
VYSOKÉ UČENI T E C H N I C K E V B R N E
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

NÁVRH NOVE R P M DATABÁZE
DESIGN OF NEW RPM DATABASE

DIPLOMOVÁ P R A C E
MASTER'S THESIS

AUTOR P R A C E
AUTHOR

VEDOUCÍ PRÁCE
SUPERVISOR

Be. JAN ZELENY

Dr. Ing. PETR PERINGER

BRNO 2010

Abstrakt
Systémy správy balíčků tvoří velmi efektivní a pohodlné řešení pro instalaci, údržbu a
mazání software v počítači. Jejich základní koncept spočívá v uchovávání informací o
instalovaném softwaru na jednom místě a jejich správě dodanými nástroji. R P M databáze
je právě tím místem, kde jsou informace uchované. Současné řešení je zastaralé a potřebuje
vylepšit. Tato práce analyzuje současné řešení, jeho možné alternativy a na základě této
analýzy navrhuje nový design databáze. Součástí je také ukázka implementace rozhraní
nad touto databází a porovnání se starým řešením.

Klíčová slova
R P M , rpmdm, balíčkovací systém, databáze, MySQL, SQL

Abstract
Package management systems are very effective and comfortable solution of installing, main
taining and erasing software from computer. Their basic idea is that all information about
installed software is kept in one place and is managed by common utilities. R P M database
is such place, where information are being kept. Currently used solution is obsolete and
needs some improvements. This thesis analyzes current solution, possible alternative op
tions and based on this a new database design is proposed. A prototype implementation is
also included and it is compared with current solution.

Keywords
R P M , rpmdm, package manager, package managing system, database, MySQL, SQL

Citace
Jan Zelený: Design of new R P M database, diplomová práce, Brno, F IT V U T v Brně, 2010

Design of new R P M database

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením pana Dr. Ing. Petra
Peringera. Další informace mi poskytl Ing. Jindřich Nový Ph.D. z firmy Red Hat Czech s.r.o.

Jan Zelený
May 24, 2010

Poděkování
Rád bych tímto poděkoval firmě Red Hat Czech s.r.o. za poskytnutou podporu.

© Jan Zelený, 2010.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 2

2 R P M management system 4

2.1 Content of repository 5
2.2 R P M architecture 9
2.3 Package structure 10
2.4 Package file format 12
2.5 Database structure 13
2.6 Database backend 14

3 R P M database analysis 17

3.1 Performance profiling 17
3.2 Other performance tests 19
3.3 Shortcomings summary 21

4 Possible design approaches 23

4.1 Other packaging managers 23
4.2 Relational databases 25

5 Proposed format description 33

5.1 Data model of SQL part 35
5.2 Final design 38

6 Design and implementation of new R P M database module 44

6.1 Current A P I 44
6.2 Use cases analysis 47
6.3 Use cases implementation 48
6.4 Possible A P I design 50

7 Comparison 53

8 Conclusion 55

1

Chapter 1

Introduction

Package management systems (further referred to as P M systems) are very effective and
comfortable solution for installing, maintaining and erasing software from computer. They
are mostly known for their usage in various Linux distributions. Although people got
familiar with them mostly in GNU/L inux , these systems had been here before the time of
Linux, in different Unix compatible systems. Although they looked differently, the basic
principle remained the same. This basic idea and goal is that all information about installed
software is kept on one place and is managed by common utilities.

As it results from this definition, P M systems are composed of 2 basic parts. The first
part is package metadata storage, which can be represented just by directory where simple
text files are stored. On the other hand, it can be represented by a complex database
structure with operational A P I implemented on the top of it. The second part of P M
systems is a set of tools which implement desired operations above the metadata database
as same as various constraints defined by design of concrete P M system (e.g. dependency
checking, checksum verifying, ...).

R P M is one of the oldest package managers used in Linux distributions. It is used by
many vendors, the most famous distributions using R P M are Red Hat Enterprise Linux,
SUSE Enterprise Linux, Fedora, Mandriva and OpenSUSE. Nowadays it is much more
complex than it used to be when it started. When using " R P M " now, users mostly have
the whole system working with R P M packages in mind. This system will be described at the
beginning of chapter 2, which describes current R P M solution. It starts from its complete
architecture and in the rest of the chapter it focuses on its particular parts. There is even
a package structure described in section 2.3, because database structure is derived from it.

The goal of this thesis is to design a new R P M database. Implementation is only sec
ondary as a proof of concept. The main reason for new design is not that current solution
is bad, but rather the design is obsolete from the perspective of modern software design
methodology. That leads to very complex work with the database and as a result, several
flaws are in the code working with rpmdb A P I . They are described in section 6.1. New
design should offer more straightforward work with rpmdb. This will eventually lead to
simplification of the entire R P M allowing more features to be implemented easily. When
designing a new database, an eye should be kept on current solution and its shortcom
ings. Chapter 3 does exactly that. It analyzes current rpmdb and its features in order to
determine weakest links in current database design.

Current solution is based on Berkeley D B . Even though it isn't a bad solution, other
and possibly better solutions exist. Chapter 4 analyzes some of these alternatives and tries
to determine if any of them can be useful for new design. Section 4.1 focuses on other P M

2

systems. There is a number of them which use very interesting concepts. These concepts are
then applied in new design. That is based on relational data model, utilized by databases.
Section 4.2 describes both relational data model and relational databases in practical usage.
Then two database systems convenient for usage as rpmdb engine are picked, described and
compared in section 4.2.3.

Chapter 5 deals with the database based on SQL solution. As it was already outlined,
is uses information from previous chapters. The design is built methodically based on
standard design approach presented in section 4.2.2. Before designing the database itself a
conceptual model is introduced and described. Because the database is not entirely based
on SQL backend, the other parts are described as well as all connections between them.
The beginning of chapter 5 and a part of section 5.2 focus on this.

Finally, chapter 6 is based on two things. First of all deep code analysis of rpmdb
was needed. Conclusions of this analysis are discussed in section 6.1. Original idea of the
implementation was to make a module which could replace existing database module. This
has been proven as ineffective, thus sections 6.3 and 6.4 describe another solutions. The first
of them focuses on the proof of concept solution, which has been designed specifically to
meet requested assignment and to provide a glimpse how the code using SQL as a backend
would look like. Comparison of both solutions is provided in chapter 8. This chapter also
evaluates possible contributions of this thesis to future development of R P M .

3

Chapter 2

R P M management system

General goal of package management system in different Linux distributions was described
in chapter 1. It was also stated, that R P M usually refers to a whole architecture working
with R P M packages. Figure 2.1 shows diagram of the whole RPM-related architecture.

sePveP side

PespositoPies delta PepositoPies

client side

RPM fPontend

yum
smaPt
uPpmi
yast

apt-Ppm

_\k:
7fr

delta RPM fPontend

yum-pPesto
yast

A :

t I Y
RPM

•
filesystem

V
7JV"

RPM database

—>• Repodata

•ih Packages

Files

— ^ HeadeP infoPmation

Figure 2.1: Package management system based on R P M

As it is denoted in diagram 2.1, the actual R P M is only one of pieces putting together the
whole P M system, even though " R P M " is often used as a name for the entire architecture.
To understand the diagram, repositories should be explained first. Repository is a data
store containing a number of R P M packages. Packages provided by the repository are
compiled (along with some information) into a list represented by compressed SQLite file.

4

Each client program can have unspecified amount of repositories registered and download
programs from there. Repositories can be accessible via different Internet protocols, like
HTTP, ftp but they can be also accessible as common directory in filesystem.

Client programs designed to access repositories will be referred to as R P M frontends.
Nowadays, these could be considered the most important part from user perspective. Typi
cal representative of R P M frontends are programs like yum (Fedora and Red Hat Enterprise
Linux) and yast (OpenSUSE, SUSE Linux Enterprise Server/Desktop). R P M frontends
have several important parts which basic R P M utilities aren't focused on. First of them is
dependency resolving. Frontend program keeps the list of packages which it can access in
one of known repositories and it keeps the list of installed packages. If user wants to do any
operation with packages (either install a new one, upgrade or uninstall one from his sys
tem), the dependency solving algorithm is triggered. In case of installation (or upgrade), it
decides, which packages to install/upgrade/uninstall along with the program and in case of
erasure which packages depend on erased packages and should be removed as well. This is
a difference from R P M itself, because R P M only checks the dependencies but it doesn't do
anything else, because it has no knowledge about the repositories and their content. To be
precise, R P M has some dependency-solving mechanisms implemented, but the code is very
old and rather unpleasant from the user point of view - the user would have to download
all packages from repository first.

