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Comparing the accuracy of single trees  

delineation from ALS 
 

Abstract 

This study analyses different Individual Tree Detection (ITD) techniques from 

airborne LiDAR data (Airborne Laser Scanning, ALS), to increase the knowledge of this 

potential methodology, since it offers detailed information at the stand scale. Two 

segmentation techniques of the Canopy Height Models (CHM) are evaluated: First, the 

watershed segmentation by an elaborating process in ArcMAP. Then, testing the 

“TreeSeg” algorithm developed in FUSION. The influence of some parameters is also 

analysed, such as smoothing (different smoothing radii or kernel) and the resolution of 

these raster layers (0.2 m and 0.5 m). Additionally, these results are compared with those 

obtained by classifying trees on the point cloud directly, using the LIDR tool in the 

RStudio program. The vegetation was classified into two typologies based on their height 

(low and high vegetation). Finally, the relationship between the Diameter at Breast Height 

(DBH) and other biophysical parameters of the tree is analysed, to obtain a regression 

model.  

The watershed segmentation results in ArcMAP were significantly better than 

those obtained with FUSION (improvement of 20%, p-value = 0.028 < 5%). Low 

vegetation trees were not detected by the CHM methods, while few of them were detected 

by the point cloud classification, which produced estimates as accurate as the CHM 

methods. Resolution and smoothing had a significant influence on the estimates. CHMs 

of 0.5 m resolution showed better results with 3-cells radius (K3) smoothing, while CHMs 

of 0.2 m required the highest smoothing (K7). However, a higher point clouds density 

allowed to reduce the smoothing of the layers in both resolutions. Finally, a good potential 

regression model (DBH ~ Height, R2 = 0.91) was obtained after finding strong 

correlations between all the variables. 

 

Keywords: Remote sensing; Airborne Laser Scanning; Individual Tree 

Delineation; Watershed Segmentation; Canopy Heigh Model; Resolution; Smoothing; 

Kernel; point cloud classification; regression model; RMSE; ANOVA. 

 





 
 

 

 

Porovnání přesnosti vymezení  

jednotlivých stromů z ALS 
 

Abstrakt 

Tato studie analyzuje různé techniky detekce jednotlivých stromů (ITD) od 

leteckých dat LiDAR (Airborne Laser Scanning, ALS), aby zvýšila znalosti této 

potenciální metodiky, protože nabízí podrobné informace v měřítku porostu. 

Vyhodnocují se dvě segmentační techniky modelů výšek porostu (CHM): Nejprve 

segmentace předělů zpracováním procesu v ArcMAP. Poté testuje algoritmus „TreeSeg“ 

vyvinutý ve FUSION. Analyzuje se také vliv některých parametrů, jako je vyhlazování 

(různé poloměry vyhlazování) a rozlišení těchto rastrových vrstev (0,2 m a 0,5 m). Tyto 

výsledky jsou porovnány s výsledky získanými přímou klasifikací stromů v mračnu bodů 

pomocí nástroje LIDR v programu RStudio. Vegetace byla rozdělena do dvou typů na 

základě jeji výšky (nízká a vysoká vegetace). Nakonec je analyzován vztah mezi výčetní 

tloušťkou (DBH) a dalšími biofyzikálními parametry stromu, aby se získal regresní 

model. 

Výsledky segmentace povodí v ArcMAP byly významně lepší než výsledky 

získané pomocí FUSION (zlepšení o 20%, p-hodnota = 0,028 <5%). Metody CHM 

nenašli stromy s nízkou vegetací, i když některé byly detekovány klasifikací mračna 

bodů, která poskytla odhady stejně přesné jako metody CHM. Rozlišení a vyhlazení mělo 

významný vliv na odhady. CHM s rozlišením 0,5 m vykázalo lepší výsledky při vyhlazení 

poloměru 3 buněk (K3), zatímco CHM 0,2 m vyžadovalo nejvyšší vyhlazení (K7). Vyšší 

hustota mračen bodů však umožnila snížit vyhlazení vrstev v obou rozlišeních. Nakonec 

byl po nalezení silných korelací mezi všemi proměnnými získán dobrý potenciální 

regresní model (DBH ~ výška). 

 

Klíčová slova: Dálkový průzkum Země; Airborne Laser Scanning; Detekce 

jednotlivých stromů; Segmentace povodí; Canopy Heigh Model; Řešení; Vyhlazování; 

Jádro; klasifikace mračen bodů; regresní model; RMSE; ANOVA. 
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1 INTRODUCTION 

1.1 Forestry and the importance of the environment monitoring 

The latest data published by the Food and Agriculture Organization (FAO) of the 

United Nations confirm that forests occupy 4.06 billion hectares, what is a third of the 

total surface of the earth (Figure 1). In addition, approximately half of the forest surface 

(2.05 billion ha) are subject to forest management plans (FAO and UNEP, 2020). 

“We depend on forests for our survival, from the air we breathe to the wood we use” 

 (WWF, 2020) 

 

 

Figure 1. Global distribution of the forest (FAO and UNEP, 2020). 

 

The importance of forests has historically been supported by their diverse 

productivity of natural resources, not only of timber, but also non-timber products 

(Führer, 2000), such as resin, cattle pasture, or cork, among many others. However, the 

functionality that these ecosystems have is what makes them truly valuable. At the 

environmental level, forests are carbon sinks, that is, they retain this gas that is so harmful 

to the ozone layer, improving the atmospheric quality and reducing the global warming, 

which mitigates climate change. The combination of canopies, plant debris and roots 

build a strong “shield” against intense rainfall, which not only reduces erosion, but also 

increases water infiltration into the soil, feeding the aquifers and regulating the 
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hydrological regime. In addition, they are the home of innumerable species (animals, 

plants, and fungi), forming complex communities that increase biodiversity. Socially, 

both recreational and professional activities coexist in balance in these natural or semi-

natural environments. 

Therefore, the work of environmental managers is essential, who must also 

guarantee the sustainable development of these ecosystems. This concept was coined in 

the “Our common future” report published in 1987 by the Brundtland Commission in 

which solidarity is appealed to "meet the needs of the present without compromising the 

ability of future generations to meet their own needs" (World Commission on 

Environment and Development, 1987). Ensuring the continuity of these resources begins 

by knowing their current state, their characteristics, as well as their distribution and 

organization, aspects that are included within the concept of forest structure (Spies & 

Franklin, 1991; Smith, Larson, Kelty, & Ashton, 1997; Zimble, et al., 2003).  

In particular, the most relevant information concerning the study of forest stands 

structure are the distribution, height and canopy size of trees, the vertical distribution, the 

diameter distribution, and the specific composition both in diversity of species and in its 

spatial distribution (Del Río, Montes, Cañellas, & Montero, 2003). 

Not only the current state of the forests is important, but also evaluating their 

evolution through the growth and mortality of the forest stand is necessary (Rodrigues de 

Souza, de Azevedo, Brum Rossi, dos Santos, & Higuchi, 2014). Two of the most useful 

parameters for this purpose are the basal area and the volume, which can be easily 

calculated knowing the number of trees present on each diameter class. In addition, the 

change in the frequency of the trees on each this classes makes it possible to evaluate the 

growth of the forest stands. For these reasons, the diameter distribution in one of the most 

important parameters to develop the forest management plans. 

Field information have been historically obtained using classics forest inventories 

by measuring a relatively small portion of the area in relation to the total extent. The 

variation of the forest stand in the different strata or ecosystems is evaluated in qualitative 

terms, as well as the composition of the forest and the characteristics of the registered 

species (such as the shape of the trunk or the crown). On the other hand, the number of 

species per unit area and the dasometric variables are determined in quantitative terms 
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such as diameter, commercial and total height of the inventoried individuals. After 

collecting that field information, the total basal area and the volume per unit area can be 

estimated which is useful to organize the forestry activities in the stands. These are the 

basis of a larger-scale planning (management project).  

However, classic inventories are associated with a sizing based on the error to be 

assumed when sampling. Sometimes, a high accuracy is required, so the field work 

demanded to keep the maximum admitted error is excessive or unaffordable. In addition, 

all this work is not always economically compensated, because the monetary value of the 

forest is getting lower. For these reasons it is necessary to find viable alternatives to the 

classic inventories and taking advantage of the opportunities offered by the current 

technologies. 

1.2 Remote sensing techniques 

Forest attributes have traditionally been mapped using passive airborne and 

satellite sensors (McRoberts & Tomppo, 2007), but they had important limitations to 

quantify the characteristics of the vegetation because they only generated information in 

two dimensions. Moreover, in areas of dense coverage, the highly reflected energy tends 

to saturate the signal captured by the sensor (Lefsky, Cohen, Parker, & Harding, 2002), 

which makes it impossible to estimate the different dasometric variables above a certain 

threshold. In addition, passive remote sensing technology is highly dependent on the 

atmospheric conditions, which difficult the information gathering in adverse conditions 

(poor light, clouds, etc.). To solve this, LiDAR technology was developed. 

1.2.1 LiDAR technology 

Light Detection and Ranging (LiDAR), was an emerging remote sensing 

technology with promising potential to map, monitor, and assess forest resources 

(Gatziolis & Andersen, 2008). It is based on the emission of a pulse and the measurement 

of the time it takes to reach the surface and return to the sensor that emitted it. Since the 

speed at which it travels (speed of light) is also known, the distance between the sensor 

and the target surface can be determined. 
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There are two general types of LiDAR. Terrestrial Laser Scanning (TLS) has the 

potential to accurately measure Above-Ground Biomass (AGB) on a plot scale, while 

Airborne Laser Scanning (ALS) from manned aircraft can serve as a tool to apply the plot 

measurements at the landscape scale. In the case of being mounted on an aircraft, it is 

necessary to correctly reference the point that has been measured in the field. To 

accomplish this, the system is based on the combination of three different elements: a 

laser scanner mounted on an airplane together with a Global Positioning System (GPS) 

and an Inertial Navigation System (INS) (Baltsavias, 1999). The laser scanner emits a 

signal that is reflected on the ground surface and then captured by a sensor, which together 

with the GPS and INS, allow the calculation of its coordinates. Inertial Navigation System 

(INS) accurately measures the orientation of the sensor, correcting the movements that it 

may suffer during the flight, while the GPS determines the exact position of the sensor. 

In summary, the distance between the sensor and the target surface is known for each 

returned point, together with the angle and the geographical location of the sensor. 

Considering all the parameters, the location (coordinates) of every returned point is 

calculated (Figure 2). 

 

Figure 2. Scheme of an ALS system (McGaughey, 2018). 
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The main technical specifications of a LiDAR sensor are the wavelength of the 

laser signal; the power, the pulse duration, and its repetition cycle; the angle of 

divergence; the specifications of the scanner mechanism; the size of the area illuminated 

by the laser pulse (footprint) and the information it collects on each reflected pulse 

(Lefsky, Cohen, Parker, & Harding, 2002). 

LiDAR data may be recorded according two different techniques (Wasser, 2020), 

as illustrated in Figure 3. 

