well as retrospectively.
It is d ivided into two parts. The first part is the D M S that evaluates the incoming traffic
on syslog server, upon which the system makes decisions. The second part consists of the use
of a receiving module that runs separately from the Ng inx proxy/webserver implementa
t ion and also necessary configuration of the proxy. This schema can also be modified for
Apache webservers. The Ng inx webserver was selected based on the theoretical part of this
thesis. A s was mentioned i n 2.1.2, the Ng inx implementat ion is becoming more popular and
also offers more possibilities for extension in the future, such as user challenge described
in section 2.2.3.

4.1 Communication

The communicat ion between the system parts can be seen i n Sequence diagram 4.1. The N g
inx proxy sends logs of incoming traffic to the server running the D M S through syslog.
Thanks to this d ivis ion we can spread the load of the traffic between mult iple separate
servers. After the evaluation is complete, the D M S asynchronously sends the current
deny list to the deny list module that receives the data through websocket messages. Last but
not least, the denylist module informs the Ng inx http_access_module about the change
in denylist.

4.2 Decision-making server

This section describes the implementat ion of the decision-making server. The first sub
section describes the ind iv idua l classes of the system and what each part of the system
does. The second subsection takes a closer look at the classification steps. Last ly, the final
subsection explains the parallel ism of the system.

4.2.1 S y s t e m i m p l e m e n t a t i o n

The implementat ion is d ivided into several classes as can be seen in Attachment A . l . In this
subsection, we w i l l describe the classes and logical functions.

31

s d traffic evaluation^""

User

request

Nginx proxy
server

allow/deny address

Syslog server Denylist listener

log request

- • ú

loop J [while DMS active]

l ° ° P / j [while entry in time window]

check log

>

new denylist ^ K

refresh http_access_module

Figure 4.1: Sequence diagram showing the communicat ion between system parts.

Parser

The ma in class is the parser, which continuously checks the log obtained from the syslog
server and stores the requests into the FeaturesControl and Perf ormanceControl classes.
The class consists of two logical functions.

The first one is the parsing function, which contains the main parsing loop monitor ing
the logs. The parsing consists of reading the log file and creating Request objects repre
senting each received request before evaluation. Th is function works either i n realtime or
in parsing mode. In realtime, the system continuously observes changes i n the log. A d d i
tionally, it verifies that no window rotat ion occurred by checking the timestamps of the re
quests as well as the system time. This is essential especially for the performance module,
which updates the denylist database based on these rotat ion events. In the parsing mode,
the system evaluates traffic from already created logs. The parsing method can be changed
in the configuration file.

Funct ion logHandler checks if the log is s t i l l available and i f log rotat ion occurred.
If the system runs i n realtime mode, the logHandler checks whether log rotat ion occurred.
This is done by checking the inode of the file. If the log was rotated, the function closes
the previous file descripor and opens a new one wi th the current log file. Otherwise, if the log
was deleted, it ends the parsing cycle. In the parsing mode, it ensures that file descriptor
is correctly closed.

Request

The Request class is a data class that holds a l l data of one request before it is evaluated.
This class is filled i n the Parser class and then distr ibuted to the Perf ormanceControl and

32

FeaturesControl respectively. These classes then insert the Request to the corresponding
decision class for evaluation.

Contro l

The Control class serves as a template parent class for the Perf ormanceControl and
FeaturesControl classes. This class contains the window rotat ion logic as well as the par
allelism handling of the system. The class contains three logical functions, namely copy,
insert and rotate.

The copy function creates a deep copy of the Control class that is obtainable by another
process. Therefore, the copied class contains a l l the data of the last decision t ime window
as well as the control t ime window, which is then evaluated by another process.

Funct ion insert inserts new data into the current decision class. Furthermore, it verifies
the request t ime and window time and invokes the window rotat ion if the request should
be already inserted into another t ime window.

rotate function is responsible for the window rotation. The control classes are each in
stantiated once at the beginning of the system and are accessible by a l l processes. The win
dow rotat ion consists of the past decision windows that are instantiated and destroyed
based on the size of the respective window. Therefore, it is not necessary to continuously
fill the control window, since it consists of the previous decision windows. After the ro
tat ion is complete, the function allows another process to cal l the copy function to store
the obtained data in the control as well as the decision window for evaluation.

PerformanceDecision

This class holds the data responsible for evaluation of the webserver load. The class has
one logical function, namely insert, which takes the inserted request and stores necessary
data into the class.

PerformanceControl

Perf ormanceControl is a class that extends the Control class and is responsible for
the evaluation of the webserver load. The class consists of two logical functions, namely
getResponse and getDecision. B o t h of these functions then gather the data stored
in PerformanceDecision classes, which are then evaluated based on the normal distr i
bution, as described i n Section 3.2.2. These two functions return the evaluation of these
two features, which are used for the configuration of Denylist dur ing decision-making.
The number of decision windows as well as the size of the windows can be set i n the con
figuration file.

