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ABSTRACT 
The bachelor thesis concerns fractional calculus on time scales, more precisely, it intro
duces fractional calculus on time scales and also investigates the property of uniqueness 
of the axiomatic definition of the power functions. After introducing basic concepts, the 
subject of discussion is mostly generalized Laplace transform as well as proof of unique
ness of generalized Laplace transform, which is used as a tool to proving the uniqueness 
of fractional power functions on time scales. 
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ABSTRAKT 
Bakalářská práce pojednává o zlomkovém kalkule na časových škálách, přesněji - zavádí 
zlomkový kalkulus na časových škálách a taktéž vyšetřuje jednoznačnost axiomatické 
definice zavádějící mocninné funkce. Po zavedení základních pojmů je předmětem 
diskuze hlavně zobecněná Laplaceova transformace a důkaz jednoznačnosti zobecněné 
Laplaceovy transformace, která je použita jako nástroj pro dokázání jednoznačnosti 
zlomkových mocniných funkcií na časových škálách. 
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INTRODUCTION 

A unification of the diverse fields of mathematics is a goal of many scientists 
throughout the history. Some of the greatest mathematicians have expressed 
views that whole theory should be fitted into one subject. 

One of such attempts is a time scale calculus (or a measure chain calculus), 
which is a unification of the theory of continuous and discrete analysis and cre
ating a new formalism to study discrete-continuous dynamical systems. This 
feature is enabled by the general definition of a time scale , which is a closed 
non-empty subset of real numbers. Time scale calculus originates from Ph.D. dis
sertation by the German mathematician Stefan Hilger, 1988 [1]. 

A n important feature of time scale calculus is the possibility of an application 
of gained results to the more general sets than those in continuous and discrete 
analysis, such as the Cantor set. Recently, the subject of dynamic equations on 
time scales continues to be a rapidly growing area of research, with many appli
cations in various fields such as neural networks, heat transfer, epidemic models, 
population dynamics and so on. 

Another successful attempt of generalization is the continuous fractional cal
culus. The initial idea have been introduced almost at the time of developing the 
derivative. First record of such an idea leads to the end of the 17th century to 
Leibniz's letter to l 'Hospital, where he discussed the meaning of the derivative. 
Many well-known authors contributed to fractional calculus throughout the his
tory. However, only after the first international conference in 1974 specialized on 
this subject and the publication of a comprehensive survey of fractional calculus 
theory and its applications [2], this subject has changed to a fast-growing and a 
respected field of mathematics with many applications in electrical engineering, 
rheology, control theory etc. 

Origins of discrete fractional calculus are papers [3], [4], where the first defini
tions of non-integer order differences and sums were proposed. Recently, discrete 
fractional calculus attracted attention and was unified and generalized. 

The paper is organized as following: Firstly, we recall the basics of time scale 
theory and underlay them with a sufficient amount of examples to understand 
the matter. Secondly, we discuss properties of generalized time scale nab la Laplace 
transform. Finally, we employ our findings to extend some known results on time 
scale fractional operators. 
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1 TIME SCALE CALCULUS 

1.1 Basic definitions 

In this section we introduce the basics of the time scale calculus. The employed 
definition of a difference operator divides the time scale calculus into two cate
gories: delta and nabla calculus. In this work we utilize the nabla calculus, which 
is built on the notion of a backward difference. 

Following basic definitions are adapted from [5]. 

Definition 1.1.1. A time scale T is an arbitrary non-empty closed subset of real 
numbers. 

Example 1.1.1. N , Z , R are typical examples of time scales. Also 

T = {5n;n G Z } 

T = {\fn;k G Zn G R + } 

T = = {qk,k G Z,q G R + } U {0} 

T = hZ = {kh;n G Z;h G R + } 

are time scales. 

Note that Q, C are not the time scales. 

In the following definitions we put sup{T} = inf{(Z)} andzn/{T} = sup{Q)}. 

Definition 1.1.2. Let T be a time scale. 
a) Forward jump operator a : T —> T for t G T is defined by a(t) := inf{s G 

T :s> t}. 
b) Let T be a time scale. Backward jump operator p : T —> T for t G T is 

defined by p(t) := sup{s G T : s < t}. 
c) Let T be a time scale. Forward graininess function u : T —> [0, oo) for t G T 

is defined by u(t) := a(t) — t. 
d) Let T be a time scale. Backward graininess function v : T —> [0, oo) for t G T 

is defined by v(t) := t — p(t). 

Example 1.1.2. We present some examples of backward graininess function. 

v(t) = 0 for R 

v(t) = h for hZ 
1 — 

v(t) = t(l - -) for qz 
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Definition 1.1.3. a) If cr(t) > t we say that t is a right-scattered point. 
b) If p(t) < t we say that t is a left-scattered point. 
c) If a(i) > t and p(t) < t we say that t is an isolated point. 
d) If t < sup{T} and a(i) = t we say that t is a right-dense point. 
e) If t > m / { T } and p(t) = t we say that t is a left-dense point. 
f) If sup{T} > t > m / { T } and p(t) = t = a(t) we say that t is a dense point. 

Definition 1.1.4. If T has a right scattered minimum m, then T K := T — m, other
wise T K = T. We call T K the truncated time scale. 

Definition 1.1.5. The function/ : T —> R is right-dense continuous (rd-continuous) 
if it is continuous at each right-dense point in T and if it has finite left sided limits 
at left dense points in T. 

Definition 1.1.6. The funct ion/ : T —> R is left-dense continuous (ld-continuous) 
if it is continuous at each left-dense point in T and if it has finite right sided limits 
at right dense points in T. 