• Discrete Return LiDAR: This system identifies peaks and record a point (return) 

at each peak location in the waveform curve. A discrete system usually records 

from 1 to 4 returns from each laser pulse (sometimes more). 

• Full Waveform LiDAR: The full distribution of returned light energy is 

recorded. The system collects how the intensity of this energy varies over time, 

providing the height distribution of the surfaces illuminated by laser.   

 

 

Figure 3. Discrete return LiDAR sensor and a full waveform LiDAR system (Daly, Vuyovich, & Finnegan, 

2011). 

 

Some clarifications are needed in reference to the laser pulses emitted by LiDAR 

sensors (Tordesillas Torres, 2014): 

• The pulse is neither instantaneous nor completely discreet. This pulse travels at 

the speed of light and its energy have a Gaussian distribution with a pulse duration 
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from 6 to 12 nanoseconds (that is, between 1.8 and 3.6 meters at the speed of 

light). 

• The laser beam describes a cone shape (and not a line) covering an area (footprint). 

Therefore, there is a high probability that the same pulse hits several elements, 

thus obtaining several returns at different heights. Small footprint sensors (0.1 - 2 

m), which usually correspond to discrete return sensors, are distinguished from 

large footprint sensors (typically 10 - 100 m), usually used in full wave sensors. 

Therefore, what differentiates LiDAR technology from other remote sensing 

methods is that it is an active system based on the emission of a laser beam and its 

reception when it intersects with different objects. The emitted laser is characterized by 

its frequency in number of pulses per unit of time, which, depending on certain 

characteristics such as distance (height for ALS) from the emitter to the object or the 

speed of LiDAR sensor, together with footprint, are subsequently translated into a point 

density per unit area. ALS density is typically ranged from 1 to 10 points·m-2, while TLS 

can map precisely canopy elements like stems and branches, since it produces high 

density point clouds. (Brede, Lau, Bartholomeus, & Kooistra, 2017). For forestry 

purposes, LiDAR technology is able to collect information from the forest cover in the 

three-dimensions with the advantage of not presenting signal saturation, which allows to 

evaluate the three-dimensional patterns of the tree canopy and to estimate the vertical 

structure from plant communities (Lefsky, Cohen, Parker, & Harding, 2002). 

1.2.2 ALS approaches 

There are two main approaches to estimate forest variables through a LiDAR 

inventory (Hyyppä, Hyyppä, Leckie, Gougeon, & Yu X., 2008): (i) Area Based Approach 

(ABA) and (ii) single-tree detection.  

The ABA methods are based on the study of small areas of forest relaying 

measurements in the field and information extracted from the LiDAR point cloud using 

statistical regression models. It starts from a dasometric inventory in which the necessary 

measurements are made for the subsequent calculation of the variables of interest such as 

Tree Cover Density (TCD), Basal Area, Volume, Mean Diameter, Dominant Height or 

Above-Ground Biomass (AGB). Subsequently, the statistics of the point cloud in those 
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sample plots (percentiles, density, dispersion) are extracted and related to the field 

information. Finally, the variables of interest are estimated on a larger scale (stand or 

landscape scale). 

In the other hand, Individual Tree Delineation (ITD) methods consist of the 

location and delimitation of each single tree and the direct calculation of its biophysical 

parameters, such as tree height or crown size. Other variables of interest can be estimated 

from them by using allometric equations or regression models, such as DBH, basal area 

or volume. The aggregation of the individual values provides the information relative to 

the stand scale. In contrast with ABA method, the identification of individual trees from 

LiDAR data requires a high density of LiDAR points, at least 4-5 points·m-2  (Wulder, 

Bater, Coops, Hilker, & White, 2008; Reutebuch & Andersen, 2005). 

The veracity of this methods is more influenced by the forest structure than by the 

algorithms used. The main challenge with this type of assessment lies in dense forests 

with overlapping tree crowns. Furthermore, many algorithms fail to identify understory 

and dominated trees or to identify trees under high density conditions or groups of trees. 

(Goodwin, Coops, & Culvenor, 2006; Zhao, Popescu, & Nelson, 2009; Vauhkonen, 

Korpela, Maltamo, & Tokola, 2010).  
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2 LITERATURE REVIEW 

2.1 Laser scanning background 

Several studies have achieved accurate estimations for the main forest attributes 

using the ABA procedure (Hyyppä, Hyyppä, Leckie, Gougeon, & Yu X., 2008; Wulder, 

Bater, Coops, Hilker, & White, 2008), obtaining greater precision than through classical 

inventories or other approaches with optical sensors (Maltamo, Malinen, Packalén, 

Suvanto, & Kangas, 2006). However, some variables, as  TCD or Quadratic Mean 

Dimeter (QMD) usually produce poor fits with LiDAR data, especially in stands with 

high regeneration or many dominated trees (Tordesillas Torres, 2014; Næsset, 2002; 

Maltamo, Eerikäinen, Pitkänen, Hyyppä, & Vehmas, 2004; Treitz, et al., 2012). These 

trees, being dominated by other individuals would be unnoticed in the LiDAR point cloud. 

The precision in estimating the diameter distribution using the ABA method varies 

enormously (Gobakken & Næsset, 2004; Maltamo, Suvanto, & Packalén, 2007; 

Breidenbach, Gläser, & Schmidt, 2008). On the other hand, LiDAR has been also proved 

to be a reliable method to assess wildlife habitat (Hinsley, Hill, Bellamy, & Balzter, 2006) 

and to quantify stand susceptibility to fire (Andersen, McGaughey, & Reutebuch, 2005). 

In addition, the evaluation of forest dynamics is being carried out successfully by the 

repetition of LiDAR flights, both for the growth of stands (Hopkinson, Chasmer, & Hall, 

2008) and for the wood extraction (Andersen, Reutebuch, McGaughey,, d'Oliveira, & 

Keller, 2014).  

Recently, LiDAR sensors have been mounted on Unmanned Aerial Vehicles 

(UAV) to combine the advantages of LiDAR and UAV technology. It could produce 

greater density of points than a conventional ALS since it flies closer to the stand and at 

a lower speed, although it does not have as much detail as TLS, since the latter is in a 

fixed position within the forest stand. One of the first UAV LiDAR systems reached point 

cloud densities from 100 to 1500 points·m-2 with the objective of single trees detection 

(Jaakkola, et al., 2010). High point cloud densities are efficient to conduct surveys of 

forest plots in which terrain and understory height, tree location, tree height, crown area 

and volume could be derived (Wallace, Musk, & Lucieer, 2014). However, UAV LiDAR 

can also be used to obtain lower point cloud density. For instance, a density of 0.5 



Comparing the accuracy of single trees delineation from ALS 

Master Thesis 2021 (Czech University of Life Sciences) 

Alejandro Rodríguez Vivancos 

 

26 

 

points·m-2 captured with UAV was sufficient to perform a good vegetation filtering and 

DTM generation (Wei, Yang, Jiang, Cao, & Wu, 2017).  

2.1.1 Individual Tree Delineation 

Two main methodologies have been developed for the tree segmentation. Initially, 

the studies focused their efforts on the study of aerial images (passive remote sensing), 

but LiDAR emerged as an alternative at the beginning of the 21st century. Since then, 

many studies have been followed and the knowledge in this area has increased. (Figure 

4). 

 

 

Figure 4. Scientific ITD studies both with passive and active remote sensing data 

 (Jakubowski, Guo, & Kelly, 2013). 

 

Transforming the laser point cloud into the Canopy Height Model (CHM) is the 

most common method to face the tree detection. CHM represents the difference in height 

between the top of the canopy surface and the underlying ground surface, that is, the 

height layer of the vegetation (Panagiotidis, Abdollahnejad, Surový, & Chiteculo, 2017). 

With this layer, individual trees can be detected using the watershed segmentation 

(Hyyppä & Inkinen, 1999; Chen, Baldocchi, Gong, & Kelly, 2006), which is based on the 

inversion of the CHM, so that the treetops appear as the lowest points and each tree can 

be considered a catchment basin. The highest point of each tree can be detected by the 
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evaluation of the local maxima. However, the crowns can be very complex and there may 

be more than one local maxima, especially in broadleaves species. (Panagiotidis, 

Abdollahnejad, Surový, & Chiteculo, 2017). To solve this, different distances (kernel 

distance) must be evaluated depending on the characteristics of the vegetation, within 

which there can only be one maximum point that represents an individual tree. This 

depends mainly on the shape of the tree canopy and the distance between the trees (Figure 

5). Afterwards, the local maximas are used as the pour points for the basins of each tree. 

Recent studies try to avoid transforming the LiDAR point cloud into a CHM to 

perform the tree segmentation. To do this, they develop different algorithms to evaluate 

the point cloud directly. For example, some algorithms apply watershed segmentation 

directly on the point cloud (Lee, Slatton, Roth, & Cropper, 2010), while others use 

different criteria. One of them is based on the natural distance between the trees (Li, Guo, 

Jakubowski, & Kelly, 2012). Even in the closest tree canopies, the treetops always have 

some separation. 

 

Figure 5. Different kernel distance in relation with the vegetation properties, as crown size and separation 

between trees (Panagiotidis, Abdollahnejad, Surový, & Chiteculo, 2017). 
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3 OBJECTIVES AND METHODOLOGY 

3.1 Objectives 

LiDAR technology has demonstrated its efficacy and precision in estimating most 

of the forest variables. At present, the challenges lie in estimating the diameter 

distribution, as well as in the possibility of predicting the evolution of the forest variables.  

To know the diameter distribution of a forest is crucial to develop de forest 

management plans, although it has not been achieved through remote sensing techniques 

such as LiDAR. This thesis proposes a technique based on single tree extraction from 

aerial laser scans (ALS) to address the estimation of the diameter distribution. The 

objectives are: 

1) Single tree delineation with two different watershed techniques: TreeSeg 

tool (FUSION) and ArcGIS. Study area: Two permanent sample plots of uneven aged 

Scotch Pine forest (Spain) and three sample plots of even aged mixture forest (Czech 

Republic) 

2) Comparing both techniques, using different kernel distances for smoothing 

the Canopy Heigh Models (CHM). In addition, 0.2 and 0.5 m pixel resolution for CHM 

are tested. 

3) Evaluating the correlation of Diameter at Breast Height (DBH) with 

Crown size and Tree Height. 

In addition to these main objectives, a third Individual Tree Delineation (ITD) 

methodology (Li, Guo, Jakubowski, & Kelly, 2012) is performed in order to compare the 

potential of the point cloud segmentation directly.  