FeaturesDecision

Similar ly to PerformanceDecision, this class holds data aggregated i n specified t ime win
dow. Furthermore, this class also contains the function insert, which stores the Request
object and verifies, i f the user_agent of the request is accepted. F ina l ly , the class has a log
ical function calculate that makes the necessary aggregation over a l l requests that were
inserted into this class. The aggregation is done by the evaluation process, thus l imi t ing
the impact on the parser. The evaluation is done once for each copy and the data are then
prepared for evaluation i n the FeaturesControl functions.

33

FeaturesControl

This class holds most of the classification logic. The class consists of nine logical functions
that represent the main part of the evaluation. Other than that, this class extends the par
ent Control class and uses the FeaturesDecision classes that hold the necessary data for
the evaluation. Each FeaturesDecision class represents one t ime window. The number
of decision windows as well as the size of the decision window can be set in the configuration
file. The functions were proposed in 3.2.2 i n the At t ack detection module part.

Funct ion getSimilarity evaluates the s imilar i ty of ind iv idua l connections i n current
decision window. Specifically, it looks at the number of requests of ind iv idua l connections
and compares it to other connections. The result is the percentage of connections wi th
the same request rate.

The getHistory function evaluates the s imilar i ty of the connection between different
t ime windows. For each connection, it takes the number of requests and compares it
to the other t ime windows. Addi t ional ly , the request rate has to be detectable i n at least
three t ime windows. It returns the max ima l request rate difference between the t ime win
dows.

The getRequest function checks the request rates of ind iv idua l connections and sta
t is t ical ly evaluates the results as was described in Section 3.2.2. The function returns
an evaluation representing the l ikel ihood of occurrence.

getPopularity looks at the number of hotpage hits i n the decision window and then
statistically evaluates these results i n contrast to the control window as proposed i n Sec
t ion 3.2.2. If no hotpage hits are present, the function returns infinity.

The getResponse evaluates the response t ime of the connection. The function compares
the ind iv idua l connections i n decision window i n contrast to the average response time
of the connections in control window. The function then returns an evaluation based
on the l ikel ihood of such occurrence as described in Section 3.2.2.

The getBandwidth s tatist ically evaluates the request size of the connection i n contrast
to the average size in the control window. This is done s imilar ly to the getResponse.

The getRepetition calculates the repetit ion index of ind iv idua l connections in decision
window, which is then statist ically compared to the control window using the E m p i r i c a l
rule as proposed i n Section 3.2.2.

Final ly , the c l a s s i f y function interprets a l l the results from the ind iv idua l statist ical
functions and returns an aggregated evaluation for each connection. This evaluation as well
as the t imestamp of the occurrence is then stored into the Denylist i f suspicious behaviour
was detected.

Denylist

Class Denylist holds the current denylist, which is held in memory and also stored i n file
in case of system failure. The class is also used i n multi-process environment. The process
procuring the features functionality feeds new addresses into the class, while the process
performance queries the Denylist based on specific si tuation. The classs consists of five
logical functions.

The load function works as an ini t function when the system starts. It loads the denylist
file from disk into memory and prepares the handler for file manipulat ion.

Funct ion insert inserts new address into both the cached denylist as well as the file.
If the address was already present in the denylist, it can update the t imestamp stored i n file
based on last occurrence.

34

Final ly , the getDeny function queries the stored denylist and obtains the denylist based
on the specified configuration.

4.2.2 Classif ier

The classification is distr ibuted across the system as was described i n Section 4.2.1. After
the logs are captured, they are aggregated into the t ime windows. E a c h t ime window
represents the traffic dur ing this t ime. The classification consists of two logical windows,
namely the decision and control window, which are further evaluated by two different parts.

The first part, the performance evaluation, observes the load on the webserver. This
evaluation is based on averaging the t ime windows and observing if the load continues
according to normal dis t r ibut ion as proposed i n Section 3.2.2. Sudden increase i n traffic
that is often generated either by botnets or flash crowds w i l l therefore be detected. This
i n t u rn increases the severity of the evaluation, flagging more traffic.

The classification continues by feature evaluation. It consists of 7 observed features
as was proposed i n Section 3.2.2. Request, repetition, response and bandwidth features
are prepared based on the proposal before applying the E m p i r i c a l rule. The resulting
evaluation corresponds to the Figure 3.8. His tory feature evaluates the connection based
on the stabil i ty of request rate over t ime as proposed i n Section 3.2.2. Simi lar i ty feature
measures the closeness of connection request rates. Last ly, Popular i ty evaluates the number
of hotpage hits as depicted i n Section 3.2.2. Implementation of those features is further
described i n Section 4.2.1. Eva lua t ion from each feature serves as an input for the be
havioural analysis of the traffic. The behavioural analysis examines the traffic and values
of ind iv idua l features during different traffic patterns. Th i s was used to derive appropriate
configuration of the classifier for detecting suspicious patterns. The evaluation usually uses
more than one feature in order to l imi t the number of false positives. This way, multiple
types of attacks can be captured. F ina l ly , the suspicious traffic is stored i n the denylist.