Theorem 1.1.1. Assume / : T —> R , then the following statements are true: 
a) If / is continuous, then / is rd-continuous and ld-continuous. 
b) Forward jump operator a is rd-continuous. 

c) Backward jump operator p is ld-continuous. 

Following definitions are borrowed from [6]. 

Definition 1.1.7. The function / : T —> R is v-regressive if 

l - v ( f ) / ( 0 ^ ° for all f e T V 

Definition 1.1.8. The class of all scalar ld-continuous and v-regressive functions 
on T is denoted by 1ZV, i.e. 1ZV = {/ : T —> R ; / ( f ) i s ld-continuous and v-
regressive }. 

Further, K+ = {/ G Kv; 1 - f(t)v(t) > 0} for all t G T K . 

Definition 1.1.9. We define a circle plus addition for p,v £ 1ZV by 

(p®vq)(t) :=p(t)+q(t)-p(t)q(t)v(t) 

for all t e T K . 

Definition 1.1.10. We define a circle minus subtraction for p E TZV by 

P(t) 
l-p(t)v(t) 
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Thorough this work, we use © , 0 instead of (&V,QV. 

Theorem 1.1.2. (TZV, ©) is an Abelian group. 

Theorem 1.1.3. 0 ) is a subgroup of (JZV, ©). 

Definition 1.1.11. For h > 0, the Hilger complex numbers are defined as 

C 4 = { Z G C : Z ^ } . 

Definition 1.1.12. For h > 0, the strip Z/, is defined as 

Zh = {z e C : - J < Im(z) < 

Following theorems and definitions comprising nabla derivative can be found 
in [5]. 

Definition 1.1.13. Let / : T ->• R be a function and let t £ TTK. Then V-derivative 
V / ( f ) (or / v (0 ) / if it exists, is defined to be a number, with the property that 
for any given number e > 0, there is a delta neighbourhood Us of t (i.e., Us — 
(t-S,t + S)m for some 5 > 0) such that 

| / (s ) - / (p (0) - / V ( 0 ( s - P ( 0 ) l < e\8-p{t)\ Vs G U,. 

Theorem 1.1.4. Assume that / : T -> R is a function and let f G T K . Then 
following statements are true. 

a) If f is differentiable at t, then f is continuous at t. 
b) If f is continuous at t and t is left-scattered, then f is nabla differentiable at t 

with 

c) If t is left-dense, then f is nabla differentiable at t iff a limit 

s->t S — t 

exists and is finite. Then 

d) If t is nabla differentiable at t, then 

f(p(t))=v(t)f(t)+f(t). 
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Theorem 1.1.5. Assume that f,g : T —> R are nabla differentiable at f G T K . Then 
following statements hold: 

a) (/g) v(0 = / v ( 0 S ( 0 + / ( P ( 0 ) S v ( 0 = / ( 0 S v ( 0 + / v ( 0 S ( P ( 0 ) . 
b) ( / + g ) v ( 0 = / v ( 0 + s v ( 0 -
c; i ^ j w - g(t)g(p(t)) • 

Definition 1.1.14. Let a, & G T be such that a < b. Let / : [a, b]i —> IR and F : 
[a, &] T -> R be functions such that F v ( f ) = / (f) for all f G T K . Then the function 
F(f) is called me antiderivative of function/(f) over [fl,&]xas J / (f) V f = F(b) — 
F(a). f / ( f ) V f is called nabla integral. 

We may also note that / f c

B / ( f) V f = - J* / ( f) V f and / f l

f l / ( f) V f = 0. 

Theorem 1.1.6. Every ld-continuous function has the nabla antiderivative. 

Theorem 1.1.7. Let T be an isolated time scale. Then the nabla integral can be 
calculated as 

/V (0Vf = E "(0/(0-
J a te(a,b]T 

Definition 1.1.15. Let a G T , sup{T} = oo, / : [fl,oo)T —> IR be ld-continuous. 
Then the improper integral of first kind over / (f) over [a, oo) T is defined by: 

/•oo /•£> 
/ / ( f ) V f = lim^oo / / ( f ) V f . 

Definition 1.1.16. Let fl, fe, c G T be such that a < b < c and let / : (a, c]x —> R be 
ld-continuous on any interval [&,C]T. Then the improper integral of second kind 
of /(f) over [a, c]x is defined by: 

/ ( f ) V f 
limt,^a+(f£ f(t) V f ) , if fl is right-dense 

J f l

c / (f) V f, if A is right-scattered. 

From 1.1.5 a) we obtain following integral by parts formula 

Theorem 1.1.8. Assume that f,g : T —> IR are nabla differentiable at f G T K . Then 

J/v(f)g(f)Vf = / ( % ( f ) - / / ( K 0 ) g v ( f ) V f . 