That leads us to the second part which distinguish frontends from R P M itself and that
is repository support. Repositories and frontends were designed with cooperation in mind.
That is why frontends have advantage here-it is not necessary to download the whole
repository, just the package list suffice. Frontend then builds it's own database, when
it merges packages from all registered repositories and download only those, which user
requests.

Frontends usually have their own databases because R P M database can't contain all
the information frontends need. Yum, the most extensively used frontend in Fedora has its
own database stored in SQLite format. Frontends using its own databases make significant
part of the data redundant because it is already stored in R P M database. But on the other
hand this solution has better performance because it isn't necessary to call R P M routines
to extract some data,

However calling R P M is necessary during writing operations, because frontends usu
ally don't implement R P M payload handling (installing files, setting their ownership, ...),
running scriptlets, R P M database update, etc. These " R P M calls" can be divided in two
categories, depending on what is the call target:

• rpm utilities-some programs like beer directly invoke rpm command and handle
only its return code or text output

• rpmlib - provides C A P I and Python bindings. Through these, it is possible to
perform operations with R P M database and packages directly

2.1 Content of repository

When optimizing the database, we should know what to optimize for. The basic source of
packages which are installed on every Fedora system, are Fedora repository trees "Basic"
and "Everything". This section analyzes content of repository for Fedora 12-beta Ev
erything tree. Analysis provides some data useful for better understanding of statistically

5

"typical" package's composition. Then the same tree has been analyzed for Fedora 9, 10 and
11. This information can provide us prognosis about the future development. The database
has lasted about 10 years in its format practically unchanged. It is important that similar
situation is expected after 10 years-the database should withstand performance and other
requirements with its content for the next 10 years after it is designed.

Table 2.1 shows some statistical properties of packages in different Fedora versions. For
package count in repository, the first number denotes total amount of packages, contrary to
number in parentheses, which denotes number of packages only for x86-64 and noarch. For
various reasons it is possible to have i686 packages in x86-64 repository. For example some
packages are not available for given architecture, but the original ones can work as well.
Another example might be given by multilib parts of the system - it is possible to have the
same library installed twice-once for i686 and once for x86-64 architecture simultaneously.

Total Mean Median Mode Q l Q3
Packages 12444(9881) - - - - -
Header size 284.4 M i B 23.4 MB 7.6 M B - - -

Fedora 9
Files 1806161 167 16 6 6 67

Fedora 9
Requires 200 583 15 11 4 6 21
Provides 50 795 4 2 1 1 2
Packages 11348(11345) - - - - -
Header size 271.6 M i B 24.5 kiB 7.5 M B - - -

Fedora 10
Files 1 755 879 154 15 6 6 67

Fedora 10
Requires 178 505 15 11 3 5 20
Provides 51944 4 2 2 1 3
Packages 13195(13191) - - - - -
Header size 368.4 M i B 28.6 MB 8 M B - - -

Fedora 11
Files 1 978 808 149 14 6 6 64

Fedora 11
Requires 218 272 16 12 4 7 21
Provides 78117 5 2 2 2 3
Packages 19120(15343) - - - - -
Header size 492.1 M i B 26.4 MB 8 M B - - -

Fedora 12
Files 2 489 520 130 13 6 6 57

Fedora 12
Requires 339129 17 13 5 8 23
Provides 113017 5 3 2 2 4

Table 2.1: Statistical properties of Fedora packages

6

10000

9000

8000

7000

£ 6000

5000

4000

3000

2000

1000

0
10 100

Feature count

conflicts
files

obsoletes
provides
requires
triggers

1000 10000

Figure 2.2: Dependency of package count on given property count

Table 2.1 provides some statistical information about recent Fedora versions and pack
ages included in their basic repository trees. Mean values in the table can contain error
caused by integers used in scripts generating statistics. Maximal margin of this error is ± 1.

Graph 2.2 shows approximated property graph-it shows how many packages have given
amount of records in one of Provides, Requires, Files, Obsoletes or Conflicts R P M
tags. It is important to realize that graph is only approximation to give an idea about how
package features are distributed. For the sake of lucidity some peak values were ignored on
both X and Y axes. Again this step was taken because there was no need for the graph to
be precise.

Various versions of Fedora were included in the statistics to estimate future develop
ment. The statistics were made from the whole repository (not just from packages for
given architecture), because it is usually possible to install multiple package versions (to be
more precise one package version, but for multiple architectures) on one machine (i.e. it
is possible to install both glibc.x86_64, glibc.i686 and glibc.i586 on one system). As it was
stated before, the whole repository was included to estimate probable top margin of what
the database will have to withstand. It is possible to object that user most likely won't
have all packages from repository installed. That is indeed true, but on the other side, user
can have multiple repositories enabled and have large portion of packages provided by them
installed.

Now to the results and conclusions of package statistics. What we can see in both graph
2.2 and table 2.1 is that most of the packages are composed of very small amount of files
(about 52% of them has 13 or less files). Situation for provided and required features is

7

very similar. What can seem strange is mean value of files contained in package, which
is ten time greater than mean value. Here it is important to realize that mean value is
caused by some packages which have up to thirty thousand files included. It is available
to see in graph 2.2 that amount of packages containing more than 300 hundred files is
very small (in fact, not even 5% of packages have more than 500 files). Despite the small
amount of such packages, they influence the mean value significantly, that's why the focus
is laid on median value here. As for Requires and Provides, there is nothing highly unusual
there, mean and median value are similar. From these statistics we can estimate a typical
package representation with these statistics:

• Files: 6-13

• Provides: 3-5

• Requires: 13-17

• Header size: 8-26 kiB

And now to the possible future development. The first obvious and important things are
package count in the repository and their header size. These two values indicate how the
database shall grow in next few years. Figure 2.3 shows their development.

100000
Package count — • -

Header size —•-

10000

1000

100
10 11

Fedora version
12

Figure 2.3: Package count and metadata size development in recent Fedora versions

It shows that number of distinct packages (only those for x86_64 and not their coun
terparts for different architectures) increases in each version by a little over 2000 packages.
It is possible to expect growth similar to graph 2.3 in the future, although there might be
a top border, because of different reasons-for example smaller number of programs with

new functionality. Another thing shown in graph 2.3 is total metadata size in all packages.
Besides package count, metadata in every package grow as well, because there are things
like changelog contained in every package header. Since both package count and header size
grow linearly, the resulting metadata growth should be polynomial (total metadata size is

Pkg-cnt

counted as Header size). In the graph it is possible to see a comparison between
i=0

metadata size and package count growth. It is say about the same despite previously stated
fact about metadata growth. That can be explained by division on packages. Some pack
ages are split into two or more, which leads to package count increase, but metadata size
stays more or less the same.

Based on graph 2.3, it is possible to estimate approximated metadata size after ten
years. By that time, it is possible that common database will have around 500 M i B and
in some extreme cases (such as all packages from repository installed) it could easily reach
1 G i B . A l l these numbers consider only the primary part of the database without secondary
indices (in current solution that means only a size of Packages database).

2.2 R P M architecture

R P M itself is an extensive system, which contains several parts. Diagram 2.4 shows the
main grouping.

RPM API

rpm

rpm-devel >

rpm-bui ld

f rpmlib

—> rpmio

rpmbui ld

^> Header parsing

Transact ions

Payload processing

Database access

Dependenc ies

Figure 2.4: R P M system composition

It is possible to divide R P M into two main groups - libraries and programs built on
those libraries. We will start with programs. There are three RPM-related packages. More
exactly they are directly related to R P M . Some other packages exist (e.g. for inspecting
R P M packages and for supporting the development of new packages). Following list shows
these three directly RPM-related packages and programs they provide.

9

• rprri

— rpm is a utility for general manipulation with packages and for querying the
R P M database

— rpm2cpio can extract payload from R P M archive

— rpmdb is a tool for database operations

— rpmverify provides a subset of rpm-provided operations, particularly it supports
verifying. In general, that is operation, when files installed/owned by the package
are compared with information in the database (or R P M header) and eventual
inconsistencies are reported.