To sum up, this study is focused in: (i) comparing different ITD techniques to 

evaluate their potential in extracting the individual trees from ALS; (ii) Evaluating the 

relation between different biophysical tree parameters (DBH, height and crown size) to 

obtain a regression model.  In future studies, diameter distribution could be obtained by 

extracting the individual trees from ALS data and then calculate their DBH.  
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3.2 Material and methods 

3.2.1 Study area 

Two study areas will be assessed. The first one is in Cercedilla, a small town 

located 60 kilometers northwest from Madrid (central Spain), characterized by the 

mountain range that crosses the central Spanish zone from southwest to northeast (Central 

System). Part of this area is protected by the most recent (2013) Spanish National Park 

figure (Sierra de Guadarrama). In addition, it is the closest National Park to the Spanish 

capital, where approximately 6 million people live. This makes it a very particular and 

visited place. Specifically, in 2015 it was the most visited Spanish National Park after the 

Teide National Park (Canary Islands). 

Within the National Park is the Fuenfría valley forest and develops a horseshoe 

shape with N-S orientation. The altitudinal interval ranges between 1250 and 2025 meters 

above sea level, and it is crossed by the Venta river, tributary of the Guadarrama river. 

 

 

Figure 6. Spanish study area location  

(Pascual, García-Abril, García-Montero, & Martín-Fernández, 2008). 
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The Fuenfría valley is within the Spanish public protection figure "Monte de 

Utilidad Pública" (M.U.P. number 32), called "Pinar y Agregados" which is owned by 

the City Council of Cercedilla. It has a total area of 2520 hectares, of which 2274 hectares 

are forested.  

Due to its proximity and characteristics, this forest has been a regular place of 

practice for Forest Engineering students at the Technical University of Madrid, as well as 

a research place for faculty staff. For this reason, there are numerous forest inventories, 

generally circular plots with diameter ranges between 30 and 36 meters, in which only 

the diameters of all the trees and the height of some of them are usually measured. 

However, there are two permanent rectangular plots (40x60 meters) in which the most 

important dasometric variables of all the trees in the plot are measured. For this reason, 

these plots were chosen for this study.  

The mean altitude of the plots is 1408 and 1470 m above sea level, respectively. 

This altitude range is within the supramediterranean zone of the Mediterranean region 

and corresponds to an uneven-aged forest and monospecific forest of Scots pine (Pinus 

sylvestris L.). The slope in the plots is 23 and 25 degrees, respectively.  

In the other hand, the second study area is located 30 km east from Prague, in the 

forests managed by the School Forest Enterprise (ŠLP[CZ], SFE[EN]), close to Kostelec nad 

Černými lesy (Figure 7). The main objective of School Forest Enterprise of CULS is to 

provide internships and scientific support to university students. However, the difference 

with the Spanish area is that this one is from municipal property, while that of the Czech 

Republic is managed by the university.  
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Figure 7. General map of ŠLP Kostelec nad Černými lesy (LHP, 2011). 

 

Almost half of the area corresponds to the 3rd stage of vegetation (oak-beech). 

Less surface area (20%) is occupied by the 2nd (beech-oak) and the 4th stage of vegetation 

(beech). The lower areas are represented by the 1st stage of vegetation (oak), while in the 

higher areas there is the 5th stage of vegetation (fir-beech). The vegetation stage (pines) 

is represented here only exceptionally, for example, in rocky outcrops (LHP, 2011). 

According to the Forest management plan of ŠLP Kostelec nad Černými lesy, the 

specific composition in the area is mostly woody conifers. Spruce (SM) is the most 

represented species with approximately 50%. The other conifers are pine (BO) and larch 

(MD), with 16% and 4% respectively. Broadleaves species are represented mainly by the 

beech (BK, 14%), followed by oak (DB, 9%) and hornbeam (HB, 1%).  

3.2.2 Plot characteristics  

The field plots in Spain are located on a steep slope (> 50% slope) and have a 

rectangular shape (40 x 60 m2). Within the plots, the height and DBH of all the trees, 

which are all Scots pines, are known. Both plots show un-even aged forest stands where 

the coexistence between adult trees and regeneration can be seen in the following 

frequency histograms. This also causes a high stem density (> 500 trees∙ha-1).  
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Figure 8. Summary of field plots properties and location. 

 

In Czech Republic, 3 circular plots (1000 sq. m) have been chosen, distributed 

throughout the forest and whose characteristics differ in terms of the specific 

composition. All of them have a regular distribution regarding the size of the trees. The 

stand is composed of several forest species, with heights exceeding 30 meters in general 

and the regeneration is scarce. Plot 2 (CZ2) contains only spruce trees (Picea abies), while 

plots 1 and 3 (CZ1 and CZ3) are mixed. CZ1 is mostly composed by spruce (89%), 

followed by larch (Larix decidua, 6%), pine (Pinus sylvestris, 3%) and oak (Quercus 

patraea, 3%). CZ3 is different from the other, because its composition is mainly pine 

(67%), followed by spruce (31%) and oak (2%). The stem density range is between 340 

and 420 trees∙ha-1, and the slope ranges from 10 to 25%.  

General information about the location and dimension for each field plot is shown 

in Figure 8, while the DBH and height distributions are shown in Figure 9. 
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Figure 9. Real DBH and height distribution on each field plot. 
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3.2.3 Field work 

3.2.3.1 Spanish field plots 

The Spanish sampling plots were located in areas of thick vegetation, where 

georeferencing with GPS is imprecise. Therefore, the location of the vertices of the plots 

were located with topographic measurements creating an oriented topographic 

(polygonal) itinerary with 18 stations. These points were permanently marked with the 

installation of resin landmarks. Topographic measurements were made with the Nikon 

DTM 330 total station. The coordinates of the initial station of the itinerary and the 

reference point for its orientation were measured with the installation of GPS receivers 

model Trimble Geoexplorer 3 with external antenna. These points were located on an 

open meadow (50 meters separated from the nearest trees). The DBH and the total height 

of all the trees in the plots were measured. Two diameter measurements have been made, 

one according to the direction of maximum slope and the other according to the level 

curve. These measurements were taken with a Haglöf Mantax caliper. On the other hand, 

the total height measurements were made with a Haglöf Vertex III hypsometer. This field 

work has been carried out during the months of June and July 2003. Later, in 2015, the 

DHB and the heights of all the trees in the plots were measured again. These are the data 

used for this study due to proximity to the LiDAR inventory (2011). 

3.2.3.2 Czech field plots 

The field data collection in the Czech plots took place in the school enterprise 

Kostelec nad Černými lesy during June and July of 2020. An inventory net (hexagonal 

cells) based on processed laser data was created.  Both the map of the area and the 

hexagons were displayed in the ArcGIS Collector application, which was used for field 

work orientation and for field plot establishment. The information about the area and trees 

values like type of species, DBH, height, height of the crown was taken. Different size 

circular plots were established on each hexagon (300, 500 and 1000 m2). The height was 

measured with Vertex Laser GEO and diameter by caliper and measuring tape.  
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3.2.4 LiDAR data 

3.2.4.1 Spanish ALS flight 

The Spanish study area has been flown over with a LiDAR sensor twice. The first 

time was in 2002, when an area of 171 ha was covered with a point density of 4.5 per 

square meter. The second and last one was in 2011. During this flight both the area 

studied, and the density of points were increased. For these reasons, in addition to being 

more recent, the 2011 LiDAR inventory will be used for this case study. Its characteristics 

are described (Table 1). 

For the capture of LiDAR data during 2011, the ALS70-HP sensor of the Leica 

company was used, with a scanning angle (FOV) of 14 degrees, a repetition rate of the 

laser pulse of 200 kHz and a scanning rate of 73.7 Hz. The average distance between laser 

pulses is 0.29 m and the average area of each pulse is 0.5 m2. All this configuration has 

resulted in an approximate density of 24 points·m2.  

 

Table 1. Spanish LiDAR flight characteristics 

Characteristics Cercedilla, Spain 

Date of LiDAR acquisition July, 2011 

LiDAR sensor Leica ALS70-HP 

Sensor type Multi-return (5 returns/pulse max) 

Elevation range 625 - 1200 m 

Total coverage area 220.3 ha 

Number of passes 7 passes (Fig. 8) 

Average pass width 400 m 

Vertical precision 0.08 m 

Horizontal precision 0.15 m 

Point density 24 points·m-2 

Reference system UTM-H30 ETRS89 
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Figure 10. Graphic scheme of the 7 passes made by the plane in the LiDAR inventory of 2011 (Tordesillas 

Torres, 2014). The colors show where more information has been collected: Dark blue: 1-time scanned, Light blue: 

2-times scanned; Yellow: 3-times scanned; Orange: 4-times scanned. 

 

3.2.4.2 Czech ALS flight 

The Czech study area has been flown over with a LiDAR sensor in April 2020, 

with the next characteristics (Table 2). For the capture of LiDAR data, the ALS70-CM  

sensor of the Leica company was used, with a scanning angle (FOV) of 50 degrees and a 

scanning rate of 47 Hz.  

The average density was 3 pulses∙m-2 in each scanning line, with an overlapping 

of 30% between lines. The mean point density in the study area was 5.48 points∙m-2. 

Additionally, aerial images (60 Mpx/image) of 15 cm resolution (at ground level) were 

captured. These images had a minimum longitudinal overlap of 85% and transversal of 

45%.  

Two of the 21 flight lines were run transversely to increase the precision of the 

scan. 63% of the scan area (5000 ha) was forest. 
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Table 2. Czech LiDAR flight characteristics 

Characteristics Kostelec, Czech Republic 

Date of LiDAR acquisition April, 2020 

LiDAR sensor Leica ALS70-CM 

Sensor type Multi-return 

Elevation range 1130 - 1400 m 

Total coverage area 8000 ha 

Number of passes 21 passes 

Average pass width 1306.13 m 

Vertical precision 0.07 – 0.10 m 

Horizontal precision 0.14 – 0.17 m 

Point density 20 points·m-2 

Reference system UTM-H33 ETRS89 

 

3.2.5 Point cloud processing 

3.2.5.1 Extracting the laser data on each field plot 

The geospatial information was in the form of a point cloud with .LAS format. To 

process it, the points corresponding to each field plot were extracted at first. For this, the 

software RStudio (version 1.1.453) was used. This program works with commands lines, 

which allow full control and customization for the analyzes. Furthermore, apart from 

executing commands specially designed for this program, running external software is 

also possible with RStudio. Due to the shape of the field plots (Spanish rectangular and 

Czech circular) the extraction of the point clouds was carried out in two different ways. 

The Czech plots (CZ1, CZ2 and CZ3) were circular, which means that just the 

central coordinates and the diameter are necessary for clipping. This was done using the 

FUSION/LDV software (version 3.8) developed by the US Forest Service. It is a free 

software for processing laser data with .LAS format. “Clipdata” command allows 

clipping circular or rectangular plots and for this last one, both minimum and maximum 

X and Y coordinates are specified. However, the clips are oriented with geographic north. 

In the case of circular plots, orientation is not a problem, therefore it was the methodology 

chosen for these plots. 
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The Spanish plots (F1 and F2) had a rectangular shape (60x40 m2) and their 

orientation in the field is parallel to the slope, that is, the longer side was placed parallel 

to the contour lines, while the shorter side was placed perpendicular to it (steepest slope). 

