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Abstract 
The focus in the field of structural variations is mainly focused on human genomes. Thus, 
detecting copy number variation ( C N V ) in bacteria is a less developed field. Commonly 
used C N V detection methods do not consider the features of bacterial circular genomes 
and generally, there is a space to improve performance metrics. This thesis presents a 
C N V detection method called CNproScan focused on bacterial genomes. CNproScan 
implements a hybrid approach combining read depth and read pair signals. It considers 
all bacteria features and depends only on N G S data. Based on the benchmarking results, 
the CNproScan achieved very well in various conditions. Using the read pair information, 
the C N V s are classified into several categories. Also, compared with other methods, 
CNproScan can detect much shorter C N V events. Because of the necessity of merging 
not only the various feature signals but also the results of different algorithms, the thesis 
also introduces a pipeline called ProcaryaSV developed to easily employ five C N V 
detection tools and merge their results. ProcaryaSV handles the whole procedure from 
quality check, reads trimming, and alignment to the C N V calling. 
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Abstrakt 
Hlavní pozornost v oblasti strukturálních variací je zaměřena na lidské genomy. Detekce 
změny variace počtu kopií ( C N V ) u bakterií je tedy méně rozvinutou oblastí. Běžně 
používané metody detekce C N V neberou v úvahu specifika bakteriálních kruhových 
genomů a obecně existuje prostor pro zlepšení metrik výkonnosti . Tato práce představuje 
metodu detekce C N V nazvanou CNproScan zaměřenou na bakteriálni genomy. 
CNproScan implementuje hybridní přístup kombinující signály hloubky čtení a párů 
čtení. Bere v potaz všechny vlastnosti bakterií a využívá pouze sekvenační data. N a 
základě výsledků ze srovnání dosáhl CNproScan velmi dobrých výsledků v různých 
podmínkách. Pomocí informací z párových čtení jsou C N V klasifikovány do několika 
kategorií. V e srovnání s j inými metodami může CNproScan také detekovat mnohem 
kratší C N V . Vzhledem k nutnosti slučovat nejen signály různých přístupů, ale také 
výsledky různých algoritmů, dizertační práce také představuje pipelinu nazvanou 
ProcaryaSV vyvinutou k detekci C N V s využitím pěti nástrojů a slučování jejich 
výsledků. ProcaryaSV se stará o celý postup od kontroly kvality čtení, ořezávání konců 
čtení, zarovnání čtení až k detekci C N V . 
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sekvenování nové generace, strukturální variace, variace počtu kopií, bakterie 
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INTRODUCTION 
The topic of this thesis is the detection of copy number variations in bacterial genomes. 
The copy number variations (CNVs) are a subgroup of a large field of structural variations 
(SVs). The structural variations are largely studied, yet there are still many gaps in the 
knowledge about them. This is even more factual for structural variations in bacteria. 
Despite that the first gene amplification was observed in Escherichia coli back then in 
1963, this field of research is less developed in bacteria compared to the advancements 
in human or other eukaryotic genomes. 

However, C N V s play an important role in the bacteria. They have a direct impact on 
protein production. In the long term, this has an impact on evolution and specialization. 
The short-term adaptive gene duplication can cause antibiotic resistance, which is an 
emerging issue. 

Sequencing is a common way how to study these organisms and became substantially 
cheap. Two ways of sequencing bacterial genomes are being done. The sequencing of 
bacterial isolates or whole bacterial communities. The thesis deals with the first one as it 
enables the detection of structural changes in the genome such as copy number variations. 

The lesser attention paid to structural variations in bacteria could be partly caused by 
technical difficulties detecting small rearrangements with short-read sequencing. Right 
now, we are at the breaking point between the massively used short-read next-generation 
sequencing, and the long-read third-generation sequencing. However, the inertia in the 
field is large and the next-generation sequencers are abundantly present and used in the 
labs. Furthermore, next-generation sequencing produces high throughput data necessary 
for copy number detection. 

Firstly, I define what structural variations and copy number variations are. The main 
source of research is papers focused on human genomes, as these are overabundant. 
However, many features of structural variations are the same for eukaryotic and bacterial 
genomes. The specifics of bacterial genomes are described in a special subchapter. 

In the second chapter, I describe the whole topic of detection of the structural 
variations. This chapter approaches the topic starting with laboratory aspects and moving 
to bioinformatical aspects of structural variations detection. 

The practical part of the thesis follows in three chapters. Firstly, I pay attention to 
some underlying theories that could not be placed previously. In the following two 
chapters, I describe two presented bioinformatical tools. 

The first one is a novel algorithm for C N V detection named CNproScan. There were 
several reasons to create it. First, the majority of tools are aimed at large, mainly human, 
genomes. They require specific types of inputs and dominantly rely on paired sample-
reference samples, e.g., tumor-normal tissues. Also, they are intended to detect large 
rearrangements, and they are not scaled to small copy-number events. However, large 
C N V s are rare in prokaryotes. Second, there are not enough detection tools aimed at 
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bacteria genomes, and some of the already published ones are already deprecated. Also, 
based on the reviews, there is only a small overlap between the results of various tools. 
A high false positive discovery is a common issue. Third, bacterial pathogens pose still a 
highly deadly risk. In 2019, they caused 13.6% of all global deaths. Five bacteria - S. 
aureus, E. coli, S. pneumoniae, K. pneumoniae, and P. aeruginosa, were responsible for 
more than half of all cases. The bacteria pathogens were the second leading cause of death 
after ischemic heart failure. A s mentioned previously, the C N V s can play a role in 
antibiotic resistance, bacteria adaptation, and specialization. The issue of bacteria drug 
resistance is present and emerging. Thus, there is a serious need to develop tools aimed 
at the detection of bacterial C N V s . A l l these aspects lead to the development of a new 
tool which was called CNproScan, derived from the words Copy Number prokaryotic 
Scanning. 

The second tool is a pipeline for the alignment and detection of C N V s and S Vs , named 
ProcaryaSV. The reasons to create the ProcaryaSV pipeline were two. It was more 
convenient to create a reproducible workflow than running the various scripts every time 
some parameter changed. Secondly, during the literature research, I came across the topic 
of merging not only the detection approaches but also the standalone detection tools. This 
idea origins in the results of multiple reviews which show how little C N V and S V overlap 
across multiple detection tools 

The presented tools extend the scope of tools for a microbiologist to study bacterial 
organisms. While CNproScan detects deletions and duplications, the ProcaryaSV pipeline 
enables the detection of inversions and insertions by combining multiple detection tools. 

10 



1 STRUCTURAL VARIATIONS 
While the focus of the thesis is copy number variations, they are inseparably tied to 

structural variations. There are predominantly mentioned together but the field of C N V s 

is generally more developed. In the following chapter, the classification of the structural 

variations from various aspects is expanded. Other related topics are mentioned too, such 

as the process by which SVs are created and their impact on phenotype. The major source 

of knowledge comes from human genomes focused research. While there are multiple 

similarities between eukaryotic and prokaryotic structural variations, there are also 

differences and these are described in the chapter focused solely on structural variations 

in bacteria. 

1.1 Classification of SVs 

The SVs can be classified into several categories. The most common one is classification 
regarding copy numbers into balanced and unbalanced events. Another criterion 
classifies SVs into single and complex SVs which consist of more underlying simple 
SVs. The SVs can be classified based on their size as fine-scale, intermediate-scale, or 
large-scale. SVs can also be categorized based on the process of creation as cut-and-
paste and copy-and-paste. Structural variation is observed as a junction between two 
breakpoints in the genome. When the sequencing read spans over a breakpoint junction, 
it leads to discordant features compared to the other read alignment features. This junction 
is defined by its orientation, space between breakpoints, etc. [1] 

The canonical types of SVs are deletions, insertions, duplications, inversions, and 
translocations. The minimum length of such events is not exactly specified. The initial 
size threshold was 1 kbp, later decreased to 50 bp but nowadays the SVs are all variants 
that are not single nucleotide variants (SNV). A more accurate definition than by size 
could be by a mechanism of creation of that SV. Small indels are created by replication 
slippage, while larger C N V s are created by homology recombination [2], 

The inversions and translocations classify as a balanced type of SVs, whereas the rest 
as unbalanced SVs. The deletions and duplications are also called copy number 
variations (CNVs) especially when they include gene regions. [3] 

Another large group is complex structural variations, which consist of multiple 
canonical SVs organized in many ways. [4] 

The basic illustration of various S V types is in Figure 1.1. The upper boxes represent 
the reference genome, while the lower boxes represent the sample genome situation. A s 
you can realize, the definition of S V is tied to some reference situation. This reference is 
another genome, another sample of a different location or time, or a pool of samples 
merged. 
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Figure 1.1 - Overview of SV types. Condition between referential and analyzed genome 

1.1.1 Unbalanced SVs 
Insertion, together with deletion, is the most common type of S V in the human genome 

[5]. It represents the gain of genomic genetic material compared to the reference. [6] 

Insertions can be further divided based on the source of the genetic sequence into types: 

mobile element insertions (MEIs), nuclear insertions of the mitochondrial genome 

(NUMTs) , viral insertions (VEIs), and insertions of unspecified sequence [3]. The direct 

detection of insertions is limited by the next-generation (NGS) approach, which limits the 

size of detectable insertion to the length of the library fragment. N o upper threshold is 

given for deletions [7]. It is demonstrated by two breakpoints [8], 

Deletion is a genomic event where a segment of D N A is cropped from the genome 

and the adjacent bases fuse next to each other. It creates a single breakpoint and it occurs 

at the same chromosome [8]. The difference between a small insertion-deletion (indel) 

event and larger deletion is a matter of definition. However, the most suitable definition 

depends on the underlying mechanism of creation. The small indel is created by slipped 

strand mispairing (also as replication slippage), while structural deletion is created more 

likely by D N A repair mechanisms error [2]. The commonly stated size threshold is often 

50 bp, which originates from the features of N G S sequencing. 

Repeats or duplications are parts of the genome that are duplicated. It can be in 

tandem or interspersed matter, whether they are adjacent or placed far apart. The majority 

of them are noncoding D N A , but some are functional genes [9], [10] 

Interspersed sequences consist of long interspersed elements (LINEs, >300bp), and 

short interspersed elements (SINEs, 100-300bp), which are both types of repetitive 

noncoding D N A . L I N E s are moderately repetitive and exist in less than a hundred of a 

thousand copies. Such an example can be the L I (or LINE-1) element which is 7 kbp long 

12 



and has between 20-50 thousand copies in mammalian genomes. Their assumed origin is 
retroviruses. SINEs are highly repetitive and exist in hundreds of thousands of copies. 
The most known example is the A l u element, which is 300 bp long and named after the 
restriction enzyme involved with it. It exists in 300-500 thousand copies of the human 
genome and covers approximately 11% of the human genome. [9], [11] 

Tandem repeats form several classes: short tandem repeats (STR, 1-6 bp, called 
microsatellites), and variable number tandem repeats ( V N T R , >7 bp) [10]. They 
usually form long clusters of tandem repeats without gaps in between (called satellites). 
Both STR and V N T R are noncoding and belong to the most mutable regions in the 
genome. [9], [10] 

1.1.2 Balanced SVs 
Inversions are balanced rearrangements. A n inversion is an event when a segment of 

D N A is inverted (rotated) in its place. It creates two breakpoints and occurs at the same 

chromosome [8]. Inversions are not associated with a copy number change. They could 

affect gene expression by breaking coding regions, but they predominantly have no 

phenotypic effect. However, they can serve as a predisposition to further rearrangements. 

Inversions can be involved in the centromere region of a chromosome (pericentric 

inversions), or the rest of the chromosome (paracentric inversions). [6], [12] 

Another balanced S V is a translocation. Translocation can be of two types: intra-

chromosomal, when a segment stays on the same chromosome but is often inverted, and 

inter-chromosomal when a segment is moved to another chromosome. Both types create 

a single breakpoint. [8] 

1.1.3 Complex SVs 
Compared to canonical SVs, the breakpoints of complex SV (cxSV) cannot be defined 

by a single S V event. The scale of complex S V is large, they can involve long-distance 

rearrangements but also multiple rearrangements occurring at a single locus. Complex 

SVs are larger than canonical SVs and there are approximately 14 cxSVs in every human 

genome, while thousands of canonical SVs. Interestingly, the majority of c x S V contains 

inversion. [4], [13] 

Although it is expected that complex SVs are created by a single event, this fact is 

difficult to prove. Germline (inherited) SVs arise most likely through two mechanisms 

during replication: fork stalling and template switching and microhomology-mediated 

break-induced replication. Complex SVs can be created when there are multiple switches 

on the replication fork. These switches can be even between distant parts of the genome. 

Somatic mutations are less limited as they do not undergo meiosis, but they undergo 

various selective pressures and influences. The commonly accepted mechanism for the 

creation of complex somatic variations is chromoanagenesis, which includes three often 
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separately described events: chromothripsis, chromoanasynthesis, and chromoplexy. 

[13]-[17] 

The most commonly mentioned chromothripsis is a single catastrophic event when a 

chromosome is fragmented and then repaired with many errors. This event is likely 

caused by external factors, e.g. radiation. The breakpoints following this event are 

clustered in a non-random way. The copy number exhibits only two values, gain, and 

loss, but never both simultaneously, and are divided by untouched segments. Also, losses 

are derived from the same parental chromosome, and heterozygosity is kept at untouched 

segments. These observations point to chromothripsis rather than a sequential mutation. 

[4] 

Detection of complex SVs is a challenging task, which usually requires manual 

curation and observation of breakpoints belonging to canonical SVs. The SVs believed 

to be canonical are first filtered out. Also, SVs in poor-quality regions are omitted. The 

SVs overlapping with previously detected C N V s in a healthy pool of samples are also 

omitted [18]. The updated 16 types of c x S V were recently presented in [13] based on an 

analysis of nearly 700 samples. 

1.1.4 Copy Number Variation 
Copy number variation ( C N V ) is usually mentioned as a subtype of SVs. It is a deletion 
or duplication that involves genes. Other commonly used terms are copy number gain 
and loss. Sometimes, the copy number alteration ( C N A ) is used concerning somatic-only 
events, compared to germline C N V s in cancer research. The definition of C N V by size 
had historical development, tied with technological advancement. A s the development 
enabled the detection of shorter and shorter C N V s , their definition by size also decreased. 
Commonly stated size is 50 bp to millions of bp. [19] 

While C N V s are thought of as deletions and duplications, there is a debate about 
whether to include indels. Indels are much smaller than the lower size threshold of C N V . 
A n important reason why not to include them is a distinct mechanism of creation of both 
events. The origin of indels is mainly replication based while the origin of C N V s is mainly 
homologous recombination. Although, the mechanisms can be shared across various 
events. The restriction of size itself is a matter of debate. [19] 

A n interesting tract about narrowing the definition of C N V s compared to S V can be 
found in a review by Pos [19]. The authors cling to the definitions of C N V s similar to the 
general definition of unbalanced SVs. This describes C N V s as the relative difference in 
copy numbers of specific D N A sequences among individuals or distinct populations. Or 
in other words as variation contributing to the copy number change. Then, the terms 
deletion, insertion, duplication, gain, and loss are meant in a molecular phenotype context 
of C N V s . The discussion could be also taken about specifying the impacted regions of 
the genome in terms of variation impact. [19] 
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Similarly to SVs, C N V s can be recurrent and non-recurrent (explained further). 

C N V s can be both inherited or sporadic. The expected lower bound rate of C N V 

mutations per haploid genome is 3 x 10"2. [19], [20] 

1.2 Mechanisms of Creation 

The origin of the creation of structural variants dwells in the genome architecture and 
mainly in the existence of segmental duplications (SDs), a subtype of low-copy repeats 
(LCRs) . These are blocks of D N A in size of 1 kbp to 400 kbp, that occur at multiple 
places in the genome and have very high levels of sequence identity (homology >90%). 
The regions flanked by segmental duplications are possible targets of nonallelic 
homologous recombination ( N A H R ) . The analyses showed that they make up around 5 
% of the human genome. For the larger picture, up to 50% of the genome consists of 
repeat sequences. [6], [21]-[24] 

Segmental duplications can be located multiple times at a single chromosome 
(intrachromosomal duplications), or at nonhomologous chromosomes (interchromosomal 
duplications). Contrary to tandem duplications, they are interspersed across the genome. 
The multi-genomic placements and high sequence homology are the main substrate for 
the N A H R mechanism and thus play an important role in the creation of SVs. It can be 
assumed that SVs are not random events, but their origin is in predisposition to genomic 
rearrangement due to segmental duplications at a given locus. When visualized, the 
segmental duplications are often the hotspots (sites of predominant occurrence) of other 
SVs. [6], [21]-[24] 

The parent category of segmental duplications is low-copy repeats. These are over 
lOkbp long and they have a mosaic architecture consisting of hierarchical clusters of 
directly and indirectly orientated segments, while SDs have simple architecture. It was 
observed they also overlap with positions of frequent genomic reorders. Similarly to SDs, 
both regions have a negative impact on local genome stability. [24] 

The genomic rearrangements can be recurrent and non-recurrent. Recurrent ones 
have the same size, position, and content in unrelated individuals. Simply said, they occur 
with a certain frequency in the population. Oppositely, non-recurrent rearrangements 
have a unique size, position, and content at a given genomic position in unrelated 
individuals. [24] 

The recurrent deletions and duplications have both breakpoints positioned within the 
directly oriented segmental duplications. The major driver for recurrent events is the 
N A H R . The non-recurrent have their breakpoints spread out. If there is a segmental 
duplication, the breakpoints cluster in their neighborhood. The majority of non-recurrent 
events are driven by replication-based mechanisms, i.e. F o S T e s / M M B I R (fork stalling 
and template switching/microhomology-mediated break-induced replication). [22], [24] 
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The most studied event is a double-stranded break (DSB), where both strands of 
D N A are broken. Defective reparation of D S B s is tied with various disorders and is a 
major driver of cancer. The major source of D S B s is when during replication forks 
encounter damaged bases which leads to fork collapse. Less frequent exogenous sources 
are ionizing radiation and chemotherapeutic drugs. In vivo, the frequency of D S B is high 
and the replication of strands is considered to be discontinuous. In some scenarios, the 
D S B is programmed by the cell. L ike during meiosis when D S B repairs are essential for 
chromosome segregation. [25], [26] 

The two major mechanisms of D S B reparation are two pathways: homologous 
recombination (HR) and non-homologous end-joining (NHEJ). The presence of many 
proteins, e.g. Rad51 in eukaryotes and R e c A in prokaryotes for N A H R , is required for 
the reparation process. [26], [27] 

The homologous recombination (HR) mechanism requires a homologous sequence 
serving as a template for D N A reparation. The required length of a homologous template 
is 50 bp for E.coli and up to 30 bp in the human genome. A s a template, the sister 
chromatid is predominantly used followed by the homologous chromosome. The 
nonallelic homologous recombination is a special case of H R when the homology 
template is in a non-allelic position. Under usual circumstances, the N A H R does not 
change the genome structure and is accurate. However, structural change can occur i f the 
repaired sequence and the template are located at distant positions. When segmental 
duplications have a high sequence identity of over 97 % and are located within 10 Mbp, 
the misalignment of chromosomes can happen and this further mediates the N A H R 
leading to unequal crossing over. Crossing over between homologous chromosomes can 
lead to a loss of heterozygosity (LOH) i f the chromatids segregate during mitosis. N A H R 
between directly oriented segmental duplications can result in deletions or reciprocal 
duplications of the regions in between. N A H R between inverted segmental duplications 
leads to the creation of inversion. The more complex structure of segmental duplications 
leads to combinations of these events. The N A H R is behind the majority of recurrent 
rearrangements. It is active only during the S and G2 phases of cell life. N A H R is used 
not only to repair D S B but to correct broken replication forks in the process of break-
induced replication (BIR), which can also lead to SV. [22], [27]-[29] 

Contrary to H R , the non-homologous end joining (NHEJ) is independent of the 
presence of segmental duplications. It also does not require a homologous template to 
guide the reparation. N H E J repairs the broken ends of D N A strands by direct resealing. 
It is the simplest and fastest pathway and the most commonly used, although it can lead 
to the potential loss of genetic information causing up to 4 bases deletions. It can also 
insert new genetic information from mitochondria or retrotransposons. It is active during 
all phases of cell life. [22], [27]-[29] 
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Similar to N H E J is microhomology-mediated end joining (NMEJ) , which requires 

5 to 25 bp homology templates, and different proteins. Thus, the deletions possibly caused 

by N M E J are longer. [28] 

If sister chromatids lose their telomeres during D S B , they wi l l fuse and create a 

dicentric chromosome. During anaphase, when chromosomes are separated, the dicentric 

chromosome wi l l break in a random location. The chromosome has again an unprotected 

end which wi l l merge into a new dicentric chromosome after another replication. This 

creates large inverted duplications. The process is called the breakage-fusion-bridge 

cycle. It is commonly observed in human cancer cells. [28] 

Another class of mechanisms inducing copy number changes is non-homologous 
replicative mechanisms. These events happen during the replication of the D N A . When 

there is high sequence identity in expectedly single-stranded D N A during replication, e.g. 

Okazaki fragments, the fragments in between are deleted or duplicated. This responsible 

underlying mechanism is replication slippage (or template switching). In E.coli, the 

replication slippage depends on the homology length and distribution and requires an 

absence of R e c A protein. The process is more abundant in prokaryotes cause it is limited 

by replication fork length and C N V s in the human genome are out of size achievable by 

replication slippage. 

A more complicated form of replication slippage is not limited to a single replication 

fork but happens between more of them. This mechanism is called fork stalling and 
template switching (FoSTeS). During FoSTeS, the 3' primer end can switch to another 

single-stranded D N A template in some nearby fork. The FoSTes is considered a non-

replicative mechanism based on further evidence, mainly that amplified units have only 

short microhomology, thus no homologous recombination is likely involved. [28] 

Another mechanism is microhomology-mediated break-induced replication 
( M M B I R ) . It is a special case when important proteins are downregulated due to cellular 

stress, so break-induced replication (BIR) would likely not be possible. Instead, the 3' 

end of the collapsed fork wi l l switch to another close single-stranded template-sharing 

microhomology. This can be the s s D N A of the lagging strand or part of s s D N A under 

excision. The deletion or duplication is decided on the location of the new fork: upstream 

causes deletion, and downstream causes duplication. The orientation of a new segment is 

caused by the strand which is involved, lagging, or leading. The F o S T e S / M M B I R model 

is considered to be a major player in the creation of C N V s and also in the creation of 

segmental duplications. [22], [30], [31] 

Another source of genome rearrangements is retrotranspositions. Mainly, the L I 

sequences play a role in insertions and deletions resulting in smaller events around 5 kbp. 

[4], [7] 
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Figure 1.2 - Rules for assigning the mechanism of SV creation, taken from [37] 

1.3 Impact of SV 

The definition of SVs is not tied or restricted to the gene boundaries. However, the genes 

are affected by SVs i f they overlap. Coding regions of many genes are under the change 

of copy number through C N V s . Unbalanced SVs can add or remove copies of genes 

which leads to changes in gene dosage, gene expression, and phenotype depending on a 

gene type. Several studies observed a correlation between gene copy number and m R N A 

expression levels. The effect can be both limited-expression or over-expression. 

However, not all genes under copy number change demonstrate altered expression. There 

is even a small group of genes with inversely proportional expression to their copy 

number [32], 

The dosage effect includes the impact of C N V s on gene expression. This comprises 

both changed levels of expressions but also modified products of transcription. Deletion 

of a regulatory element of a gene wi l l lead to a change of expression, potentially complete 

silencing. The duplication of a regulatory element together with a gene region wi l l lead 

to an increased gene product. Contrary, the deletion of a regulatory element with a gene 

region means no product. Insertions, deletions, or inversions overlapping with only part 

of a gene can lead to the creation of variant gene products through exon shuffling, splice 

variants, or novel gene fusions. However, the majority of such constellations are 

nonfunctional unless the open reading frame is functional. A gene fusion is a common 

type of event. [32] 

The positional effect includes a change of expression affected by rearrangements 

outside of a gene. Deletions can uncover recessive alleles by deleting only one allele and 
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affecting phenotype. However, deletions are generally a negative selection. Predicting the 
phenotype is challenging because of the existence of haploinsufficient genes (the half 
dose is detrimental) and dosage-sensitive genes (both increasing or decreasing dosage is 
detrimental). [6], [32] 

SVs are commonly studied in cancer research. This requires the classification of SVs 
as germline (inherited) or somatic (acquired). Two samples are sequenced, a normal 
sample (usually blood) and a tumorous sample containing the tumor cells. The normal 
sample is usually sequenced at lower coverage while the tumor sample requires high 
coverage because of the mixture of cells in the resected sample and other specifics. A n 
alternative approach is to replace the normal sample with a reference dataset of SVs. [33] 

SVs also play a role in speciation in many animals through the process of reproductive 
isolation [34], 

One of the recent and valuable tools in cancer research is fusion genes detection. The 
fusion gene is formed by multiple possible mechanisms, i.e. by chromosomal 
rearrangement or by non-structural aberrations such as cis-splicing (same chromosome) 
and trans-splicing (different chromosomes) or transcriptional read-through. Thus, we can 
view it as a direct effect of S V on gene dosage creating new, disrupted, or fused R N A 
transcripts of two originally independent genes. This later leads to the synthesis of 
abnormal or chimeric fusion proteins potentially modifying the original function. [35] 

1.4 SV Annotation 

Structural variation annotation is a process of assigning information to detected SVs. 

