
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

  



Abstract 
The focus in the field of structural variations is mainly focused on human genomes. Thus, 

detecting copy number variation (CNV) in bacteria is a less developed field. Commonly 

used CNV detection methods do not consider the features of bacterial circular genomes 

and generally, there is a space to improve performance metrics. This thesis presents a 

CNV detection method called CNproScan focused on bacterial genomes. CNproScan 

implements a hybrid approach combining read depth and read pair signals. It considers 

all bacteria features and depends only on NGS data. Based on the benchmarking results, 

the CNproScan achieved very well in various conditions. Using the read pair information, 

the CNVs are classified into several categories. Also, compared with other methods, 

CNproScan can detect much shorter CNV events. Because of the necessity of merging 

not only the various feature signals but also the results of different algorithms, the thesis 

also introduces a pipeline called ProcaryaSV developed to easily employ five CNV 

detection tools and merge their results. ProcaryaSV handles the whole procedure from 

quality check, reads trimming, and alignment to the CNV calling.  
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Abstrakt  

Hlavní pozornost v oblasti strukturálních variací je zaměřena na lidské genomy. Detekce 

změny variace počtu kopií (CNV) u bakterií je tedy méně rozvinutou oblastí. Běžně 

používané metody detekce CNV neberou v úvahu specifika bakteriálních kruhových 

genomů a obecně existuje prostor pro zlepšení metrik výkonnosti. Tato práce představuje 

metodu detekce CNV nazvanou CNproScan zaměřenou na bakteriální genomy. 

CNproScan implementuje hybridní přístup kombinující signály hloubky čtení a párů 

čtení. Bere v potaz všechny vlastnosti bakterií a využívá pouze sekvenační data. Na 

základě výsledků ze srovnání dosáhl CNproScan velmi dobrých výsledků v různých 

podmínkách. Pomocí informací z párových čtení jsou CNV klasifikovány do několika 

kategorií. Ve srovnání s jinými metodami může CNproScan také detekovat mnohem 

kratší CNV. Vzhledem k nutnosti slučovat nejen signály různých přístupů, ale také 

výsledky různých algoritmů, dizertační práce také představuje pipelinu nazvanou 

ProcaryaSV vyvinutou k detekci CNV s využitim pěti nástrojů a slučování jejich 

výsledků. ProcaryaSV se stará o celý postup od kontroly kvality čtení, ořezávání konců 

čtení, zarovnání čtení až k detekci CNV. 
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INTRODUCTION 

The topic of this thesis is the detection of copy number variations in bacterial genomes. 

The copy number variations (CNVs) are a subgroup of a large field of structural variations 

(SVs). The structural variations are largely studied, yet there are still many gaps in the 

knowledge about them. This is even more factual for structural variations in bacteria. 

Despite that the first gene amplification was observed in Escherichia coli back then in 

1963, this field of research is less developed in bacteria compared to the advancements 

in human or other eukaryotic genomes.  

However, CNVs play an important role in the bacteria. They have a direct impact on 

protein production. In the long term, this has an impact on evolution and specialization. 

The short-term adaptive gene duplication can cause antibiotic resistance, which is an 

emerging issue.  

Sequencing is a common way how to study these organisms and became substantially 

cheap. Two ways of sequencing bacterial genomes are being done. The sequencing of 

bacterial isolates or whole bacterial communities. The thesis deals with the first one as it 

enables the detection of structural changes in the genome such as copy number variations.  

The lesser attention paid to structural variations in bacteria could be partly caused by 

technical difficulties detecting small rearrangements with short-read sequencing. Right 

now, we are at the breaking point between the massively used short-read next-generation 

sequencing, and the long-read third-generation sequencing. However, the inertia in the 

field is large and the next-generation sequencers are abundantly present and used in the 

labs. Furthermore, next-generation sequencing produces high throughput data necessary 

for copy number detection.  

Firstly, I define what structural variations and copy number variations are. The main 

source of research is papers focused on human genomes, as these are overabundant. 

However, many features of structural variations are the same for eukaryotic and bacterial 

genomes. The specifics of bacterial genomes are described in a special subchapter.  

In the second chapter, I describe the whole topic of detection of the structural 

variations. This chapter approaches the topic starting with laboratory aspects and moving 

to bioinformatical aspects of structural variations detection.  

The practical part of the thesis follows in three chapters. Firstly, I pay attention to 

some underlying theories that could not be placed previously. In the following two 

chapters, I describe two presented bioinformatical tools.  

The first one is a novel algorithm for CNV detection named CNproScan. There were 

several reasons to create it. First, the majority of tools are aimed at large, mainly human, 

genomes. They require specific types of inputs and dominantly rely on paired sample-

reference samples, e.g., tumor-normal tissues. Also, they are intended to detect large 

rearrangements, and they are not scaled to small copy-number events. However, large 

CNVs are rare in prokaryotes. Second, there are not enough detection tools aimed at 
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bacteria genomes, and some of the already published ones are already deprecated. Also, 

based on the reviews, there is only a small overlap between the results of various tools. 

A high false positive discovery is a common issue. Third, bacterial pathogens pose still a 

highly deadly risk. In 2019, they caused 13.6% of all global deaths. Five bacteria – S. 

aureus, E. coli, S. pneumoniae, K. pneumoniae, and P. aeruginosa, were responsible for 

more than half of all cases. The bacteria pathogens were the second leading cause of death 

after ischemic heart failure. As mentioned previously, the CNVs can play a role in 

antibiotic resistance, bacteria adaptation, and specialization. The issue of bacteria drug 

resistance is present and emerging. Thus, there is a serious need to develop tools aimed 

at the detection of bacterial CNVs. All these aspects lead to the development of a new 

tool which was called CNproScan, derived from the words Copy Number prokaryotic 

Scanning.  

The second tool is a pipeline for the alignment and detection of CNVs and SVs, named 

ProcaryaSV. The reasons to create the ProcaryaSV pipeline were two. It was more 

convenient to create a reproducible workflow than running the various scripts every time 

some parameter changed. Secondly, during the literature research, I came across the topic 

of merging not only the detection approaches but also the standalone detection tools. This 

idea origins in the results of multiple reviews which show how little CNV and SV overlap 

across multiple detection tools  

The presented tools extend the scope of tools for a microbiologist to study bacterial 

organisms. While CNproScan detects deletions and duplications, the ProcaryaSV pipeline 

enables the detection of inversions and insertions by combining multiple detection tools.  
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1 STRUCTURAL VARIATIONS 

While the focus of the thesis is copy number variations, they are inseparably tied to 

structural variations. There are predominantly mentioned together but the field of CNVs 

is generally more developed. In the following chapter, the classification of the structural 

variations from various aspects is expanded. Other related topics are mentioned too, such 

as the process by which SVs are created and their impact on phenotype. The major source 

of knowledge comes from human genomes focused research. While there are multiple 

similarities between eukaryotic and prokaryotic structural variations, there are also 

differences and these are described in the chapter focused solely on structural variations 

in bacteria.  

1.1 Classification of SVs  

The SVs can be classified into several categories. The most common one is classification 

regarding copy numbers into balanced and unbalanced events. Another criterion 

classifies SVs into single and complex SVs which consist of more underlying simple 

SVs. The SVs can be classified based on their size as fine-scale, intermediate-scale, or 

large-scale. SVs can also be categorized based on the process of creation as cut-and-

paste and copy-and-paste. Structural variation is observed as a junction between two 

breakpoints in the genome. When the sequencing read spans over a breakpoint junction, 

it leads to discordant features compared to the other read alignment features. This junction 

is defined by its orientation, space between breakpoints, etc. [1] 

The canonical types of SVs are deletions, insertions, duplications, inversions, and 

translocations. The minimum length of such events is not exactly specified. The initial 

size threshold was 1 kbp, later decreased to 50 bp but nowadays the SVs are all variants 

that are not single nucleotide variants (SNV). A more accurate definition than by size 

could be by a mechanism of creation of that SV. Small indels are created by replication 

slippage, while larger CNVs are created by homology recombination [2].  

 The inversions and translocations classify as a balanced type of SVs, whereas the rest 

as unbalanced SVs. The deletions and duplications are also called copy number 

variations (CNVs) especially when they include gene regions. [3]  

Another large group is complex structural variations, which consist of multiple 

canonical SVs organized in many ways. [4] 

The basic illustration of various SV types is in Figure 1.1. The upper boxes represent 

the reference genome, while the lower boxes represent the sample genome situation. As 

you can realize, the definition of SV is tied to some reference situation. This reference is 

another genome, another sample of a different location or time, or a pool of samples 

merged.  



 12 

 

1.1.1 Unbalanced SVs 

Insertion, together with deletion, is the most common type of SV in the human genome 

[5]. It represents the gain of genomic genetic material compared to the reference. [6] 

Insertions can be further divided based on the source of the genetic sequence into types: 

mobile element insertions (MEIs), nuclear insertions of the mitochondrial genome 

(NUMTs), viral insertions (VEIs), and insertions of unspecified sequence [3]. The direct 

detection of insertions is limited by the next-generation (NGS) approach, which limits the 

size of detectable insertion to the length of the library fragment. No upper threshold is 

given for deletions [7]. It is demonstrated by two breakpoints [8].  

Deletion is a genomic event where a segment of DNA is cropped from the genome 

and the adjacent bases fuse next to each other. It creates a single breakpoint and it occurs 

at the same chromosome [8]. The difference between a small insertion-deletion (indel) 

event and larger deletion is a matter of definition. However, the most suitable definition 

depends on the underlying mechanism of creation. The small indel is created by slipped 

strand mispairing (also as replication slippage), while structural deletion is created more 

likely by DNA repair mechanisms error [2]. The commonly stated size threshold is often 

50 bp, which originates from the features of NGS sequencing.  

Repeats or duplications are parts of the genome that are duplicated. It can be in 

tandem or interspersed matter, whether they are adjacent or placed far apart. The majority 

of them are noncoding DNA, but some are functional genes [9], [10] 

Interspersed sequences consist of long interspersed elements (LINEs, >300bp), and 

short interspersed elements (SINEs, 100-300bp), which are both types of repetitive 

noncoding DNA. LINEs are moderately repetitive and exist in less than a hundred of a 

thousand copies. Such an example can be the L1 (or LINE-1) element which is 7 kbp long 

Figure 1.1 – Overview of SV types. Condition between referential and analyzed genome 

         

                  
                        

                      

        

        

          



 13 

and has between 20-50 thousand copies in mammalian genomes. Their assumed origin is 

retroviruses. SINEs are highly repetitive and exist in hundreds of thousands of copies. 

The most known example is the Alu element, which is 300 bp long and named after the 

restriction enzyme involved with it. It exists in 300-500 thousand copies of the human 

genome and covers approximately 11% of the human genome. [9], [11] 

Tandem repeats form several classes: short tandem repeats (STR, 1-6 bp, called 

microsatellites), and variable number tandem repeats (VNTR, >7 bp) [10]. They 

usually form long clusters of tandem repeats without gaps in between (called satellites). 

Both STR and VNTR are noncoding and belong to the most mutable regions in the 

genome. [9], [10] 

1.1.2 Balanced SVs 

Inversions are balanced rearrangements. An inversion is an event when a segment of 

DNA is inverted (rotated) in its place. It creates two breakpoints and occurs at the same 

chromosome [8]. Inversions are not associated with a copy number change. They could 

affect gene expression by breaking coding regions, but they predominantly have no 

phenotypic effect. However, they can serve as a predisposition to further rearrangements. 

Inversions can be involved in the centromere region of a chromosome (pericentric 

inversions), or the rest of the chromosome (paracentric inversions). [6], [12]  

Another balanced SV is a translocation. Translocation can be of two types: intra-

chromosomal, when a segment stays on the same chromosome but is often inverted, and 

inter-chromosomal when a segment is moved to another chromosome. Both types create 

a single breakpoint. [8] 

1.1.3 Complex SVs 

Compared to canonical SVs, the breakpoints of complex SV (cxSV) cannot be defined 

by a single SV event. The scale of complex SV is large, they can involve long-distance 

rearrangements but also multiple rearrangements occurring at a single locus. Complex 

SVs are larger than canonical SVs and there are approximately 14 cxSVs in every human 

genome, while thousands of canonical SVs. Interestingly, the majority of cxSV contains 

inversion. [4], [13] 

Although it is expected that complex SVs are created by a single event, this fact is 

difficult to prove. Germline (inherited) SVs arise most likely through two mechanisms 

during replication: fork stalling and template switching and microhomology-mediated 

break-induced replication. Complex SVs can be created when there are multiple switches 

on the replication fork. These switches can be even between distant parts of the genome. 

Somatic mutations are less limited as they do not undergo meiosis, but they undergo 

various selective pressures and influences. The commonly accepted mechanism for the 

creation of complex somatic variations is chromoanagenesis, which includes three often 
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separately described events: chromothripsis, chromoanasynthesis, and chromoplexy. 

[13]–[17] 

The most commonly mentioned chromothripsis is a single catastrophic event when a 

chromosome is fragmented and then repaired with many errors. This event is likely 

caused by external factors, e.g. radiation. The breakpoints following this event are 

clustered in a non-random way. The copy number exhibits only two values, gain, and 

loss, but never both simultaneously, and are divided by untouched segments. Also, losses 

are derived from the same parental chromosome, and heterozygosity is kept at untouched 

segments. These observations point to chromothripsis rather than a sequential mutation. 

[4] 

Detection of complex SVs is a challenging task, which usually requires manual 

curation and observation of breakpoints belonging to canonical SVs. The SVs believed 

to be canonical are first filtered out. Also, SVs in poor-quality regions are omitted. The 

SVs overlapping with previously detected CNVs in a healthy pool of samples are also 

omitted [18]. The updated 16 types of cxSV were recently presented in [13] based on an 

analysis of nearly 700 samples.  

1.1.4 Copy Number Variation 

Copy number variation (CNV) is usually mentioned as a subtype of SVs. It is a deletion 

or duplication that involves genes. Other commonly used terms are copy number gain 

and loss. Sometimes, the copy number alteration (CNA) is used concerning somatic-only 

events, compared to germline CNVs in cancer research. The definition of CNV by size 

had historical development, tied with technological advancement. As the development 

enabled the detection of shorter and shorter CNVs, their definition by size also decreased. 

Commonly stated size is 50 bp to millions of bp. [19] 

While CNVs are thought of as deletions and duplications, there is a debate about 

whether to include indels. Indels are much smaller than the lower size threshold of CNV. 

An important reason why not to include them is a distinct mechanism of creation of both 

events. The origin of indels is mainly replication based while the origin of CNVs is mainly 

homologous recombination. Although, the mechanisms can be shared across various 

events. The restriction of size itself is a matter of debate. [19] 

An interesting tract about narrowing the definition of CNVs compared to SV can be 

found in a review by Pös [19]. The authors cling to the definitions of CNVs similar to the 

general definition of unbalanced SVs. This describes CNVs as the relative difference in 

copy numbers of specific DNA sequences among individuals or distinct populations. Or 

in other words as variation contributing to the copy number change. Then, the terms 

deletion, insertion, duplication, gain, and loss are meant in a molecular phenotype context 

of CNVs. The discussion could be also taken about specifying the impacted regions of 

the genome in terms of variation impact. [19] 
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Similarly to SVs, CNVs can be recurrent and non-recurrent (explained further). 

CNVs can be both inherited or sporadic. The expected lower bound rate of CNV 

mutations per haploid genome is 3 × 10-2. [19], [20] 

1.2 Mechanisms of Creation 

The origin of the creation of structural variants dwells in the genome architecture and 

mainly in the existence of segmental duplications (SDs), a subtype of low-copy repeats 

(LCRs). These are blocks of DNA in size of 1 kbp to 400 kbp, that occur at multiple 

places in the genome and have very high levels of sequence identity (homology >90%). 

The regions flanked by segmental duplications are possible targets of nonallelic 

homologous recombination (NAHR). The analyses showed that they make up around 5 

% of the human genome. For the larger picture, up to 50% of the genome consists of 

repeat sequences. [6], [21]–[24] 

Segmental duplications can be located multiple times at a single chromosome 

(intrachromosomal duplications), or at nonhomologous chromosomes (interchromosomal 

duplications). Contrary to tandem duplications, they are interspersed across the genome. 

The multi-genomic placements and high sequence homology are the main substrate for 

the NAHR mechanism and thus play an important role in the creation of SVs. It can be 

assumed that SVs are not random events, but their origin is in predisposition to genomic 

rearrangement due to segmental duplications at a given locus. When visualized, the 

segmental duplications are often the hotspots (sites of predominant occurrence) of other 

SVs. [6], [21]–[24] 

The parent category of segmental duplications is low-copy repeats. These are over 

10kbp long and they have a mosaic architecture consisting of hierarchical clusters of 

directly and indirectly orientated segments, while SDs have simple architecture. It was 

observed they also overlap with positions of frequent genomic reorders. Similarly to SDs, 

both regions have a negative impact on local genome stability. [24] 

The genomic rearrangements can be recurrent and non-recurrent. Recurrent ones 

have the same size, position, and content in unrelated individuals. Simply said, they occur 

with a certain frequency in the population. Oppositely, non-recurrent rearrangements 

have a unique size, position, and content at a given genomic position in unrelated 

individuals. [24] 

The recurrent deletions and duplications have both breakpoints positioned within the 

directly oriented segmental duplications. The major driver for recurrent events is the 

NAHR. The non-recurrent have their breakpoints spread out. If there is a segmental 

duplication, the breakpoints cluster in their neighborhood. The majority of non-recurrent 

events are driven by replication-based mechanisms, i.e. FoSTes/MMBIR (fork stalling 

and template switching/microhomology-mediated break-induced replication). [22], [24] 
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The most studied event is a double-stranded break (DSB), where both strands of 

DNA are broken. Defective reparation of DSBs is tied with various disorders and is a 

major driver of cancer. The major source of DSBs is when during replication forks 

encounter damaged bases which leads to fork collapse. Less frequent exogenous sources 

are ionizing radiation and chemotherapeutic drugs. In vivo, the frequency of DSB is high 

and the replication of strands is considered to be discontinuous. In some scenarios, the 

DSB is programmed by the cell. Like during meiosis when DSB repairs are essential for 

chromosome segregation. [25], [26] 

The two major mechanisms of DSB reparation are two pathways: homologous 

recombination (HR) and non-homologous end-joining (NHEJ). The presence of many 

proteins, e.g. Rad51 in eukaryotes and RecA in prokaryotes for NAHR, is required for 

the reparation process. [26], [27] 

The homologous recombination (HR) mechanism requires a homologous sequence 

serving as a template for DNA reparation. The required length of a homologous template 

is 50 bp for E.coli and up to 30 bp in the human genome. As a template, the sister 

chromatid is predominantly used followed by the homologous chromosome. The 

nonallelic homologous recombination is a special case of HR when the homology 

template is in a non-allelic position. Under usual circumstances, the NAHR does not 

change the genome structure and is accurate. However, structural change can occur if the 

repaired sequence and the template are located at distant positions. When segmental 

duplications have a high sequence identity of over 97 % and are located within 10 Mbp, 

the misalignment of chromosomes can happen and this further mediates the NAHR 

leading to unequal crossing over. Crossing over between homologous chromosomes can 

lead to a loss of heterozygosity (LOH) if the chromatids segregate during mitosis. NAHR 

between directly oriented segmental duplications can result in deletions or reciprocal 

duplications of the regions in between. NAHR between inverted segmental duplications 

leads to the creation of inversion. The more complex structure of segmental duplications 

leads to combinations of these events. The NAHR is behind the majority of recurrent 

rearrangements. It is active only during the S and G2 phases of cell life. NAHR is used 

not only to repair DSB but to correct broken replication forks in the process of break-

induced replication (BIR), which can also lead to SV. [22], [27]–[29] 

Contrary to HR, the non-homologous end joining (NHEJ) is independent of the 

presence of segmental duplications. It also does not require a homologous template to 

guide the reparation. NHEJ repairs the broken ends of DNA strands by direct resealing. 

It is the simplest and fastest pathway and the most commonly used, although it can lead 

to the potential loss of genetic information causing up to 4 bases deletions. It can also 

insert new genetic information from mitochondria or retrotransposons. It is active during 

all phases of cell life. [22], [27]–[29] 
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Similar to NHEJ is microhomology-mediated end joining (NMEJ), which requires 

5 to 25 bp homology templates, and different proteins. Thus, the deletions possibly caused 

by NMEJ are longer. [28] 

If sister chromatids lose their telomeres during DSB, they will fuse and create a 

dicentric chromosome. During anaphase, when chromosomes are separated, the dicentric 

chromosome will break in a random location. The chromosome has again an unprotected 

end which will merge into a new dicentric chromosome after another replication. This 

creates large inverted duplications. The process is called the breakage-fusion-bridge 

cycle. It is commonly observed in human cancer cells. [28] 

Another class of mechanisms inducing copy number changes is non-homologous 

replicative mechanisms. These events happen during the replication of the DNA. When 

there is high sequence identity in expectedly single-stranded DNA during replication, e.g. 

Okazaki fragments, the fragments in between are deleted or duplicated. This responsible 

underlying mechanism is replication slippage (or template switching). In E.coli, the 

replication slippage depends on the homology length and distribution and requires an 

absence of RecA protein. The process is more abundant in prokaryotes cause it is limited 

by replication fork length and CNVs in the human genome are out of size achievable by 

replication slippage.  

A more complicated form of replication slippage is not limited to a single replication 

fork but happens between more of them. This mechanism is called fork stalling and 

template switching (FoSTeS). During FoSTeS, the 3’ primer end can switch to another 

single-stranded DNA template in some nearby fork. The FoSTes is considered a non-

replicative mechanism based on further evidence, mainly that amplified units have only 

short microhomology, thus no homologous recombination is likely involved. [28] 

Another mechanism is microhomology-mediated break-induced replication 

(MMBIR). It is a special case when important proteins are downregulated due to cellular 

stress, so break-induced replication (BIR) would likely not be possible. Instead, the 3’ 

end of the collapsed fork will switch to another close single-stranded template-sharing 

microhomology. This can be the ssDNA of the lagging strand or part of ssDNA under 

excision. The deletion or duplication is decided on the location of the new fork: upstream 

causes deletion, and downstream causes duplication. The orientation of a new segment is 

caused by the strand which is involved, lagging, or leading. The FoSTeS/MMBIR model 

is considered to be a major player in the creation of CNVs and also in the creation of 

segmental duplications. [22], [30], [31] 

Another source of genome rearrangements is retrotranspositions. Mainly, the L1 

sequences play a role in insertions and deletions resulting in smaller events around 5 kbp. 

[4], [7] 
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1.3 Impact of SV 

The definition of SVs is not tied or restricted to the gene boundaries. However, the genes 

are affected by SVs if they overlap. Coding regions of many genes are under the change 

of copy number through CNVs. Unbalanced SVs can add or remove copies of genes 

which leads to changes in gene dosage, gene expression, and phenotype depending on a 

gene type. Several studies observed a correlation between gene copy number and mRNA 

expression levels. The effect can be both limited-expression or over-expression. 

However, not all genes under copy number change demonstrate altered expression. There 

is even a small group of genes with inversely proportional expression to their copy 

number [32].  

The dosage effect includes the impact of CNVs on gene expression. This comprises 

both changed levels of expressions but also modified products of transcription. Deletion 

of a regulatory element of a gene will lead to a change of expression, potentially complete 

silencing. The duplication of a regulatory element together with a gene region will lead 

to an increased gene product. Contrary, the deletion of a regulatory element with a gene 

region means no product. Insertions, deletions, or inversions overlapping with only part 

of a gene can lead to the creation of variant gene products through exon shuffling, splice 

variants, or novel gene fusions. However, the majority of such constellations are 

nonfunctional unless the open reading frame is functional. A gene fusion is a common 

type of event. [32] 

The positional effect includes a change of expression affected by rearrangements 

outside of a gene. Deletions can uncover recessive alleles by deleting only one allele and 

Figure 1.2 – Rules for assigning the mechanism of SV creation, taken from [37] 
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affecting phenotype. However, deletions are generally a negative selection. Predicting the 

phenotype is challenging because of the existence of haploinsufficient genes (the half 

dose is detrimental) and dosage-sensitive genes (both increasing or decreasing dosage is 

detrimental). [6], [32] 

SVs are commonly studied in cancer research. This requires the classification of SVs 

as germline (inherited) or somatic (acquired). Two samples are sequenced, a normal 

sample (usually blood) and a tumorous sample containing the tumor cells. The normal 

sample is usually sequenced at lower coverage while the tumor sample requires high 

coverage because of the mixture of cells in the resected sample and other specifics. An 

alternative approach is to replace the normal sample with a reference dataset of SVs. [33] 

SVs also play a role in speciation in many animals through the process of reproductive 

isolation [34].  

One of the recent and valuable tools in cancer research is fusion genes detection. The 

fusion gene is formed by multiple possible mechanisms, i.e. by chromosomal 

rearrangement or by non-structural aberrations such as cis-splicing (same chromosome) 

and trans-splicing (different chromosomes) or transcriptional read-through. Thus, we can 

view it as a direct effect of SV on gene dosage creating new, disrupted, or fused RNA 

transcripts of two originally independent genes. This later leads to the synthesis of 

abnormal or chimeric fusion proteins potentially modifying the original function. [35] 

1.4 SV Annotation 

Structural variation annotation is a process of assigning information to detected SVs. 