Proof of next theorem is modified version of delta version of this proof pre
sented in [5], but first mentions of delta version of proof have been presented in 
[71 
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Theorem 1.1.9. Let / : R —> R be continuously differentiable and suppose g : 
T —> R is nabla differentiable. Then / o g : T —> R is nabla differentiable and the 
following formula holds 

(fogfit) =gS/(t) [f{g{t)-uv{t)gV{t))du. 
Jo 

Proof. We apply ordinary substitution from the calculus: 

(fog)(s) - (fog)(p(t)) = f(g(s))-f(g(P(t)) = 

5\f'(r)dT=(g(s)-g(p(t)) [f{hg{s) + {l-h)g{p{t)))dh 
t)) Jo 

g(s) 

g(p(t)) 

Let f G T t and e > 0 be given. Since g is nabla differentiable at t, there exists a 
neighbourhood U\ of t such that 

\g(s)-g(p(t))-gV«(s -p(t))\ < e*\s-p(t)\ 

for all s G U\, where 

e* -
2j0

1f'(hg(t) + (l-h)g(p(t)))dh 

We know that if / ' is continuous on R and therefore uniformly continuous on 
closed subsets of R , there exists a neighbourhood Uj_ of t such that: 

\f(hg(s) + (1 - h)g(p(t))) - f(hg(t) + (1 - h)g(p(t))) \ < 

< 
2(e* + |gV( f ) | ) 

Also 

\(hg(s) + (l-h)g(p(t)))-(hg(t) + 

+ (1 - h)g(p(t)))\ < (1 - h)\g(s) -g(t)\ < \g(s)-g(t)\ 

holds for all 0 < h < 1. Then we define U = U\ D (J2 and set s G IT and we put 

« = (/ig(s) + ( l - % ( p ( 0 ) 

Then we have 

\(fog)(s) - (fog)(p(t)) - (s-p(t))gV(t) [f{f>)dh\ 
Jo 
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= \(g(s) - g(p(t)) fj'{oc)dh-{s-p{t))g^{t) f1f(p)dh\ = 
Jo Jo 

= \(g(s) ~g(p(t) - (s - P(t))gV(t)) f1f'(a)dh+ 
Jo 

+(s - p(t))gV(t) fj'{*)-f{fl)dh\< 
Jo 

<\(g(s) -g(p(t) - (s -P(t))gV(t))\ f1 \f'(a)\dh+ 
Jo 

+ |(s - p(t))\\8*'(01 [\f(*)-f(P)W< Jo 

<e*\s-p(t)\ [ \f'(cc)\dh+ 
Jo 

+i( S - P(t))\\gv'(oi C\n*)-m\to< 
Jo 

<e*\s-p{t)\ I \f'(6)\dh+ 
Jo 

+ \(s-p(t))\\gV(t)+e*\ !\f{cL)-f{p)\dh< 
Jo 

<e*\s-p(t)\ f\f(p)\dh + €-\s-p{t)\ < 
Jo 2 

<\\s-p{t)\ + €-\s-p{t)\ = 

—e\s — p(t) | 

This implies that / o g is nabla differentiable at t and its derivative is 

g

v ( 0 [1f>(p)dh = gV(t) f j'(hg(t) + (i-h)g(P(t))dh 
Jo Jo 

Util izing simple substitution, we prove our theorem. • 
Following results are dual to delta results presented in [6]. We utilized same 

methods in nabla calculus to determine them. 

Using chain rule provided by the Theorem 1.1.9 we derive the following for
mula: 

(xaf(t)=xv(t) I ct(x(t)-uv(t)xv(t)y-ldh 
Jo 

lix{t) £ 0,then 

( ,«)v ( ( ) = x - w ^ / ' d - u v w ^ r ^ u (i.2) 

In order to have everything wel l defined, we want to assume for a G R | IN that 

( l - v ( 0 ^ | « ) - > 0 



for h E [0,1] and t E T . Sufficient condition for this is: 

K(cc) 
K+ for oc E R | N 

ft for a G N 

From this we get the following definition: 

Definition 1.1.17. For a G IR and for p E TZ(oc) we define the dot multiplication 

( « © p ) ( f ) = p(0* / (! - uv{t)p{t)Y~ldu. 
Jo 

Theorem 1.1.10. Let a G R . If a G IN, suppose that oc ^ 0 for all f G T. If oc £ N , 
suppose that x(t)x(p(t)) > 0 for all t E T. Then 

a © — ) (1.3) 

Proof. 

l y (x(Q)V = xipjt)) 
x(t) x(t) 

Then the theorem follows directly from 1.2. • 

Theorem 1.1.11. Let oc E R . If p G 7£(a), then 

1 - v ( a © p ) = (1 - vp) a . 

Proof. 

1 — t/(a 0 p) = 1 — i/pa / (1 — uvp))0i~1du = 
Jo 

1 — / vva(l — uvv))a 1du 
Jo 

= 1 - / a s a _ 1 ds 
l 

1 + (1 - vp ) a - l a = ( l - v p ) a . 

• 

1.2 Time scale functions 

In this section we introduce a generalized nabla time scale monomials (gener
alized polynomials), a generalized nabla time scale exponential function and 
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present few demonstrative examples followed by brief introduction to their de
termination. The exponential function plays a crucial role in our next chapter -
Laplace transform. Monomials are inevitable for series expansions, namely the 
Taylor's series expansions. 

Following results concerning monomials are adapted from [8]. 

Definition 1.2.1. Monomials hn : T x T —> R for n G I N are defined by recursion 

h0(t,s) = 1 
rt ^ 

hn(t,s) = / / Z W _ I ( T , S ) V T . 
•Js 

Theorem 1.2.1. Let n G Z+ and s, t G T . Then 
a) hn{t,t)=Q, 
b) Vhn(t,s) = & n _ i ( f , s ) for t G T K , 
c) Vhr(t,s) = (t-s). 

Theorem 1.2.2. Let s, t G T , n G Zq. Then the following statements are true. 
a) If T = R, thenfi n ( f ,s ) = ^ p . 
b) If T = hZ and ak(s) = t, then 

("J*;1) = (-.>-*• (-;_?)• 

Theorems and definitions comprising generalized nabla time scale exponen
tial function are borrowed from [5, 6]. 