Multiple categories can be assumed based on a research subject. The basic annotation is 

based on SV-type classification. This is expanded by classifying into more complex S V 

subtypes, e.g., coding or noncoding rearrangement, gene fusions, gene duplication, or 

deletion. We can assign the effect on translated protein, and which type this effect w i l l 

be, such as a change of the structure of the protein and impact on gene expression (dosage 

effect). There can be also no effect. The change of protein sequence can lead to gain or 

loss of function. [36] 

Three major mechanisms linked to S V creation are homologous recombination, 

nonreplicative nonhomologous repair, and replication-based mechanisms. [37] B y 

observing genomic features and sequences around breakpoints we can deduce the 

possible creation mechanism responsible for this SV. The decision tree can be constructed 

to assign a deletion or insertion of up to six possible mechanisms of creation. The 

observed features are overlap with the transposable elements (TE) or variable number 

tandem repeat ( V N T R ) regions, presence of homology, or small insertion inside or nearby 

of breakpoints. [7], [37] 
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Figure 1.3 - Functional annotation and downstream consequences of SVs, taken from [36] 

1.5 Population Studies 
After the finished sequencing of the first human genome in 2004 [3 8] and the international 
HapMap project focused on the discovery of common SNPs in 2007 [39], several groups 
focused on sequencing a much higher amount of genomes. A n ultimate goal is to capture 
all kinds of genetic variations in the population. The most influential project was the 1000 
genomes project (1KGP) which started in 2008. They published their results in several 
phases but in the end, they sequenced 2,504 human genomes and analyzed thoroughly the 
human genetic variation including structural variation and C N V s . [40]-[43] 

In 1 K G P they used short-read Illumina sequencing data at ~7x coverage combined 
with long-read single-molecule PacBio sequencing. They discovered a combined set of 
68 thousand SVs, defined as variants over 50 bp. These were predominantly deletions 
(42,279), followed by duplications (6,025), C N V s (2,929), inversions (786), mobile 
elements insertions (16,631), and nuclear mitochondrial insertions (168). Furthermore, 
the analysis brought useful hindsight into structural variations in the human genomes at 
various levels. The samples originated from 26 ancestry populations and the SVs could 
be stratified based on variant allele frequency ( V A F ) in distinct populations. The 
functional impact of S V was analyzed too by overlapping with already known functional 
elements of the genome. They pointed out other than commonly known mechanisms for 
the creation of S V hotspots and described some of the early complex SVs. However, the 
low coverage design is limiting in many aspects of discovery SVs. [43] 
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Figure 1.4 - SV types and lengths representation from the 1KGP project, taken from [43] 

Another large study was the 2016 sequencing of 10,545 human genomes at - 4 0 x 

coverage. The study was focused mainly on S N V and the evaluation of detection quality 

metrics. However, they performed S V and C N V detection on the 200 replicates of the 

common reference genome NA12878 (Genome in the Bottle, G I A B ) and concluded 

unsatisfactory results of detection from short-reads for clinical practice (precision <77%, 

recall <36%). The use of orthogonal technologies was recommended by the authors for 

confirmation. [44] 

The largest study of SVs up to that time is the 2018 analysis of 17,795 human 

genomes. They focused on discovering rare SVs which are usually recent or denovo 

mutations. They obtained a set of 158 thousand rare SVs, mostly deletions (54.5%) 

followed by duplications (42.2 %). It was discovered average human individual caries 2.9 

rare SVs altering coding regions. These SVs affect on average 4.2 genes. Otherwise, they 

observed a mean of 4,442 nonrare SVs per genome consisting of predominantly deletions 

(35%), mobile element insertions (27%), and tandem duplications (11%). The group 

sequenced samples at higher coverage of over 20x which boosted the sensitivity for rare 

SVs detection. They applied mapping to two versions of the human reference genome 

and published a new tool for S V detection in population studies called svtools. [45], [46] 

Several other smaller studies were also published. These are often focused on 

nationally. In 2014 the Genome of the Netherlands published results of genetic variation 

from 250 family trios (769 samples) at an average coverage of 13 x. They discovered a 

high overlap of found genetic variants with European samples of the HapMap project 

(98.2%) and with Europen samples of 1 K G P (71.1%). However, they also discovered that 

93.3% of deletions were novel in comparison with 1KGP. The sequencing of family trios 

(mother-father-child) enabled the accurate detection of de-novo mutations. [47] 

Among other national studies which performed S V detection are the 2017 Swedish 

population study of 942 genomes [5], the 2015 analysis of 1,070 Japanese genomes [48], 
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the 2015 study of 10 Danish family trios [49], and the 2018 Korean study of 50 genomes 

[50]. The overview of a multitude of S V reference datasets is listed in [51]. 

1.6 SV Databases 

Several databases of SVs exist and they serve in discovering new structural variants and 
genotyping. The first database, the Structural Variation Database, was part of the 2005 
study on segmental duplications and comprehended the 119 detected SDs in 47 samples 
and previously detected 297 SVs from fosmid paired-end reads [21], [52], 

The initial effort to a full-scale database started in 2006 with The Database of 
Genomic Variants ( D G V ) , which comprehended results from mainly array-CGH 
experiments published in peer-reviewed journals. The majority of records in 2006 was 
1,207 C N V s and very few other variants, e.g. 37 inversions. [53] 

In 2013, the D G V contained data from 55 studies and more than 2.5 mill ion entries. 
The database is curated and datasets are checked for accuracy. The studies are accessed 
from the archival S V databases, the N C B F s dbVar, and E B I ' s DGVa (Database of 
Genomic Variants archive), which are not curated. The majority of data are now from 
next-generation sequencing and some initial results from microarrays with poor 
resolution and high false-positive rate were removed from the database, pointing out the 
accuracy of the early results. [54] 

Two databases share a data model, the dbVar maintained by the National Center for 
Biotechnology Information (NCBI) and D G V a maintained by the European 
Bioinformatics Institute (EBI). Both are uncurated and serve also as repositories of 
detected structural variants, but not the sequencing data itself. The researchers submit the 
variants formatted as tab-delimited or V C F files. Both databases support only human 
samples, the non-human samples are directed to be submitted to the European Variation 
Archive ( E V A ) , which now serves as D G V a replacement and also fur human samples. 
[55] 

The Genome Aggregation Database (gnomAD) is a database from both exome and 
whole genome high coverage sequences. It comprehends a diversity of large-scale 
sequencing projects, but the variants are detected by the gnomAD group leading to a 
unique dataset [56]. The gnomAD-SV is a sub-database including only SVs from 14,891 
human samples. They annotate 6 canonical S V types and 11 complex S V types. They 
detected twice as many SVs per genome compared to the 1 K G P project, highlighting the 
detection power of high-coverage data. [57] 

The Catalogue Of Somatic Mutations In Cancer (COSMIC) is a large curated 
database of mutations from tumor samples. The database is based on published papers 
and includes clinically relevant information. It contains over a mil l ion of C N V s . [58] 

Unlike the human variation databases, no database storing SVs in prokaryotes is 
known at the moment. 
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1.7 Structural Variations in Bacteria 

Although the first gene amplification was observed in the model organism Escherichia 
coli K-12 in 1963 [59], the later major effort regarding structural variants and copy 

number variants was focused on human genomes or generally eukaryotic organisms. 

However, that was an underestimation of the importance of prokaryotic genome 

rearrangements as was later discovered. Bacteria are an omnipresent and essential part of 

nature. There is an estimation of 5 x 10 3 0 bacteria present on the earth. Also, they belong 

to the most deadly pathogens and multiple issues related to bacterial pathogens emerged, 

namely growing antimicrobial resistance. [60] 

The sequencing of bacterial samples is done in two ways, by cultivating and 

sequencing bacterial isolates or by sequencing communities, e.g., microbiomes, by 

shotgun metagenomic sequencing, or by targeted amplicon sequencing. The focus of this 

thesis lies in the sequencing of bacterial isolates. [61] 

Prokaryotic genomes differ in multiple ways from eukaryotic ones. The genome is 

composed usually of a single double-stranded D N A formed into a circular shape. There 

can be additional independent circular genomes called plasmids carrying less important 

though beneficial genes. In some species, e.g. Shigella, the plasmids are responsible for 

virulence [62]. Because of the small size, the bacterial genome is dense. Genes lack 

introns and are almost next to each other without a significant gap. Some genes are 

organized in operons, adjacent genes belonging to the same pathway and expressed 

together. 

Most importantly, bacterial genomes are free of large repetitive regions, yet they 

contain some repetitive elements. These repetitions then serve as a substrate for genome 

rearrangements. They can also be incorporated through horizontal gene transfer (HGT). 

It is important to mention that there is a negative relationship between genome stability 

and repetitive sequences. The bacterial genomes are limited to a finite number of genes 

they can harbor. They dispose of less-worthy genes to balance new gene gain from H G T . 

This bacterial continuous gene gain and loss makes them adaptable [63]. [64]-[66] 

Generally, rearrangements over 50 bp are considered SVs in Bacteria [61]. The role 

of SVs in the prokaryotic domain is different compared to eukaryotic genomes. Both 

evolutionary and phenotypic implications are extensively studied. The prokaryotic 

genomes are stable between subsequent generations (due to binary fission), but on the 

evolutionary timeline, they are plastic, shaped by H G T , genome rearrangements, 

prophages (bacteriophages), and mobile genetic elements ( M G E ) . These can all 

participate in genome rearrangements [60], [67]. Furthermore, the mechanisms of SVs 

creation are similar to those described in Eukaryotic genomes [65], 

When a region is excised and recombined in the opposite direction, it is called 

inversion. Inversions in bacteria are often reversible. Two types are observed, site-

specific recombination and large chromosomal inversions. In the genome, the inversion 
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function as an on/off switch depending on the direction. If it is rotated oppositely to the 
transcription locus, the transcription is turned off. Inversions are the main drivers of 
structural rearrangements in bacteria [62]. [61] 

Duplication in bacteria plays a role in their metabolism, e.g. multiple copies of 
ribosomal R N A genes are often present. The duplicated genes can be inactivated through 
pseudogene creation or deletion. There are long-term genomic duplications and short-
term adaptive amplification. Also called multicopy duplications or gene accordions. They 
are created quickly and increase the levels of protein translations. It has been shown that 
gene amplification in bacteria is predominantly stress-induced as a response to starvation 
or exposure to drug treatment [68]. Adaptive amplification can also be responsible for 
antibiotic resistance. The exact mechanism of creation is not known but it is expected to 
be through initial duplication followed by homologous recombination. [61] 

Deletions are believed to play a role in the bacteria's specialization and also to provide 
quick adaptation. However, because they are under negative selection pressure and 
because the bacterial genomes are already densely packed, large deletions are rare. The 
same applies to duplications and insertions. [62] 

Insertion is very common in bacteria. It includes the acceptance of D N A sequences 
from the cell outside via conjugation or natural competency, or within the genome. 
Mobi le genetic elements ( M G E ) are the main driving force. These include transposases 
(insertion sequences), integrons, prophages, and transposons. Many M G E s contain genes 
responsible for antibiotic resistance, the production of toxins, etc. Insertion within the 
gene can lead to gene inactivation. [61] 

The symmetrical design of the genome leads to biased symmetrical structural 
variations. Three forces were described as creating this bias. First, the distance of a gene 
from the replication origin (oriC) is a large force. More important genes were observed 
to be close to oriC. Second, there is a difference in replication between the leading and 
lagging strands. Third, the limitation to having symmetrically sized replichores (halves 
of a circular chromosome) leads to symmetrical inversions. Symmetrical inter-replichore 
inversions are the most commonly detected S V in bacteria. [65], [69]-[71] 

Structural variations in bacteria can change the distance of a gene from the 
replication origin (oriC) which can have an extensive impact [65]. The SVs and C N V s 
are part of pathogenesis evolution and antibiotic resistance [72], 

Structural variations were proved in Shigella, a common cause of diarrheal illness, 
which is also becoming resistant to multiple antibiotics. 34 SVs were found between 
different isolate pairs. However, the detailed insight showed that the role of these SVs is 
largely unknown [73] Similarly, SVs were found in Pseudomonas syringae, a cause of 
the fungal disease of kiwifruit [74]. A large metagenomic study detected SVs present in 
the human gut microbiome and associated them with host disease risk factors [75], 
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Figure 1.5 - Illustration of replication origin bias, taken from [66] 
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2 DETECTION OF STRUCTURAL VARIANTS 
The following chapter describes the methods of S V detection through time. The earliest 

methods may be seemed as ancient, but certain algorithms still used nowadays were built 

upon these methods, e.g., circular binary segmentation. The methods are mentioned 

chronologically as they were used. The major focus is on next-generation sequencing, 

which changed the research of D N A by enabling massive and affordable sequencing. The 

first two subchapters are focused on the principles of these laboratory methods. The 

following subchapters are then focused on the bioinformatical point of view of S V 

detection. Firstly, the general principles and terms are described. Later, there is an 

overview of state-of-the-art detection tools. 

2.1 Wet-lab Methods 

G-banding, also known as Giemsa banding, is a karyotyping method based on unique 
banding patterns across chromosomes. The chromosomes in the metaphase are digested 
with trypsin first. Giemsa is composed of methylene blue, azure, and eosin and is specific 
for the phosphate groups in the D N A strand where it binds through intercalation. 
Heterochromatic regions, having high A T content are stained darker, while euchromatic, 
GC-r ich and high gene content are lighter. The banded chromosomes are then imaged 
under a visible light microscope to detect genome rearrangements at a resolution over 
3Mbp. It can detect events such as insertions, deletions, and mainly translocations. [76] 

Fluorescence in situ hybridization (FISH) uses complementary D N A fragments 
(15-10kbp) carrying fluorescent labels (fluorophores). After designing complementary 
probes, the metaphase chromosomes are attached to the slide. The probes are hybridized 
into complementary sequences and the unattached probes are washed away. The 
chromosomes are observed under fluorescent microscopes after exciting the fluorescent 
labels. The F I S H can detect the same SVs as G-banding but at a higher resolution of over 
100 kbp. It is also more accurate. [76] 

Optical mapping is an alternative to sequencing derived from restriction fragment 
length polymorphism mapping. It is dependent on the nicking restriction enzymes, which 
cut the D N A strands attached to a slide into fragments (300 kbp to 3 Mbp) at specific 
positions (creating an optical map of nicks). Each fragment is stained with a fluorescent 
dye and fragments labels are mapped against the in-silico reference. The missing or 
additional labels and the distance between them serve to detect structural variations. This 
can detect deletion (missing label), insertions (extra-label), duplications (repeated labels), 
translocations (unique nicks), and inversions (reverse nicks). Optical mapping is wel l -
suited for large genomic rearrangements and also useful in repetitive regions of a genome. 
[51], [76], [77] 
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One of the earliest methods for the detection of C N V is comparative genomic 
hybridization (CGH) , originally developed as a method for comparing copy numbers 
from test and reference samples using fluorescence in situ hybridization. Both samples 
are differentially fluorescently labeled (by cyanine dyes) and then hybridized 
competitively to chromosomes. The fluorescence ratio is measured along the 
chromosome and allowed the detection of regions of loss or gains in the regions of 5-10 
Mbp. [78]-[81] 

Later, the chromosomes were replaced most recently by microarrays of 
oligonucleotides with known positions within the genome. The measured ratio of the 
fluorescence intensity between the observed and reference sample at a given location is 
assumed to be proportional to the relative copy number of that sequence. The equal 
intensity of both fluorochromes indicates no loss or gain of a segment, while the 
prevalence of one of the fluorochromes indicates either loss or gain of a segment 
compared to the reference sample. The array resolution is limited by two aspects: the 
length of cloned D N A targets and the distances between these targets on the chromosome. 
[82]-[84] 

The major technical challenge of array-CGH is generating and measuring 
hybridization signals. Several aspects influence signal intensity: base composition, 
amount of repetitive sequences, and amount of D N A available for hybridization. Ideally, 
the hybridization signals should be linearly proportional to sequence abundance. More 
accurate results can be achieved by hybridizing a single sample only and then comparing 
the results with a set of control samples. The complexity of the observed genome has a 
significant impact on the achieved resolution. Copy numbers from small genomes such 
as yeast and bacteria are easier to obtain compared with mammalian genomes because 
each portion of the genome is represented more abundantly. Furthermore, arrays made 
from B A C clones (-100-200 kbp) provide more intense signals compared to short 
sequence arrays (cDNAs, P C R products, and oligonucleotides) and can detect single-copy 
changes. Oppositely, short sequence arrays provide higher resolution but noise levels 
disable the possibility to detect single-copy changes. [82], [85] 

Several algorithms were developed for array-CGH data analysis. The output data are 
log ratios of normalized intensities from both samples at a given position. The task is to 
separate regions of low and high log ratios. The initial methods were based on simple 
smoothing by local average. Based on a false discovery rate the threshold was defined for 
gains and losses. More thorough algorithms were later applied using the mixture model, 
Hidden Markov Models, maximum likelihood, regression, and others. [86] 

A still commonly used algorithm is circular binary segmentation (CBS) [87]. It 
converted intensity values into regions of the same copy number. A more advanced 
approach based on Hidden Markov Models was BreakPtr, designed for precise 
breakpoint prediction from high-resolution array-CGH [88], 
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Similar to array-CGH, the SNP microarrays are also based on hybridization and can 
detect events only in the designed regions. Contrarily, a single sample is hybridized to the 
microarray, and log-transformed ratios are computed by comparing the fluorescence 
intensity of every probe with multiple reference hybridization samples. [83] 

The original use case is genotyping of the single nucleotide polymorphism (SNP). 
SNP is a single base change at genome position, mostly with only two different bases 
(alleles) which both appear significantly in the population. These SNPs are stored in 
databases, such as dbSNP. The rarer changes are defined as mutations. The target 
sequences on the microarray are allele-specific oligonucleotides (~15bp) which are 
specific only for one allele and two probes for both alleles have to be carried by 
microarray. Since the probes are similar, cross-talk can happen and is usually mitigated 
by using multiple probes per SNP. [89], [90] 

Contrary to array-CGH, the SNP microarrays offer a lower signal-to-noise ratio per 
probe. On the other hand, the allele-specific oligonucleotides improve C N V detection 
sensitivity by applying calculated B allele frequency (BAF) . This metric takes advantage 
of the fact that two alleles are measured, denoted as A and B . The B A F is then a 
normalized intensity ratio of both A and B alleles, such that B A F equal to 0 denotes an 
absence of the B allele ( A A or A - genotype), B A F of 1 denotes the absence of the A allele 
(BB or B - genotype) and B A F of 0.5 denotes the equal presence of both alleles ( A B 
genotype). The B A F can be effectively used to calculate copy numbers from the range 0 
to 4 in diploid positions. It also allows the detection of copy-neutral variations such as 
uniparental disomy, mosaic losses, and gains. [83], [89] 

Several methods were developed for C N V detection from SNP microarrays. They are 
usually designed for specific vendor designs, such as Affymetrix (using differential 
hybridization on glass surface) or Illumina (using a single-base extension on microbeads). 
SNP data is usually normalized against a reference population to reduce between-array 
variation and probe-specific hybridization effects (as cross-talk). However, these 
procedures assume the same copy number of reference population including positions of 
known C N V regions. These known side effects lead vendors to design microarrays more 
suitable for C N V detection. For Illumina arrays, the normalization is done only inside the 
array. The genotyping is done by clustering for both platforms, where each genotype ( A A , 
B B , A B ) represents a cluster in I D space and the probe is assigned to the genotype by 
proximity. Both major vendors had their proprietary software for C N V detection. Some 
other algorithms were also published, such as QuantiSNP [91], PennCNV [92], and 
Birdsuite as the most commonly used ones. Both applied Hidden Markov Models and 
assume that observed intensities are related to unobserved copy numbers. The emission 
distribution is assumed to be Gaussian. It is also assumed that adjacent genomic positions 
have similar copy number states. Other algorithms have an origin in the array-CGH data 
analysis, such as circular binary segmentation [87]. The performance evaluation of these 

28 



algorithms exposes variance in called C N V s across tools and points out the benefits of 
combining results of multiple algorithms. [90], [93]-[95] 

Although the non-sequencing methods might seem to be old-dated, the array-CGH 
and SNP-microarrays are still commonly used for C N V detection. The main benefits are 
robust detection of large events, reduced costs compared to sequencing, and processing 
time. 

2.2 Next-generation Sequencing Methods 

The massive growth of genomics had not come until the advent of next-generation 
sequencing (NGS), now mentioned also as second-generation sequencing (SGS). Before 
this, the common method was the Sanger sequencing by incorporating 
dideoxynucleotides and following capillary gel electrophoresis. This method is labor-
extensive and costly but still considered a gold standard. In the following second 
generation, four dominant commercial platforms were developed: 454 pyrosequencing in 
2005, Illumina/Solexa platform in 2006, S O L i D in 2007, and Ion Torrent in 2010. It is 
the Illumina sequencing short-read platform that became by far the most used 
sequencing platform ti l l now with a variety of applications. [96]-[99] 

The Illumina sequencing device is present in almost all facilities including the Brno 
University Hospital, with which we cooperated. Also, it provides a large output of data, 
also mentioned as high throughput sequencing. A sufficient number of sequencing reads 
are necessary for the read-depth detection method which employs the coverage. Other 
features of Illumina sequencing are also required such as the reads orientation, length, 
and insert size distribution. Lastly, there are multitudes of datasets stored in databases 
such as N C B I Sequence Read Archive (SRA). Thus, we used the Illumina platform as the 
assumed source of sequencing data. 

In Illumina sequencing, sequencing by synthesis is in use. After the isolation of 
D N A , the genomic library is generated by fragmentation and adapters ligation. Size 
selection can be applied. The adapter consists of a sequence complementary to one of two 
oligonucleotides on the flow cell, a barcode to identify the sample, and a binding site for 
primer. The single-stranded fragments are attached to the surface of the flow cell, a glass 
panel with lanes. The complementary sequence is hybridized by polymerase and the 
original template is washed away. In the process of bridge amplification (or cluster 
generation), the hybridized strand is folded over and hybridized to the adjacent flowcell 
oligonucleotide and polymerase generates a complementary sequence again. The double-
stranded bridge is denatured and the whole process is repeated in cycles leading to clusters 
of approximately 1000 copies of the same sequence [100]. The bridge amplification is 
needed for a low signal-to-noise ratio. After the bridge amplification is done, the reverse 
strands are washed away, leaving only forward strands. [101], [102] 
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In the process of sequencing by synthesis, the fluorescently tagged nucleotides are 
added. The first sequencing primer is hybridized to the forward strand and hybridization 
is carried from the 5' to 3' end. After the incorporation of each nucleotide into the 
hybridized strand, the clusters are excited by light and the emitted fluorescent signal 
which is characteristic in wavelength and intensity for a nucleotide is captured. This 
process repeats and the number of cycles defines the read length. After the cycles are 
finished, the synthesized read product is washed off. The original strand folds over and 
creates a bridge. The new strand is hybridized as in the bridge amplification process. The 
double-stranded bridge is denatured and this time only the reverse strand is kept. The 
second sequencing primer is hybridized, and the second read product is sequenced. 

The details of the process differ based on the sequencing platform, dye chemistry (1,2, 
or 4 colors), type of flowcell (random or patterned), reads index (single or dual), and 
library preparation (single-end, paired-end). [103] 

Random shotgun sequencing was introduced in 1981 early after the invention of 
Sanger sequencing [104], [105]. The two strategies for sequencing complete genomes 
based on the shotgun approach are whole-genome shotgun sequencing and hierarchical 
shotgun sequencing [104]. Later, an important improvement was introduced as 'double-
barrelled' shotgun sequencing when both ends of double-stranded clones were sequenced 
and the information about linking and opposite orientation was used to close the 
sequencing gaps [106], 

In the earlier hierarchical shotgun sequencing, the cloned genome is divided 
sequentially into overlapping segments of known order. These segments are separately 
sheared into fragments and sequenced [107]. The execution was done firstly by 
employing yeast artificial chromosomes, later by bacterial artificial chromosome (B A C ) 
with a large insert size (up to 200 kbp) and fingerprinting method [104], [107]. For 
hierarchical shotgun sequencing, it is necessary to create a molecular and physical map 
of fragments. In whole genome shotgun sequencing, the cloned genomes are directly 
sheared into fragments. These unordered fragments are then sequenced again by using 
cloning vectors [107], 

Assembling was easier for the hierarchical shotgun method as apriori information 
about sequence order is there and was also used in The Human Genome Project. The 
competing Celere Genomics in their pursuit of a complete human genome employed the 
whole genome shotgun strategy to complete already published data by the H G P project 
[104]. This outlined the common future strategy of mapping reads to the already known 
reference. 

The idea of shotgun sequencing started in the first era of sequencing but is still in use. 
Compared to long reads of Sanger sequencing (approximately 800bp), the next-
generation sequencing brought massive parallel sequencing of much shorter reads. The 
initial read length of the Illumina platform was 35bp, but it raised to 300bp. Illumina 
platform can utilize three types of reads: single-end, paired-end, and mate-pair. 

30 



In single-end sequencing, double-stranded D N A fragment has flowcell adapters 
attached to both ends, but only a single end has sequencing primer ligated. Then 
sequencing starts from this adapter to the end of the fragment in the 5'-to-3' direction. 

In paired-end sequencing, both ends have sequencing primers ligated. Both the read 
length and the insert size (length of P C R fragment without adapters) are subject to choice. 
It is the apriori known insert size that gives useful information about the expected position 
and orientation of the paired read. This information can be used for the detection of 
structural variants or tagging and removing P C R duplicates. Usually, there is a gap in an 
unsequenced fragment. However, when the fragment size is smaller than double the read 
length, there can be an overlap. Both reads then can be merged into large-spanning single 
reads [108]. In the Illumina platform, paired-end reads have usually short inserts of 200 
to 500bp. The graphical description of the terms fragment and insert size is in Figure 2.1. 
[103] 

Fragment Size 

Insert Size 

Adapter 1 Insert 

Read 1 

Adapter 2 

Inner distance 

Figure 2.1 - Illustration of insert and fragment size definition 

Longer insert sizes in the range of several kilobases can be achieved by applying the 
mate-pair library preparation method. In the Illumina mate-pair workflow, a biotinylated 
junction adapter is attached to both ends of fragmented D N A . These tagged fragments are 
circularized so that both adapters are joined by a biotin junction adapter. Circularized 
fragments are sheared into smaller fragments, while the fragments carrying the biotin 
junction adapter are enriched. The fragments without the junction are discarded, however, 
there is usually some contamination. Illumina adapters are then added to both ends of 
these fragments and can be sequenced. Compared to the expected forward-to-reverse 
orientation of paired-end reads, the mate-pairs are in opposite reverse-to-forward 
orientation as a consequence of circularization, where fragment ends are adjacent. Certain 
abnormalities of read orientation can occur based on the position of the junction adapter 
within the fragment. The mate-pair sequencing does not allow reads merging as there is 
no overlap. [100], [109] 
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2.3 Detection Approaches for NGS 

The next-generation platform still represents the most common way of obtaining genomic 

data and a plethora of methods and algorithms for the detection of structural variations 

have been developed for over a decade. Typically, they tend to focus on a particular class 

of structural variation. Various classifications of detection methods were published -

based on a specific feature of N G S data, whether is it a whole-genome or selected targets, 

i.e., exome sequencing, whether it is a single genome or population approach, whether it 

searches for somatic or germline variants, whether it is a diploid or haploid genome. 