Multiple categories can be assumed based on a research subject. The basic annotation is 

based on SV-type classification. This is expanded by classifying into more complex SV 

subtypes, e.g., coding or noncoding rearrangement, gene fusions, gene duplication, or 

deletion. We can assign the effect on translated protein, and which type this effect will 

be, such as a change of the structure of the protein and impact on gene expression (dosage 

effect). There can be also no effect. The change of protein sequence can lead to gain or 

loss of function. [36] 

Three major mechanisms linked to SV creation are homologous recombination, 

nonreplicative nonhomologous repair, and replication-based mechanisms. [37] By 

observing genomic features and sequences around breakpoints we can deduce the 

possible creation mechanism responsible for this SV. The decision tree can be constructed 

to assign a deletion or insertion of up to six possible mechanisms of creation. The 

observed features are overlap with the transposable elements (TE) or variable number 

tandem repeat (VNTR) regions, presence of homology, or small insertion inside or nearby 

of breakpoints. [7], [37] 
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1.5 Population Studies 

After the finished sequencing of the first human genome in 2004 [38] and the international 

HapMap project focused on the discovery of common SNPs in 2007 [39], several groups 

focused on sequencing a much higher amount of genomes. An ultimate goal is to capture 

all kinds of genetic variations in the population. The most influential project was the 1000 

genomes project (1KGP) which started in 2008. They published their results in several 

phases but in the end, they sequenced 2,504 human genomes and analyzed thoroughly the 

human genetic variation including structural variation and CNVs. [40]–[43] 

In 1KGP they used short-read Illumina sequencing data at ~7× coverage combined 

with long-read single-molecule PacBio sequencing. They discovered a combined set of 

68 thousand SVs, defined as variants over 50 bp. These were predominantly deletions 

(42,279), followed by duplications (6,025), CNVs (2,929), inversions (786), mobile 

elements insertions (16,631), and nuclear mitochondrial insertions (168). Furthermore, 

the analysis brought useful hindsight into structural variations in the human genomes at 

various levels. The samples originated from 26 ancestry populations and the SVs could 

be stratified based on variant allele frequency (VAF) in distinct populations. The 

functional impact of SV was analyzed too by overlapping with already known functional 

elements of the genome. They pointed out other than commonly known mechanisms for 

the creation of SV hotspots and described some of the early complex SVs. However, the 

low coverage design is limiting in many aspects of discovery SVs. [43] 

Figure 1.3 – Functional annotation and downstream consequences of SVs, taken from [36] 
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Another large study was the 2016 sequencing of 10,545 human genomes at ~40× 

coverage. The study was focused mainly on SNV and the evaluation of detection quality 

metrics. However, they performed SV and CNV detection on the 200 replicates of the 

common reference genome NA12878 (Genome in the Bottle, GIAB) and concluded 

unsatisfactory results of detection from short-reads for clinical practice (precision <77%, 

recall <36%). The use of orthogonal technologies was recommended by the authors for 

confirmation. [44] 

The largest study of SVs up to that time is the 2018 analysis of 17,795 human 

genomes. They focused on discovering rare SVs which are usually recent or denovo 

mutations. They obtained a set of 158 thousand rare SVs, mostly deletions (54.5%) 

followed by duplications (42.2 %). It was discovered average human individual caries 2.9 

rare SVs altering coding regions. These SVs affect on average 4.2 genes. Otherwise, they 

observed a mean of 4,442 nonrare SVs per genome consisting of predominantly deletions 

(35%), mobile element insertions (27%), and tandem duplications (11%). The group 

sequenced samples at higher coverage of over 20× which boosted the sensitivity for rare 

SVs detection. They applied mapping to two versions of the human reference genome 

and published a new tool for SV detection in population studies called svtools. [45], [46]  

Several other smaller studies were also published. These are often focused on 

nationally. In 2014 the Genome of the Netherlands published results of genetic variation 

from 250 family trios (769 samples) at an average coverage of 13×. They discovered a 

high overlap of found genetic variants with European samples of the HapMap project 

(98.2%) and with Europen samples of 1KGP (71.1%). However, they also discovered that 

93.3% of deletions were novel in comparison with 1KGP. The sequencing of family trios 

(mother-father-child) enabled the accurate detection of de-novo mutations. [47] 

Among other national studies which performed SV detection are the 2017 Swedish 

population study of 942 genomes [5], the 2015 analysis of 1,070 Japanese genomes [48], 

Figure 1.4 – SV types and lengths representation from the 1KGP project, taken from [43] 
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the 2015 study of 10 Danish family trios [49], and the 2018 Korean study of 50 genomes 

[50]. The overview of a multitude of SV reference datasets is listed in [51].  

1.6 SV Databases  

Several databases of SVs exist and they serve in discovering new structural variants and 

genotyping. The first database, the Structural Variation Database, was part of the 2005 

study on segmental duplications and comprehended the 119 detected SDs in 47 samples 

and previously detected 297 SVs from fosmid paired-end reads [21], [52].  

The initial effort to a full-scale database started in 2006 with The Database of 

Genomic Variants (DGV), which comprehended results from mainly array-CGH 

experiments published in peer-reviewed journals. The majority of records in 2006 was 

1,207 CNVs and very few other variants, e.g. 37 inversions. [53] 

In 2013, the DGV contained data from 55 studies and more than 2.5 million entries. 

The database is curated and datasets are checked for accuracy. The studies are accessed 

from the archival SV databases, the NCBI’s dbVar, and EBI’s DGVa (Database of 

Genomic Variants archive), which are not curated. The majority of data are now from 

next-generation sequencing and some initial results from microarrays with poor 

resolution and high false-positive rate were removed from the database, pointing out the 

accuracy of the early results. [54] 

Two databases share a data model, the dbVar maintained by the National Center for 

Biotechnology Information (NCBI) and DGVa maintained by the European 

Bioinformatics Institute (EBI). Both are uncurated and serve also as repositories of 

detected structural variants, but not the sequencing data itself. The researchers submit the 

variants formatted as tab-delimited or VCF files. Both databases support only human 

samples, the non-human samples are directed to be submitted to the European Variation 

Archive (EVA), which now serves as DGVa replacement and also fur human samples. 

[55] 

The Genome Aggregation Database (gnomAD) is a database from both exome and 

whole genome high coverage sequences. It comprehends a diversity of large-scale 

sequencing projects, but the variants are detected by the gnomAD group leading to a 

unique dataset [56]. The gnomAD-SV is a sub-database including only SVs from 14,891 

human samples. They annotate 6 canonical SV types and 11 complex SV types. They 

detected twice as many SVs per genome compared to the 1KGP project, highlighting the 

detection power of high-coverage data. [57] 

The Catalogue Of Somatic Mutations In Cancer (COSMIC) is a large curated 

database of mutations from tumor samples. The database is based on published papers 

and includes clinically relevant information. It contains over a million of CNVs. [58] 

Unlike the human variation databases, no database storing SVs in prokaryotes is 

known at the moment.  
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1.7 Structural Variations in Bacteria 

Although the first gene amplification was observed in the model organism Escherichia 

coli K-12 in 1963 [59], the later major effort regarding structural variants and copy 

number variants was focused on human genomes or generally eukaryotic organisms. 

However, that was an underestimation of the importance of prokaryotic genome 

rearrangements as was later discovered. Bacteria are an omnipresent and essential part of 

nature. There is an estimation of 5 × 1030 bacteria present on the earth. Also, they belong 

to the most deadly pathogens and multiple issues related to bacterial pathogens emerged, 

namely growing antimicrobial resistance. [60] 

The sequencing of bacterial samples is done in two ways, by cultivating and 

sequencing bacterial isolates or by sequencing communities, e.g., microbiomes, by 

shotgun metagenomic sequencing, or by targeted amplicon sequencing. The focus of this 

thesis lies in the sequencing of bacterial isolates. [61] 

Prokaryotic genomes differ in multiple ways from eukaryotic ones. The genome is 

composed usually of a single double-stranded DNA formed into a circular shape. There 

can be additional independent circular genomes called plasmids carrying less important 

though beneficial genes. In some species, e.g. Shigella, the plasmids are responsible for 

virulence [62]. Because of the small size, the bacterial genome is dense. Genes lack 

introns and are almost next to each other without a significant gap. Some genes are 

organized in operons, adjacent genes belonging to the same pathway and expressed 

together.  

Most importantly, bacterial genomes are free of large repetitive regions, yet they 

contain some repetitive elements. These repetitions then serve as a substrate for genome 

rearrangements. They can also be incorporated through horizontal gene transfer (HGT). 

It is important to mention that there is a negative relationship between genome stability 

and repetitive sequences. The bacterial genomes are limited to a finite number of genes 

they can harbor. They dispose of less-worthy genes to balance new gene gain from HGT. 

This bacterial continuous gene gain and loss makes them adaptable [63]. [64]–[66]  

Generally, rearrangements over 50 bp are considered SVs in Bacteria [61]. The role 

of SVs in the prokaryotic domain is different compared to eukaryotic genomes. Both 

evolutionary and phenotypic implications are extensively studied. The prokaryotic 

genomes are stable between subsequent generations (due to binary fission), but on the 

evolutionary timeline, they are plastic, shaped by HGT, genome rearrangements, 

prophages (bacteriophages), and mobile genetic elements (MGE). These can all 

participate in genome rearrangements [60], [67]. Furthermore, the mechanisms of SVs 

creation are similar to those described in Eukaryotic genomes [65].  

When a region is excised and recombined in the opposite direction, it is called 

inversion. Inversions in bacteria are often reversible. Two types are observed, site-

specific recombination and large chromosomal inversions. In the genome, the inversion 
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function as an on/off switch depending on the direction. If it is rotated oppositely to the 

transcription locus, the transcription is turned off. Inversions are the main drivers of 

structural rearrangements in bacteria [62]. [61] 

Duplication in bacteria plays a role in their metabolism, e.g. multiple copies of 

ribosomal RNA genes are often present. The duplicated genes can be inactivated through 

pseudogene creation or deletion. There are long-term genomic duplications and short-

term adaptive amplification. Also called multicopy duplications or gene accordions. They 

are created quickly and increase the levels of protein translations. It has been shown that 

gene amplification in bacteria is predominantly stress-induced as a response to starvation 

or exposure to drug treatment [68]. Adaptive amplification can also be responsible for 

antibiotic resistance. The exact mechanism of creation is not known but it is expected to 

be through initial duplication followed by homologous recombination. [61] 

Deletions are believed to play a role in the bacteria's specialization and also to provide 

quick adaptation. However, because they are under negative selection pressure and 

because the bacterial genomes are already densely packed, large deletions are rare. The 

same applies to duplications and insertions. [62] 

Insertion is very common in bacteria. It includes the acceptance of DNA sequences 

from the cell outside via conjugation or natural competency, or within the genome. 

Mobile genetic elements (MGE) are the main driving force. These include transposases 

(insertion sequences), integrons, prophages, and transposons. Many MGEs contain genes 

responsible for antibiotic resistance, the production of toxins, etc. Insertion within the 

gene can lead to gene inactivation. [61] 

The symmetrical design of the genome leads to biased symmetrical structural 

variations. Three forces were described as creating this bias. First, the distance of a gene 

from the replication origin (oriC) is a large force. More important genes were observed 

to be close to oriC. Second, there is a difference in replication between the leading and 

lagging strands. Third, the limitation to having symmetrically sized replichores (halves 

of a circular chromosome) leads to symmetrical inversions. Symmetrical inter-replichore 

inversions are the most commonly detected SV in bacteria. [65], [69]–[71] 

Structural variations in bacteria can change the distance of a gene from the 

replication origin (oriC) which can have an extensive impact [65]. The SVs and CNVs 

are part of pathogenesis evolution and antibiotic resistance [72].  

Structural variations were proved in Shigella, a common cause of diarrheal illness, 

which is also becoming resistant to multiple antibiotics. 34 SVs were found between 

different isolate pairs. However, the detailed insight showed that the role of these SVs is 

largely unknown [73] Similarly, SVs were found in Pseudomonas syringae, a cause of 

the fungal disease of kiwifruit [74]. A large metagenomic study detected SVs present in 

the human gut microbiome and associated them with host disease risk factors [75].  
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Figure 1.5 – Illustration of replication origin bias, taken from [66] 
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2 DETECTION OF STRUCTURAL VARIANTS 

The following chapter describes the methods of SV detection through time. The earliest 

methods may be seemed as ancient, but certain algorithms still used nowadays were built 

upon these methods, e.g., circular binary segmentation. The methods are mentioned 

chronologically as they were used. The major focus is on next-generation sequencing, 

which changed the research of DNA by enabling massive and affordable sequencing. The 

first two subchapters are focused on the principles of these laboratory methods. The 

following subchapters are then focused on the bioinformatical point of view of SV 

detection. Firstly, the general principles and terms are described. Later, there is an 

overview of state-of-the-art detection tools.  

2.1 Wet-lab Methods 

G-banding, also known as Giemsa banding, is a karyotyping method based on unique 

banding patterns across chromosomes. The chromosomes in the metaphase are digested 

with trypsin first. Giemsa is composed of methylene blue, azure, and eosin and is specific 

for the phosphate groups in the DNA strand where it binds through intercalation. 

Heterochromatic regions, having high AT content are stained darker, while euchromatic, 

GC-rich and high gene content are lighter. The banded chromosomes are then imaged 

under a visible light microscope to detect genome rearrangements at a resolution over 

3Mbp. It can detect events such as insertions, deletions, and mainly translocations. [76] 

Fluorescence in situ hybridization (FISH) uses complementary DNA fragments 

(15-10kbp) carrying fluorescent labels (fluorophores). After designing complementary 

probes, the metaphase chromosomes are attached to the slide. The probes are hybridized 

into complementary sequences and the unattached probes are washed away. The 

chromosomes are observed under fluorescent microscopes after exciting the fluorescent 

labels. The FISH can detect the same SVs as G-banding but at a higher resolution of over 

100 kbp. It is also more accurate. [76]  

Optical mapping is an alternative to sequencing derived from restriction fragment 

length polymorphism mapping. It is dependent on the nicking restriction enzymes, which 

cut the DNA strands attached to a slide into fragments (300 kbp to 3 Mbp) at specific 

positions (creating an optical map of nicks). Each fragment is stained with a fluorescent 

dye and fragments labels are mapped against the in-silico reference. The missing or 

additional labels and the distance between them serve to detect structural variations. This 

can detect deletion (missing label), insertions (extra-label), duplications (repeated labels), 

translocations (unique nicks), and inversions (reverse nicks). Optical mapping is well-

suited for large genomic rearrangements and also useful in repetitive regions of a genome. 

[51], [76], [77] 
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One of the earliest methods for the detection of CNV is comparative genomic 

hybridization (CGH), originally developed as a method for comparing copy numbers 

from test and reference samples using fluorescence in situ hybridization. Both samples 

are differentially fluorescently labeled (by cyanine dyes) and then hybridized 

competitively to chromosomes. The fluorescence ratio is measured along the 

chromosome and allowed the detection of regions of loss or gains in the regions of 5-10 

Mbp. [78]–[81] 

Later, the chromosomes were replaced most recently by microarrays of 

oligonucleotides with known positions within the genome. The measured ratio of the 

fluorescence intensity between the observed and reference sample at a given location is 

assumed to be proportional to the relative copy number of that sequence. The equal 

intensity of both fluorochromes indicates no loss or gain of a segment, while the 

prevalence of one of the fluorochromes indicates either loss or gain of a segment 

compared to the reference sample. The array resolution is limited by two aspects: the 

length of cloned DNA targets and the distances between these targets on the chromosome. 

[82]–[84]  

The major technical challenge of array-CGH is generating and measuring 

hybridization signals. Several aspects influence signal intensity: base composition, 

amount of repetitive sequences, and amount of DNA available for hybridization. Ideally, 

the hybridization signals should be linearly proportional to sequence abundance. More 

accurate results can be achieved by hybridizing a single sample only and then comparing 

the results with a set of control samples. The complexity of the observed genome has a 

significant impact on the achieved resolution. Copy numbers from small genomes such 

as yeast and bacteria are easier to obtain compared with mammalian genomes because 

each portion of the genome is represented more abundantly. Furthermore, arrays made 

from BAC clones (~100-200 kbp) provide more intense signals compared to short 

sequence arrays (cDNAs, PCR products, and oligonucleotides) and can detect single-copy 

changes. Oppositely, short sequence arrays provide higher resolution but noise levels 

disable the possibility to detect single-copy changes. [82], [85]  

Several algorithms were developed for array-CGH data analysis. The output data are 

log ratios of normalized intensities from both samples at a given position. The task is to 

separate regions of low and high log ratios. The initial methods were based on simple 

smoothing by local average. Based on a false discovery rate the threshold was defined for 

gains and losses. More thorough algorithms were later applied using the mixture model, 

Hidden Markov Models, maximum likelihood, regression, and others. [86] 

A still commonly used algorithm is circular binary segmentation (CBS) [87]. It 

converted intensity values into regions of the same copy number. A more advanced 

approach based on Hidden Markov Models was BreakPtr, designed for precise 

breakpoint prediction from high-resolution array-CGH [88]. 
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Similar to array-CGH, the SNP microarrays are also based on hybridization and can 

detect events only in the designed regions. Contrarily, a single sample is hybridized to the 

microarray, and log-transformed ratios are computed by comparing the fluorescence 

intensity of every probe with multiple reference hybridization samples. [83] 

The original use case is genotyping of the single nucleotide polymorphism (SNP). 

SNP is a single base change at genome position, mostly with only two different bases 

(alleles) which both appear significantly in the population. These SNPs are stored in 

databases, such as dbSNP. The rarer changes are defined as mutations. The target 

sequences on the microarray are allele-specific oligonucleotides (~15bp) which are 

specific only for one allele and two probes for both alleles have to be carried by 

microarray. Since the probes are similar, cross-talk can happen and is usually mitigated 

by using multiple probes per SNP. [89], [90] 

Contrary to array-CGH, the SNP microarrays offer a lower signal-to-noise ratio per 

probe. On the other hand, the allele-specific oligonucleotides improve CNV detection 

sensitivity by applying calculated B allele frequency (BAF). This metric takes advantage 

of the fact that two alleles are measured, denoted as A and B. The BAF is then a 

normalized intensity ratio of both A and B alleles, such that BAF equal to 0 denotes an 

absence of the B allele (AA or A- genotype), BAF of 1 denotes the absence of the A allele 

(BB or B- genotype) and BAF of 0.5 denotes the equal presence of both alleles (AB 

genotype). The BAF can be effectively used to calculate copy numbers from the range 0 

to 4 in diploid positions. It also allows the detection of copy-neutral variations such as 

uniparental disomy, mosaic losses, and gains. [83], [89] 

Several methods were developed for CNV detection from SNP microarrays. They are 

usually designed for specific vendor designs, such as Affymetrix (using differential 

hybridization on glass surface) or Illumina (using a single-base extension on microbeads). 

SNP data is usually normalized against a reference population to reduce between-array 

variation and probe-specific hybridization effects (as cross-talk). However, these 

procedures assume the same copy number of reference population including positions of 

known CNV regions. These known side effects lead vendors to design microarrays more 

suitable for CNV detection. For Illumina arrays, the normalization is done only inside the 

array. The genotyping is done by clustering for both platforms, where each genotype (AA, 

BB, AB) represents a cluster in 1D space and the probe is assigned to the genotype by 

proximity. Both major vendors had their proprietary software for CNV detection. Some 

other algorithms were also published, such as QuantiSNP [91], PennCNV [92], and 

Birdsuite as the most commonly used ones. Both applied Hidden Markov Models and 

assume that observed intensities are related to unobserved copy numbers. The emission 

distribution is assumed to be Gaussian. It is also assumed that adjacent genomic positions 

have similar copy number states. Other algorithms have an origin in the array-CGH data 

analysis, such as circular binary segmentation [87]. The performance evaluation of these 
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algorithms exposes variance in called CNVs across tools and points out the benefits of 

combining results of multiple algorithms. [90], [93]–[95] 

Although the non-sequencing methods might seem to be old-dated, the array-CGH 

and SNP-microarrays are still commonly used for CNV detection. The main benefits are 

robust detection of large events, reduced costs compared to sequencing, and processing 

time.  

2.2 Next-generation Sequencing Methods 

The massive growth of genomics had not come until the advent of next-generation 

sequencing (NGS), now mentioned also as second-generation sequencing (SGS). Before 

this, the common method was the Sanger sequencing by incorporating 

dideoxynucleotides and following capillary gel electrophoresis. This method is labor-

extensive and costly but still considered a gold standard. In the following second 

generation, four dominant commercial platforms were developed: 454 pyrosequencing in 

2005, Illumina/Solexa platform in 2006, SOLiD in 2007, and Ion Torrent in 2010. It is 

the Illumina sequencing short-read platform that became by far the most used 

sequencing platform till now with a variety of applications. [96]–[99] 

The Illumina sequencing device is present in almost all facilities including the Brno 

University Hospital, with which we cooperated. Also, it provides a large output of data, 

also mentioned as high throughput sequencing. A sufficient number of sequencing reads 

are necessary for the read-depth detection method which employs the coverage. Other 

features of Illumina sequencing are also required such as the reads orientation, length, 

and insert size distribution. Lastly, there are multitudes of datasets stored in databases 

such as NCBI Sequence Read Archive (SRA). Thus, we used the Illumina platform as the 

assumed source of sequencing data.  

In Illumina sequencing, sequencing by synthesis is in use. After the isolation of 

DNA, the genomic library is generated by fragmentation and adapters ligation. Size 

selection can be applied. The adapter consists of a sequence complementary to one of two 

oligonucleotides on the flow cell, a barcode to identify the sample, and a binding site for 

primer. The single-stranded fragments are attached to the surface of the flow cell, a glass 

panel with lanes. The complementary sequence is hybridized by polymerase and the 

original template is washed away. In the process of bridge amplification (or cluster 

generation), the hybridized strand is folded over and hybridized to the adjacent flowcell 

oligonucleotide and polymerase generates a complementary sequence again. The double-

stranded bridge is denatured and the whole process is repeated in cycles leading to clusters 

of approximately 1000 copies of the same sequence [100]. The bridge amplification is 

needed for a low signal-to-noise ratio. After the bridge amplification is done, the reverse 

strands are washed away, leaving only forward strands. [101], [102] 
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In the process of sequencing by synthesis, the fluorescently tagged nucleotides are 

added. The first sequencing primer is hybridized to the forward strand and hybridization 

is carried from the 5’ to 3’ end. After the incorporation of each nucleotide into the 

hybridized strand, the clusters are excited by light and the emitted fluorescent signal 

which is characteristic in wavelength and intensity for a nucleotide is captured. This 

process repeats and the number of cycles defines the read length. After the cycles are 

finished, the synthesized read product is washed off. The original strand folds over and 

creates a bridge. The new strand is hybridized as in the bridge amplification process. The 

double-stranded bridge is denatured and this time only the reverse strand is kept. The 

second sequencing primer is hybridized, and the second read product is sequenced.  

The details of the process differ based on the sequencing platform, dye chemistry (1,2, 

or 4 colors), type of flowcell (random or patterned), reads index (single or dual), and 

library preparation (single-end, paired-end). [103] 

Random shotgun sequencing was introduced in 1981 early after the invention of 

Sanger sequencing [104], [105]. The two strategies for sequencing complete genomes 

based on the shotgun approach are whole-genome shotgun sequencing and hierarchical 

shotgun sequencing [104]. Later, an important improvement was introduced as ‘double-

barrelled’ shotgun sequencing when both ends of double-stranded clones were sequenced 

and the information about linking and opposite orientation was used to close the 

sequencing gaps [106].  

In the earlier hierarchical shotgun sequencing, the cloned genome is divided 

sequentially into overlapping segments of known order. These segments are separately 

sheared into fragments and sequenced [107]. The execution was done firstly by 

employing yeast artificial chromosomes, later by bacterial artificial chromosome (BAC) 

with a large insert size (up to 200 kbp) and fingerprinting method [104], [107]. For 

hierarchical shotgun sequencing, it is necessary to create a molecular and physical map 

of fragments. In whole genome shotgun sequencing, the cloned genomes are directly 

sheared into fragments. These unordered fragments are then sequenced again by using 

cloning vectors [107]. 

Assembling was easier for the hierarchical shotgun method as apriori information 

about sequence order is there and was also used in The Human Genome Project. The 

competing Celere Genomics in their pursuit of a complete human genome employed the 

whole genome shotgun strategy to complete already published data by the HGP project 

[104]. This outlined the common future strategy of mapping reads to the already known 

reference.  

The idea of shotgun sequencing started in the first era of sequencing but is still in use. 

Compared to long reads of Sanger sequencing (approximately 800bp), the next-

generation sequencing brought massive parallel sequencing of much shorter reads. The 

initial read length of the Illumina platform was 35bp, but it raised to 300bp. Illumina 

platform can utilize three types of reads: single-end, paired-end, and mate-pair.  
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In single-end sequencing, double-stranded DNA fragment has flowcell adapters 

attached to both ends, but only a single end has sequencing primer ligated. Then 

sequencing starts from this adapter to the end of the fragment in the 5′-to-3′ direction.  

In paired-end sequencing, both ends have sequencing primers ligated. Both the read 

length and the insert size (length of PCR fragment without adapters) are subject to choice. 

It is the apriori known insert size that gives useful information about the expected position 

and orientation of the paired read. This information can be used for the detection of 

structural variants or tagging and removing PCR duplicates. Usually, there is a gap in an 

unsequenced fragment. However, when the fragment size is smaller than double the read 

length, there can be an overlap. Both reads then can be merged into large-spanning single 

reads [108]. In the Illumina platform, paired-end reads have usually short inserts of 200 

to 500bp. The graphical description of the terms fragment and insert size is in Figure 2.1. 

[103] 

 

Longer insert sizes in the range of several kilobases can be achieved by applying the 

mate-pair library preparation method. In the Illumina mate-pair workflow, a biotinylated 

junction adapter is attached to both ends of fragmented DNA. These tagged fragments are 

circularized so that both adapters are joined by a biotin junction adapter. Circularized 

fragments are sheared into smaller fragments, while the fragments carrying the biotin 

junction adapter are enriched. The fragments without the junction are discarded, however, 

there is usually some contamination. Illumina adapters are then added to both ends of 

these fragments and can be sequenced. Compared to the expected forward-to-reverse 

orientation of paired-end reads, the mate-pairs are in opposite reverse-to-forward 

orientation as a consequence of circularization, where fragment ends are adjacent. Certain 

abnormalities of read orientation can occur based on the position of the junction adapter 

within the fragment. The mate-pair sequencing does not allow reads merging as there is 

no overlap. [100], [109] 

                        

            

              

             

           

Figure 2.1 – Illustration of insert and fragment size definition 
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2.3 Detection Approaches for NGS 

The next-generation platform still represents the most common way of obtaining genomic 

data and a plethora of methods and algorithms for the detection of structural variations 

have been developed for over a decade. Typically, they tend to focus on a particular class 

of structural variation. Various classifications of detection methods were published - 

based on a specific feature of NGS data, whether is it a whole-genome or selected targets, 

i.e., exome sequencing, whether it is a single genome or population approach, whether it 

searches for somatic or germline variants, whether it is a diploid or haploid genome. 

However, the most common classification is a division into four methods using features 

of NGS data. These are read-pair, read-depth, and split-read methods and methods based 

on de-novo genome assembly. The first three require the data to be aligned to a reference 

genome, while the assembly approach requires a high-enough coverage to denovo the 

assembly of the genome. [12], [83]  

2.3.1 Read-pair approach 

The read-pair approach employs one of the biggest advantages of sequencing – paired-

end reads. This approach observes the position, distance, and orientation of read pairs 

in the alignment. The reads which differ from expectations are called ‘discordant’. These 

discordant reads are mapped closer or further than expected, mapped in inverted 

orientation, mapped in the incorrect order, or mapped on different chromosomes. The 

illustration for discordant reads based on the insert size is in Figure 2.2. The majority of 

SV classes can be detected by this approach. [83], [110] 

 

Several signatures (features of mapped reads) are defined for classes of structural 

variations. The easiest signatures for detection are basic insertion and deletion. Pair of 

reads that span over isolated deletion are mapped in the correct orientation of forward-to-

reverse, but the insert size between reads is longer than the expected library insert size. 