Definition 1.2.2. For any / G 7£ V / the exponential function ey : T x T —> R is 
defined as a unique solution of the initial value problem 

vy(0=/(0y(0 y(s) = i 
Definition 1.2.3. The ^-cylinder transformation ^ : C/j —> Z^ is defined by: 

1 
& ( z ) = -^ogil-zh) 

for h > 0 and where Log is the principal logarithm function. 

Theorem 1.2.3. Solution of the initial value problem Vy(t) = f(t)y(t), y(s) = 1 
can be written as: 

ef(t,s) = exp{ f £ , ( T ) ( / ( T ) ) V T } s,t G T (1.4) 

where (z) is the v-cylinder transformation. 
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Theorem 1.2.4. If p G 1ZV, then the semi-group property for s, t, r G T is satisfied. 

ef(t,r)ef(r,s) = ef(t,s). 

Theorem 1.2.5. Let p, ̂  G and s, £ G T. Then the following statements are 
valid 

a) e0(t,s) = 1 
b) ep(t,t) = l 
c) ep(t,s)eq(t,s) = ep(Bcj(t,s) 

e) ep(p(0 /s) = (l-v(0p(0)6 P (*/S) 

Theorem 1.2.6. Let p G 7£ v and to G T. Then the following statements are true: 
a) if p G then § p ( f , f 0 ) > 0 for all t G T. 
b) if l-v(t)p(t) < 0 for some t G T K / then ep(p(t), to) e p (£, to) < 0. 
c) if 1 — v(t)p(t) < 0 for all t G T K / then e p (£, £rj) changes sign at every point 

t G T. 

Theorem 1.2.7. Let z £ 1ZV. Then 

eez(jo(0's) = — ^ e e z ( > , s ) . 

Proof. Uti l iz ing the Theorem 1.2.5 e) 

v(f)z 
§ez(p(0,s) = ( l - v ( O e z ) f i e z ( ^ s ) = = - ^ e e z ( * , s ) . 

• 
Here we present some examples of the time scale exponential functions as 

well as the basic method of their determination. 

Example 1.2.1. Let T = hZ and f(t) = c G IR,s G T and the initial value problem 

V y ( 0 = / ( % ( 0 and y ( s ) = l 

Vy(0 = cy(f) 

Using Theorem 1.1.4, we obtain 

After few calculations and utilizing boundary conditions we get 

y ( f c + s ) = T^Jf 
Finally, we may determine that 

y(t) = ec(t,s) 
[1 - ch)1^ 
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Example 1.2.2. Let T = qz = {qk,k G Z,q G RQ~} and the initial value problem 

V y ( 0 = / ( % ( 0 and y(s) = l . 

Then 
y(0-y(p(0) /(0y(0 

y(0 

Using the boundary conditions 

y{sq) = 

y(p(0) 
i - ( i - J ) W ) 

1 

y(0 = y ( ^ * o o ) = n r 
fc=i1 ( 1 - } ) < T * ( S ) ( / ( < T * ( S ) ) 

y(0 = y(p f l(s)) = f l 1 - (1 - -)P

k(s)(f(pk(s)). 
k=l 1 

Example 1.2.3. Let T be an arbitrary isolated time scale, s, t G T , / : T —> R such 
that / G 7£ v and the initial value problem 

Then 

Vy(0=/(0y(0 and y(s) = l . 

y(0 - y W ) ) 

v ( 0 - v(f)/(0 
From the boundary condition we know that 

1 

Let* = (7w(sl 

y K s ) ) 

y ( ^ ( s ) ) = n 

v(t)-v(t)f(ty 

y t / ( ^ ( s ) ) - ^ ( s ) ) / ( ^ ( s ) ) ' 

Example 1.2.4. Following table contains other examples of exponential functions. 

T e«(f,s) 

R e«(f-s) 

Z ( i i ) ' " s 

hZ / 1 N(f-8)/fc 

± z 
H 

/ „ \n{t-s) 
\ n—ot) 

^ N 0 n s e [ s , t ) l * i f f > s 

L ' 7 1—((/—l)«s 
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Following theorems are dual to delta versions presented in [6]. 

Theorem 1.2.8. If a e R and p (=. IZ(oc), then 

Proof. Let to G T and put: 

y = ej(-/*o) 
Then y(£n) = 0 and by the Theorem 1.3 

y v = ( e j ) v = ( * 0 ^ ) e j = ( a 0 p ) y 

We know that y solves the initial value problem 

Vy(t) = («©p)(0y y(*o) = i (i.5) 

Therefore, 

ej = y = e a 0 p . 

• 
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2 LAPLACE TRANSFORM 

The generalized time scale nabla Laplace transform plays the key role in the fol
lowing investigation of the uniqueness of the fractional operators on the time 
scales. We employ these definitions and the theorems from the following papers: 
[9], [8]. 

2.1 Basic definitions 

Definition 2.1.1. Let T be such that sup{T} = oo and fix to G T. For any given 
function / : [to, oo) T —> C , the solution of the shifting problem 

Vu(t,p(s)) = -Vu(t,s) t,s ET,t > s > t0 

is called shift of / ( f ) . The symbol V denotes the derivative with respect to the 
second variable. 

Definition 2.1.2. For any given function f,g : [s,oo)T —> R , their convolution is 
defined by: 

{f*g){t) = fj{t,P{t))g{T)VT 
where / is the shift of / . 