• rpm-build

— rpmbuild is a tool for building rpm packages from sources

• rpm-devel

— rpmgraph displays package dependency graph using graphviz

The programs listed above utilize different parts of R P M A P I , which can be divided
into three libraries. These libraries along with their description are in the following list:

• rpmlib is the main R P M library. It includes core operation set for every part of
R P M . It cooperates closely with rpmio. Here follows list of some important parts:

— Header parsing - reading, loading and processing package headers. Conversion
from and to format used in rpmdb and R P M packages is also part of this module.

— Transactions -Every operation (or set of operations) is represented as a trans
action. This module handles the transactions, their iterators and elements.

— Package payload processing - supporting functions and file state machine for han
dling cpio format

— Database access - th is is the subsystem this thesis is focused on. It contains all
the functions used to communicate with rpmdb, also some data conversions are
here.

— Dependency related -dependencies, problems in them and added/available pack
age list

• rpmio is supporting layer for accessing files by rpmlib (local or those available through
network)

• rpmbuild - library providing general functions for building and composing rpm pack
ages

2.3 Package structure

Content of R P M packages can be divided into two separate groups. Because packages carry
software, their main content is composed of files, which are copied to filesystem during the
installation. Although the second part is not important from the user's perspective it's the
most important for R P M database. The second part contains supporting information. One

10

chunk of this information is composed of scriptlets - small pieces of code (usually written
as shell scripts) which are executed at given point of package (un)installation. Package
can contain these scriptlets: °/

0
pre, °/„post, °/

0
preun, °/

0
postun, °/

0
triggerin, °/„triggerun and

%triggerpostun.

Following text shows the order of scriptlets in the most complex operation with R P M
package, which is upgrade (or downgrade - operation is practically the same). Upgrade
consists of installation of new version followed by uninstallation of old version(s):

1. °/
0
pre of the new package

2. installation of new package's files

3. °/
0
post of the new package

4. °/„triggerin of other packages

5. "/otriggerin of the installed package (package version respectively)

6. "/otriggerun of the uninstalled package (package version respectively)

7. "/otriggerun of other package

8. °/
0
preun of uninstalled package

9. uninstallation of old package's files which aren't part of the new package

10. °/„postun of the uninstalled package

11. "/otriggerpostun of uninstalled package (package version respectively)

12. °/„triggerpostun of other packages

When simpler operations take place, certain scriptlets are left out. As it is obvious, dur
ing installation the chain ends with install triggers and uninstallation begins with uninstall
triggers.

Scriptlets obviously need to be saved in the database, especially those, which are re
lated with uninstallation, because they can be executed after the original package file was
removed. The same case applies for triggers.

Triggers are special scriptlets, because they can be executed even when package they are
part of isn't subject of any operation. That means they can be triggered by any installed,
uninstalled or upgraded package handled by R P M library. This implies that triggers must
be easily accessible using name of triggering package (and possibly version) as the lookup
key.

The remaining part of R P M file consists of so called tags. These tags create information
about package and it's properties. From strict point of view, scriptlets are tags as well [20],
even though their purpose is little bit different from the other tags. More details about
how R P M tags are stored are disclosed in section 2.4. Complete list of tags can be found
in source code of R P M , specifically in file lib/rpmtag.h. Although it is not completely
up-to-date, R P M guide provides the list of most important ones for package maintainers,
describing both their value and purpose (alias usage). Some of them are significant for this
thesis. Most of these important tags are important for current rpmdb as well-because they
are commonly used, there are dedicated databases for them in order to boost performance.
Detailed description is in section 2.5. Important tags are concretely:

11

• provides requires conflicts obsoletes- these tags are used for solving dependencies,
which is frequent and important routine in every packaging system including R P M .
Each of these tags has three parts-name (mandatory), version (optional) and flags
(>= = <= < >, optional)

• NVR, which stands for Name-Version-Release is internally needed for large subset of
operations. It is used as unique identification for every package. Its extended form is
sometimes used and it's called N E V R A (Name-Version-Epoch-Release-Architecture).

2.4 Package file format

This section describes how the data are stored in R P M file. A n overview of R P M package
is offered by figure 2.5.

RPM
signature

RPM
signature

RPM lead 00 00 00 00 Package 00 00 00 00 RPM Pa9load (96 b9tes) Index length signature Index length header
Pa9load

Data length Data length

4 b9tes

4 b9tes

4 b9tes

4 b9tes

Figure 2.5: R P M package structure (top to bottom, left to right).

As the figure shows, the first part of R P M package is rpmlead structure followed by
signature. The lead is deprecated and it remains for backward compatibility[20], it isn't
used otherwise. Therefore when reading R P M file, it is possible to skip first 96 bytes
(88+4*sizeof (short)+padding), which the R P M lead is created of (plus padding). The
following two parts are signature and header. They have the same format:

• 4 bytes of rpm magic number signature

• 4 zero bytes

• 4 bytes network-byte-ordered index size (further referred to as U)

• 4 bytes network-byte-ordered data length (further referred to as Id)

• index structure array (1 structure containing some general package metadata and 1
index structure for each tag present in the package)

• byte array with the data index structures point to

R P M magic number indicates that file is valid R P M package. Following 2 numbers are
used to determine length of subsequent data as li * sizeof (struct entrylnfos) + Id- Header
itself is created by the data. It is byte string of values separated by zero bytes. To know
which value is which, index is created on the top of these data. Index is an array of below
described structures[20]. Each of these structures identifies a chunk of data as one of R P M

12

tags. It contains information about tag's data type and which tag it is. Then it contains
an offset of the data-that is position of the first byte of data from the beginning of data
blob. As it was already written, the end of data is designated by zero byte.

struct entryInfo_s {

rpmTag tag; /*!< Tag identifier. */

/*!< Tag data type. */

/*!< Offset into data segment. */

/*!< Number of tag elements. */

rpmTagType type;

int32_t offset;

The data in R P M signature contain maximally 32 index records (max. 8129 bytes of
data payload respectively). Signature is used to describe the R P M file (as in the package
container), not the package itself, that is why the limitation is present - there is not much
information needed to describe the file. For this thesis R P M signature isn't important.
Contrary to signature, header is the most important part, because it contains all package's
metadata. Also the format which was described above is important, because the same
format is used in R P M database. The data in header are more important, since they are
stored in rpmdb.

The rest of package creates a file payload. Because it is not important for further
chapters, it won't be analyzed closer.

2.5 Database structure

Data files are by default stored in /var/lib/rpm directory. The basic part of the database
is file Packages, which contains all the information about installed packages, and thus it is
the primary R P M database. As it was written in section 2.4, it uses the same format as is
used in R P M packages (obviously without the first 8 bytes-the magic number and zeros).
Position of the package metadata in primary database (and also its lookup key value) will
be in the rest of this section referred to as installid.

The Installtid file contains install transaction times (i.e. when individual packages
were installed), as well as IDs of those transactions. The other important files in the
directory are indices of the primary database. Based on this relation and the fact they are
also Berkeley databases, they can be referred to as secondary databases. They are designed
as reverse databases to Packages. It has installid as the key and the rest of the data
as value. On the other hand every secondary database has one of R P M tags as a key and
installid as a value. More specific information is listed below. [15] Each secondary database
file uses its own B D B index (Hash or B-Tree). B D B index type for every secondary database
is listed below as well.