Based on the performance evaluation, the system pools the denylist and sends the data
to the Ng inx proxy, mi t igat ing suspicious traffic. Th is approach seems to have sufficient
success rate for both false positives and false negatives. Further analysis of the classification
is in Section 5.

4.2.3 P a r a l l e l i s m

The D M S consists of three processes. The parser is single-threaded and stores data for
the other processes, which are informed about the availabil i ty of data when it occurs. W h e n
the data is available, the other processes copy the data and inform the parser to continue.
The other processes then evaluate the data increasing the effectivity of the whole system.
Features analyser stores data into the denylist class, which is then obtained by the Perfor
mance analyser. The simplified communicat ion can be seen i n Sequence Diagram 4.2.

35

sd process communication)

loop)

Parser

1

Features
analyser

T
data for features ready T

I data copied

flagged addresses

data for performance ready

data copied

Performance
analyser

I
T

Figure 4.2: Sequence diagram showing the process communicat ion.

4.3 Nginx proxy

The implementat ion on the Ng inx part consists of the configuration, log handling, and
program which updates the denylist configuration of the Nginx . In order to success
fully setup the Ng inx proxy, it is first necessary to instal l Ng inx . The configuration
in /etc/nginx/nginx.conf should contain line include /etc/nginx/sites-enabled/*
under the http clause. After that it is necessary to add a config file into the folder
/etc/nginx/sites-enabled/ i n the format shown i n Figure 4.3. This prepares the config
urat ion to run in the P r o x y mode. F i n a l l y a configuration reload is necessary by running
systemctl restart nginx command.

36

server {
l i s t e n 80;
l i s t e n [::]:80;
access_log

syslog:server=(dms_ip):(port),
facility=local7,tag=nginx,severity=info
upstream_rp;

location / {
proxy_pass (webserver_ip);
proxy_bind $server_addr;
s u b _ f i l t e r "(webserver_ip)" "(proxy_ip)";
sub_filter_once off;
sub_filter_types ;

}

}

Figure 4.3: Ng inx proxy configuration.

4.3.1 L o g h a n d l i n g

The logs are sent by the proxy through syslog messages to the server, which is running
the instance of the D M S . The syslog configuration is already prepared i n the Figure 4.3.
The D M S is constantly observing this log and when new request arrives, it parses the request
and stores it into the Perf ormanceControl and FeaturesControl classes for evaluation.
Addi t ional ly , the log needs to be i n a specific format, as shown i n Figure 4.4, to obtain a l l
necessary information. Th is log configuration has to be set i n the /etc/nginx/nginx. conf
file under the http clause. The format is also appended wi th the program.

log_format upstream_rp
'addr="$remote_addr" '
'port="$remote_port" '
'time="$time_local" '
'status="$status" '
'req_size="$body_bytes_sent" '
'conn="$connection" '
'connreq="$connection_requests" '
'req_time="$request_time" '
'conn_time="$upstream_connect_time" '
'res_time="$upstream_response_time" '
'act="$connections_active" '
'host="$host" '
'req="$request" '
'ua="$http_user_agent" ';

Figure 4.4: L o g configuration for Ng inx proxy.

37

4.3.2 D e n y l i s t m a n i p u l a t i o n

The denylist consists of the Ng inx http_access_module as well as a support cpp pro
gram. The program listens on a websocket multicast for the denylist, which is published
by the D M S when ready. The program then creates a new denylist file containing the set
of received addresses. Th is list is already cleared of allowlisted addresses. Last but not
least, the program forces the Ng inx module to refresh, updat ing the denylist configura
t ion. Before the program can be used, it is necessary to first create the denylist file us
ing touch (path_to_denylist) . The next step is to prepare the http_access_module
by adding include (path_to_denylist) to the /etc/nginx/nginx.conf under the http
clause. Now that the configuration is prepared, the module can be started.

38

Chapter 5

Testing and validation

This chapter presents the testing phase of the system. In the first section, the log analysis
is introduced. The second section describes the detection mechanism and the observed
reactions of ind iv idua l features on the traffic. Furthermore, the results are presented as well
as possible use-cases and improvements. The last section proposes the system l imits based
on the observed behaviour dur ing testing.

5.1 Log analysis

100

H h

i 1 1 h H 1 1 1 1 1 1 h

.<£ .<£ .<£ .<£ .<£ .<£ .<£ .<£ .<£ .<£
<y v V ?>• V- <y <b- V <b- cy ^ - ^ v ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ - r ^ -

Hour

Figure 5.1: G r a p h showing the average number of bots throughout the day.

The testing phase consists of logs provided by Master Internet s.r.o that were captured
between 15 of June and 21 of June. The logs were analysed based on user agents
and then remaining addresses wi th sufficient request rates were verified through I P abuse
database. F ina l ly , false positives were manual ly checked and approximately 60% were also

39

deemed malicious. This might have skewed the results, since addi t ional addresses were
added to the total number that were found i n the database 1 .