However, the most common classification is a division into four methods using features 

of N G S data. These are read-pair, read-depth, and split-read methods and methods based 

on de-novo genome assembly. The first three require the data to be aligned to a reference 

genome, while the assembly approach requires a high-enough coverage to denovo the 

assembly of the genome. [12], [83] 

2.3.1 Read-pair approach 
The read-pair approach employs one of the biggest advantages of sequencing - paired-

end reads. This approach observes the position, distance, and orientation of read pairs 
in the alignment. The reads which differ from expectations are called 'discordant'. These 

discordant reads are mapped closer or further than expected, mapped in inverted 

orientation, mapped in the incorrect order, or mapped on different chromosomes. The 

illustration for discordant reads based on the insert size is in Figure 2.2. The majority of 

S V classes can be detected by this approach. [83], [110] 

Sample genome 

Reference genome 

•*+7* V « — 
1 1 

Concordant Discordant 
P a i r pair 

Figure 2.2 - Discordant and concordant reads based on the insert size 

Several signatures (features of mapped reads) are defined for classes of structural 

variations. The easiest signatures for detection are basic insertion and deletion. Pair of 

reads that span over isolated deletion are mapped in the correct orientation of forward-to-

reverse, but the insert size between reads is longer than the expected library insert size. 
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Oppositely i f they span over an insertion event, the insert size is decreased from the 
expected size. The signature of inversion is also clear. Both reads are mapped in the 
correct order, but the one read spanning over the breakpoint of the inverted region wi l l 
map with flipped orientation. Two read pairs spanning over both breakpoints of inversion 
with flipped orientation then form the inversion signature. Expected orientation is usually 
denoted as +/-, which means the first read is mapped to the forward plus strand and the 
second mate is mapped to the reverse minus strand. There is a limitation regarding 
sequencing library parameters. If the inversion is longer than the insert size of the 
sequencing library, the inversion signature wi l l not be detected. [ I l l ] 

Sample genome 

Reference genome 
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Duplication Deletion 

Figure 2.3 - Read-pair signature for deletion and duplication 

More complex linking signatures can be applied for events located over larger 
distances. The regions further apart in the reference genome can become closer in the 
sequenced genome (donor) by genome rearrangement. A mate pair (one of the read pairs) 
covering the breakpoint in the sequenced genome wi l l map with increased insert size. The 
two read pairs which are closest to the breakpoint in the donor genome wi l l form a linking 
signature. The basic deletion is a simple case of this. Cancer fusion genes are another case 
of linking signature between two remote genes which overlapped in the donor. Insertion 
which consists of the region presented elsewhere in the genome forms a linked insertion 
signature. This constitutes of two linking signatures covering two breakpoints of the 
inserted region. Reads are mapped incorrect orientation but with increased insert size. 
Linking makes it possible to detect the origin of inserted region contrary to the basic 
insertion signature. The limiting is the size of the inserted region such that too large 
regions decrease the probability that the two linking signatures belong together. Tandem 
duplications of the region are presented in reference forming another linking signature. 
The mate pair ending in each of the duplications wi l l map in reverse order but with the 
correct orientation. It is called everted linking signature. It can detect only novel tandem 
duplications with unchanged copy numbers. Linking signatures can indicate the 
proximate position of breakpoints, but not the exact one. 

If only one read from pair maps to the reference, it forms a hanging insertion signature 
and we can assume the insertion of a novel genomic region. These hanging reads can be 
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de-novo assembled to discover the insertion region. They are also mentioned somewhere 
as orphaned reads and can be categorized into the split-read approach. [111]—[114] 

The read-pair approach can distinguish between tandem and interspersed 
duplications. The signatures of reads from tandemly duplicated segments include lower 
insert size (as reads are mapping closer than expected) and reversed both orientation and 
order of the reads (upstream read location mapping to the reverse and downstream read 
location mapping to the forward, i.e. -/+). The interspersed duplication signatures include 
increased insert size and reads mapping to the opposing strands but with reversed order 
(+/-and -/+). [115] 

Another case of duplication is inverted duplication, which shares signatures with 
inversion. Contrary, direct duplication (unchanged orientation) shares a signature with 
deletion. These similarities make the detection challenge. The basic signature for 
duplication and deletion is in Figure 2.3. [115] 

The data distribution of the insert size is expected to be Gaussian [116], [117]. A n 
interesting case represents sequencing with two different insert sizes libraries. This is 
designed to overcome the limitation of small insert sizes for detecting larger genome 
rearrangements. [118] 

It is necessary to say, that highly accurate detection of various complicated S V types 
is achieved in combination with the split-read approach as soft-clipping is common in the 
alignment. [116], [117] 

2.3.2 Split-read approach 
The split-read approach takes full advantage of mapping properties to the reference 

genome. It enables single-base resolution. Firstly it was used in the project of human 

genome indels detection from Sanger sequencing [119]. The signatures are based on an 

incorrect alignment of mapped reads which is gapped or split. The approach to detect split 

reads is through soft clipping. The soft clip of the read represents a continuous mismatch 

at the 5' or 3' end of the read. The sources of soft clips can be sequencing errors, chimeric 

reads, reference errors but also structural variants. Another mechanism included in this 

approach is the anchor and orphan reads illustrated in Figure 2.4. This mechanism 

overlaps with the pair-read approach. [120] 
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Reference genome 

Orphan reads 

Figure 2.4 - Orphan and anchor reads 

Read sequenced over a deletion breakpoint w i l l map with a split mapping signature, 
where both ends of reads (prefix and suffix) w i l l map to different regions in reference. If 
its mate pair is uniquely mapped, the split read is masked as a so-called soft-clipped read. 
This signature is well used by long reads platforms but with short-read data, there can be 
too much false mapping of read halves. This can be mitigated by limiting the candidate 
reads or setting conditions. [8], [111] 

The decision of what is tagged as soft-clipped and what is tagged as an alignment 
mismatch depends on the mapping algorithm. The illustration of the soft clipping is in 
Figure 2.5. 

Breakpoint 
Reference 
CTACTGATGCGTAGGGAGATCCGGAATCTATTGGCCTATG 

GATGCGTAGGGAGATCCGGAGAATCTTAA 
CGTAGGGAGATCCGGAGAATCTTAATCTATG 

ACTGATGCGTAGGGAGATCCGGA TCATTTGG 
Aligned reads AGGGAGATCCGGA|GAAT 

Figure 2.5 - Soft-clipping illustration 

j~ Soft-clipped 

j- Mismatches 

35 



Split mapping insertion signature wi l l form a similar pattern, where short insertion 

leads to both prefix and suffix mapped very closely but the inserted region wi l l remain 

unmapped. Both anchored signatures are limited in size for a few bases because the 

aligners w i l l exclude reads unable to map to the reference by a certain portion of their 

length. [ I l l ] 

Under specific circumstances, mobile element insertion (MEI) can be detected [41]. 

The reads have to be longer than M E I or possibly can be shorter i f the breakpoints of M E I 

are in a unique sequence, the split-read approach can detect the M E I . [83] 

The information from the soft-clipped reads can be further used, when these portions 

are cropped and realigned to the reference genome again, usually within predefine 

boundaries of breakpoints. This is useful as deletion can be defined when clipped 

sequences are remapped and they map to the outer side of the deletion breakpoint. If they 

map reversely, it denotes an inversion signature. If clipped sequences map inside the 

breakpoints, it is likely a duplication. B y observing the position of the remapped soft clip, 

the tandem, and interspersed duplication can be distinguished too. [83], [121] 

Essential for the split-read approach is choose of mapping algorithm and usage of so-

called C I G A R strings, where the information about soft-clipping is stored. Among the 

algorithms that enable soft-clipping are B W A and Bowtie2. [122]-[125] 

The most limiting is the computational requirements as the precise search for potential 

split read mapping is demanding. However, their performance is pleasable even in low 

coverage conditions. Nice figures of various split-read signatures can be found in [121]. 

2.3.3 Read-depth approach 
The read-depth approach evaluates the coverage, i.e. a number of reads that cover a 
certain position. The terms read-depth and coverage are often used interchangeably 
unless defined specifically. The distribution of coverage is assumed to be Poisson random 
distribution. In the presence of biases and sequencing errors, the observed coverage 
distribution differs from the expected Poisson and is wider [126]. The basic hypothesis is 
that duplicated regions wi l l manifest significantly elevated coverage. Oppositely, the 
deleted regions wi l l manifest zero or decreased coverage. Thus, only two signatures are 
created by the read-depth approach illustrated in Figure 2.6. The essential factor for 
successful detection is appropriate sequencing read-depth because the read-depth 
approach assumes that read depth is proportional to copy number. The average read 
counts in regions correlate very well with D N A copy numbers for Illumina and 
pyrosequencing platforms, while not for S O L I D sequencing [127]. [128]—[130] 
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Read-depth signal 

Reference genome 

Figure 2.6 - Read-depth signatures and read-depth signal 

Generally, the advent of read-depth was easier as the methods applied to C N V 
detection in array-CGH, e.g. circular binary segmentation, can be used with some 
modifications on N G S data [127]. However, they are differences: variance in probes is 
lowest for the normal state (equal copy numbers), and the variance increases for copy 
number changes. Contrarily, the lowest variance of read-depth is for the deletion state, 
and it further increases proportionally with increasing copy number [131]. 

Data processing steps are the following: data preparation (extracting read depth from 
a pre-filtered set of reads), data normalization (minimizing the influence of sequencing 
biases), reading read-depth in non-overlapping windows, detection of same copy-number 
regions (segmentation) and merging them, and estimating the copy-number. [127] 

Several studies focused on the topic of genome coverage [132]—[134]. The Lander-
Waterman theory used for fingerprinting clones for physical mapping and early shotgun 
sequencing enabled scientists to estimate parameters such as coverage and the number of 
gaps as a function of the number of reads [134]. This model assumed a continuous library 
and was later extended to assume a discontinuous library [133]. A n updated model was 
necessary when paired-end sequencing emerged [132], 

The observed values of read depth can be converted into logarithm, log-ratio (for 
paired or pooled samples), or Z-scores depending on the algorithm [135], [136]. The 
C N V s can be detected at the visible read-depth level, implicating statistical testing for 
significant changes from the global average or neighboring regions. Or it can be detected 
at the read-depth distribution level, observing the significant deviations from the expected 
parameters of the distribution. [135] 
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Several segmentation algorithms were presented. The earliest, circular binary 
segmentation (CBS) was developed for array-CGH. Others like mean shift-based, shifting 
level model, expectation-maximization, and hidden Markov Model can be all used to 
detect segments sharing the same copy number. [135] 

Defining the correct size of the window to aggregate the read depth values can be 
skipped by focusing only on regions of interest, e.g., gene regions, or by sequencing the 
designed regions like in whole-exome sequencing. The conceptual segment is then 
limited to the functional unit. [135], [137] 

The results of the read-depth approach are influenced by many external factors. 
Several biases affecting read depth exist, e.g., P C R amplification bias, G C bias, 
mappability bias, repetitive segments, and artifacts created through multi-mapping reads. 
Coping with G C and mappability biases is an essential step of the read-depth approach. 
Multi-mapping reads represent another ambiguity. This phenomenon emerges when a 
read can be mapped into multiple positions at the same score (the same uniqueness). 
Managing such a task is fully dependent on the mapping algorithm and knowledge about 
the algorithm behavior with multi-mapping reads is necessary when applying the read-
depth approach. Several scenarios can be applied. First, only uniquely mapped reads are 
kept, and multi-mapping reads are fully omitted. This leads to the loss of too much 
information. Second, the multi-mapping reads are positioned randomly. This affects the 
read depth signal and the following detection. Lastly, the multi-mapping reads are 
positioned at every possible location simultaneously. The following S V detection requires 
algorithm design to handle these reads. The difference between multi-mapping reads and 
uniquely mapped reads can be created by sequencing errors, i.e. otherwise multi-mapping 
reads are handled as unique ones due to a few mismatches caused by sequencing errors. 
[11], [131] 

2.3.4 De-novo assembly approach 
If read length and the amount would be sufficient for a de-novo assembly of the genome, 
it should be theoretically possible to detect all structural variants including copy numbers, 
content, and their structure. Such detection would not be based on inference from read 
signatures but would be directly visible in comparison to the reference, i.e. in self-dot-
plot. However, whole-genome sequencing is still costly to perform at parameters that 
would enable de-novo assembly. Yet, there are several studies where they performed 
whole-genome sequencing with fosmid clones of multiple samples and detected as many 
SVs as was technologically possible [7], [138], 

The most promising is the application of de-novo assembly in long-read sequencing. 
Theoretically, all structural variations could be detected by the de-novo assembly. Two 
main approaches exist - one based on graphs and the second, based on alignments. [139], 

Assembly approaches include a whole-genome de-novo assembly and also a local re­
assembly to produce contigs which are then compared to the reference genome. The latter 
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is often used in combination with the split-read approach or with the orphaned reads. 
Thus, the mapping is carried out first. De-novo assembly can be performed over the 
regions of interest, e.g. regions important for the immune system [140]. This combines 
the high reliability of the assembly approach with lower costs of sequencing. Generally, 
the de-novo assembly is limited by required coverage and sequencing costs. The required 
coverage is about 50x compared to the sufficient 15x coverage required for mapping-
based methods. [141], [142] 

2.3.5 Signatures 
Signatures are features of mapped reads that allow detection from the inferring 
information. Also, they can be understood as detectable traces that genome 
rearrangements leave in the alignment. The signatures can be generally divided into three 
classes: signatures based on pair-end mapping, split-read signatures, and signatures based 
on the depth of coverage [111]. 

The usual workflow starts with detecting the signatures and then with calling SVs. 
The higher sensitivity is achieved by detecting multiple signatures instead of a single one. 
Sequencing errors can lead to incorrect mapping, while chimeric reads can lead to 
incorrect information about insert size and orientation. Regarding library insert size, this 
follows a Gaussian distribution rather than being precise across the whole library [116], 
[117]. Thus, differentiating between a change of insert size in a signature caused by indel 
or caused by the tail of insert size distribution creates ambiguity. Read-depth signatures 
are influenced by sequencing biases caused by a library preparation or sequencing 
platform [102]. Early use of gain and loss signatures was used in C N V detection based 
on comparing different species genomes or between healthy and tumor tissue samples. 
The statistical power of read-depth signature is related directly to the coverage of the 
whole genome and to the size of C N V . Contrary to pair-end mapping signatures in short-
read sequencing platforms, the read-depth signatures can capture very large events with 
increased confidence as well . However, they are losing at low coverage and short S V 
events. The breakpoint detection based on read-depth signature is also less accurate. [ I l l ] 

The signatures supporting the same type of variation can be grouped by clusters for 
pair-end mapping and split-read signatures or by windowing methods for depth of 
coverage signatures. The most common clustering method takes into consideration only 
discordant reads, i.e. those with erroneous mapping. Reads with multiple positions of 
mapping (multi-mapping reads) are disregarded too, but then the information about 
repetitive regions is lost. Clusters are then defined at positions where multiple similar 
signatures occur i f the thresholding limit is achieved. Two basic parameters are defined 
by this strategy: the minimum number of mate pairs to form a cluster and the number of 
standard deviations to define discordant mate pairs. Both are based on coverage. With 
increasing coverage, the number of mate pairs and the number of standard deviations can 
be decreased without harming the specificity. [111], [143] 
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Some methods include multi-mapping reads but they face the decreased sensitivity of 
too many differing signatures [144]. A rule is defined that multi-mapping mate pairs can 
be part of a single cluster. A fixed number of standard deviations to define a cluster also 
represents a challenge in many situations where cluster formation would be prohibited, 
e.g. short indels. This can be overcome with matching signatures cluster and expected 
distributions for matches [145]. [ I l l ] , [143] 

The read-depth methods use dividing the reference into windows. Each window must 
have the same approximate value of coverage but the neighboring windows should have 
a significant difference from the other windows. Each window is then assumed to 
represent neutral or copy number change. One of the earliest methods, circular binary 
segmentation, was initially developed for array-CGH datasets [87]. [111], [143] 

Each rearrangement leaves its kind of signature. However, certain signatures are 
shared between rearrangements. Tandem duplication can create a specific pattern when 
the second paired read w i l l map before the first read. Or it can be only part of the second 
read place before and soft-clipped. Contrarily, interspersed duplications can be confused 
with inversion or deletion patterns (if the duplication is on the same chromosome) or with 
translocations (if the duplication lies on different chromosomes). [139] 

Generally, detecting deletions is easier than duplications. Not all duplications are 
detectable by read-depth methods. This is likely caused by decreased sensitivity of these 
methods in distinguishing a copy number increased just a single time. [146] 

The combination of read-depth and read-pair approaches could discern between 
homozygous and heterozygous deletion. For homozygous, where both alleles are missing, 
reads are mapped farther apart and there is zero coverage. For heterozygous, where only 
one allele is missing, there is lower coverage compared to baseline, but reads are spanned 
normally caused they originate from the no-event region. [147] 

Signature detection is made difficult cause various reasons. First, sequencing and 
alignment errors blur the signatures. Contrary to S N V , S V can span over multiple reads 
which leads to mapping ambiguities. Second, the signatures of multiple S V types can be 
similar. Tandem duplications and novel insertions may be difficult to separate. Third, 
genomic rearrangements can overlap or be nested leading to complex SVs. But these 
complex S V signatures might be overlooked and lead to a preference for simple SVs. 
[139] 

2.3.6 Breakpoints 
A breakpoint represents a novel junction between the reference genome and a sample. 
Genome rearrangements can be breakpoint-spanning (discordant pair-end reads) and 
breakpoint-containing (single split-read). The breakpoint can be understood as two bases, 
which are next to each other in a sequenced sample but not in the reference, and vice 
versa. The illustration of deletion-induced breakpoint is in Figure 2.7. [125] 
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Read-pair and split-read signatures of discordantly mapped reads can be also 
classified into two classes: direct and indirect cases. Direct case class refers to a situation 
when both mate pairs indicate the approximate position of two regions linked together in 
the genome. The breakpoints need to be refined by local assembly or split-read signatures. 
The direct case approach is used by methods that generally use the clustering approach to 
detect signatures. Indirect case class refers to a situation when the position of one of the 
mate pairs is known. The other one is soft-clipped or one-end anchored. [148] 

Reference genome 
Deleted in the sample 

CTCTATAAAGGTATCTACTGATCCGTAGGGAGATCCGGAATCTATTCGCCTATC 

Sample genome 
CTCTATAAAGGTATCTACTC TTCGCCTATCTCACTCAAAC 

Breakpoint 

Figure 2.7 - Breakpoint illustration 

The detection of exact breakpoints is challenging. The breakpoints are often defined 
as confidence intervals with the most likely genomic coordinates. Various heuristic 
clustering strategies are used to assign groups of possible SVs to a single S V event. Close 
clusters supporting the same S V type are merged into one event. Two clustering strategies 
are used. First, clustering is based on the distance between the breakpoints. Second, 
clustering is based on the overlap between the SVs and is predominantly used in 
population multi-sample studies. Interesting is the use of 2D Euclidean space and 
geometry (plane sweep algorithm) to deal with the breakpoint overlaps. [149]—[151] 

The homology sequences around the breakpoints, which are the substrate for the 
creation of S V itself, are also complicating the exact breakpoint definition. For such cases, 
the de-novo assembly approach is useful to uncover the exact genome sequence of the 
SV. [18] 

A special case is exome sequencing. In exome sequencing C N V detection, the 
breakpoints are not usually detected and whole exomes are considered segments under 
inspection. Also, only read-depth and split-read methods can be used for exome 
sequencing. Another special case is restricting breakpoints to be navigated by gene 
annotation to fit the gene boundaries. In this case, the segments are thought to be gene or 
intergenic regions. [137], [152], [153] 
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2.3.7 Copy Numbers 
A copy number is an integer that denotes the number of copies of the segment in the 
sample. This classification can be more challenging i f an exact copy number integer is 
expected, though a majority of the algorithms give only a gain, loss, or copy-neutral 
classification. Mainly two approaches exist, segmentation and Hidden Markov Model 
[154]. The basic idea behind copy number estimation through segmentation is that read 
depth in a given segment should correspond to copy number change. Also, segment 
coverage values corresponding to the same copy number should cluster together [153], 
This process is similar to the Parzen window method for non-parametric density 
estimation [153]. The HMM-based methods get integer copy numbers from means of 
their hidden states [155], [156], 

The expected linear relation between read-depth and copy-number value was not 
proven by Pearson correlation for exome sequencing. The normalized read depth by the 
length of the segment (i.e. exon) was overlapping across the various copy-number states. 
Thus, the detection of direct copy-number is often impossible. A significantly better 
correlation was achieved when these ratios were used between the sample and the 
reference of the known copy number. It was also demonstrated that copy-number 
prediction is independent of read lengths and mapping algorithms. [157] 

The exact copy-number estimation is usually performed by algorithms comparing two 
or more samples simultaneously. [156], [158] 

Also, there is an important difference between C N V detection in diploid and haploid 
organisms. Haploid organisms (prokaryotes, viruses) have usually a single chromosome, 
thus, there is only a single copy of a gene. The default copy number is then one. 
Oppositely, in diploid organisms with paired chromosomes, there are two copies of each 
gene. The default assumed copy number is then two. 

2.3.8 Limitations of using a single approach 
It is necessary to mention that N G S methods have difficulties to detect SVS in repetitive 

regions, thus the detection of microsatellites, transposable elements, heterochromatin, and 

segmental duplications is challenging. This limitation is not possible to overcome with 

algorithm design, but rather a combination of other sequencing platforms overcomes this. 

[159] 

Each detection method itself has limitations. Split-read is the most precise in exact 

boundaries of SV, but on the other hand, is very limited to the length of the reads and 

short reads affect accuracy and precisions. Also, it works only in unique regions of the 

genome. [160] 

Read-pair can detect all types of SVs but is not precise in establishing boundaries. 

The accuracy of read-pair methods depends on the insert size and its distribution. Small 

42 



SVs can be skipped in detection with large insert libraries. Similarly to split-read 
methods, the power is limited in nonunique regions of the genome. [160] 

Assembly methods have poor detection power against duplications or repeats and 
require high coverage. Read-method works well on duplications and can detect the copy 
numbers as the only method. However, the boundaries resolution is poor. [160] 

The limitations of using a single approach are overcome by implementing multiple 
approaches or even tools together. 
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Figure 2.8 - Integrating multiple approaches (read-level) or multiple tools (SV-level), taken 
from [191] 

2.3.9 Integrating multiple approaches 
Hybrid algorithms were the first to overcome the limitations of distinctive approaches. 

That is achieved by a combination of more approaches and overlapping their outputs or 

by increasing the support of S V events by multiple signatures. The breakpoint resolution 

can be increased by a hybrid approach, which leads to more precise detection of S V 

boundaries. This is enabled by integrating the split-read approach. The copy number can 

be calculated by integrating the read-depth approach. The spectrum of detected SVs can 

also be extended by integrating more approaches. The read-depth method can only detect 

deletions and duplications and by integrating them with other approaches we can detect 

a wider spectrum of S V or subtype them. The performance metrics such as sensitivity and 

specificity can also be improved by a hybrid approach. 
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Table 2.1 - Overview of methods properties, taken from [141] 

Approach Resolution Detectable types Used PE reads 
Assembly base-pair all all reads 
Split-read base-pair all soft-clipped 

one anchored split reads 
Read-pair rough all discordant reads 
Read-depth very rough CNVs all reads 

2.4 Overview of Detection Tools 
While the principles of detection methods are in the previous subchapter, here I review 

some of the tools based on these principles. The overview of all further listed tools and 

their maintenance status and software availability is in Supplementary Table 1. 

2.4.1 Read-pair tools 
Before the arrival of publications describing specific algorithms for S V detection, several 
studies approached S V detection with prototypes of future algorithms. They focused on 
the detection of previously unknown SVs and applied various library insert sizes to 
circumvent the limitations of S V detection. 

The earliest studies which used read-pair signatures for S V detection were published 
already in 2003 [161] and 2005 [52]. In these pioneer studies, they employed genomic 
libraries of pair-end fosmid sequences with very long insert sizes (called end-sequence 
profiling - ESP). The same methodology was also used in the later sequencing of eight 
human genomes which focused on refining the position of discovered SVs and detecting 
C N V s . They re-assembled the reads with a T I G R assembler. [138] 

SVs discovered by previous studies were reassessed by capillary sequencing of 
fosmid clones with 40 kbp library insert sizes [7]. There is one of the earliest comparisons 
of S V detected by other studies. While comparing with the 2008 study [138], only partial 
overlap in detected deletions was found as a possible result of fluctuating clones coverage 
and sequencing reads quality. They also found an overlap of only 38% with results from 
another read-depth study [162]. More advanced breakpoint detection was presented. Two 
regions around breakpoints are extracted from genome assembly and one called junction 
is extracted from the clone. They are firstly globally aligned and then merged into a single 
alignment of three sequences. The innermost breakpoint boundaries can be observed from 
this alignment. [7] 

The first N G S study from 2007 used 454 Pyrosequencing of two individuals [112], 
The reads were again mapped with M E G A B L A S T but realigned for higher precision with 
the Smith-Waterman algorithm. The separation of mate pairs insert sizes was done by 
thresholding. The cutoff was defined after removing potential outliers and defined for 
each batch separately. Then, the three standard deviations from the mean (3 kbp) were 
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used as thresholds. A t least two paired-end reads were required to establish an SV. The 
achieved average breakpoint resolution was 644 bp and SVs spanning around 3 kbp and 
larger were detected. The regions around detected breakpoints were re-sequenced and 
contigs were assembled. This enabled the examination of breakpoints with other known 
genome features (segmental duplications, A l u elements, etc). [112] 

Two studies from 2008 applied S V detection on the Illumina sequencing data [163], 
[164]. The first one sequenced two cancer cell lines on the first version of the Illumina 
GenomeAnalyzer. The authors also performed one of the earliest usages of read-depth 
data for copy number detection. They observed the number of reads mapped uniquely 
with correct orientation and insert size within defined size non-overlapping windows. 
They adapted commonly used circular binary segmentation to estimate copy numbers. 
[164] 

The second study used the methods defined previously [52], [112], [164] such as 
detecting anomalous insert sizes, incorrect reads orientation, gapped alignment, and read-
depth analysis. Both studies only considered a single unique map position. 

One of the earliest papers bringing theoretical background to the detection of S V in 
paired-end data was presented in 2008 by Lee [116]. The author later introduced an 
algorithm called MoDIL for detecting small indels in size between 20-50 bp. It compares 
the distribution of insert sizes of the whole dataset with local distributions at a given 
position. The cluster at a given position contains all mate pairs which overlap the given 
position. If there are no indels, the observed distribution of the cluster w i l l be identical to 
the distribution of a genome. If there is a homozygous indel, the distribution wi l l be 
shifted, i f there is a heterozygous indel, approximately half of the observed mate pairs 
distribution wi l l align over a genome distribution and the other half w i l l be shifted. The 
expected size of indel can be predicted by identifying the parameters of the two 
distributions (one for each haplotype). The expectation-maximization algorithm is used 
to find the means of the distributions. It is assumed the insert sizes fit into the Gaussian 
distribution. [145] 

Hormozdiari presented a combinatorial algorithm called VariationHunter in 2009 
[144]. It was the first algorithm to use reads mapped to multiple positions which were 
ignored by previous algorithms. Thus, it requires a kind of mapping algorithm which 
enables multi-mapping, such as mrFAST, S H R I M P , etc. In the first iteration of 
VariationHunter, they focused on the detection of deletions, insertions, and inversions. 