             

                

            

    
            

    

Figure 2.2 – Discordant and concordant reads based on the insert size 
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Oppositely if they span over an insertion event, the insert size is decreased from the 

expected size. The signature of inversion is also clear. Both reads are mapped in the 

correct order, but the one read spanning over the breakpoint of the inverted region will 

map with flipped orientation. Two read pairs spanning over both breakpoints of inversion 

with flipped orientation then form the inversion signature. Expected orientation is usually 

denoted as +/-, which means the first read is mapped to the forward plus strand and the 

second mate is mapped to the reverse minus strand. There is a limitation regarding 

sequencing library parameters. If the inversion is longer than the insert size of the 

sequencing library, the inversion signature will not be detected. [111] 

 

More complex linking signatures can be applied for events located over larger 

distances. The regions further apart in the reference genome can become closer in the 

sequenced genome (donor) by genome rearrangement. A mate pair (one of the read pairs) 

covering the breakpoint in the sequenced genome will map with increased insert size. The 

two read pairs which are closest to the breakpoint in the donor genome will form a linking 

signature. The basic deletion is a simple case of this. Cancer fusion genes are another case 

of linking signature between two remote genes which overlapped in the donor. Insertion 

which consists of the region presented elsewhere in the genome forms a linked insertion 

signature. This constitutes of two linking signatures covering two breakpoints of the 

inserted region. Reads are mapped incorrect orientation but with increased insert size. 

Linking makes it possible to detect the origin of inserted region contrary to the basic 

insertion signature. The limiting is the size of the inserted region such that too large 

regions decrease the probability that the two linking signatures belong together. Tandem 

duplications of the region are presented in reference forming another linking signature. 

The mate pair ending in each of the duplications will map in reverse order but with the 

correct orientation. It is called everted linking signature. It can detect only novel tandem 

duplications with unchanged copy numbers. Linking signatures can indicate the 

proximate position of breakpoints, but not the exact one.  

If only one read from pair maps to the reference, it forms a hanging insertion signature 

and we can assume the insertion of a novel genomic region. These hanging reads can be 

             

                

                   

Figure 2.3 – Read-pair signature for deletion and duplication 
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de-novo assembled to discover the insertion region. They are also mentioned somewhere 

as orphaned reads and can be categorized into the split-read approach. [111]–[114]  

The read-pair approach can distinguish between tandem and interspersed 

duplications. The signatures of reads from tandemly duplicated segments include lower 

insert size (as reads are mapping closer than expected) and reversed both orientation and 

order of the reads (upstream read location mapping to the reverse and downstream read 

location mapping to the forward, i.e. -/+). The interspersed duplication signatures include 

increased insert size and reads mapping to the opposing strands but with reversed order 

(+/- and -/+). [115] 

Another case of duplication is inverted duplication, which shares signatures with 

inversion. Contrary, direct duplication (unchanged orientation) shares a signature with 

deletion. These similarities make the detection challenge. The basic signature for 

duplication and deletion is in Figure 2.3. [115] 

The data distribution of the insert size is expected to be Gaussian [116], [117]. An 

interesting case represents sequencing with two different insert sizes libraries. This is 

designed to overcome the limitation of small insert sizes for detecting larger genome 

rearrangements. [118] 

It is necessary to say, that highly accurate detection of various complicated SV types 

is achieved in combination with the split-read approach as soft-clipping is common in the 

alignment. [116], [117] 

2.3.2 Split-read approach 

The split-read approach takes full advantage of mapping properties to the reference 

genome. It enables single-base resolution. Firstly it was used in the project of human 

genome indels detection from Sanger sequencing [119]. The signatures are based on an 

incorrect alignment of mapped reads which is gapped or split. The approach to detect split 

reads is through soft clipping. The soft clip of the read represents a continuous mismatch 

at the 5’ or 3’ end of the read. The sources of soft clips can be sequencing errors, chimeric 

reads, reference errors but also structural variants. Another mechanism included in this 

approach is the anchor and orphan reads illustrated in Figure 2.4. This mechanism 

overlaps with the pair-read approach. [120] 
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Read sequenced over a deletion breakpoint will map with a split mapping signature, 

where both ends of reads (prefix and suffix) will map to different regions in reference. If 

its mate pair is uniquely mapped, the split read is masked as a so-called soft-clipped read. 

This signature is well used by long reads platforms but with short-read data, there can be 

too much false mapping of read halves. This can be mitigated by limiting the candidate 

reads or setting conditions. [8], [111] 

The decision of what is tagged as soft-clipped and what is tagged as an alignment 

mismatch depends on the mapping algorithm. The illustration of the soft clipping is in 

Figure 2.5.  

 

 

             

                

         

            

            

                    

                 

Figure 2.4 – Orphan and anchor reads 

Figure 2.5 – Soft-clipping illustration 
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Split mapping insertion signature will form a similar pattern, where short insertion 

leads to both prefix and suffix mapped very closely but the inserted region will remain 

unmapped. Both anchored signatures are limited in size for a few bases because the 

aligners will exclude reads unable to map to the reference by a certain portion of their 

length. [111] 

Under specific circumstances, mobile element insertion (MEI) can be detected [41]. 

The reads have to be longer than MEI or possibly can be shorter if the breakpoints of MEI 

are in a unique sequence, the split-read approach can detect the MEI. [83]  

The information from the soft-clipped reads can be further used, when these portions 

are cropped and realigned to the reference genome again, usually within predefine 

boundaries of breakpoints. This is useful as deletion can be defined when clipped 

sequences are remapped and they map to the outer side of the deletion breakpoint. If they 

map reversely, it denotes an inversion signature. If clipped sequences map inside the 

breakpoints, it is likely a duplication. By observing the position of the remapped soft clip, 

the tandem, and interspersed duplication can be distinguished too. [83], [121] 

Essential for the split-read approach is choose of mapping algorithm and usage of so-

called CIGAR strings, where the information about soft-clipping is stored. Among the 

algorithms that enable soft-clipping are BWA and Bowtie2. [122]–[125] 

The most limiting is the computational requirements as the precise search for potential 

split read mapping is demanding. However, their performance is pleasable even in low 

coverage conditions. Nice figures of various split-read signatures can be found in [121].  

 

2.3.3 Read-depth approach 

The read-depth approach evaluates the coverage, i.e. a number of reads that cover a 

certain position. The terms read-depth and coverage are often used interchangeably 

unless defined specifically. The distribution of coverage is assumed to be Poisson random 

distribution. In the presence of biases and sequencing errors, the observed coverage 

distribution differs from the expected Poisson and is wider [126]. The basic hypothesis is 

that duplicated regions will manifest significantly elevated coverage. Oppositely, the 

deleted regions will manifest zero or decreased coverage. Thus, only two signatures are 

created by the read-depth approach illustrated in Figure 2.6. The essential factor for 

successful detection is appropriate sequencing read-depth because the read-depth 

approach assumes that read depth is proportional to copy number. The average read 

counts in regions correlate very well with DNA copy numbers for Illumina and 

pyrosequencing platforms, while not for SOLID sequencing [127]. [128]–[130] 
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Generally, the advent of read-depth was easier as the methods applied to CNV 

detection in array-CGH, e.g. circular binary segmentation, can be used with some 

modifications on NGS data [127]. However, they are differences: variance in probes is 

lowest for the normal state (equal copy numbers), and the variance increases for copy 

number changes. Contrarily, the lowest variance of read-depth is for the deletion state, 

and it further increases proportionally with increasing copy number [131].  

Data processing steps are the following: data preparation (extracting read depth from 

a pre-filtered set of reads), data normalization (minimizing the influence of sequencing 

biases), reading read-depth in non-overlapping windows, detection of same copy-number 

regions (segmentation) and merging them, and estimating the copy-number. [127] 

Several studies focused on the topic of genome coverage [132]–[134]. The Lander-

Waterman theory used for fingerprinting clones for physical mapping and early shotgun 

sequencing enabled scientists to estimate parameters such as coverage and the number of 

gaps as a function of the number of reads [134]. This model assumed a continuous library 

and was later extended to assume a discontinuous library [133]. An updated model was 

necessary when paired-end sequencing emerged [132].  

The observed values of read depth can be converted into logarithm, log-ratio (for 

paired or pooled samples), or Z-scores depending on the algorithm [135], [136]. The 

CNVs can be detected at the visible read-depth level, implicating statistical testing for 

significant changes from the global average or neighboring regions. Or it can be detected 

at the read-depth distribution level, observing the significant deviations from the expected 

parameters of the distribution. [135] 

                                

            

                 

                

Figure 2.6 – Read-depth signatures and read-depth signal 
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Several segmentation algorithms were presented. The earliest, circular binary 

segmentation (CBS) was developed for array-CGH. Others like mean shift-based, shifting 

level model, expectation-maximization, and hidden Markov Model can be all used to 

detect segments sharing the same copy number. [135]  

Defining the correct size of the window to aggregate the read depth values can be 

skipped by focusing only on regions of interest, e.g., gene regions, or by sequencing the 

designed regions like in whole-exome sequencing. The conceptual segment is then 

limited to the functional unit. [135], [137] 

The results of the read-depth approach are influenced by many external factors. 

Several biases affecting read depth exist, e.g., PCR amplification bias, GC bias, 

mappability bias, repetitive segments, and artifacts created through multi-mapping reads. 

Coping with GC and mappability biases is an essential step of the read-depth approach. 

Multi-mapping reads represent another ambiguity. This phenomenon emerges when a 

read can be mapped into multiple positions at the same score (the same uniqueness). 

Managing such a task is fully dependent on the mapping algorithm and knowledge about 

the algorithm behavior with multi-mapping reads is necessary when applying the read-

depth approach. Several scenarios can be applied. First, only uniquely mapped reads are 

kept, and multi-mapping reads are fully omitted. This leads to the loss of too much 

information. Second, the multi-mapping reads are positioned randomly. This affects the 

read depth signal and the following detection. Lastly, the multi-mapping reads are 

positioned at every possible location simultaneously. The following SV detection requires 

algorithm design to handle these reads. The difference between multi-mapping reads and 

uniquely mapped reads can be created by sequencing errors, i.e. otherwise multi-mapping 

reads are handled as unique ones due to a few mismatches caused by sequencing errors. 

[11], [131] 

2.3.4 De-novo assembly approach 

If read length and the amount would be sufficient for a de-novo assembly of the genome, 

it should be theoretically possible to detect all structural variants including copy numbers, 

content, and their structure. Such detection would not be based on inference from read 

signatures but would be directly visible in comparison to the reference, i.e. in self-dot-

plot. However, whole-genome sequencing is still costly to perform at parameters that 

would enable de-novo assembly. Yet, there are several studies where they performed 

whole-genome sequencing with fosmid clones of multiple samples and detected as many 

SVs as was technologically possible [7], [138]. 

The most promising is the application of de-novo assembly in long-read sequencing. 

Theoretically, all structural variations could be detected by the de-novo assembly. Two 

main approaches exist – one based on graphs and the second, based on alignments. [139].  

Assembly approaches include a whole-genome de-novo assembly and also a local re-

assembly to produce contigs which are then compared to the reference genome. The latter 
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is often used in combination with the split-read approach or with the orphaned reads. 

Thus, the mapping is carried out first. De-novo assembly can be performed over the 

regions of interest, e.g. regions important for the immune system [140]. This combines 

the high reliability of the assembly approach with lower costs of sequencing. Generally, 

the de-novo assembly is limited by required coverage and sequencing costs. The required 

coverage is about 50× compared to the sufficient 15× coverage required for mapping-

based methods. [141], [142] 

2.3.5 Signatures 

Signatures are features of mapped reads that allow detection from the inferring 

information. Also, they can be understood as detectable traces that genome 

rearrangements leave in the alignment. The signatures can be generally divided into three 

classes: signatures based on pair-end mapping, split-read signatures, and signatures based 

on the depth of coverage [111].  

The usual workflow starts with detecting the signatures and then with calling SVs. 

The higher sensitivity is achieved by detecting multiple signatures instead of a single one. 

Sequencing errors can lead to incorrect mapping, while chimeric reads can lead to 

incorrect information about insert size and orientation. Regarding library insert size, this 

follows a Gaussian distribution rather than being precise across the whole library [116], 

[117]. Thus, differentiating between a change of insert size in a signature caused by indel 

or caused by the tail of insert size distribution creates ambiguity. Read-depth signatures 

are influenced by sequencing biases caused by a library preparation or sequencing 

platform [102]. Early use of gain and loss signatures was used in CNV detection based 

on comparing different species genomes or between healthy and tumor tissue samples. 

The statistical power of read-depth signature is related directly to the coverage of the 

whole genome and to the size of CNV. Contrary to pair-end mapping signatures in short-

read sequencing platforms, the read-depth signatures can capture very large events with 

increased confidence as well. However, they are losing at low coverage and short SV 

events. The breakpoint detection based on read-depth signature is also less accurate. [111] 

The signatures supporting the same type of variation can be grouped by clusters for 

pair-end mapping and split-read signatures or by windowing methods for depth of 

coverage signatures. The most common clustering method takes into consideration only 

discordant reads, i.e. those with erroneous mapping. Reads with multiple positions of 

mapping (multi-mapping reads) are disregarded too, but then the information about 

repetitive regions is lost. Clusters are then defined at positions where multiple similar 

signatures occur if the thresholding limit is achieved. Two basic parameters are defined 

by this strategy: the minimum number of mate pairs to form a cluster and the number of 

standard deviations to define discordant mate pairs. Both are based on coverage. With 

increasing coverage, the number of mate pairs and the number of standard deviations can 

be decreased without harming the specificity. [111], [143] 
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Some methods include multi-mapping reads but they face the decreased sensitivity of 

too many differing signatures [144]. A rule is defined that multi-mapping mate pairs can 

be part of a single cluster. A fixed number of standard deviations to define a cluster also 

represents a challenge in many situations where cluster formation would be prohibited, 

e.g. short indels. This can be overcome with matching signatures cluster and expected 

distributions for matches [145]. [111], [143] 

The read-depth methods use dividing the reference into windows. Each window must 

have the same approximate value of coverage but the neighboring windows should have 

a significant difference from the other windows. Each window is then assumed to 

represent neutral or copy number change. One of the earliest methods, circular binary 

segmentation, was initially developed for array-CGH datasets [87]. [111], [143] 

Each rearrangement leaves its kind of signature. However, certain signatures are 

shared between rearrangements. Tandem duplication can create a specific pattern when 

the second paired read will map before the first read. Or it can be only part of the second 

read place before and soft-clipped. Contrarily, interspersed duplications can be confused 

with inversion or deletion patterns (if the duplication is on the same chromosome) or with 

translocations (if the duplication lies on different chromosomes). [139] 

Generally, detecting deletions is easier than duplications. Not all duplications are 

detectable by read-depth methods. This is likely caused by decreased sensitivity of these 

methods in distinguishing a copy number increased just a single time. [146] 

The combination of read-depth and read-pair approaches could discern between 

homozygous and heterozygous deletion. For homozygous, where both alleles are missing, 

reads are mapped farther apart and there is zero coverage. For heterozygous, where only 

one allele is missing, there is lower coverage compared to baseline, but reads are spanned 

normally caused they originate from the no-event region. [147] 

Signature detection is made difficult cause various reasons. First, sequencing and 

alignment errors blur the signatures. Contrary to SNV, SV can span over multiple reads 

which leads to mapping ambiguities. Second, the signatures of multiple SV types can be 

similar. Tandem duplications and novel insertions may be difficult to separate. Third, 

genomic rearrangements can overlap or be nested leading to complex SVs. But these 

complex SV signatures might be overlooked and lead to a preference for simple SVs. 

[139] 

2.3.6 Breakpoints 

A breakpoint represents a novel junction between the reference genome and a sample. 

Genome rearrangements can be breakpoint-spanning (discordant pair-end reads) and 

breakpoint-containing (single split-read). The breakpoint can be understood as two bases, 

which are next to each other in a sequenced sample but not in the reference, and vice 

versa. The illustration of deletion-induced breakpoint is in Figure 2.7. [125] 
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Read-pair and split-read signatures of discordantly mapped reads can be also 

classified into two classes: direct and indirect cases. Direct case class refers to a situation 

when both mate pairs indicate the approximate position of two regions linked together in 

the genome. The breakpoints need to be refined by local assembly or split-read signatures. 

The direct case approach is used by methods that generally use the clustering approach to 

detect signatures. Indirect case class refers to a situation when the position of one of the 

mate pairs is known. The other one is soft-clipped or one-end anchored. [148] 

 

The detection of exact breakpoints is challenging. The breakpoints are often defined 

as confidence intervals with the most likely genomic coordinates. Various heuristic 

clustering strategies are used to assign groups of possible SVs to a single SV event. Close 

clusters supporting the same SV type are merged into one event. Two clustering strategies 

are used. First, clustering is based on the distance between the breakpoints. Second, 

clustering is based on the overlap between the SVs and is predominantly used in 

population multi-sample studies. Interesting is the use of 2D Euclidean space and 

geometry (plane sweep algorithm) to deal with the breakpoint overlaps. [149]–[151] 

The homology sequences around the breakpoints, which are the substrate for the 

creation of SV itself, are also complicating the exact breakpoint definition. For such cases, 

the de-novo assembly approach is useful to uncover the exact genome sequence of the 

SV. [18] 

A special case is exome sequencing. In exome sequencing CNV detection, the 

breakpoints are not usually detected and whole exomes are considered segments under 

inspection. Also, only read-depth and split-read methods can be used for exome 

sequencing. Another special case is restricting breakpoints to be navigated by gene 

annotation to fit the gene boundaries. In this case, the segments are thought to be gene or 

intergenic regions. [137], [152], [153] 

                

             

Figure 2.7 – Breakpoint illustration 
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2.3.7 Copy Numbers 

A copy number is an integer that denotes the number of copies of the segment in the 

sample. This classification can be more challenging if an exact copy number integer is 

expected, though a majority of the algorithms give only a gain, loss, or copy-neutral 

classification. Mainly two approaches exist, segmentation and Hidden Markov Model 

[154]. The basic idea behind copy number estimation through segmentation is that read 

depth in a given segment should correspond to copy number change. Also, segment 

coverage values corresponding to the same copy number should cluster together [153]. 

This process is similar to the Parzen window method for non-parametric density 

estimation [153]. The HMM-based methods get integer copy numbers from means of 

their hidden states [155], [156].  

The expected linear relation between read-depth and copy-number value was not 

proven by Pearson correlation for exome sequencing. The normalized read depth by the 

length of the segment (i.e. exon) was overlapping across the various copy-number states. 

Thus, the detection of direct copy-number is often impossible. A significantly better 

correlation was achieved when these ratios were used between the sample and the 

reference of the known copy number. It was also demonstrated that copy-number 

prediction is independent of read lengths and mapping algorithms. [157]  

The exact copy-number estimation is usually performed by algorithms comparing two 

or more samples simultaneously. [156], [158] 

Also, there is an important difference between CNV detection in diploid and haploid 

organisms. Haploid organisms (prokaryotes, viruses) have usually a single chromosome, 

thus, there is only a single copy of a gene. The default copy number is then one. 

Oppositely, in diploid organisms with paired chromosomes, there are two copies of each 

gene. The default assumed copy number is then two.  

2.3.8 Limitations of using a single approach 

It is necessary to mention that NGS methods have difficulties to detect SVS in repetitive 

regions, thus the detection of microsatellites, transposable elements, heterochromatin, and 

segmental duplications is challenging. This limitation is not possible to overcome with 

algorithm design, but rather a combination of other sequencing platforms overcomes this. 

[159] 

Each detection method itself has limitations. Split-read is the most precise in exact 

boundaries of SV, but on the other hand, is very limited to the length of the reads and 

short reads affect accuracy and precisions. Also, it works only in unique regions of the 

genome. [160]  

Read-pair can detect all types of SVs but is not precise in establishing boundaries. 

The accuracy of read-pair methods depends on the insert size and its distribution. Small 
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SVs can be skipped in detection with large insert libraries. Similarly to split-read 

methods, the power is limited in nonunique regions of the genome. [160] 

Assembly methods have poor detection power against duplications or repeats and 

require high coverage. Read-method works well on duplications and can detect the copy 

numbers as the only method. However, the boundaries resolution is poor. [160] 

The limitations of using a single approach are overcome by implementing multiple 

approaches or even tools together.  

 

2.3.9 Integrating multiple approaches 

Hybrid algorithms were the first to overcome the limitations of distinctive approaches. 

That is achieved by a combination of more approaches and overlapping their outputs or 

by increasing the support of SV events by multiple signatures. The breakpoint resolution 

can be increased by a hybrid approach, which leads to more precise detection of SV 

boundaries. This is enabled by integrating the split-read approach. The copy number can 

be calculated by integrating the read-depth approach. The spectrum of detected SVs can 

also be extended by integrating more approaches. The read-depth method can only detect 

deletions and duplications and by integrating them with other approaches we can detect 

a wider spectrum of SV or subtype them. The performance metrics such as sensitivity and 

specificity can also be improved by a hybrid approach.  

Figure 2.8 – Integrating multiple approaches (read-level) or multiple tools (SV-level), taken 

from [191] 
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Table 2.1 – Overview of methods properties, taken from [141] 

Approach Resolution Detectable types Used PE reads 

Assembly base-pair all all reads 

Split-read base-pair all soft-clipped 

one anchored split reads 

Read-pair rough all discordant reads 

Read-depth very rough CNVs all reads 

2.4 Overview of Detection Tools 

While the principles of detection methods are in the previous subchapter, here I review 

some of the tools based on these principles. The overview of all further listed tools and 

their maintenance status and software availability is in Supplementary Table 1.  

2.4.1 Read-pair tools 

Before the arrival of publications describing specific algorithms for SV detection, several 

studies approached SV detection with prototypes of future algorithms. They focused on 

the detection of previously unknown SVs and applied various library insert sizes to 

circumvent the limitations of SV detection.  

The earliest studies which used read-pair signatures for SV detection were published 

already in 2003 [161] and 2005 [52]. In these pioneer studies, they employed genomic 

libraries of pair-end fosmid sequences with very long insert sizes (called end-sequence 

profiling - ESP). The same methodology was also used in the later sequencing of eight 

human genomes which focused on refining the position of discovered SVs and detecting 

CNVs. They re-assembled the reads with a TIGR assembler. [138] 

SVs discovered by previous studies were reassessed by capillary sequencing of 

fosmid clones with 40 kbp library insert sizes [7]. There is one of the earliest comparisons 

of SV detected by other studies. While comparing with the 2008 study [138], only partial 

overlap in detected deletions was found as a possible result of fluctuating clones coverage 

and sequencing reads quality. They also found an overlap of only 38% with results from 

another read-depth study [162]. More advanced breakpoint detection was presented. Two 

regions around breakpoints are extracted from genome assembly and one called junction 

is extracted from the clone. They are firstly globally aligned and then merged into a single 

alignment of three sequences. The innermost breakpoint boundaries can be observed from 

this alignment. [7]  

The first NGS study from 2007 used 454 Pyrosequencing of two individuals [112]. 

The reads were again mapped with MEGABLAST but realigned for higher precision with 

the Smith-Waterman algorithm. The separation of mate pairs insert sizes was done by 

thresholding. The cutoff was defined after removing potential outliers and defined for 

each batch separately. Then, the three standard deviations from the mean (3 kbp) were 
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used as thresholds. At least two paired-end reads were required to establish an SV. The 

achieved average breakpoint resolution was 644 bp and SVs spanning around 3 kbp and 

larger were detected. The regions around detected breakpoints were re-sequenced and 

contigs were assembled. This enabled the examination of breakpoints with other known 

genome features (segmental duplications, Alu elements, etc). [112] 

Two studies from 2008 applied SV detection on the Illumina sequencing data [163], 

[164]. The first one sequenced two cancer cell lines on the first version of the Illumina 

GenomeAnalyzer. The authors also performed one of the earliest usages of read-depth 

data for copy number detection. They observed the number of reads mapped uniquely 

with correct orientation and insert size within defined size non-overlapping windows. 

They adapted commonly used circular binary segmentation to estimate copy numbers. 

[164] 

The second study used the methods defined previously [52], [112], [164] such as 

detecting anomalous insert sizes, incorrect reads orientation, gapped alignment, and read-

depth analysis. Both studies only considered a single unique map position.  

One of the earliest papers bringing theoretical background to the detection of SV in 

paired-end data was presented in 2008 by Lee [116]. The author later introduced an 

algorithm called MoDIL for detecting small indels in size between 20-50 bp. It compares 

the distribution of insert sizes of the whole dataset with local distributions at a given 

position. The cluster at a given position contains all mate pairs which overlap the given 

position. If there are no indels, the observed distribution of the cluster will be identical to 

the distribution of a genome. If there is a homozygous indel, the distribution will be 

shifted, if there is a heterozygous indel, approximately half of the observed mate pairs 

distribution will align over a genome distribution and the other half will be shifted. The 

expected size of indel can be predicted by identifying the parameters of the two 

distributions (one for each haplotype). The expectation-maximization algorithm is used 

to find the means of the distributions. It is assumed the insert sizes fit into the Gaussian 

distribution. [145] 

Hormozdiari presented a combinatorial algorithm called VariationHunter in 2009 

[144]. It was the first algorithm to use reads mapped to multiple positions which were 

ignored by previous algorithms. Thus, it requires a kind of mapping algorithm which 

enables multi-mapping, such as mrFAST, SHRIMP, etc. In the first iteration of 

VariationHunter, they focused on the detection of deletions, insertions, and inversions.  

They define concordant and discordant mate pairs, such that concordant reads insert 

size is in the defined range and their orientation is correct for a given platform, e.g. for 

Illumina left mate-pair is mapped to the plus strand and right mate-pair to the minus 

strand. Both reads have to be mapped to the same chromosome. Only discordant reads 

are taken into account. Each read pair has a set of candidate alignment positions with 

corresponding insert sizes and orientations. Also, each alignment supports a specific type 

of SV defined by constraints. The clusters are defined as a set of alignments that support 
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a particular SV at a given position. They define the so-called Maximum Parsimony 

Structural Variation Problem, which describes the computing of unique alignment for 

each discordant read pair such that the total number of SVs implied by the alignments is 

minimized. The modified set cover algorithm is used to solve this problem. The 

probabilities for each candidate SV are calculated using parameters such as type and 

length of SV, and the number of reads supporting the given SV. The resulting SVs are 

then outputted based on the defined cutoff probability threshold. [144] 

In the modified version of VariationHunter from 2010 [165], the authors 

implemented support for transposons detection. They defined transposon as part of the 

genome that is copied to another position with a small dissimilarity (aka copy events). 

They also assumed the diploid nature of the human genome by adding a conflict 

resolution of overlapping SVs. The signatures of copy events are more complicated and 

the authors divided them into two classes – if the transposon is copied in direct or inverted 

orientation. The modified Maximum Parsimony Structural Variation Problem with added 

conflict resolution guarantees that no conflicting triplets of SV clusters occur in the final 

set of SVs. [165] 

Korbel et all presented Pair-end Mapper (PEMer), an algorithm to detect SVs from 

all NGS platforms available at the time [166]. For the Illumina platform, the MAQ aligner 

is used to map reads uniquely and with a mapping score above 20. The mate pairs are 

then considered outliers if they map with out-of-range insert sizes and discordant 

orientation. The three-standard deviation rule is used to define the cutoff for insertions 

and deletions based on the observed insert size distribution. The clusters of reads of 

defined size are computed in windows separately for long and short events by calculating 

E and P values. Clusters supporting the same type of SV are merged into a single cluster 

because clusters are calculated parallelly with different cutoffs and cluster sizes. The 

authors also created a database of detected breakpoints BreakDB. [166] 

BreakDancer published in 2009 detects five types of SVs: deletion, insertion, 

inversion, and intra- and inter-chromosomal translocations [167]. It also enables pooling 

multiple samples analysis for population or tumor-normal cancer studies. It consists of 

two modules – one aimed at five types of SV and the second one aimed at short indels 

(10-100 bp) usually skipped by the first module. So-called anomalously mapped read 

pairs (ARPs) are defined as reads mapped with MAQ with a score above 10 and insert 

size outside the three deviations. The anomalous regions with a statistically elevated 

number of ARPs compared to the average. An SV is derived from one or more regions if 

these are interconnected by at least two ARPs. The confidence score is calculated from 

the Poisson model with the number of ARPs, size of the region, and genome coverage. 