In total , over 956 addresses that used legitimate user agents were flagged as abuse
addresses partaking in a botnet or other type of malicious behaviour. Other than that,
the traffic consisted of more than 5114 addresses that reported bot traffic i n their user
agent. G r a p h 5.1 contains the dis t r ibut ion of bot traffic i n obtained logs. The blue line rep
resents the average number of bots throughout the day and the highlighted area represents
the max ima l and min ima l range in which the bot traffic was detected.

A s expected, the highest percentage of bots is distr ibuted during the night. This is
expectable behaviour since the observed webservers are focused on European market. This
dis t r ibut ion can however also skew the evaluation of traffic. Bots nowadays are usually
accessing the websites for shorter periods of t ime or making a few requests and then going
dormant i n order to not be detected by intervention systems. They can however be replaced
by another bot, which continues wi th the same traffic patterns. For this reason, the evalua
t ion skips the addresses of bots that self-report as bots. This way, we can lower the impact
of bots on the statist ical evaluation of traffic and obtain the baseline based on legitimate
users. The behaviour of unidentified bots is then more visible.

5.2 Detection

The implementat ion allows the administrator to select trusted bots by setting their user-
agent or by adding their IP addresses into allowlist. It also allows the administrator
to bypass the detection and block selected user-agents that have malicious behaviour, such
as P y t h o n scrapers that are often used by competi t ion i n order to gain an advantage.

Since the evaluation of bots that are self-reporting as bots is simple, this thesis aims
to detect bots that do not self-report. The system works both i n realtime where it is
able to detect bots as they appear and i n analysis mode, where it can go through already
captured logs and evaluate the captured traffic. Dur ing the testing phase the system found
several botnets from A s i a that were at tempting to verify leaked credentials on specific
domains or botnets that were periodical ly accessing front pages of websites. Other than
that, bots that were scraping the websites or a t tempting to spam in forms and even attempts
at X S S script ing were also detected.

The detection of these attacks can be divided into patterns obtained in Table 5.2.

D D o S constant rate, repetit ion rate, request rate, similarity, response, bandwidth
Scr ipt ing constant rate, request rate
L o g i n repetit ion rate, constant rate, s imilar i ty
Scraping request rate, popular i ty index

Figure 5.2: Scope of features on different types of attack.

Testing of ind iv idua l features obtained from the logs is summarized i n the following
part:

• In terms of request rate, the system mainly focuses on over-the-limit attacks. This
is because legitimate users usually make many requests in a short period of t ime and

1 Link to the used abuse database: https://www.abuseipdb.com/

40

https://www.abuseipdb.com/

then go dormant, or keep low request rates throughout their visi t . D D o S attempts
to hold the high request rate throughout mult iple t ime windows.

• Repet i t ion of user requests turns out to be a good way of observing the bot traffic.
M a n y bots that focus on Spam, L o g i n and D D o S attacks can be easily detected even
at lower request rates. Tha t is mostly because they a i m to stay below the request rate
threshold and therefore they rather send mult iple similar requests and go silent. Tha t
is the moment when another bot might take their place and continue the attack. Using
the statist ical evaluation, it is possible to compare the average number of repetitions
for the website or even whole webserver and capture these bots.

• However, the system is able to detect even some low rol l ing attacks, such as constant
rate, that can be detected based on the size of decision window. The tested configu
rat ion was able to capture bots w i t h constant rate above 15 requests per minute.

• The s imilar i ty rate was able to capture bots at m in ima l requests per minute, however
there were also many false positives. Thus, i n the determination phase, the test is
modified to capture above-the-limit attacks that come mostly from D D o S attempts.

• The response and bandwidth tests focus mainly on high request rate attacks as well
as constant request rate attacks, since they can further decide i f the client is attempt
ing to access pr imar i ly resources that are time-consuming.

• F ina l ly , the populari ty index was not thoroughly tested, because the available logs d id
not have sufficient request rates to effectively test and evaluate this method. However
at large enough request rates, this test should be able to detect scraping bots that do
not self-report.

In conclusion, the results of the testing phase can be seen i n G r a p h 5.3 In this graph, we
can see the number of not reported bots that were behaving i n a way that the system could
detect them without high false positive rates.

100

"Z. ^ Q x I I I I X I I L I J I I L I J I I X I I I L

o -I—i—\
&

<y v V *>' V- <o- <b- V <b- 9> ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
H o u r

Figure 5.3: G r a p h showing the average number of flagged bots throughout the day.

41

The blue line represents the average number of detected bots i n a day and their dis
t r ibut ion throughout the day. The highlighted area represents the range in which bots
were detected throughout the week. A s can be seen, the overall capture rate in a day is
approximately 30 percent. Tha t is because we focus on above-the-limit bots. Some bots
might behave i n a way that is almost undetectable or not malicious. Out of a l l the detected
bots, most had similar behaviour to other bots, indicat ing a possible botnet. M a n y bots
had dynamic rate but sent same requests throughout their presence. The behaviour con
sisted mostly of main page, login and forms requests. In future work, this detection system
could be used to capture the patterns of bots and use machine learning to capture most
of the botnets.