They define concordant and discordant mate pairs, such that concordant reads insert 
size is in the defined range and their orientation is correct for a given platform, e.g. for 
Illumina left mate-pair is mapped to the plus strand and right mate-pair to the minus 
strand. Both reads have to be mapped to the same chromosome. Only discordant reads 
are taken into account. Each read pair has a set of candidate alignment positions with 
corresponding insert sizes and orientations. Also, each alignment supports a specific type 
of S V defined by constraints. The clusters are defined as a set of alignments that support 
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a particular S V at a given position. They define the so-called Maximum Parsimony 
Structural Variation Problem, which describes the computing of unique alignment for 
each discordant read pair such that the total number of SVs implied by the alignments is 
minimized. The modified set cover algorithm is used to solve this problem. The 
probabilities for each candidate S V are calculated using parameters such as type and 
length of SV, and the number of reads supporting the given SV. The resulting SVs are 
then outputted based on the defined cutoff probability threshold. [144] 

In the modified version of VariationHunter from 2010 [165], the authors 
implemented support for transposons detection. They defined transposon as part of the 
genome that is copied to another position with a small dissimilarity (aka copy events). 
They also assumed the diploid nature of the human genome by adding a conflict 
resolution of overlapping SVs. The signatures of copy events are more complicated and 
the authors divided them into two classes - i f the transposon is copied in direct or inverted 
orientation. The modified Maximum Parsimony Structural Variation Problem with added 
conflict resolution guarantees that no conflicting triplets of S V clusters occur in the final 
set of SVs. [165] 

Korbel et all presented Pair-end Mapper (PEMer), an algorithm to detect SVs from 
all N G S platforms available at the time [166]. For the Illumina platform, the M A Q aligner 
is used to map reads uniquely and with a mapping score above 20. The mate pairs are 
then considered outliers i f they map with out-of-range insert sizes and discordant 
orientation. The three-standard deviation rule is used to define the cutoff for insertions 
and deletions based on the observed insert size distribution. The clusters of reads of 
defined size are computed in windows separately for long and short events by calculating 
E and P values. Clusters supporting the same type of S V are merged into a single cluster 
because clusters are calculated parallelly with different cutoffs and cluster sizes. The 
authors also created a database of detected breakpoints BreakDB. [166] 

BreakDancer published in 2009 detects five types of SVs: deletion, insertion, 
inversion, and intra- and inter-chromosomal translocations [167]. It also enables pooling 
multiple samples analysis for population or tumor-normal cancer studies. It consists of 
two modules - one aimed at five types of S V and the second one aimed at short indels 
(10-100 bp) usually skipped by the first module. So-called anomalously mapped read 
pairs (ARPs) are defined as reads mapped with M A Q with a score above 10 and insert 
size outside the three deviations. The anomalous regions with a statistically elevated 
number of A R P s compared to the average. A n S V is derived from one or more regions i f 
these are interconnected by at least two A R P s . The confidence score is calculated from 
the Poisson model with the number of A R P s , size of the region, and genome coverage. 
The most present types of A R P s in the region define the type of SV. Small indels module 
requires the anomalous regions to have two-sample Kolmogorov-Smirnov test statistics 
above 2.3 testing for normally mapped reads in the region and the whole genome. [167] 
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2.4.2 Split-read tools 
With the prolongation of the N G S reads length, the split-read methods came to arise. One 
of the earliest algorithms presented was Pindel published in 2009 [113]. It detects 
breakpoints of large deletions (up to 10 kbp) and insertions (up to 20 bp, restricted by the 
length of the read). The reads which are analyzed are those which have only one of the 
mate-pair uniquely mapped. The 3' end of the mapped read serves as an anchor point on 
the reference genome. From the anchor point, the direction and user-defined distance to 
restrict the search area for another breakpoint are known. In this area, the Pindel tries to 
map the unmapped mate-pair dividing it into two (for deletions) or three (for insertions) 
substrings. Firstly, it uses a pattern growth algorithm to search for unique substrings from 
the 3' end of the unmapped read within the distance of two insert sizes from the anchor 
point. Within the distance of the read length plus the defined maximum distance, it 
searches for the unique substrings from the 5' end of the read. Lastly, it checks i f a 
complete unmapped read can be reconstructed from found unique substrings. This way, 
the deletions are searched for. The search for insertions is different than the distance area 
for 5' end substrings is only within the size of the read minus 1 and the read is split into 
three parts. Every insertion or deletion supported by at least two read pairs is outputted. 
[113] 

Similar to the Pindel is an algorithm called Splitread for the detection of indels up to 
1 M b p [168]. It takes multi-mapped reads from mrsFAST (using Hamming distance) into 
the account and can be used on the exome sequencing. The unmapped reads are 
decomposed into equally (for balanced splits) or unequally (unbalanced splits) length 
substrings. For the detection of unique substrings, it uses a seed search approach of 
balanced splits which narrows the location and length of detected SV. A l l possible 
positions of split reads which were within three deviations of the insert size from the 
anchor point are stored. Clusters are formed from balanced splits. If an unbalanced split 
supported the balanced one and they have overlapping anchor reads, it is added to a 
cluster. Split reads can be mapped to multiple clusters supporting different types of SVs. 
The greedy solution for the weighted set cover problem (similar to the VariationHunter) 
is applied to find a minimum number of clusters with a maximized cost function, e.g., the 
number of mappings. [168] 

ClipCrop published in 2011 extends the detection abilities of the split-read approach 
to tandem duplications, translocations, and inversions [121]. The initial set of breakpoints 
is dug from the C I G A R strings of mapped reads. Only reads with one soft-clipped end 
are analyzed, reads with both ends soft-clipped are skipped. The authors define L - and R-
breakpoint based on which side of the breakpoint is soft-clipped. Breakpoints are 
clustered within 5-base differences. Soft-clipped fragments over 10 bp are remapped with 
B W A around the breakpoint within 1000 bp in both directions. The type of S V is inferred 
from the position of remapped fragments (inside or outside of the breakpoint) and their 
direction (reverse for inversion). The soft-clipped reads are clustered by S V type and 
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position. Competing SVs are chosen based on a score derived from a number of clipped 
and anchor reads. [121] 

C R E S T can detect the same types of SVs as ClipCrop and furthermore supports the 
paired tumor-normal cancer samples [169]. The set of soft-clipped reads is screened 
breakpoints based on several criteria and are tested for binomial distribution to separate 
heterozygous events from wild-type reads. The reads fulfilling the conditions serve as a 
first putative breakpoint. The corresponding breakpoint is detected by repeated mapping 
and assembly. The distance between alignment to assembled contig and the first 
breakpoint needs to be within a small distance. For cancer samples, the S V detected in 
normal samples is skipped from the results. [169] 

Another algorithm for S V detection in cancer samples is Socrates [120]. It is similar 
to ClipCrop, but it enables to detection of micro-homologies, untemplated sequences, and 
gene fusions. The multi-mapped reads are skipped. The soft-clipped reads are realigned. 
The clusters of anchored reads and corresponding realigned soft clips are formed. Then, 
the clusters are paired, and those clusters support the S V from both sides. Here, the micro-
homologies (1-10 bp identical sequences) can be found on either side of the breakpoints. 
Also, untemplated sequence (or insertion) can be found between breakpoints of gene 
fusion. The unmatched clusters are then tested to support already defined clusters, and all 
soft clips that match another cluster's anchor point with sequence identity over 90% are 
considered supporting. These pairings can increase sensitivity in exchange for an increase 
in false positives. [120] 

SLOPE is another split-read algorithm that focuses on detecting S V from targeted 
sequencing [114]. It takes only unmapped sequences, but analyses all reads for single-
end sequencing. Then, it carries partial alignment from both ends of the unmapped read 
and selects the highest-scoring ungapped alignment with up to five mismatches. Only 
alignments covering more than 30% of reads are kept, however, partial alignment 
spanning over 90% of reads carries no information and is skipped. A l l alignments that 
remained are clustered based on orientation and position in the genome. For all unique 
reads, the partial alignment is refined by the Smith-Waterman algorithm to allow gaps. 
The algorithm is called S L O P E cause it plots the slope of median values of breakpoints 
and their 5' positions. For chimeric junctions, the 5' positions and partial alignment 
lengths would correlate exactly. Sequencing errors and imperfect alignments w i l l affect 
the slope. A weighted regression with weights from Smith-Waterman scores prefers 
longer higher scoring alignments. The clusters of indels and translocations should have a 
slope of -1 and these are taken as results. [114] 

2.4.3 Read-depth tools 
The earliest studies which included a read-depth approach were Campbell and Chiang 

studies on cancer samples [164], [170]. Campbell extracted coverage from uniquely 

mapped concordant reads and then used modified circular binary segmentation [164], 
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Chiang applied local change-point analysis using a sliding window and then followed by 
the merging of events [170], 

Generally, the algorithms can be divided into two groups. In the first group, the C N V s 
are detected by comparing local read count against an average of a genome. The second 
group consists of algorithms derived from array-CGH methods and C N V s are detected as 
differences in read counts between two or more samples. [155] 

Yoon presented RDxplorer in 2009 [131]. There they extracted read depth using non-
overlapping windows of size 100 bp. This was justified by an acceptable exchange 
between detecting small and long C N V s . Also, at the assumed 30X coverage, the 
distribution of lOObp windows fits the Gaussian normal distribution. This approach is 
generally shared among many algorithms. The reads are assigned only once at their 
leftmost position. The G C bias is normalized by comparing coverage values with G C 
content in a window. For C N V detection, they apply event-wise testing. It detects regions 
of consecutive windows with a significant change in read depth. For that, the read depth 
in a window is converted into Z-score (by subtracting the mean of all windows and 
dividing by the standard deviation). The Z-score is converted into upper- and lower-tail 
probability. The values in consecutive windows are compared against desired false 
positive rate divided by the number of all windows of a given size. The extension is 
carried out iteratively and separately for deletions and insertions. The neighboring 
clusters of small events (up to 500 bp) are merged. Events with a median of read depth 
within 0.75 and 1.25 times of dataset mean were omitted. The one-sided Z-test is applied 
to test significance. [131] 

Alkan presented an alternative approach at the level of reads alignment called 
mrFAST [162]. m r F A S T is a seed-and-extend method for reads alignment with the main 
feature of mapping reads into multiple positions. For G C normalization, they applied the 
local regression L O E S S algorithm. Then, they detected regions where at least six out of 
seven consecutive windows have read depth three standard deviations from the mean. 
Three deviations correspond to a copy number of 3.5 for the diploid genome. The copy 
numbers were calculated in 1 kbp windows as a ratio between window read depth and 
average read depth. The authors focused mainly on large segmental duplications over 20 
kbp. The alignment tool is also used in other read-pair algorithms which use multi-
mapped reads. [162] 

CNV-seq is a method derived from array-CGH and detects C N V s by comparing two 
samples [158]. The read counts from two samples are detected in a sliding window. They 
approximate the Poisson distribution of read counts in a window by a Gaussian 
distribution using the Geary-Hinkley transformation to transform the ratio of read counts 
into a new variable of approximately Gaussian distribution. Then, they test the probability 
of these two distributions differing from an equal ratio. The p-values are based on the 
window size (decreasing with increasing window size) and the number of reads in a 
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window. The theoretical minimal window size giving the best resolution is calculated for 
the desired ratio. The ratio is also used for thresholding and segmentation. [158] 

cn.MOPS brings evaluation of local read count variations by analyzing multiple 
samples [155]. Similar to other methods, the reads are counted in non-overlapping 
windows. The reads are G C normalized but also normalized concerning other samples, 
such that read counts are comparable across samples. The mixture of Poisson models is 
used, where a separate model is computed at each locus. The model assumes that read 
counts in a window are distributed across samples according to a mixture of Poisson 
distributions, where each mixture corresponds to a distinct copy number [155]. The Bayes 
formula is used to compute the probability that a read count is from a given copy number. 
This way the cn .MOPS produces integer copy numbers for C N V calls. In the final step, 
the circular binary segmentation algorithm is used to merge individual calls of the same 
copy number. [155] 

Similar to cn .MOPS is a method published by Sepiilveda [171]. They assume the 
common feature of read depth datasets, the overdispersion of Poisson distribution of read 
depth values. They assume Poisson distribution for regions of no C N V . Then, they extend 
this to an overdispersion by either Poisson-Gamma (also negative binomial distribution) 
or Poisson-Lognormal distributions. The model parameters were done by non-
informative prior distributions. E.g., for Possion-Gamma, they used a Gamma prior 
distribution with parameters a and p. The C N V detection in non-overlapping windows is 
based on the highest posterior density (HPD) intervals and windows are compared with 
values of H P D . [171] 

CNAseg is an algorithm for C N V detection in tumor-normal samples [172]. It uses a 
discrete wavelet transformation for smoothing the read counts, which is a useful way to 
cope with the over-segmentation of H M M method. The read counts are normalized so 
that both samples have the same read count in windows. The H M M is used for 
segmentation with Skellam distribution. The k-means clustering is used to approximate 
the copy numbers, and read counts in every window are clustered between 2 to 7 clusters. 
The best number of clusters is obtained from the F-statistic (within-cluster sum of squares 
compared with the between-cluster sum of squares) [172]. The %2 statistics is employed 
for merging the segments where the lowest %2 statistic denotes the absence of significant 
difference between tumor-normal adjacent segment ratios. [172] 

Another algorithm using H M M is JointSLM [156]. They define a model of the 
process as the sum of two independent stochastic processes representing read count 
distribution (approximated to be Gaussian) and white noise (representing alignment errors 
and coverage fluctuations). The joint distribution of the process has the form of H M M , 
and it is used to detect C N V in multi-sample windows. [156] 

CNVnator focuses on C N V detection in family trios and population sequencing 
[173]. Alternatively, the authors emphasize the use of reads mapped randomly compared 
to using only uniquely mapped reads. It employed the mean-shift technique taken from 
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image processing to segmentation. The read depth across the genome can be understood 
as an image that needs to be processed to define distinct C N V regions. This can be 
formulated as finding a probability distribution function (PDF) from the read-depth data 
where this function is an unknown mixture of many distributions corresponding to copy 
number states. The density maximum in the distribution is the modes of P D F with zero 
gradients of estimated P D F . In each window, the mean-shift vectors are defined and point 
to the direction of windows with the most similar read depth. Window breakpoints are 
detected when two vectors have opposite directions but do not point to each other. The 
segments are partitioned and merged by an iterative algorithm and thresholding. [173] 

ReadDepth is the first algorithm that brought the mappability normalization [174]. It 
employs modeling a negative-binomial distribution to approximate an overdispersed 
Poisson distribution of read counts. For segmentation, it uses circular binary 
segmentation. [174] 

CNOGpro overcomes the need for breakpoint detection by applying C N V detection 
to gene and intergenic regions separately [152]. Furthermore, it focuses on prokaryotic 
genomes. While counting reads and the G C normalization are done in the usual way of 
non-overlapping windows, later, the read counts are assigned to individual gene regions 
defined by a GenBank file. The average of overlapping windows falling into a region is 
used together with bootstrapping to estimate confidence intervals. The H M M is used to 
calculate the copy number states in the regions using the Viterbi algorithm. [152] 

A n alternative to fitting Poisson models is the Sequana algorithm [175]. It rather 
reports all positions that have read depth outside of the overall distribution. The read 
depth is denoised using a running median. In the ideal case, the read depth fits the Poisson 
distribution, but in real datasets, the Poisson distribution is a too-narrow cause of 
overdispersion. The Poisson distribution can be approximated by the Gaussian 
distribution for large mean parameters. Authors assume for read-depth values higher than 
1 the Gaussian distribution. But since this is too restrictive they propose a mixture of 
models to describe the read-depth underlying nature of central distributions and outliers. 
They use the expectation-maximization algorithm for the estimation of model parameters. 
This allows them to define Z-score for every genome position. These Z-scores are then 
compared with thresholds for duplication and deletion. Double thresholding is used to 
merge events into larger ones. [175] 

C N V - B A C is another prokaryotic-focused algorithm [176]. It was the first to cope 
with the normalization of the origin of replication bias. The G C normalization is based 
on BIC-seq2 [177] and C N V detection is based on BIC-seq using the Bayesian 
information criterion [178]. [176] 

2.4.4 Assembly tools 
Algorithms depending solely on de-novo assembly are only a few. Furthermore, the 
distinction between a hybrid algorithm including an assembly method, and a sole 
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assembly algorithm is not absolute. 

One of the earliest is NovelSeq [179]. It depends on the multi-mapping aligner 
m r F A S T [162]. After the alignment, it separates one-end anchored (only single-end 
mapped) and orphan reads (reads unable to align under criteria). Orphan reads all de-novo 
assembled to contigs by E U L E R - S R or A B y S S tools. The contigs are scanned by B L A S T 
for contamination and contigs able to map against the reference are skipped. The one-end 
anchored reads are clustered into two clusters depending on the strand orientation of the 
mapped read (+ for forward strand, - for reverse strand). The unmapped reads of clusters 
are assembled into a single contig for each cluster. The orphan contigs are anchored by 
merging with one-end anchored contigs by defining it as a maximum-weight bipartite 
matching problem. Thus, the algorithm enables the detection of novel sequence 
insertions. [179] 

A more complex approach was presented in Cortex [180]. It is a de-novo assembler 
that enables a multisample approach. It also detects structural variants and novel sequence 
insertions. It employs extended de Bruijn graphs with the coloring of the nodes and edges 
to represent the distinctive sample in a single graph. [180] 

TIGRA [181] depends on previously predicted putative breakpoints and employs de 
Bruijn graph-based local assembly of reads around the breakpoint boundaries. The 
assembled contigs then represent alternative alleles. [181] 

2.4.5 Hybrid tools 
Medvedev was among the first who combined read-pair and read-depth approaches 

in an algorithm called CNVer [182]. It detects discordant read pairs as usual by the three-
sigma rule and discordant orientation. It clusters the discordant reads into four clusters 
regarding the strand and reads the order. Since it focuses on tandem duplications, it deals 
with sequences already repeated in the reference genome. It maps the reference to itself 
and iteratively partitions the aligned blocks of at least 100 bp until there are no overlaps 
of these blocks. The bidirected donor graph is built from the blocks and the clusters. The 
cost flow function is used to find the optimal walk through the graph and to find the copy 
counts of the sub-block in the graph. The copy number is based on finding the walks in 
the graph with higher or lower-scoring functions. [182] 

H Y D R A [183] combines read-pair and split-read approaches but also employs long 
reads from capillary sequencing. Discordant reads from Illumina are clustered and 
targeted as candidate breakpoints. Then, the discordant long reads that overlap with 
previously called breakpoints are assembled into breakpoint contigs with a phrap aligner. 
These contigs are aligned to reference with sensitive settings by M E G A B L A S T and used 
to identify the breakpoint precisely. [183] 

He et all presented a method combining read-pair and read-depth approaches to deal 
with C N V s in repetitive rich regions [184]. Clusters of discordant reads are used to define 
the boundaries of a C N V and copy numbers are estimated based on the Possion formula 
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from [111]. The authors present a modified formula to apply in repetitive regions. The 
branch and bound algorithm is then used to reconstruct C N V in these repetitive regions. 
[184] 

inGAP-sv combines read-pair and read-depth methods [117]. It firstly calculates 
coverage in 10 bp windows and observes differences to adjacent 1000 bp regions from 
both sides. It classifies the intervals as homozygous, heterozygous, and uncertain. Later, 
it employs the read-pair method to classify SVs and assign a quality score. [117] 

A novel approach in the time presented forestSV [185]. It is a machine-learning 
approach with a random forest classifier trained on samples from the 1KGP. It can be 
classified as a hybrid approach because the extracted features consist of both read-depth 
and pair-read parameters. [185] 

GASVpro [186] builds on the previous G A S V algorithm [150]. It uses a read-pair 
approach to detect SVs boundaries and a read-depth approach to decide on hetero/homo-
zygosity. It considers multi-mapping by using the Markov chain Monte Carlo algorithm 
to sample over the possible alignments. [186] 

PRISM [187] combines the read-pair and split-read approach to detect SVs at a base-
pair level. It uses the read-pair information to reduce search space for split mapping by 
the modified Needleman-Wunsch algorithm. [187] 

D E L L Y , one of the commonly used S V callers, also employs read-pair and split-read 
methods [118]. It also enables a combination of two libraries with different fragment 
sizes. That usually means a pair-end library with an insert size under 500 bp and a mate-
pair library with an insert size over 2000 bp. Discordant reads are clustered using graphs 
separately for every type of detectable SVs. The nodes of the graph represent the paired 
ends, edges indicate that both ends support the same SV. The weight of edges denotes the 
difference between predicted S V sizes. The goal is to traverse the graph so that the 
distance between reads is greater than a threshold. The discordant reads clusters are 
considered to contain breakpoints and these regions are used for the split-read method. It 
first searches for one-end anchored reads within these regions. It can also analyze all other 
reads for soft-clipping or low-quality read ends alignments. For each read from the region, 
i f the mate read is mapped within two standard deviations of a breakpoint, it is assigned 
into a set of split reads of a given SV. Instead of dynamic programming alignment, 
D E L L Y uses k-mer (k=7) based filtering to identify candidate split-reads and then aligned 
them to a diagonal. Read-pair method calls are annotated by the number of supporting 
read pairs and mapping quality. Split-read calls are annotated by the number of split-reads 
and consensus alignment quality against the reference. Corresponding calls from both 
methods are merged into the final set of SVs. [118] 

A similar approach to D E L L Y regarding two different insert-sized libraries is used in 
PeSV-Fisher [188]. It uses the read-pair and read-depth methods. Outputs from both 
methods are merged based on the overlapping. PeSV-Fisher can also work on cancer 
samples and output only somatic (tumor only present) SV. [188] 
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Another commonly used S V caller is L U M P Y [125]. It is unique as it combines read-
pair and split-read methods, but optionally accepts a set of called C N V s and/or a set of 
candidate SVs. It can be understood more as a framework over already established 
algorithms as the core of L U M P Y is based on merging these inputs. A s input for the read-
pair module is taken an alignment file from B W A or N O V O A L I G N . For the split-read 
module, an alignment file from a split-read mapper such as Y A H A , B W A - m e m , or B W A -
SW is taken. It also enables multi-sample analysis by tracking probability distributions 
during clustering back to the original samples. The breakpoint is represented as a pair of 
probability distributions spanning the boundaries of the breakpoint and reflecting whether 
the selected position represents a real breakpoint. The output of modules is breakpoints 
boundaries, supporting evidence, and S V type. In the process of clustering and merging 
breakpoints, the boundaries of a breakpoint are trimmed based on distribution 
probabilities. [125] 

Another algorithm combining three methods is Pilon [189]. It employs read-pair, 
split-read, and local assembly. It is a multipurpose tool that focuses on genome assembly 
improvement, SNP and indel detection, and also S V detection. It detects S V by detecting 
discordant reads, soft-clipped reads, and low-coverage regions. These candidate regions 
are locally re-assembled by the de Bruijn graph. [189] 

TARDIS also combines three methods: read-pair, split-read, and read-depth [115], 
[190]. It builds upon previous works such as m r F A S T [162], NovelSeq, and 
VariationHunter [144], [165]. Signatures of read depth are added to the clusters of 
discordant reads as additional weights. Both ends of split reads are taken as another case 
of discordant reads and clustered together. The maximum parsimony approach and set-
cover algorithm are used for the solution. [190] 

2.4.6 Pipelines 
While the hybrid approach combines specific methods, the ensemble or integrative 
approach combines whole algorithms. It makes use of the fact that there are intersections 
and unions of the detected S V by multiple algorithmic tools. The algorithm then can 
assume a simple intersection or union as the best solution or more advanced methods can 
be used. A pairwise intersection followed by a union is also mentioned [191]. The 
coordinates of the breakpoints can be averaged across the overlapping region. The 
decision trees or neural networks were used to decide on the set of true positives for SNP 
variants [192], [193]. Usually, the union of S V calls and thresholding by a number of 
callers that called the S V is applied. The earliest mentions of a combination of multiple 
algorithms were implemented in population studies. [141] 

There are several approaches to merging S V calls from multiple callers. Based on 
V C F files, the BCFtools [124], SURVIVOR [194], or SVDB [195] package can be used. 
For B E D files, the BEDtools[196] can be used. These tools represent the most simplistic 
approach. 
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The biggest study by a number of S V callers used is part of the 1000 Genomes project 
[41]. The authors used 19 tools based on all approaches and merged their outputs based 
on the overlap and also used T I G R A [181] for breakpoint discovery. The study is from 
2011 and multiple methods have been published so far. 

The first independent algorithm published was SVmerge [147]. It employs 
BreakDancer, Pindel, RDXplorer , and two in-house developed tools to detect many S V 
classes. The initial results of callers are filtered for low-quality SVs and separated by S V 
type. The merging is done by BEDToo l s [196] and criteria are defined for an overlap: 
length (75 bp) and size of remaining parts of SV. A l l reads and unmapped read-pairs 
within 1 kbp of S V boundaries are re-assembled and contigs are remapped to the reference 
with aligner Exonerate. The coverage is calculated by SAMtools[124] pileup. The 
SVmerge focuses on deletions and distinguishes between homozygous and heterozygous 
deletion by applying the read depth check. [147] 

HugeSeq [197] integrates G A T K UnifiedGenotyper [198] and SAMtools [124] for 
SNP and indel calling, and BreakDancer, Pindel, CNVnator, and BreakSeq for S V 
calling. The final set is obtained by intersection with BEDTool s [196] and SVs called by 
two and more callers are tagged as high confidence. [197] 

iSVP [199] calls deletions based on BreakDancer, Pindel, and G A T K Haplotype 
Caller. The S V calls are categorized by size to achieve precision over 90%, which is 
fulfilled for SVs that are longer than 100 bp. The calls are merged by BEDTools . [199] 

intansv is an R package, developed back in 2014, which integrates seven S V callers, 
annotation, and visualization inside the R [200]. The callers are BreakDancer, CNVnator, 
D E L L Y , Pindel, Svseq2, L U M P Y , SoftSearch [201] and others can be added. The 
findOverlaps function of GenomicRanges is used to merge overlapping SVs. Combined 
SVs are clustered based on distances between SVs. A cluster of SVs from two or more 
methods are merged and boundaries are set as a mean of start and end coordinates. [200] 

MetaSV carries out both intra- and inter-tool merging of detected SVs [202]. Intra-
tool merging suppresses potential duplicated calls which are overlapping. Inter-tool then 
merges SVs to get unique calls with preference given to tools known to be precise. To 
detect the breakpoints of SVs, the MetaSV performs local re-assembly with S P A D E S 
[203] and contigs are aligned to reference with A G E [204]. The results are annotated and 
genotyped. 

FusorSV uses a data mining approach and fusion model to train and detection of SVs 
[205]. First, it evaluates the performance of various S V callers on the ground truth dataset 
of SVs, which are partitioned by type and size. Contrary to simple consensus it assumes 
the smallest set of callers can be selected based on mutual exclusion, e.g. an S V detected 
by two callers employing the same approach does not guarantee higher certainty. The 
pair-wise distance matrix is built from truth dataset results of various S V types and sizes. 
The Jaccard index is used to find similarly performing callers, which have a lower weight 
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assigned to prefer mutually exclusive callers. The fusion model is used for discovery from 
eight S V callers. [205] 

sv-callers is a Snakemake [206] workflow based on four S V callers [207]. It focuses 
on human genomes and enables both germline and somatic S V detection. It employs the 
S U R V I V O R (StructURal Variant majority VOte) [194] tool for merging S V calls with 
filtering out low-quality calls with BCFtools [124], 

A similar approach based on merging with the S U R V I V O R [194] package is 
employed in Parliament! [208]. The final S V calls are additionally annotated with 
SVtyper [209]. 

