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ABSTRACT

The bachelor thesis concerns fractional calculus on time scales, more precisely, it intro-
duces fractional calculus on time scales and also investigates the property of uniqueness
of the axiomatic definition of the power functions. After introducing basic concepts, the
subject of discussion is mostly generalized Laplace transform as well as proof of unique-
ness of generalized Laplace transform, which is used as a tool to proving the uniqueness
of fractional power functions on time scales.
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zlomkovy kalkulus na ¢asovych Skdlach a taktéZ vySetfuje jednozna&nost axiomatické
definice zavadéjici mocninné funkce. Po zavedeni zadkladnich pojmi je pfedmétem
diskuze hlavn& zobecnénd Laplaceova transformace a diikaz jednoznaénosti zobecnéné
Laplaceovy transformace, ktera je pouZita jako nastroj pro dokazani jednoznaénosti
zlomkovych mocninych funkcii na ¢asovych skalach.
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INTRODUCTION

A unification of the diverse fields of mathematics is a goal of many scientists
throughout the history. Some of the greatest mathematicians have expressed
views that whole theory should be fitted into one subject.

One of such attempts is a time scale calculus (or a measure chain calculus),
which is a unification of the theory of continuous and discrete analysis and cre-
ating a new formalism to study discrete-continuous dynamical systems. This
feature is enabled by the general definition of a time scale , which is a closed
non-empty subset of real numbers. Time scale calculus originates from Ph.D. dis-
sertation by the German mathematician Stefan Hilger, 1988 [1].

An important feature of time scale calculus is the possibility of an application
of gained results to the more general sets than those in continuous and discrete
analysis, such as the Cantor set. Recently, the subject of dynamic equations on
time scales continues to be a rapidly growing area of research, with many appli-
cations in various fields such as neural networks, heat transfer, epidemic models,
population dynamics and so on.

Another successful attempt of generalization is the continuous fractional cal-
culus. The initial idea have been introduced almost at the time of developing the
derivative. First record of such an idea leads to the end of the 17th century to
Leibniz’s letter to 1'Hospital, where he discussed the meaning of the derivative.
Many well-known authors contributed to fractional calculus throughout the his-
tory. However, only after the first international conference in 1974 specialized on
this subject and the publication of a comprehensive survey of fractional calculus
theory and its applications [2]], this subject has changed to a fast-growing and a
respected field of mathematics with many applications in electrical engineering,
rheology, control theory etc.

Origins of discrete fractional calculus are papers [3]], [4], where the first defini-
tions of non-integer order differences and sums were proposed. Recently, discrete
fractional calculus attracted attention and was unified and generalized.

The paper is organized as following: Firstly, we recall the basics of time scale
theory and underlay them with a sufficient amount of examples to understand
the matter. Secondly, we discuss properties of generalized time scale nabla Laplace
transform. Finally, we employ our findings to extend some known results on time
scale fractional operators.



1 TIME SCALE CALCULUS

1.1 Basic definitions

In this section we introduce the basics of the time scale calculus. The employed
definition of a difference operator divides the time scale calculus into two cate-
gories: delta and nabla calculus. In this work we utilize the nabla calculus, which
is built on the notion of a backward difference.

Following basic definitions are adapted from [5].

Definition 1.1.1. A time scale T is an arbitrary non-empty closed subset of real
numbers.

Example 1.1.1. N, Z, R are typical examples of time scales. Also
T={5"necZ}
T ={VnkeZneR"}
T=g%={gkeZqeR"}uU{0}
T =hZ = {kh;n € Z;h € R"}
are time scales.

Note that Q, C are not the time scales.

In the following definitions we put sup{T} = inf{@} and inf{T} = sup{D}.

Definition 1.1.2. Let T be a time scale.

a) Forward jump operator o : T — T for t € T is defined by o(t) := inf{s €
T:s >t}

b) Let T be a time scale. Backward jump operator p : T — T fort € T is
defined by p(t) :=sup{s € T :s < t}.

c) Let T be a time scale. Forward graininess function ¢ : T — [0,00) for t € T
is defined by u(t) := o(t) —t.

d) Let T be a time scale. Backward graininess functionv : T — [0,00) fort € T
is defined by v(t) :=t — p(t).

Example 1.1.2. We present some examples of backward graininess function.

v(t)=0 for R
v(t)=h for hZ

_ 1t or ¢Z
v(t) =t(1 q) for g



Definition 1.1.3.  a) If o(t) > t we say that t is a right-scattered point.
b) If p(t) < t we say that t is a left-scattered point.
c) If o(t) > tand p(t) < t we say that t is an isolated point.
d) Ift < sup{T} and o(t) = t we say that t is a right-dense point.
e) Ift > inf{T} and p(t) = t we say that t is a left-dense point.
f) If sup{T} >t >inf{T}and p(t) =t = o(t) we say that t is a dense point.

Definition 1.1.4. If T has a right scattered minimum m, then Ty := T — m, other-
wise T = T. We call T the truncated time scale.