Therefore, the clip with FUSION/LDV was not possible. The “clip” command from 

RStudio (“lidR” package) uses a polygon in shapefile (.shp) format for clipping. This tool 

solved the problem of orientation. It is a much slower technique than the previous one, 

but it is a good alternative for irregular shape and orientation field plot. 

The LAS density for each field plot can be consulted in Table 3: 

Table 3. Point cloud density for each field plot both with and without ground points, respectively. 

Plot 
LAS density LAS (no ground) density 

points·m-2 points·m-2 

F1 11.84 8.92 

F2 22.66 16.70 

CZ1 9.89 6.89 

CZ2 12.87 7.58 

CZ3 12.81 8.57 

 

3.2.5.2 LAS conversion into CHM 

LiDAR vectorial data (point cloud) was transformed into raster with the CHM 

calculation. For this, the following chronological set of operations was caried out. First, 

the point clouds were normalized to eliminate the effect of the slope. After normalization, 

the point heights represent the real height above the ground. This process is usually 

carried out with the support of a digital elevation model (DEM). However, a high-

precision DEM was not available for the Czech Republic study area. To homogenize the 

analysis process, an alternative and efficient solution was carried out by programming in 

RStudio. "Classify_ground" command (“lidR” package) was used, which classified the 

point clouds into ground and non-ground points using different algorithms. In this case, 

the “csf” function was chosen, which implements an algorithm for the segregation of 

ground points based on a cloth simulation filter, developed by (Zhang, et al., 2016). The 

calibration of some parameters such as slope and roughness of the terrain together with 
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some parameters of the cloth was necessary. After all, a classification of ground and non-

ground points is obtained (Figure 11.A). 

 

 

Figure 11. (A) CZ2 point cloud classified into ground and above-ground points; (B) CZ2 normalized point 

cloud.  

 

After classifying the ground points, the normalization of the point cloud was 

performed using the "normalize_height" command (“lidR” package). Despite it allows to 

do the normalization using an external DEM, the automatic calculation of the ground 

surface was set for this study. For this, the “TIN” function was used, which implements 

a Delaunay spatial triangulation. Within each triangle a linear interpolation is performed 

between the ground points. 

As a result, a point cloud file in which the ground points have no height was 

obtained (Figure 11.B), which is already prepared for the CHM extraction. To do this, the 

"grid_canopy" command from the "lidR" package was used in RStudio and the "dsmtin" 

algorithm was chosen for ease of calibration among the other two remaining algorithms. 

For this study, two CHM files were extracted for each field plot with different resolution 

(0.2 and 0.5 m). The chosen algorithm implements a Delaunay triangulation between the 

first LAS returns, so that within each triangle a linear interpolation is performed. The 

resulting CHM had a first smooth step because CHM heights slightly lower than the 

originals. Other algorithms, such as the "CanopyModel" command used by 

FUSION/LDV software assigns the height of the highest point to each cell. 
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3.2.6 CHM processing 

3.2.6.1 Projection 

Both Czech layers and the plot coordinates were in S-JTSK Krovak East North 

projection (a local coordinate system that is mainly used in the Czech Republic), while 

the point clouds and the CHMs were in UTM ETRS89 (Zone 33). Therefore, the CHMs 

were projected into UTM with the ArcMAP program (version 10.6). First step was to 

define the current coordinate system for each CHM with the “Define projection” tool, so 

that the layer has information about its current projection (Figure 12.A). Next, each CHM 

was projected to S-JTSK Krovak (NE) coordinate system, using the “Project raster” tool 

(Figure 12.B). Finally, the resulting layer was clipped with the shape of the field plot, 

since the point cloud clip was made with a diameter of 60 m, while the diameter of the 

plot was 35.7 m (1000 sq. m). 

3.2.6.2 Smoothing the 0.2 m resolution CHM 

In general, the CHMs contained some cells with anomalous data or no value, 

because within those specific cells there was not any LAS point, especially in the files 

with lower resolution. The lower the resolution of the raster file, the greater the 

probability of finding empty cells. Therefore, a smoothing filter was passed to the 0.2 m 

resolution CHMs prior to analysis, using the ArcMAP “Filter” tool. With this spatial 

function, the value of each cell is replaced by the mean value of the neighboring cells. 

This corrected anomalous values, although cells with correct values lost precision. The 

Czech plots had a lower density of points than the Spanish plots. For this reason, the 

CHMs generated for the Czech plots had more empty cells than for the Spanish plots. 
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Figure 12. (A) CZ2 field plot in UTM ETRS89 (Zone 33); (B) CZ2 field plot in S-JTSK Krovak East North 

projection. Red circle is the 37.5 m in diameter field plot. 

 

3.2.6.3 Ground and above-ground raster layers 

Two raster layers were extracted from the CHM: ground and above-ground layers. 

For the 0.2 m resolution CHMs, the smoothed CHMs were used, since the original CHMs 

had many empty cells in general. The heigh distribution of each plot was evaluated to 

determine the limit height between the cells that were considered ground and those that 

were considered vegetation. The Spanish plots had a lot of regeneration, so the limit 

height was much lower than for the Czech plots (with hardly any regeneration). Ground 

cells were considered those with a height of less than 3.5 m for F1 and F2, less than 20 m 

for CZ1 and CZ3, and less than 24 m for CZ2 (Table 4). This process was done using 

conditionals with ArcMAP. For the calculation of the ground raster, those cells lower 

than the limit height were replaced with a value = 0 (ground cells), while those with a 

height equal to or greater than the limit height were replaced with a value = 1 (crown 

A
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cells). On the other hand, the vegetation cells (height ≥ limit height) were also extracted 

in an external layer (crown). 

 

Table 4. Height limit to classify the CHM cells in ground and above-ground data. 

Plot Height limit (m) 

F1 3.5 

F2 3.5 

CZ1 20 

CZ2 24 

CZ3 20 

 

3.2.6.4 CHM smoothing (Kernel distances) 

The tree crowns usually have very irregular shapes, with multiple branches that 

cause rises and falls in the profile of each crown. This is a problem when for detecting 

trees with basin segmentation since each crown can have several sub-basins associated. 

To solve this, different smoothing CHMs were performed, characterized by the evaluation 

distance (kernel distance). In particular, 4 types of distances were evaluated (0, 1, 3 and 

7 radius cells). Each cell of the CHM was replaced by the mean value of its neighboring 

cells, considering these 4 radii. Kernel 0 means that each cell corresponds to itself (no 

smoothing). On the other hand, Kernels 1, 3, and 7 take all the cells that are in a radius of 

1, 3 and 7 respectively to calculate the mean value that replaces each cell (Figure 13). The 

greater the smoothing, the greater the homogenization of the tree canopy. However, the 

accuracy in the total tree height also worsens. 
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Figure 13. Representation of the cells that are taken for the smoothing considering each kernel situation. 

 

3.2.7 Individual Tree Delineation 

ITD were performed using three different methodologies. Two of them use the 

CHM raster layer to assess the position of the trees on each sample plot. The first one was 

an adaptation of the technique applied by Panagiotidis, Abdollahnejad, Surový, & 

Chiteculo (2017) and was developed with the ArcMAP 10.6 program. This is based on 

the river basin principle, so that by inverting the CHM (Inverted Watershed, IWS), each 

treetop can be understood as a watershed. The second one was based on different 

conditions established in the FUSION “TreeSeg” tool. Finally, an algorithm for vectorial 

tree extraction was evaluated in RStudio. 

3.2.7.1 ArcMAP  

Initially, the objective of this study was to apply the methodology developed by 

Panagiotidis, Abdollahnejad, Surový, & Chiteculo (2017), in which the location of each 

tree is detected by testing different kernel distances at first. Then, the tree crown was 

delineated by the watershed segmentation using previous trees locations as the pour points 

of the canopy basins. However, wrong delineations resulted due to the sub-basin effect. 

Tree crowns were delineated just partially in all of the kernel distance scenarios. 

Therefore, a modification of this methodology was proposed. 

Kernel 0

Kernel 1

Kernel 3

Kernel 7
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The alternative methodology (performed in this study) reversed the previous 

watershed segmentation process. First, all the tree basins of the CHMs were delineated 

considering all the smoothing cases (all crowns were detected). Then, the maximum 

height point for each crown corresponds to the height and position of the trees. 

 

 

 

Therefore, 2 resolutions (0.5 and 0.2 m cell size) and 4 types of smoothing (0, 1, 

3 and 7 kernel radius distance) were studied for each sampling plot. That is, 8 study cases. 

In total 40 case studies are required for the 5 sample plots. This process was semi-

automated using the ArcMAP “Model Builder” tool, so that the CHM and some 

parameters such as the smoothing distance and the resulting layers were required to start 

the process. 

First the CHM was smoothed considering the required kernel distance, using the 

“Focal statistics” tool. As mentioned in the “CHM smoothing” section, the value of each 

cell was replaced with the mean value of the cell values in the kernel neighborhood. Then, 

ground cells were corrected. If the smoothing is low, this correction is not necessary, but 

as the smoothing is stronger (Kernel 3 or 7) it must be corrected with the ground layer, 

because the trees would be greatly over dimensioned. This correction was made using the 

“Times” tool, which multiplied the ground layer and the smoothed CHM, replacing the 

ground cells with 0 value. In continuation, the ground cells were eliminated using a 

conditional (value > 0), while the remaining the cells (above-ground cells) were later 

inverted using the “Times” tool again, this time multiplying these cells by -1. At this 

moment, the trees appeared inverted, being the top of the three as the lowest points (pour 

Watershed segmentation
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1
st
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points). Once this is done, it was possible to evaluate the tree crowns as hydrographic 

basins, first with the calculation of the flow direction ("Flow direction” tool) and then 

with the calculation of the watershed using the "Basin" tool. Every basin raster layer was 

transformed into a polygon layer (.shp) using the “Raster to polygon” tool. Additionally, 

the surface of each polygon was calculated in the attributes table (crown size). 

This process produced some errors, especially in CHMs with 0.2 m resolution and 

no smoothing (K0). Therefore, some corrections were made manually. First, the polygons 

that had less than 2 m2 in surface were merged with the largest polygons with which they 

were in contact. This was done using the “Eliminate polygon” tool in ArcMAP, after 

selecting the polygons in the attributes table. Those isolated little polygons (mostly in the 

edge of the plot) were removed manually using the ArcMAP editor. Finally, all the 

polygons were smoothed for more  natural shape using the “Smooth polygon” tool, which 

needs some calibration, as the application algorithm (“PAEK”) and the tolerance (4 

meters). This combination was used because it provided the best visual results. 

The highest point on each polygon was extracted. This process was also modeled 

with the “Model Builder” in ArcMAP because it was a mechanical process. The point 

shapefile was obtained applying the “Zonal statistics” tool using the original CHM 

(without smoothing) and the polygon layer as feature zone data. The result was a raster, 

in which the cells corresponding to each polygon had the same value (zonal maximum). 

By dividing this raster layer and the CHM, those cells with value = 1 corresponded to the 

maximum points, which were transformed into a point layer using the “Raster to point” 

tool. Additionally, the “Zonal statistics as table” tool was used to assign the maximum 

height to each polygon. This could also be done by a spatial join using the calculated 

point layer. 