B y gradually bui ld ing the denylist database over a large per iod of t ime using this tool ,
the number of bots that are flagged greatly increases as can be seen i n G r a p h 5.4. The blue
bar shows the bots that were present in the logs during the day and were gradually cap
tured throughout the week. The orange bar on the other hand shows the bots that were
captured in the part icular day. Based on this graph, it is obvious that the detection can
be greatly increased by bui ld ing the denylist database first. Furthermore, this graph shows
that the detection rate is increasing from day to day. This is however not due to better
detection, but rather due to an attack from A s i a n botnet, which was mentioned before and
was composed of approximately 100 addresses. The attack was aimed at login forms and
consisted mainly of bots from V i e t n a m and Ch ina .

Figure 5.4: G r a p h showing the number of captured bots per day.

5.2.1 False posit ives

The number of false positives is dependent on the number of addresses i n the logs. For
this reason, the classification was done over the whole webserver log file rather than for
specific domains. Furthermore, the classification was set on per IP basis. Th is was done
because legitimate users tend to send mult iple requests through same connection, while

42

bots usually use new connection for each request. In this scenario, N A T was not an issue
because the traffic was dis tr ibuted across mult iple websites. The number of false positives
can be seen i n G r a p h 5.5. A s shown in the graph, the number of false positives is below 5%.
However, some of these false positives contain traffic such as domain error requests, main
page only, or mult iple 301 responses. This could indicate web scraping but not enough
requests are present for determination.

5 i 1

£ 4 -

Figure 5.5: G r a p h showing the number false positives.

5.2.2 R e a l t i m e test

Dur ing realtime testing of the system, the system was tested in sandbox wi th the configura
t ion of 20 second decision windows and 4 control windows. The system was able to identify
D D o S attacks using H O I C 2 , which is one of the common tools [9] used i n D D o S attacks. Ta
ble 5.6 shows the reaction t ime of the system for different types of simulated D D o S attacks.
In real traffic these statistics can be potential ly hidden by the overall request rates of user
traffic (additional G E T requests for external files, images), which could hide dynamic rate
D D o S attacks. These are however not common, since D D o S tools tend to send constant
rate.

2 Link to the HOIC: https://sourceforge.net/projects/highorbitioncannon/

43

https://sourceforge.net/projects/highorbitioncannon/

300 requests/minute, static page, constant rate 20s
245 requests/minute, dynamic page, dynamic rate 20-40s
150 requests/minute, static page, constant rate 20s
113 requests/minute, dynamic page, dynamic rate 20-40s
18 requests/minute, static page, constant rate 20s
18 requests/minute, dynamic page, constant rate 60s
20 requests/minute, dynamic page, dynamic rate undetected

Figure 5.6: Capture t ime on simulated D D o S .

A s we can see, the system is able to quickly detect most D D o S attacks when they
occur. Addi t ional ly , it is able to capture some low rol l ing constant rate attacks, which
could potential ly be attacks such as Slowloris, which aims to starve the webserver resources
by keeping mult iple connections alive. Th is however requires the attacker to send requests
to keep the connections alive. M a n y botnets i n the real traffic logs however behave in such
a way that they send between 10-30 requests and go offline, which is also a behaviour similar
to many real users.

Final ly , i n realtime mode, the system also dynamical ly changes the severity of the eval
uated traffic based on the change in webserver load. This dynamical ly changes the pooled
deny list by severity as wel l as the t ime of occurrence.

5.3 System limits

Dur ing the testing phase, the system was able to parse 1 mi l l ion requests i n under 8 minutes.
In theory this means that the system should be able to process at least 125 thousand
requests per minute. If the number of requests exceeds this l imi t , the system skips these
requests unt i l the next t ime window, where it begins the next evaluation. For comparison,
the log containing a l l traffic from the webserver w i th mult iple websites consisted on average
of 1 thousand requests per minute. Therefore, for larger webservers we can split the log
for ind iv idua l websites and run mult iple instances of this system to bypass the system
limitations.

Similarly, the system can have problems detecting bots if the overall webserver traffic
contains under 200 requests/minute. In this case, only constant rate bots are detectable
since there is not enough traffic for the statist ical evaluation.

44

Chapter 6

Conclusion

The goal of this thesis was to propose and implement a botnet detection system that
would be able to work i n realtime. The system is based on t ime windows that represent
the behaviour of traffic over a specified period of t ime. The evaluation of the t ime windows
is based on statist ical approach. The data are first aggregated into the t ime windows and
then ind iv idua l features are evaluated. F ina l ly , a behavioural analysis is used in order
to classify the users.

A s proposed i n Chapter 3, the system is split into two main parts. The first part
is the proxy side, which consists of the log capture, and denylist manipulat ion. The second
part is the main system, which can run separately from the Ng inx proxy. The main purpose
of the system is to detect traffic that can be at t r ibuted to ind iv idua l bots as well as botnets.
Th is is done by evaluating logs from the traffic and observing the behaviour patterns of each
user. The system is capable of running i n realtime as well as in parsing mode, where it
evaluates already captured traffic.