Definition 1.1.5. The function f : T — R is right-dense continuous (rd-continuous)
if it is continuous at each right-dense point in T and if it has finite left sided limits
at left dense points in T.

Definition 1.1.6. The function f : T — R is left-dense continuous (ld-continuous)
if it is continuous at each left-dense point in T and if it has finite right sided limits
at right dense points in T.

Theorem 1.1.1. Assume f : T — R, then the following statements are true:
a) If f is continuous, then f is rd-continuous and ld-continuous.
b) Forward jump operator ¢ is rd-continuous.
c) Backward jump operator p is 1d-continuous.

Following definitions are borrowed from [6].
Definition 1.1.7. The function f : T — R is v-regressive if

1—v(t)f(t) #0 forallt € Ty.

Definition 1.1.8. The class of all scalar ld-continuous and v-regressive functions
on T is denoted by R,, ie. Ry = {f : T — R;f(t)is ld-continuous and v-
regressive }.

Further, R} = {f € Ry;1— f(t)v(t) > 0} forall t € T,.

Definition 1.1.9. We define a circle plus addition for p,v € R, by
(p©vg)(t) := p(t) +q(t) — p()q(t)v(t)
forall t € Tk.

Definition 1.1.10. We define a circle minus subtraction for p € R, by

B B O]



Thorough this work, we use @, instead of ©,,0,.
Theorem 1.1.2. (R,, ®) is an Abelian group.
Theorem 1.1.3. (R, ®) is a subgroup of (R, ®).

Definition 1.1.11. For i > 0, the Hilger complex numbers are defined as
1
Ch:{zeC:z#E}.
Definition 1.1.12. For & > 0, the strip Z;, is defined as
T
Zy={z€C:——<Im(z) <

h b

Following theorems and definitions comprising nabla derivative can be found
in [5].

=[x

Definition 1.1.13. Let f : T — R be a function and let t € Ty. Then V-derivative
V£(t) (or fV(t)), if it exists, is defined to be a number, with the property that
for any given number € > 0, there is a delta neighbourhood U; of t (i.e., Us =
(t—6,t+9)NT for some § > 0) such that

£(s) = flo(t) = fY () (s —p(t)| < els—p(t)] Vs € Us.

Theorem 1.1.4. Assume that f : T — R is a function and let t € Ty. Then
following statements are true.

a) If f is differentiable at t, then f is continuous at t.

b) If fis continuous at t and t is left-scattered, then f is nabla differentiable at t

with
v S8 = fle(h))
f (t) - U(t) . (11)
c) If tis left-dense, then f is nabla differentiable at t iff a limit
)= f()

s—t s—t

exists and is finite. Then

fv(t) — f(S) _f(t).

s—t

d) If tis nabla differentiable at t, then

flo(t)) = v(O)fY (1) + f(t).



Theorem 1.1.5. Assume that f,g : T — R are nabla differentiable at t € Ty. Then
following statements hold:
a) (f&)V (1) = fFY(H)g(t) + f(p()gY (£) = F(H)ZV (£) + FY ()8 (p(t))-

PO
V(e —F ()Y (¢
) (g) ()= —=enm

Definition 1.1.14. Let a,b € T be such thata < b. Let f : [a,b]r — Rand F :

[a,b]T — R be functions such that FV (t) = f(t) for all t € T*. Then the function

F(t) is called the antiderivative of function f(t) over [a, b]t as [ : f(t)Vt =F(b) —
a). | ab f(t)Vtis called nabla integral.

We may also note that [, f(t)Vt = — fabf(t)Vt and [ f(t)Vt =0.
Theorem 1.1.6. Every ld-continuous function has the nabla antiderivative.

Theorem 1.1.7. Let T be an isolated time scale. Then the nabla integral can be
calculated as

[ rove= ¥ vso)

e(ﬂ,bhr

Definition 1.1.15. Leta € T, sup{T} = oo, f : [a,00)r — R be ld-continuous.
Then the improper integral of first kind over f () over [a, co)r is defined by:

/a T HOVE = limy e / ' vt

Definition 1.1.16. Leta,b,c € T be such thata < b < cand let f : (a,c]T — R be
ld-continuous on any interval [b, c|t. Then the improper integral of second kind
of f(t) over [a, c|t is defined by:

¢ lim H)Vit if a is right-d
/ F(HVE = b—a+ fb ), if ais right-dense
Iy . f(HVE, if a is right-scattered.
From a) we obtain following integral by parts formula

Theorem 1.1.8. Assume that f, ¢ : T — R are nabla differentiable at t € T,. Then

fY (0= f(t)g(t) — [ flp
/ - st

Proof of next theorem is modified version of delta version of this proof pre-
sented in [5], but first mentions of delta version of proof have been presented in

[7].



Theorem 1.1.9. Let f : R — IR be continuously differentiable and suppose g :
T — R is nabla differentiable. Then f o g : T — R is nabla differentiable and the
following formula holds

(fog)¥ /f £ — uv(t)g" (1) )du.