To sum up, two shapefiles were obtained for each sample plot in every scenario 

(kernel-resolution): 

• Point shapefile corresponding to the location and height of the trees.  

• Polygon shapefile corresponding to the shape of the tree crowns.  



Comparing the accuracy of single trees delineation from ALS 

Master Thesis 2021 (Czech University of Life Sciences) 

Alejandro Rodríguez Vivancos 

 

47 

 

 

 



Comparing the accuracy of single trees delineation from ALS 

Master Thesis 2021 (Czech University of Life Sciences) 

Alejandro Rodríguez Vivancos 

 

48 

 

 

 

3.2.7.2 FUSION 

The “TreeSeg” tool of FUSION software was used as the second methodology for 

the detection and delineation of individual trees from the CHM layers. This tool process 

twice the CHM for tree crown delimitation. First, it develops the watershed segmentation 

methodology by inverting the CHM layer, which produced similar results than the 

segmentation performed with ArcMAP. Then, it can implement a second algorithm. The 

highpoint of each basin is used as the central point for 18 evenly-spaced radial profiles 
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that are evaluated. Three criteria were used to select the point of each profile that 

represents the edge of the crown: 

1. The selected point is a local minima (Figure 14.A) 

2. The selected point and its neighbors have a height less than 2/3 of the treetop 

point height (Figure 14.B) 

3. The change in height before the point is more than 4 times the change in height 

after the point (Figure 14.C) 

This set of rules produces basin/crown polygons that seem to represent objects 

visible on the canopy surface. The resulting polygons can overlap and they will not 

usually fully encompass the basin (McGaughey, 2018).  

 

 

 

 

 

 

 

 

 

The RStudio software was used to execute “TreeSeg” tool, by controlling the 

Windows console in the background through the command line. These commands 

required some parameters such as the directory of the CHM (previously smoothed in 

ArcGIS) and the directory of the result layers. The height threshold was also detailed, 

which represents the minimum height for object segmentation. For this parameter, the 

heights of the Table 4 were used. 

 

Figure 14. Criteria for the tree crown edge point selection on each radius profile using “TreeSeg” tool in 

FUSION/LDV. 
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3.2.7.3 RStudio 

Apart from the tree delineation applying the watershed segmentation over the 

CHMs, the detection of individual trees has been also evaluated by processing the point 

cloud directly. For this, the “segment_trees” tool from the RStudio “lidR” package has 

been used, which perform the tree segmentation based on different algorithms and the 

point cloud. The algorithm developed by Li, Guo, Jakubowski, & Kelly (2012) was used, 

which is based on the distance between trees to classify the points. Even if the trees are 

overlapped in close canopies, there is always some distance between them at higher 

levels. This algorithm runs the classification from the highest point and continues 

including points by evaluating the relative distance between nearby trees (Figure 15).  

The point cloud files were processed in the same way as to obtain the CHM 

(classification of the ground and height normalization). Additionally, those classified as 

ground points were eliminated to improve the tree crown delimitation. All the tree points 

were projected horizontally and the crown perimeter was delineated by calculating the 

convex hull. Therefore, if there are ground points classified as part of the tree, these could 

oversize the tree canopy. To eliminate the ground points, the point cloud was filtered, 

eliminating those with value 2 (ground points). 

 

 

Figure 15. Individual tree segmentation principle based on the relative distance evaluation (Li, Guo, 

Jakubowski, & Kelly, 2012) 
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As a result, two shapefiles were obtained for each sampling plot: 

• Point shapefile corresponding to the location and height of the trees.  

• Polygon shapefile corresponding to the shape of the tree crowns.  

3.2.8 Statistics 

3.2.8.1 Height distribution 

On each sample plot the height and the DBH of all the trees were known, but not 

their location. Therefore, the analysis could not be validated by comparing real and 

estimated trees directly (tree by tree). As an alternative, the real and estimated height 

distributions were compared on each scenario. In this way, the height data were classified 

in 2 meters ranges. The Spanish trees were smaller in height than the Czech trees. Even 

so, ranges of heights were distinguished from 0 to 52 meters every two meters (0 - 2; 2 - 

4, ..., 50 - 52). 

3.2.8.2 Low and high vegetation 

Previous to the statistical analyzes, the information was divided into low and high 

vegetation, considering the height distributions in every sample plot (Figure 9). These 

height ranges can be consulted in the next table (Table 5). There was great representation 

of trees on each classification for Spanish plots, because regeneration is very high and the 

forest is uneven-aged. However, the Czech plots have very little representation of low 

vegetation, with no small trees in CZ2. 

 

Table 5. Height range classification for low and high vegetation. 

Plot Low vegetation High vegetation 

F1 0 – 16 16 – 52 

F2 0 – 16 16 – 52 

CZ1 0 – 26 26 – 52 

CZ2 0 – 26 26 – 52 

CZ3 0 – 26 26 – 52 
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3.2.8.3 RMSE & nRMSE 

Root Mean Squared Error (RMSE) was used to evaluate the goodness of the 

estimations on each scenario. It is an error parameter commonly used in many scientific 

and statistical investigations, as it is considered an excellent error metric for numerical 

predictions. However, this error is very sensitive to scale, so it is only recommended for 

comparing two variables of the same nature. It is defined as the square root of the mean 

value of all squared errors (Formula 1). 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑆𝑖 − 𝑂𝑖)2

𝑛

𝑖=1

 

 

[ 1 ] 

 

where 𝑂𝑖 are the observations, 𝑆𝑖 predicted values of a variable, and 𝑛 the number 

of observations available for analysis (Neill & Hashemi, 2018) 

The RMSE is an absolute error and its magnitude is difficult to interpret. For this, 

the normalized RMSE (nRMSE) or relative RMSE (Formula 2), which is easier for 

understanding. 

 

𝑛𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

1
𝑛

∑ 𝑂𝑖
2𝑛

𝑖=1

 [ 2 ] 

 

The estimations presented some mismatches with the observed values, in form of 

trees detected in height ranges where no tree had been observed in the field. This caused 

the nRMSE to tend to infinity when dividing by zero many times. To solve this, just the 

evaluation of RMSE in the height ranges with real observations, neglecting those 

estimations in ranges without observed trees. This measure did not explain the error 

completely. Therefore, the similarity in the height distributions (observed and estimated) 

using the Kolmogorov-Smirnov test. 
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3.2.8.4 Kolmogorov-Smirnov test 

The Kolmogorov–Smirnov test (KS test) compares if two datasets differ 

significantly by evaluating the maximum distance between the experimental cumulative 

distribution function and the theoretical cumulative distribution function. The maximum 

discrepancy is defined by the next equation (Formula 3): 

 

𝐷 = max |𝐹1 − 𝐹2| [ 3 ] 

 

where 𝐹1 is the experimental distribution and 𝐹2 = theoretical distribution. 

The graphical representation that describes the K–S test is demonstrated in Figure 

16, which demonstrates the maximum discrepancy D. 

 

 

Figure 16. KS-test illustration. Black line represents the maximum discrepancy between both cumulative 

functions (empirical and estimation). 

 

KS-test p-value was considered to evaluate the similarity of both distributions. 

The P-value is a probability value and the closer to 1 means that the distance D is smaller 
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and therefore that there is more similarity between the observed values and the predicted 

values, in this case. 

3.2.8.5 Analysis of variance 

The analysis of variance (ANOVA) test was performed to evaluate the effect of 

the different parameters (kernel distance for smoothing, CHM resolution and 

methodology) on the estimation. A confidence level of 95% was considered for 

signification. 

3.2.8.6 Correlation analysis 

DBH, total height and crown diameter were correlated using the Spanish field data 

of 2002 because tree crown diameters were not measured in the 2015 Spanish and the 

2020 Czech field inventories. Single Pearson correlation was calculated for DBH with 

the other two remaining tree variables. In addition, the best regression model was 

searched.  

3.2.8.7 Software for calculations 

Data processing, the heigh distributions, the error calculation, and the KS-tests 

were performed with the RStudio program, because the ease of programming the 

calculations. This program has the advantage that, once the execution code has been 

programmed, the results are immediate. Subsequently, the ANOVA tests and correlation 

analysis were carried out in Statgraphics Centurion 18 (v. 18.1.13). 
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4 RESULTS 

4.1 Low vegetation 

The classification of vegetation in different layer heights (low and high) allowed 

to evaluate the precision of the detection both in dominant and suppressed trees. The use 

of different types of smoothing has produced different results in high vegetation 

detection. In general, individual trees detection was better as the smoothing was stronger. 

Raw CHMs (no smoothing) have produced very high errors (nRMSE = 2) in dominant 

trees detection (Figure 17.A), which decreased as smoothing was higher until reaching 

values around 80%. These errors correspond to mean values since they comprise all the 

sampling plots. The goodness in estimating suppressed trees (low vegetation) was 

independent of the CHM smoothing and the applied methodology, since the general mean 

error produced was set at 80% in all the study cases (Figure 17.A). In order to evaluate 

the suppressed trees, the KS p-values were also compared in the different sampling plots, 

since the Czech plots had hardly any low vegetation (Table 6) and they influenced the 

mean results. 

 

 

Figure 17. Estimation of low and high vegetation results. (A) Evolution of nRMSE in different cases of smoothing. (B) 

KS p-value on each plot. Decimal numbers with commas.  

 

Figure 17.B shows the KS p-values as a function of the sampling plot and the 

vegetation classes. The p-values of the high vegetation were very similar in all of the plots 

(> 0.8). This means that the estimating height distribution closely resembles the measured 

height distribution in the field. Values greater than 0.05 (95% significance) allow 
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accepting the null hypothesis of the KS test (similarity between distributions). However, 

the closer this value is to 1, the lower the D statistic and therefore the more similar both 

distributions are. 

Clearer differences were obtained in low vegetation detecting. First, the Czech 

plots had KS p-values greater than 0.7, being equal to 1 for CZ1 and CZ2, since there are 

hardly any small trees in these plots (0 and 1 respectively). On the other hand, in CZ3  six 

small trees were noticed, which represents 14% of all of the measured trees. The KS p-

value in this plot was lower than those in the other Czech plots, because suppressed trees 

were not detected in any of the study cases. The Spanish plots had a higher percentage of 

low vegetation. F1 had 125 small trees, representing a percentage of 72%, while F2 had 

54 small trees, 42% of the total. In general, including all the methods and parameters 

studied, the low detected vegetation in the Spanish plots were few compared to the 

observed field trees (16% in F1 and 24% in F2). Therefore, the KS p- were much lower 

than those of the Czech plots (Figure 17.B). 

 

Table 6. Observed and predicted low and high vegetation on each sampling plot. An average estimated value was 

calculated for each plot and type of vegetation considering all the study cases (scenarios). 

 

 

4.2 ArcMAP vs FUSION 

The CHM segmentation methods were analyzed in the following graphs (Figure 

18). Both methodologies were simple to apply and depended on the raster layer quality. 