Viola focuses primarily on S V signatures, but in the process, it merges V C F files from 
four S V callers [210]. Their in-house script first merges the S V calls located within 100 
bp (proximity-based merging). Calls called only by single callers are deleted. Then S V 
calls were merged based on confidence intervals shared by genomic coordinates. [210] 

2.4.7 Integrating sample cohorts 
During the 1 K G P project, the Structural Variation Analysis Group was among the first to 
employ multiple tools and merge their results. More than that, they had to integrate the 
structural variations from the hundreds of samples on the population scale. [43] 

They were other tools presented that participated in the analysis of 1 K G P data, such 
as GenomeSTRip [211]. Another example can be tools for detecting SVs in so-called 
mother-father-child trios - a combination of father, mother, and child genome 
sequencing, which is used to detect de-novo mutations associated with rare diseases. Such 
a tool is CommonLAW [212], 

In phase 3 of the 1KGP, they sequenced 2,504 human genomes. The reads were 
mapped by both B W A [122] and mrsFAST [213]. Then, they used a combination of 9 
tools for S V detection (BreakDancer, Delly, VariationHunter, CNVnator, Read-Depth, 
Genome STRiP, Pindel, M E L T , Dinumt) based on various approaches and GenomeStrip 
[211] and other filtering and overlapping to get a final set of 68,818 SVs. [43] 

The phase 1 dataset of 1 K G P (1,092 samples) was analyzed with a focus on deletions 
by BreakSeq2, an iteration of the previous version [214], [215]. The authors used a 
combination of 5 C N V detection tools (CNVnator, Delly, Genome STRiP, Pindel, and 
BreakDancer). The T I G R A - S V was used to reassemble contigs spanning breakpoints, 
and A G E [204] was used to align contigs to the deleted regions. Multiple filtering was 
performed to further refine the breakpoints. The main idea of BreakSeq is based on 
mapping reads to the breakpoint sequence junctions, and was extended by breakpoint 
genotyping in BreakSeq2. [214] 
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2.5 Data Preparation for SV detection 

After the sequencing, several steps are done before S V detection. The first step quality 
check of reads followed by trimming. This includes cutting off both sequencing adapters 
and low-quality bases, which are caused by sequencing errors. [216] 

The entrance gate into a wide variety of genomic analyses is mapping reads to a 
reference genome or de-novo genome assembly. Matching D N A sequences to a genome 
is a case of a string-matching problem [217]. Because of both sequencing errors and the 
true variation of an individual sample, the matching algorithm needs to deal with exact 
and approximate string matching issues [218], [219]. The initial hashing-based methods 
were later replaced by methods using the Burrows-Wheeler transformation and Ferragina-
Manzini Index [218]. The most commonly used ones are B W A [122], [220], [221], and 
Bowtie [123]. Both can perform partial alignment called soft-clipping. For specialized 
detection of rearrangements, other aligners may be useful. This can include aligners 
dealing specially with multi-mapping reads [162], [213], 

Removing the P C R duplicates, i.e., multiple reads originating from a single template, 
is a commonly performed task. However, this should be used with caution as methods for 
removing P C R duplicates have difficulties differentiating from natural read duplicates 
and this step also influences the read-depth, used in the read-depth approach of S V 
detection. [216], [222] 

Whole-genome assembly is a much more complicated task than mapping. Several 
strategies using Overlap-layout-consensus or De Bruijn graph are used to create 
continuous stretches of the genome called contigs from overlapping reads. For Illumina 
N G S , Velvet, and SOAPdenovo are commonly used. [223]-[227] 

For the in-silico testing, it is convenient to use artificially created reads. This allows 
the insertion of various genome rearrangements at predefined positions in the genome. 
Art and pIRS are such tools simulating Illumina reads. [228], [229] 

The files used as the output of structural variation detection tools vary and there is 
currently no file defined exactly to store S V information. Commonly used is the BED 
(browser extensible data) file [196]. It is a tabular separated file with three required 
columns: name of a chromosome, start position, and stop position. It is imperative to 
mention that coordinates are 0-based, instead of the usual 1-based system. There can be 
nine additional columns, which are more or less defined freely by each tool. Similar to 
the B E D file is BedGraph, with four columns and a required header. 

Also, the V C F (variant call format) files are used [230], but they are designed with 
S N V and short indels in mind. The V C F has multiple header lines and multiple columns 
with content optionally defined in the header. The file is tabularly separated. If V C F is 
used for reporting SVs, the readability is lowered and while the start coordinate is stored 
in the POS column, the end coordinate must be placed into a long string in the INFO 
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column together with other information. Also, various S V tools create V C F files based 

on their own and they are not standardized. [139] 
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3 OBJECTIVES OF THE THESIS 
The purpose of the thesis is to bring novel multidisciplinary approaches to bacterial 

genome analysis of copy number variations. C N V s play an important role in bacteria in 

processes of antibiotic resistance, bacteria adaptation, evolution, and specialization. The 

issue of bacteria drug resistance is present and emerging. Thus, there is a serious need to 

develop tools aimed at the detection of bacterial C N V s . 

Large structural variations are rare in bacteria because of their small and densely 

packed genomes. Thus, the detection of small C N V s is more important. Special features 

of bacterial genomes should be taken into consideration and could theoretically improve 

performance. Multiple bacterial genomes are not annotated. Therefore, the developed 

method should rely merely on sequencing reads, and a reference. 

Developing a standalone method for C N V detection in bacteria is the first objective. 

Incorporating this method into a pipeline is the second objective. The sub-objectives were 

set as follows: 

1. Develop a novel method for C N V detection (CNproScan) 

1.1 Using signal-based computational methods 

1.2 Not requiring apriori known genome annotation 

1.3 Targeting bacterial genomes 

1.4 Statistically evaluated and tested 

2. Develop a C N V detection pipeline (ProcaryaSV) 

2.1 Targeting bacterial genomes 

2.2 Implementing an efficient merging algorithm 

2.3 Statistically evaluated and tested 

2.4 Enabling the reproducibility and scalability 
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4 THEORETICAL BACKGROUND 
The following chapter describes the theory used in the practical part of the thesis in a 

more detailed way. Implementing this theory earlier would make previous chapters less 

coherent because not all approaches would be given the same level of detail. 

In the practical part of the thesis, I work with two approaches - read-depth and read-

pair. The combination of these two approaches enables to distinguish between the two 

types of duplications, the tandem and interspersed duplications, and their reverse types. 

Thus, these two are described more deeply. 

Furthermore, I approach the topic of C N V detection from the position of outliers 

detection. Hence, I describe the theory of outliers and also the related coverage theory. 

The coverage theory lays the theoretical assumptions about the data distribution of 

sequencing reads along genomic coordinates. 

In the last subchapter, I describe the detailed aspects of the read-pair approach, namely 

the signatures used to distinguish between tandem and interspersed duplications. 

4.1 Read-depth Approach 

A s mentioned previously, the read-depth approach uses information about the coverage 

(or read-depth profile) over genomic coordinates. The changes in the coverage point to 

genomic loss or gain, i.e. C N V s . However, this read-depth profile is skewed by various 

biases. Therefore, I describe here a few methods of mitigating these biases. 

4.1.1 GCBias 
The best-described is bias related to GC-r ich and GC-poor regions called GC-bias (or 
coverage bias), which manifests as deviation from the uniform distribution reads across 
the genome. It is necessary to cope with G C and other biases when applying methods 
depending on the coverage, especially the read-depth detection method using a global 
coverage signal without any reference. However, other detection methods are harmed by 
low coverage too. Dealing with coverage bias is not always easy as GC-r ich regions are 
placed heterogeneously throughout a genome and they are also correlated with the region 
function. [231]-[233] 

Several technological biases occur at the Illumina platform. Illumina sequencing 
consists of three steps: library preparation, cluster amplification, and sequencing by 
synthesis and bias can be introduced at every step. The Illumina library preparation 
requires the multiplication of genomic material and that includes the P C R , which is a 
primary source of the under-representation of regions with extremely high or low G C 
content [160], [231], [233], [234]. This is likely caused by the lower melting temperatures 
for AT-r ich regions and thus their higher fragmentation compared to GC-r ich regions 
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[102]. Considerable biases affecting GC-r ich regions are also induced later in the routine. 

It is known that high cluster densities on the flow cell suppress the GC-r ich reads. Also, 

D N A polymerase plays a role in cluster amplification and sequencing-by-synthesis 

process. [234], [235] 

Firstly, it was observed that the coverage is decreased in GC-poor regions [102]. That 

was because of the relative rarity of GC-r ich regions. Only later it was discovered that the 

coverage has a unimodal relationship with G C content [146]. It has been described that it 

is the G C content of the whole fragment, not only the reads, that causes the coverage bias 

[233]. Also, the G C effect is non-linear and two paired samples can have different G C 

curves. Thus, coping with G C bias by comparing two samples should be considered. Two 

approaches are commonly used: binning and smoothing (used in ReadDepth, CNVnator, 

and others). 

The smoothing method is realized commonly by L O E S S (locally estimated scatterplot 

smoothing) algorithm. The table of means of the number of reads belonging to the 

windows with a given G C content percentage is calculated. The L O E S S then removes the 

local extremes caused by G C bias. [236] 

The binning method for single-sample correction is most commonly used in a form 

defined by Yoon [131]. A similar table to the smoothing method is calculated for every 

G C content percentage (0,1, 2,... 100 %) filled with observed coverage values binned into 

windows of a selected size. The formula is defined to correct the read count in the z'-th 

window RCt 

RCi = RCr^-, (4.1) 
miCC v ' 

where m is the overall median of coverage of all windows, miGC is the median 

coverage value of the same G C content as RCt. The obligatory part is to define window 

size and the number of G C content percentages. Selection of window size is chosen 

accordingly to the following analysis, but it should be longer than the fragment length to 

produce relevant results. [233] 

4.1.2 Mappability bias 
Another important source of bias is the mappability bias. This bias is not directly 

sequencing-based but originates from the presence of repetitive and other low-complexity 

regions in the genome. The short reads then fall into these repetitive regions without 

sufficient accuracy leading to the multi-mapping reads problem. It demonstrates itself at 

two levels - position selection of multi-mapping reads and the following unevenness of 

coverage. This has a major influence on the coverage signal and downstream analysis 

similar to coverage bias. The multi-mapping problem is usually solved at the level of 

reads alignment and is important to know how the alignment algorithm deals with this 

phenomenon. Several scenarios can happen: multi-mapping reads can be completely 

ignored, only one alignment position is reported, all alignment positions are reported or 
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some more advanced method is applied. Other solutions are at the sequencing level by 
employing longer reads or by sequencing longer fragments and thus creating larger insert 
sizes. Although there is a procedure to deal with the multi-mapping problem by aligner, 
it is still useful to deal with it at the coverage signal level by applying mappability data. 
[160], [232] 

The mappability bias is solved after the G C bias [237]. Multiple methods have been 
developed. ReadDepth normalizes mappability by multiplying coverage in bins by the 
inverse of the mappability in that bin [174]. C N A s e g employs discrete wavelet transform 
to smooth coverage values in regions of low mappability [172]. Another approach is 
defined by Magi [127] similar to the previous G C bias normalization formula defined as 

RCl = RCr - 2 - , (4.2) 
miMAP v ' 

where miMAP is the median coverage of windows with the same mappability score as 

the RCt window and m is the median coverage of all windows. The key element is the 

mappability score. 

4.1.3 Replication origin bias 
A specialty of prokaryotes is their circular genomes and their role in the bacterial cell 
cycle. In the middle stage of the cycle (C period) the chromosome is replicated before the 
D period when the cell is divided. D N A replication begins at the origin of replication 
called oriC. oriC consists of several conserved repetitions recognized by the DnaA 
protein and a high AT-r ich region (DUE) . Then the replication goes both ways around 
the circumference and it is terminated at the region opposite to oriC called ter. The 
majority of bacteria have a single oriC, however, there are some with more than a single 
oriC. [238], [239] 

During the process of D N A isolation, there are millions of cells in various stages and 
the sequencing covers all their genomic material. A s the replication starts at oriC and 
proceeds further, there is more genomic D N A closer to the oriC, that has already been 
replicated at the moment of D N A isolation. This has an impact on the read-depth profile. 
[176] 

W u proposed the method to normalize replication origin bias based on smoothing 
using generalized additive models. They use Gaussian or Poisson model to model the 
dependence of read-depth in bins on the distance to the replication origin. [176] 

4.1.4 Coverage Theory 
The general definition of coverage could be stated as: "The theoretical coverage is the 
average number of times that each nucleotide is expected to be sequenced given a certain 
number of reads with specified length under the assumption that reads are randomly 
distributed across the genome" [232]. Also, the coverage can be understood as a 
redundancy of information to suppress sequencing errors. [232] 
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The earliest theories regarding coverage were laid back at the beginning of sequencing 
methods when scientists were interested in calculating how many clones are necessary to 
have a certain amount of overlaps. The earliest model is called Clarke and Carbon formula 
(1976) and was later embodied into the Lander-Waterman theory (1988). The coverage 
was defined as: 

C = Lx N/G, ( 4 3 ) 

where L is the length of clone insert in bp, N is the number of clones and G is the 

length of the haploid genome [134]. Importantly, the G can also be understood as the size 

of the genomic window or bin. 

This theory was later extended to filtered D N A sequencing libraries and took into 

consideration discontinuities and position-based sampling biases [133]. However, a 

model published a year later was thought for double-strand sequencing. The equation of 

the expected number of bases that are covered by at least one read has a form: 

where y is the genomic target (genome length), n = X — r + 1 is the number of 

possible insert placements (X reads length, t insert size), n number of inserts, f(x) and r(x) 

are the number of ways forward and reverse reads, respectively, can cover a random 

position x. [132] 

However, for large genomes y, the expected value of coverage converges to the 
Clarke and Carbon formula: 

E(C) X 
1 - -

Y 

2n 
1 ( Z U A \ 

4 - e * p (_-_), ( 4 5 ) 
Y 

with n number of inserts and X reads length. [132] 

The general assumption is that reads are randomly and independently sampled with 

the same probability everywhere across the genome [131]. Under this assumption, it is 

usually stated that the number of reads mapped into the genomic region follows the 

Poisson distribution Pois (X) 

f{x | X) = — , ( 4 6 ) 

with x as the number of reads covering a given site and X = LN/G from Lander-

Waterman theory [131]. However, there was overdispersion observed and reported by 

Yoon [131] and Bentley [163]. The overdispersion is the ratio between mean JU and 

variance a2 and denotes that variance is greater than assumed by the model [171]. The 

reasons behind this overdispersed Poisson distribution might be the existence of copy 

number variations, the G C bias (correlation between coverage and G C content), and the 

mappability bias (correlation between coverage and region mappability) [127]. Removing 

the C N V regions reduces the index of dispersion for real samples [127]. Alternatively, 

the overdispersion can originate from another distribution with different parameters. 
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Often, the Poisson parameter is modeled by a gamma distribution (Gamma(a, ft)) 

resulting in negative binomial distribution with two parameters NB(r, p). Or, log-normal 

distribution can be used to model overdispersion (log-normal(jU, a)). 

Looking at the whole genome context, we could employ the central limit theorem 

[131]. The central limit theorem defines a sampling distribution of the mean, based on 

random samples from a population with a mean u and variance o 2 , with new parameters 

u s = u and <js = cr /Vn, where n is the number of samples. The sampling distribution 

then follows the Normal distribution (\is, os): 
{x-\s)2 

f(x\ii,a)=^=e—. (4.7) 

The central limit theorem validity depends on the sample size n and the distribution 

is normal when the n is large enough. The commonly stated size of n is 30. Other 

conditions are that samples are independent and randomly distributed and that the 

population has a finite variance. The theorem is useful because implies the applicability 

of tools requiring normal distribution to data under other distributions i f certain conditions 

are fulfilled. For Poisson, it means that Pois (X) with large A wi l l be approximately normal 

with both mean and variance equal to A. 

The central limit theorem approximates the cumulative distribution function of 

Poisson distribution with normal with this formula 

F A (x ) « cb((x + 0.5 - A ) / V I ) , ( 4 8 ) 

where cf> is the C D F of the standard Normal distribution N ( U = 0 , G = 1 ) and 0.5 as 
continuity correction. 

More accurate is the non-linear Wilson-Hilferty approximation of argument x [240] 
defined as 

F A 0 ) « cpCc - u/tr), ( 4 9 ) 

with variables defined hereafter: 

c = ( A / ( l + x ) ) 1 / 3 , ( 4 1 0 ) 

u = 1 - 1/(9* + 9), ( 4 1 1 ) 

a = 1 /3V (1 + *), (4.12) 

where A is the Poisson distribution parameter and x the argument. 

Concluding the theory, various tools differ in the view of distribution nature. The 

Gaussian distribution is used in multiple C N V detection tools, e.g. Magi [127], Sequana 

[175], and Jo in tSLM [156]. Some employ the Poisson distribution and others multiple 

models of the mixed distributions (e.g. negative-binomial, beta-binomial). The idea of 

approximating coverage with normal distribution is embodied in the window approach to 

read-depth, which divides the genome into distinctive regions. Multiple authors based 

64 



their algorithms on the assumption that in a window of lOObp with coverage at 30x, the 

distribution of read counts is well approximated by normal distribution [131], [156], 

4.1.5 Outliers Detection 
The initial approach to my C N V detection was based on the M A T L A B peaks detection 

function [241 ]. Later, I approached the C N V detection from the assumption that the C N V s 

are outliers in the read depth signal. Thus, given the theoretical assumptions, I approached 

the C N V detection problem as the one-class classification, more specifically as the outlier 

detection. 

The outlier is "an observation which appears to be inconsistent with the remainder of 

the set of data"[242]. Alternatively, the outlier is "an observation which deviates so much 

from other observations as to arouse suspicions that it was generated by a different 

mechanism" [243], 

There are two most popular models of outliers generation. The first one is a slippage 

model. This model assumes that a random sample of n observations is mixed with some 

portion of r observations from a different distribution. This further divides into the 

location-shift model, where r observations originate from distribution Nfft+Qo2), and the 

scale-shift model, where they originate from distribution Nfabo2). Thus, this model can 

generate up to r true outliers. The second model is a mixture model, where original 

observations come from distribution G i , and the outliers come from G2. A l l observations 

then come from a mixture distribution defined as 

(l-p)G1 + pG2, ( 4 1 3 ) 

where p is a constant in the range 0-1. In the mixture model, the number of outliers 

from G2 is a random variable depending on probability p. If p=0 there are no outliers, and 

vice versa. [242] 

Regarding outliers, we can talk about the labeling of potential outliers and outliers 

identification, to prove i f the assumed outliers are real outliers. The most used graphical 

tool to label outliers is a boxplot. In a large dataset, three-quarters of observations should 

lie in between Q i and Q 3 quartiles and the remaining two quarters under and above Q i 

and Q 3 . The central line is often a median, a more robust measure against outliers 

compared to the mean. The fences are 1 . 5 ( Q 3 - Q i ) above and under Q 3 and Q i . The 

difference between Q 3 - Q 1 is called the interquartile range (IQR). Observations beyond 

these fences are referred to as outliers, depending on the approach. Similarly, the 

histogram can be used to observe possible outliers. [242], [244] 

Z-score is a common way to screen observations for outliers. If X is normally 

distributed as Nfao2), then Z=(X- JU)/o is distributed as N(0,1). A popular rule is to label 

observations with a Z-score higher than 3 as outliers. However, it has been proven that 

the absolute value of the Z-score from n observations is at most (n — 1 ) / V « . [242] 
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This limitation is overcome in modified Z-scores defined as M and using the median 

absolute deviation defined as M A D : 

0 . 6 7 4 5 O i - x ) 
Mi = 

MAD (4.14) 

MAD = median(\Xi — x\), (4 15) 

, where the sample mean is replaced by the sample median x. The M A D is a variation 

of average absolute deviation and is even more robust against extremes in the tails. The 

constant 0.6745 is necessary because E(MAD) = 0.6745<r for large n. The observations 

with the absolute value of modified Z-score M>3.5 are labeled as outliers. The modified 

Z-score is a robust measure to identify obvious outliers. [242], [244] 

In the past, the Z-score statistic was used from the earliest use of the coverage 

histogram [245] or later in Sequana [175]. 

Regarding the statistical test for outliers, there are multiple approaches. One tests for 

a single outlier and then iterates with reduced observation space until the test statistic is 

not significant. Another approach guesses the number and location of potential outliers r 

and then test i f these are true outliers. A more effective approach assumes the number of 

candidate outliers r and then identifies the true outlier in this subset. 

To test for exactly one outlier, the extreme studentized deviate (ESD) statistical test 

is suitable. It is also known as the Grubbs test or maximum normalized residual test. The 

xj is identified as an outlier i f the value T s defined in the equation is higher than a formula 

Ts = max { | X j — x\/sd \ i = 1, ...,n}, (4.16) 
i 

T s > ^ 
N 

{tg/2n,n-2) 
(4.17) 

n - 2 + {ta/2n,n-2) 

where ta/2n,n-2 is a critical value of t distribution with n-2 degrees of freedom and 

a/2n level of significance. For the one-sided test, the significance level is oJn. Then, the 

outlier xj is the observation that leads to the largest \xt — x\/sd, where x is the sample 

mean and sd is the sample standard deviation. If T s is lower than the critical value, there 

is no identified outlier. Alternatively, i f we choose the xj as an outlier, we can repeat the 

process with the removed observation x j . The two-sided equation can be modified into 

two one-sided tests to test whether a minimum or maximum value is an outlier. [242], 

[244] 

The L r test, also known as the Tietj en-Moore test, enables to test for multiple r outliers 

at once. The test statistic has two one-sided forms for detecting r upper (4.18) or r lower 

outliers (4.19), and also a two-sided formula (4.20), defined as 

j - L l = 1 K X l ZlL (4.18) 
upper ~ _ £)2 
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Lr_lower ~ _ ^y (4.19) 

L r ~ TLM-iy ( 4 2 0 ) 

where the x is a sample mean of the whole dataset and xr is a sample mean of r 
minimal or maximal observations removed depending on the formula used. In the two-

sided formula ( X X ) , the absolute residuals of observations are calculated as rt = \xt — x\ 
and then sorted ascendingly into zt. Then, the xr is a sample mean with removed r largest 

observations. The value of L r is between 0 and 1. If L r i s less than a critical value then the 

r outliers are identified as outliers. However, the L r test is susceptible to false positives 

when there are false outliers among the r candidates. [242], [244] 

The most attractive approach is the generalized extreme studentized deviate (GESD) 

statistical test. This enables testing up to r candidate outliers. It calculates the Ri = 
m a x ( | X j — x\)/sd for all candidate outliers i=(l,..,r) but in each step /' it finds the 

observation that maximizes the \xt — x\ and removes this observation from the sample 

size. The next iteration is on an n-1 smaller dataset. Followingly, compute the r critical 

values h by the formula 

(n—i)tp n-i-1 

X i = 1/ : Z . » (4-21) (n-i-l+t* n_ £_ 1)(n-i+l) 

where tp,v is the lOOp percentage point from the t distribution with v degrees of 
freedom and the p is p = 1 — [a/2(n — i + 1)]. The important aspect is selecting the r. 
Selecting a large r than needed increases computation time, but does not affect the 
detection of false positives. The r represents the upper bound of the number of outliers. It 
does not require the location of outliers. Also, it performs very well under conditions 
where previously presented methods fail. Furthermore, it is suitable for large samples. 
[242], [244] 

4.2 Read-pair approach 
The second method used is the read-pair approach. The read-pair approach can 

independently detect a wide spectrum of S V types. It employs the information from the 

alignment of pair-end reads such as the genomic position, distance between read pair, and 

their orientation to each other. 

4.2.1 Detected signatures 
Soylev recently presented rules to distinguish between two types of duplications, tandem 
and interspersed, and their direct and inverted (or indirect) forms [115]. The signature of 
reads from tandemly duplicated segments includes lower insert size (as reads are mapping 
closer than expected) and reversed both orientation and order of the reads (upstream read 
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location mapping to the reverse and downstream read location mapping to the forward, 
i.e. -/+). 

The interspersed duplication signatures include increased insert size and reads 
mapping to the opposing strands but with reversed order (+/- and -/+). Another case of 
duplication is inverted (or indirect) duplication, which shares signatures with inversion. 
Contrary, direct duplication (unchanged orientation), shares a signature with deletion. 
Thus, similarities make detection challenging and that is why the read-pair approach is 
used to validate read-depth results which can distinguish between duplication and 
deletion clearly. [115] 

Interestingly, the combination of read-depth and read-pair approaches could discern 
between homozygous and heterozygous deletion. For homozygous, where both alleles are 
missing, reads are mapped farther apart and there is zero coverage. For heterozygous, 
where only one allele is missing, there is lower coverage compared to baseline, but reads 
are spanned normally caused they originate from the no-event region. [117] 

The signature rules from Soylev are the following [115]. The signature of deletion is 
defined as reads mapped to the expected strands (+/-), plus strand for the first mate, and 
minus strand for the second mate. But the insert size is higher than the rest of the 
sequencing library. 

The signature of direct tandem duplication includes both orientations of mapped mate 
reads, (+/-) and (-/+), but the insert size is lower than expected. If the reads were both 
mapped to the same strand, (+/+ or -/-), it would point to the indirect duplication. 

The signature of interspersed inversed duplication is defined as both reads mapped to 
the same strand (+/+ or -/-) and with increased insert size. 

The signature of interspersed direct duplication is defined as reads mapped to opposite 
strands in both ways (+/- or -/+) and with increased insert size. 

4.2.2 Circular genome correction 
The circular genome correction serves to tweak the reality that the reference genome for 
alignment is linearly represented, while the real bacterial genome is circular. Thus, the 
distances between read-pairs have to be corrected. However, this correction only affects 
the extremities, which are caused by the circular to linear conversion, and not the majority 
of concordant pair-reads. Values of insert size (reported as T L E N in B A M format) which 
are higher than half the reference genome's length are recalculated so that the genome 
length and pair-read length are subtracted (4.22). Vice versa, for negative values lower 
than half the reference genome's length, the genome length, and pair-reads length are 
added (4.23). 

TLENnew(+) = TLEN0id — 2 x ReadLength — ReferenceLength ^ 2 2) 

TLENnew(—) = TLEN0id + 2 x ReadLength + ReferenceLength ^ ^ 
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The illustration of the reality between circular and linear coordinates in the reference 

genome is in Figure 4.1. Notice that the real distance in the circular representation does 

not correspond to the distance in the linear transformation. 

oriC 

oriC-start 

Figure 4.1 - Depiction of circular genome distance 
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5 CNPROSCAN 

5.1 Merging the detection approaches 

The earliest tools for C N V detection used only a single approach but soon there were 

released tools combining multiple approaches. This combination proved to be very useful 

as each approach is limited in its detection abilities. While for detecting large SVs the 

pair-end method is the most applicable, the detection of C N V s can not be done without 

the read-depth method. A l l methods focused on C N V s employ read-depth information. 

This information can be extended by other approaches as was presented that methods 

combining read-depth with split-read or read-pair methods have both sensitivity and 

specificity improved for small C N V s [160]. The majority of C N V detection tools for 

human genomes rely on paired samples, and i f no control reference is available, pooling 

even the observed samples together can serve as the reference. Thus, I decided to merge 

the read-depth approach with read-pair information, because this enables us to narrow the 

subtype of duplications [115]. 