The most present types of ARPs in the region define the type of SV. Small indels module 

requires the anomalous regions to have two-sample Kolmogorov-Smirnov test statistics 

above 2.3 testing for normally mapped reads in the region and the whole genome. [167] 
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2.4.2 Split-read tools 

With the prolongation of the NGS reads length, the split-read methods came to arise. One 

of the earliest algorithms presented was Pindel published in 2009 [113]. It detects 

breakpoints of large deletions (up to 10 kbp) and insertions (up to 20 bp, restricted by the 

length of the read). The reads which are analyzed are those which have only one of the 

mate-pair uniquely mapped. The 3’ end of the mapped read serves as an anchor point on 

the reference genome. From the anchor point, the direction and user-defined distance to 

restrict the search area for another breakpoint are known. In this area, the Pindel tries to 

map the unmapped mate-pair dividing it into two (for deletions) or three (for insertions) 

substrings. Firstly, it uses a pattern growth algorithm to search for unique substrings from 

the 3’ end of the unmapped read within the distance of two insert sizes from the anchor 

point. Within the distance of the read length plus the defined maximum distance, it 

searches for the unique substrings from the 5’ end of the read. Lastly, it checks if a 

complete unmapped read can be reconstructed from found unique substrings. This way, 

the deletions are searched for. The search for insertions is different than the distance area 

for 5’ end substrings is only within the size of the read minus 1 and the read is split into 

three parts. Every insertion or deletion supported by at least two read pairs is outputted. 

[113] 

Similar to the Pindel is an algorithm called Splitread for the detection of indels up to 

1 Mbp [168]. It takes multi-mapped reads from mrsFAST (using Hamming distance) into 

the account and can be used on the exome sequencing. The unmapped reads are 

decomposed into equally (for balanced splits) or unequally (unbalanced splits) length 

substrings. For the detection of unique substrings, it uses a seed search approach of 

balanced splits which narrows the location and length of detected SV. All possible 

positions of split reads which were within three deviations of the insert size from the 

anchor point are stored. Clusters are formed from balanced splits. If an unbalanced split 

supported the balanced one and they have overlapping anchor reads, it is added to a 

cluster. Split reads can be mapped to multiple clusters supporting different types of SVs. 

The greedy solution for the weighted set cover problem (similar to the VariationHunter) 

is applied to find a minimum number of clusters with a maximized cost function, e.g., the 

number of mappings. [168] 

ClipCrop published in 2011 extends the detection abilities of the split-read approach 

to tandem duplications, translocations, and inversions [121]. The initial set of breakpoints 

is dug from the CIGAR strings of mapped reads. Only reads with one soft-clipped end 

are analyzed, reads with both ends soft-clipped are skipped. The authors define L- and R-

breakpoint based on which side of the breakpoint is soft-clipped. Breakpoints are 

clustered within 5-base differences. Soft-clipped fragments over 10 bp are remapped with 

BWA around the breakpoint within 1000 bp in both directions. The type of SV is inferred 

from the position of remapped fragments (inside or outside of the breakpoint) and their 

direction (reverse for inversion). The soft-clipped reads are clustered by SV type and 
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position. Competing SVs are chosen based on a score derived from a number of clipped 

and anchor reads. [121] 

CREST can detect the same types of SVs as ClipCrop and furthermore supports the 

paired tumor-normal cancer samples [169]. The set of soft-clipped reads is screened 

breakpoints based on several criteria and are tested for binomial distribution to separate 

heterozygous events from wild-type reads. The reads fulfilling the conditions serve as a 

first putative breakpoint. The corresponding breakpoint is detected by repeated mapping 

and assembly. The distance between alignment to assembled contig and the first 

breakpoint needs to be within a small distance. For cancer samples, the SV detected in 

normal samples is skipped from the results. [169] 

Another algorithm for SV detection in cancer samples is Socrates [120]. It is similar 

to ClipCrop, but it enables to detection of micro-homologies, untemplated sequences, and 

gene fusions. The multi-mapped reads are skipped. The soft-clipped reads are realigned. 

The clusters of anchored reads and corresponding realigned soft clips are formed. Then, 

the clusters are paired, and those clusters support the SV from both sides. Here, the micro-

homologies (1-10 bp identical sequences) can be found on either side of the breakpoints. 

Also, untemplated sequence (or insertion) can be found between breakpoints of gene 

fusion. The unmatched clusters are then tested to support already defined clusters, and all 

soft clips that match another cluster’s anchor point with sequence identity over 90% are 

considered supporting. These pairings can increase sensitivity in exchange for an increase 

in false positives. [120] 

SLOPE is another split-read algorithm that focuses on detecting SV from targeted 

sequencing [114]. It takes only unmapped sequences, but analyses all reads for single-

end sequencing. Then, it carries partial alignment from both ends of the unmapped read 

and selects the highest-scoring ungapped alignment with up to five mismatches. Only 

alignments covering more than 30% of reads are kept, however, partial alignment 

spanning over 90% of reads carries no information and is skipped. All alignments that 

remained are clustered based on orientation and position in the genome. For all unique 

reads, the partial alignment is refined by the Smith-Waterman algorithm to allow gaps. 

The algorithm is called SLOPE cause it plots the slope of median values of breakpoints 

and their 5’ positions. For chimeric junctions, the 5’ positions and partial alignment 

lengths would correlate exactly. Sequencing errors and imperfect alignments will affect 

the slope. A weighted regression with weights from Smith-Waterman scores prefers 

longer higher scoring alignments. The clusters of indels and translocations should have a 

slope of -1 and these are taken as results. [114] 

2.4.3 Read-depth tools 

The earliest studies which included a read-depth approach were Campbell and Chiang 

studies on cancer samples [164], [170]. Campbell extracted coverage from uniquely 

mapped concordant reads and then used modified circular binary segmentation [164]. 
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Chiang applied local change-point analysis using a sliding window and then followed by 

the merging of events [170].  

Generally, the algorithms can be divided into two groups. In the first group, the CNVs 

are detected by comparing local read count against an average of a genome. The second 

group consists of algorithms derived from array-CGH methods and CNVs are detected as 

differences in read counts between two or more samples. [155] 

Yoon presented RDxplorer in 2009 [131]. There they extracted read depth using non-

overlapping windows of size 100 bp. This was justified by an acceptable exchange 

between detecting small and long CNVs. Also, at the assumed 30X coverage, the 

distribution of 100bp windows fits the Gaussian normal distribution. This approach is 

generally shared among many algorithms. The reads are assigned only once at their 

leftmost position. The GC bias is normalized by comparing coverage values with GC 

content in a window. For CNV detection, they apply event-wise testing. It detects regions 

of consecutive windows with a significant change in read depth. For that, the read depth 

in a window is converted into Z-score (by subtracting the mean of all windows and 

dividing by the standard deviation). The Z-score is converted into upper- and lower-tail 

probability. The values in consecutive windows are compared against desired false 

positive rate divided by the number of all windows of a given size. The extension is 

carried out iteratively and separately for deletions and insertions. The neighboring 

clusters of small events (up to 500 bp) are merged. Events with a median of read depth 

within 0.75 and 1.25 times of dataset mean were omitted. The one-sided Z-test is applied 

to test significance. [131] 

Alkan presented an alternative approach at the level of reads alignment called 

mrFAST [162]. mrFAST is a seed-and-extend method for reads alignment with the main 

feature of mapping reads into multiple positions. For GC normalization, they applied the 

local regression LOESS algorithm. Then, they detected regions where at least six out of 

seven consecutive windows have read depth three standard deviations from the mean. 

Three deviations correspond to a copy number of 3.5 for the diploid genome. The copy 

numbers were calculated in 1 kbp windows as a ratio between window read depth and 

average read depth. The authors focused mainly on large segmental duplications over 20 

kbp. The alignment tool is also used in other read-pair algorithms which use multi-

mapped reads. [162] 

CNV-seq is a method derived from array-CGH and detects CNVs by comparing two 

samples [158]. The read counts from two samples are detected in a sliding window. They 

approximate the Poisson distribution of read counts in a window by a Gaussian 

distribution using the Geary-Hinkley transformation to transform the ratio of read counts 

into a new variable of approximately Gaussian distribution. Then, they test the probability 

of these two distributions differing from an equal ratio. The p-values are based on the 

window size (decreasing with increasing window size) and the number of reads in a 
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window. The theoretical minimal window size giving the best resolution is calculated for 

the desired ratio. The ratio is also used for thresholding and segmentation. [158] 

cn.MOPS brings evaluation of local read count variations by analyzing multiple 

samples [155]. Similar to other methods, the reads are counted in non-overlapping 

windows. The reads are GC normalized but also normalized concerning other samples, 

such that read counts are comparable across samples. The mixture of Poisson models is 

used, where a separate model is computed at each locus. The model assumes that read 

counts in a window are distributed across samples according to a mixture of Poisson 

distributions, where each mixture corresponds to a distinct copy number [155]. The Bayes 

formula is used to compute the probability that a read count is from a given copy number. 

This way the cn.MOPS produces integer copy numbers for CNV calls. In the final step, 

the circular binary segmentation algorithm is used to merge individual calls of the same 

copy number. [155] 

Similar to cn.MOPS is a method published by Sepúlveda [171]. They assume the 

common feature of read depth datasets, the overdispersion of Poisson distribution of read 

depth values. They assume Poisson distribution for regions of no CNV. Then, they extend 

this to an overdispersion by either Poisson-Gamma (also negative binomial distribution) 

or Poisson-Lognormal distributions. The model parameters were done by non-

informative prior distributions. E.g., for Possion-Gamma, they used a Gamma prior 

distribution with parameters α and β. The CNV detection in non-overlapping windows is 

based on the highest posterior density (HPD) intervals and windows are compared with 

values of HPD. [171] 

CNAseg is an algorithm for CNV detection in tumor-normal samples [172]. It uses a 

discrete wavelet transformation for smoothing the read counts, which is a useful way to 

cope with the over-segmentation of HMM method. The read counts are normalized so 

that both samples have the same read count in windows. The HMM is used for 

segmentation with Skellam distribution. The k-means clustering is used to approximate 

the copy numbers, and read counts in every window are clustered between 2 to 7 clusters. 

The best number of clusters is obtained from the F-statistic (within-cluster sum of squares 

compared with the between-cluster sum of squares) [172]. The χ2 statistics is employed 

for merging the segments where the lowest χ2 statistic denotes the absence of significant 

difference between tumor-normal adjacent segment ratios. [172] 

Another algorithm using HMM is JointSLM [156]. They define a model of the 

process as the sum of two independent stochastic processes representing read count 

distribution (approximated to be Gaussian) and white noise (representing alignment errors 

and coverage fluctuations). The joint distribution of the process has the form of HMM, 

and it is used to detect CNV in multi-sample windows. [156]  

CNVnator focuses on CNV detection in family trios and population sequencing 

[173]. Alternatively, the authors emphasize the use of reads mapped randomly compared 

to using only uniquely mapped reads. It employed the mean-shift technique taken from 
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image processing to segmentation. The read depth across the genome can be understood 

as an image that needs to be processed to define distinct CNV regions. This can be 

formulated as finding a probability distribution function (PDF) from the read-depth data 

where this function is an unknown mixture of many distributions corresponding to copy 

number states. The density maximum in the distribution is the modes of PDF with zero 

gradients of estimated PDF. In each window, the mean-shift vectors are defined and point 

to the direction of windows with the most similar read depth. Window breakpoints are 

detected when two vectors have opposite directions but do not point to each other. The 

segments are partitioned and merged by an iterative algorithm and thresholding. [173] 

ReadDepth is the first algorithm that brought the mappability normalization [174]. It 

employs modeling a negative-binomial distribution to approximate an overdispersed 

Poisson distribution of read counts. For segmentation, it uses circular binary 

segmentation. [174] 

CNOGpro overcomes the need for breakpoint detection by applying CNV detection 

to gene and intergenic regions separately [152]. Furthermore, it focuses on prokaryotic 

genomes. While counting reads and the GC normalization are done in the usual way of 

non-overlapping windows, later, the read counts are assigned to individual gene regions 

defined by a GenBank file. The average of overlapping windows falling into a region is 

used together with bootstrapping to estimate confidence intervals. The HMM is used to 

calculate the copy number states in the regions using the Viterbi algorithm. [152]  

An alternative to fitting Poisson models is the Sequana algorithm [175]. It rather 

reports all positions that have read depth outside of the overall distribution. The read 

depth is denoised using a running median. In the ideal case, the read depth fits the Poisson 

distribution, but in real datasets, the Poisson distribution is a too-narrow cause of 

overdispersion. The Poisson distribution can be approximated by the Gaussian 

distribution for large mean parameters. Authors assume for read-depth values higher than 

1 the Gaussian distribution. But since this is too restrictive they propose a mixture of 

models to describe the read-depth underlying nature of central distributions and outliers. 

They use the expectation-maximization algorithm for the estimation of model parameters. 

This allows them to define Z-score for every genome position. These Z-scores are then 

compared with thresholds for duplication and deletion. Double thresholding is used to 

merge events into larger ones. [175]  

CNV-BAC is another prokaryotic-focused algorithm [176]. It was the first to cope 

with the normalization of the origin of replication bias. The GC normalization is based 

on BIC-seq2 [177] and CNV detection is based on BIC-seq using the Bayesian 

information criterion [178]. [176] 

2.4.4 Assembly tools 

Algorithms depending solely on de-novo assembly are only a few. Furthermore, the 

distinction between a hybrid algorithm including an assembly method, and a sole 
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assembly algorithm is not absolute.  

One of the earliest is NovelSeq [179]. It depends on the multi-mapping aligner 

mrFAST [162]. After the alignment, it separates one-end anchored (only single-end 

mapped) and orphan reads (reads unable to align under criteria). Orphan reads all de-novo 

assembled to contigs by EULER-SR or ABySS tools. The contigs are scanned by BLAST 

for contamination and contigs able to map against the reference are skipped. The one-end 

anchored reads are clustered into two clusters depending on the strand orientation of the 

mapped read (+ for forward strand, - for reverse strand). The unmapped reads of clusters 

are assembled into a single contig for each cluster. The orphan contigs are anchored by 

merging with one-end anchored contigs by defining it as a maximum-weight bipartite 

matching problem. Thus, the algorithm enables the detection of novel sequence 

insertions. [179] 

A more complex approach was presented in Cortex [180]. It is a de-novo assembler 

that enables a multisample approach. It also detects structural variants and novel sequence 

insertions. It employs extended de Bruijn graphs with the coloring of the nodes and edges 

to represent the distinctive sample in a single graph. [180] 

TIGRA [181] depends on previously predicted putative breakpoints and employs de 

Bruijn graph-based local assembly of reads around the breakpoint boundaries. The 

assembled contigs then represent alternative alleles. [181] 

2.4.5 Hybrid tools 

Medvedev was among the first who combined read-pair and read-depth approaches 

in an algorithm called CNVer [182]. It detects discordant read pairs as usual by the three-

sigma rule and discordant orientation. It clusters the discordant reads into four clusters 

regarding the strand and reads the order. Since it focuses on tandem duplications, it deals 

with sequences already repeated in the reference genome. It maps the reference to itself 

and iteratively partitions the aligned blocks of at least 100 bp until there are no overlaps 

of these blocks. The bidirected donor graph is built from the blocks and the clusters. The 

cost flow function is used to find the optimal walk through the graph and to find the copy 

counts of the sub-block in the graph. The copy number is based on finding the walks in 

the graph with higher or lower-scoring functions. [182] 

HYDRA [183] combines read-pair and split-read approaches but also employs long 

reads from capillary sequencing. Discordant reads from Illumina are clustered and 

targeted as candidate breakpoints. Then, the discordant long reads that overlap with 

previously called breakpoints are assembled into breakpoint contigs with a phrap aligner. 

These contigs are aligned to reference with sensitive settings by MEGABLAST and used 

to identify the breakpoint precisely. [183]  

He et all presented a method combining read-pair and read-depth approaches to deal 

with CNVs in repetitive rich regions [184]. Clusters of discordant reads are used to define 

the boundaries of a CNV and copy numbers are estimated based on the Possion formula 
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from [111]. The authors present a modified formula to apply in repetitive regions. The 

branch and bound algorithm is then used to reconstruct CNV in these repetitive regions. 

[184] 

inGAP-sv combines read-pair and read-depth methods [117]. It firstly calculates 

coverage in 10 bp windows and observes differences to adjacent 1000 bp regions from 

both sides. It classifies the intervals as homozygous, heterozygous, and uncertain. Later, 

it employs the read-pair method to classify SVs and assign a quality score. [117] 

A novel approach in the time presented forestSV [185]. It is a machine-learning 

approach with a random forest classifier trained on samples from the 1KGP. It can be 

classified as a hybrid approach because the extracted features consist of both read-depth 

and pair-read parameters. [185] 

GASVpro [186] builds on the previous GASV algorithm [150]. It uses a read-pair 

approach to detect SVs boundaries and a read-depth approach to decide on hetero/homo-

zygosity. It considers multi-mapping by using the Markov chain Monte Carlo algorithm 

to sample over the possible alignments. [186] 

PRISM [187] combines the read-pair and split-read approach to detect SVs at a base-

pair level. It uses the read-pair information to reduce search space for split mapping by 

the modified Needleman-Wunsch algorithm. [187] 

DELLY, one of the commonly used SV callers, also employs read-pair and split-read 

methods [118]. It also enables a combination of two libraries with different fragment 

sizes. That usually means a pair-end library with an insert size under 500 bp and a mate-

pair library with an insert size over 2000 bp. Discordant reads are clustered using graphs 

separately for every type of detectable SVs. The nodes of the graph represent the paired 

ends, edges indicate that both ends support the same SV. The weight of edges denotes the 

difference between predicted SV sizes. The goal is to traverse the graph so that the 

distance between reads is greater than a threshold. The discordant reads clusters are 

considered to contain breakpoints and these regions are used for the split-read method. It 

first searches for one-end anchored reads within these regions. It can also analyze all other 

reads for soft-clipping or low-quality read ends alignments. For each read from the region, 

if the mate read is mapped within two standard deviations of a breakpoint, it is assigned 

into a set of split reads of a given SV. Instead of dynamic programming alignment, 

DELLY uses k-mer (k=7) based filtering to identify candidate split-reads and then aligned 

them to a diagonal. Read-pair method calls are annotated by the number of supporting 

read pairs and mapping quality. Split-read calls are annotated by the number of split-reads 

and consensus alignment quality against the reference. Corresponding calls from both 

methods are merged into the final set of SVs. [118]  

A similar approach to DELLY regarding two different insert-sized libraries is used in 

PeSV-Fisher [188]. It uses the read-pair and read-depth methods. Outputs from both 

methods are merged based on the overlapping. PeSV-Fisher can also work on cancer 

samples and output only somatic (tumor only present) SV. [188] 
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Another commonly used SV caller is LUMPY [125]. It is unique as it combines read-

pair and split-read methods, but optionally accepts a set of called CNVs and/or a set of 

candidate SVs. It can be understood more as a framework over already established 

algorithms as the core of LUMPY is based on merging these inputs. As input for the read-

pair module is taken an alignment file from BWA or NOVOALIGN. For the split-read 

module, an alignment file from a split-read mapper such as YAHA, BWA-mem, or BWA-

SW is taken. It also enables multi-sample analysis by tracking probability distributions 

during clustering back to the original samples. The breakpoint is represented as a pair of 

probability distributions spanning the boundaries of the breakpoint and reflecting whether 

the selected position represents a real breakpoint. The output of modules is breakpoints 

boundaries, supporting evidence, and SV type. In the process of clustering and merging 

breakpoints, the boundaries of a breakpoint are trimmed based on distribution 

probabilities. [125] 

Another algorithm combining three methods is Pilon [189]. It employs read-pair, 

split-read, and local assembly. It is a multipurpose tool that focuses on genome assembly 

improvement, SNP and indel detection, and also SV detection. It detects SV by detecting 

discordant reads, soft-clipped reads, and low-coverage regions. These candidate regions 

are locally re-assembled by the de Bruijn graph. [189] 

TARDIS also combines three methods: read-pair, split-read, and read-depth [115], 

[190]. It builds upon previous works such as mrFAST [162], NovelSeq, and 

VariationHunter [144], [165]. Signatures of read depth are added to the clusters of 

discordant reads as additional weights. Both ends of split reads are taken as another case 

of discordant reads and clustered together. The maximum parsimony approach and set-

cover algorithm are used for the solution. [190] 

2.4.6 Pipelines 

While the hybrid approach combines specific methods, the ensemble or integrative 

approach combines whole algorithms. It makes use of the fact that there are intersections 

and unions of the detected SV by multiple algorithmic tools. The algorithm then can 

assume a simple intersection or union as the best solution or more advanced methods can 

be used. A pairwise intersection followed by a union is also mentioned [191]. The 

coordinates of the breakpoints can be averaged across the overlapping region. The 

decision trees or neural networks were used to decide on the set of true positives for SNP 

variants [192], [193]. Usually, the union of SV calls and thresholding by a number of 

callers that called the SV is applied. The earliest mentions of a combination of multiple 

algorithms were implemented in population studies. [141] 

There are several approaches to merging SV calls from multiple callers. Based on 

VCF files, the BCFtools [124], SURVIVOR [194], or SVDB [195] package can be used. 

For BED files, the BEDtools[196] can be used. These tools represent the most simplistic 

approach.  
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The biggest study by a number of SV callers used is part of the 1000 Genomes project 

[41]. The authors used 19 tools based on all approaches and merged their outputs based 

on the overlap and also used TIGRA [181] for breakpoint discovery. The study is from 

2011 and multiple methods have been published so far.  

The first independent algorithm published was SVmerge [147]. It employs 

BreakDancer, Pindel, RDXplorer, and two in-house developed tools to detect many SV 

classes. The initial results of callers are filtered for low-quality SVs and separated by SV 

type. The merging is done by BEDTools [196] and criteria are defined for an overlap: 

length (75 bp) and size of remaining parts of SV. All reads and unmapped read-pairs 

within 1 kbp of SV boundaries are re-assembled and contigs are remapped to the reference 

with aligner Exonerate. The coverage is calculated by SAMtools[124] pileup. The 

SVmerge focuses on deletions and distinguishes between homozygous and heterozygous 

deletion by applying the read depth check. [147] 

HugeSeq [197] integrates GATK UnifiedGenotyper [198] and SAMtools [124] for 

SNP and indel calling, and BreakDancer, Pindel, CNVnator, and BreakSeq for SV 

calling. The final set is obtained by intersection with BEDTools [196] and SVs called by 

two and more callers are tagged as high confidence. [197] 

iSVP [199] calls deletions based on BreakDancer, Pindel, and GATK Haplotype 

Caller. The SV calls are categorized by size to achieve precision over 90%, which is 

fulfilled for SVs that are longer than 100 bp. The calls are merged by BEDTools. [199] 

intansv is an R package, developed back in 2014, which integrates seven SV callers, 

annotation, and visualization inside the R [200]. The callers are BreakDancer, CNVnator, 

DELLY, Pindel, Svseq2, LUMPY, SoftSearch [201] and others can be added. The 

findOverlaps function of GenomicRanges is used to merge overlapping SVs. Combined 

SVs are clustered based on distances between SVs. A cluster of SVs from two or more 

methods are merged and boundaries are set as a mean of start and end coordinates. [200] 

MetaSV carries out both intra- and inter-tool merging of detected SVs [202]. Intra-

tool merging suppresses potential duplicated calls which are overlapping. Inter-tool then 

merges SVs to get unique calls with preference given to tools known to be precise. To 

detect the breakpoints of SVs, the MetaSV performs local re-assembly with SPADES 

[203] and contigs are aligned to reference with AGE [204]. The results are annotated and 

genotyped.  

FusorSV uses a data mining approach and fusion model to train and detection of SVs 

[205]. First, it evaluates the performance of various SV callers on the ground truth dataset 

of SVs, which are partitioned by type and size. Contrary to simple consensus it assumes 

the smallest set of callers can be selected based on mutual exclusion, e.g. an SV detected 

by two callers employing the same approach does not guarantee higher certainty. The 

pair-wise distance matrix is built from truth dataset results of various SV types and sizes. 

The Jaccard index is used to find similarly performing callers, which have a lower weight 



 56 

assigned to prefer mutually exclusive callers. The fusion model is used for discovery from 

eight SV callers. [205] 

sv-callers is a Snakemake [206] workflow based on four SV callers [207]. It focuses 

on human genomes and enables both germline and somatic SV detection. It employs the 

SURVIVOR (StructURal Variant majorIty VOte) [194] tool for merging SV calls with 

filtering out low-quality calls with BCFtools [124].  

A similar approach based on merging with the SURVIVOR [194] package is 

employed in Parliament2 [208]. The final SV calls are additionally annotated with 

SVtyper [209].  

Viola focuses primarily on SV signatures, but in the process, it merges VCF files from 

four SV callers [210]. Their in-house script first merges the SV calls located within 100 

bp (proximity-based merging). Calls called only by single callers are deleted. Then SV 

calls were merged based on confidence intervals shared by genomic coordinates. [210] 

2.4.7 Integrating sample cohorts 

During the 1KGP project, the Structural Variation Analysis Group was among the first to 

employ multiple tools and merge their results. More than that, they had to integrate the 

structural variations from the hundreds of samples on the population scale. [43] 

They were other tools presented that participated in the analysis of 1KGP data, such 

as GenomeSTRip [211]. Another example can be tools for detecting SVs in so-called 

mother–father–child trios – a combination of father, mother, and child genome 

sequencing, which is used to detect de-novo mutations associated with rare diseases. Such 

a tool is CommonLAW [212].  