Proof. We apply ordinary substitution from the calculus:

(Fo9)() ~ (Fo8)(p(1) = £(s(5)) ~ F(3(p(t) =
= [ poie = o)) [ #/n3(s) + (1~ (o))

(p(t))

Lett € Ty and € > 0 be given. Since g is nabla differentiable at t, there exists a
neighbourhood Uj of t such that

8(s) —g(p(t)) — gV () (s —p(t))| < €"|s —p(t)]

for all s € Uy, where
. €

2 [ f(hg(t) + (1 — h)g(p(t)))dh

We know that if f’ is continuous on R and therefore uniformly continuous on

closed subsets of IR, there exists a neighbourhood U, of t such that:

|f'(hg(s) + (1 =h)g(p(t))) — f'(hg(t) + (1 = h)g(p(t))] <

€
2(e* + IgV(H)])

Also

|(hg(s) + (1 = h)g(p(t))) — (hg(t)+
+(1=h)gle®)] < (1 =h)|g(s) =g ()] < |g(s) —g(#)]

holds for all 0 < h < 1. Then we define U = U; N U, and set s € U and we put
a = (hg(s) + (1 —h)g(p(t))
p=(hg(t)+ (1 —h)g(p(t))

Then we have

((Fog)(s) = (fog)(p(t) — (s —p(t)g" (1) /01 f'(B)dn| =



~I(3(5) ~8(6(t) [ /@)t~ (s~ p()7 (1) [ £'(B)n] =

=[(g(s) —g(p(t) — (s —p(t) l/ftXM+
/f B)dh| <

<|(8(5) — g(p() — (s — p(t) |/|f@ﬂ%+
DI |/|f )ldh <

<e[s — p! r/‘v ) |dh-+
DT [ 1@ ~ £ (8)ldn <

<e[s — p! |/|f )di+

+(s —p(1)1g( +e*|/ I (a B)|dh <

<e'ls —plt |A £(B)ldh+ S = p()] <
<3ls—p()] + 5ls = p()] =
=cls —p(1)

This implies that f o g is nabla differentiable at t and its derivative is

1 1
() [ 7 @Bn=gT(t) [ (hg(t) + (1= n)g(o(t))dn
Utilizing simple substitution, we prove our theorem. O

Following results are dual to delta results presented in [6]. We utilized same
methods in nabla calculus to determine them.

Using chain rule provided by the Theorem we derive the following for-
mula:

(x)V(t) = xV (1) /01 a(x(t) —uv(t)xV (£)*dh
If x(t) # 0, then

\Y 1 Vv
a\V N (t) / . X (t) a—1
(x*)V () = x"(¢) ") a ) (1 W(t)—x(t) ) du (1.2)
In order to have everything well defined, we want to assume for « € R|IN that
v
(1—wo%é?m%4>o

6



for h € [0,1] and t € T. Sufficient condition for this is:

R(w) :=

Rt for a€R|N
R  for o €N

From this we get the following definition:

Definition 1.1.17. For « € R and for p € R(a) we define the dot multiplication

1

(«©p)(t) = pOha | (1= uv(t)p(t))* du.

0

Theorem 1.1.10. Let &« € R. If « € IN, suppose thata # Oforallt € T. If « ¢ IN,
suppose that x(t)x(p(t)) > 0 forall t € T. Then

(xzx ) \4 Vv
P (%0, 7) (1.3)
Proof.
GO )
x(t) x(t)
Then the theorem follows directly from O

Theorem 1.1.11. Leta € R. If p € R(a), then
1-veop)=1-vp)"

Proof.

1
1—veop) =1 —vpoc/ (1—uvp))* tdu =
0

1
=1- / vpa(1 — uvp))* tdu =
0
1-vp
=1- / ws*lds =
1

=1+(1—-vp)*—1*=(1—-vp)~

1.2 Time scale functions

In this section we introduce a generalized nabla time scale monomials (gener-
alized polynomials), a generalized nabla time scale exponential function and



present few demonstrative examples followed by brief introduction to their de-
termination. The exponential function plays a crucial role in our next chapter -
Laplace transform. Monomials are inevitable for series expansions, namely the
Taylor’s series expansions.

Following results concerning monomials are adapted from [8].

Definition 1.2.1. Monomials /1, : T x T — R for n € IN are defined by recursion
flo(t,S) =1
~ t ~
hy(t,s) = / hy_1(7,s)VT.
S

Theorem 1.2.1. Letn € Z1 and s,t € T. Then
a) h,(t,t) =0,
b) Vi, (t,s) = h,_1(t,s) fortec Ty,
) Vhi(ts) = (t—s).
Theorem 1.2.2. Lets,t € T, n € Zar . Then the following statements are true.

a) If T = R, then /i, (t,5) = =50

m!

b) If T = hZ and ¢*(s) = t, then
X n+k—1 et [~ —1
fa(t,s) = h" = (=) 1" :
P ) T

Theorems and definitions comprising generalized nabla time scale exponen-

tial function are borrowed from [5) 6].