5.2 The Algorithm Design 

The CNproScan uses the 'sandwich' design with partial blocks stacked vertically, as 
illustrated in Figure 5.1. The program consists of several main blocks. The first one is 
coverage normalization, the second is outliers detection to determine C N V s , the third is 
the application of the read-pair approach and signature rules to narrow the C N V subtype 
and the last is formatting the output. Each block is here described more from the 
implementation aspect. [246] 

5.2.1 Data preparation 
The preparation of sequencing reads before the CNproScan's detection of C N V s is carried 
out by the usual procedure. It is useful to analyze library quality metrics by FastQC[247] 
or fastp[248], as these are the most used tools. Fastp is an all-in-one tool for quality 
control, adapter, and quality score trimming. Other frequent tools for trimming are Trim 
Galore and cutadapt [249], 

Then, the reads are mapped by the aligner. The B W A - M E M was used in the testing 
[122], [220]. B W A places the multi-mapping equally scored reads randomly but with an 
alignment score of zero. Other locations are reported in the X A tag defined by the 
S A M / B A M file format [250]. 
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The samtools package is used to handle the rest of the work [250]. The alignment is 
sorted and written as a binary B A M file. The coverage signal is obtained by the command 
"samtools depth" with parameter -a which includes zero coverage positions. 

For the optional mappability correction, the required genome mappability file is 
obtained from GenMap [251]. The settings - K 30 - E 2, meaning the size of unique k-mers 
and allowed mismatches, was generally used for all analysis. 

If the user is interested in the correction of the origin of replication bias, then, the 
location or multiple locations of oriC is necessary. This information can be searched for 
in the Dor iC database [239]. The record from Dor iC must match with the corresponding 
genome reference used for alignment. 

Figure 5.1 - CNproScan workflow 
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5.2.2 Data used 
In the chapter on algorithm design, several real and artificial samples were used in the 
testing. The real data are also used in the chapter ProcaryaSV. The overview of the 
datasets used in the discussion of implementation is in Table 5.1. 

Table 5 .1 - Overview of used real datasets 

Organism Accessory ID No. of samples Citation 
Staphylococcus aureus PRJNA497094 92 [252] 
Escherichia coli DRA005229 58 [253] 
Lactobacillus casei PRJNA342061 50 [254] 
Klebsiella pneumoniae PRJNA515630 48 [255] 

Alternatively, the artificial dataset of 30 simulated and induced C N V s was used taken 

from benchmarking the CNOGpro [ 152], which is described in the chapter Benchmarking 

on the simulated data. 

5.2.3 Main function 
The CNproScan was developed initially as a set of M A T L A B functions and during the 

peer review, it was rewritten into R. Both versions share the same methodology. Recently, 

the R version was updated to version 1.0, and these modifications are presented in a 

separate chapter. Both versions are hosted in GitHub repositories (Table 5.2). A l l 

normalizations are optional, but the G C and the mappability normalization are 

recommended as commonly used. 

Table 5.2 - CNproScan GitHub repositories 

R version https: //github .com/robinj ugas/CNpro Scan 
M A T L A B version https: //github. com/robinj ugas/CNpro S canMatlab 

5.2.4 GC Normalization 
The G C normalization is done with the use of the modified Yoon approach (4.1). The 

normalization requires to use of a sliding window. Benjamini et Speed notes that a 

window size of at least fragment length should be used [233]. Yoon ties the G C 

normalization and read-depth approach as it is common with the use of a lOObp 

window[131]. The CNproScan does not use a window approach for C N V detection, but 

it relies on a single-base resolution of the coverage signal. However, the normalization is 

done in a window manner as the single-base approach is computationally demanding and 

there is no strong rationalization as G C content has to be calculated over a certain region. 

Originally, I applied the normalization to the single bases but applying it in a window 
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brings a performance bonus and provides the same results. 

The table of G C content percentage values is based on 50 bp windows and their G C 

content. This table is filled with read-depth values of the corresponding G C value. Then, 

the median values are used as prescribed by Yoon. Several exceptions can happen which 

are not described by Yoon. The windows of high or low G C content can have zero or very 

low coverage leading to division by zero later in the formula. Also, i f the median coverage 

of given G C content (miGC) is around 1, then the normalized values are extremely high 

and this creates false spikes in the coverage signal. There are three rules to suppress these 

exceptions without inducing such noise. Furthermore, I added the mean value that can be 

used instead of the median. First, there is no normalization i f the median coverage of the 

G C is zero or the base coverage is zero. Also, i f both the median and mean are less than 

1, the coverage is not corrected. Alternatively, i f the median is less or equal to 1 and the 

mean is higher than 1, the mean value is then used instead. The median is used i f is higher 

than 1. These rules avoid division by zero and by a number less than 1 which induces 

noise. 

The dependence of read depth on the G C content is in Figure 5.2. In this figure for E. 
coli, the relation between the two variables can be clearly seen. With increasing G C 

content, the observed read depth is decreasing. The average G C content in E. coli is 

around 50%. The normalization removed this relation completely. The Spearman 

correlation coefficient and p-values are in Table 5.3. The visible relation is supported by 

Spearman's Rho of -0.9 denoting negative relation. The results of the other three samples 

are in Supplementary Table 2. The same conclusion is valid for S. aureus and E casei, 
however, the K. pneumoniae sample has a weaker correlation with Spearman's Rho of -

0.3017. For all normalized samples, the correlation was not statically significant, which 

means the normalization was successful. The plots of differences between raw and 

normalized coverage signals are in Supplementary Figures B1-B4. 
E.coli 

O 

Type 

o 
60 

GC content 

Figure 5.2 - Dependency of read-depth on GC content for raw and normalized values 
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Table 5.3 - Spearman correlation test for GC normalization (E. coli) 

Condition Rho P-value Significant 
Raw -0.971 8.395e-37 Yes 
Normalized 0.222 0.093 No 

5.2.5 Mappability Normalization 
The mappability normalization is based on the Magi approach and formula presented 

earlier (4.2) [127]. The approach is very similar to G C normalization. We use mappability 

scores calculated from an external tool named GenMap [251]. GenMap focus on the 

problem of finding the occurrence of a substring with length k in the sequence while 

allowing some errors e, when the sequence here is the reference genome sequence. It 

returns a mappability score, defined as the inverse of the occurrence frequency, of 1 for 

a unique substring and a mappability score close to 0 for repetitive substrings. GenMap 

was chosen because it is accessible as a conda package, based on the paper it outperforms 

previously published competing packages, is exact and non-heuristic, and enables the 

choice of a number of errors. The £=30 and e=2 were used by authors to perform analysis 

on Klebsiellapn. Thus, we take over the same settings. [251], [256] 

Instead of the G C table, the mappability table is constructed where each row 

corresponds to a mappability score, and the columns are observed coverage values. The 

window is not set up, the coverage values are calculated from regions defined in the 

bedgraph formatted file from the GenMap tool. The normalized coverage value is then 

computed as previously, each window has its values multiplied by the division of median 

coverage and median coverage of windows of the same mappability score. 

The dependence between the two variables, the read depth and mappability score for 

E. coli is plotted in Figure 5.3 and correlation coefficients are in Table 5.4 and 

Supplementary Table 3. The raw points are randomly scattered, while the normalized 

coverage leads to a slightly higher Spearman's Rho, both insignificant. Only the S.aureus 
sample had a statistically significant correlation of coverage and mappability and this 

correlation was reduced successfully by normalization. The plots of differences between 

raw and normalized coverage signals are in Supplementary Figures C1-C4. 
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Figure 5.3 - Dependency of read-depth on mappability score for raw and normalized values 

Table 5.4 - Spearman correlation test for mappability normalization (E. coli) 

Condition Rho P-value Significant 
Raw -0.1582 0.5176 No 
Normalized -0.2023 0.4061 No 

5.2.6 Replication origin bias normalization 
The replication origin bias is normalized by our approach, which is based on the 

previously presented principles for G C and mappability normalization. The genome is 

binned into lOObp windows similarly to the G C normalization. Whether the bias is 

corrected depends on the user and the result of the Spearman correlation test p-value. 

Firstly, it is required to remove any outliers. It is because the distance to oriC is 

symmetrical and deletion or duplication on one side of the symmetry could completely 

deflect the normalization of the regions with the same distance to the replication origin. 

The outliers are removed using the 1.5 times IQR (interquartile range) rule on both tails. 

Then, the distance to oriC is calculated in windows of 100 bp. The circular genome 

correction is applied so that the minimum value of all possible constellations is chosen. 

The important parameter is the level of rounding. This parameter impacts how many 

windows are taken together in estimating the median read depth of a certain distance to 

oriC. Rounding to thousands means that approximately ten lOObp windows on each side 

are taken together, rounding to tens of thousand means a hundred windows are taken 

together. The table of values of oriC distances and median read depths is constructed. 

Importantly, the Spearman correlation value is computed between the oriC distances and 

estimated read depth medians. The p-value is calculated for the alternative hypothesis that 

Spearman's correlation coefficient Rho (-1,1) is different from zero. The normalization 

is further applied i f the p-value of this test is less than the alpha value of 0.05. The p-
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values are computed via the asymptotic approximation, which means that they depended 
on the number of oriC distance values and wi l l likely be less than the alpha level for the 
lower rounding level. However, it was observed that higher rounding is more robust, and 
rounding to tens of thousand is applied. The replication origin bias is then normalized by 
the formula 

RC^RCi-
miORICdist (5.1) 

where m stands for the median value of read-depth of all windows and tTii0RICdist: for 

the median value of the windows with the same oriC distance. 

The information about the genomic position of replication origin is accessible in the 

Dor iC database [239]. If the oriC normalization is intended, it is useful to check i f there 

is a record in Dor iC for the selected genome reference or choose the different one. 

The oriC position for E. coli was set up at 3923657bp. A s in the mappability case, the 

scatter plots (Figure 5.4) of dependency look similar for E. coli and K. pneumoniae. The 

correlations are in Table 5.5, and Supplementary Table 4 for other samples. The S. aureus 
and E casei have both more visible negative correlations with coefficients of -0.82 and -

0.93 respectively, while E.coli has a correlation coefficient of 0.23 and K. pneumoniae -
0.25. Fully removing the bias was not always successful, as all K. pneumoniae, S. aureus, 
andEcasei have significant p-values even for the normalized condition. Only E.coli was 

successfully normalized. The plots of differences between raw and normalized coverage 

signals are in Supplementary Figures D1-D4. 
E.coli 

Type 

1.QOO.QOO 
distance to ortC {bp} 

Figure 5.4- Dependency of read-depth on oriC distance for raw and normalized values 

Table 5.5 - Spearman correlation test for replication bias normalization (E. coli) 

Condition Rho P-value Significant 
Raw 0.2358 0.0007 Yes 
Normalized 0.0902 0.2037 No 
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5.2.7 Read depth normality distribution 
The underlying theory behind the applicability of the outliers detection algorithm is that 
data are somewhat normally distributed. Here, the Q-Q plot and histograms of both 
artificial and selected real samples are shown. 

Firstly, the Q-Q plots of artificial samples are in Supplementary Figure A l . The four 
samples are constructed in four various mean coverages (10x, 20x, 100x, 200x) and with 
or without artificially imputed C N V s . The dataset normality is assumed from the linearity 
of data along the normal distribution line. Ideally, the dataset and line should overlap. 
Here, we can see how C N V s create the tails on both sides of otherwise normally 
distributed coverage. From the coverage value of 100x in the sample without C N V we 
can see the visible drop created by zero or close to zero values of coverage. This is induced 
most likely by the reads simulator and also by the fact that the two previous coverage 
values are very close to zero. For higher coverages, there is almost no upper tail in the no 
C N V samples. On the opposite side, there are upper tails formed by induced duplications 
and more visible lower tails induced by deletions. However, a large part of the samples is 
normally distributed. 

Similarly, the histograms are plotted in Supplementary Figure A 2 , together with a 
normal distribution bell curve with parameters Nf/j-.a2) taken from the dataset statistics. 
We can see how for lower coverages the normal distribution does not fit. The sample 
histograms are too narrow. The histogram is widened by the presence of C N V s as 
displayed in the sample of 20x coverage with C N V s . The no C N V s samples of 100x and 
200x fit normal distribution perfectly. While for samples with induced C N V s , the mean 
and variance of the normal distribution curve were influenced by them, and the "peak" is 
too narrow. 

A different situation is for real datasets. Every sequencing organism has its specifics. 
In Q-Q plots in Supplementary Figure A 3 , there are raw coverage values on the left side, 
and on the right side, there are coverage values with detected and removed C N V values. 
The CNproScan was used. Firstly, the L. casei was a specific sample with almost no 
C N V s . This is more prominently visible in the histogram in Supplementary Figure A4 . 
Other samples with C N V s removed fit the normal distribution more. Contrary to L. casei, 
K. pneumoniae has a specific shape created by the presence of large deletions and 
duplications. It is important to note that the selection of reference genome plays a huge 
role in the coverage profile. The reference used for K. pneumoniae is specific because is 
composed of multiple substrains. 

The histograms in Supplementary Figures A 2 and A 4 show how samples can fit 
normal distributions both with and without C N V s . The differences are again L. casei and 
K. pneumoniae. However, with C N V s removed the K. pneumoniae fits normal 
distribution very well. 
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5.2.8 Outliers as CNV candidates 
The normalized coverage signal is sent into the outliers analysis. Firstly, zero coverage is 
apriori considered as deletions and labeled separately. This also removes part of the lower 
tail of coverage distribution. The other upper tail is being removed by outlier detection. 
For this task, the CNproScan employs the G E S D outlier detection algorithm described 
before. A s this algorithm requires the upper bound of the suspected outliers. To serve a 
robust estimation of this upper bound, the modified Z-score outliers detection is used and 
values with a modified Z-score above 3.5 are labeled as candidate outliers. This usually 
leaves a large number of candidates, meaning several thousand and e.g., more than ten 
thousand candidates for real Klebsiella pneumoniae samples. 

To reduce the performance drawback of testing thousands of values in a for-cycle, the 
G E S D testing is done in a parallel way. This was possible because the task is possible to 
parallelize. This is done in the R version with the use of R packages parallel, doParallel, 
and foreach. Simply done, the whole genome is divided into n sections which are tested 
separately and parallel. The argument cores in R main function serve as the definition of 
the number n. After each partial segment is done, the results, which are genomic positions 
of significantly large coverage values, are merged into a single vector. 

In the Matlab version, there is a parallelization of computing multiple samples at once 
through a script paralell run CNproScan. 

More changes are made in the updated R version 1.0. Outliers from both tails are 
removed first with 3 times interquartile-range rule (anything beyond this value is labeled 
as an initial outlier). This tweak reduces the search space for the computationally 
demanding G E S D procedure and also increases slightly the sensitivity. 

The results are post-processed. The vector of outliers is sorted and the gaps between 
outliers are detected using the lagged differences function. Then, depending on the 
parameter peakDistanceThreshold, which is set up to 20bp, the adjacent outliers closer 
than 20bp are merged into consecutive segments. These serve as a basis for C N V events. 

In Figure 5.5 the results of outliers detection are displayed for the artificial genome. 
The details of the creation of the artificial genome dataset are described later in the chapter 
Benchmarking on simulated data. The zero coverage values are removed first (in red). 
The candidate outliers from the modified Z-score method are in blue and multiple of them 
are overlapped with blue as they were confirmed by the G E S D outliers test. 
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5.2.9 Extending CNV boundaries 
Because of the nature of outliers detection, only the most significant parts of C N V s are 

uncovered, i.e. for duplications, only the peaks are labeled yet. To extend the borders of 

the C N V down to the baseline, the slope of a line is used. The line is given as a coverage 

region. The slope is calculated as m = y 2 V l and the distance between x-axis values x 2 — 

x x is defined by a specified step (11 bp, optional). The slope is calculated gradually on 

both ends of the peak until there is a change in the numerical sign for the value of slope 

m. If the change of slope is detected x-times (x defined as 5, optional), then it is considered 

as the C N V s border. The updated version adds the condition of reaching the baseline 

defined as the average of the coverage. A detail of one C N V with extended boundaries is 

plotted in Figure 5.6. Noticed how the whole depth of C N V is detected compared to the 
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previous Figure 5.5 (third peak from the end). 

5.2.10 Read-pair information 
Since CNproScan detects solely C N V s , I choose only a few signatures to use from the 

read-pair approach. The features of deletion, tandem duplication, and interspersed 

duplication are targeted. The signatures are as defined in Soylev's work [115]. 

Contrary to other approaches which merge the two pieces of information, the read-

0 0.5 1 1.5 2 2.5 3 2.71 2.711 
Position [bp] x - | o 6 

Figure 5.6 - Detail on extending the C N V boundaries 

pair approach helps to validate and specify the C N V events detected from the read-depth 

approach. Both approaches are not equal, rather the read-pair information is subjugated 

to the main read-depth information. This is because as mentioned earlier, certain 

signatures are not exclusive, and specifically direct duplication signature is the same as a 

deletion signature. Because of this reality, the read-pair approach is subjugated to the 

read-depth approach which can distinguish between duplication and deletion very clearly. 

The usual approach is to cluster together neighboring signatures and assign an S V 

type to them. Here, in CNproScan I search for outliers in the signatures because the 

distribution of fragment sizes in a library is Gaussian and the detected signature is usually 

largely distant from the normal state. The outliers are defined on a simple rule of 1.5IQR, 

which means that insert sizes larger than the sum of the upper Q3 quartile and 1.5 times 

the interquartile range are labeled as an outlier. 
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Furthermore, the features are searched only in the regions of already detected C N V s 
and not genome-wide. This reduces the computational time. The genomic regions are 
scanned inside the detected C N V boundaries extended by the insert size on both ends. 
The decision of which S V subtype wi l l be chosen is done by selecting the most prevalent 
signature inside the region. 

The detection of discordant reads uses the fields defined in the S A M / B A M format 
[230], [250], mainly T L E N (Template length), and bitwise F L A G , which contains 
information about the read's relative orientation, etc. In the R version, packages 
Rsamtools, GenomicRanges, and IRanges were used to access the B A M file structure. In 
the Matlab version, the bamread function from the Bioinformatics Toolbox was used. 

A s already mentioned, the B A M is scanned only in the regions of detected C N V s . 
The boundaries are defined as the start and end of C N V s coordinates plus/minus the 
insert size. The insert size is defined as the median of absolute values of whole B A M 
reads. Similarly, the interquartile range, the first and third quartiles are defined based on 
the whole B A M file. The "isize" in Rsamtools ( T L E N in B A M definition) is used for 
these estimations. For median read length, the "qwidth" is used. 

The circular genome correction is used as described, and each C N V region defined in 
the read-depth approach part is scanned for reads defined by specified signature rules. 
The genome-wide signal of paired read distances is plotted in Figure 5.7 with outliers 
highlighted in red and blue, denoting simply insertion and deletion of genomic sequence. 

The theoretical signature rules were extended because of some observations from the 
testing and are all listed in Table 5.6. 

Table 5.6 - Overview of applicated signature rules 

Type Subtype Strand orientation Insert Size 
Deletion +/-

(-/+) 
Higher 

Tandem Duplication Direct +/-
-/+ 

Lower 

Tandem Duplication Indirect +/+ 
-/-

Lower 

Interspersed 
Duplication 

Direct +/-
-/+ 

Higher 

Interspersed 
Duplication 

Indirect +/+ 
-/-

Higher 
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Figure 5.7 - Plot of read-pair distances across genome 

Firstly, the usual deletion signature is stated as the +/- position of reads. But observing 
the I G V outputs it was discovered that deletion produces both reads placement, i.e. -/+ 
too. Narrowing it to +/- only would decrease, by almost a half, the number of reads which 
would support this signature. 

Secondly, it was observed that large tandem duplication can seem like interspersed 
duplication. This is caused by mirroring the length of tandem duplication itself into the 
observed insert size of reads around its breakpoints. This is demonstrated as insert size 
labeled as upper outliers instead of expected lower outliers. For example, the tandem 
duplication above 1000 bp wi l l have observed reads insert sizes of similar length, while 
the median is only 500 bp in the artificial dataset. Thus, the setting for higher outliers has 
to be much higher. I applied an arbitrary rule of 10 times the IQR for labeling upper 
outliers for interspersed duplications. The boxplots of three tandem duplications are in 
Figure 5.8. Notice how statistics of insert sizes correspond with event length. Tandem 
duplication of 3776, the third boxplot, should theoretically have reads with insert sizes 
lower than the majority of reads in the sample. The mixed signatures of tandem and 
interspersed duplication make their distinction more difficult, but this can be mitigated 
by a much higher threshold. However, this is a possible weakness of the approach. 
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Figure 5.8 - Insert size of tandem duplications with size of 354, 1302, 3776 bp 

A s already partly mentioned, the insert size of the event copies somewhat the length 

of the event. This is expected, but not commonly mentioned in the literature. For 

deletions, this is displayed in Figure 5.9, and for tandem duplications in previous Figure 

5.8. Deletion number 6 has originally 828 bp and the boxplot of insert sizes of reads in 

the given region reaches an approximately similar level of values. The same applies to 

the deletion of 1677 bp where the third quartile corresponds approximately to the same 

value. 

Deletion #6 Deletion #23 
o 

Reads Reads 

Figure 5.9 - Insert size boxplot of deletions of size of 828 and 1677 bp 

Furthermore, it was observed that for small events, the read-pair approach is less 
usable. This is displayed in the I G V screenshots in Supplementary Figures E1-E2, where 
two deletions are plotted. While for longer deletion number 6 there are multiple reads 
creating signature clusters, for smaller deletion number 13 with the length of 134 bp, there 
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are almost none. The smaller gaps in the reference genome are bridged by using split-
read signatures (aka soft-clipping) or are likely thrown away depending on the alignment 
algorithm. The event with no supporting reads for any type of event could be then easily 
tagged as a possible false positive. This is still being applied but with caution. 

For every C N V event, there are counted all reads supporting the above-defined 
signatures. The main distinction between duplication and deletion is done at the read 
depth level, the deletion is lower than the average of the coverage signal while duplication 
is oppositely higher than the average. The distinction between tandem and interspersed 
and their direct and indirect forms is done by applying the read-pair approach. 

5.2.11 Output files 
The output consists of a table where rows correspond to the detected C N V s and columns 

to several reported features, such as C N V coordinates, length, type, and subtype, and read 

counts of supporting reads for every read-pair signature. 

For the M A T L A B version, the cell data structure can be written into an Excel 

spreadsheet. The same applies to the R version and the resulting 'data.frame' variable. 

Furthermore, the V C F file, defined similarly to CNVnator and L U M P Y , is written to a 

drive. 

5.3 Benchmarking on the simulated data 

The following chapter is based on the published paper of CNproScan [246] and the results 
are based on the M A T L A B version. A more detailed analysis of multiple aspects is in the 
next chapter focused on the R version. Since the results of the M A T L A B version are very 
similar to the later R version, I decided to put here both results and make them 
complementary. Thus, the M A T L A B version results are focused on comparison with 
other state-of-the-art methods, while the R results chapter is focused on various aspects 
and is compared to the M A T L A B version for continuity. The benchmarking with other 
tools on the real dataset is in the next chapter ProcaryaSV. 

5.3.1 Test dataset 
The performance of CNproScan was evaluated on the dataset which had been previously 

used in the testing of the CNOGpro package [152]. This dataset is based on the S. aureus 
genome sequence (in Table 5.7) into which were imputed 30 artificial C N V s with defined 

genomic coordinates, lengths, and copy-number. These C N V s are listed in Table 5.8. 

There are 12 deletions and 18 duplications of various lengths, mainly focused on the small 

events. 
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Table 5.7 - Testing genome 

Sequence NCBI Accession 
Staphylococcus aureus subsp. aureus TW20 GenBank: NC_017331 

The dataset has two parts - one with imputed C N V s and the second one with no C N V s 

to evaluate the metric of true negatives. These two datasets were constructed with 

different coverage values - 10x, 20x, 100x, and 200x. The sequencing reads were 

generated with the A R T reads simulator [228] and then processed by the described 

pipeline. 

Table 5.8 - Dataset of 30 artificial CNVs 

Number Start Position Stop Position Segment length True CNV 
number 

1 330012 330015 4 0 
2 344821 344843 23 2 
3 388478 388485 8 0 
4 402047 402109 63 4 
5 562944 563213 270 3 
6 762780 763607 828 0 
7 809546 809626 81 4 
8 1164412 1164687 276 2 
9 1196369 1196578 210 3 
10 1275253 1275864 612 0 
11 1358393 1358649 257 2 
12 1371773 1371988 216 3 
13 1625170 1625303 134 0 
14 1716617 1716970 354 4 
15 1798287 1799588 1302 2 
16 1953890 1954411 522 0 
17 2115756 2119531 3776 3 
18 2148564 2148827 264 2 
19 2186039 2186055 17 0 
20 2195082 2195085 4 2 
21 2219052 2219068 17 0 
22 2338314 2338339 26 0 
23 2348148 2349824 1677 0 
24 2484353 2484868 516 0 
25 2519733 2520386 654 0 
26 2612863 2613755 893 2 
27 2643228 2643743 516 3 
28 2645385 2645421 37 3 
29 2694225 2694725 501 2 
30 2710239 2710898 660 2 
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The reads were generated with these A R T (command ar t i l lumina) settings - fold 

coverage (-f) set to the tested value (10*, 20x,100x,200x), read length set to 76 bp (-1), 

paired-end reads (-p), median insert size 500 bp (-m), the standard deviation of fragment 

length lOObp (-s), and the sequencer profile set to HighSeq (HS25). The same settings 

were used in the compared methodology. 

The performance of CNproScan was compared directly with L U M P Y [125], 

CNVnator [173], Pindel [113], and D E L L Y [118]. A n d indirectly with CNOGpro [152], 

cnv-seq[158], and cn .MOPS [155], where I adopted the previously published results. A l l 

tools are summarized in Table 5.9. 

Regarding the competing tools settings, we ran L U M P Y using lumpy express settings 

and CNVnator with a 30bp bin size specified. The insert size for Pindel was set as 348 

bp. A l l other settings for all tools were left at default values. To compare our results with 

the reference tool, we recalculated the CNOGpro results using the same methodology as 

ours. This recalculation is necessary as CNOGpro makes the calculation using the gene 

regions. Therefore, we consider it possible to count only the 30 C N V events as true 

negatives (TN) instead of 5437 gene regions. Other metrics - true positives (TP), false 

positives (FP), and false negatives (FN) are based on results evaluation. 

Table 5.9 - Overview of competing tools 

Tool Method Version 
L U M P Y RD+PR+SR 0.2.13 
CNVnator RD 0.4.1 
Pindel SR 0.2.5b9 
D E L L Y RD+PR+SR 0.8.7 
CNOGpro RD 1.1 
cnv-seq RD 1.0 
cn.MOPS RD 3.1 
RD - read-depth, PR -pair-read, SR - split-read 

The main focus was on 100x coverage, then the only tools competing well were 

evaluated for other coverages 10x, 20x, and 200x. The results are evaluated by the 

metrics of the confusion matrix. The Accuracy, Sensitivity/Recall, Specificity, Precision, 

and F l score are all used across the results chapters. Lastly, the results and discussion are 

taken from CNproScan's published paper [246], 

5.3.2 Results for coverage 100* 
The most emphasis was put on the 100x coverage. A l l 8 tools are benchmarked for this 

value of coverage. It is high enough to provide a sufficient signal-to-noise ratio with easily 

detectable C N V s . 
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The complete results with the number of correct and false observations, and 
performance metrics are in Table 5.10. 