In phase 3 of the 1KGP, they sequenced 2,504 human genomes. The reads were 

mapped by both BWA [122] and mrsFAST [213]. Then, they used a combination of 9 

tools for SV detection (BreakDancer, Delly, VariationHunter, CNVnator, Read-Depth, 

Genome STRiP, Pindel, MELT, Dinumt) based on various approaches and GenomeStrip 

[211] and other filtering and overlapping to get a final set of 68,818 SVs. [43] 

The phase 1 dataset of 1KGP (1,092 samples) was analyzed with a focus on deletions 

by BreakSeq2, an iteration of the previous version [214], [215]. The authors used a 

combination of 5 CNV detection tools (CNVnator, Delly, Genome STRiP, Pindel, and 

BreakDancer). The TIGRA-SV was used to reassemble contigs spanning breakpoints, 

and AGE [204] was used to align contigs to the deleted regions. Multiple filtering was 

performed to further refine the breakpoints. The main idea of BreakSeq is based on 

mapping reads to the breakpoint sequence junctions, and was extended by breakpoint 

genotyping in BreakSeq2. [214] 
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2.5 Data Preparation for SV detection 

After the sequencing, several steps are done before SV detection. The first step quality 

check of reads followed by trimming. This includes cutting off both sequencing adapters 

and low-quality bases, which are caused by sequencing errors. [216] 

The entrance gate into a wide variety of genomic analyses is mapping reads to a 

reference genome or de-novo genome assembly. Matching DNA sequences to a genome 

is a case of a string-matching problem [217]. Because of both sequencing errors and the 

true variation of an individual sample, the matching algorithm needs to deal with exact 

and approximate string matching issues [218], [219]. The initial hashing-based methods 

were later replaced by methods using the Burrows-Wheeler transformation and Ferragina-

Manzini Index [218]. The most commonly used ones are BWA [122], [220], [221], and 

Bowtie [123]. Both can perform partial alignment called soft-clipping. For specialized 

detection of rearrangements, other aligners may be useful. This can include aligners 

dealing specially with multi-mapping reads [162], [213].  

Removing the PCR duplicates, i.e., multiple reads originating from a single template, 

is a commonly performed task. However, this should be used with caution as methods for 

removing PCR duplicates have difficulties differentiating from natural read duplicates 

and this step also influences the read-depth, used in the read-depth approach of SV 

detection. [216], [222] 

Whole-genome assembly is a much more complicated task than mapping. Several 

strategies using Overlap–layout–consensus or De Bruijn graph are used to create 

continuous stretches of the genome called contigs from overlapping reads. For Illumina 

NGS, Velvet, and SOAPdenovo are commonly used. [223]–[227] 

For the in-silico testing, it is convenient to use artificially created reads. This allows 

the insertion of various genome rearrangements at predefined positions in the genome. 

Art and pIRS are such tools simulating Illumina reads. [228], [229] 

The files used as the output of structural variation detection tools vary and there is 

currently no file defined exactly to store SV information. Commonly used is the BED 

(browser extensible data) file [196]. It is a tabular separated file with three required 

columns: name of a chromosome, start position, and stop position. It is imperative to 

mention that coordinates are 0-based, instead of the usual 1-based system. There can be 

nine additional columns, which are more or less defined freely by each tool. Similar to 

the BED file is BedGraph, with four columns and a required header.  

Also, the VCF (variant call format) files are used [230], but they are designed with 

SNV and short indels in mind. The VCF has multiple header lines and multiple columns 

with content optionally defined in the header. The file is tabularly separated. If VCF is 

used for reporting SVs, the readability is lowered and while the start coordinate is stored 

in the POS column, the end coordinate must be placed into a long string in the INFO 
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column together with other information. Also, various SV tools create VCF files based 

on their own and they are not standardized. [139] 
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3 OBJECTIVES OF THE THESIS 

The purpose of the thesis is to bring novel multidisciplinary approaches to bacterial 

genome analysis of copy number variations. CNVs play an important role in bacteria in 

processes of antibiotic resistance, bacteria adaptation, evolution, and specialization. The 

issue of bacteria drug resistance is present and emerging. Thus, there is a serious need to 

develop tools aimed at the detection of bacterial CNVs.  

Large structural variations are rare in bacteria because of their small and densely 

packed genomes. Thus, the detection of small CNVs is more important. Special features 

of bacterial genomes should be taken into consideration and could theoretically improve 

performance. Multiple bacterial genomes are not annotated. Therefore, the developed 

method should rely merely on sequencing reads, and a reference.  

Developing a standalone method for CNV detection in bacteria is the first objective. 

Incorporating this method into a pipeline is the second objective. The sub-objectives were 

set as follows: 

 

1. Develop a novel method for CNV detection (CNproScan) 

1.1 Using signal-based computational methods  

1.2  Not requiring apriori known genome annotation 

1.3 Targeting bacterial genomes  

1.4 Statistically evaluated and tested 

 

2. Develop a CNV detection pipeline (ProcaryaSV)  

2.1 Targeting bacterial genomes 

2.2 Implementing an efficient merging algorithm  

2.3 Statistically evaluated and tested 

2.4 Enabling the reproducibility and scalability 
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4 THEORETICAL BACKGROUND 

The following chapter describes the theory used in the practical part of the thesis in a 

more detailed way. Implementing this theory earlier would make previous chapters less 

coherent because not all approaches would be given the same level of detail.  

In the practical part of the thesis, I work with two approaches – read-depth and read-

pair. The combination of these two approaches enables to distinguish between the two 

types of duplications, the tandem and interspersed duplications, and their reverse types. 

Thus, these two are described more deeply.  

Furthermore, I approach the topic of CNV detection from the position of outliers 

detection. Hence, I describe the theory of outliers and also the related coverage theory. 

The coverage theory lays the theoretical assumptions about the data distribution of 

sequencing reads along genomic coordinates.  

In the last subchapter, I describe the detailed aspects of the read-pair approach, namely 

the signatures used to distinguish between tandem and interspersed duplications.  

4.1 Read-depth Approach 

As mentioned previously, the read-depth approach uses information about the coverage 

(or read-depth profile) over genomic coordinates. The changes in the coverage point to 

genomic loss or gain, i.e. CNVs. However, this read-depth profile is skewed by various 

biases. Therefore, I describe here a few methods of mitigating these biases.  

4.1.1 GC Bias 

The best-described is bias related to GC-rich and GC-poor regions called GC-bias (or 

coverage bias), which manifests as deviation from the uniform distribution reads across 

the genome. It is necessary to cope with GC and other biases when applying methods 

depending on the coverage, especially the read-depth detection method using a global 

coverage signal without any reference. However, other detection methods are harmed by 

low coverage too. Dealing with coverage bias is not always easy as GC-rich regions are 

placed heterogeneously throughout a genome and they are also correlated with the region 

function. [231]–[233] 

Several technological biases occur at the Illumina platform. Illumina sequencing 

consists of three steps: library preparation, cluster amplification, and sequencing by 

synthesis and bias can be introduced at every step. The Illumina library preparation 

requires the multiplication of genomic material and that includes the PCR, which is a 

primary source of the under-representation of regions with extremely high or low GC 

content [160], [231], [233], [234]. This is likely caused by the lower melting temperatures 

for AT-rich regions and thus their higher fragmentation compared to GC-rich regions 
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[102]. Considerable biases affecting GC-rich regions are also induced later in the routine. 

It is known that high cluster densities on the flow cell suppress the GC-rich reads. Also, 

DNA polymerase plays a role in cluster amplification and sequencing-by-synthesis 

process. [234], [235] 

Firstly, it was observed that the coverage is decreased in GC-poor regions [102]. That 

was because of the relative rarity of GC-rich regions. Only later it was discovered that the 

coverage has a unimodal relationship with GC content [146]. It has been described that it 

is the GC content of the whole fragment, not only the reads, that causes the coverage bias 

[233]. Also, the GC effect is non-linear and two paired samples can have different GC 

curves. Thus, coping with GC bias by comparing two samples should be considered. Two 

approaches are commonly used: binning and smoothing (used in ReadDepth, CNVnator, 

and others).  

The smoothing method is realized commonly by LOESS (locally estimated scatterplot 

smoothing) algorithm. The table of means of the number of reads belonging to the 

windows with a given GC content percentage is calculated. The LOESS then removes the 

local extremes caused by GC bias. [236] 

The binning method for single-sample correction is most commonly used in a form 

defined by Yoon [131]. A similar table to the smoothing method is calculated for every 

GC content percentage (0,1, 2,…100 %) filled with observed coverage values binned into 

windows of a selected size. The formula is defined to correct the read count in the i-th 

window 𝑅𝐶𝑖 

𝑅𝐶𝑖
̅̅ ̅̅̅ = 𝑅𝐶𝑖 ∙

𝑚

𝑚𝑖𝐺𝐶
, (4.1) 

where 𝑚 is the overall median of coverage of all windows, 𝑚𝑖𝐺𝐶 is the median 

coverage value of the same GC content as 𝑅𝐶𝑖. The obligatory part is to define window 

size and the number of GC content percentages. Selection of window size is chosen 

accordingly to the following analysis, but it should be longer than the fragment length to 

produce relevant results. [233] 

4.1.2 Mappability bias 

Another important source of bias is the mappability bias. This bias is not directly 

sequencing-based but originates from the presence of repetitive and other low-complexity 

regions in the genome. The short reads then fall into these repetitive regions without 

sufficient accuracy leading to the multi-mapping reads problem. It demonstrates itself at 

two levels – position selection of multi-mapping reads and the following unevenness of 

coverage. This has a major influence on the coverage signal and downstream analysis 

similar to coverage bias. The multi-mapping problem is usually solved at the level of 

reads alignment and is important to know how the alignment algorithm deals with this 

phenomenon. Several scenarios can happen: multi-mapping reads can be completely 

ignored, only one alignment position is reported, all alignment positions are reported or 
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some more advanced method is applied. Other solutions are at the sequencing level by 

employing longer reads or by sequencing longer fragments and thus creating larger insert 

sizes. Although there is a procedure to deal with the multi-mapping problem by aligner, 

it is still useful to deal with it at the coverage signal level by applying mappability data. 

[160], [232] 

The mappability bias is solved after the GC bias [237]. Multiple methods have been 

developed. ReadDepth normalizes mappability by multiplying coverage in bins by the 

inverse of the mappability in that bin [174]. CNAseg employs discrete wavelet transform 

to smooth coverage values in regions of low mappability [172]. Another approach is 

defined by Magi [127] similar to the previous GC bias normalization formula defined as 

𝑅𝐶𝑖
̅̅ ̅̅̅ = 𝑅𝐶𝑖 ∙

𝑚

𝑚𝑖𝑀𝐴𝑃
, (4.2) 

where 𝑚𝑖𝑀𝐴𝑃 is the median coverage of windows with the same mappability score as 

the 𝑅𝐶𝑖 window and 𝑚 is the median coverage of all windows. The key element is the 

mappability score.  

4.1.3 Replication origin bias 

A specialty of prokaryotes is their circular genomes and their role in the bacterial cell 

cycle. In the middle stage of the cycle (C period) the chromosome is replicated before the 

D period when the cell is divided. DNA replication begins at the origin of replication 

called oriC. oriC consists of several conserved repetitions recognized by the DnaA 

protein and a high AT-rich region (DUE). Then the replication goes both ways around 

the circumference and it is terminated at the region opposite to oriC called ter. The 

majority of bacteria have a single oriC, however, there are some with more than a single 

oriC. [238], [239] 

During the process of DNA isolation, there are millions of cells in various stages and 

the sequencing covers all their genomic material. As the replication starts at oriC and 

proceeds further, there is more genomic DNA closer to the oriC, that has already been 

replicated at the moment of DNA isolation. This has an impact on the read-depth profile. 

[176] 

Wu proposed the method to normalize replication origin bias based on smoothing 

using generalized additive models. They use Gaussian or Poisson model to model the 

dependence of read-depth in bins on the distance to the replication origin. [176] 

4.1.4 Coverage Theory 

The general definition of coverage could be stated as: “The theoretical coverage is the 

average number of times that each nucleotide is expected to be sequenced given a certain 

number of reads with specified length under the assumption that reads are randomly 

distributed across the genome” [232]. Also, the coverage can be understood as a 

redundancy of information to suppress sequencing errors. [232] 
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The earliest theories regarding coverage were laid back at the beginning of sequencing 

methods when scientists were interested in calculating how many clones are necessary to 

have a certain amount of overlaps. The earliest model is called Clarke and Carbon formula 

(1976) and was later embodied into the Lander-Waterman theory (1988). The coverage 

was defined as: 

𝐶 = 𝐿 × 𝑁 𝐺⁄ , 
(4.3) 

where L is the length of clone insert in bp, N is the number of clones and G is the 

length of the haploid genome [134]. Importantly, the G can also be understood as the size 

of the genomic window or bin.  

This theory was later extended to filtered DNA sequencing libraries and took into 

consideration discontinuities and position-based sampling biases [133]. However, a 

model published a year later was thought for double-strand sequencing. The equation of 

the expected number of bases that are covered by at least one read has a form: 

𝐸〈𝐶〉 = 𝛾 − ∑ [(1 −
𝑓(𝑥)

𝜋
) (1 −

𝑟(𝑥)

𝜋−𝑓(𝑥)
)]

𝑛
𝛾
𝑥=1 , (4.4) 

where 𝛾 is the genomic target (genome length), 𝜋 = 𝜆 − 𝜏 + 1 is the number of 

possible insert placements (𝜆 reads length, 𝜏 insert size), n number of inserts, f(x) and r(x) 

are the number of ways forward and reverse reads, respectively, can cover a random 

position x. [132] 

However, for large genomes 𝛾, the expected value of coverage converges to the 

Clarke and Carbon formula: 

𝐸〈𝐶〉

𝛾
~1 − [1 −

𝜆

𝛾
]

2𝑛

~1 − 𝑒𝑥𝑝 (−
2𝑛𝜆

𝛾
), (4.5) 

with n number of inserts and 𝜆 reads length. [132]  

The general assumption is that reads are randomly and independently sampled with 

the same probability everywhere across the genome [131]. Under this assumption, it is 

usually stated that the number of reads mapped into the genomic region follows the 

Poisson distribution Pois (𝜆) 

𝑓(𝑥 | 𝜆) =
𝜆𝑥𝑒−𝜆

𝑥!
, (4.6) 

with x as the number of reads covering a given site and 𝜆 = 𝐿𝑁/𝐺 from Lander-

Waterman theory [131]. However, there was overdispersion observed and reported by 

Yoon [131] and Bentley [163]. The overdispersion is the ratio between mean µ and 

variance σ2 and denotes that variance is greater than assumed by the model [171]. The 

reasons behind this overdispersed Poisson distribution might be the existence of copy 

number variations, the GC bias (correlation between coverage and GC content), and the 

mappability bias (correlation between coverage and region mappability) [127]. Removing 

the CNV regions reduces the index of dispersion for real samples [127]. Alternatively, 

the overdispersion can originate from another distribution with different parameters. 
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Often, the Poisson parameter is modeled by a gamma distribution (Gamma(α, β)) 

resulting in negative binomial distribution with two parameters NB(r, p). Or, log-normal 

distribution can be used to model overdispersion (log-normal(µ, σ)).  

Looking at the whole genome context, we could employ the central limit theorem 

[131]. The central limit theorem defines a sampling distribution of the mean, based on 

random samples from a population with a mean µ and variance σ2, with new parameters 

µ𝑠 = µ and σ𝑠 = σ √𝑛⁄ , where n is the number of samples. The sampling distribution 

then follows the Normal distribution (µ𝑠 , 𝜎𝑠): 

𝑓(𝑥 | µ, σ) =
1

σ√2𝜋
𝑒

(𝑥−µ)2

2𝜎2 . (4.7) 

The central limit theorem validity depends on the sample size n and the distribution 

is normal when the n is large enough. The commonly stated size of n is 30. Other 

conditions are that samples are independent and randomly distributed and that the 

population has a finite variance. The theorem is useful because implies the applicability 

of tools requiring normal distribution to data under other distributions if certain conditions 

are fulfilled. For Poisson, it means that Pois (𝜆) with large 𝜆 will be approximately normal 

with both mean and variance equal to 𝜆.  

The central limit theorem approximates the cumulative distribution function of 

Poisson distribution with normal with this formula 

𝐹𝜆(𝑥) ≈ ϕ((𝑥 + 0.5 − 𝜆) √𝜆⁄ ), (4.8) 

where ϕ is the CDF of the standard Normal distribution N(µ=0,σ=1) and 0.5 as 

continuity correction.  

More accurate is the non-linear Wilson-Hilferty approximation of argument x [240] 

defined as 

𝐹𝜆(𝑥) ≈ ϕ(𝑐 − µ 𝜎⁄ ), (4.9) 

 with variables defined hereafter: 

𝑐 = (𝜆 (1 + 𝑥)⁄ )1 3⁄ , (4.10) 

µ = 1 − 1 (9𝑥 + 9)⁄ , (4.11) 

𝜎 = 1 3√(1 + 𝑥)⁄ , (4.12) 

where 𝜆 is the Poisson distribution parameter and 𝑥 the argument.  

Concluding the theory, various tools differ in the view of distribution nature. The 

Gaussian distribution is used in multiple CNV detection tools, e.g. Magi [127], Sequana 

[175], and JointSLM [156]. Some employ the Poisson distribution and others multiple 

models of the mixed distributions (e.g. negative-binomial, beta-binomial). The idea of 

approximating coverage with normal distribution is embodied in the window approach to 

read-depth, which divides the genome into distinctive regions. Multiple authors based 
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their algorithms on the assumption that in a window of 100bp with coverage at 30×, the 

distribution of read counts is well approximated by normal distribution [131], [156].  

4.1.5 Outliers Detection 

The initial approach to my CNV detection was based on the MATLAB peaks detection 

function [241]. Later, I approached the CNV detection from the assumption that the CNVs 

are outliers in the read depth signal. Thus, given the theoretical assumptions, I approached 

the CNV detection problem as the one-class classification, more specifically as the outlier 

detection.  

The outlier is “an observation which appears to be inconsistent with the remainder of 

the set of data”[242]. Alternatively, the outlier is “an observation which deviates so much 

from other observations as to arouse suspicions that it was generated by a different 

mechanism” [243].  

There are two most popular models of outliers generation. The first one is a slippage 

model. This model assumes that a random sample of n observations is mixed with some 

portion of r observations from a different distribution. This further divides into the 

location-shift model, where r observations originate from distribution N(µ+a,σ2), and the 

scale-shift model, where they originate from distribution N(µ,bσ2). Thus, this model can 

generate up to r true outliers. The second model is a mixture model, where original 

observations come from distribution G1, and the outliers come from G2. All observations 

then come from a mixture distribution defined as 

(1 − 𝑝)𝐺1 + 𝑝𝐺2, (4.13) 

where p is a constant in the range 0-1. In the mixture model, the number of outliers 

from G2 is a random variable depending on probability p. If p=0 there are no outliers, and 

vice versa. [242] 

Regarding outliers, we can talk about the labeling of potential outliers and outliers 

identification, to prove if the assumed outliers are real outliers. The most used graphical 

tool to label outliers is a boxplot. In a large dataset, three-quarters of observations should 

lie in between Q1 and Q3 quartiles and the remaining two quarters under and above Q1 

and Q3. The central line is often a median, a more robust measure against outliers 

compared to the mean. The fences are 1.5(Q3-Q1) above and under Q3 and Q1. The 

difference between Q3-Q1 is called the interquartile range (IQR). Observations beyond 

these fences are referred to as outliers, depending on the approach. Similarly, the 

histogram can be used to observe possible outliers. [242], [244] 

Z-score is a common way to screen observations for outliers. If X is normally 

distributed as N(µ,σ2), then Z=(X- µ)/ σ is distributed as N(0,1). A popular rule is to label 

observations with a Z-score higher than 3 as outliers. However, it has been proven that 

the absolute value of the Z-score from n observations is at most (n − 1)/√𝑛 . [242] 



 66 

This limitation is overcome in modified Z-scores defined as M and using the median 

absolute deviation defined as MAD: 

𝑀𝑖 =
0.6745(𝑥𝑖−�̃�)

𝑀𝐴𝐷
, (4.14) 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖 − �̃�|), (4.15) 

, where the sample mean is replaced by the sample median �̃�. The MAD is a variation 

of average absolute deviation and is even more robust against extremes in the tails. The 

constant 0.6745 is necessary because 𝐸(𝑀𝐴𝐷) = 0.6745𝜎 for large n. The observations 

with the absolute value of modified Z-score M>3.5 are labeled as outliers. The modified 

Z-score is a robust measure to identify obvious outliers. [242], [244] 

In the past, the Z-score statistic was used from the earliest use of the coverage 

histogram [245] or later in Sequana [175].  

Regarding the statistical test for outliers, there are multiple approaches. One tests for 

a single outlier and then iterates with reduced observation space until the test statistic is 

not significant. Another approach guesses the number and location of potential outliers r 

and then test if these are true outliers. A more effective approach assumes the number of 

candidate outliers r and then identifies the true outlier in this subset.  

To test for exactly one outlier, the extreme studentized deviate (ESD) statistical test 

is suitable. It is also known as the Grubbs test or maximum normalized residual test. The 

xj is identified as an outlier if the value Ts defined in the equation is higher than a formula  

𝑇𝑆 = max
𝑖

{|𝑥𝑖 − �̅�| 𝑠𝑑⁄ | 𝑖 = 1, … , 𝑛}, (4.16) 

 

𝑇𝑆 >
𝑛−1

√𝑛
√

(𝑡𝛼 2𝑛⁄ ,𝑛−2)
2

𝑛−2+(𝑡𝛼 2𝑛⁄ ,𝑛−2)
2, (4.17) 

where 𝑡𝛼 2𝑛⁄ ,𝑛−2 is a critical value of t distribution with n-2 degrees of freedom and 

α/2n level of significance. For the one-sided test, the significance level is α/n. Then, the 

outlier xj is the observation that leads to the largest |𝑥𝑖 − �̅�| 𝑠𝑑⁄ , where �̅� is the sample 

mean and sd is the sample standard deviation. If Ts is lower than the critical value, there 

is no identified outlier. Alternatively, if we choose the xj as an outlier, we can repeat the 

process with the removed observation xj. The two-sided equation can be modified into 

two one-sided tests to test whether a minimum or maximum value is an outlier. [242], 

[244] 

The Lr test, also known as the Tietjen-Moore test, enables to test for multiple r outliers 

at once. The test statistic has two one-sided forms for detecting r upper (4.18) or r lower 

outliers (4.19), and also a two-sided formula (4.20), defined as 

𝐿𝑟_𝑢𝑝𝑝𝑒𝑟 =
∑ (𝑥𝑖 − �̅�𝑟)2𝑛−𝑟

𝑖=1

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

 (4.18) 

 



 67 

𝐿𝑟_𝑙𝑜𝑤𝑒𝑟 =
∑ (𝑥𝑖 − �̅�𝑟)2𝑛

𝑖=𝑟+1

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

 (4.19) 

𝐿𝑟 =
∑ (𝑧𝑖 − 𝑧�̅�)2𝑛−𝑟

𝑖=1

∑ (𝑧𝑖 − 𝑧̅)2𝑛
𝑖=1

 (4.20) 

where the �̅� is a sample mean of the whole dataset and �̅�𝑟 is a sample mean of r 

minimal or maximal observations removed depending on the formula used. In the two-

sided formula (XX), the absolute residuals of observations are calculated as 𝑟𝑖 = |𝑥𝑖 − �̅�| 

and then sorted ascendingly into 𝑧𝑖. Then, the �̅�𝑟 is a sample mean with removed r largest 

observations. The value of Lr is between 0 and 1. If Lr is less than a critical value then the 

r outliers are identified as outliers. However, the Lr test is susceptible to false positives 

when there are false outliers among the r candidates. [242], [244] 

The most attractive approach is the generalized extreme studentized deviate (GESD) 

statistical test. This enables testing up to r candidate outliers. It calculates the 𝑅𝑖 =

max (|𝑥𝑖 − �̅�|) 𝑠𝑑⁄  for all candidate outliers i=(1,..,r) but in each step i it finds the 

observation that maximizes the |𝑥𝑖 − �̅�| and removes this observation from the sample 

size. The next iteration is on an n-1 smaller dataset. Followingly, compute the r critical 

values λi by the formula 

𝜆𝑖 =
(𝑛−𝑖)𝑡𝑝,𝑛−𝑖−1

√(𝑛−𝑖−1+𝑡𝑝,𝑛−𝑖−1
2 )(𝑛−𝑖+1)

, (4.21) 

 

where tp,ν is the 100p percentage point from the t distribution with v degrees of 

freedom and the p is 𝑝 = 1 − [𝛼 2(𝑛 − 𝑖 + 1)⁄ ]. The important aspect is selecting the r. 

Selecting a large r than needed increases computation time, but does not affect the 

detection of false positives. The r represents the upper bound of the number of outliers. It 

does not require the location of outliers. Also, it performs very well under conditions 

where previously presented methods fail. Furthermore, it is suitable for large samples. 

[242], [244] 

4.2 Read-pair approach 

The second method used is the read-pair approach. The read-pair approach can 

independently detect a wide spectrum of SV types. It employs the information from the 

alignment of pair-end reads such as the genomic position, distance between read pair, and 

their orientation to each other.  

4.2.1 Detected signatures 

Soylev recently presented rules to distinguish between two types of duplications, tandem 

and interspersed, and their direct and inverted (or indirect) forms [115]. The signature of 

reads from tandemly duplicated segments includes lower insert size (as reads are mapping 

closer than expected) and reversed both orientation and order of the reads (upstream read 
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location mapping to the reverse and downstream read location mapping to the forward, 

i.e. -/+).  

The interspersed duplication signatures include increased insert size and reads 

mapping to the opposing strands but with reversed order (+/- and -/+). Another case of 

duplication is inverted (or indirect) duplication, which shares signatures with inversion. 

Contrary, direct duplication (unchanged orientation), shares a signature with deletion. 

Thus, similarities make detection challenging and that is why the read-pair approach is 

used to validate read-depth results which can distinguish between duplication and 

deletion clearly. [115] 

Interestingly, the combination of read-depth and read-pair approaches could discern 

between homozygous and heterozygous deletion. For homozygous, where both alleles are 

missing, reads are mapped farther apart and there is zero coverage. For heterozygous, 

where only one allele is missing, there is lower coverage compared to baseline, but reads 

are spanned normally caused they originate from the no-event region. [117] 

The signature rules from Soylev are the following [115]. The signature of deletion is 

defined as reads mapped to the expected strands (+/-), plus strand for the first mate, and 

minus strand for the second mate. But the insert size is higher than the rest of the 

sequencing library.  

The signature of direct tandem duplication includes both orientations of mapped mate 

reads, (+/-) and (-/+), but the insert size is lower than expected. If the reads were both 

mapped to the same strand, (+/+ or -/-), it would point to the indirect duplication.  

The signature of interspersed inversed duplication is defined as both reads mapped to 

the same strand (+/+ or -/-) and with increased insert size.  

The signature of interspersed direct duplication is defined as reads mapped to opposite 

strands in both ways (+/- or -/+) and with increased insert size.  

4.2.2 Circular genome correction 

The circular genome correction serves to tweak the reality that the reference genome for 

alignment is linearly represented, while the real bacterial genome is circular. Thus, the 

distances between read-pairs have to be corrected. However, this correction only affects 

the extremities, which are caused by the circular to linear conversion, and not the majority 

of concordant pair-reads. Values of insert size (reported as TLEN in BAM format) which 

are higher than half the reference genome's length are recalculated so that the genome 

length and pair-read length are subtracted (4.22). Vice versa, for negative values lower 

than half the reference genome's length, the genome length, and pair-reads length are 

added (4.23).  