However, they used different methodologies. ArcMAP developed the watershed 

segmentation, while FUSION established different criteria for tree crowns delineation. 

The errors (nRMSE) produced by watershed segmentation in ArcMAP were lower than 

Field Esimation Field Estimation

F1 125 21 49 57

F2 54 13 74 71

CZ1 0 0 35 51

CZ2 1 0 33 35

CZ3 6 0 36 43

HIGH VEGETATIONLOW VEGETATION
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those produced with the methodology developed in FUSION. The difference between 

both analyzes was statistically significant (ANOVA p-value = 0.0298 < 0.05). 

 

 

Figure 18. Effect of ITD in both CHM  segmentation. (A)  nRMSE for ArcMAP and FUSION methods on each 

sampling plot. (B) General nRMSE on each CHM methodology. Decimal numbers with commas. 

 

Figure 18.A shows the errors produced according to the CHM segmenting method 

and the sampling plot. CZ1 had the best results with the ArcMAP method, although its 

results are largely influenced by low vegetation, same as CZ2 and CZ3 plots. The 

influence of this type of vegetation in Figure 18.A was shown in Figure 17.B, where the 

KS p-values were clearly higher in the Spanish plots compared to the Czech ones. In 

general, an improvement of almost 20% using ArcMAP instead of FUSION was obtained 

(Figure 18.B). 

These results refer to the trees detection, but they do not consider their crown 

delineation. Apart from producing the best results in tree detection analyses (comparing 

height distributions), ArcMAP also provided a more realistic crown delineation. Visually, 

more natural shapes can be seen in the layers obtained with ArcMAP watershed 

segmentation. In the other hand, FUSION delineated the tree crowns with an irregular 

and overlapping perimeter (Figure 19). 
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Figure 19. ITD in F2 plot using ArcMAP and FUSION.  

The best kernel case has been selected for each CHM resolution. 

Method: ArcMAP 

CHM resolution: 0.5 m 
Kernel: K1 

nRMSE = 0.2145 

Method: ArcMAP 

CHM resolution: 0.2 m 
Kernel: K3 

nRMSE = 0.2196 

Method: FUSION 
CHM resolution: 0.5 m 

Kernel: K1 

nRMSE = 0.2995 

Method: FUSION 

CHM resolution: 0.2 m 

Kernel: K1 
nRMSE = 0.3070 
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4.3 Kernel – Resolution 

The ANOVA analyzes confirmed that the CHM resolution (ANOVA p-value = 0) 

and the smoothing distance (kernel) had a significant influence on ITD. Figure 20.A 

shows the improvement in the estimation as the smoothing of the CHM was stronger. 

Although there were particular differences between the different types of smoothing, the 

differences between K1, K3 and K7 were not statistically significant in general terms due 

to the dispersion of the results. However, raw layers produced significantly worse results 

than the smoothed CHMs (Figure 20.A). Figure 20.B shows that the CHMs with 0.5 m 

resolution produced significantly better estimates (nRMSE = 0.83) than the CHMs with 

0.2 m resolution (nRMSE = 1.24). Therefore, a general improvement of 41% in the 

estimation was achieved by expanding the raster resolution. 

 

 

Figure 20. Effect of kernel and CHM resolution on the ITD. Decimal numbers with commas. 

 

No significant differences were found between the sampling plots (ANOVA p-

value = 0.15), nor in the plot-smoothing (ANOVA p-value = 0.95) and plot-resolution 

(ANOVA p-value = 0.85) interactions. However, the interaction between smoothing 

distance and raster resolution did produce significant differences (Figure 21). The best 

estimates with the 0.5 m resolution CHMs were obtained in K1 and K3 smoothing layers 

(nRMSE = 0.71), slightly worse with the K7 smoothing (nRMSE = 0.81) and significantly 

worse with the K0 (nRMSE = 1.11). On the other hand, the weakest smoothing produced 

the worst results in the 0.2 m resolution CHMs, being with K7 the most appropriate 

smoothing case (nRMSE = 0.76). 
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Figure 21. Effect of Kernel-CHM interaction on the ITD. Decimal numbers with commas. 

4.4 LIDR algorithm 

The algorithm developed by Li, Guo, Jakubowski, & Kelly (2012) produced a 

direct classification of the trees in the point cloud directly, as can be seen in Figure 22. 

 

 

Figure 22. Individual tree classification in the point cloud directly using the  

Li, Guo, Jakubowski & Kelly (2012) algorithm. (A) CZ2; (B) F1 
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This vectorial classification was less laborious than the tree segmentation from 

the CHM, since it worked directly on the point cloud. In addition, the errors in estimation 

(nRMSE) using this methodology have been very similar to those obtained with the 

watershed segmentation in ArcMAP or with the FUSION criteria (Table 7). 

For the highest resolution CHMs (0.5 m), the best estimations have been obtained 

with K3 smoothing for F1 (nRMSE = 0.17), CZ1 (nRMSE = 0.59), CZ2 (nRMSE = 0.45) 

and CZ3 (nRMSE = 0.40) using the watershed segmentation in ArcMAP, which supports 

the results shown in Figure 21. For the same combination of parameters (0.5 m raster’s 

resolution and ArcMAP methodology), the best estimation was achieved with K1 

smoothing in plot F2 (Table 7). FUSION produced heterogeneous results. In contrast, 

with CHMs of 0.2 m resolution, the pattern is common for both methodologies. The best 

results were obtained with the highest smoothing (K7) for the F1, CZ1, CZ2 and CZ3 

plots, while the trees of F2 plot were detected better with the weakest smoothing (K3). 

The results are always better in ArcMAP than in FUSION, which supports the graph in 

Figure 18. 

The best results have been obtained with ArcMAP using the 0.5 m resolution 

CHM with 0.5 m, with the lowest error in F1 (nRME = 0.17) and F2 (nRME = 0.21), 

while higher in the Czech plots. Similar results were obtained using the LIDR algorithm 

in RStudio. For the Spanish plots, the differences between ArcMAP and LIDR were less 

than 10% (0.07 for F1 and 0.09 for F2), while for the Czech plots these differences were 

less than 5%. Even for the CZ2 plot, the LIDR results was better than with the watershed 

segmentation (Table 7). 

 



Comparing the accuracy of single trees delineation from ALS 

Master Thesis 2021 (Czech University of Life Sciences) 

Alejandro Rodríguez Vivancos 

 

62 

 

Table 7. nRMSE(%) for high vegetation estimation in every study case (method, CHM resolution and smoothing), 

comparing with vectorial analysis (LIDR). 

 

 

LIDR delineation was also good visually, both the three-dimensional point cloud 

classification (Figure 22) and the treetops delimitation in the shapefiles (Figure 23). 

Although there are some overlapping, the polygon shapes were more natural than those 

obtained by FUSION (Figure 19). 

 

 

Figure 23. ITD using the Li, Guo, Jakubowski & Kelly (2012) algorithm in RStudio. (A) F1; (B) CZ1. 

 

K0 K1 K3 K7 K0 K1 K3 K7

ARCMAP 91,04 23,71 17,07 57,00 292,34 214,04 53,02 33,84

FUSION 240,39 34,15 43,29 88,84 316,79 163,07 54,76 34,75

LIDR

ARCMAP 77,56 21,45 35,80 77,06 281,92 183,58 21,96 38,89

FUSION 210,71 29,05 55,29 82,75 426,15 207,11 30,70 66,45

LIDR

ARCMAP 108,42 80,41 59,38 61,01 206,19 189,00 159,39 105,68

FUSION 190,55 143,20 123,88 104,43 466,69 317,13 167,97 144,79

LIDR

ARCMAP 68,77 61,36 44,95 52,92 149,38 132,09 82,43 47,91

FUSION 152,57 61,73 66,74 95,11 251,26 186,06 76,06 60,98

LIDR

ARCMAP 95,26 45,13 40,25 64,19 162,73 156,05 104,31 60,48

FUSION 149,69 75,77 67,36 91,03 356,16 224,33 92,30 80,51

LIDR

CZ2

41,22

CZ3

41,39

0,5 0,2

F1

24,15

F2

30,52

CZ1

63,12

A B 
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4.5 Regression analysis 

Once evaluated the single tree detection, the relation between different 

biophysical tree parameters was performed to develop a good regression model. This will 

allow to know if obtaining the diameter distribution through this methodology is viable.  

The Pearson correlation matrix has been calculated for the DBH, height and tree 

crown area variables (Figure 24). These correlation coefficients range from -1 to +1, and 

they measure the strength of the linear relationship between the variables. The closer to 1 

in absolute value, the greater the correlation between the variables. 

 

 

Figure 24. Pearson correlation matrix for DBH, height and tree crown area variables.  

r = Pearson correlation value. 

 

The most correlated variable with DBH has been the tree height (r = 0.93), 

although the tree crown size had a very similar correlation (r = 0.89). Both tree height and 

crown size variables were also highly correlated with each other (r = 0.80), although 

slightly lower than the correlations with DBH. 

 

r = 0.93  

r = 0.89  r = 0.80 

r = 0.89  

r = 0.80 

r = 0.93  
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Table 8. Statistical analysis for each variable. 

 DBH (cm) Height (m) Crown (sq. m) 

Count 427 427 427 

Mean 16.33 8.68 12.21 

Standard deviation 15.28 6.23 16.30 

Coefficient of 

variation 
93.56% 71.76% 133.50% 

Minimum 0 1.3 0 

Maximum 73 26.5 95.03 

Range 73 25.2 95.03 

Standardized bias 10.11 6.29 17.69 

Standardized kurtosis 1.94 -3.30 19.22 

 

Standardized bias and standardized kurtosis are parameters of special interest to 

determine if a variable has a normal distribution (gaussian distribution). Values of these 

statistics higher than 2 in absolute value indicate significant deviations from normality, 

which would tend to invalidate many of the statistical procedures that are commonly 

applied to these data, such as regression models. In this case, all the variables showed 

values of standardized bias and the standardized kurtosis out of this range. Therefore they 

present normality deviations (Table 8). 

Different transformations of the variables have been tested in order to achieve a 

normal distribution. The logarithmic, the squared root and the inverse transformation 

were the most common ones. Several combinations were tested, being the logarithmic 

transformation (LOG = LN) of all the variables which provided best result (Figure 26, 

Table 9). 

Despite of the transformations, the standardized bias and kurtosis were still higher 

than the established values for consider the normal distribution of the variables. 

Furthermore, the height and crown size variables continued being highly correlated with 

each other. Therefore they should not act as explanatory variables at the same time since 

they can produce an overfitting of the regression model. 
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Figure 25. Pearson correlation matrix for logarithmical DBH, height and tree crown area variables. r = Pearson 

correlation value. 

 

Table 9. Statistical analysis for each logarithmical variable. 