Theorem 2.1.1. Convolution defined by previous definition is associative e.g. ( / * 
g) * u = f * (g * u). 

Proof. The assertion can be proven utilizing the nabla analogy of the technique 
performed in the proof presented in [6]. • 

Definition 2.1.3. Let sup{ T} = oo, s G T and let f(t) be a real function defined 
at least on (s, oo) T. The generalized time scale nabla Laplace transform of f(t) is 
defined by 

/

CO 
f(t)eez(p(t),s)Vt for zeV(f) 

where T>(f) consist of all complex numbers z such that Re(z) G R v for which the 
improper integral exists. 

Thorough this work, we denote T>(f) region of convergence of generalized 
time scale nabla Laplace transform. 

Theorem 2.1.2. The necessary condition for the existence of the a Laplace trans
form Cs{f}(z) to exist is 

limt^cof(t)eGz(p(t),s) = 0. 
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Theorem 2.1.3. Laplace transform of convolution is the product of images of 
Laplace transform, i.e.: 

£ s { ( / * g ) ( - / S ) } ( z ) = £s{f}(z) * £s{g}(z). 

Theorem 2.1.4. For n e Z , 

Cs{hn{;0)}{z)=Z-n-\ 

2.2 Regions of convergence 

In this section we investigate the regions of convergence of the time scale Laplace 
transform. 

We know that 11 — z\ < 1 is a circle with center in z = 1 and radius 1. 

Example 2.2.1. Let us consider T = hZ 

4>{i} = § e z (p (0 , o )v t 

t=i 

l-hz 
hz 

Sum coverges, if |1 — hz\ < 1. 

We also got circle, with the center in z = \ and the radius \ . 

Example 2.2.2. Let us consider the periodic time scale wi th backward graininess 
function v(t) = h and v{a{i)) = H. 

£ 0 { 1 } = / §ez(p(0/0)Vt 
00 

/ ( 1 - f e z ) 2 ( l - H z ) 2 V f = Tvt(l-hz)i(l-Hz)i 
Jo t=i ' 

Sum converges, if | (1 — hz) (1 — Hz) | < 1. 

J 
Fig. 2.1: A n example of region of convergence for the periodic time scale H 
5,825, h — 1, which is inside of the shape. 
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0.5 13 

Fig. 2.2: A n example of region of convergence for the periodic time scale H = 0,1, 
h — 1, which is inside of the shape. 

Fig. 2.3: A n example of region of convergence for the periodic time scale H = 6, 
h — 1, which is inside of the shape. 

Last figure shows us that the regions of convergence do not have to have the 
property of being connected, which is a very important feature for the next sec
tion. 

2.3 Proof of Lerch's theorem 

As we mentioned before, generalized time scale nab la Laplace transform is widely 
used as a tool to analyse properties of various functions, as wel l as proving their 
uniqueness. We know from the real analysis, that the Laplace transform on real 
numbers has uniquely determined image except for a nul l function. It also im
plies, that we may calculate the inversion and the various methods exist for 

0.2 0 4 0.6 
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such calculations on real numbers. Lerch's theorem proves the uniqueness of the 
Laplace transform. However, in our knowledge there is no valid proof of unique
ness of the generalized time scale nabla Laplace transform, nor general formula 
for an arbitrary time scale using nabla calculus, even though many authors as
sume it. This chapter is devoted to problems, concerning the proof of uniqueness 
of generalized time scale nabla Laplace transform on arbitrary time scales con
structively, in fashion of proof presented in [10],[11]. Later on, we proved this 
chapter generalized Lerch's theorem for some specific types of time scales. 

Definition 2.3.1. A function / : [s, oo) T —> R is called a null function if 

The set of nul l functions from now on w i l l be denoted by JV[s, OO)T. 

For T = R nul l function is a function which is zero almost everywhere. The 
criterion for the nul l function was chosen, since it is also applicable to Riemann 
integration, while the function which is zero almost everywhere need not to be 
Riemann integrable. 

Definition 2.3.2. The heaviside step function, or the unit step function is defined 

Theorem 2.3.1. Let T = R. If C0{f(t)} = C0{g(t)}, then / - g e J\f[0, oo ) T . 

The following theorem implies the previous one and it offers opportunity to 
prove theorem also for the functions non-integrable by Riemann's integral. 

Theorem 2.3.2. Let Co{f(t)} = F(z) vanishes on an infinite sequence of points 
that are located on equal intervals along a line parallel to the real axis: 

Proof Whole proof is presented in [10] or [11]. We present sketch of the proof in 
[10] to emphasize features, which we consider important for our further investi
gation. 

by 

F(z0 + na)=0 ( o O , n e N ) . 
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Let 0 < T < T, and put v(t) = f(t)e z t . Then for any positive integer n 

j \ { t ) ^ T - ^ d t = - J™ J*v(s)ds nke^-^dt 

since jj v(s)ds converges. Also 

J^v(s)ds\ < M for all t > T, 

so that 

I v(t)encr(-T-^dt\ < M. 
Jo 

The series converges uniformly for 0 < t < T, e.g. 