13

Basenames (hash) File name (not a path, only a name) is a key and values contain pairs
of (installid,basenameindex). This index is very closely related to Dirnames

Conflictname (hash) Name of conflicting package is a key here(RPM tag CONFLICT-
NAME), pairs of (installid,conf lictindex) then create values

Dirnames (B-Tree) Index containing paths to files listed in Basenames. Path is a key and
values are (installid,dirindex)

Group Valid name of a group is a key (according to file GROUPS in a directory with R P M
documentation, e.g. /usr/share/doc/rpm-4.6.1/) values are created by couples:
(installid,0)

Name (Hash) Package name is here as a key and values are: (installid,0)

Providename (Hash) As same as Conflictname, only uses R P M tag PROVIDES

Provideversion (BTree) Contains versions of packages listed in corresponding records of
Providename as a value

Requirename (Hash) Index is corresponding with Conflictname and Providename

Requireversion (BTree) Index corresponds with Provideversion

Triggername (Hash) Key is unique name of a package trigger. Values contain couples of
(installid,triggerindex)

2.6 Database backend

R P M is based on Oracle Berkeley DB engine. It is open source database library, which
is linked with application and thus mapped to memory space of a process which uses it.
That can be a huge advantage in terms of memory consumption. It also means that DB4
doesn't provide standalone server, but application providing it can be implemented using
this library. For example some older version of M y S Q L were offering B D B as storage
engine. [10]

Main features of this backend are:

• A C I D semantics involving writing locks, logging, data restoring after corruption and
multiple operations in one transaction

• page cache management, including I /O handling

• several index types (B-trees, hash tables, queues, numbered lists)

• no restriction for stored data (they are represented only as a byte string of certain
length)

B D B uses simple data format. Every database is contained of key and data values. Both of
these are represented as a structure containing byte string and the length of this string. No
other information is contained, therefore understanding the data requires explicit knowledge
how the data are organized. That was described in previous sections. Every B D B database
has its own index. That is used for example to look up value for given key. We need to
know the index type, otherwise it won't be possible to open database file. [17]

14

Utilizing Berkeley D B brings both advantages and disadvantages to R P M . The main
advantage is extensibility of stored data. This feature comes from used data format and
how the data are stored. In comparison with relational database, which in its normal form
requires data to be atomic, B D B allows the data to have arbitrary form. This also applies
for key values, which can be thought of as another advantage.

As for disadvantages. The largest one is given by the data format. Because the database
has no idea neither what the data represent nor what is their type, we have to handle all
the data ourselves. Another disadvantage resulting from the data format is difficult imple
mentation of complex queries. Because key is basically a binary blob and it is permitted to
have only one key per database, it is impossible to execute complex queries like searching a
package by multiple parameters (e.g. name and architecture) directly. This can be worked
around for example by creating secondary databases as indices-this basically emulates
possibility of having multiple keys for one database for a certain amount of performance.

DB4 features are important for R P M database. One of them can be determined using
data in section 2.1 and measured database size. In Fedora 9, it's 318 M i B , in F10 it's
302 M i B . In F l l and F12 it rises significantly to 417MiB (562 M i B respectively). For
better picture, these values are displayed on figure 2.6. Using these resources, it is possible
to count database overhead. Because it certainly depends on the data that are inserted, it
was measured on rpmdb. Because all packages were installed at once, the overhead was at
its minimal possible level. To be certain, it is possible to run rpm —rebuilddb command
to optimize R P M database. On testing machine after rebuild of the database, there is no
significant change in its size (reduction only in a magnitude of kilobytes). However when
using R P M for some time in common environment, database overhead grows-on testing
machine which has been used for several months without database cleanup, rpmdb was
reduced from 85 M i B to 53 M i B only by performing rebuild.

Graph 2.6 shows both the database size and overhead. The database size is made by
total metadata size and overhead size. Both parts are displayed in figure 2.6. From this
graph we can read, that database overhead is between ten and twenty percent. Particular
overhead is 33.6MiB for F9, 30.4 for F10, 48.6 MiB for F l l and 69.9 MiB for F12.

It is possible to calculate the overhead more precisely. From previously collected data,
it is possible to construct a graph displaying the overhead dependency on database size.
We can calculate a slope of line between the first and the last points of this graph. Example
of such graph is displayed by figure 2.7 (the graph is only illustrative, although it has been
constructed from real data). The slope is calculated on the line between the first and the
last point on the graph and its value is 0.18, which means the overhead is 18%.

This approximation isn't good enough, because it would mean that for small databases
the overhead is negative. To make it more accurate, a very small database is needed.
We create one and fill it with some packages. A n example is given below. This sample
database is 2173 kiB large. Actual size of package metadata is 1820.25 kiB, which makes
overhead 355.75 kiB. Taking this into consideration, the overhead is 16%. If we wanted
to be precise, the growth would have slightly polynomial character. To display that, much
more data would be required. Considering the exact percentage isn't goal of this thesis and
we need it only to have a rough number for comparison with potential new solution, out
current approximation is sufficient for us.

An example of creating and f i l l i n g test database

rpm — i n i t d b —dbpath /path/to/tmp/db

rpm - i —nodeps —justdb —dbpath /path/to/tmp/db /path/to/local/repo/xorg-*

15

600

500

400

300

200

100

1
Overhead i i
Database r _

9 10 11 12

Fedora version

Figure 2.6: Database size in different Fedora version

80

0 1 1 1 1 1 1

250 300 350 400 450 500

Database size [MiB]

Figure 2.7: Dependency of database overhead on database size

16

Chapter 3

R P M database analysis

3.1 Performance profiling

Several profiling test were run on order to determine where the weakest spot of R P M
is. Profiling graphs are all on attached D V D , because of their large proportions. Tests
have been run on Fedora 11. There were 2 types of tests. First of them was on normal
workstation-that means only commonly used packages were installed, database size was
approximately 80MiB (database further designated as normal-db). The second type was
on full database (over 400 M i B , further designated as full-db). Description of tests follows:

At first a blank database was created, then all packages from Everything repository of
F l l were installed and finally some queries were ran. Query formatting was used instead
of parameters like — l i s t because of this parameter's behavior. In it's implementation it
calls some unnecessary functions which leads to major distortion of results. In the end, the
database was deleted:

rpm — i n i t d b —dbpath /path/to/db

rpm - i —justdb — n o f i l e s —nodeps —dbpath /path/to/db /path/to/repo/*

rpm -q — i n f o —dbpath /path/to/db rpm

rpm -qa —dbpath /path/to/db

rpm -qa — q f " [°/„{FILENAMES>\n]" —dbpath /path/to/db

rpm -qa — q f " [°/„{REQUIRENAME>\n]" —dbpath /path/to/db

rpm -qa — q f " [°/„{PR0VIDENAME>\n]" —dbpath /path/to/db

rpm -e —nodeps —justdb —dbpath /path/to/db <list-of-all-packages-in-db>

Then the whole process was repeated with selected packages. List of those packages was
derived from list of packages installed on author's working computer. That list is considered
to be a representative pattern for normal installation. A set of scripts used to generate the
list and subsequently an install script is present on attached D V D .

Before executing any of listed operations a following test took place to figure out if disk
cache has any affect on profiling results. The script (at least the synchronizing and cache-
flushing part) should be run by root. Graphs for cache available and flushed are present on
attached D V D . Both graphs are the same when displaying the the percentage of consumed
time. When using absolute numbers (ticks of C P U) , they are slightly different, but the
difference isn't big. From these findings it's safe to assume flushing the cache doesn't affect
profiling.

17

rpm -qa — l i s t —dbpath /path/to/db # create cache

valgrind —tool=callgrind rpm -qa — l i s t —dbpath /path/to/db

sync

for i in 1 2 3; do

echo $i > /proc/sys/vm/drop_caches

done

valgrind —tool=callgrind rpm -qa — l i s t —dbpath /path/to/db

In test result, some of the routines are marked only with their address in memory.
Those routines are outside of rpm, rpmlib and db4 library-that means they are not much
important, hence we won't occupy ourselves with them any more.

What we can see from graphs is how much of execution time is spent reading data from
the database and parsing them (or in case of writing operations how much time does it take
to write the data to database).

Using common sense it is possible to divide R P M operations into 3 basic operation
modes. We start with read and write division. Write operations can be further divided to
install and remove. Within each of these categories we can even further distinguish simple
and iterative operations (repeated over large amount of packages).

The first operation is installation. Data were gathered by installing all packages in
Fedora repository and by installing only subset of these. Bottleneck during iterative instal
lation is indexing of files and directories. They are added to a list of available features and
this list is sorted for each installed package. Comparing full-db and normal-db installation
it is possible to see that relative portion of time spent in sorting grows with number of in
stalled packages. As for data format and storage related operations: DB4 related operations
take about 10% of C P U time. This can't be reduced much, since all package information
has to be stored in the database. The only possible reduction here can be done by deciding
which information from package header is not relevant and thus isn't neccessary in rpmdb.
Example of such information may be complete changelog. What is more interesting is
conversion of package ID sets from stored to working format, which takes about 17.5% of
C P U time. This amount of time is significantly influenced by data format. Fundamental
issue here is byte order detection and correction and cardinality of tuples stored in set (1
or 2 numbers in tuplet). Because the database will most likely not available for transfer to
another machine, not yet to another architecture, this can be easily avoided. According to
one of R P M developers, the byte-order detection and conversion might be present because
B D B stores the data in network byte order. In that case switching backend database would
help. Of course, the new backend would have to do the conversion itself-or even better no
conversion should be performed at all.