A common problem stated in the literature is a high false discovery rate [141], where 
only Pindel failed significantly with 789 FPs. A l l tools performed well with a minimum 
number of false positives. 

Focusing on the default 100x coverage (in Table 5.10), the overall accuracy achieved 
was 93% and was the highest among tools. CNproScan detected 26 TP. Four F N C N V s 
were short regions under 26 bp in length, consisting of 2 deletions and 2 regions with a 
copy number of two. There was a single C N V event detected outside the original 
coordinates, which we consider an F N case. 

CNproScan and Pindel were both able to detect shorter C N V events than other 
methods. Pindel has higher sensitivity as it was able to detect 27 out of 30 C N V s . 
However, Pindel's high sensitivity has the drawback of a high false positive rate. Pindel 
detected 371 C N V s , mainly deletions, in the empty reference dataset. Furthermore, there 
were another 418 FPs in the dataset with C N V s . A high false discovery rate in C N V 
detection is a common problem stated in the literature [141], however, only Pindel 
suffered from this. 

Table 5.10 - Results for coverage 100* 

e 
CS o 

cn
.M

O
P

S U 

D
E

L
L

Y
2 

C
N

pr
oS

t 

C
N

O
G

pi
 

C
nv

-s
eq

 

cn
.M

O
P

S 

L
U

M
PY

 

C
N

V
na

ti 

D
E

L
L

Y
2 

Pi
nd

el
 

TP 26 22 14 7 13 21 22 27 
FP 0 0 0 0 2 0 0 789 
FN 4 8 16 23 17 9 8 J 
TN 30 30 30 30 30 30 30 30 
Accuracy 93.3 86.7 73.3 61.7 69.4 85.0 86.7 6.7 
Sensitivity 86.7 73.3 46.7 23.3 43.3 70.0 73.3 90.0 
Precision 100.0 100.0 100.0 100.0 86.7 100.0 100.0 3.3 
Specificity 100.0 100.0 100.0 100.0 93.8 100.0 100.0 3.7 
F l score 92.9 84.6 63.6 37.8 57.8 82.4 84.6 6.4 

Other tools detected fewer C N V s . Sorted from the lowest number of TPs, there was 
cn .MOPS, L U M P Y , cnv-seq, CNVnator, and equal CNOGpro and D E L L Y 2 . Since they 
all detected zero or a very low number of FPs, other metrics are influenced by the number 
of TP and F N . Thus, precision and specificity for all tools except Pindel were high. 

CNproScan achieved the highest F l score. The close competitors in this metric were 
CNOGpro , CNVnator, and D E L L Y 2 . 
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Although D E L L Y 2 and L U M P Y are both hybrid triple method combinations, they 
differ significantly in the detection of C N V s . D E L L Y 2 performed better. 

The detection of short C N V s with a low copy number is the most challenging task. 
For 100x coverage, we can conclude that CNproScan detected duplicated C N V s longer 
than 37 bp. Two duplicated C N V s of 4bp and 23bp lengths were not detected. The shortest 
detected deletion was 4bp and then two 17bp deletions. 

The performance of the other tools varied. Pindel (90%) followed by CNproScan 
(86.67%) achieved the highest sensitivity. The third best performing in sensitivity were 
CNOGpro (73.33), D E L L Y (73.33), and L U M P Y (70.00). CNproScan achieved the 
highest accuracy (93.33%). CNOGpro (86.67%.), L U M P Y (85.00) and D E L L Y 
(86.67%.) were close in accuracy. 

5.3.3 Results for coverage 10, 20, 200x 
In the evaluation of other coverage's effect on the performance, only the best performers 

from the previous chapter were selected to reduce the complexity of the results. Selected 

were: CNproScan, CNOGpro , CNVnator, L U M P Y , D E L L Y , and P I N D E L . 

I benchmarked CNproScan and others at four different coverage values: 10x, 20x, 

100x, and 200x. The complete performance metrics are in Table 5.11. The highest values 

per row are highlighted in bold font type. The CNOGpro was aborted at 200x coverage 

because of an under-dispersion error, so the results are missing for this coverage. 

For 10x coverage, the CNproScan's sensitivity was 66.67%, and 20 out of 30 C N V s 

were detected. Pindel had the highest TP count of 26, while also having the highest FP 

rate. The second highest TP count has D E L L Y and CNproScan. L U M P Y has 17 TPs. 

D E L L Y and L U M P Y had both zero FP. Contrary, there were 19 FP and an additional 20 

FP in an empty dataset detected by CNproScan. The combined metric score was the best 

for L U M P Y and D E L L Y , then CNVnator followed by CNproScan. The hybrid methods 

L U M P Y and D E L L Y performed very well in the shallow coverage. 

For 20x coverage, CNproScan achieved the highest accuracy (86%) and detected 22 

TP. CNOGpro also detected 22 TP, L U M P Y 21 TP, D E L L Y 20, and Pindel 27 TP, thus 

Pindel had the highest sensitivity. There was no FP detected with CNproScan. There is a 

visible step in detection quality from increasing coverage from 10x to 20x. The combined 

metric score was the best for CNproScan followed by L U M P Y and D E L L Y . 

100x coverage was discussed in the previous chapter, the highest combined score was 

achieved by CNproScan followed by CNOGpro , L U M P Y , and D E L L Y . Only Pindel 

detected one more TP than CNproScan but suffered from a high false positive rate across 

the complete artificial dataset. 
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Table 5.11- Results of all coverage values 

lOx 
CNproScan CNOGpro CNVnator LUMPY DELLY PINDEL 

Accuracy 50.5 38.7 62.3 78.3 83.3 40.0 
Sensitivity 66.7 43.3 26.7 56.7 66.7 86.7 
Precision 33.9 20.3 88.9 100.0 100.0 24.5 
Specificity 43.5 37.0 96.8 100.0 100.0 27.3 
F l score 44.9 27.7 41.0 72.3 80.0 38.2 

20x 
CNproScan CNOGpro CNVnator LUMPY DELLY PINDEL 

Accuracy 86.7 68.4 68.3 85.0 83.3 25.8 
Sensitivity ni i 

IÓ.Ó 
ni i 
IÓ.Ó 

36.7 70.0 66.7 90.0 
Precision 100.0 57.9 100.0 100.0 100.0 14.4 
Specificity 100.0 65.2 100.0 100.0 100.0 15.7 
F l score 84.6 64.7 53.7 82.4 80.0 24.8 

lOOx 
CNproScan CNOGpro CNVnator LUMPY DELLY PINDEL 

Accuracy 93.3 86.7 69.4 85.0 86.7 6.7 
Sensitivity 86.7 ni i 

IÓ.Ó 
43.3 70.0 ni i 

IÓ.Ó 
90.0 

Precision 100.0 100.0 86.7 100.0 100.0 3.3 
Specificity 100.0 100.0 93.8 100.0 100.0 3.7 
F l score 92.9 84.6 57.8 82.4 84.6 6.4 

200x 
CNproScan CNOGpro CNVnator LUMPY DELLY PINDEL 

Accuracy 95.1 - 70.0 85.0 85.0 2.7 
Sensitivity 93.3 - 46.7 70.0 70.0 90.0 
Precision 96.6 - 87.5 100.0 100.0 1.3 
Specificity 96.8 - 93.3 100.0 100.0 1.4 
F l score 94.9 - 60.9 82.4 82.4 2.5 

Doubling the coverage to 200x, CNproScan detected 28 TP and 1 FP. The second 

closest was Pindel with 27 TP. The accuracy and sensitivity were the highest for 

CNproScan as the overall combined score. 

Beginning with the 20x coverage, the CNproScan had the highest F l score and 

Accuracy and kept it to 200 x. 

There is also Figure 5.10, where precision, recall, and F l scores are plotted. It is 

visible how since reaching coverage 20*, the performance metrics for CNproScan are 

going up to the highest numbers. 
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Figure 5.10 - Sensitivity, Precision and F l scores of the simulated dataset 

5.3.4 CNV length analysis 
Next, I analyzed how tools dealt with various C N V lengths. The histogram depicting the 
tools' ability to detect various C N V lengths for 100x coverage is in Figure 5.11. The y-
axis shows the count of C N V s detected within four defined bin sizes. The numbers of 
C N V s in each bin are shown in the brackets in the figure legend. Only CNproScan and 
Pindel detected the shortest C N V s (blue color). The C N V lengths are categorized into 4 
bins: 0-25bp, 26-100bp, 101-1000bp, and 1001-4000bp. 

The majority of tools coped perfectly with the longest C N V s (1001-4000bp). Only 
Pindel and cn .MOPS did not detect a 1302bp duplicated C N V . In the 101-1000bp bin, 
several tools struggled to detect all C N V s - namely cnv-seq, and cn .MOPS, CNVnator. 

On the contrary, only 5 tools detected some C N V s from bin 26-100bp. CNproScan (3 
out of 4) and Pindel (4 out of 4) detected the most C N V s . Others were CNOGpro , 
L U M P Y , and D E L L Y . In the smallest C N V s under 25bp, only CNproScan (3 out of 6) 
and P I N D E L (4 out of 6) detected any C N V s . 
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Figure 5.11- C N V Size Histogram 

5.4 R implementation - version 1.0 

The initial development was done in M A T L A B , but for wider usage, the method was 

rewritten also into the R with certain modifications. While the main methodology is the 

same, some changes were made over time that there are not present in the M A T L A B 

version. Some of the changes originated from users posting certain issues with running 

the CNproScan while others were added to improve the usability, performance, and 

abilities of the tool. The changes are these: 

• Parallelism - the genome is divided into chunks and the outliers are detected in each 

chunk separately. Using multiple threads parallelly decreased the computation time 

exponentially (Figure 5.12). 

• Multi-chromosome support - samples with more than one chromosome are now 

supported. 

• Removing tails from both ends before outliers detection - initially, only the zero 
coverage was removed, and then there was outliers detection. For further computation 
time gain, also the roughly estimated outliers from the upper tail (large peaks) are 
removed. So, outliers from both tails are removed now before the G E S D . This step 
removes coverage values that would be confirmed by the G E S D algorithm and were 
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just wasting computation space. These outliers are defined as 3 times IQR. 

• Extending boundaries - the algorithm of slope changes was tweaked to avoid too 

extensive prolonging of the boundaries. I added the condition to stop the algorithm 

when the baseline is reached. 

• Estimated C N V number - the copy number is reported just as the ratio between the 

maximum read-depth value of the C N V and the average coverage. This serves as a 

rough estimation and is based on the common assumption that copy number is linear 

with read depth. 

• Duplication subtypes - initially, only the tandem or interspersed duplication types 

were reported but this was upgraded to direct and indirect cases for both duplication 

types. So, five C N V types can be detected now - deletion, direct and indirect tandem 

duplication, and direct and indirect interspersed duplication. 

Installation is done using the 'devtools' R package from the GitHub repository 
https://github.com/robinjugas/CNproScan with this command: 
d e v t o o l s : : i n s t a l l g i t h u b ( " r o b i n j u g a s / C N p r o S c a n " ) 

The C N V calling function is then called for example as: 
DF <- C N p r o S c a n C N V ( c o v e r a g e _ f i l e , b a m _ f i l e , f a s t a _ f i l e , GCnorm=TRUE, 
MAPnorm=TRUE, ORICnorm=TRUE, b e d g r a p h _ f i l e , o r i C p o s i t i o n = l , cores=4) 

5.4.1 Results and Discussion 
The updated R version was compared with the original M A T L A B version results. The 
updated R version deflected the sensitivity and specificity tradeoff more to the sensitivity 
side for the R version, mainly in the lower coverages. However, this is redeemed by lower 
specificity in all coverage values. This trade-off is present almost in all C N V detection 
tools when benchmarked [129]. The observed numbers are in Table 5.1. In 10x coverage, 
6 more C N V s were detected, while 14 more FP C N V s were retained. For 20x coverage, 
4 more C N V s were detected together with 5 more FP C N V s . The TP numbers for 100x 
and 200x coverages remained the same, however, 4 and 1 more FPs were detected in 
100x, and 200x respectively. In 10x and 20x datasets, multiple shorter C N V s spanning 
the true longer C N V were noticed a few times. These are then counted as a single event 
i f they overlap with any true C N V . 

Table 5.12 - Observed results R / M A T L A B 

CNproScan MATLAB CNproScan R 
Coverage TP TN FP FN TP TN FP FN 
10x 20 30 39 10 26 30 53 4 
20x 22 30 0 8 26 30 13 4 
lOOx 26 30 0 4 26 30 4 4 
200x 28 30 1 2 28 30 2 2 
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For the previously published metrics, I added the precision and F l score results to 
Table 5.13. The sensitivity is higher for the R version in the low coverages 10x and 20x. 
But the specificity was negatively affected, the most for the 20x. It seems that this 
coverage is affected heavily by increasing TP by only 4 while the FP increased by 13. 
Other higher coverages remain more stable. 

Table 5.13 - Performance metrics R / M A T L A B 

CNproScan MATLAB 

Coverage 
Sensitivity/ 
Recall 

Specificity Accuracy Precision F l score 

lOx 66.67 43.48 50.51 33.90 44.94 
20x IÓ.ÓÓ 100.00 86.67 100.00 84.61 
lOOx 86.67 100.00 93.33 100.00 92.85 
200x 93.33 96.77 95.08 96.55 94.91 

CNproScan R 
lOx 86.66 36.14 49.55 32.91 47.70 
20x 86.66 69.76 76.71 66.66 75.36 
lOOx 86.66 88.23 87.50 86.66 86.66 
200x 93.33 93.75 93.54 93.33 93.33 

5.4.2 Overlap analysis 
I evaluated the overlaps between the dataset C N V start and stop coordinates and the 

detected ones. Both the inside overlap and the number of bases that are out of the borders 

are evaluated in percentage points (see Table 5.14) 

The smallest percentage of overlap is 24% for C N V number 19. In the majority of 

cases, the overlap is over 90%. The outside columns in Table 5.14 represent the percent 

of bases relative to the C N V length outside of the true borders. For C N V number 1, which 

is only a small 4 bp deletion, a larger segment of approximately 25 bp was detected. Also, 

a few times, shorter C N V s spanning the true C N V were captured. These are then merged 

and overlap as merged. This is more common in the lower coverage and absent in 100x 

coverage and higher. In the majority of cases, the outside portion is small. Only in 4 cases 

is the outside portion multiple times higher. See the C N V s number 1, 19, 22, 28. Three 

of them are deletions. The only duplication is only one time of the original length. 
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Table 5.14 - Boundaries analysis 

10X [o/„] 20x [%] lOOx [%] 200x [%] 

# Length Copy 
number Inside Outside Inside Outside Inside Outside Inside Outside 

1 4 0 100 550 100 550 100 550 100 550 
2 23 2 - - - - - - 48 100 
3 8 0 - - - - - 100 275 
4 63 4 100 38 100 38 100 38 100 38 
5 270 3 100 6 100 6 100 8 100 8 
6 828 0 100 3 100 3 100 4 100 7 
7 81 4 100 32 100 32 100 32 100 32 
8 276 2 44 0 45 6 100 8 100 8 
9 210 3 100 8 99 10 100 10 100 10 
10 612 0 100 4 99 4 100 6 100 8 
11 257 2 50 0 80 0 99 8 100 9 
12 216 3 100 12 100 12 100 12 100 12 
13 134 0 96 19 96 19 96 28 100 29 
14 354 4 98 8 99 8 99 8 99 8 
15 1302 2 75 0 98 0 100 2 100 2 
16 522 0 98 5 98 5 98 7 100 6 
17 3776 3 100 1 100 1 100 1 100 1 
18 264 2 50 0 69 0 96 13 96 13 
19 17 0 24 194 24 194 24 206 24 206 
20 4 2 - - - - - - - -
21 17 0 - - - - - - - -
22 26 0 42 142 42 142 42 185 85 162 
23 1677 0 99 2 99 2 100 J 100 3 
24 516 0 97 7 97 7 99 9 100 8 
25 654 0 98 6 98 6 98 8 98 8 
26 893 2 95 4 95 4 98 4 98 4 
27 516 3 97 8 97 8 97 8 97 8 
28 37 3 49 111 49 111 49 111 49 111 
29 501 2 36 0 35 0 96 8 96 9 
30 660 2 95 6 97 6 97 7 97 7 

5.4.3 Copy-number analysis 
The detected copy numbers were compared to the true copy numbers in the artificial 

genomes. The results are in Table 5.15, with false detections highlighted by shadow. In 

two cases of deletions, number 1 and 19, which are both very short deletions, are these 

detected correctly as deletions but with a false copy number of 1. This was likely caused 

by coverage spanning these C N V s not low enough to be later rounded to zero. In 
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duplicated C N V s number 4, 5, 7, 14, and 28, are all their copy numbers underestimated 
by 1. The average accuracy of correct copy number estimation for all coverages is about 
75 %. 

Table 5.15- Detected copy numbers 

# Length Copy 
number 

10x 20x lOOx 200x 

1 4 0 1 1 1 1 
2 23 2 - - - 1 
3 8 0 - - - 1 
4 63 4 3 3 3 3 
5 270 j 2 2 2 J 

6 828 0 0 0 0 0 
7 81 4 3 3 3 
8 276 2 2 2 2 2 
9 210 3 3 3 3 3 
10 612 0 0 0 0 0 
11 257 2 2 2 2 2 
12 216 3 3 3 3 3 
13 134 0 0 0 0 0 
14 354 4 3 3 4 4 
15 1302 2 2 2 2 2 
16 522 0 0 0 0 0 
17 3776 •2 •2 i 
18 264 2 2 2 2 2 
19 17 0 0 1 1 0 
20 4 2 - - - -
21 17 0 - - - -
22 26 0 0 0 0 0 
23 1677 0 0 0 0 0 
24 516 0 0 0 0 0 
25 654 0 0 0 0 0 
26 893 2 2 2 2 2 
27 516 3 •2 

J 3 3 3 
28 37 3 2 2 2 2 
29 501 2 2 2 2 2 
30 660 2 3 2 2 2 
Valid estimation 19 19 20 22 
Accuracy 73.07 73.07 76.92 78.57 

5.4.4 Runtime analysis 
I analyze the runtime of the main function with all normalizations turned on and off. The 
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function was tested on A M D Ryzen 5600G (3,9 GHz) and 64GB R A M running Ubuntu 

22.04. A single sample of K. pneumoniae was tested with a different number of cores. 

Regarding the R A M usage, the memory consumption didn't exceed 5 G B of R A M 

throughout the testing measured as the whole R session memory consumption. 

Fitting 

— 5th degree Polynomial 
---- Exponential 

Normalizations 

o off 
x on 

1 2 3 4 5 6 7 8 9 10 11 12 
N u m b e r of C o r e s 

Figure 5.12 - CNproScan runtime analysis 

I tested 1 to 12 cores and plot them in Figure 5.12. Observing the runtime analysis, 
the runtime decreases approximately exponentially with a number of cores, which is also 
proven by the exponential curve fitting (R 2 error 0.9921). Alternatively, a fifth-degree 
polynomial was fitted with R 2 error 0.9944. 

Importantly, increasing the number of cores beyond 4 does not provide further 
runtime improvement reaching the running time of approximately 8 minutes. On the other 
side, unintended performance drawbacks could happen with increasing core numbers 
based on the fact that dividing the genome into smaller and smaller chunks can have an 
impact on outlier detection relying on descriptive statistics. However, this impact was 
present only at a differing number of detected C N V s but the difference was no larger than 
a few C N V s . 

Also, the normalization part of C N V detection does not have a significant impact on 
running time and the observed difference is not larger than three minutes at maximum. It 
is necessary to mention, that runtime is dependent on the overall read-depth signal and 
the number of outliers and peaks. More flat read-depth signals w i l l have reduced 
computation times and also a low amount of detected C N V s . 

5.5 Summary 

The chapter presented a developed algorithm called CNproScan for C N V detection in 

prokaryotic genomes. It is a hybrid method combining the read depth signal with support 

from pair read features. The method achieved overall better performance compared to 
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other presented tools. It had the highest accuracy and F l scores beginning with coverage 
20x. CNproScan detected very small C N V s and belong with Pindel to the only two tools 
able to capture them. Also, contrary to the expectation stated in the literature, the achieved 
resolution of boundaries detection from the read-depth profile was acceptable. 
Furthermore, it brings the whole spectrum of auxiliary normalizations, such as replication 
origin bias and circular genome correction, for handling the task specifically for bacterial 
genomes. 

So far, the algorithm was tested only on the artificial dataset. The results of real 
sequencing data are part of the next chapter. 

Also, the updated R version was presented reaching higher sensitivity but slightly 
decreased specificity. However, this tradeoff is common in many C N V detection tools. 
With this sensitivity bonus, it was able to perform very well in the low coverage of 10*. 
The algorithm is available as the R package with documentation. 
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6 PROCARYASV 

6.1 Merging of the detection tools 

Such as the hybrid method removes the limits of a single approach, the integration of 

multiple detection tools limits their weakness and improves performance. This issue is 

tied to the topic of merging structural variants. 

The topic of merging variant callers is more advanced in the field of SNP or S N V 

variant calling, where various tools are already being successfully merged based on their 

performance, e.g., using machine learning methods [192], 

In the fields of SVs or C N V s , the problem of overlaps arises. The parameters of the 

minimal overlap and the type of overlap (equal, within, etc.) can be both user-defined or 

hard-coded. However, these parameters are usually defined somehow arbitrarily. 

What reliable results are is the question to ask. Generally, the union or the intersection 

of results is the most common approach. It depends on the preference for higher 

sensitivity or specificity. Most effortlessly, the reliable results are those given by the most 

tools. Then, the threshold of how many tools are the most has to be set. On the other hand, 

rare events could be omitted. Alternatively, the union approach likely produces a high 

rate of false positives. A weighted approach can be applied i f performance metrics are 

known. But for accurate performance metrics, you need a valid ground truth set, ideally 

validated by sequencing methods. [141] 

6.2 Pipeline Design 

I decided to create a C N V / S V calling pipeline based on the Snakemake framework [257], 

It is a Python-based workflow management system for reproducible and scalable analysis. 

It consists of so-called Snakemake rules which define the inputs and outputs of a given 

rule. The rule serves to call a certain function, tool, package, etc. Parameters that are 

necessary for the called tool can be specified too inside the rule or can be adopted from 

the external configuration file. Scalability parameters can be defined too, such as the 

number of threads or memory requirements. The possibilities are multiple. 

I called the pipeline ProcaryaSV denoting the focus on prokaryotic genomes. It is 

based on commonly used C N V and S V detection tools and state-of-the-art processes for 

manipulating sequencing data. A l l the necessary specifical inputs for each S V / C N V caller 

are processed as described by the caller's manuals. In some cases, I used or further modify 

the Snakemake Wrappers repository where the finished easy-to-use rules and wrappers 

(small Python scripts calling the tools) are available. 

The overall simplified workflow is in Figure 6.1. Only the basic tools are pictured, 

without raw reads quality check or the optional trimming parts. 
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Figure 6.1 - ProcaryaSV workflow 

Two C N V callers and three S V callers were used. One of the requirements was that 

the tools has to be placed in some conda repository to be easily installed by Snakemake. 

The only exception is the CNproScan which is available only in GitHub so far. Also, tools 

mustn't require too obscure inputs, e.g. from some deprecated packages. Most 

importantly, tools have to be suitable for haploid prokaryotic genomes. Thus, the 

CNproScan, CNVnator, L U M P Y , D E L L Y 2 , and Pindel were selected. The overview of 

all the tools used (excluding the tool's dependencies) is in Supplementary Table 5. 

The ProcaryaSV is available from the GitHub repository and was tested on the version 

mentioned in Table 6.1. 

Table 6.1 - ProcaryaSV GitHub repository 

Repository Version 
https: //github .com/robinj ugas/ProcaryaS V 1.0 
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It is necessary to fill correctly the Y A M L configuration file and run the pipeline with 

the snakemake commands inside bash: 
WORK_DIR=" p a t h t o t h e w o r k i n g d i r e c t o r y " 
WORKFLOW_DIR=" p a t h t o t h e S n a k e f i l e f o l d e r " 

snakemake — c o r e s INT — s n a k e f i l e $WORKFLOW_DIR/Snakefile — d i r e c t o r y 
$WORK DIR - - c o n f i g f i l e c o n f i g . y a m l --use-conda 

6.3 Merging algorithm 

The two main inputs to merging SVs are merging B E D files, using the bedtools [196], or 
merging the V C F files, using, for example, S U R V I V O R (StructURal Variant majority 
VOte) [194] or S V D B [195]. The V C F files are not fully suitable for recording large-
scale SVs. Foremost, there is only one genomic coordinate column POS, which is used 
to store S V s start coordinate, but the ending coordinate has to be written into the INFO 
column. Also, the field name is tool specific. This requires parsing of the column. 
Furthermore, some callers write the D N A sequence of a given variant into the A L T 
column, making it hard to read. 

I tried both S U R V I V O R and S V D B to merge the resulting V C F files. The S V D B 
failed completely resulting in non-readable files because it writes the genomic sequence 
of the event into the file. The S U R V I V O R did better compared to S V D B and thus was 
kept in the pipeline for user comparison. 

The merging algorithm of ProcaryaSV parses the V C F outputs for all callers and 
respects their specifics. It separates four categories of S V calls: deletions, duplications, 
inversions, and insertions, and merges them separately. Insertions and inversions are 
called only by Pindel and Delly2, while deletions and duplications are called by all of 
them. 

Here, I present my own approach to merging SVs based on cumulating binary vectors 
and then thresholding them. The user can define the value of the threshold by his or her 
preference. The input is V C F files from callers. The results are formatted as a T S V (tab-
separated values) file, which can be imported into any spreadsheet application. The 
parameters of minimum and maximum S V length are to be set. A l l SVs not fitting into 
these are deleted. 

For every type of S V detected ( D E L , D U P , I N V , INS) the simple binary vector is 
created for each caller separately and then these are summed up (see illustration in Figure 
6.2). This means that a region called by two callers w i l l have a value of two spanning the 
region where these callers overlap. This summed vector is processed so that small gaps 
are filled and merged together. This gap is an optional parameter, but a value of 100 bp 
is the default. 
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Figure 6.2 - Caller's support signal of two structural variations. First one with a support of two 
callers, second one with a support of four callers. The steps are created by 

reported different start and stop coordinates. 

In the first iteration, all levels of callers support are outputted except those under the 

value of the user-defined caller's threshold. The regions called the most times are 

outputted first and then it proceeds to a lower number of callers. This also means that 

certain regions can be reported multiple times, once as a shorter region of higher support, 

and later as a longer region of lower support. The number of callers that called the regions 

is reported. 