En(r-t) = E ^ - ^ — e m w c r ( T " f ) = l - e x p ( - e w c r ( T - f ) ) . 
1 m ' 

Thus 

/•T 0 0 - 1 „x 
/ v(t)en^T-^dt\ < ^J-emncr(T-t)\ / v^ymn<x{T-t)< 

< M ( e x p ( - e w c r ( T - T ) ) - l ) 

and so tends to 0 as n —> 00. Also E„(T — t) —> H ( T — f) as n —> 00, and we can 
write 

I v(t) ( £ „ ( T - 0 - H ( T - = Ii + I2 + i3 + 4-
Jo 

Then by bounding h,h,h,h author shows that JQ

T v(t)dt = 0 for any T > 0. • 

N o w we shall discuss the properties of methods used to prove Theorem 2.3.2. 
First of all we have to consider, what is the region of convergence of the arbitrary 
generalized time scale nab la Laplace transform. From previous section we know, 
that the regions of convergence does not have to have the property of being con
nected. We also know, that the regions of convergence are located around limit 
points of backward graininess function. For example in hZ, the regions of conver
gence are some neighbourhood of \ . If we consider the periodic time scale with 
graininess function values h\, hi, ...hn, the region of convergence are some neigh
bourhoods of points yx> /^ ' — / r - ^ n a r bi t ra ry time scale may contain graininess 
function values without limit points and that would imply point-wise conver
gence in such a points. We also may note, that such a points are not i/-regressive 
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Secondly, we have to consider the differences between the circle multiplica
tion and the multiplication in sense of real numbers. We want the exponent of 
our exponential function to be the points of region of convergence of Laplace 
transform. Uti l izing 1.1.17 we may write 

l-v(t)a 1 
-v(t) v(t) 

(z 0 © (n 0 a)) = (z 0 + (n © a) - z0(n 0 <r)v(t)). 

Therefore, for v(t) ^ 0 

(z 0 © (n 0 tr)) = (1 - v ( f y ) " ( _ _ _ + z 0 ) + ^ y . 

For t/(0 = 0 

(z 0 © (n 0 cr)) = z 0 + n.a. 

This clearly means that (zn © (n 0 c)) is t dependant or more precisely t/(f) 
dependant. v(t) dependence also concludes, that if we use exponential function 
ee(Zo_|_w0cr) for our Laplace transform, and backward graininess function is not 
constant, exponent of used exponential function is time dependent, ergo we do 
not get Laplace transform, which is defined only for constant parameters. 

We may also conclude that on an arbitrary time scale, ZQ © (n 0 a) lies in the 
region of convergence, except the possibility of non-limit points (note that by the 
limit points of v(t) we mean the values of v(t) for t —> oo) of v(t). Let us consider 
the following example: 

Example 2.3.1. Let T be the time scale such as f £ [0,T] C T , v(t) = 0 and 
s G (T, oo), v(s) = 1. Thus "Laplace" integral of 1 in ZQ © (n 0 a) is: 

/ ee{zomQ(r)(p(t)rO)Vt= / g-fe>+**df+ £ ( ( l - z 0 ) ( l - « r ) » ) ' 

We may notice, that our region of convergence is the circle with the radius 1 
around point 1. N o w let o~ > 0, then our points ZQ + no~ for £ G [0, T] w i l l clearly 
not stay in the region of convergence. 

We also may note that 

1 
Ulfln^co — (zo © (n © cr)) = - . 
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Lemma 2.3.1. Let T be a time scale, let max{v(r)} be the maximal graininess 
function for all T E T . Then if exists at least one point p E [s, t] such that v(p) = 
max{v(r)} the following statement holds. 

Urn 
max{v(f)} 

i eQx(t,s) = 0 

Proof. Firstly 1 - ^ ^ - } > 0. 
Secondly, we may assume, that p is an isolated point. 

) V T 

) V T } = 0 

For max{v(r)} = 0 the case is obvious. • 
Lemma 2.3.2. Let f(x) be a continuous function, and suppose that the moments 
of every order of f(x) on the finite interval (a, b) vanish, that is: 

Theorem 2.3.3. Let us consider a time scale such that for t E [s, a] we have grain
iness function v(t) = 0. Let T E [a,oo] let h = v(r) > max{v(t)}, ft £ R . Let 
ck = ZQ © (k 0 a) = (1 - ha)k{-\ + z 0 ) + \. Let / : T -> R. Suppose that 

Then/(f) E M[s,oo)T. 

Proof. We have chosen condition h = v{r) > max{v(t)} to secure that the expo
nents of the exponential functions at t w i l l be from 7Zy. 

We know, that for k = 0, CQ = ZQ. From this may write, that J 0 0 f(t) eZ o (p(t), s)Vt 
converges. 

For any cjt we may write for every T > a: 

Then/ (x ) = 0 on (a, b). 

Proof. Proof is located in [11]. • 

£,{ / (*)}(<*) =o. 

/ /(06e(ck)(p(0/S)Vf+ f™f(t)ee{Ck)(p(t),s)Vt = 0 
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By Theorems 1.2.8,1.2.4 

[ f(t)ee{Ck)(p(t),s)\7t = 
r-CO 

= -JT / (06e(ck)(p(0/S)Vt = 
/•OO 

= - y r / ( O e e ( z ö ) ( p ( 0 / s ) e | ( c r ) ( p ( 0 / s ) v t = 

= - y r / (06e (zö ) (P(0/r)^ ( c r ) (p(0,T)e e ( q k ) (T / S )Vt 

N o w pushing A: —> oo, cjt —> ^ we obtain by Lemma 2.3.1 

/ / ( O e e ( i ) ( p ( 0 , s ) V f = 0. 

This concludes that 

[ f(t)eni(p(t),s)Vt = 0 for every T > a. 
Ja h 

Util izing Theorem 1.1.8: 

[Tf(t)Vten,(T,s) - [T [*f(x)Vxe„i(t,s)Vt = 0. 
Ja ~k Ja Ja ^ 

Nab la differentiating at T we get 

( v T ^ T / W V 0 e e i ( r , s ) - ^ T / W V f e e i ( K r ) , s ) + 

+ l £ f(x)Vxee,(p(T),s)Vt = 0. 