Based on the testing phase, the goals of this thesis were successful since the system
successfully captured botnet traffic and was also able to mitigate such attacks i n realtime.
Dur ing testing of the system, it captured approximately 60% of detected bot traffic that
were not self report ing by user-agents. The success rate of the detection is dependent
on the t ime the denylist has to bu i ld itself as well as the number of requests present during
the t ime windows. The observed number of false positives was under 5%. Dur ing the testing
phase, many bots w i t h s imilar behaviour that were focusing on login attacks and spamming
were reoccurring during the week. The l imi t of the detection system is approximately 125
thousand requests per minute.

In the future, the system can be further extended wi th several addi t ional functionalities.
Fi rs t , a challenging module can be implemented as described i n Chapter 2. Th is would
greatly l imi t the number of false positives and therefore the system could be configured
in a way where it would detect more bots overall. Addi t ional ly , mi t igat ion techniques
for the system can be expanded. This would decrease the severity of wrongly classified
traffic. F ina l ly , the classification can also be extended by machine-learning techniques
where the results from this system can be used as the input data for learning.

45

Bibliography

[1] A K A M A I . What is a botnet attack? Accessed: 2021-02-01. Available at:
https: //www.akamai.com/us/en/resources/what-is-a-botnet. j sp.

[2] C H E N G X U Y E and K E S O N G Z H E N G . Detection of application layer distributed denial
of service. In: Proceedings of 2011 International Conference on Computer Science and
Network Technology. 2011, vol. 1, p. 310-314. DOI: 10.1109/ICCSNT.2011.6181964.

[3] C L O U D F L A R E . What Is A Reverse Proxy? Accessed: 2020-12-29. Available at:
https: //www. cloudflare.com/learning/ cdn/glossary/reverse-proxy/.

[4] C L O U D F L A R E . What is the Mirai Botnet? Accessed: 2021-02-02. Available at:
https: //www. cloudflare.com/learning/ddos/glossary/mirai-botnet/.

[5] D A T A D O M E . Bot detection: how to identify and block bot traffic to your websites,
mobile apps, and APIs. Accessed 2020-11-02. Available at:
https: //datadome.co/bot-management-protection/bot-detection-how-to-identify-
bot-traffic-to-your-website/.

[6] D A T A D O M E . Web scraping protection: How to protect your website against crawler
and scraper bots. Accessed: 2021-01-29. Available at:
https: //datadome.co/bot-management-protection/scraper-crawler-bots-how-to-
protect-your-website-against-intensive-scraping/.

[7] G I B B , R. What is a Web Application? 2016. Accessed: 2021-01-06. Available at:
https: //blog.stackpath.com/web-application/.

[8] I M P E R V A . Botnet DDoS Attacks. Accessed: 2021-02-05. Available at:
https: //www. imperva.com/learn/ddos/botnet-ddos/.

[9] I M P E R V A . High Orbit Ion Cannon (HIOC). Accessed: 2021-02-05. Available at:
https: //www. imperva.com/learn/ddos/high-orbit-ion-cannon/.

[10] I N F O S I M P L E S . Detect Headless. 2019. Accessed: 2020-12-11. Available at:
https: //github.com/ inf osimples/detect-headless.

[11] J A K U B O V A , V. Bad bot, botnet a spambot: co způsobují a jak se před nimi chránit?
2020. Accessed: 2021-02-15. Available at:
https: / / www.master, cz/blog/bad-bot-botnet- spambot-j ak- se- chránit/.

[12] K E G E L , D. The CI OK problem. 2019. Accessed: 2020-12-29. Available at:
http: //kegel.com/cl0k.html.

46

http://www.akamai.com/us/en/resources/what-is-a-botnet
http://cloudflare.com/learning/
http://cloudflare.com/learning/ddos/glossary/mirai-botnet/
http://stackpath.com/web-
http://imperva.com/learn/ddos/botnet-ddos/
http://imperva.com/learn/ddos/high-
http://www.master

[13] L i , K . , Z H O U , W . , L I , P. , H A I , J . and L i u , J . Dis t inguishing D D o S Attacks from
Flash Crowds Using Probabi l i ty Metr ics . In: 2009 Third International Conference on
Network and System Security. 2009, p. 9-17. D O I : 10.1109/NSS.2009.35.

[14] M A Z E B O L T . Dynamic HTTP Flood. Accessed: 2021-01-22. Available at:
h t tp s : //kb.maLzebolt.com/knowledgebase/dynamic-http-flood/.

[15] N D I B W I L E , J . D . , G O V A R D H A N , D . , O K A D A , K . and K A D O B A Y A S H I , Y . Web Server

Protect ion against App l i ca t i on Layer D D o S At tacks Us ing Machine Learning and
Traffic Authent ica t ion. In:. Ju ly 2015. D O I : 10 .1109 /COMPSAC.2015 .240 .

[16] N E L S O N , R . Mitigating DDoS Attacks with NGINX and NGINX Plus. 2015.
Accessed: 2021-01-26. Available at:
h t tp s : / /www.nginx .com/blog/mi t iga t ing-ddos-a t tacks-wi th-nginx-and-nginx-p lus / .