Erasing operations have one great bottleneck and that is cleaning of package-ID-sets.
These sets are contained in every secondary index, as was described in section 2.5. That
means erasing all package records (there can be large amount of them in some cases)
has to be done for each secondary index. Erasing contains quicksorting and subsequent
binary searching in set. These two functions take most of the C P U time during erasing
operations. Rpmdb can help reducing this time by providing tertiary internal index or
similar mechanism implementing more data caching. Other significant profiling properties
(and subsequently possibilities of their affection) are basically the same as they were for
installation.

When querying the database the largest time consumer is hash checking. That however
can be disabled by —nodigest —nosignature options given to rpm. When we consider

18

data provided by default run as primary (i.e. hash checking is turned on), we can state
that reading from the database takes about 1.5% and parsing the data takes about 10%.
We will return to these values, now to the results when hashing is turned off. In that
scenario, we have several major time consumers identified. First of them is previously
mentioned header parsing in form of headerLoad function. The second largest is header
formatting for output, the third is loading data from rpmdb and the fourth is loading R P M
macros. Because they are not rpmdb related, we can omit loading macros and formatting.
The result confirms that there are only those two above mentioned operations which could
improve query performance and are related to rpmdb. Now back to the first results. As in
previous cases loading the whole header is the most significant performance retarder related
to rpmdb. It is responsible for both above mentioned time consumers. Again this could be
solved if we didn't load all data from rpmdb at once. At the other side, it is important to
mention that loading the whole header has one advantage and that is performance stability
when querying for various data. Since we have all the information about header available,
the only difference is parsing them to output.

3.2 Other performance tests

Major slowdown of R P M operations is caused by calling fsync on databases, especially
the secondary ones. It has been proven that removing fsync calls raises the performance
significantly [14]. This could be upgraded either by switching backend or by change in
writing style to current rpmdb. Here is an example of such change (when writing more
items to database):

1. Write data to Packages file for every package

2. Sync after each of the packages

3. Set the flag to "out of sync" state

4. Perform all changes in secondary indices for all packages

5. Call sync on all files

6. Set the flag to "synced" state

Another performance test shows dependency on disk cache and overall querying speed
of rpmdb. Two tests were run, both were lookup-type tests. One of them used secondary
database as index, another one didn't, because the secondary database it would need isn't
available. This is how the test was executed:

1. A list of packages in the database is retrieved

2. Several packages are randomly picked from the list.

3. For each of these packages a test is run for a given number of times

(a) Drop memory caches and call sync to write all unwritten data do disk

(b) Run a lookup of the package for a given number of times, use the query program
which prints the time which lookup took

19

4. Calculate mean value for each one of runs from all test that were held (for every
package several tests and there were multiple packages)

5. The result is a list of mean values for every run from cache-dropping point

As an input to this test, we need a number of packages that are chosen from the list, a
number of times every package is probed and how many iterations from dropping the cache
should be run. This test is more closely described by python script which is on attached
D V D (in directory 3.2).

Because absolute numbers are results of this test, it is important to have a reference
machine described. The test was performed on a machine with Fedora 11 installed. The
configuration of important parts is described below. A l l test were performed while nothing
else was running on the machine except X server and basic system daemons.

Hewlett Packard xw4600 Workstation

Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz, 6MB L2 cache

4GB DDR2 RAM @ 800MHz, SAMSUNG SpinPoint Fl DT series 500GB

Program query was specially written to perform queries on rpmdb. Queries are as simple
as they could be to eliminate influence of non-measured elements as much as possible. The
program is present on attached D V D (in directory 3.2/query). It supports two basic
modes:

In normal mode the whole operation is measured, including memory allocation, etc. On
the other hand in optimized mode only lookup itself is measured. That means for example
opening/closing the database and memory management is omitted.

Work in each mode is taken into consideration and it is presented in graphs 3.1 and 3.2.

100

0.1

0.01

1
With

Without

i
sec. database — • —
sec. database —-•— -

i 4

T T T T T T T

1 2 3 4 5 6 7 8 9 10
Ordinal number of run

Figure 3.1: Dependency of rpmdb file cache

Figure 3.1 displays two graphs. In both cases their first run is significantly influenced by
disk cache and the others are relatively stable. The first run for indexed lookup took 0.68 s.

20

For non-indexed run it was 833.598 s. Times of the following runs are specified below.
Besides cache influence on query, figure 3.1 shows the difference between using and not

using secondary databases as index. The result is not surprising: when using secondary
database, lookup time floats between 12 ms and 13 ms. Lookup time of query not using the
secondary database is between 4.01 s and 4.03 s. Simple calculation shows that secondary
database can speed up the lookup operation more than 300 times.

Another performance comparison is described by figure 3.2. It is based on the same
program, but it measures only search results, not opening and closing the databases. Some
optimizations like exclusion of memory allocation for results have been done as well. The
first result from this run shows that opening the database when cache isn't loaded is signif
icant (more than 90% of indexed lookup and about 10 s when using non-indexed lookup).
And for the rest of runs result show that opening and closing the database is important
when we used secondary indices (in the case of not using them, the difference is the same as
it is in the first case, but considering the total lookup time they are not as significant). To
be more precise, these optimized runs took approximately 3ms, which means 75% boost.
This can be used when implementing database related algorithms - we should focus on open
ing and closing the database only once per transaction set and not for example once per
transaction.

100

10

E

0.1

0.01

With
Without

;ec. databas
;ec. databas

e — • —
e —

\

1
h < , 1 • < , < • ^

1 á

I I I !

> < ' 1

1 2 3 4 5 6 7 8 9 10
Ordinal number of run

Figure 3.2: Dependency of rpmdb file cache (lookup time only)

3.3 Shortcomings summary

From previous text the obvious and largest shortcoming is a large data blob loaded and then
parsed to gather information. The first problem with this is that it generates significant
I /O load when inspecting a large number of packages, even if only a small chunk of the data
is actually used. For example when listing N V R of all packages, it is necessary to load the
whole header for each package and parse it. That subsequently unnecessarily creates also

21

C P U load necessary for parsing the whole header. Loading the whole header also invokes
its checksum counting and verifying and as section 3.1 describes, that leads to major C P U
time consumption. The second problem with loading the whole header is that at that point
the database is barely utilized and it would be possible to reduce Packages database to a
simple blob, which would be mapped to memory using mmap().

There are some other performance shortcomings, but there are not as significant and
were already described, so let's skip them and focus on another design aspect and that
is transactional behavior. The main issue here which needs to be solved can be simply
represented by a situation when package is installed, but in the middle of installation
something happens (power failure, system freeze, . . .) which causes the operation to be
interrupted. There are some aspects which bring more complication. The first one is
difference between the filesystem and database. Contrary to database, the filesystem state
is not fully revertible in case of failure. Then of course there is a complication in a form of
scriptlets. For the operation to be fully revertible, it is absolutely necessary to keep track
about which part of a scriptlet is just executed.

22

Chapter 4

Possible design approaches

4.1 Other packaging managers

There is a number of package managing systems, which have at least some degree of sim
ilarity with R P M . These package managers are not only domain of G N U / L i n u x systems,
other UNIX-based systems use them as well. On the other hand not all Linux distributions
use package managers, some of them have only very basic packaging systems and some of
them even don't have anything like this and use only self-compiled software (e.g. Linux
From Scratch project).

Particular PMs specified below won't be subjects of copying, but rather subjects of in
spiration, because some of their features and approaches are interesting and can be certainly
used during design phase. These features will be described in following text.

One group of P M systems use SQL engines and databases. The first packaging system
in this group is Conary, used in ForesightLinux and developed by rPath Inc. The system
is written in python and can utilize several SQL engines as backends. [18] Conary was
originally developed by a number of an early Red Hat developers and it focuses on several
features:

• uniting local database handling with repository related work

• repository content should be more than just a bunch of files and a bit of metadata

• advanced package version control including branches should be in place

• scriptlets should be eliminated, since they represent a major obstacle for package
portability

Fundamental concepts of this packaging system are completely different from R P M : the
whole system is not package-oriented, but file-oriented. Packages and subpackages (both
called "troves") are basically only containers for one or more files. Also version control is
present in every part of the system. What is also interesting is that scriptlets known from
R P M were replaced by tags-a mechanism, which provides a large degree of portability.
Tags are basically references to scriptlets. The main difference is that scriptlets are not a
part of package, but rather are a part of the packaging system, hence one scriptlet can have
many versions for different distributions. [13] Disadvantage of this approach is that it's not
that scalable-the number of officially distributed scriptlets is limited and there are some
packages which need special actions to be taken before or after operation with them. For
those packages tags coexisting with some additional scriptlets might be an option.