In the second iteration, the events are searched for overlaps with the use of the Iranges 

package function findOverlaps. The important parameter here is the maxgap, meaning 

the maximum allowed distance between the start and end coordinates. This step is to 

collapse overlapping events into one. The one event is reported with corresponding values 

and coordinates with maximum support are saved. The diagram of merging is in Figure 

6.3. The threshold represents the maxgap parameter and is applied to all firstly reported 

events. If the condition was not met, ID #3 would be reported separately. 
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Figure 6.3 - SV merging diagram. The colored objects refer to detected SV's coordinates. 

After this, the reported C N V s are searched for overlaps again, to report potential cases 
where multiple shorter C N V s overlap a single long C N V . This information is stored in 
the output file. 

In the last iteration, all events are backtracked. The information about the number of 
underlying events and percentual coverage by each caller is recorded and saved. A region 
can be supported by multiple callers, but they can contribute as multiple separately 
reported events merged because of the merging step. 

The tabular separated file (.tsv) is the output together with informative graphs. These 
are the Venn diagram of callers and pie plot of different S V types' abundances. 

6.4 Benchmarking on the simulated data 

The merging algorithm of ProcaryaSV was benchmarked on the previous artificial 

dataset. The various values of minimum callers support (MinCallers) were used to decide 

the optimal value. The threshold is inclusive, the operator '>=' is used. 
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Table 6.2 - ProcaryaSV merging performance metrics 

lOx 
MinCallers 
threshold 1 2 3 4 5 
Accuracy 36.3 90.0 85.0 73.3 56.7 
Sensitivity 90.0 80.0 70.0 46.7 13.3 
Precision 21.8 100.0 100.0 100.0 100.0 
Specificity 23.6 100.0 100.0 100.0 100.0 
F l score 35.1 88.9 82.4 63.6 23.5 

20x 
MinCallers 
threshold 1 2 3 4 5 
Accuracy 37.0 90.0 83.3 83.3 58.3 
Sensitivity 90.0 80.0 66.7 66.7 16.7 
Precision 22.3 100.0 100.0 100.0 100.0 
Specificity 24.2 100.0 100.0 100.0 100.0 
F l score 35.8 88.9 80.0 80.0 28.6 

lOOx 
MinCallers 
threshold 1 2 3 4 5 
Accuracy 13.1 87.3 85.0 85.0 61.7 
Sensitivity 90.0 83.3 70.0 70.0 23.3 
Precision 6.7 89.3 100.0 100.0 100.0 
Specificity 7.4 90.9 100.0 100.0 100.0 
F l score 12.5 86.2 82.4 82.4 37.8 

200x 
MinCallers 
threshold 1 2 3 4 5 
Accuracy 7.0 88.9 85.0 85.0 61.7 
Sensitivity 93.3 86.7 70.0 70.0 23.3 
Precision 3.5 89.7 100.0 100.0 100.0 
Specificity 3.8 90.9 100.0 100.0 100.0 
F l score 6.8 88.1 82.4 82.4 37.8 

A l l performance metrics are in Table 6.2, the maximum F l scores are in bold. The 

maximum F l scores are all achieved when the MinCallers threshold is set to 2. The 

precision-recall curves for all coverage levels are in Figure 6.4. The precision remains the 

same from the MinCallers threshold set to 2 (higher coverage) or 3 (lower coverage), 

while a threshold lower than 2 brings a lot of false positives. Recall (sensitivity) decreases 

to very low numbers, omitting many true positives. Following previous results, setting 

the minimal callers threshold to 2 is the optimal setting to balance precision and recall. 
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Figure 6.4 - Precision-recall curve for MinCallers threshold parameter. Digits near lines denote 
the parameter value 

For comparison, in Table 6.3 there is an evaluation of the S U R V I V O R merging 

algorithm. The numbers from the previous table are added for easier comparison. The 

S U R V I V O R merge command settings were set to minimal callers 2, maximum allowed 

distance 1000, and minimal considered S V length 1. Looking at the results, they are 

almost the same looking at the same settings of minimal callers 2 for both algorithms. 

The ProcaryaSV had higher F l scores for 20x and higher coverages by a few points. 

This is expected based on the description of the S U R V I V O R merging method. In 

S U R V I V O R , two SVs are defined as overlapping i f their start and stop coordinates are 

within 1 kb and of the same S V class. 

Table 6.3 - SURVIVOR and ProcaryaSV performance metrics for minCallers of 2 
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6.5 Benchmarking on the real data 

While the CNproScan chapter included only the results for the simulated dataset, the 

results for the real dataset are put here as they are obtained with the use of the ProcaryaSV 

pipeline. The real dataset consists of multiple samples from four Bacteria organisms as 

already reported previously in the chapter on CNproScan design. 

Table 6.4 - Overview of used real datasets, reference genomes used for alignment, and average 
coverage across the samples 

Organism Accessory ID No. of 
samples 

Reference 
Accession 

DoriC ID & 
position 

Average 
coverage 

Staphylococcus 
aureus PRJNA497094 92 N C 00779 

3 
ORI10010181 
1906 nt 

350.2x 

Escherichia coli DRA005229 58 AP012306 ORI10020002 
3923657 nt 

330.3x 

Lactobacillus 
casei PRJNA342061 50 N C 01433 

4 
ORI94010712 
1351 nt 

189.7x 

Klebsiella 
pneumoniae PRJNA515630 48 N C 01273 

1 
ORI93020089 
5248419 nt 

67.9x 

These data were downloaded from public repositories and quality checked. Only the 
reads of Klebsiella pneumoniae were taken from previous cooperation with University 
Hospital Brno. The other three datasets were already trimmed from adapters and low-
quality 3' ends. 

The results mentioned here are described differently compared to the artificial dataset 
since no apriori known C N V s are known in these samples. Thus, the results are described 
rather descriptively. Although the pipeline enables to detect the insertions and inversions, 
only C N V s were evaluated in the results as all five tools can detect them. Looking at all 
S V types, no insertions were generally called. A portion of inversions was called 
overwhelmingly by Pindel. The multitudes of them are smaller than 100 bp. 

Most importantly, the results are already processed by the ProcaryaSV merge 
algorithm, so C N V s are overlapped across the callers and merged. The following term 
C N V s then should be understood as C N V regions with various levels of support by 
callers. The C N V amounts do not represent the raw outputs of the callers, but the post-
processed regions. In each subchapter, I evaluate the CNproScan preference regarding 
C N V size and C N V type. Also, the amount of overlap with other tools. 

6.5.1 Results - K. pneumoniae 
The results of all 48 Klebsiella samples are merged and analyzed together into over 15000 

C N V s . The average coverage of Klebsiella samples was the lowest across the real 

datasets. In Figure 6.5 there is a mean read-depth signal calculated from all the samples. 

Notice that there are a lot of deviations from the baseline, with multiple deletions reaching 
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the zero level. This points out the presence of some C N V s or potential false positives. 

Furthermore, it denotes there are many shared C N V s across the samples. 

K. pneumoniae mean coverage of samples 

1 2 3 4 5 

Position [Mbp] 

Figure 6.5 - Mean read-depth signal across all samples for K. pneumoniae 

The frequent way to display overlaps is a Venn diagram, constructed in Figure 6.6, to 

show callers' representation in the final results. The highest number of unique events were 

detected by CNproScan (2159 C N V s ) and Pindel (1928 C N V s ) . Venn diagram shows that 

CNproScan partakes in the majority of events. It shares a high amount of events with 

read-depth based CNVnator as with hybrid D E L L Y 2 and L U M P Y . 207 C N V s were 

called by all five tools. Approximately 2300 C N V s were called by a combination of four 

tools, 4700 C N V s were called by three tools, and 3900 by two tools. 
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Figure 6.6 - Venn diagram of detected CNVs for K. pneumonaie dataset 

Next, I evaluated the representation of S V sizes, S V types, and callers that detected 

them. These figures are displayed as so-called treemaps representing the proportions by 

the size of each box. 

The representation of C N V types by size is in Figure 6.7. The short C N V s under 100 

bp are easier to detect as deletions, thus, they are more abundant. Contrary, the 

duplications are present predominantly in the shorter events up to 1000 bp. Other than 

that, there is a domination of deletions with increasing C N V length. 

The caller's preference for C N V lengths is in Figure 6.8. The abbreviations for boxes 

with less than 200 C N V s are: L is for L U M P Y , CS - CNproScan, C N - CNVnator, P -

Pindel, and D - D E L L Y 2 . The boxes are sorted by their share. The callers are represented 

rather equally except for Pindel, which is represented visibly less in other than the lOObp 

size range. 
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Figure 6.7 - C N V sizes by type for K. pneumoniae dataset 
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Figure 6.8 - C N V sizes by callers for K. pneumoniae dataset 

That the larger part of C N V s is deletions can be seen again in Figure 6.9. In deletions, 

all callers are represented approximately equally, while for duplications the CNVnator is 

almost absent. CNproScan detected a large portion of both deletions and duplications. 
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Figure 6.9 - C N V types by caller for K. pneumoniae dataset 

6.5.2 Results - E. coli 
The average coverage of E. coli samples is 330x and is much higher than for Klebsiella 

samples. Also, the read-depth signal is rather noisy, as can be seen in averaged read-depth 

signal in Figure 6.10. Only two short deletions touch the zero-coverage level. This could 

be caused by the averaging of the signals, and it would denote that the E. coli samples are 

very different from each other having often unique C N V s . Also, t h e £ . coli had high levels 

of replication origin bias (Spearman's Rho -0.97). 

E. coli mean coverage of samples 

1 2 3 

Position [Mbp] 

Figure 6.10- Mean read-depth signal across all samples for E. coli 
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The Venn diagram is in Figure 6.11. For E. coli samples, Pindel detected a large 

number of unique C N V s . There is a very large overlap between Pindel and D E L L Y , 

12000 C N V s . Regarding overlapping events, only 4 C N V s were called by all tools, over 

800 were called by four tools, 700 by three tools, and over 14000 by two tools. 

LUMPY 

PINDEL 

Figure 6.11- Venn diagram for E. coli dataset 

A slight majority of cases under 100 bp were deletions, but with the increasing C N V 

lengths up to 1 kbp and 10 kbp, duplications were more prevalent. Combined, the 

duplications and deletions are equal in numbers as can be seen in Figure 6.12. 

Interestingly, the CNproScan captured only a smaller portion of deletions across all C N V 

lengths. This shows that the majority of deletion was detected by read-pair and other than 

read-depth approaches. 

See Supplementary Figures F1-F2 for plots of S V lengths on C N V types and C N V 

size preference by callers. Regarding the C N V size, the majority of C N V s under 100 bp 

were called by Pindel and D E L L Y 2 . The rates were more equal for longer C N V ranges. 
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Figure 6.12 - C N V types by callers fori?, coli dataset 

6.5.3 Results - S. aureus 
The read-depth profile of S. aureus in Figure 6.13 was completely different from the 

previous ones. The baseline is clear without the 'oscillations' visible in E. coli. The C N V s 

are visible. Generally, we would not anticipate a high amount of C N V s based on a read-

depth profile. 

S. aureus mean coverage of samples 

Figure 6.13 - Mean read-depth signal across all samples for S. aureus 

The Venn diagram is in Figure 6.14. In the amount of the total C N V s detected, Pindel 

uniquely detected highly more C N V s than the rest combined. The second was D E L L Y 2 

which detected over 6000 unique SVs. Regarding overlapping events, 304 C N V s were 

called by a combination of five tools, about 2000 by four tools, over 5000 by three tools, 

and around 18000 by two tools. 
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Deletions were the dominant of all C N V sizes. D E L L Y 2 , L U M P Y , and Pindel 
detected very high numbers of deletions. The numbers of duplications were more 
comparable except for Pindel. The proportions of callers are in Figure 6.15. 

See Supplementary Figures G1-G2 for plots of C N V lengths on C N V types and C N V 
size preference by callers. The majority of events fit into the smallest up to lOObp or up 
to 1000 bp size range. Pindel dominated the 100 bp range with D E L L Y 2 being the second 
one. 

LUMPY 

PINDEL 

Figure 6.14- Venn diagram for S. aureus dataset 

Contrary to the expectation of not many C N V s being present, there was the highest 

number of C N V s detected. Predominantly detected by Pindel and D E L L Y . Similarly to 

previous E. coli, the non-read-depth methods detected the most events. However, there 

might be a large number of false positives. 
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Figure 6.15- C N V types by caller for S. aureus dataset 

6.5.4 Results - L. casei 
The read-depth signal of E casei samples is very distinctive (Figure 6.16). The origin of 
replication bias can be easily spotted as the V-shaped trend. The Spearman's Rho was -
0.93. The read-depth signal is then more similar to E. coli. 

L. casei mean coverage of samples 

Position [Mbp] 

Figure 6.16 - Mean read-depth signal across all samples for Z. casei 

Regarding the top values, Ecasei results were similar to K. pneumoniae results, 
meaning that CNproScan and Pindel detected the most events. However, generally, E 
casei had the lowest number of detected C N V s , 6164. Also, it had the lowest number of 
overlapping events. Only around 500 C N V s were detected by any combination of tools, 
compared to 5700 C N V s detected uniquely. Also, no C N V was detected by all tools. See 
the Venn diagram in Figure 6.17. 
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Figure 6.17 - Venn diagram forZ. casei dataset 

Those which were detected are deletions predominantly (Figure 6.18). CNproScan 
detected the second-highest number of both deletions and duplications. Most events were 
small, in size up to 1000 bp. Again, CNproScan was the second in the number of C N V s 
detected in both size categories. See Supplementary Figures H1-H2 for plots of C N V 
lengths on C N V types and C N V size preference by callers. 

L. casei 

DEL ™ 2 L U M P \ ™ . D U P DELLY2 
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CNproScan CNVnator 
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2201 2140 1312 

Figure 6.18- C N V types by caller for L. casei dataset 
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6.6 Runtime analysis 

The Snakemake optionally outputs the runtime statistics for all rules. A l l normalizations 

for CNproScan were turned on. The running times are higher than the numbers observed 

in the CNproScan runtime analysis. This can be caused by two reasons. First, only a single 

sample was tested in the previous runtime analysis. Second, the C P U frequencies are 

lower for the multi-threaded load over all cores. Additionally, the 170 overhead can play 

a role. In Table 6.5 there are runtimes for detection tools and merging methods. 

Table 6.5 - Runtime for K. pneumoniae samples 

Tool Mean runtime [s] Min runtime [s] Max runtime [s] 
B W A - M E M 2 148 75 208 
CNproScan 1017 629 141 
CNVnator 28 16 35 
D E L L Y 2 479 351 580 
L U M P Y 21 7 32 
Pindel 769 448 1025 
ProcaryaSV merge 50 38 66 
SURVIVOR merge 0.49 0.33 0.65 

6.7 Summary 

In this chapter, I presented the ProcaryaSV pipeline and its novel merging algorithm. It 

provided a reproducible framework for the evaluation CNproScan's performance on the 

real dataset. The pipeline can detect C N V s and also inversions and insertions. 

In the field of genome rearrangements detection, merging multiple detection tools 

seems unavoidable. B y using a single tool, we usually achieve either high sensitivity or 

high specificity. B y merging multiple tools we can resolve more true positives and filter 

out many false positives. Integrating multiple tools would not be possible without robust 

merging. 

In the proposed merging algorithm, multiple callers can be efficiently merged. The 

performance of merging was tested on the previous artificial dataset. The results are 

comparable with the S U R V I V O R merging method. The ProcaryaSV merging performed 

better in coverage values of 20x, 100x, and 200x. It was also calculated that the optimal 

parameter of minimal callers support is 2 to 4, depending on the stringency for filtering 

false positives. The additional bonus is reporting the coordinates of the region with the 

highest support, listing all callers involved and their representation in the overall length 

of detected SV. 

The analysis of real sequencing data was done on five bacteria organisms and 248 

genomes. I analyzed mainly the overlaps between the tools and the preference of detection 

tools for C N V types and lengths. 
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CONCLUSION 
The main topic of the thesis is the detection of copy number variations specifically in the 
prokaryotic genomes. While there is a tremendous and still increasing number of papers 
focused on the topic of SVs and C N V s , the resources related to bacteria are much less 
frequent. The work presented in the thesis aims to partially fi l l this gap. 

In two practical chapters, I described the CNproScan algorithm and pipeline 
implementing it called ProcaryaSV. Both tools might be useful for microbiology research. 

The CNproScan was published two years ago and was minorly updated a few times, 
thus I presented the original results with the updated ones. The methodology is based on 
read-depth navigated C N V detection combined with read-pair-based categorization. The 
read-pair approach is based on recent knowledge and enables the categorization of C N V s 
into known duplication types. The CNproScan does not consist only of detection methods. 
It handles the G C and mappability biases and bacteria-only related replication origin bias. 

The CNproScan was tested on the artificial dataset of various coverages (10x, 20x, 
100x, 200x) and compared with other seven C N V detection tools. CNproScan had the 
highest accuracy and F l score for 20x, 100x, and 200x coverage. The accuracy for 100x 
was 93.3 % and the F l score was 84.6 %. That is about 10 % higher than the closest 
competition. Also, it proved to be useful for detecting short C N V s under 25bp. The 
reported C N V boundaries are accurately corresponding to the specified boundaries in the 
majority of test cases. The accuracy of reporting a valid copy number is about 75 %. 

Integration of multiple detection tools has already been done in the past. Merging two 
methods can easily be done, but the scalability decreases with adding more tools. Thus, I 
used a signal representation of genome rearrangements and summed the signals of 
individual detection tools. The merging algorithm was tested on the previous artificial 
dataset and compared with the S U R V I V O R merging algorithm. Generally, the two 
methods are comparable, yet for coverages starting at 20x, the ProcaryaSV s merging 
algorithm performed slightly better. Both accuracy and F l score are about 90 %. The 
parameter of minimal callers support, denoting how many callers have to detect an SV, 
was calculated from the precision-recall graph to be ideally 2 or higher. The ProcaryaSV 
pipeline employs five state-of-the-art detection tools and provides all necessary inputs 
and outputs for them. The pipeline enables reproducibility and is coded in the Snakemake. 

Regarding the limitations of the presented methods. The CNproScan's running time 
is higher than the competition. This was mitigated as much as possible by implementing 
parallelization. Furthermore, the algorithm is based on the read-depth approach and 
requires a certain level of coverage, which is 20x based on results. However, coverage 
higher than 15x is a common requirement for the detection of any genome 
rearrangements. Generally, higher coverage leads to higher accuracy. 

Nowadays, the topic of bacteria drug resistance is an urgent task. Genome 
rearrangements, including copy number variations, play a role in this issue. Other than 
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that, genome rearrangements participate in the evolution and specialization of bacteria. 
Next-generation sequencing is still widely used and brings the high throughput necessary 
for accurate C N V detection. A reliable tool that is directly designed to detect C N V s in 
bacterial genomes (like the CNproScan), unlike tools designed for eukaryotic genomes, 
is essential. In turn, the proposed ProcaryaSV pipeline wi l l enable C N V and S V analysis 
with maximum support for clinically relevant results. 
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Appendix C - Supplementary Figures 
Coverage Normality 

Figure A l - Q-Q plots of artificial samples 
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Figure A2 - Histograms of artificial samples 
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Figure A3 - Q-Q plots of real samples 
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Figure A4 - Histograms of real samples 
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Normalizations 

Figure B l - G C normalization for E. coli 
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Figure B3 - G C normalization for L. casei 
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Figure B4 - G C normalization for S. aureus 
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Figure CI - mappability normalization for E. coli 

Figure C2 - mappability normalization for K. pneumoniae 
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Figure C3 - mappability normalization for L. casei 
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Figure C4 - mappability normalization for »V. aureus 
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Figure D l - replication bias normalization for E. coli 
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Figure D2 - replication bias normalization for K. pneumoniae 
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Figure D3 - replication bias normalization for L. casei 
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Figure D4 - replication bias normalization for S. aureus 
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Read-pair signatures 

Figure E l - IGV C N V #6 - Deletion of 828 bp has many signature reads of both 
orientations +/- and -/+ 

Figure E2 - IGV C N V #13 - Deletion of 134 bp creates only slip-read signatures 
and almost no read-pair signatures 
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ProcaryaSV Results 

Figure F l - E. coli C N V size by type 
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Figure G l - S. aureus C N V size by type 
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Figure H l - L. casei C N V size by type 
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Appendix D - Supplementary Tables 

Supplementary Table 1 - Tools Overview 
Tool Status Webpage/ Repository 
Read-pair approach tools 
MoDIL deprecated* http://compbio.cs.toronto.edu/modil/ 
VariationHunter N A , 

replaced by 
TARDIS 

http ://compbio .cs .sfu.ca/ strvar.htm 

VariationHunter 
2 

N A , 
replaced by 
TARDIS 

https://compbio.cs.sfu.ca/strvar.htm 

PEMer deprecated http ://sv.gersteinlab .org/pemer/ 
BreakDancer not 

available 
http ://genome .wustl.edu/tools/cancer-genomics/ 

Split-read approach tools 
Pindel deprecated 

but actively 
used 

https://gmt.genome.wustl.edu/packages/pindel/  
https://github.com/genome/pindel 

Splitread deprecated http ://splitread. sourceforge .net/ 
ClipCrop only 

method 
CREST deprecated https://www.stjude.org/research/labs/zhang-lab/crest.html 
Socrates not 

available 
http://bioinf.wehi.edu.au/socrates 

SLOPE not 
available 

http://www-genepi.med.utah.edu/suppl/SLOPE/index.html 

Read-depth approach tools 
RDxplorer deprecated https://rdxplorer.sourceforge.net/ 
mrFAST deprecated https://github.com/BilkentCompGen/mrfast 
CNV-seq deprecated https://github.com/hliang/cnv-seq 
cn.MOPS maintained https://bioconductor.org/packages/release/bioc/html/cn.mop 

s.html 
Sepülveda method 
CNAseg not 

available 
http ://www.compbio .group .cam .ac.uk/software .html 

JointSLM deprecated 
CNVnator maintained https://github.com/abyzovlab/CNVnator 
ReadDepth deprecated https://github.com/chrisamiller/readDepth 
CNOGpro deprecated https://github.com/cran/CNOGpro 
Sequana maintained https://github.com/sequana/sequana 
C N V - B A C deprecated https://github.com/LinjieWu/CNV-BAC 
Assembly approach tools 
NovelSeq deprecated https://novelseq.sourceforge.net/Home 
Cortex deprecated http://cortexassembler.sourceforge.net 
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TIGRA deprecated https://bioinformatics.mdanderson.org/public-
software/archive/tigra/ 

Hybrid / integrating approaches tools 
CNVer deprecated http ://compbio .cs .toronto .edu/ CNVer/ 
H Y D R A deprecated https: //code .google. com/archive/p/hydra-sv/ 
He et al method 

only 
inGAP-sv deprecated https: //ingap. sourceforge .net/ 
forestSV deprecated https://sebatlab.org/data-software 
GASVpro deprecated https: //compbio .cs .brown. edu/proj ects/gasv/ 
PRISM deprecated http://compbio.cs.toronto.edu/prism/ 
D E L L Y maintained https://github.com/dellytools/delly 
PeSV-Fisher not 

available 
http ://gd.crg .eu/tools 

L U M P Y maintained https://github.com/arq5x/lumpy-sv 
Pilon maintained https://github.com/broadinstitute/pilon/releases/ 
TARDIS maintained https://github.com/BilkentCompGen/tardis 
SV / CNV detection pipelines 
SVmerge deprecated https://svmerge.sourceforge.net/ 
HugeSeq deprecated https://github.com/StanfordBioinformatics/HugeSeq 
iSVP only 

method 
intansv maintained https://bioconductor.org/packages/release/bioc/html/intansv 

.html 
MetaSV deprecated https://github.com/bioinform/metasv 
FusorSV maintained https://github.com/timothyjamesbecker/FusorSV 
sv-callers maintained https://github.com/GooglingTheCancerGenome/sv-callers 
Pariiament2 deprecated https://github.com/dnanexus/parliament2 
Viola maintained https://github.com/dermasugita/Viola-SV 
* deprecated means that the source code is untouched since the date of publication or updated 
in a distant time. Some packages are not available at all, some are maintained and used, and 
some are deprecated yet still used. 

Supplementary Table 2 - GC normalization with Spearman's correlation coefficient 
Sample Condition Rho P-value Significant (a=0.05) 
E. coli Raw -0.971 8.395E-37 Yes 
E. coli Normalized 0.222 0.093 No 
K. pneumoniae Raw -0.301 0.012 Yes 
K. pneumoniae Normalized 0.110 0.371 No 
L.casei Raw -0.928 3.510E-23 Yes 
L.casei Normalized -0.160 0.254 No 
S. aureus Raw -0.981 4.066E-38 Yes 
S. aureus Normalized 0.178 0.201 No 
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Supplementary Table 3 - mappability normalization with Spearman's correlation 
coefficient 
Sample Condition Rho P-value Significant 

(a=0.05) 
E. coli Raw -0.158 0.517 No 
E. coli Normalized -0.202 0.406 No 
K. pneumoniae Raw -0.451 0.059 No 
K. pneumoniae Normalized S.D. of coverage for mappability score is zero 
L.casei Raw 0.355 0.147 No 
L.casei Normalized S.D. of coverage for mappability score is zero 
S. aureus Raw 0.949 1.698E-09 Yes 
S. aureus Normalized -0.383 0.116 No 

Supplementary Table 4 - oriC normalization with Spearman's correlation coefficient 
Sample Condition Rho P-value Significant 

(a=0.05) 
E. coli Raw 0.235 0.0007 Yes 
E. coli Normalized 0.090 0.203 No 
K. pneumoniae Raw -0.252 3.326E-05 Yes 
K. pneumoniae Normalized -0.219 0.0003 Yes 
L.casei Raw -0.933 3.192E-65 Yes 
L. casei Normalized -0.617 1.611E-16 Yes 
S. aureus Raw -0.824 3.185E-37 Yes 
S. aureus Normalized -0.345 2.023E-05 Yes 

Supplementary Table 5 - Used tools in the ProcaryaSV pipeline 
Tool/Package Version Usage 
fastqc 0.11.9 Raw and trimmed reads QC 
trim_galore 0.6.7 Reads trimming 
qualimap 2.2.2d Alignment analytics and report 
multiqc 1.13 Merging reports 
bwa-mem2 2.2.1 Reads alignemnt 
sambamba 0.7.1 S A M / B A M handling 
samblaster 0.1.24 Marking PCR duplicates and discordant reads 
samtools 1.13 S A M / B A M handling 
genmap 1.3.0 Mappability fde creation (for CNproScan) 
Picard suite 2.21.1 Alignment analytics (for Pindel) 
CNproScan 1.0 C N V detection (RD+PR methods) 
CNVnator 0.4.1 C N V detection (RD method) 
L U M P Y 0.3.1 SV detection (RD+PR+SR methods) 
D E L L Y 2 0.9.1 SV detection (RD+PR+SR methods) 
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Pindel 0.2.5b9 SV detection (SR method) 
survivor 1.0.7 SV merging 
ProcaryaSV 1.0 SV merging 
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