𝑇𝐿𝐸𝑁𝑛𝑒𝑤(+) = 𝑇𝐿𝐸𝑁𝑜𝑙𝑑 − 2 × 𝑅𝑒𝑎𝑑𝐿𝑒𝑛𝑔𝑡ℎ − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐿𝑒𝑛𝑔𝑡ℎ 
(4.22) 

𝑇𝐿𝐸𝑁𝑛𝑒𝑤(−) = 𝑇𝐿𝐸𝑁𝑜𝑙𝑑 + 2 × 𝑅𝑒𝑎𝑑𝐿𝑒𝑛𝑔𝑡ℎ + 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐿𝑒𝑛𝑔𝑡ℎ 
(4.23) 
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The illustration of the reality between circular and linear coordinates in the reference 

genome is in Figure 4.1. Notice that the real distance in the circular representation does 

not correspond to the distance in the linear transformation.  

  

 

 

  

Figure 4.1 – Depiction of circular genome distance 
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5 CNPROSCAN 

5.1 Merging the detection approaches 

The earliest tools for CNV detection used only a single approach but soon there were 

released tools combining multiple approaches. This combination proved to be very useful 

as each approach is limited in its detection abilities. While for detecting large SVs the 

pair-end method is the most applicable, the detection of CNVs can not be done without 

the read-depth method. All methods focused on CNVs employ read-depth information. 

This information can be extended by other approaches as was presented that methods 

combining read-depth with split-read or read-pair methods have both sensitivity and 

specificity improved for small CNVs [160]. The majority of CNV detection tools for 

human genomes rely on paired samples, and if no control reference is available, pooling 

even the observed samples together can serve as the reference. Thus, I decided to merge 

the read-depth approach with read-pair information, because this enables us to narrow the 

subtype of duplications [115].  

5.2 The Algorithm Design 

The CNproScan uses the ‘sandwich’ design with partial blocks stacked vertically, as 

illustrated in Figure 5.1. The program consists of several main blocks. The first one is 

coverage normalization, the second is outliers detection to determine CNVs, the third is 

the application of the read-pair approach and signature rules to narrow the CNV subtype 

and the last is formatting the output. Each block is here described more from the 

implementation aspect. [246] 

5.2.1 Data preparation 

The preparation of sequencing reads before the CNproScan's detection of CNVs is carried 

out by the usual procedure. It is useful to analyze library quality metrics by FastQC[247] 

or fastp[248], as these are the most used tools. Fastp is an all-in-one tool for quality 

control, adapter, and quality score trimming. Other frequent tools for trimming are Trim 

Galore and cutadapt [249].  

Then, the reads are mapped by the aligner. The BWA-MEM was used in the testing 

[122], [220]. BWA places the multi-mapping equally scored reads randomly but with an 

alignment score of zero. Other locations are reported in the XA tag defined by the 

SAM/BAM file format [250].  
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The samtools package is used to handle the rest of the work [250]. The alignment is 

sorted and written as a binary BAM file. The coverage signal is obtained by the command 

"samtools depth" with parameter -a which includes zero coverage positions.  

For the optional mappability correction, the required genome mappability file is 

obtained from GenMap [251]. The settings -K 30 -E 2, meaning the size of unique k-mers 

and allowed mismatches, was generally used for all analysis.  

If the user is interested in the correction of the origin of replication bias, then, the 

location or multiple locations of oriC is necessary. This information can be searched for 

in the DoriC database [239]. The record from DoriC must match with the corresponding 

genome reference used for alignment.  

 

 

Figure 5.1 – CNproScan workflow 
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5.2.2 Data used 

In the chapter on algorithm design, several real and artificial samples were used in the 

testing. The real data are also used in the chapter ProcaryaSV. The overview of the 

datasets used in the discussion of implementation is in Table 5.1.  

Table 5.1 – Overview of used real datasets 

Organism Accessory ID No. of samples Citation 

Staphylococcus aureus PRJNA497094 92 [252] 

Escherichia coli DRA005229 58 [253] 

Lactobacillus casei PRJNA342061 50 [254] 

Klebsiella pneumoniae PRJNA515630 48 [255] 

Alternatively, the artificial dataset of 30 simulated and induced CNVs was used taken 

from benchmarking the CNOGpro [152], which is described in the chapter Benchmarking 

on the simulated data.  

5.2.3 Main function 

The CNproScan was developed initially as a set of MATLAB functions and during the 

peer review, it was rewritten into R. Both versions share the same methodology. Recently, 

the R version was updated to version 1.0, and these modifications are presented in a 

separate chapter. Both versions are hosted in GitHub repositories (Table 5.2). All 

normalizations are optional, but the GC and the mappability normalization are 

recommended as commonly used. 

Table 5.2 – CNproScan GitHub repositories 

R version https://github.com/robinjugas/CNproScan 

MATLAB version https://github.com/robinjugas/CNproScanMatlab 

 

5.2.4 GC Normalization 

The GC normalization is done with the use of the modified Yoon approach (4.1). The 

normalization requires to use of a sliding window. Benjamini et Speed notes that a 

window size of at least fragment length should be used [233]. Yoon ties the GC 

normalization and read-depth approach as it is common with the use of a 100bp 

window[131]. The CNproScan does not use a window approach for CNV detection, but 

it relies on a single-base resolution of the coverage signal. However, the normalization is 

done in a window manner as the single-base approach is computationally demanding and 

there is no strong rationalization as GC content has to be calculated over a certain region. 

Originally, I applied the normalization to the single bases but applying it in a window 
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brings a performance bonus and provides the same results.  

The table of GC content percentage values is based on 50 bp windows and their GC 

content. This table is filled with read-depth values of the corresponding GC value. Then, 

the median values are used as prescribed by Yoon. Several exceptions can happen which 

are not described by Yoon. The windows of high or low GC content can have zero or very 

low coverage leading to division by zero later in the formula. Also, if the median coverage 

of given GC content (𝑚𝑖𝐺𝐶) is around 1, then the normalized values are extremely high 

and this creates false spikes in the coverage signal. There are three rules to suppress these 

exceptions without inducing such noise. Furthermore, I added the mean value that can be 

used instead of the median. First, there is no normalization if the median coverage of the 

GC is zero or the base coverage is zero. Also, if both the median and mean are less than 

1, the coverage is not corrected. Alternatively, if the median is less or equal to 1 and the 

mean is higher than 1, the mean value is then used instead. The median is used if is higher 

than 1. These rules avoid division by zero and by a number less than 1 which induces 

noise.  

The dependence of read depth on the GC content is in Figure 5.2. In this figure for E. 

coli, the relation between the two variables can be clearly seen. With increasing GC 

content, the observed read depth is decreasing. The average GC content in E. coli is 

around 50%. The normalization removed this relation completely. The Spearman 

correlation coefficient and p-values are in Table 5.3. The visible relation is supported by 

Spearman’s Rho of -0.9 denoting negative relation. The results of the other three samples 

are in Supplementary Table 2. The same conclusion is valid for S. aureus and L. casei, 

however, the K. pneumoniae sample has a weaker correlation with Spearman’s Rho of -

0.3017. For all normalized samples, the correlation was not statically significant, which 

means the normalization was successful. The plots of differences between raw and 

normalized coverage signals are in Supplementary Figures B1-B4. 

 

Figure 5.2 – Dependency of read-depth on GC content for raw and normalized values 
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Table 5.3 – Spearman correlation test for GC normalization (E. coli) 

Condition Rho P-value Significant 

Raw -0.971 8.395e-37 Yes 

Normalized 0.222 0.093 No 

5.2.5 Mappability Normalization 

The mappability normalization is based on the Magi approach and formula presented 

earlier (4.2) [127]. The approach is very similar to GC normalization. We use mappability 

scores calculated from an external tool named GenMap [251]. GenMap focus on the 

problem of finding the occurrence of a substring with length k in the sequence while 

allowing some errors e, when the sequence here is the reference genome sequence. It 

returns a mappability score, defined as the inverse of the occurrence frequency, of 1 for 

a unique substring and a mappability score close to 0 for repetitive substrings. GenMap 

was chosen because it is accessible as a conda package, based on the paper it outperforms 

previously published competing packages, is exact and non-heuristic, and enables the 

choice of a number of errors. The k=30 and e=2 were used by authors to perform analysis 

on Klebsiella pn. Thus, we take over the same settings. [251], [256] 

Instead of the GC table, the mappability table is constructed where each row 

corresponds to a mappability score, and the columns are observed coverage values. The 

window is not set up, the coverage values are calculated from regions defined in the 

bedgraph formatted file from the GenMap tool. The normalized coverage value is then 

computed as previously, each window has its values multiplied by the division of median 

coverage and median coverage of windows of the same mappability score.  

The dependence between the two variables, the read depth and mappability score for 

E. coli is plotted in Figure 5.3 and correlation coefficients are in Table 5.4 and 

Supplementary Table 3. The raw points are randomly scattered, while the normalized 

coverage leads to a slightly higher Spearman’s Rho, both insignificant. Only the S.aureus 

sample had a statistically significant correlation of coverage and mappability and this 

correlation was reduced successfully by normalization. The plots of differences between 

raw and normalized coverage signals are in Supplementary Figures C1-C4. 
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Table 5.4 – Spearman correlation test for mappability normalization (E. coli) 

Condition Rho P-value Significant 

Raw -0.1582 0.5176 No 

Normalized -0.2023 0.4061 No 

 

5.2.6 Replication origin bias normalization 

The replication origin bias is normalized by our approach, which is based on the 

previously presented principles for GC and mappability normalization. The genome is 

binned into 100bp windows similarly to the GC normalization. Whether the bias is 

corrected depends on the user and the result of the Spearman correlation test p-value.  

Firstly, it is required to remove any outliers. It is because the distance to oriC is 

symmetrical and deletion or duplication on one side of the symmetry could completely 

deflect the normalization of the regions with the same distance to the replication origin. 

The outliers are removed using the 1.5 times IQR (interquartile range) rule on both tails. 

Then, the distance to oriC is calculated in windows of 100 bp. The circular genome 

correction is applied so that the minimum value of all possible constellations is chosen. 

The important parameter is the level of rounding. This parameter impacts how many 

windows are taken together in estimating the median read depth of a certain distance to 

oriC. Rounding to thousands means that approximately ten 100bp windows on each side 

are taken together, rounding to tens of thousand means a hundred windows are taken 

together. The table of values of oriC distances and median read depths is constructed. 

Importantly, the Spearman correlation value is computed between the oriC distances and 

estimated read depth medians. The p-value is calculated for the alternative hypothesis that 

Spearman’s correlation coefficient Rho (-1,1) is different from zero. The normalization 

is further applied if the p-value of this test is less than the alpha value of 0.05. The p-

Figure 5.3 – Dependency of read-depth on mappability score for raw and normalized values 
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values are computed via the asymptotic approximation, which means that they depended 

on the number of oriC distance values and will likely be less than the alpha level for the 

lower rounding level. However, it was observed that higher rounding is more robust, and 

rounding to tens of thousand is applied. The replication origin bias is then normalized by 

the formula 

𝑅𝐶𝑖
̅̅ ̅̅̅ = 𝑅𝐶𝑖 ∙

𝑚

𝑚𝑖𝑂𝑅𝐼𝐶𝑑𝑖𝑠𝑡
, 

(5.1) 

where 𝑚 stands for the median value of read-depth of all windows and 𝑚𝑖𝑂𝑅𝐼𝐶𝑑𝑖𝑠𝑡 for 

the median value of the windows with the same oriC distance.  

The information about the genomic position of replication origin is accessible in the 

DoriC database [239]. If the oriC normalization is intended, it is useful to check if there 

is a record in DoriC for the selected genome reference or choose the different one.  

The oriC position for E. coli was set up at 3923657bp. As in the mappability case, the 

scatter plots (Figure 5.4) of dependency look similar for E. coli and K. pneumoniae. The 

correlations are in Table 5.5, and Supplementary Table 4 for other samples. The S. aureus 

and L. casei have both more visible negative correlations with coefficients of -0.82 and -

0.93 respectively, while E.coli has a correlation coefficient of 0.23 and K. pneumoniae -

0.25. Fully removing the bias was not always successful, as all K. pneumoniae, S. aureus, 

and L.casei have significant p-values even for the normalized condition. Only E.coli was 

successfully normalized. The plots of differences between raw and normalized coverage 

signals are in Supplementary Figures D1-D4. 

 

Table 5.5 – Spearman correlation test for replication bias normalization (E. coli) 

Condition Rho P-value Significant 

Raw 0.2358 0.0007 Yes 

Normalized 0.0902 0.2037 No 

 

Figure 5.4 – Dependency of read-depth on oriC distance for raw and normalized values 
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5.2.7 Read depth normality distribution 

The underlying theory behind the applicability of the outliers detection algorithm is that 

data are somewhat normally distributed. Here, the Q-Q plot and histograms of both 

artificial and selected real samples are shown.  

Firstly, the Q-Q plots of artificial samples are in Supplementary Figure A1. The four 

samples are constructed in four various mean coverages (10×, 20×, 100×, 200×) and with 

or without artificially imputed CNVs. The dataset normality is assumed from the linearity 

of data along the normal distribution line. Ideally, the dataset and line should overlap. 

Here, we can see how CNVs create the tails on both sides of otherwise normally 

distributed coverage. From the coverage value of 100× in the sample without CNV we 

can see the visible drop created by zero or close to zero values of coverage. This is induced 

most likely by the reads simulator and also by the fact that the two previous coverage 

values are very close to zero. For higher coverages, there is almost no upper tail in the no 

CNV samples. On the opposite side, there are upper tails formed by induced duplications 

and more visible lower tails induced by deletions. However, a large part of the samples is 

normally distributed. 

Similarly, the histograms are plotted in Supplementary Figure A2, together with a 

normal distribution bell curve with parameters N(µ,σ2) taken from the dataset statistics. 

We can see how for lower coverages the normal distribution does not fit. The sample 

histograms are too narrow. The histogram is widened by the presence of CNVs as 

displayed in the sample of 20× coverage with CNVs. The no CNVs samples of 100× and 

200× fit normal distribution perfectly. While for samples with induced CNVs, the mean 

and variance of the normal distribution curve were influenced by them, and the “peak” is 

too narrow.  

A different situation is for real datasets. Every sequencing organism has its specifics. 

In Q-Q plots in Supplementary Figure A3, there are raw coverage values on the left side, 

and on the right side, there are coverage values with detected and removed CNV values. 

The CNproScan was used. Firstly, the L. casei was a specific sample with almost no 

CNVs. This is more prominently visible in the histogram in Supplementary Figure A4. 

Other samples with CNVs removed fit the normal distribution more. Contrary to L. casei, 

K. pneumoniae has a specific shape created by the presence of large deletions and 

duplications. It is important to note that the selection of reference genome plays a huge 

role in the coverage profile. The reference used for K. pneumoniae is specific because is 

composed of multiple substrains.  

The histograms in Supplementary Figures A2 and A4 show how samples can fit 

normal distributions both with and without CNVs. The differences are again L. casei and 

K. pneumoniae. However, with CNVs removed the K. pneumoniae fits normal 

distribution very well. 
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5.2.8 Outliers as CNV candidates 

The normalized coverage signal is sent into the outliers analysis. Firstly, zero coverage is 

apriori considered as deletions and labeled separately. This also removes part of the lower 

tail of coverage distribution. The other upper tail is being removed by outlier detection. 

For this task, the CNproScan employs the GESD outlier detection algorithm described 

before. As this algorithm requires the upper bound of the suspected outliers. To serve a 

robust estimation of this upper bound, the modified Z-score outliers detection is used and 

values with a modified Z-score above 3.5 are labeled as candidate outliers. This usually 

leaves a large number of candidates, meaning several thousand and e.g., more than ten 

thousand candidates for real Klebsiella pneumoniae samples.  

To reduce the performance drawback of testing thousands of values in a for-cycle, the 

GESD testing is done in a parallel way. This was possible because the task is possible to 

parallelize. This is done in the R version with the use of R packages parallel, doParallel, 

and foreach. Simply done, the whole genome is divided into n sections which are tested 

separately and parallel. The argument cores in R main function serve as the definition of 

the number n. After each partial segment is done, the results, which are genomic positions 

of significantly large coverage values, are merged into a single vector. 

In the Matlab version, there is a parallelization of computing multiple samples at once 

through a script paralell_run_CNproScan.  

More changes are made in the updated R version 1.0. Outliers from both tails are 

removed first with 3 times interquartile-range rule (anything beyond this value is labeled 

as an initial outlier). This tweak reduces the search space for the computationally 

demanding GESD procedure and also increases slightly the sensitivity.  

The results are post-processed. The vector of outliers is sorted and the gaps between 

outliers are detected using the lagged differences function. Then, depending on the 

parameter peakDistanceThreshold, which is set up to 20bp, the adjacent outliers closer 

than 20bp are merged into consecutive segments. These serve as a basis for CNV events.  

In Figure 5.5 the results of outliers detection are displayed for the artificial genome. 

The details of the creation of the artificial genome dataset are described later in the chapter 

Benchmarking on simulated data. The zero coverage values are removed first (in red). 

The candidate outliers from the modified Z-score method are in blue and multiple of them 

are overlapped with blue as they were confirmed by the GESD outliers test.  



 79 

 

5.2.9 Extending CNV boundaries 

Because of the nature of outliers detection, only the most significant parts of CNVs are 

uncovered, i.e. for duplications, only the peaks are labeled yet. To extend the borders of 

the CNV down to the baseline, the slope of a line is used. The line is given as a coverage 

region. The slope is calculated as 𝑚 =
𝑦2−𝑦1

𝑥2−𝑥1
 and the distance between x-axis values 𝑥2 −

𝑥1 is defined by a specified step (11 bp, optional). The slope is calculated gradually on 

both ends of the peak until there is a change in the numerical sign for the value of slope 

m. If the change of slope is detected x-times (x defined as 5, optional), then it is considered 

as the CNV’s border. The updated version adds the condition of reaching the baseline 

defined as the average of the coverage. A detail of one CNV with extended boundaries is 

plotted in Figure 5.6. Noticed how the whole depth of CNV is detected compared to the 

Figure 5.5 – Detecting outliers in artificial genome 
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previous Figure 5.5 (third peak from the end). 

 

5.2.10  Read-pair information 

Since CNproScan detects solely CNVs, I choose only a few signatures to use from the 

read-pair approach. The features of deletion, tandem duplication, and interspersed 

duplication are targeted. The signatures are as defined in Soylev’s work [115]. 

Contrary to other approaches which merge the two pieces of information, the read-

pair approach helps to validate and specify the CNV events detected from the read-depth 

approach. Both approaches are not equal, rather the read-pair information is subjugated 

to the main read-depth information. This is because as mentioned earlier, certain 

signatures are not exclusive, and specifically direct duplication signature is the same as a 

deletion signature. Because of this reality, the read-pair approach is subjugated to the 

read-depth approach which can distinguish between duplication and deletion very clearly.  

The usual approach is to cluster together neighboring signatures and assign an SV 

type to them. Here, in CNproScan I search for outliers in the signatures because the 

distribution of fragment sizes in a library is Gaussian and the detected signature is usually 

largely distant from the normal state. The outliers are defined on a simple rule of 1.5IQR, 

which means that insert sizes larger than the sum of the upper Q3 quartile and 1.5 times 

the interquartile range are labeled as an outlier.  

Figure 5.6 – Detail on extending the CNV boundaries 
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Furthermore, the features are searched only in the regions of already detected CNVs 

and not genome-wide. This reduces the computational time. The genomic regions are 

scanned inside the detected CNV boundaries extended by the insert size on both ends. 

The decision of which SV subtype will be chosen is done by selecting the most prevalent 

signature inside the region.  

The detection of discordant reads uses the fields defined in the SAM/BAM format 

[230], [250], mainly TLEN (Template length), and bitwise FLAG, which contains 

information about the read`s relative orientation, etc. In the R version, packages 

Rsamtools, GenomicRanges, and IRanges were used to access the BAM file structure. In 

the Matlab version, the bamread function from the Bioinformatics Toolbox was used.  

As already mentioned, the BAM is scanned only in the regions of detected CNVs. 

The boundaries are defined as the start and end of CNV’s coordinates plus/minus the 

insert size. The insert size is defined as the median of absolute values of whole BAM 

reads. Similarly, the interquartile range, the first and third quartiles are defined based on 

the whole BAM file. The “isize” in Rsamtools (TLEN in BAM definition) is used for 

these estimations. For median read length, the “qwidth” is used.  

The circular genome correction is used as described, and each CNV region defined in 

the read-depth approach part is scanned for reads defined by specified signature rules. 

The genome-wide signal of paired read distances is plotted in Figure 5.7 with outliers 

highlighted in red and blue, denoting simply insertion and deletion of genomic sequence.  

The theoretical signature rules were extended because of some observations from the 

testing and are all listed in Table 5.6.  

Table 5.6 – Overview of applicated signature rules 

Type Subtype Strand orientation Insert Size 

Deletion  +/-  

( -/+ ) 

Higher  

Tandem Duplication Direct +/- 

-/+ 

Lower 

Tandem Duplication Indirect +/+ 

-/- 

Lower 

Interspersed 

Duplication 

Direct +/- 

-/+ 

Higher 

Interspersed 

Duplication 

Indirect +/+ 

-/- 

Higher 
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Firstly, the usual deletion signature is stated as the +/- position of reads. But observing 

the IGV outputs it was discovered that deletion produces both reads placement, i.e. -/+ 

too. Narrowing it to +/- only would decrease, by almost a half, the number of reads which 

would support this signature.  

Secondly, it was observed that large tandem duplication can seem like interspersed 

duplication. This is caused by mirroring the length of tandem duplication itself into the 

observed insert size of reads around its breakpoints. This is demonstrated as insert size 

labeled as upper outliers instead of expected lower outliers. For example, the tandem 

duplication above 1000 bp will have observed reads insert sizes of similar length, while 

the median is only 500 bp in the artificial dataset. Thus, the setting for higher outliers has 

to be much higher. I applied an arbitrary rule of 10 times the IQR for labeling upper 

outliers for interspersed duplications. The boxplots of three tandem duplications are in 

Figure 5.8. Notice how statistics of insert sizes correspond with event length. Tandem 

duplication of 3776, the third boxplot, should theoretically have reads with insert sizes 

lower than the majority of reads in the sample. The mixed signatures of tandem and 

interspersed duplication make their distinction more difficult, but this can be mitigated 

by a much higher threshold. However, this is a possible weakness of the approach.  

 

Figure 5.7 – Plot of read-pair distances across genome 
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As already partly mentioned, the insert size of the event copies somewhat the length 

of the event. This is expected, but not commonly mentioned in the literature. For 

deletions, this is displayed in Figure 5.9, and for tandem duplications in previous Figure 

5.8. Deletion number 6 has originally 828 bp and the boxplot of insert sizes of reads in 

the given region reaches an approximately similar level of values. The same applies to 

the deletion of 1677 bp where the third quartile corresponds approximately to the same 

value.  

  

 

Furthermore, it was observed that for small events, the read-pair approach is less 

usable. This is displayed in the IGV screenshots in Supplementary Figures E1-E2, where 

two deletions are plotted. While for longer deletion number 6 there are multiple reads 

creating signature clusters, for smaller deletion number 13 with the length of 134 bp, there 

Figure 5.8 – Insert size of tandem duplications with size of 354, 1302, 3776 bp 

Figure 5.9 – Insert size boxplot of deletions of size of 828 and 1677 bp 
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are almost none. The smaller gaps in the reference genome are bridged by using split-

read signatures (aka soft-clipping) or are likely thrown away depending on the alignment 

algorithm. The event with no supporting reads for any type of event could be then easily 

tagged as a possible false positive. This is still being applied but with caution.  

For every CNV event, there are counted all reads supporting the above-defined 

signatures. The main distinction between duplication and deletion is done at the read 

depth level, the deletion is lower than the average of the coverage signal while duplication 

is oppositely higher than the average. The distinction between tandem and interspersed 

and their direct and indirect forms is done by applying the read-pair approach.  

5.2.11  Output files 

The output consists of a table where rows correspond to the detected CNVs and columns 

to several reported features, such as CNV coordinates, length, type, and subtype, and read 

counts of supporting reads for every read-pair signature.  

For the MATLAB version, the cell data structure can be written into an Excel 

spreadsheet. The same applies to the R version and the resulting ‘data.frame’ variable. 

Furthermore, the VCF file, defined similarly to CNVnator and LUMPY, is written to a 

drive.  

5.3 Benchmarking on the simulated data 

The following chapter is based on the published paper of CNproScan [246] and the results 

are based on the MATLAB version. A more detailed analysis of multiple aspects is in the 

next chapter focused on the R version. Since the results of the MATLAB version are very 

similar to the later R version, I decided to put here both results and make them 

complementary. Thus, the MATLAB version results are focused on comparison with 

other state-of-the-art methods, while the R results chapter is focused on various aspects 

and is compared to the MATLAB version for continuity. The benchmarking with other 

tools on the real dataset is in the next chapter ProcaryaSV.  

5.3.1 Test dataset 

The performance of CNproScan was evaluated on the dataset which had been previously 

used in the testing of the CNOGpro package [152]. This dataset is based on the S. aureus 

genome sequence (in Table 5.7) into which were imputed 30 artificial CNVs with defined 

genomic coordinates, lengths, and copy-number. These CNVs are listed in Table 5.8. 

There are 12 deletions and 18 duplications of various lengths, mainly focused on the small 

events.  
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Table 5.7 – Testing genome  

Sequence NCBI Accession  

Staphylococcus aureus subsp. aureus TW20 GenBank: NC_017331 

 

The dataset has two parts – one with imputed CNVs and the second one with no CNVs 

to evaluate the metric of true negatives. These two datasets were constructed with 

different coverage values – 10×, 20×, 100×, and 200×. The sequencing reads were 

generated with the ART reads simulator [228] and then processed by the described 

pipeline.  

Table 5.8 – Dataset of 30 artificial CNVs 

Number Start Position Stop Position Segment length 
True CNV 

number 

1 330012 330015 4 0 

2 344821 344843 23 2 

3 388478 388485 8 0 

4 402047 402109 63 4 

5 562944 563213 270 3 

6 762780 763607 828 0 

7 809546 809626 81 4 

8 1164412 1164687 276 2 

9 1196369 1196578 210 3 

10 1275253 1275864 612 0 

11 1358393 1358649 257 2 

12 1371773 1371988 216 3 

13 1625170 1625303 134 0 

14 1716617 1716970 354 4 

15 1798287 1799588 1302 2 

16 1953890 1954411 522 0 

17 2115756 2119531 3776 3 

18 2148564 2148827 264 2 

19 2186039 2186055 17 0 

20 2195082 2195085 4 2 

21 2219052 2219068 17 0 

22 2338314 2338339 26 0 

23 2348148 2349824 1677 0 

24 2484353 2484868 516 0 

25 2519733 2520386 654 0 

26 2612863 2613755 893 2 

27 2643228 2643743 516 3 

28 2645385 2645421 37 3 

29 2694225 2694725 501 2 

30 2710239 2710898 660 2 
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The reads were generated with these ART (command art_illumina) settings – fold 

coverage (-f) set to the tested value (10×, 20×,100×,200×), read length set to 76 bp (-l), 

paired-end reads (-p), median insert size 500 bp (-m), the standard deviation of fragment 

length 100bp (-s), and the sequencer profile set to HighSeq (HS25). The same settings 

were used in the compared methodology.  