23

Another member of this group is yum, R P M frontend used in Fedora and other distribu
tions. This package manager uses SQLite databases downloaded from repositories extended
with some simple text data. There are three databases. The first one is basically copy of
part of rpmdb. It has table "packages" and few other tables used for dependency resolving.
The second one is a file pool. It contains all the files and their relations to particular pack
ages. And the third one contains all other data. It is even possible that this is the database,
where all the data, which aren't important enough to be in previous two databases but are
important enough to be in the database, are kept. [19]

R P M isn't the only system using Berkeley D B . Pardus is a Turkish national Linux
distribution. Its package management system, pisi, uses this database as well. Pisi is one of
above mentioned system which combine package database handling with repository related
part. Its database consist of several separated parts. Because pisi manages repositories,
some data are stored in the database about them. Mentionable concept is that pisi stores
information about all the packages in registered repositories. On this set of packages is
based another database, which stores information about their state in the system (whether
they are installed or not, which version is installed, . . .).[3]

Most of packaging systems use plain text to store package information, rather than
some kind of database engine. This approach has one major advantage and that is human
readability. This advantage however can have its price and that is performance. It is
difficult to compare two package managers with goal of comparing their backends, because
every P M has its own way of handling a command and most performance differences are
caused by exactly this. For example installation will be influenced by hash calculating,
data structures used, etc. But in certain cases it is very likely, if not certain, that database
engine optimized for speed will have much better performance when used right. This will
apply in cases that a single file is used to store information. In a case of entire directory
structure, it could even prove to be more efficient than database systems. Both approaches
will be described later.

Probably the most known packaging system using plain text files is dpkg, used in Debian
and its derivatives. It stores its database in /var/lib/dpkg. The main part of it is file
available, which contains list of all installed packages. This list is in extensive format-the
record for each package contains a major part of its header (name, description, dependencies,
size, . . .) . Records are delimited with blank line, like it is done in H T T P protocol. Similar
to this file is status file, which contains practically the same information complemented
with its current and future status, used for example when package is installed, but not yet
configured. The verbosity of these files makes their size significant, although not as much
when compared with R P M , which has even more verbose database Packages. To handle
file this large with performance in mind, the developers use mmap to load the whole file
into memory and then work with it. Actually this approach is used in more programs as
it is quite fast. A P T , the frontend of dpkg, uses the same data storage format as dpkg
does, complemented with some other information like auto-installed flag or list of files and
checksums of database downloaded from repositories.

Another P M using text files is ABS, used in Arch Linux. Following format is very similar
to that used by portage, utilized by Gentoo Linux distribution. Both formats originate in
that used by BSD packaging manager called ports.[7, 2] A B S - t h e arch build system- uses
directory tree to store information about installed packages. In this tree, every package
has its own directory, which contains all of packages' stored metadata. [5] There are three
basic files: depends, desc and f i l e s . The first one contains list of packages which current
package depends on and the last one contains list of all files owned by package. The

24

desc file contains the larges amount of information, although the information is not that
significant. It contains some records similar to those which are in spec files -files describing
the package and how to build it, used in R P M . Possible contents of this file include name,
version, description, license, etc. . This (or similar) format of data stored on hard drive is
widely used on variety of Linux distributions and other operating systems.

When investigating P M systems, it is possible to notice some differences between R P M
and a major part of others. One of them are dependencies. Almost all P M system use
package-level dependencies. Back in section 3.1, it was outlined, that one of major problems
of R P M is a large amount of data it is stored in the database. Here a reduction could start,
but it would need a drastic change in R P M packaging policy. By making dependencies
package-focused instead of feature and file focused, it is possible to achieve significant
reduction of packaged data.

4.2 Relational databases

4.2.1 Rela t iona l data model

Relational databases are one of the mostly wide used database engines. One specialty about
them is that in history, they were implemented first and the supporting mathematical thesis
(or rather model) was developed and published afterwards. This data model is based on
mathematical relations. Relational database store the data in tables. It is often thought,
that relational database are relational because there are semantic relations between tables.
But when knowing the supporting mathematical model, it is quite simple to find out,
that this is not true, because in the data model, tables themselves represent mathematical
relations. The transition from mathematical model to practical design will be explained
below.

Because relational data model is one of database models, it has to contain a few specific
parts:

• definition of logical structure

• definition of integrity constraints

• formally defined query language

The first one is related with fundamental concepts of relations. There are few important
terms related to relational data model. Following description focuses on connecting math
ematical model with practical design:

• attribute is an element which mathematical relation is composed of. In case of
databases, it is column of a table.

• domain is a set of values, which attribute (column) can have. In real database, this
set is reduced to data type of a column.

• relation (as in mathematical relation) is defined by particular value in each attribute.
Of course the value has to be within an attribute's domain. From these values a tuplet
is created. The relation is defined by all defined tuples. These tuples are represented
by rows in a database table. Hence the relation in this case is defined by all rows the
table contains.

25

As for integrity constrains, section 4.2.2 describes some general rules about designing
the database and it also contains more specific description of integrity constraints.

Based on previous paragraph, it is possible to put together the basic idea of how the
database looks like. Just to complete the image: the database is composed of a number of
tables. Each of these tables has its description, which gives an order to the stored data.
Tables can have integrity constrains defined. These can for example define that unique
value is required in a column for every record in it. Through these integrity constraints,
tables can be bounded together. Another part of relational database are stored procedures
and functions. These are subroutines stored on a database server and compiled to run
as fast as possible. Their purpose is to transfer some procedures to a server to minimize
data transfer between the database and a client. Then we have triggers - these are basically
stored routines, each one being associated with a table and write action on that table.
The trigger is (as its name suggests) triggered once the associated action takes place on
associated table. The last important element of relational databases is a view. It is virtual
table which contains data gathered by (usually very complex) SQL query from other tables
in the database.

There are some extensions of classical relational databases. For R P M a temporal
database would be worth considering. It has built-in time aspect, which could be quite
useful for example for logging and maybe for system debugging. However this particular
extension would bring more cons than pros. The major one would be the incredible size of
either a long or often used database. For that reason we will stick with classical relational
model.

In this sections some basic concepts of relational databases were discussed. Now it is
possible to connect these concepts with R P M and potential usage of these databases as
a backend for R P M database. The first part of every database model is definition of its
logical structure. When using relational database, this definition is always a part of the
database. That's the first major advantage over databases like Berkeley D B - i t is possible
to see what data are stored in the database and what is their meaning. It also forces a bit of
good design, because it is impossible to put different data to a column for every row. This
can be overridden to some degree, but only the most straightforward design approach is
considered now. The second part of a database model is definition of integrity constraints.
When designed well, these constraints align the data with their semantics. They can also
reveal and prevent errors which occur when the database is in use (for example primary
key can prevent two versions of one package to be installed simultaneously). And the third
part of a database model is a formal definition of a query language used by the database.
Such language for relational databases is structured query language, or SQL. This language
would bring several huge advantages to R P M :

• lucidity: when a new developer joins the project, he doesn't have to study the code
extensively and there is a less need of doing documentation, because the SQL is pretty
self-explaining, especially when the database design (or rather choosing of names used
in the database) is good

• encapsulation: SQL is a declarative language. It means that we only tell the
database which data we want to know and the engine does the rest. Hence the
knowledge of how the data are stored on the disk or how to process them is not
necessary.

• portability: it would be possible to write R P M library, which would not be depen-

26

dent on engine beneath, that means it would be possible to change engine version or
even the whole engine without the library knowing about it

• independence: in current context it is meant rpmdb-rpm independence. When
releasing a new version of R P M , it would be possible to change the database format
by a set of ALTER TABLE commands. That is very important, because the database
has to be extensible to allow implementation of future features.

Now when relational databases and their potential advantages in context of using them
for rpmdb were listed, it is time to look at good design practices.

4.2.2 Database design

To design a database based on relational data model, it is first important to know that only
scalar values are allowed. It is of course possible to override this rule to a certain degree,
but it is against rules of a good design, because it takes away advantages one can get by
using relational database.