Definition 1.2.2. For any f € Ry, the exponential function &; : T x T — R is
defined as a unique solution of the initial value problem

Vy(t) = f(£)y(t) y(s) =1
Definition 1.2.3. The h-cylinder transformation &, : C, = Z, is defined by:
2 1
1(2) = — Log(1 — zh)
for h > 0 and where Log is the principal logarithm function.

Theorem 1.2.3. Solution of the initial value problem Vy(t) = f(t)y(t), y(s) =1

can be written as:
t A
84(t,s) = exp{ / i (f(D)VTY  steT (1.4)

where &, (z) is the v-cylinder transformation.



Theorem 1.2.4. If p € R, then the semi-group property for s, t,r € T is satisfied.

&r(t,r)ep(r,s) = &s(t,s).

Theorem 1.2.5. Let p,qg € Ry, and s,t € T. Then the following statements are
valid

a) &(t,s) =1
b) é,(t,t) =1
) &,(t,5)8&,(t,s) = €pay(t,s)

Theorem 1.2.6. Let p € R, and fp € T. Then the following statements are true:
a) if p € R}, then é,(t,tg) > Oforallt € T.
b) if 1 —v(t)p(t) < 0for somet € Ty, then &,(o(t),to) &,(t, to) <O.
c) if 1 —v(t)p(t) < Oforallt € Ty, then &,(t,fy) changes sign at every point

teT.
Theorem 1.2.7. Let z € R,. Then
. -0z,
ee(p(t),s) = — " ecults)
Proof. Utilizing the Theorem e)
écz(t,s)  —©z,

ecz(po(t),s) = (1 —v(t) ©2) @cs(ts) = ecz(ts).

S 1-v(t)z oz
[

Here we present some examples of the time scale exponential functions as
well as the basic method of their determination.

Example 1.2.1. Let T = hZ and f(t) = ¢ € R,s € T and the initial value problem
Vy(t) = f(Hy(t) and y(s) =1

Vy(t) = cy(t)
Using Theorem we obtain

y(t) —y(p(t))

p = cy(t).
After few calculations and utilizing boundary conditions we get
y(h+s) = 1—ch
Finally, we may determine that
1
(1) = &(t,s) = =
/ ‘ (1—ch)®



Example 1.2.2. Let T = g% = {¢*,k € Z,q € R} } and the initial value problem

Vy(t) = f(H)y(t) and y(s) =1.
Then

_ ye®)
M =T e

Using the boundary conditions

1
1—(1—7)sq(f(sq))

y(sq) =

oy 1
y(t) = y(c"(s)) l[ll 1—(1— %)ak(s)(f((fk(s))

a

y(B) =y("(s)) =[[1-(1 - Lok () (£t ().

k=1 q

Example 1.2.3. Let T be an arbitrary isolated time scale, s,t € T,f : T — R such
that f € R, and the initial value problem

Vy(t) = f(Hy(t) and y(s) =1.

Then (0(1))
_ yip
ARTORTON0)
From the boundary condition we know that
1
A TOETOH0
Lett = 0" (s)
y(@" ) =1 :

i1 v(K(s)) —v(o*(s)) f(0*(s))

Example 1.2.4. Following table contains other examples of exponential functions.

T éy(t,s)

R e(t=s)

z (L)

hz ()"

1z ()"
qNO Hse[s A ift>s




Following theorems are dual to delta versions presented in [6].

Theorem 1.2.8. If « € Rand p € R(«), then

Proof. Let tg € T and put:
y =&,(- to)
Then y(tp) = 0 and by the Theorem 13|
oV
y =)V =(ao é)ég = (@©ply

We know that y solves the initial value problem

Vy(t) = («©p)(t)y y(to) = (1.5)

Therefore,

o>
=R
I
<
I
>
2
©
=

11



2 LAPLACE TRANSFORM

The generalized time scale nabla Laplace transform plays the key role in the fol-
lowing investigation of the uniqueness of the fractional operators on the time
scales. We employ these definitions and the theorems from the following papers:

[91, [8].

2.1 Basic definitions

Definition 2.1.1. Let T be such that sup{T} = oo and fix tp € T. For any given
function f : [tg, o0) — C, the solution of the shifting problem

Vu(t,p(s)) = —Vu(t,s) tseT,t>s>t

is called shift of f(t). The symbol V denotes the derivative with respect to the
second variable.

Definition 2.1.2. For any given function f, g : [s,00) — R, their convolution is
defined by:

(F=)(0) = [ Foe)s(o)ve
where f is the shift of f.

Theorem 2.1.1. Convolution defined by previous definition is associative e.g. (f *
g)xu=fx(gxu).

Proof. The assertion can be proven utilizing the nabla analogy of the technique
performed in the proof presented in [6]. O

Definition 2.1.3. Let sup{ T} = oo, s € T and let f(¢) be a real function defined
at least on (s, 00) . The generalized time scale nabla Laplace transform of f(¢) is
defined by

LAFYE) = [ f0esxlp(t),s)VE  for zeD(f)

where D(f) consist of all complex numbers z such that Re(z) € R, for which the
improper integral exists.