The performance of CNproScan was compared directly with LUMPY [125], 

CNVnator [173], Pindel [113], and DELLY [118]. And indirectly with CNOGpro [152], 

cnv-seq[158], and cn.MOPS [155], where I adopted the previously published results. All 

tools are summarized in Table 5.9.  

Regarding the competing tools settings, we ran LUMPY using lumpy express settings 

and CNVnator with a 30bp bin size specified. The insert size for Pindel was set as 348 

bp. All other settings for all tools were left at default values. To compare our results with 

the reference tool, we recalculated the CNOGpro results using the same methodology as 

ours. This recalculation is necessary as CNOGpro makes the calculation using the gene 

regions. Therefore, we consider it possible to count only the 30 CNV events as true 

negatives (TN) instead of 5437 gene regions. Other metrics – true positives (TP), false 

positives (FP), and false negatives (FN) are based on results evaluation.  

Table 5.9 – Overview of competing tools 

Tool Method Version 

LUMPY RD+PR+SR 0.2.13 

CNVnator RD 0.4.1 

Pindel SR 0.2.5b9 

DELLY RD+PR+SR 0.8.7 

CNOGpro RD 1.1 

cnv-seq RD 1.0 

cn.MOPS RD 3.1 

RD – read-depth, PR – pair-read, SR – split-read 

 

The main focus was on 100× coverage, then the only tools competing well were 

evaluated for other coverages 10×, 20×, and 200×. The results are evaluated by the 

metrics of the confusion matrix. The Accuracy, Sensitivity/Recall, Specificity, Precision, 

and F1 score are all used across the results chapters. Lastly, the results and discussion are 

taken from CNproScan’s published paper [246].  

5.3.2 Results for coverage 100×  

The most emphasis was put on the 100× coverage. All 8 tools are benchmarked for this 

value of coverage. It is high enough to provide a sufficient signal-to-noise ratio with easily 

detectable CNVs. 
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The complete results with the number of correct and false observations, and 

performance metrics are in Table 5.10.  

A common problem stated in the literature is a high false discovery rate [141], where 

only Pindel failed significantly with 789 FPs. All tools performed well with a minimum 

number of false positives.  

Focusing on the default 100× coverage (in Table 5.10), the overall accuracy achieved 

was 93% and was the highest among tools. CNproScan detected 26 TP. Four FN CNVs 

were short regions under 26 bp in length, consisting of 2 deletions and 2 regions with a 

copy number of two. There was a single CNV event detected outside the original 

coordinates, which we consider an FN case.  

CNproScan and Pindel were both able to detect shorter CNV events than other 

methods. Pindel has higher sensitivity as it was able to detect 27 out of 30 CNVs. 

However, Pindel’s high sensitivity has the drawback of a high false positive rate. Pindel 

detected 371 CNVs, mainly deletions, in the empty reference dataset. Furthermore, there 

were another 418 FPs in the dataset with CNVs. A high false discovery rate in CNV 

detection is a common problem stated in the literature [141], however, only Pindel 

suffered from this.  

 

Table 5.10 – Results for coverage 100× 
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TP 26 22 14 7 13 21 22 27 

FP 0 0 0 0 2 0 0 789 

FN 4 8 16 23 17 9 8 3 

TN 30 30 30 30 30 30 30 30 

Accuracy 93.3 86.7 73.3 61.7 69.4 85.0 86.7 6.7 

Sensitivity 86.7 73.3 46.7 23.3 43.3 70.0 73.3 90.0 

Precision 100.0 100.0 100.0 100.0 86.7 100.0 100.0 3.3 

Specificity 100.0 100.0 100.0 100.0 93.8 100.0 100.0 3.7 

F1 score 92.9 84.6 63.6 37.8 57.8 82.4 84.6 6.4 

 

Other tools detected fewer CNVs. Sorted from the lowest number of TPs, there was 

cn.MOPS, LUMPY, cnv-seq, CNVnator, and equal CNOGpro and DELLY2. Since they 

all detected zero or a very low number of FPs, other metrics are influenced by the number 

of TP and FN. Thus, precision and specificity for all tools except Pindel were high.  

CNproScan achieved the highest F1 score. The close competitors in this metric were 

CNOGpro, CNVnator, and DELLY2.  
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Although DELLY2 and LUMPY are both hybrid triple method combinations, they 

differ significantly in the detection of CNVs. DELLY2 performed better.  

The detection of short CNVs with a low copy number is the most challenging task. 

For 100× coverage, we can conclude that CNproScan detected duplicated CNVs longer 

than 37 bp. Two duplicated CNVs of 4bp and 23bp lengths were not detected. The shortest 

detected deletion was 4bp and then two 17bp deletions.  

The performance of the other tools varied. Pindel (90%) followed by CNproScan 

(86.67%) achieved the highest sensitivity. The third best performing in sensitivity were 

CNOGpro (73.33), DELLY (73.33), and LUMPY (70.00). CNproScan achieved the 

highest accuracy (93.33%). CNOGpro (86.67%.), LUMPY (85.00) and DELLY 

(86.67%.) were close in accuracy.  

5.3.3 Results for coverage 10, 20, 200×  

In the evaluation of other coverage’s effect on the performance, only the best performers 

from the previous chapter were selected to reduce the complexity of the results. Selected 

were: CNproScan, CNOGpro, CNVnator, LUMPY, DELLY, and PINDEL.  

I benchmarked CNproScan and others at four different coverage values: 10×, 20×, 

100×, and 200×. The complete performance metrics are in Table 5.11. The highest values 

per row are highlighted in bold font type. The CNOGpro was aborted at 200× coverage 

because of an under-dispersion error, so the results are missing for this coverage.  

For 10× coverage, the CNproScan’s sensitivity was 66.67%, and 20 out of 30 CNVs 

were detected. Pindel had the highest TP count of 26, while also having the highest FP 

rate. The second highest TP count has DELLY and CNproScan. LUMPY has 17 TPs. 

DELLY and LUMPY had both zero FP. Contrary, there were 19 FP and an additional 20 

FP in an empty dataset detected by CNproScan. The combined metric score was the best 

for LUMPY and DELLY, then CNVnator followed by CNproScan. The hybrid methods 

LUMPY and DELLY performed very well in the shallow coverage.  

For 20× coverage, CNproScan achieved the highest accuracy (86%) and detected 22 

TP. CNOGpro also detected 22 TP, LUMPY 21 TP, DELLY 20, and Pindel 27 TP, thus 

Pindel had the highest sensitivity. There was no FP detected with CNproScan. There is a 

visible step in detection quality from increasing coverage from 10× to 20×. The combined 

metric score was the best for CNproScan followed by LUMPY and DELLY. 

100× coverage was discussed in the previous chapter, the highest combined score was 

achieved by CNproScan followed by CNOGpro, LUMPY, and DELLY. Only Pindel 

detected one more TP than CNproScan but suffered from a high false positive rate across 

the complete artificial dataset.  
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Table 5.11 – Results of all coverage values 

10× 

 CNproScan CNOGpro CNVnator LUMPY DELLY PINDEL 

Accuracy 50.5 38.7 62.3 78.3 83.3 40.0 

Sensitivity 66.7 43.3 26.7 56.7 66.7 86.7 

Precision 33.9 20.3 88.9 100.0 100.0 24.5 

Specificity 43.5 37.0 96.8 100.0 100.0 27.3 

F1 score 44.9 27.7 41.0 72.3 80.0 38.2 

20× 

 CNproScan CNOGpro CNVnator LUMPY DELLY PINDEL 

Accuracy 86.7 68.4 68.3 85.0 83.3 25.8 

Sensitivity 73.3 73.3 36.7 70.0 66.7 90.0 

Precision 100.0 57.9 100.0 100.0 100.0 14.4 

Specificity 100.0 65.2 100.0 100.0 100.0 15.7 

F1 score 84.6 64.7 53.7 82.4 80.0 24.8 

100× 

 CNproScan CNOGpro CNVnator LUMPY DELLY PINDEL 

Accuracy 93.3 86.7 69.4 85.0 86.7 6.7 

Sensitivity 86.7 73.3 43.3 70.0 73.3 90.0 

Precision 100.0 100.0 86.7 100.0 100.0 3.3 

Specificity 100.0 100.0 93.8 100.0 100.0 3.7 

F1 score 92.9 84.6 57.8 82.4 84.6 6.4 

200× 

 CNproScan CNOGpro CNVnator LUMPY DELLY PINDEL 

Accuracy 95.1 - 70.0 85.0 85.0 2.7 

Sensitivity 93.3 - 46.7 70.0 70.0 90.0 

Precision 96.6 - 87.5 100.0 100.0 1.3 

Specificity 96.8 - 93.3 100.0 100.0 1.4 

F1 score 94.9 - 60.9 82.4 82.4 2.5 

 

Doubling the coverage to 200×, CNproScan detected 28 TP and 1 FP. The second 

closest was Pindel with 27 TP. The accuracy and sensitivity were the highest for 

CNproScan as the overall combined score.  

Beginning with the 20× coverage, the CNproScan had the highest F1 score and 

Accuracy and kept it to 200×.  

There is also Figure 5.10, where precision, recall, and F1 scores are plotted. It is 

visible how since reaching coverage 20×, the performance metrics for CNproScan are 

going up to the highest numbers.  
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5.3.4 CNV length analysis 

Next, I analyzed how tools dealt with various CNV lengths. The histogram depicting the 

tools’ ability to detect various CNV lengths for 100× coverage is in Figure 5.11. The y-

axis shows the count of CNVs detected within four defined bin sizes. The numbers of 

CNVs in each bin are shown in the brackets in the figure legend. Only CNproScan and 

Pindel detected the shortest CNVs (blue color). The CNV lengths are categorized into 4 

bins: 0-25bp, 26-100bp, 101-1000bp, and 1001-4000bp.  

The majority of tools coped perfectly with the longest CNVs (1001-4000bp). Only 

Pindel and cn.MOPS did not detect a 1302bp duplicated CNV. In the 101-1000bp bin, 

several tools struggled to detect all CNVs – namely cnv-seq, and cn.MOPS, CNVnator.  

On the contrary, only 5 tools detected some CNVs from bin 26-100bp. CNproScan (3 

out of 4) and Pindel (4 out of 4) detected the most CNVs. Others were CNOGpro, 

LUMPY, and DELLY. In the smallest CNVs under 25bp, only CNproScan (3 out of 6) 

and PINDEL (4 out of 6) detected any CNVs. 

Figure 5.10 – Sensitivity, Precision and F1 scores of the simulated dataset 
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5.4 R implementation - version 1.0 

The initial development was done in MATLAB, but for wider usage, the method was 

rewritten also into the R with certain modifications. While the main methodology is the 

same, some changes were made over time that there are not present in the MATLAB 

version. Some of the changes originated from users posting certain issues with running 

the CNproScan while others were added to improve the usability, performance, and 

abilities of the tool. The changes are these:  

• Parallelism – the genome is divided into chunks and the outliers are detected in each 

chunk separately. Using multiple threads parallelly decreased the computation time 

exponentially (Figure 5.12).  

• Multi-chromosome support – samples with more than one chromosome are now 

supported.  

• Removing tails from both ends before outliers detection – initially, only the zero 

coverage was removed, and then there was outliers detection. For further computation 

time gain, also the roughly estimated outliers from the upper tail (large peaks) are 

removed. So, outliers from both tails are removed now before the GESD. This step 

removes coverage values that would be confirmed by the GESD algorithm and were 

Figure 5.11 – CNV Size Histogram 
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just wasting computation space. These outliers are defined as 3 times IQR.  

• Extending boundaries – the algorithm of slope changes was tweaked to avoid too 

extensive prolonging of the boundaries. I added the condition to stop the algorithm 

when the baseline is reached.  

• Estimated CNV number – the copy number is reported just as the ratio between the 

maximum read-depth value of the CNV and the average coverage. This serves as a 

rough estimation and is based on the common assumption that copy number is linear 

with read depth.  

• Duplication subtypes – initially, only the tandem or interspersed duplication types 

were reported but this was upgraded to direct and indirect cases for both duplication 

types. So, five CNV types can be detected now – deletion, direct and indirect tandem 

duplication, and direct and indirect interspersed duplication.  

 

Installation is done using the ‘devtools’ R package from the GitHub repository 

https://github.com/robinjugas/CNproScan with this command: 

devtools::install_github("robinjugas/CNproScan") 

The CNV calling function is then called for example as: 
DF <- CNproScanCNV(coverage_file, bam_file, fasta_file, GCnorm=TRUE, 

MAPnorm=TRUE, ORICnorm=TRUE, bedgraph_file, oriCposition=1, cores=4) 

5.4.1 Results and Discussion 

The updated R version was compared with the original MATLAB version results. The 

updated R version deflected the sensitivity and specificity tradeoff more to the sensitivity 

side for the R version, mainly in the lower coverages. However, this is redeemed by lower 

specificity in all coverage values. This trade-off is present almost in all CNV detection 

tools when benchmarked [129]. The observed numbers are in Table 5.1. In 10× coverage, 

6 more CNVs were detected, while 14 more FP CNVs were retained. For 20× coverage, 

4 more CNVs were detected together with 5 more FP CNVs. The TP numbers for 100× 

and 200× coverages remained the same, however, 4 and 1 more FPs were detected in 

100×, and 200× respectively. In 10× and 20× datasets, multiple shorter CNVs spanning 

the true longer CNV were noticed a few times. These are then counted as a single event 

if they overlap with any true CNV.  

Table 5.12 – Observed results R/MATLAB 

 CNproScan MATLAB CNproScan R 

Coverage TP TN FP FN TP TN FP FN 

10× 20 30 39 10 26 30 53 4 

20× 22 30 0 8 26 30 13 4 

100× 26 30 0 4 26 30 4 4 

200× 28 30 1 2 28 30 2 2 
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For the previously published metrics, I added the precision and F1 score results to 

Table 5.13. The sensitivity is higher for the R version in the low coverages 10× and 20×. 

But the specificity was negatively affected, the most for the 20×. It seems that this 

coverage is affected heavily by increasing TP by only 4 while the FP increased by 13. 

Other higher coverages remain more stable.  

Table 5.13 – Performance metrics R/MATLAB 

 CNproScan MATLAB 

Coverage 
Sensitivity/ 

Recall 
Specificity Accuracy Precision F1 score 

10× 66.67 43.48 50.51 33.90 44.94 

20× 73.33 100.00 86.67 100.00 84.61 

100× 86.67 100.00 93.33 100.00 92.85 

200× 93.33 96.77 95.08 96.55 94.91 

 CNproScan R 

10× 86.66 36.14 49.55 32.91 47.70 

20× 86.66 69.76 76.71 66.66 75.36 

100× 86.66 88.23 87.50 86.66 86.66 

200× 93.33 93.75 93.54 93.33 93.33 

 

 

5.4.2 Overlap analysis 

I evaluated the overlaps between the dataset CNV start and stop coordinates and the 

detected ones. Both the inside overlap and the number of bases that are out of the borders 

are evaluated in percentage points (see Table 5.14) 

The smallest percentage of overlap is 24% for CNV number 19. In the majority of 

cases, the overlap is over 90%. The outside columns in Table 5.14 represent the percent 

of bases relative to the CNV length outside of the true borders. For CNV number 1, which 

is only a small 4 bp deletion, a larger segment of approximately 25 bp was detected. Also, 

a few times, shorter CNVs spanning the true CNV were captured. These are then merged 

and overlap as merged. This is more common in the lower coverage and absent in 100× 

coverage and higher. In the majority of cases, the outside portion is small. Only in 4 cases 

is the outside portion multiple times higher. See the CNVs number 1, 19, 22, 28. Three 

of them are deletions. The only duplication is only one time of the original length.  
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Table 5.14 – Boundaries analysis 

   10× [%] 20× [%] 100× [%] 200× [%] 

# Length 
Copy 

number 
Inside Outside Inside Outside Inside Outside Inside Outside 

1 4 0 100 550 100 550 100 550 100 550 

2 23 2 - - - - - - 48 100 

3 8 0  - - - - - 100 275 

4 63 4 100 38 100 38 100 38 100 38 

5 270 3 100 6 100 6 100 8 100 8 

6 828 0 100 3 100 3 100 4 100 7 

7 81 4 100 32 100 32 100 32 100 32 

8 276 2 44 0 45 6 100 8 100 8 

9 210 3 100 8 99 10 100 10 100 10 

10 612 0 100 4 99 4 100 6 100 8 

11 257 2 50 0 80 0 99 8 100 9 

12 216 3 100 12 100 12 100 12 100 12 

13 134 0 96 19 96 19 96 28 100 29 

14 354 4 98 8 99 8 99 8 99 8 

15 1302 2 75 0 98 0 100 2 100 2 

16 522 0 98 5 98 5 98 7 100 6 

17 3776 3 100 1 100 1 100 1 100 1 

18 264 2 50 0 69 0 96 13 96 13 

19 17 0 24 194 24 194 24 206 24 206 

20 4 2 - - - - - - - - 

21 17 0 - - - - - - - - 

22 26 0 42 142 42 142 42 185 85 162 

23 1677 0 99 2 99 2 100 3 100 3 

24 516 0 97 7 97 7 99 9 100 8 

25 654 0 98 6 98 6 98 8 98 8 

26 893 2 95 4 95 4 98 4 98 4 

27 516 3 97 8 97 8 97 8 97 8 

28 37 3 49 111 49 111 49 111 49 111 

29 501 2 36 0 35 0 96 8 96 9 

30 660 2 95 6 97 6 97 7 97 7 

 

5.4.3 Copy-number analysis 

The detected copy numbers were compared to the true copy numbers in the artificial 

genomes. The results are in Table 5.15, with false detections highlighted by shadow. In 

two cases of deletions, number 1 and 19, which are both very short deletions, are these 

detected correctly as deletions but with a false copy number of 1. This was likely caused 

by coverage spanning these CNVs not low enough to be later rounded to zero. In 
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duplicated CNVs number 4, 5, 7, 14, and 28, are all their copy numbers underestimated 

by 1. The average accuracy of correct copy number estimation for all coverages is about 

75 %.  

Table 5.15 – Detected copy numbers 

# Length 
Copy 

number 
10× 20× 100× 200× 

1 4 0 1 1 1 1 

2 23 2 - - - 1 

3 8 0 - - - 1 

4 63 4 3 3 3 3 

5 270 3 2 2 2 3 

6 828 0 0 0 0 0 

7 81 4 3 3 3 3 

8 276 2 2 2 2 2 

9 210 3 3 3 3 3 

10 612 0 0 0 0 0 

11 257 2 2 2 2 2 

12 216 3 3 3 3 3 

13 134 0 0 0 0 0 

14 354 4 3 3 4 4 

15 1302 2 2 2 2 2 

16 522 0 0 0 0 0 

17 3776 3 3 3 3 3 

18 264 2 2 2 2 2 

19 17 0 0 1 1 0 

20 4 2 - - - - 

21 17 0 - - - - 

22 26 0 0 0 0 0 

23 1677 0 0 0 0 0 

24 516 0 0 0 0 0 

25 654 0 0 0 0 0 

26 893 2 2 2 2 2 

27 516 3 3 3 3 3 

28 37 3 2 2 2 2 

29 501 2 2 2 2 2 

30 660 2 3 2 2 2 

Valid estimation 19 19 20 22 

Accuracy 73.07 73.07 76.92 78.57 

 

5.4.4 Runtime analysis 

I analyze the runtime of the main function with all normalizations turned on and off. The 
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function was tested on AMD Ryzen 5600G (3,9 GHz) and 64GB RAM running Ubuntu 

22.04. A single sample of K. pneumoniae was tested with a different number of cores. 

Regarding the RAM usage, the memory consumption didn’t exceed 5 GB of RAM 

throughout the testing measured as the whole R session memory consumption.  

 

 

I tested 1 to 12 cores and plot them in Figure 5.12. Observing the runtime analysis, 

the runtime decreases approximately exponentially with a number of cores, which is also 

proven by the exponential curve fitting (R2 error 0.9921). Alternatively, a fifth-degree 

polynomial was fitted with R2 error 0.9944.  

Importantly, increasing the number of cores beyond 4 does not provide further 

runtime improvement reaching the running time of approximately 8 minutes. On the other 

side, unintended performance drawbacks could happen with increasing core numbers 

based on the fact that dividing the genome into smaller and smaller chunks can have an 

impact on outlier detection relying on descriptive statistics. However, this impact was 

present only at a differing number of detected CNVs but the difference was no larger than 

a few CNVs.  

Also, the normalization part of CNV detection does not have a significant impact on 

running time and the observed difference is not larger than three minutes at maximum. It 

is necessary to mention, that runtime is dependent on the overall read-depth signal and 

the number of outliers and peaks. More flat read-depth signals will have reduced 

computation times and also a low amount of detected CNVs.  

5.5 Summary 

The chapter presented a developed algorithm called CNproScan for CNV detection in 

prokaryotic genomes. It is a hybrid method combining the read depth signal with support 

from pair read features. The method achieved overall better performance compared to 

Figure 5.12 – CNproScan runtime analysis 
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other presented tools. It had the highest accuracy and F1 scores beginning with coverage 

20×. CNproScan detected very small CNVs and belong with Pindel to the only two tools 

able to capture them. Also, contrary to the expectation stated in the literature, the achieved 

resolution of boundaries detection from the read-depth profile was acceptable. 

Furthermore, it brings the whole spectrum of auxiliary normalizations, such as replication 

origin bias and circular genome correction, for handling the task specifically for bacterial 

genomes.  

So far, the algorithm was tested only on the artificial dataset. The results of real 

sequencing data are part of the next chapter.  

Also, the updated R version was presented reaching higher sensitivity but slightly 

decreased specificity. However, this tradeoff is common in many CNV detection tools. 

With this sensitivity bonus, it was able to perform very well in the low coverage of 10×. 

The algorithm is available as the R package with documentation.  
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6 PROCARYASV 

6.1 Merging of the detection tools 

Such as the hybrid method removes the limits of a single approach, the integration of 

multiple detection tools limits their weakness and improves performance. This issue is 

tied to the topic of merging structural variants.  

The topic of merging variant callers is more advanced in the field of SNP or SNV 

variant calling, where various tools are already being successfully merged based on their 

performance, e.g., using machine learning methods [192].  

In the fields of SVs or CNVs, the problem of overlaps arises. The parameters of the 

minimal overlap and the type of overlap (equal, within, etc.) can be both user-defined or 

hard-coded. However, these parameters are usually defined somehow arbitrarily. 

What reliable results are is the question to ask. Generally, the union or the intersection 

of results is the most common approach. It depends on the preference for higher 

sensitivity or specificity. Most effortlessly, the reliable results are those given by the most 

tools. Then, the threshold of how many tools are the most has to be set. On the other hand, 

rare events could be omitted. Alternatively, the union approach likely produces a high 

rate of false positives. A weighted approach can be applied if performance metrics are 

known. But for accurate performance metrics, you need a valid ground truth set, ideally 

validated by sequencing methods. [141] 

6.2 Pipeline Design 

I decided to create a CNV/SV calling pipeline based on the Snakemake framework [257]. 

It is a Python-based workflow management system for reproducible and scalable analysis. 

It consists of so-called Snakemake rules which define the inputs and outputs of a given 

rule. The rule serves to call a certain function, tool, package, etc. Parameters that are 

necessary for the called tool can be specified too inside the rule or can be adopted from 

the external configuration file. Scalability parameters can be defined too, such as the 

number of threads or memory requirements. The possibilities are multiple.  

I called the pipeline ProcaryaSV denoting the focus on prokaryotic genomes. It is 

based on commonly used CNV and SV detection tools and state-of-the-art processes for 

manipulating sequencing data. All the necessary specifical inputs for each SV/CNV caller 

are processed as described by the caller's manuals. In some cases, I used or further modify 

the Snakemake Wrappers repository where the finished easy-to-use rules and wrappers 

(small Python scripts calling the tools) are available.  

The overall simplified workflow is in Figure 6.1. Only the basic tools are pictured, 

without raw reads quality check or the optional trimming parts. 
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Two CNV callers and three SV callers were used. One of the requirements was that 

the tools has to be placed in some conda repository to be easily installed by Snakemake. 

The only exception is the CNproScan which is available only in GitHub so far. Also, tools 

mustn't require too obscure inputs, e.g. from some deprecated packages. Most 

importantly, tools have to be suitable for haploid prokaryotic genomes. Thus, the 

CNproScan, CNVnator, LUMPY, DELLY2, and Pindel were selected. The overview of 

all the tools used (excluding the tool's dependencies) is in Supplementary Table 5.  

The ProcaryaSV is available from the GitHub repository and was tested on the version 

mentioned in Table 6.1.  

Table 6.1 – ProcaryaSV GitHub repository 

Repository  Version 

https://github.com/robinjugas/ProcaryaSV 1.0 

 

Figure 6.1 – ProcaryaSV workflow 
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It is necessary to fill correctly the YAML configuration file and run the pipeline with 

the snakemake commands inside bash: 

WORK_DIR=” path to the working directory“ 

WORKFLOW_DIR=” path to the Snakefile folder“ 

 

snakemake --cores INT --snakefile $WORKFLOW_DIR/Snakefile --directory 

$WORK_DIR --configfile config.yaml --use-conda 

6.3 Merging algorithm 

The two main inputs to merging SVs are merging BED files, using the bedtools [196], or 

merging the VCF files, using, for example, SURVIVOR (StructURal Variant majorIty 

VOte) [194] or SVDB [195]. The VCF files are not fully suitable for recording large-

scale SVs. Foremost, there is only one genomic coordinate column POS, which is used 

to store SV’s start coordinate, but the ending coordinate has to be written into the INFO 

column. Also, the field name is tool specific. This requires parsing of the column. 

Furthermore, some callers write the DNA sequence of a given variant into the ALT 

column, making it hard to read.  

I tried both SURVIVOR and SVDB to merge the resulting VCF files. The SVDB 

failed completely resulting in non-readable files because it writes the genomic sequence 

of the event into the file. The SURVIVOR did better compared to SVDB and thus was 

kept in the pipeline for user comparison.  

The merging algorithm of ProcaryaSV parses the VCF outputs for all callers and 

respects their specifics. It separates four categories of SV calls: deletions, duplications, 

inversions, and insertions, and merges them separately. Insertions and inversions are 

called only by Pindel and Delly2, while deletions and duplications are called by all of 

them.  

Here, I present my own approach to merging SVs based on cumulating binary vectors 

and then thresholding them. The user can define the value of the threshold by his or her 

preference. The input is VCF files from callers. The results are formatted as a TSV (tab-

separated values) file, which can be imported into any spreadsheet application. The 

parameters of minimum and maximum SV length are to be set. All SVs not fitting into 

these are deleted.  