Now when we know the basic concepts of a database, it is possible to design it. The
best practice how to design relational database is to create its model first. To do this,
Entity Relationship diagrams (provided by U M L) are the most used approach. How to do
the diagram isn't main focus of this thesis and neither is how to design database of those
models. So let's skip to the description of how good designed database should look like.

Section 4.2.1 mentioned integrity constraints. Now something about what they are.
Integrity constraints is a set of rules relational database can have which define what format
and dependencies must be met for the data to be accepted by the database. There are two
basic kinds:

1. general: these are valid for every relational database, no matter what data it repre
sents. They are derived from basic concepts of relational data model.

2. specific: this group contains a specific set of constraints. They are database de
pendent. To be more precise, they are dependent on semantics of the data in the
database.

From a point of view of a database designer we have different groups:

• constraints within the table (primary key, not-null column, . . .)

• constraints defined between tables (foreign keys)

For following text a glossary is needed:

key attribute is attribute (table column) which is a part of a candidate key

non-key attribute is every attribute which is not key attribute

candidate key is a column (or a set of columns) for which 2 rules apply: value of this
column has to be unique for every row present in the table and the key has to be
non-reducible (we can't take a part of it away without loosing the uniqueness). It is
possible to have multiple candidate keys per table, some of them may even overlap.

primary key is a special case of candidate key. Usually the simplest C K is chosen. There
is only one P K allowed per table and there mustn't be (partially or fully) undefined
value in it.

27

functional dependency an attribute is functionally dependent on another attribute when
it has always the same value for one value of the attribute it depends on (for example
a city can be functionally dependent on an airport code-for airport code, there is
always the same city associated)

full functional dependency is usually defined in a context of a composite candidate key.
When there is attribute functionally dependent on a composite key, fully dependency
means, that it is dependent on all parts of the key combined, not only on some of
them.

non-trivial functional dependency trivial functional dependency is defined in context
of composite candidate keys. Each attribute of this key is functionally dependent on
the key it is part of. Non-trivial dependency is every dependency when attribute is
out of the C K it depends on.

transitional functional dependency is derived from transitional relation in mathemat
ics. Attribute A is transitionally dependent on attribute C when there is attribute B
exists, which is functionally dependent on C and A depends on B.

Once we have a database design, process called normalization takes place. This process
defines rules and methods to transform design of each table to a good design. Good design
then improves the subsequent work with data. Normalization has several levels. After
achieving each level, we can say, that the table is in nth normal form (NF).

1st N F is achieved once the table contains only atomic values. That means that there is
no value which could be semantically split. For example address field. If we don't
care about its values and we only need it as a text filled in order, it's fine to have one
field called address. But if we need to work with components of the address (let's
say with postal code), we have to divide address to several separate fields.

2nd N F has a prerequisite that 1st N F has to be achieved. Then a full functional depen
dency of every non-key attribute on every C K is required.

3rd N F has a prerequisite of 2nd N F achieved. The second condition is that no non-key
attribute is transitionally dependent on one of CKs .

B C N F or Boyce-Codd normal form is a minimal level usually targeted to be achieved.
It requires 3rd N F to be in place. Then it requires that all non-trivially dependent
attributes are dependent on superkeys (basically this can be reduced to a statement
that there shouldn't be a functional dependency between CKs)

4th N F requires B C N F to be achieved. Then the table must describe only causal rela
tionship (i.e. one fact)

5th N F requires 4th N F . To achieve 5th N F , the table can't be without loosing the data.

4.2.3 Embedded S Q L systems

There are two major categories of relational database systems-database servers and em
bedded libraries. We will focus only on the second one, although database servers have
indeed some advantages as well. They handle concurrent access pretty well and they are
still running which means potential performance boost, since there is no need to load the

28

data repeatedly from H D D . On the other hand, they are too large to be carried as an
R P M dependency. Also the second mentioned advantage has its counterweight and that is
memory consumption, which we would like to keep as low as possible.

SQL (Structured Query Language) is a common language supported by most relational
databases. It is declarative language and it is specifically designed for relational databases.
It supports all necessary parts which are needed: data creation, manipulation and con
trolling. It is defined by several standards-from SQL-86 to SQL:2008. We will occupy
ourselves only by engines supporting this language, because it is well known and can sup
port some very handy features (e.g. simple database update between different versions of
R P M) .

The most widely used representative of embedded SQL systems is SQLite, but some
other emerged in last few years. One of them is embedded MySQL and derived products
(Drizzle, MariaDB). We will compare this relatively new embedded library with SQLite as
current leader in this category.

First we should start at general specifications. Both solutions are embedded libraries,
dynamically linked with the application code. SQLite is very widely used, which gives it
solid and thoroughly tested code base. MySQL is even more widely used, but as a standalone
server. Nevertheless the code base is the same for both versions of MySQL-standalone
and embedded [11, 9]. Both databases provide programmer access through external tool,
as shown below. So both databases should be equal from this point of view. The only real
advantage here has MySQL and that is much better developer documentation. Also it is
possible to run SQL server over the database and connect to it from external programs.
That could be useful e.g. for debugging through user friendly interface.

sqlite access to its database

sqlite3 <database-file>

mysql access to its database

/usr/libexec/mysqld —default-storage-engine=MyISAM —datadir='pwd'/data \

—socket='pwd'/sock —skip-grant-tables —skip-innodb > /dev/mill 2>&1 &

mysql —protocol=SOCKET -S 'pwd'/sock

A brief description of databases' features should be introduced. MySQL offers several
database engines with MylSAM and InnoDB as the most significant ones. M y l S A M is
based on the original storage engine used by MySQL (ISAM) and is still default storage
engine today. It stores each database in separate directory and every table in the database
is represented by 3 files (definition of table metadata, data themselves and index file).
Utilities designed to check, fix and compress tables exist. From its other features, the most
important is support for fulltext search. M y l S A M is also much more faster than InnoDB,
because it omits some operations bringing A C I D compliance, such as transaction log. The
only recovery-related mechanism is a flag, that table file was closed correctly. Although
it can be used to detect some crashes, it surely can't detect all of them, which means a
substituting mechanism has to be implemented. It is possible to provide parameter —flush

to programs using M y l S A M . In that case, stored data are synced to disc after each query
is completed. This brings a good deal of robustness, but it slows down the whole operation
up to 70 times (comparison test using 100 000 insert queries was performed). In further
tests this feature will be turned off and a compromise solution will be presented in chapter
6.

InnoDB is much more robust and supports many more features, like foreign keys and
triggers. It stores all databases (and of course all tables) in one file, called ibdata. Another

29

two files are used as transaction log (ibJogfileO and ibJogfilel). Despite many features
InnoDB has, there are some which are missing and are essential for good database design.
It doesn't support fulltext search and in embedded mode it also doesn't support concurrent
connections[11]. Because of these properties and its superior speed, M y l S A M will be used
further in comparison.

SQLite implements database engine, which is A C I D compliant by default, but this
feature can be turned off to increase performance. It supports much less features than
MySQL [1], but some of the missing ones can be found as modules (e.g. the module handling
fulltext search). However there are situations when one can find missing features would be
very handy.

Some performance tests are needed to compare SQLite and MySQL. A l l further de
scribed tests were run on a testing database table package, taken from database described
in section 5.2. For a complete description of MySQL version of this table, see section 5.2.
SQLite version has only three modifications. Fulltext index is created by FTS module as
described in [8], the index on state column is omitted (SQLite doesn't support them) and
all columns with enum data type were switched to varchar (SQLite doesn't support enumer
ation data type). Test were also run both with and without fulltext index (FTS extension
respectively). Again absolute numbers are given as a results of these tests. The reference
machine was the same as it is section 3.2. Only this time Fedora 12 was installed (upgrade
from the previous system, so it shouldn't have any impact on machine performance).