 LOG(DBH) LOG(Height) LOG(Crown) 

Count 424 424 424 

Mean 2.32 1.88 1.56 

Standard deviation 1.06 0.79 1.59 

Coefficient 

of variation 
45.58% 41.72% 101.46% 

Minimum 0 0.26 -3.51 

Maximum 4.29 3.30 4.55 

Range 4.29 3.01 8.06 

Standardized bias -2.11 -1.19 -4.02 

Standardized kurtosis -3.06 -4.37 -0.75 

 

 

The tree height was the explanatory variable most correlated with the DBH, so it 

would be the first option to test a regression model. However, both options have been 

evaluated. 

r = 0.95  

r = 0.92  r = 0.88  

r = 0.95  r = 0.92  

r = 0.88  
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4.5.1 DBH-Height regression model 

The equation for the best regression model is detailed below (Formula 4), with the 

logarithmic transformation of both the response (DBH) and the explanatory (Height) 

variables: 

ln(𝐷𝐵𝐻 (𝑐𝑚)) = 1.28283 ∙ ln(𝐻𝑒𝑖𝑔ℎ𝑡 (𝑚)) – 0.0994809 [ 4 ] 

 

Table 10  shows the results of the regression analysis performed. The correlation 

between variables has already been studied in Figure 25 (r = 0.95). The model explained 

91% of the DBH variability (adjusted R-squared = 0.908). On the other hand, the Durbin-

Watson (DW) statistic had a p-value lower than 0.05, which indicates a possible residuals 

correlation with a 95% confidence level. 

 

Table 10. Results for DBH-Height regression model. 

Pearson correlation coef. 0.953 

R-squared     0.909 

Adjusted R-squared 0.908 

Residual standard deviation, RSD 0.320 

Mean absolute error 0.242 

Durbin-Watson statistic 
1.631 

(P=0.0001) 

 

 

Residuals correlation was verified visually with the scatter plot of studentized 

residuals as a function of row number (Figure 26). A slight sinus pattern could be 

appreciated. 
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Figure 26. Studentized residuals of DBH-Height model dispersion 

 

The predicted – observed graph (Figure 27) showed a clear linear trend, with some 

homogeneous dispersion of the points. 

 

 

Figure 27. Observed vs Predicted logarithmical DBH values, using DBH-Height model. 

 

4.5.2 DBH-Crown regression model  

The equation for the best regression model is detailed below (Formula 5), with the 

logarithmic transformation of both the response (DBH) and the explanatory (Crown) 

variables: 
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ln(𝐷𝐵𝐻 (𝑐𝑚)) = 0.615728 ∙ ln(𝐶𝑟𝑜𝑤𝑛 (𝑠𝑞. 𝑚)) +  5.42609 [ 5 ] 

 

Table 11 shows the results of the regression analysis performed. The correlation 

between variables has already been studied in Figure 25 (r = 0.92). The model explained 

86% of the DBH variability (adjusted R-squared = 0.855). On the other hand, the DW 

statistic had a p-value lower than 0.05, which indicates a possible residuals correlation 

with a 95% confidence level. 

 

Table 11. Results for DBH-Crown regression model 

Pearson correlation coef. 0.925 

R-squared 0.855 

Adjusted R-squared 0.855 

Residual standard deviation, RSD 0.402 

Mean absolute error 0.306 

Durbin-Watson statistic 
1.551 

 (P=0.0000) 

 

 

Residuals correlation was verified visually with the scatter plot of studentized 

residuals as a function of row number (Figure 28). A slight sinus pattern could be 

appreciated. The residuals dispersion seems more homogeneous than in the previous 

model, although there is more dispersion in the initial rows, while decreasing at the 

ending. 
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Figure 28. Studentized residuals of DBH-Crown model dispersion. 

 

The predicted – observed graph (Figure 29) showed a clear linear trend. Compared 

with the results of the previous model (Figure 28), the point dispersion is wider and more 

irregular in this case. 

 

 

Figure 29. Observed vs Predicted logarithmical DBH values, using DBH-Crown model. 
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4.5.3 Best regression model 

Despite the possible correlation between the residuals, both models could be 

considered as valid. These show spatial residuals patterns, although they appear slight in 

both cases. Objectively, the DBH-Height model showed a better fit (adj. R-squared = 

0.91) and a lower residual dispersion (RSD = 0.32). Therefore, this model was better. 

To make it practical, the logarithmic transformation of its variables has been 

returned. The logarithmic transformation introduces a bias (underestimation) in the 

calculations. To minimize this bias, the final result must be multiplied by a correction 

factor (CF), calculated with the RSD. CF was calculated according to the following 

expression (Formula 6): 

𝐶𝐹 =  𝑒
𝑅𝑆𝐷2

2  [ 6 ] 

𝐶𝐹 =  𝑒
0.322

2 = 1.053 [ 7 ]  

 

The model expression is detailed below. Formula 8 is the general expression of 

the transformed model and formula 9 is the expression without transformation: 

ln(𝑦) = 𝑎 ∙ ln(𝑥) − 𝑏 [ 8 ] 

𝑦 = 𝑥𝑎  ∙  
𝐶𝐹

𝑒𝑏
 [ 9 ] 

 

Considering formula 9, the model has the following expression (Formula 10): 

𝑫𝑩𝑯 (𝒄𝒎) =  𝑯𝒆𝒊𝒈𝒉𝒕 (𝒎) 𝟏.𝟐𝟖𝟐𝟖𝟑  ∙ 𝟎. 𝟗𝟓𝟑𝟑 [ 10 ] 

 

This model is only valid for the study area (Cercedilla, Spain), where the species 

was Scots pine (Pinus sylvestris L.), and for the diameter (0 - 73 cm) and height (0 - 26.5 

m) studied ranges. 
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5 DISCUSSION 

5.1 Problems in detecting suppressed vegetation 

ITD using LiDAR data has been used successfully in numerous scientific studies 

(for example in Jakubowski, Guo, & Kelly, 2013 and Panagiotidis, Abdollahnejad, 

Surový, & Chiteculo, 2017). However, the best results usually occur in homogeneous 

forests, with well-defined and separated trees, such as forest plantations (Reitberger, 

Heurich, Krzystek, & Stilla, 2007). In this study, ITD has been tested in two different 

types of stands. First, the Spanish plots were located in a completely irregular forest with 

a high regeneration capacity (low vegetation). On the other hand, the plots in the Czech 

Republic were located in a managed forest with fewer suppressed trees. 

It has been found that the trees that are covered by the crowns of the dominant 

trees have not been detected in this study with any of the techniques used, in accordance 

with previous studies (Næsset, et al., 2004). ITD using CHM is ineffective in detecting 

small trees that are dominated by the crowns of upper trees. The reason is found in the 

definition of CHM. Each cell of the raster layer is influenced by the highest LiDAR 

points, neglecting those with the lowest heights. In addition, the point density for the 

suppressed trees is lower than in the upper layers since they intercept most of the radiation 

emitted by the LiDAR sensors. 

Other studies have also had worse results in detecting low vegetation (Reitberger, 

Heurich, Krzystek, & Stilla, 2007; Jakubowski, Guo, & Kelly, 2013). The first study was 

located in the Bavarian Forest National Park and used full waveform LiDAR data with a 

density of 25     points∙m-2. The percentage of trees detected was much higher in the upper 

layer (56% - 94%) than in the intermediate and low layer, where only a few trees could 

be detected, since they were covered by the main vegetation. Similarly, the second study 

detected 100% of the dominant trees, but the estimation accuracy decreased according to 

the vertical distribution. In this way, a range from 8% to 19% of the suppressed trees were 

detected. 

The detection of low vegetation has been very poor in this study. However, some 

improvement could be seen when using point cloud trees classification instead of CHM 

segmentation. The advantage of working on the point cloud is that all points are 
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preserved, including the points of small trees (no matter how few). The limitation is the 

quality of the point classification since the shape of the trees is not as well defined in 

these layers as in the upper ones due to their lower density of points. Table 12 shows 

lower nRMSE (%) using the LIDR algorithm in comparison with the CHM segmentation, 

although the differences are very small. In the Czech plots, the dominated trees were not 

detected. 

 

Table 12. nRMSE(%) for low vegetation estimation on each study case (method, CHM resolution and smoothing), in 

comparison with point cloud classification (LIDR). 

  

  

5.2 FUSION methodology imprecisions 

The smoothed CHM layers were the same for the watershed segmentation in 

ArcMAP and tree delineation in FUSION. However, the differences between these 

methodologies were statistically significant (ANOVA p-value = 0.0298; Figure 18). 

Watershed segmentation in ArcMAP improved FUSION estimation by 20% on average. 

Possibly, the quality of the CHMs had an influence on these differences. Their extraction 

using the resolutions of 0.5 m and 0.2 m produced many empty cells, which were 

corrected with a mean smoothing. The quality of these CHMs was not then the highest. 

Therefore, the criteria used by FUSION were ineffective. In addition, the subsequent 

delimitation of the tree canopy has been ineffective in some study cases, especially in the 

layers with less resolution and under lower LiDAR density conditions (Appendix 2). 

K0 K1 K3 K7 K0 K1 K3 K7

ARCMAP 89.37 93.11 100.78 101.09 82.71 92.48 99.41 92.02

FUSION 83.60 83.92 89.97 97.96 82.38 76.32 90.72 97.06

LIDR

ARCMAP 112.90 115.74 117.79 115.53 119.31 111.08 114.07 109.56

FUSION 129.81 116.15 112.05 115.74 291.80 148.61 111.40 111.19

LIDR

ARCMAP

FUSION

LIDR

ARCMAP 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

FUSION 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

LIDR

ARCMAP 115.47 115.47 115.47 115.47 115.47 115.47 115.47 115.47

FUSION 115.47 115.47 115.47 115.47 115.47 115.47 115.47 115.47

LIDR

CZ2

100.00

CZ3

115.47

F1

82.60

F2

109.23

CZ1

0.5 0.2
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"TreeSeg" is very sensitive to the resolution and smoothing used in the production of 

CHM, working better in open stand conditions (McGaughey, 2018). 

5.3 Effect of Kernel – Resolution combination 

The Kernel - Resolution interaction has produced significant differences in the 

estimates. In general, the higher the resolution of the CHM, the smaller the radius (in 

number of cells) of the smoothing area (kernel). In physical distance, the radius is similar. 

In a 0.5 m resolution CHM, a radius of 3 cells means a radius of 1.5 meters. On the other 

hand, in a 0.2 m resolution CHM, a radius of 7 cells means 1.4 meters of radius. However, 

the results of the combination 0.5-K3 (resolution - kernel) were not the same as the 

combination 0.2-K7, although in some cases they were similar. 

F2 plot produced similar nRMSE in both combinations (Table 7). One possible 

explanation is that the density of the point cloud in this plot is the highest (22.66 points∙m-

2; Table 3). The higher the density of points, the lower resolution CHMs are better since 

there will be a greater probability of finding points belonging to the canopy on each cell. 

If the point density is not sufficient, many cells in the CHM will be empty and when 

performing a mean smoothing, the cells are underestimated. This causes an 

overestimation of the trees due to the subcanopy effect, that is, several trees are detected 

where there is only one. 