Thorough this work, we denote D(f) region of convergence of generalized
time scale nabla Laplace transform.

Theorem 2.1.2. The necessary condition for the existence of the a Laplace trans-
form Ls{f}(z) to exist is

limi oo f (ecz(p(t), ) = 0.

12



Theorem 2.1.3. Laplace transform of convolution is the product of images of
Laplace transform, i.e.:

LA(fx8)(8)}(2) = Ls{f}(2) * Ls{g}(2)-

Theorem 2.1.4. Forn € Z,
Lo{hn(-,0)}(z) =27

2.2 Regions of convergence

In this section we investigate the regions of convergence of the time scale Laplace
transform.
We know that |1 — z| < 1 is a circle with center in z = 1 and radius 1.

Example 2.2.1. Let us consider T = hZ

Lof1y = | e (p(t),0)VE =
= p_1—hz

_ /Ow(1 )= Y (1 h2) = =

t=1

Sum coverges, if |1 — hz| < 1.
We also got circle, with the center in z = % and the radius %
Example 2.2.2. Let us consider the periodic time scale with backward graininess

function v(t) = hand v(c(t)) = H.
Lof1} = [ ecalp(t),0) 9 =

_ /0°°(1 —hz)i(1— Hz)5Vi = Yul1 - hz)(1 — Hz)}

Sum converges, if |(1 — hz)(1 — Hz)| < 1.

02

0.l

Im{z) 0

-0.1

0 02 04 0.6 08 I
Re(z)

Fig. 2.1: An example of region of convergence for the periodic time scale H =
5,825, h = 1, which is inside of the shape.
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05

TIm(z) o

=05

Fig. 2.2: An example of region of convergence for the periodic time scale H = 0,1,
h =1, which is inside of the shape.

0.6 038 1
Belz)

Fig. 2.3: An example of region of convergence for the periodic time scale H = 6,
h = 1, which is inside of the shape.

Last figure shows us that the regions of convergence do not have to have the
property of being connected, which is a very important feature for the next sec-

tion.

2.3 Proof of Lerch’s theorem

As we mentioned before, generalized time scale nabla Laplace transform is widely
used as a tool to analyse properties of various functions, as well as proving their
uniqueness. We know from the real analysis, that the Laplace transform on real
numbers has uniquely determined image except for a null function. It also im-
plies, that we may calculate the inversion and the various methods exist for

14



such calculations on real numbers. Lerch’s theorem proves the uniqueness of the
Laplace transform. However, in our knowledge there is no valid proof of unique-
ness of the generalized time scale nabla Laplace transform, nor general formula
for an arbitrary time scale using nabla calculus, even though many authors as-
sume it. This chapter is devoted to problems, concerning the proof of uniqueness
of generalized time scale nabla Laplace transform on arbitrary time scales con-
structively, in fashion of proof presented in [10],[11]. Later on, we proved this
chapter generalized Lerch’s theorem for some specific types of time scales.

Definition 2.3.1. A function f : [s,00) — R is called a null function if

t
/ F(1)Vip =0 forallt € [s,c0)r.

The set of null functions from now on will be denoted by A/ [s, co).

For T = R null function is a function which is zero almost everywhere. The
criterion for the null function was chosen, since it is also applicable to Riemann
integration, while the function which is zero almost everywhere need not to be
Riemann integrable.

Definition 2.3.2. The heaviside step function, or the unit step function is defined
by
0 ke (—00,0),

Hik) = 1 ke|0,00).

Theorem 2.3.1. Let T = R. If Lo{f(t)} = Lo{g(t)}, then f — ¢ € N[0, 00).

The following theorem implies the previous one and it offers opportunity to
prove theorem also for the functions non-integrable by Riemann’s integral.

Theorem 2.3.2. Let Lo{f(t)} = F(z) vanishes on an infinite sequence of points
that are located on equal intervals along a line parallel to the real axis:

F(zo+no) =0 (c>0,n¢eN).

Proof. Whole proof is presented in [10] or [11]. We present sketch of the proof in
[10] to emphasize features, which we consider important for our further investi-
gation.

15



Let0 < 7 < T, and put v(t) = f(t)e ?'. Then for any positive integer n

T
/ o(t)e"T=Dgt = / / s)ds nke"(T=t) g
0

since [1 v(s)ds converges. Also

t
|/ o(s)ds| <M forallt>T,
T
so that
T
|/ o(t)e" T Ddt| < M.
0

The series converges uniformly for 0 <t < T, e.g.

© ( 1\ym—1
Ey,(t—t) = Z%emno('rt) -1— exp(_ena(r—t)).

1

Thus

[ee]

T n — 1 mno(tT— T mno(1l—
| /O o(1)eT=dt] < Y —emele)| /0 o(t)e" (T gt <

1
< M(exp(—e"™T=7)) —1)

and so tends to 0 as n — oo. Also E, (T —t) — H(T —t) as n — oo, and we can
write

/OTv(t)(En(T— H—H(t—t)dt =L+ b+ L+ L.