Therefore 

* T 
( V T / / ( f ) V f ) e e i ( r , s ) = 0 

Ja « 
/ f(t)vt = o 

•Ja 

for all T > a. This implies 

/ f(t)eQCk(p(t),a)Vt = 0. 
./a 

Also 

/ a / ( 0 6 e c k ( p ( 0 / S ) V f = 0. 
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From v - regressivity of \ we know by 1.2.6 that ee^(p(t),s) is positive at 
all t G [s, a]. By assumption of the theorem, we may conclude that the integral 
converges. 

Using series of expansions of exponential function, we may rewrite the inte
gral to 

f\t-syf(t)dt 
;=1 J1 J s 

t - s)if{t)dt. 

Util izing Lemma 2.3.2, we may conclude, that f(t) = 0 on [s, a]. Thus we may 
conclude, that/(x) G Af[s,oo]T. 

• 
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3 FRACTIONAL CALCULUS ON TIME SCALES 

Continuous fractional calculus is mathematical discipline, developed to general
ize theory of continuous differential and integral calculus to non-integer or even 
complex orders. Following formula for the fractional integral of the real function, 
where 7 is order of integration is fundamental to such studies: 

tt (f - T ) 7 - I 

„ D - T / ( 0 = Ja r ( 7 ) f { j ) d x t > a ' ^ > 0 

3.1 Power functions 
This section employs some basic definitions of fractional calculus on time scales 
and summarizes results concerning the power functions. Generally, the explicit 
formulas of the power functions are not known, because the method of general
izing formulas from monomials works only for special cases of functions. That is 
the reason why following definition as wel l as a few other axiomatic definitions 
were independently proposed. In this work, we develop the definition presented 
in [8] and try widen the property of uniqueness of this definition on time scales 
with arbitrary constant backward graininess function. 

Definition 3.1.1. Let s,t E T and let (5, a E (—l,oo). The time scale power func
tions hp(t,s) are defined by a family of non-negative functions satisfying 

i) / S % ( £ , | 0 ( T ) ) / Z 7 ( T , S ) V T = hp+7+1(t,s) for t > s 

ii) ho(t,s) = 1 for t > s 

iii) kp(t,t) = 1 for /3 E (0,1). 
Further, the parameter in hg(t,s) is called the order of the function hg(t,s). 

Theorem 3.1.1. Let m E No , ]6 E (—1,00), s,t £ T b e such that t > s. Then 

v»M'<») = ( V " M / 3 > m " 1 

[0 /3 £ 0 , 1 , m — 1. 

Theorem 3.1.1 does not discuss the case |6 E (—1, m — 1 ] 1 due to an 
occurrence of a power function of order less than —1. Since such functions cannot 
be included in the Definition 3.1.1, we define by the Theorem 3.1.1. 

Definition 3.1.2. 

for j6 E (—00, —1)|Z, s,t E T , t > o~~P{s), where [j6] is the ceiling function 
= min{m EZ;tn> /3}. 
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Next results of investigation questions of existence and uniqueness of ax
iomatic definition of power functions on isolated time scales are provided by [12]. 

Theorem 3.1.2. Let f> G (—1, oo), s,f £ TTK be such that t > s. Then hp solves the 
shifting problem, i.e.: 

Vth(t,p(s)) = -Vshp(t,s) 

Theorem 3.1.2 enables us to rewrite Definition 3.1.1 i) via the convolution: 

(hp * hy)(t,s) = hp+7+1(t,s) t > s,p,y > - 1 . 

Theorem 3.1.3. Let T be an isolated time scale, and let r G ( - 1 , O O ) Q . Then Def
inition 3.1.1 determines uniquely the power function hr(t,s) for all s , t e T such 
that t > s. 

Theorem 3.1.4. Let T be an isolated time scale, and let r G ( - 1 , O O ) Q , s,t G T , 
t > s, v(t) 7̂  v(s) for all f,s £ 1 Then following formula holds 

U t s) = v(t)frr(t,(r(s)) - v{a{s))hr{p{t),s) 
v{t)-v{a{s)) 

Theorem 3.1.5. Let T be an isolated time scale, t G T and let r G (—1, O O ) Q . Then 
following statements are true 

a) hr(t,t) = Ofor r > 0 
b) hr(t,t) = Ofor r = 0 
c) the value of hr(t, t) for — 1 < r < 0 is unbounded. 

Definition 3.1.3. Let be an isolated time scale such that swp{T^} = oo and 
sup{v(t),t G ITc} < oo. 

Theorem 3.1.6. Let a G T o and let r G ( — 1 , O O ) Q . Then it holds 

£a{hr(.,a)}(z)=z-r-\ 

Theorem 3.1.7. Let T be an arbitrary time scale. Then 

£s{i}(z) = \ 

Proof. 

£ s { l } ( z ) = / eQz{p{rj),s)Vrj = --eez{rj,s) |J^S°° = - . 
J s z z 

• 
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Theorem 3.1.8. Let T be an arbitrary time scale such that Laplace transform ex-
ists, oc G Q. Then Laplace transform of fta is 

Proof. We know that Cs{hk{t, s)} (z) = for n G N . N o w let Laplace transform 
of the convolution of m times hp be 

1 
* hp... *hp* hp}(z) = 

Via 3.1.2 

1 

£{hmfi+m-l}(z) = ~j 

1 
£ { ^ } ( z ) = ^ + T ^ r 

We may assume that k = mfi + m, so $ — ^ — 1. Then 

1 1 
£ s { ^ } ( z ) = - r = ~«+T-

• 

Theorem 3.1.9. Power functions on T , where Laplace transform exists and is 
unique, are defined correctly by the Definition 3.1.1. 