Point cloud density also influences the search distance to detect trees. The higher 

the density of points, the shorter the search distance necessary to detect the trees (Picos, 

Bastos, Míguez, Alonso, & Armesto, 2020). This can be applied to this case study 

considering the smoothing kernel distance. F2 plot, with the highest point cloud density, 

produced better results with lower kernels than the other plots. In general, with a 

resolution of 0.5 m, the K3 smoothing produced the best results (Table 7), but in F2, the 

best smoothing was K1. Similarly, K7 smoothing was the best option in the 0.2 m 

resolution CHMs, while F2 had better results with a smaller smoothing (K3, Table 7). 

Another parameter that influenced the detection of trees is the spacing between 

them (stand density). In open stands is easier to isolate the trees individually (Picos, 

Bastos, Míguez, Alonso, & Armesto, 2020). In this study, the effect of stand density is 

appreciated in the F1 plot, where the detection of the trees (high vegetation) was the most 
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accurate (nRMSE = 0.17). The stand density in this plot was the highest if low vegetation 

is considered (Figure 9), but the dominant trees (height > 16 m; Table 5) were only 49, 

which means a high vegetation density of 204.16 trees∙ha-1. In addition, the trees were 

well defined in the CHM, which resulted an accurate ITD. Considering the same criterion, 

F2 had a stem density of 308.33 trees∙ha-1, less than the density of the Czech plots (n > 

340 trees∙ha, Figure 9). This, coupled with a higher LiDAR point density, has resulted in 

the second-best estimation (nRMSE = 0.21). 

On the other hand, the Czech plots produced the worst estimations despite having 

the highest and most defined trees. The stem density did not have influence on the 

estimations, since all of them had the same (approximately 35 dominant trees, Figure 9). 

However, there was a slight influence of the point cloud density. CZ3 plot had the lowest 

density (9.89 points∙m-2) while CZ1 and CZ2 had higher values (around 12 points∙m-2). 

This resulted in nRMSE = 0.59 in plot CZ3, being lower in the other ones (nRMSE = 0.45 

in CZ2 and 0.40 in CZ3). Other possible sources of error are discussed in section 4.1.5). 

5.4 Point cloud classification 

The advantage of point cloud trees classification is that the processing and 

extraction of the CHM are eliminated, in addition to its subsequent corrections. Both 

methodologies are influenced by the point cloud, since the extraction of the CHM is better 

in higher point cloud densities, as is the classification of the point cloud. The limitation 

of the watershed segmentation is mainly found in the suppressed trees (low vegetation). 

Only a few individuals can be detected with this methodology (section 4.1.1), while 

detecting dominated trees is possible using with the point cloud classification algorithms, 

especially in higher point cloud densities (Li, Guo, Jakubowski, & Kelly, 2012). In this 

study, the LIDR algorithm produced better results than the CHM segmentation (Table 

12), despite its calibration was very simple (the predefined parameters were used). 

On the other hand, the high vegetation segmentation was similar both with LIDR 

algorithm and raster analysis. As mentioned, the algorithm was not carefully calibrated 

for each plot, while the watershed segmentation was. Therefore, the potential of the point 

cloud classification is very high, since they take advantage of the three-dimensional 

structure of these layers (Li, Guo, Jakubowski, & Kelly, 2012) instead of transforming 
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them to a two-dimensional layer, whose transformation can produce some interpolation 

errors  (Guo, Kelly, Gong, & Liu, 2007). 

5.5 Possible sources of error 

The following aspects could have significant influence on the ITD using ALS data:  

1. CHM quality: The CHMs had low resolutions (0.2 m and 0.5 m) and the point 

clout density ranged from 9.89 to 22.66 points∙m-2. These densities should be 

enough to do a good ITD from ALS data since it is recommended to use a density 

greater than 4 - 5 points∙m-2 (Wulder, Bater, Coops, Hilker, & White, 2008; 

Reutebuch & Andersen, 2005). However, many CHM cells had empty data, 

especially in the Czech ones. Point cloud density was similar in Czech plots than 

in the Spanish F1. Perhaps the dispersion of the points in the first ones was lower. 

In this situation, performing a mean smoothing does not completely solve the 

problem, even reducing the precision in those cells where the values were 

adequate. 

2. Location of the plot coordinates: The coordinates of the Czech plots were not 

precisely located. The spatial correction was performed visually, which induces 

considerable errors. The Spanish parcels correspond to two permanent plots, 

whose spatial location was carefully worked out. Therefore, nRMSE were lower. 

In addition, the transformation from the Czech projection (S-JTSK Krovak East 

North) to the UTM ETRS89 (Zone 33) could cause an additional source of error 

when extracting the plots from the point cloud. 

3. Temporal gap between the LiDAR and the dasometric inventory: The 

dasometric inventory in Spain was performed in 2015, 4 years after the LiDAR 

flight. During that time, the stand has changed, which also influence the estimates. 

4. Field work: The Spanish plots were located on steep slopes, while the trees in the 

Czech Republic have heights up to 42 meters. All of this could affect the accuracy 

of the measurement. The first because the field work on steep slopes is difficult 

to perform, while the second because of the imprecision when taking the heigh 

measurements (lack of vision over the treetop). In general, the height of trees is 

overestimated in classical inventories, while LiDAR tends to underestimate it 
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since it is difficult for the LiDAR point to coincide with the exact point of the 

treetop. In this study, height distributions were compared in 2 meters wide ranges. 

It is easy to make a mistake in such small ranges. For example, a tree measuring 

30.1 m and its LiDAR counterpart 29.9 m would be in different ranges, although 

an error of 20 cm would be a 0.66% relative error (almost negligible). 

5.6 DBH relation with the height and the crown size 

The correlations between DBH, height and crown area were high, like those 

obtained in other studies (Valbuena Rabadan, Santamaria Pena, & Sanz Adan, 2016). In 

this study, the correlations are so high (r = 0.95 for DBH-Height and r = 0.92 for DBH-

Crown size) because only trees from two sample plots (427 trees) have been considered. 

However, a high dispersion was observed in the largest trees. For these, the variability in 

DBH increases as the height is higher, being worse their relation (Arias-Rodil, et al., 

2018). 

Figure 24 shows a greater dispersion in the taller trees, while in the smaller ones 

the dispersion decreases. This is also seen in other studies (Gonzalez-Benecke, et al., 

2014). In this study, the dispersion was even greater than in this study since they analyzed 

127 plots. When the trees reach their maximum height, the diameter continues growing, 

which explains this variability. For the regression analyzes, the logarithmic 

transformation of all the variables was considered, so that a potential model was obtained, 

in accordance with other studies (Gonzalez-Benecke, et al., 2014). This means that as the 

diameter increases, the height tends to stabilize, for the same reason explained above. 

Both the model and the high Pearson correlations show that there are good relationships 

between the biophysical parameters of the tree. However, this model needs to be 

improved and more sample plots are needed to support this strong relationship. 

In addition, more study is necessary to extract the suppressed vegetation with ALS 

data. This is the main limitation to calculate the diameter distribution with this 

methodology.  
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5.7 Suggestions and proposals for improvement 

ITD is a technique with great potential, since it allows obtaining high detailed 

information about the stands. ABA methods are also useful, but the level of detail 

obtained with ITD is higher. In contrast, the economic investment, and the errors 

(especially for suppressed vegetation) are the main disadvantages of this methodology. 

Considering the results of this study and the performed methodology, some 

recommendations are detailed below to improve the estimations in future research: 

1. CHM extraction: ITD using CHM segmentation needs accurate raster layers. For 

this, some details must be considered. First is evaluate the appropriate resolution, 

which will be greatly influenced by the point cloud density. The higher point 

density, the lower the resolution that can be used. It will be a more detailed CHM 

and better results can be achieved. In addition, the appropriate algorithm must be 

used. The one applied in this study has great deficiencies, since first returns points 

were interpolated on each raster cell. Perhaps, another criterion such as highest 

point of returns would be more appropriate. 

2. CHM correction: Correcting the CHMs with a mean smoothing is not the best 

solution in cases where there are many empty cells. Another type of filters such 

as those developed in other studies (Jakubowski, Guo, & Kelly, 2013) are more 

complex to use but produce better results. In this study, the CHM could have been 

improved if a filter of close maximum values had been applied before the mean 

smoothing, so that, the highest value of the neighborhood is assigned to each cell. 

It would be similar to increasing the resolution. Therefore, CHMs with 0.5 m 

resolution produced better results than CHMs with 0.2 resolution. 

3. Other classification methods: Working with the LiDAR point cloud directly has 

many advantages. The main one is that the three-dimensional structure of the point 

cloud is used and intermediate processes are reduced (Li, Guo, Jakubowski, & 

Kelly, 2012). The LIDR results were similar to those obtained in the best CHM 

segmentation cases. Furthermore, the suppressed vegetation can be estimated 

better than using CHMs. 

4. Expand the plot radius: One aspect to improve and that has not been considered 

in this study is to expand the radius of the sample plot. It may be trees measured 
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in field, but their crown is not detected with LiDAR because it falls out of the plot 

or that its maximum height is outside the point cloud clip. 

5. Precise location of the plot coordinates: It is very important to locate the exact 

coordinates of the sampling plots. Otherwise, the estimation errors could be very 

high since the LiDAR information do not correspond to the field measurements.  
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6 CONCLUSIONS 

ITD extracts detailed information on the forest with the individual segmentation 

of its trees and the subsequent calculation of their biophysical parameters. However, it 

has some limitations, both technical and economic. Applying this methodology in 

uneven-aged stands or forests with a high stem density is difficult, especially because the 

suppressed trees (under the canopy) detection. 

CHM segmentation requires high quality raster layers, which is related with a high 

LiDAR point density. The CHM methods studied were ineffective in detecting suppressed 

trees, although good results were obtained in detecting the dominant ones, especially with 

ArcMAP watershed segmentation. The quality of the CHM and the imprecision of the 

plots location did not allow to obtain good results with the CHM of 0.2 m resolution nor 

in the plots of the Czech Republic. Point cloud density was a limiting factor, so that the 

optimal resolution of the CHM layers was 0.5 meters, which required K1 or K3 

smoothing. The detection of the trees directly from the LiDAR point cloud offered good 

results, similar to those obtained with the CHM segmentation, despite not having worked 

on their calibration. In addition, the detection of the suppressed trees was better in vectoral 

instead of raster classification.  

It is advisable to delve into the ITD using different point cloud classification 

algorithms since it is a more dynamic technique that takes advantage of the three-

dimensional structure of the layer. On the other hand, the segmentation of the CHM is 

very intuitive, but requires a detailed study for its optimal extraction and subsequent 

correction. Both methodologies are valid for detecting and extracting individual trees (at 

least the dominant vegetation which together with the high relationships between their 

biophysical parameters allows obtaining very detailed information on the stand using 

remote sensing information. However, diameter distribution needs also the suppressed 

vegetation information, which is the main challenge for future studies in order to calculate 

the diameter distribution with ALS data.
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