Then by bounding I;,15,13,14 author shows that fo t)dt =0forany 7 > 0. [

Now we shall discuss the properties of methods used to prove Theorem
First of all we have to consider, what is the region of convergence of the arbitrary
generalized time scale nabla Laplace transform. From previous section we know,
that the regions of convergence does not have to have the property of being con-
nected. We also know, that the regions of convergence are located around limit
points of backward graininess function. For example in hZ, the regions of conver-
gence are some neighbourhood of % If we consider the periodic time scale with
graininess function values hy, hy, ...h;, the region of convergence are some neigh-
bourhoods of points hl—l, hl_z' % An arbitrary time scale may contain graininess
function values without limit points and that would imply point-wise conver-
gence in such a points. We also may note, that such a points are not v-regressive

1-— U(l—t)v(t) =0.
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Secondly, we have to consider the differences between the circle multiplica-
tion and the multiplication in sense of real numbers. We want the exponent of
our exponential function to be the points of region of convergence of Laplace
transform. Utilizing we may write
1—v(t)o 1

= 0RO
(208 (1 ©0)) = (20 + (0 © 0) — 29 (n @ )u(H)).

neoo=

Therefore, for v(t) # 0

(208 (10 0)) = (1 - v(t)o)"(—

o T

1
v(t)’
Forv(t) =0

(zo® (nO0)) =29+ n.o.

This clearly means that (zo & (n ® 0)) is t dependant or more precisely v(t)
dependant. v(t) dependence also concludes, that if we use exponential function
€5 (z9+noo) for our Laplace transform, and backward graininess function is not
constant, exponent of used exponential function is time dependent, ergo we do
not get Laplace transform, which is defined only for constant parameters.

We may also conclude that on an arbitrary time scale, zy ® (n ® o) lies in the
region of convergence, except the possibility of non-limit points (note that by the
limit points of v(t) we mean the values of v(t) for t — o) of v(t). Let us consider
the following example:

Example 2.3.1. Let T be the time scale such as t € [0,T] C T, v(t) = 0 and
s € (T,»),v(s) = 1. Thus “"Laplace” integral of 1in zo & (n © o) is:

| ecteponon 00,09t = | Ce o g Y ((1-20)(1 - o))
0 0 t=c(T)
We may notice, that our region of convergence is the circle with the radius 1
around point 1. Now let ¢ > 0, then our points zg + no for t € [0, T] will clearly
not stay in the region of convergence.

We also may note that

. 1
limyseo = (20® (nG0)) = "

17



Lemma 2.3.1. Let T be a time scale, let max{v(7)} be the maximal graininess
function for all T € T. Then if exists at least one point p € [s, t] such that v(p) =
max{v(7)} the following statement holds.

lzmx%maxgv(t)} écx(t,s) =0
Proof. Firstly 1 — o > 0.
Secondly, we may assume, that p is an isolated point.
lim €ox(t,s) =
x_>max{1v(t)} GX( )

lim, exp{/st _1/(11) Log(1 — J(T)X)VT} =

max{v(t)}
_ elr) 1
= lim,, max{lv exp{/ - Log(1 — (T)x)VT _
_ Log( )+ / Lo ! )\Vt} =
v(p) 8 1—1/ 3 1—v(7)x N
For max{v(7)} = 0 the case is obvious. O

Lemma 2.3.2. Let f(x) be a continuous function, and suppose that the moments
of every order of f(x) on the finite interval (g, b) vanish, that is:

b
/ f(x)x"dx =0 n=0,1,...
a
Then f(x) = 0on (a,b).
Proof. Proof is located in [11]]. H

Theorem 2.3.3. Let us consider a time scale such that for t € [s,a] we have grain-
iness function v(t) = 0. Let T € [a,00| let h = v(T) > max{v(t)}, h € R. Let
k=209 (k®0o) = (1 —ho)¥(—4 +z9) + 7. Let f : T — R. Suppose that
Ls{f(#)}(cx) = 0.

Then f(t) € Ns, 00).
Proof. We have chosen condition h = v(t) > max{v(t)} to secure that the expo-
nents of the exponential functions at ¢ will be from R ;.

We know, that for k = 0, ¢o = zo. From this may write, that [ f(t) &, (o(t),s)Vt

converges.
For any c; we may write for every T > a:

£ Oy o9+ [ )00 (0(1),5)9E =0
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By Theorems|1.2.8}]1.2.4

[ e 60,99 =
| s ),5)Vt =
- /T (1) &0 ) (0(1), )5 (p(1), ) VE =
= — [ O & (1, T) ) (00, T) ey (T, ) VE
Now pushing k — o, ¢; — + we obtain by Lemma
/ f()) &1 (p(t),5)VE =0,
This concludes that
/ f(t) % ),s)Vt =0 forevery T > a.
Utilizing Theorem[T.1.8

/ F())Vte (T, s)—/aT/;f(x)Vxé@i(t,s)Vt:O.