[17] N G I N X . HTTP Load Balancing. Accessed: 2020-12-30. Available at:
h t tps : / /docs .ng inx .com/nginx /admin-gu ide / load-ba lancer /h t tp - load-ba lancer / .

[18] N G I N X . NGINX Reverse Proxy. Accessed: 2020-12-30. Available at:
h t tps : / /docs .ng inx . com/nginx/admin-guide/web-server / reverse-proxy/ .

[19] N G I N X . NGINX Wiki. Accessed: 2020-12-29. Available at:
h t tp s : / /www.nginx.com/resources/wiki/ .

[20] N G I N X . What Is a Reverse Proxy Server? Accessed: 2020-12-30. Available at:
h t tps : / /www.nginx.com/resources /g lossary/ reverse-proxy-server / .

[21] N i , T . , G u , X . , W A N G , H . and L i , Y . Rea l -T ime Detect ion of Appl ica t ion-Layer
D D o S At t ack Us ing T ime Series Analys is . Journal of Control Science and
Engineering. September 2013, vol . 2013. D O I : 10.1155/2013/821315.

[22] R A D W A R E . IDEA: A Patented Eot Detection Technology. 2019. Accessed: 2020-10-30.
Available at: h t tp s :
/ /blog.radware. com/security/2019/06/idba- a -pa ten ted-bot -de tec t ion- technology/ .

[23] R A D W A R E . Meet the Four Generations of Bots. 2019. Accessed: 2020-10-30. Available
at:
h t t p s : / / b l o g . radware. com/securi ty/2019/09 /meet- the-four-generat ions-of-bots / .

[24] S A I T A , A . Chameleon Botnet Stealing $6M a Month in Fraudulent Ad Clicks. 2013.
Accessed: 2021-02-06. Available at: h t tps: / / threatpost .com/chameleon-botnet-
stealing-6m-month-fraudulent-ad-clicks-032013/77651/.

[25] S A R A V A N A N , R . , S H A N M U G A N A T H A N , S. and P A L A N I C H A M Y , Y .
Behavior-based detection of applicat ion layer dis tr ibuted denial of service attacks
during ash events. TURKISH JOURNAL OF ELECTRICAL ENGINEERING &
COMPUTER SCIENCES. January 2016, vol . 24, p. 510-523. D O I :
10.3906/elk-1308-188.

[26] S I N G H , K . , S I N G H , P . and S A L U J A , K . User behavior analytics-based classification of
applicat ion layer H T T P - G E T flood attacks. Journal of Network and Computer
Applications, march 2018, vol . 112. D O I : 10.1016/j.jnca.2018.03.030.

47

http://maLzebolt.com/knowledgebase/dynamic-http-
http://www.nginx.com/blog/mitigating-ddos-attacks-with-nginx-and-nginx-plus/
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/
https://docs.nginx
http://www.nginx.com/resources/wiki/
https://www.nginx.com/resources/glossary/reverse-proxy-server/
https://blog
https://threatpost.com/chameleon-botnet-

[27] S R E E , R . and S A I R A B H A N U , M . H A D M : detection of H T T P G E T flooding attacks

by using A n a l y t i c a l hierarchical process and Dempster-Shafer theory wi th
MapReduce : Detect ion of H T T P G E T flooding attack by using A H P and D S T wi th
MapReduce . Security and Communication Networks. October 2016, vol . 9. D O I :
10.1002/sec.l611.

[28] T E C H T A R G E T . Web application. 2019. Accessed: 2021-01-21. Available at: https:
/ / seaxchsoftwaxequality.techtarget.com/definition/Web-application-Web-app.

[29] V A S T E L , A . Detecting Chrome headless, new techniques. 2018. Accessed: 2020-12-11.
Available at: https:
//antoinevastel.com/bot°/020detect ion/2018/01/ 17/detect-chxome-headless-v2.html.

[30] W 3 T E C H S . Historical yearly trends in the usage statistics of web servers. 2021.
Accessed: 2021-01-01. Available at:
https: //w3techs.com/technologies/histoxy_ovexview/web_sexvex/ms/y.

[31] Y u , S., Z H O U , W . , J I A , W . , G u o , S., X I A N G , Y . et a l . Discr imina t ing D D o S At tacks

from F lash Crowds Using F l o w Correlat ion Coefficient. IEEE Transactions on
Parallel and Distributed Systems - TPDS. June 2012, vol . 23. D O I :
10.1109/TPDS.2011.262.

[32] Z A R G A R , S. T . , J O S H I , J . and T I P P E R , D . A Survey of Defense Mechanisms Against

Dist r ibuted Denia l of Service (DDoS) F lood ing At tacks . IEEE Communications
Surveys Tutorials. 2013, vol . 15, no. 4, p. 2046-2069. D O I :
10.1109/SURV.2013.031413.00127.