For every type of SV detected (DEL, DUP, INV, INS) the simple binary vector is 

created for each caller separately and then these are summed up (see illustration in Figure 

6.2). This means that a region called by two callers will have a value of two spanning the 

region where these callers overlap. This summed vector is processed so that small gaps 

are filled and merged together. This gap is an optional parameter, but a value of 100 bp 

is the default.  
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In the first iteration, all levels of callers support are outputted except those under the 

value of the user-defined caller's threshold. The regions called the most times are 

outputted first and then it proceeds to a lower number of callers. This also means that 

certain regions can be reported multiple times, once as a shorter region of higher support, 

and later as a longer region of lower support. The number of callers that called the regions 

is reported.  

In the second iteration, the events are searched for overlaps with the use of the Iranges 

package function findOverlaps. The important parameter here is the maxgap, meaning 

the maximum allowed distance between the start and end coordinates. This step is to 

collapse overlapping events into one. The one event is reported with corresponding values 

and coordinates with maximum support are saved. The diagram of merging is in Figure 

6.3. The threshold represents the maxgap parameter and is applied to all firstly reported 

events. If the condition was not met, ID #3 would be reported separately.  

 

Figure 6.2 – Caller’s support signal of two structural variations. First one with a support of two 

callers, second one with a support of four callers. The steps are created by 

reported different start and stop coordinates.  
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After this, the reported CNVs are searched for overlaps again, to report potential cases 

where multiple shorter CNVs overlap a single long CNV. This information is stored in 

the output file.  

In the last iteration, all events are backtracked. The information about the number of 

underlying events and percentual coverage by each caller is recorded and saved. A region 

can be supported by multiple callers, but they can contribute as multiple separately 

reported events merged because of the merging step.  

The tabular separated file (.tsv) is the output together with informative graphs. These 

are the Venn diagram of callers and pie plot of different SV types' abundances.  

6.4 Benchmarking on the simulated data 

The merging algorithm of ProcaryaSV was benchmarked on the previous artificial 

dataset. The various values of minimum callers support (MinCallers) were used to decide 

the optimal value. The threshold is inclusive, the operator ‘>=’ is used.  

 

 

 

Figure 6.3 – SV merging diagram. The colored objects refer to detected SV’s coordinates.  
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Table 6.2 – ProcaryaSV merging performance metrics 

10× 

MinCallers 

threshold 1 2 3 4 5 

Accuracy 36.3 90.0 85.0 73.3 56.7 

Sensitivity 90.0 80.0 70.0 46.7 13.3 

Precision 21.8 100.0 100.0 100.0 100.0 

Specificity 23.6 100.0 100.0 100.0 100.0 

F1 score 35.1 88.9 82.4 63.6 23.5 

20× 

MinCallers 

threshold 1 2 3 4 5 

Accuracy 37.0 90.0 83.3 83.3 58.3 

Sensitivity 90.0 80.0 66.7 66.7 16.7 

Precision 22.3 100.0 100.0 100.0 100.0 

Specificity 24.2 100.0 100.0 100.0 100.0 

F1 score 35.8 88.9 80.0 80.0 28.6 

100× 

MinCallers 

threshold 1 2 3 4 5 

Accuracy 13.1 87.3 85.0 85.0 61.7 

Sensitivity 90.0 83.3 70.0 70.0 23.3 

Precision 6.7 89.3 100.0 100.0 100.0 

Specificity 7.4 90.9 100.0 100.0 100.0 

F1 score 12.5 86.2 82.4 82.4 37.8 

200× 

MinCallers 

threshold 1 2 3 4 5 

Accuracy 7.0 88.9 85.0 85.0 61.7 

Sensitivity 93.3 86.7 70.0 70.0 23.3 

Precision 3.5 89.7 100.0 100.0 100.0 

Specificity 3.8 90.9 100.0 100.0 100.0 

F1 score 6.8 88.1 82.4 82.4 37.8 

 

All performance metrics are in Table 6.2, the maximum F1 scores are in bold. The 

maximum F1 scores are all achieved when the MinCallers threshold is set to 2. The 

precision-recall curves for all coverage levels are in Figure 6.4. The precision remains the 

same from the MinCallers threshold set to 2 (higher coverage) or 3 (lower coverage), 

while a threshold lower than 2 brings a lot of false positives. Recall (sensitivity) decreases 

to very low numbers, omitting many true positives. Following previous results, setting 

the minimal callers threshold to 2 is the optimal setting to balance precision and recall.  
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For comparison, in Table 6.3 there is an evaluation of the SURVIVOR merging 

algorithm. The numbers from the previous table are added for easier comparison. The 

SURVIVOR merge command settings were set to minimal callers 2, maximum allowed 

distance 1000, and minimal considered SV length 1. Looking at the results, they are 

almost the same looking at the same settings of minimal callers 2 for both algorithms. 

The ProcaryaSV had higher F1 scores for 20× and higher coverages by a few points.  

This is expected based on the description of the SURVIVOR merging method. In 

SURVIVOR, two SVs are defined as overlapping if their start and stop coordinates are 

within 1 kb and of the same SV class.  

Table 6.3 – SURVIVOR and ProcaryaSV performance metrics for minCallers of 2 

S
U

R
V

IV
O

R
 Coverage Accuracy Sensitivity Precision Specificity F1 score 

10× 90.0 80.0 100.0 100.0 88.9 

20× 85.0 70.0 100.0 100.0 82.4 

100× 87.1 80.0 92.3 93.8 85.7 

200× 85.5 76.7 92.0 93.8 83.6 

P
ro

ca
ry

a
S

V
 

10× 90.0 80.0 100.0 100.0 88.9 

20× 90.0 80.0 100.0 100.0 88.9 

100× 87.3 83.3 89.3 90.9 86.2 

200× 88.9 86.7 89.7 90.9 88.1 

 

Figure 6.4 – Precision-recall curve for MinCallers threshold parameter. Digits near lines denote 

the parameter value 
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6.5 Benchmarking on the real data 

While the CNproScan chapter included only the results for the simulated dataset, the 

results for the real dataset are put here as they are obtained with the use of the ProcaryaSV 

pipeline. The real dataset consists of multiple samples from four Bacteria organisms as 

already reported previously in the chapter on CNproScan design.  

Table 6.4 – Overview of used real datasets, reference genomes used for alignment, and average 

coverage across the samples 

Organism Accessory ID 
No. of 

samples 

Reference 

Accession 

DoriC ID & 

position 

Average 

coverage 

Staphylococcus 

aureus 
PRJNA497094 92 

NC_00779

3 

ORI10010181 

1906 nt 

350.2× 

Escherichia coli DRA005229 58 AP012306 
ORI10020002 

3923657 nt 

330.3× 

Lactobacillus 

casei 
PRJNA342061 50 

NC_01433

4 

ORI94010712 

1351 nt 

189.7× 

Klebsiella 

pneumoniae 
PRJNA515630 48 

NC_01273

1 

ORI93020089 

5248419 nt 

67.9× 

 

These data were downloaded from public repositories and quality checked. Only the 

reads of Klebsiella pneumoniae were taken from previous cooperation with University 

Hospital Brno. The other three datasets were already trimmed from adapters and low-

quality 3’ ends.  

The results mentioned here are described differently compared to the artificial dataset 

since no apriori known CNVs are known in these samples. Thus, the results are described 

rather descriptively. Although the pipeline enables to detect the insertions and inversions, 

only CNVs were evaluated in the results as all five tools can detect them. Looking at all 

SV types, no insertions were generally called. A portion of inversions was called 

overwhelmingly by Pindel. The multitudes of them are smaller than 100 bp.  

Most importantly, the results are already processed by the ProcaryaSV merge 

algorithm, so CNVs are overlapped across the callers and merged. The following term 

CNVs then should be understood as CNV regions with various levels of support by 

callers. The CNV amounts do not represent the raw outputs of the callers, but the post-

processed regions. In each subchapter, I evaluate the CNproScan preference regarding 

CNV size and CNV type. Also, the amount of overlap with other tools.  

6.5.1 Results - K. pneumoniae 

The results of all 48 Klebsiella samples are merged and analyzed together into over 15000 

CNVs. The average coverage of Klebsiella samples was the lowest across the real 

datasets. In Figure 6.5 there is a mean read-depth signal calculated from all the samples. 

Notice that there are a lot of deviations from the baseline, with multiple deletions reaching 
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the zero level. This points out the presence of some CNVs or potential false positives. 

Furthermore, it denotes there are many shared CNVs across the samples.  

 

The frequent way to display overlaps is a Venn diagram, constructed in Figure 6.6, to 

show callers' representation in the final results. The highest number of unique events were 

detected by CNproScan (2159 CNVs) and Pindel (1928 CNVs). Venn diagram shows that 

CNproScan partakes in the majority of events. It shares a high amount of events with 

read-depth based CNVnator as with hybrid DELLY2 and LUMPY. 207 CNVs were 

called by all five tools. Approximately 2300 CNVs were called by a combination of four 

tools, 4700 CNVs were called by three tools, and 3900 by two tools. 

Figure 6.5 – Mean read-depth signal across all samples for K. pneumoniae 
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Next, I evaluated the representation of SV sizes, SV types, and callers that detected 

them. These figures are displayed as so-called treemaps representing the proportions by 

the size of each box.  

The representation of CNV types by size is in Figure 6.7. The short CNVs under 100 

bp are easier to detect as deletions, thus, they are more abundant. Contrary, the 

duplications are present predominantly in the shorter events up to 1000 bp. Other than 

that, there is a domination of deletions with increasing CNV length.  

The caller's preference for CNV lengths is in Figure 6.8. The abbreviations for boxes 

with less than 200 CNVs are: L is for LUMPY, CS – CNproScan, CN – CNVnator, P – 

Pindel, and D – DELLY2. The boxes are sorted by their share. The callers are represented 

rather equally except for Pindel, which is represented visibly less in other than the 100bp 

size range.  

Figure 6.6 – Venn diagram of detected CNVs for K. pneumonaie dataset 
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That the larger part of CNVs is deletions can be seen again in Figure 6.9. In deletions, 

all callers are represented approximately equally, while for duplications the CNVnator is 

almost absent. CNproScan detected a large portion of both deletions and duplications.  

Figure 6.7 – CNV sizes by type for K. pneumoniae dataset 

Figure 6.8 – CNV sizes by callers for K. pneumoniae dataset 
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6.5.2 Results - E. coli  

The average coverage of E. coli samples is 330× and is much higher than for Klebsiella 

samples. Also, the read-depth signal is rather noisy, as can be seen in averaged read-depth 

signal in Figure 6.10. Only two short deletions touch the zero-coverage level. This could 

be caused by the averaging of the signals, and it would denote that the E. coli samples are 

very different from each other having often unique CNVs. Also, the E. coli had high levels 

of replication origin bias (Spearman’s Rho -0.97).  

 

 

Figure 6.10 – Mean read-depth signal across all samples for E. coli 

Figure 6.9 – CNV types by caller for K. pneumoniae dataset 
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The Venn diagram is in Figure 6.11. For E. coli samples, Pindel detected a large 

number of unique CNVs. There is a very large overlap between Pindel and DELLY, 

12000 CNVs. Regarding overlapping events, only 4 CNVs were called by all tools, over 

800 were called by four tools, 700 by three tools, and over 14000 by two tools.  

 

A slight majority of cases under 100 bp were deletions, but with the increasing CNV 

lengths up to 1 kbp and 10 kbp, duplications were more prevalent. Combined, the 

duplications and deletions are equal in numbers as can be seen in Figure 6.12. 

Interestingly, the CNproScan captured only a smaller portion of deletions across all CNV 

lengths. This shows that the majority of deletion was detected by read-pair and other than 

read-depth approaches.  

See Supplementary Figures F1-F2 for plots of SV lengths on CNV types and CNV 

size preference by callers. Regarding the CNV size, the majority of CNVs under 100 bp 

were called by Pindel and DELLY2. The rates were more equal for longer CNV ranges.  

 

Figure 6.11 – Venn diagram for E. coli dataset 
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6.5.3 Results - S. aureus 

The read-depth profile of S. aureus in Figure 6.13 was completely different from the 

previous ones. The baseline is clear without the ‘oscillations’ visible in E. coli. The CNVs 

are visible. Generally, we would not anticipate a high amount of CNVs based on a read-

depth profile.  

 

The Venn diagram is in Figure 6.14. In the amount of the total CNVs detected, Pindel 

uniquely detected highly more CNVs than the rest combined. The second was DELLY2 

which detected over 6000 unique SVs. Regarding overlapping events, 304 CNVs were 

called by a combination of five tools, about 2000 by four tools, over 5000 by three tools, 

and around 18000 by two tools.  

Figure 6.13 – Mean read-depth signal across all samples for S. aureus 

Figure 6.12 – CNV types by callers for E. coli dataset 
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Deletions were the dominant of all CNV sizes. DELLY2, LUMPY, and Pindel 

detected very high numbers of deletions. The numbers of duplications were more 

comparable except for Pindel. The proportions of callers are in Figure 6.15. 

See Supplementary Figures G1-G2 for plots of CNV lengths on CNV types and CNV 

size preference by callers. The majority of events fit into the smallest up to 100bp or up 

to 1000 bp size range. Pindel dominated the 100 bp range with DELLY2 being the second 

one.  

 

Contrary to the expectation of not many CNVs being present, there was the highest 

number of CNVs detected. Predominantly detected by Pindel and DELLY. Similarly to 

previous E. coli, the non-read-depth methods detected the most events. However, there 

might be a large number of false positives.  

Figure 6.14 – Venn diagram for S. aureus dataset 
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6.5.4 Results - L. casei 

The read-depth signal of L. casei samples is very distinctive (Figure 6.16). The origin of 

replication bias can be easily spotted as the V-shaped trend. The Spearman’s Rho was -

0.93. The read-depth signal is then more similar to E. coli.  

 

Regarding the top values, L.casei results were similar to K. pneumoniae results, 

meaning that CNproScan and Pindel detected the most events. However, generally, L. 

casei had the lowest number of detected CNVs, 6164. Also, it had the lowest number of 

overlapping events. Only around 500 CNVs were detected by any combination of tools, 

compared to 5700 CNVs detected uniquely. Also, no CNV was detected by all tools. See 

the Venn diagram in Figure 6.17.  

Figure 6.16 – Mean read-depth signal across all samples for L. casei 

Figure 6.15 – CNV types by caller for S. aureus dataset 
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Those which were detected are deletions predominantly (Figure 6.18). CNproScan 

detected the second-highest number of both deletions and duplications. Most events were 

small, in size up to 1000 bp. Again, CNproScan was the second in the number of CNVs 

detected in both size categories. See Supplementary Figures H1-H2 for plots of CNV 

lengths on CNV types and CNV size preference by callers. 

  

 

Figure 6.17 – Venn diagram for L. casei dataset 

Figure 6.18 – CNV types by caller for L. casei dataset 
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6.6 Runtime analysis 

The Snakemake optionally outputs the runtime statistics for all rules. All normalizations 

for CNproScan were turned on. The running times are higher than the numbers observed 

in the CNproScan runtime analysis. This can be caused by two reasons. First, only a single 

sample was tested in the previous runtime analysis. Second, the CPU frequencies are 

lower for the multi-threaded load over all cores. Additionally, the I/O overhead can play 

a role. In Table 6.5 there are runtimes for detection tools and merging methods.  

Table 6.5 – Runtime for K. pneumoniae samples 

Tool Mean runtime [s] Min runtime [s] Max runtime [s] 

BWA-MEM2 148 75 208 

CNproScan 1017 629 141 

CNVnator 28 16 35 

DELLY2 479 351 580 

LUMPY 21 7 32 

Pindel 769 448 1025 

ProcaryaSV merge 50 38 66 

SURVIVOR merge 0.49 0.33 0.65 

6.7 Summary 

In this chapter, I presented the ProcaryaSV pipeline and its novel merging algorithm. It 

provided a reproducible framework for the evaluation CNproScan’s performance on the 

real dataset. The pipeline can detect CNVs and also inversions and insertions.  

In the field of genome rearrangements detection, merging multiple detection tools 

seems unavoidable. By using a single tool, we usually achieve either high sensitivity or 

high specificity. By merging multiple tools we can resolve more true positives and filter 

out many false positives. Integrating multiple tools would not be possible without robust 

merging.  

In the proposed merging algorithm, multiple callers can be efficiently merged. The 

performance of merging was tested on the previous artificial dataset. The results are 

comparable with the SURVIVOR merging method. The ProcaryaSV merging performed 

better in coverage values of 20×, 100×, and 200×. It was also calculated that the optimal 

parameter of minimal callers support is 2 to 4, depending on the stringency for filtering 

false positives. The additional bonus is reporting the coordinates of the region with the 

highest support, listing all callers involved and their representation in the overall length 

of detected SV.  

The analysis of real sequencing data was done on five bacteria organisms and 248 

genomes. I analyzed mainly the overlaps between the tools and the preference of detection 

tools for CNV types and lengths.   
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CONCLUSION  

The main topic of the thesis is the detection of copy number variations specifically in the 

prokaryotic genomes. While there is a tremendous and still increasing number of papers 

focused on the topic of SVs and CNVs, the resources related to bacteria are much less 

frequent. The work presented in the thesis aims to partially fill this gap.  

In two practical chapters, I described the CNproScan algorithm and pipeline 

implementing it called ProcaryaSV. Both tools might be useful for microbiology research.  

The CNproScan was published two years ago and was minorly updated a few times, 

thus I presented the original results with the updated ones. The methodology is based on 

read-depth navigated CNV detection combined with read-pair-based categorization. The 

read-pair approach is based on recent knowledge and enables the categorization of CNVs 

into known duplication types. The CNproScan does not consist only of detection methods. 

It handles the GC and mappability biases and bacteria-only related replication origin bias.  

The CNproScan was tested on the artificial dataset of various coverages (10×, 20×, 

100×, 200×) and compared with other seven CNV detection tools. CNproScan had the 

highest accuracy and F1 score for 20×, 100×, and 200× coverage. The accuracy for 100× 

was 93.3 % and the F1 score was 84.6 %. That is about 10 % higher than the closest 

competition. Also, it proved to be useful for detecting short CNVs under 25bp. The 

reported CNV boundaries are accurately corresponding to the specified boundaries in the 

majority of test cases. The accuracy of reporting a valid copy number is about 75 %.  

Integration of multiple detection tools has already been done in the past. Merging two 

methods can easily be done, but the scalability decreases with adding more tools. Thus, I 

used a signal representation of genome rearrangements and summed the signals of 

individual detection tools. The merging algorithm was tested on the previous artificial 

dataset and compared with the SURVIVOR merging algorithm. Generally, the two 

methods are comparable, yet for coverages starting at 20×, the ProcaryaSV’s merging 

algorithm performed slightly better. Both accuracy and F1 score are about 90 %. The 

parameter of minimal callers support, denoting how many callers have to detect an SV, 

was calculated from the precision-recall graph to be ideally 2 or higher. The ProcaryaSV 

pipeline employs five state-of-the-art detection tools and provides all necessary inputs 

and outputs for them. The pipeline enables reproducibility and is coded in the Snakemake.  

Regarding the limitations of the presented methods. The CNproScan’s running time 

is higher than the competition. This was mitigated as much as possible by implementing 

parallelization. Furthermore, the algorithm is based on the read-depth approach and 

requires a certain level of coverage, which is 20× based on results. However, coverage 

higher than 15× is a common requirement for the detection of any genome 

rearrangements. Generally, higher coverage leads to higher accuracy.  

Nowadays, the topic of bacteria drug resistance is an urgent task. Genome 

rearrangements, including copy number variations, play a role in this issue. Other than 
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that, genome rearrangements participate in the evolution and specialization of bacteria. 

Next-generation sequencing is still widely used and brings the high throughput necessary 

for accurate CNV detection. A reliable tool that is directly designed to detect CNVs in 

bacterial genomes (like the CNproScan), unlike tools designed for eukaryotic genomes, 

is essential. In turn, the proposed ProcaryaSV pipeline will enable CNV and SV analysis 

with maximum support for clinically relevant results. 
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Appendix C - Supplementary Figures 
Coverage Normality 

Figure A1 - Q-Q plots of artificial samples 
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Figure A2 - Histograms of artificial samples 
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Figure A3 - Q-Q plots of real samples 
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Figure A4 - Histograms of real samples 

 

 

  



 149 

Normalizations 

Figure B1 - GC normalization for E. coli 

 

 

 

Figure B2 - GC normalization for K. pneumoniae 
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Figure B3 - GC normalization for L. casei 

 

 

 

Figure B4 - GC normalization for S. aureus 
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Figure C1 - mappability normalization for E. coli 

 

 

 

Figure C2 - mappability normalization for K. pneumoniae 
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Figure C3 - mappability normalization for L. casei 

 

 

 

Figure C4 - mappability normalization for S. aureus 
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Figure D1 - replication bias normalization for E. coli 

 

 

 

Figure D2 - replication bias normalization for K. pneumoniae 
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Figure D3 - replication bias normalization for L. casei 

 

 

 

Figure D4 - replication bias normalization for S. aureus 
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Read-pair signatures 

Figure E1 - IGV CNV #6 - Deletion of 828 bp has many signature reads of both 

orientations +/- and -/+ 

 

 

 

Figure E2 - IGV CNV #13 - Deletion of 134 bp creates only slip-read signatures 

and almost no read-pair signatures 
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ProcaryaSV Results 

Figure F1 - E. coli CNV size by type 

 

 

 

Figure F2 - E. coli CNV size by caller 
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Figure G1 - S. aureus CNV size by type 

 

 

 

Figure G2 - S. aureus CNV size by caller 
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Figure H1 - L. casei CNV size by type 

 

 

 

Figure H2 - L. casei CNV size by caller 
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Appendix D - Supplementary Tables 
 

Supplementary Table 1 - Tools Overview 

Tool Status Webpage/ Repository 
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Sepúlveda  method  

CNAseg  not 

available 

http://www.compbio.group.cam.ac.uk/software.html 

JointSLM  deprecated   

CNVnator  maintained https://github.com/abyzovlab/CNVnator 

ReadDepth  deprecated  https://github.com/chrisamiller/readDepth 

CNOGpro  deprecated https://github.com/cran/CNOGpro 

Sequana  maintained https://github.com/sequana/sequana 

CNV-BAC  deprecated  https://github.com/LinjieWu/CNV-BAC 

Assembly approach tools 

NovelSeq   deprecated  https://novelseq.sourceforge.net/Home 

Cortex   deprecated  http://cortexassembler.sourceforge.net 
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TIGRA   deprecated  https://bioinformatics.mdanderson.org/public-

software/archive/tigra/ 

Hybrid / integrating approaches tools 

CNVer  deprecated  http://compbio.cs.toronto.edu/CNVer/ 

HYDRA  deprecated  https://code.google.com/archive/p/hydra-sv/ 

He et al method 

only 

 

inGAP-sv  deprecated https://ingap.sourceforge.net/ 

forestSV  deprecated  https://sebatlab.org/data-software 

GASVpro  deprecated  https://compbio.cs.brown.edu/projects/gasv/ 

PRISM  deprecated  http://compbio.cs.toronto.edu/prism/ 

DELLY maintained https://github.com/dellytools/delly 

PeSV-Fisher  not 

available 

http://gd.crg.eu/tools 

LUMPY  maintained https://github.com/arq5x/lumpy-sv 

Pilon  maintained https://github.com/broadinstitute/pilon/releases/ 

TARDIS  maintained https://github.com/BilkentCompGen/tardis 

SV / CNV detection pipelines 

SVmerge  deprecated  https://svmerge.sourceforge.net/ 

HugeSeq        deprecated  https://github.com/StanfordBioinformatics/HugeSeq 

iSVP  only 

method 

 

intansv maintained https://bioconductor.org/packages/release/bioc/html/intansv

.html 

MetaSV  deprecated  https://github.com/bioinform/metasv 

FusorSV  maintained https://github.com/timothyjamesbecker/FusorSV 

sv-callers  maintained https://github.com/GooglingTheCancerGenome/sv-callers 

Parliament2  deprecated  https://github.com/dnanexus/parliament2 

Viola  maintained https://github.com/dermasugita/Viola-SV 

* deprecated means that the source code is untouched since the date of publication or updated 

in a distant time. Some packages are not available at all, some are maintained and used, and 

some are deprecated yet still used. 

 

Supplementary Table 2 - GC normalization with Spearman’s correlation coefficient 

Sample Condition Rho P-value Significant (α=0.05) 

E. coli  Raw -0.971 8.395E-37 Yes 

E. coli Normalized 0.222 0.093 No 

K. pneumoniae Raw -0.301 0.012 Yes 

K. pneumoniae Normalized 0.110 0.371 No 

L.casei Raw -0.928 3.510E-23 Yes 

L.casei Normalized -0.160 0.254 No 

S. aureus Raw -0.981 4.066E-38 Yes 

S. aureus Normalized 0.178 0.201 No 
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Supplementary Table 3 - mappability normalization with Spearman’s correlation 

coefficient 

Sample Condition Rho P-value Significant 

(α=0.05) 

E. coli  Raw -0.158 0.517 No 

E. coli Normalized -0.202 0.406 No 

K. pneumoniae Raw -0.451 0.059 No 

K. pneumoniae Normalized S.D. of coverage for mappability score is zero 

L.casei Raw 0.355 0.147 No 

L.casei Normalized S.D. of coverage for mappability score is zero 

S. aureus Raw 0.949 1.698E-09 Yes 

S. aureus Normalized -0.383 0.116 No 

 

Supplementary Table 4 - oriC normalization with Spearman’s correlation coefficient 

Sample Condition Rho P-value Significant 

(α=0.05) 

E. coli  Raw 0.235 0.0007 Yes 

E. coli Normalized 0.090 0.203 No 

K. pneumoniae Raw -0.252 3.326E-05 Yes 

K. pneumoniae Normalized -0.219 0.0003 Yes 

L.casei Raw -0.933 3.192E-65 Yes 

L. casei Normalized -0.617 1.611E-16 Yes 

S. aureus Raw -0.824 3.185E-37 Yes 

S. aureus Normalized -0.345 2.023E-05 Yes 

 

 

Supplementary Table 5 - Used tools in the ProcaryaSV pipeline 

Tool/Package Version Usage 

fastqc 0.11.9 Raw and trimmed reads QC 

trim_galore 0.6.7 Reads trimming 

qualimap 2.2.2d Alignment analytics and report 

multiqc 1.13 Merging reports 

bwa-mem2 2.2.1 Reads alignemnt 

sambamba 0.7.1 SAM/BAM handling 

samblaster 0.1.24 Marking PCR duplicates and discordant reads 

samtools 1.13 SAM/BAM handling 

genmap 1.3.0 Mappability file creation (for CNproScan) 

Picard suite 2.21.1 Alignment analytics (for Pindel) 

CNproScan 1.0 CNV detection (RD+PR methods) 

CNVnator 0.4.1 CNV detection (RD method) 

LUMPY 0.3.1 SV detection (RD+PR+SR methods) 

DELLY2 0.9.1 SV detection (RD+PR+SR methods) 
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Pindel 0.2.5b9 SV detection (SR method) 

survivor 1.0.7 SV merging 

ProcaryaSV 1.0 SV merging 
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