Nabla differentiating at T we get

(Vo [ O Te) [T (s
+% an(x)VXé@;(P(T),S)Vt =0

Therefore

for all T > a. This implies

/a 0 &ee, (p(t),2)VE = 0.

Also

[ feca ot 9)ve=o.
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From v - regressivity of } we know by [1.2.6| that €. (p(t),s) is positive at
all t € [s,a]. By assumption of the theorem, we may conclude that the integral

converges.
Using series of expansions of exponential function, we may rewrite the inte-
gral to

/ Cee) (1)t =
i (_ik)j /a(t _ s)jf(t)dt =

S

—
I
—_
~

_ i (_ik)j /:(t —s)if(t)dt.

Utilizing Lemma we may conclude, that f(f) = 0 on [s, a]. Thus we may
conclude, that f(x) € Ns, oo|.
O]
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3 FRACTIONAL CALCULUS ON TIME SCALES

Continuous fractional calculus is mathematical discipline, developed to general-
ize theory of continuous differential and integral calculus to non-integer or even
complex orders. Following formula for the fractional integral of the real function,
where 7 is order of integration is fundamental to such studies:

Df(t) = /t (-7t

T f(r)ydt t>a,v>0

3.1 Power functions

This section employs some basic definitions of fractional calculus on time scales
and summarizes results concerning the power functions. Generally, the explicit
formulas of the power functions are not known, because the method of general-
izing formulas from monomials works only for special cases of functions. That is
the reason why following definition as well as a few other axiomatic definitions
were independently proposed. In this work, we develop the definition presented
in [8] and try widen the property of uniqueness of this definition on time scales
with arbitrary constant backward graininess function.

Definition 3.1.1. Lets,t € T and let f,a € (—1,00). The time scale power func-
tions /1 g(t,s) are defined by a family of non-negative functions satisfying

i) [ hg(tp(7)hy(T,8)VT = fig i a(ts) for t > s
ii) fig(t,s) =1fort >s
iii) fig(t,t) =1 for B € (0,1).
Further, the parameter f in i g(t,s) is called the order of the function h g(ts).

Theorem 3.1.1. Let m € Ny, B € (—1,00),s,t € T be such that t > s. Then

flﬁ_m(t,s) g>m—1
0 Be0,1,..,m—1.

V"hp(ts) = {

Theorem 3.1.1{ does not discuss the case p € (—1,m — due to an

1] ‘{O,l,...m—l}
occurrence of a power function of order less than —1. Since such functions cannot

be included in the Definition we define by the Theorem [3.1.1]
Definition 3.1.2.

hg(t,s) = V1Pl g (t5)

for B € (—o0,—1)|Z,s,t € T, t > o P(s), where [B] is the ceiling function
[B] = min{m € Z;m > B}.
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Next results of investigation questions of existence and uniqueness of ax-
iomatic definition of power functions on isolated time scales are provided by [12].

Theorem 3.1.2. Let § € (—1,00),5,t € Ty be such that t > s. Then ftﬁ solves the
shifting problem, i.e.:

thz(t,p(s)) = —stzﬁ(t,s)
Theorem [3.1.2) enables us to rewrite Definition i) via the convolution:

(g * Iy ) (t,5) = hpiyia(t,s) t>s,B,7> 1.

Theorem 3.1.3. Let T be an isolated time scale, and let 7 € (-1,00). Then Def-
inition determines uniquely the power function ,(t,s) for all s,t € T such
thatt > s.

Theorem 3.1.4. Let T be an isolated time scale, and let r € (-1,00)q, s, € T,
t>s,v(t) #v(s) forall t,s € T. Then following formula holds

)) —v(e(s)h(p(t), 5)
t) —v(e(s)) '

Theorem 3.1.5. Let T be an isolated time scale, t € T and let r € (—1,)q. Then
following statements are true

a) h(t,t) =0forr >0

b) h,(t,t) =0forr =0

c) the value of /1, (t, t) for —1 < r < 0 is unbounded.

fy(ts) = V(t)hr(t'afi

Definition 3.1.3. Let T, be an isolated time scale such that sup{T;} = oo and
sup{v(t),t € T} < oo,

Theorem 3.1.6. Leta € T, and let r € (—1, c0)q. Then it holds
Lo{h(,a)}(z) =z

Theorem 3.1.7. Let T be an arbitrary time scale. Then

L1} = 1.

Proof.

< 1, o 1
LA1}E) = [ eealoln),s) Vi = = ecln, o)1 = -
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Theorem 3.1.8. Let T be an arbitrary time scale such that Laplace transform ex-
ists, & € Q. Then Laplace transform of 1, is ZA%

Proof. We know that Ls{fi(t,s)}(z) = z"% for n € IN. Now let Laplace transform
of the convolution of m times flﬁ be

Clhg whg xhg g} (z) = .