[33] Z H A N G , H . , T A H A , A . , T R A P E R O , R . , L U N A , J . and S U R I , N . S E N T R Y : A Novel

Approach for Mi t i ga t i ng App l i ca t i on Layer D D o S Threats. In:. August 2016,
p. 465-472. D O I : 10.1109/TrustCom.2016.0098.

[34] Z H A O , D . , T R A O R E , I., S A Y E D , B . , L U , W . , S A A D , S. et a l . Botnet detection based

on traffic behavior analysis and flow intervals. Computers & Security, november
2013, vol . 39, p. 2-16. D O I : 10.1016/j.cose.2013.04.007.

18

http://seaxchsoftwaxequality.techtarget.com/definition/Web-application-Web-app

Appendix A

Class diagram

Denylist

- deny: unordered_map<string r vector<int»
- a l low: vector<string>
- cur ren tdeny: unordered_map<string, int>
-deny_list:1stream
-allow_list:1stream

- denypa th : string
-a l l owpa th : string
- ready: bool

+ load()
+ setRady()
+ isReady()
+ close()

+ insert(address : string, severity : int, time : int)
+ checkfaddress :string, severity: int, time : int)
+ relreshftime : int, severity: int, period : int)
+ getDeny(time : int, severity : int, period : int): unordered_map<string, int>

o-1

Pert ormanc eC ontrol

getResponsel(): int
\- getConnections(): int
\- getEmpiricalQ: int

PerformanceDecis ion

responset ime :vector<double>
connections :vector<int>
cumulat iveconnect ions: int
samples: int

cumulat iversponse: double
per l t ime :time_t

i- insert(request: Request)
i- calculate()
i- getCumulativeConnections(): int
i- getCumulativeResponse(): double
i- getSamplesQ: int
i- getAvgResponse(): double
i- getAvgConnections(): int
i- getTime() :time_t
i-isSet():bool

-windows :vector<T>
-child : U
- controlt ime :time_t
-w indowt ime :time_t
-window_count: int

- ready: bool
- lock: o m p l o c k t

- C o p y () : U
i-setTime(time :time_t) :void
i- getTime() :time_t
i- insert(req : Request)
- rotate()

i- getWindow(i: int) : T

Parser

- performance : PerformanceControl
- features : FeaturesControl
- log :1stream
- l ogpa th : string
- inode: int
- line : int

+ getlnode(): string
+ openFi leQ: bool
+ logHandlerQ : bool
+ parsingQ

1

Request

- valid : bool
• port: int
- requeststatus: int
- requests ize : int
- c o n n e c t i o n s : int
- activeconnections : int
- requestt ime : double
- connectiontime : double
- responset ime : double
- seconds :time_t
- address : string
- request: string
- host: string
- u s e r a g e n t : string

HsVal id() :bool
\- getAddress(): string
\- getRequest(): string
\- getHost(): string
\- getUserAgent(): string
\- getTime() :time_t
fgetPortO : int
v getStatus(): int
\- getRequestSize(): int
\- getConnection(): int
\- getActiveConnect!ons(): int
\- getRequestTime(): double
\- getConnectionTime(): double
\- getResponseTime(): double
\- parse(data: string)

Feature sControl

getSimilarity(req : unordered_map<string, double>)
\- getHistory(his : unordered_map<string, double>)
\- getRequest(req : unordered_map<string, double>)
\- getEmpiricalfe : unorderedmap, d : double, a : double)
\- getPopularity(pop : unordered_map<string,double>)
\- getResponse(res : unordered_map<string, double>)
\- getBandwidth(bw : unordered_map<string, double>)
\- getRe petition (rep : unordered_map<string, double>)
\- classiV(result: unordered_map<string, double>)

FeaturesDecis ion

- requests: vector<Request>
- c o n n i p : multimap<int, string>
- requestsconnection : multimap<string, string>
- responseconnect ion : multimap<string,double>
- bandwidthconnection : multimap<string, double>
- ra te toconnect ion : multimap<double, string>
- requestsperconnect ion : unordered_map<string, double>
- responseperconnec t ion : unordered_map<string, double>
- bandwidthperconnect ion : unordered_map<string, double>
- ident ica lperconnect ion : tuple<unordered_map<string, string>, double>
- req_similarity : unordered_map<string, double>
- connect ionrank: unordered_map<string, double>
- hotpage : unordered_map<string, int>
- apple : unordered_map<string, boob
- to ta l requests : int
- t o ta l req t ime : double
-total bandwidth :double

v getAIIRequests(): multimap<string, double>
\- getRequests(): unordered_map<string,double>
\- getResponseO : unordered_map<string,double>
\- getBandwidthO : unordered_map<string, double>
\- getldenticalReq(): unordered_map<tuple<string, string>, double>
\- getReqSimilarity(): unordered_map<string, double>
\- getConnReq(): unordered_map<string, double>
\- getHotpage(): unordered_map<string, int>
^ getApple(): unordered_map<string, bool>
\- setConnReq(temp : unordered_map<string, double>)
\- getWindowTime(): double
\- getWindowBandwidth(): double
fgetTotalReq():int
HsSet() :bool

Figure A . l : Class diagram of the D M S .

,1.9