Proof. Proof is the direct consequence of Theorem 3.1.8. If we calculate Laplace 
transform using properties of Definition 3.1.1, and we are able to get only one 
result, the uniqueness of generalized time scale nabla Laplace transform provides 
the uniqueness of the Definition 3.1.1, except of the nul l function. • 

3.2 Fractional operators on time scales 

In this section we present fractional operators as wel l as some of their properties. 

Definition 3.2.1. Let T be the time scale, such that the time scale monomials of 
any rational order are defined uniquely. 

Example 3.2.1. A l l isolated time scales satisfy the Definition 3.2.1. Also R. As 
we showed before, also time scales such that on t G [s, a] is backward graininess 
function zero and on x G (s, oo) is backward graininess function constant. 

Definition 3.2.2. Let 7 > 0, ex > 0, a, a, b G T be such that a < a < b. Then for the 
function / : (a, b]i —> R we define 
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a) the fractional integral of order 7 > 0 wi th the lower limit a as 

and for 7 = 0, we put B V ° / ( 0 = /( ř)> 
b) the Riemann-Liouville fractional derivative of order a with the lower limit 

a as 

„VY(f ) = v W f l v « - W / ( í ) , ř G K ^ ^ n ^ f c ] ! 

c) the Caputo fractional derivative of order a with the lower limit a (a > a) as 

f W ( ř ) = « V « - W v W / ( ř ) / í e [<r(a),% 

Theorem 3.2.1. Let 7 > 0, a > 0, 5, a, & G T be such that a < a <b. Then for any 
function / : (5, &]T —> R the fractional integral with the lower limit a is linear. 

Proof. Linearity of fractional integral follows directly from the linearity of the 
time scale integral. • 

For 7 = 1, Definition 3.2.2 a) is reduced to a formula for the anti-derivative 

« V " 1 / ( i ) = / V ( T ) V T 
J a 

known from the time scales theory. We also may note that in Definition 3.2.2 a), if 
a > a, we get usual definitions of difference calculus. 

Theorem 3.2.2. Let a G R , |6 G (-1,00) and s, t G f such that s > t. Then it holds 

Jz^_ a(i, s) for |S > a. — 1 

0 for G {a — \cc],cc — \cc] + 1,...,cc — 1}. 

Theorem 3.2.3. Let a > 0, /3 G (—l,oo) and s, ř G T be such that t > s. Then it 
holds 

Id for G {a — \ci],a — \a] + 1, ...,a — 1}. 
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4 CONCLUSIONS 

In the first few chapters the bachelor thesis covers basics of the time scale cal
culus (including the generalized time scale exponential function, the generalized 
time scale nabla Laplace transform) including demonstrative examples to fully 
understand the matter and deal with theory needed to pursue the later results. 

The bachelor thesis contains results comprising investigation of axiomatic def
inition of power functions on time scales primarily using Laplace transform as a 
tool to provide the property of the uniqueness of definition used to define men
tioned power functions. It shows relations of investigating the uniqueness of gen
eralized time scale nabla Laplace transform and investigating uniqueness of the 
definition and concludes, that it is basically the same problem ergo by proving the 
uniqueness of generalized time scale Laplace transform we also show uniqueness 
of the definition of time scale monomials, as wel l as some other functions. 

It also comprises in depth investigation of Lerch's theorem as wel l as method 
for proving such theorem. We also extended some known results about Lerch's 
theorem as wel l as about time scale power functions. We believe we contributed 
to the development of the fractional calculus on time scales and our results w i l l 
be extended and summarized into a scientific paper later on. 

We also developed properties of fractional operators, using uniqueness prop
erty obtained by extending Lerch's theorem. 

Further investigation of the uniqueness of Laplace transform and possible 
generalization of Lerch's theorem to an arbitrary time scale is still open question 
for the future research and we proposed some facts we believe w i l l be needed 
for obtaining general proof of Lerch's theorem, and thus we enhanced possible 
future development of fractional calculus on time scales. 

Our work in the field of the fractional calculus w i l l continue and hopefully, 
the proof of Lerch's theorem valid for every time scale, where Laplace transform 
may be defined, w i l l be discovered. 
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LIST OF SYMBOLS 

£/j h cylinder transformation 

eAt,s) Nab la exponential function wi th exponent f and ar
guments t and s 

J f(t) V f Nabla integral of function f 

C/j Hilger complex numbers 

T K Truncated time scale 

£ s / ( z ) Laplace transform of f on [s, oo] to variable z 

TZV Class of v regressive functions 

7£+ Class of positively v regressive functions 

]i Forward graininess function 

v Backward graininess function 

0 Circle dot multiplication 

0 , Qv Circle minus subtraction 

0 , © v Circle plus addition 

p Backward jump operator 

a Forward jump operator 

expf Real exponential function with exponent f 

/ ' Real derivative of function f 

f *g Convolution operation of f and g 

/ v or V / Nabla derivative of function f 

inf{M] I n f imumofM 

sup{M} Supremum of M 

C Complex numbers 

N Positive integers 
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Q Rational numbers 

R Real numbers 

T Time scale 

Z Integers 
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