-k
Via[3.1.2
- 1
E{hmﬁ—l—m—l}(z) = -k
A 1
L{hup}(z) = o
We may assume that k = mB 4 m,so f = % — 1. Then
~ 1 1
£l &) = ¢ =

]

Theorem 3.1.9. Power functions on T, where Laplace transform exists and is
unique, are defined correctly by the Definition 3.1.1}

Proof. Proof is the direct consequence of Theorem If we calculate Laplace
transform using properties of Definition and we are able to get only one
result, the uniqueness of generalized time scale nabla Laplace transform provides
the uniqueness of the Definition except of the null function. O

3.2 Fractional operators on time scales

In this section we present fractional operators as well as some of their properties.

Definition 3.2.1. Let T be the time scale, such that the time scale monomials of
any rational order are defined uniquely.

Example 3.2.1. All isolated time scales satisfy the Definition Also R. As
we showed before, also time scales such that on t € [s,a] is backward graininess
function zero and on T € (s, o) is backward graininess function constant.

Definition 3.2.2. Lety > 0,a > 0,d,a,b € T be such that @ < a < b. Then for the
function f : (d,b]t — R we define
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a) the fractional integral of order y > 0 with the lower limit a4 as

VO = [y altp()f VT, € fa b @b

and for y = 0, we put ,VOf () = f(t),
b) the Riemann-Liouville fractional derivative of order a with the lower limit
a as

V() = VIV AR, t € [o(a), blr 0 (o(a), bl
c) the Caputo fractional derivative of order a with the lower limita (a > 4) as
SV = VNI £, e [o(a), bl

Theorem 3.2.1. Lety > 0, & > 0,d,a,b € T be such that @ < a < b. Then for any
function f : (d,b]T — R the fractional integral with the lower limit  is linear.

Proof. Linearity of fractional integral follows directly from the linearity of the
time scale integral. O

For v = 1, Definition a) is reduced to a formula for the anti-derivative

V0 = [ fove

known from the time scales theory. We also may note that in Definition a), if
a > i, we get usual definitions of difference calculus.

Theorem 3.2.2. Leta € R, f € (—1,00) and s, f € T such that s > t. Then it holds

fzﬁ,“(t,s) for p>a—1

aV"‘leg(t,a) = {
0 for pe{a—[a|,a—[a]+1,..,a—1}.

Theorem 3.2.3. Leta > 0, 5 € (—1,) and s,t € T be such that t > s. Then it

holds

le;_,x(t,s) for B> [a]—1

Cvﬂéfl ,a) =
a p(t a) {0 for pe{a—[a],a—[a]+1,..,a—1}.
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4 CONCLUSIONS

In the first few chapters the bachelor thesis covers basics of the time scale cal-
culus (including the generalized time scale exponential function, the generalized
time scale nabla Laplace transform) including demonstrative examples to fully
understand the matter and deal with theory needed to pursue the later results.

The bachelor thesis contains results comprising investigation of axiomatic def-
inition of power functions on time scales primarily using Laplace transform as a
tool to provide the property of the uniqueness of definition used to define men-
tioned power functions. It shows relations of investigating the uniqueness of gen-
eralized time scale nabla Laplace transform and investigating uniqueness of the
definition and concludes, that it is basically the same problem ergo by proving the
uniqueness of generalized time scale Laplace transform we also show uniqueness
of the definition of time scale monomials, as well as some other functions.

It also comprises in depth investigation of Lerch’s theorem as well as method
for proving such theorem. We also extended some known results about Lerch’s
theorem as well as about time scale power functions. We believe we contributed
to the development of the fractional calculus on time scales and our results will
be extended and summarized into a scientific paper later on.

We also developed properties of fractional operators, using uniqueness prop-
erty obtained by extending Lerch’s theorem.

Further investigation of the uniqueness of Laplace transform and possible
generalization of Lerch’s theorem to an arbitrary time scale is still open question
for the future research and we proposed some facts we believe will be needed
for obtaining general proof of Lerch’s theorem, and thus we enhanced possible
future development of fractional calculus on time scales.

Our work in the field of the fractional calculus will continue and hopefully,
the proof of Lerch’s theorem valid for every time scale, where Laplace transform
may be defined, will be discovered.
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LIST OF SYMBOLS

SASY

@/ @1/

expf
£

f*g
fYorVf
inf{M}
sup{M}

h cylinder transformation

Nabla exponential function with exponent f and ar-

guments t and s

Nabla integral of function f
Hilger complex numbers
Truncated time scale
Laplace transform of f on [s, o] to variable z
Class of v regressive functions

Class of positively v regressive functions
Forward graininess function

Backward graininess function

Circle dot multiplication

Circle minus subtraction

Circle plus addition

Backward jump operator

Forward jump operator

Real exponential function with exponent f
Real derivative of function f

Convolution operation of f and g

Nabla derivative of function £

Infimum of M

Supremum of M

Complex numbers

Positive integers
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N A ® 0O

Rational numbers
Real numbers
Time scale

Integers
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