The first test parsed a file with a records for all 19119 packages in F12 repository.
Records were stored in a simple file, which is attached on D V D , as is the script that gen
erated it. Parsing itself wasn't measured and is (except for very tiny nuances) the same
for both backends. When the whole file was parsed and loaded to memory, inserting itself
begins. In both cases, it uses pre-parsed query and then just adds parameters to it. Details
can be seen in the program on attached D V D . The program was run 100 times for each
backend, no other processes significantly influencing the disk were started. Before program
was run, the database has been initialized, disk caches have been dropped and after it
was run, the database was deleted. These operations weren't subjects of interest, only the
insertion itself was measured. Table 4.1 shows results of this test. Optimized measure
ments measured only the insert operation, non-optimized tests included opening/closing
the database as well. Indexed measurement was taken on the table with respectively full-
text index or FTS module activated. As it is possible to see, optimized and non-optimized
insertions took almost the same time and the difference between them is within statisti
cal error. What is significant is the difference between time of insertion into indexed and
non-indexed tables. Although the difference is this big for a large number of packages, we
should think about every fulltext index used in the database, because it significantly slows
down writing operations. And as for the original comparison, MySQL is quite better here,
as one can see in the table.

M y S Q L SQLite
non-indexed indexed non-indexed indexed

optimized
non-optimized

1.258s
1.262 s

4.005 s
3.985 s

2.643 s
2.643 s

5.523s
5.52s

Table 4.1: Insertion of 19119 records to database

30

The second test focused on querying the database that was created by programs and
scripts in previous test case. The measurement method was the same as it was for B D B in
section 3.2. The same test was taken for both M y S Q L and SQLite. It showed that MySQL
has significantly better results when the database is in the disk cache. Queries performed
on the MySQL column without index were twice as fast and those running on MySQL
column with index were three times as fast as for the same SQLite column respectively
with or without index. The result were in favor for SQLite in case of performing query
on the database which isn't cached and has fulltext index. The difference here was almost
tenfold. Table 4.2 provides complete picture of this test's results.

MySQL SQLite
non-indexed indexed non-indexed indexed

No cache
non-optimized
optimized

0.0542 s
0.0528 s

0.4939 s
0.5477s

0.0694 s
0.0691s

0.0681s
0.0679 s

Wi th cache
non-optimized
optimized

0.0383 s
0.0382 s

0.0212s
0.0212s

0.0694 s
0.0692 s

0.068 s
0.068 s

Table 4.2: Times of queries for random packages

That was performance. Now something about other database features. The size of all
loaded data was in both cases 5 801 270 bytes. Four states of database were measured for
each database. Table 4.3 shows the results. Comparison with B D B overhead won't be given
at this time, because this database isn't representing full R P M database, as it was the case
in section 2.6.

Besides database size and overhead, its memory consumption was measured as well.
SQLite came better from this test. It was performed by executing query on the same
database as before. This query looked up all packages having rpm in their name and
the memory consumption was measured in several randomly chosen times after database
query was performed (to better catch this information, some sleep calls are invoked in the
program). In all moments, memory consumption was say about the same, with only small
fluctuations. SQLite had significantly lower memory consumption - approximately 3.5 M i B
(13.1 M i B in total with shared libraries, etc.), whereas MySQL took approximately 13.5 M i B
(170MiB total). That means SQLite is more convenient for systems with less memory.

Database size Database overhead
M y S Q L SQLite M y S Q L SQLite

Without F T S
Empty
Full

11292B
7069.08 kiB

4096 B
8671kiB

11292B
1403.78 kiB

4096 B
3005.7 kiB

Wi th F T S Empty
Full

11292B
13479,08 kiB

7168 B
13068 kiB

11292B
7813.78 kiB

7168 B
7402.7 kiB

Table 4.3: Database size and overhead comparison

Based on previous comparison, we will choose M y S Q L as a database which we will
continue with. There are two main reasons: MySQL has larger feature set, which will be
useful when designing the new database and it is significantly faster.

31

The speed of MySQL brings its disadvantages and that is memory consumption and
disk space consumption. From table 4.3 we know that neither the overhead, nor the size of
the database is that different from SQLite, so let's focus on the memory consumption. As
it was stated previously, MySQL with all libraries consumes approximately 170 M i B , which
can be considered pretty much. But it is very similar to value which one can get by running
rpm -qa or for example rpm -q rpm and see its memory consumption (the appropriate
command is shown below). Considering this fact memory consumption can be ignored,
thus using MySQL doesn't have any significant downside.

rpm -q rpm > /dev/null & ps aux | grep rpm | grep -v grep |

awk '{print $5 " kiB" }'

32

Chapter 5

Proposed format description

First of all, it is important to introduce a new designation of "new RPM database". A l
though is pretty straightforward, a simpler one will be used sometimes. For the new design
based on MySQL, designation rpmdb-mysql will be used.

One of the main goals of the new design should be reducing the amount of data trans
ferred from database to R P M . This is automatically achieved by SQL concept defining that
all relation attributes have to be atomic. However there is a large amount of R P M tags
possibly contained within the package. It is important to consider that every single one
of them might be in use in some programs or scripts. Because of this a new concept will
be introduced in rpmdb-mysql. There is a certain amount of data, which every package
must have and which are important to nearly every package and on every system (e.g.
dependency-related data). These data will be stored in MySQL tables. A l l other data
which are stored now and data which might need to be stored later as well will be saved in
a different format. There are two possible approaches. Either it can be stored in raw format
which is basically the same as rpm header format or it is possible to look for inspiration in
different packaging managers and store the data in plain text. The first approach gives one
advantage and that is code base. A code for loading packages can be used to load package
information from the database as well. There is also disadvantage in a form of performance
overhead - there are some parts of the code base which have to ensure package portability.
The second approach gives us human readability and potentially quick access. A l l that is
needed is to mmap the file to a memory and iterate through its content. Its content will
be the same as it is in files used by dpkg:

Package: xserver-xorg-input-vmmouse

Architecture: amd64

Version: 12.6.4

Replaces: mdetect (< 0.5.2.2), xserver-xorg (< 6.8.2-35)

Provides: xserver-xorg-input-4

Depends: libc6 (>= 2.7), xserver-xorg-core (>= 2:1.6.2)

Description: X.Org X server — VMMouse input driver to use with VMWare

This package provides the driver for the Xll vmmouse input device.

Of course it is convenient to include this new format in R P M files (possibly in a compressed
form), so the code base could be the same for packages and database. That would mean that
the first approach would loose its advantage and could be made obsolete entirely. Because
this is not likely to happen over night, the following text will describe some specifics of plain

33

text data files, but let's consider this only as a vision which is not going to be implemented in
near future. Instead, an implementation using R P M data headers is considered as primary.
Thus text describing how text information is stored also describes how binary rpm headers
can be stored. In both cases this division grants availability of all data and fast access
to the most important parts of them. In other words, when implemented right, it will
implement data cache in a form of SQL database. The most important parts stated above
are the commonly searched data and common search and order parameters. In case some
other information is required, a filesystem storage will be involved (query will fall back to
reading whole headers from disk).

The code block above is just an example - actual names used in this file would have to
be adjusted to R P M tags. There are three possibilities how to place all the packages:

• A l l packages in one file. This concept is used by dpkg. Package records are separated
by a blank line (for binary form no separator is necessary, we always know header
size). Thus a blank lines used for example in package description have to be modified
for example by containing a single dot. This approach could have some performance
issues when the file (10+ times larger than in Debian) becomes extremely large.
A possible reason for this will be explained later. On the other hand this approach
becomes handy during sequential access, which takes place either during rpm -qa or
e.g. database rebuild.

• Directory structure. This approach is inspired by ports-based systems. It is the exact
opposite of previous case - it is worse in sequential access (opening and closing many
files), but its performance is much better in random access.

• Combined approach. This option combines advantages of both previous approaches.
A l l the data are stored in a single file for great sequential performance and there is
filesystem structure which serves as an index. This can be implemented either as
standalone text files in directories or there can be only reference files containing the
index to the large file (in order to avoid redundancy) in a form of number giving offset
from the beginning of file. This number can be also stored in the database.

The first and the third approaches use large files to store complete data information. It
is true that this is convenient for sequential access, but there are two big reasons why
not to implement this. One of them is memory. The file containing headers can grow to
enormous sizes and at that point it will cause more troubles than it will solve (mmapping
can become too demanding for memory). The second reason not to implement this is
deleting / updating information. Updating information in the header file will be difficult
either way, but deleting will be much simpler in case of directory tree. That's why the rest
of the database will be counting with this design.

Inspired by approach of some other packaging systems, the database is intended to be
used by both R P M and its frontends like yum, hopefully minimizing redundancy of locally
stored data. This is another reason for usage of plain text file-they are natural for higher
scripting languages like Python, which yum is written in. Because of usage of yum-like
tools, the database will contain more information than in current solution. There will be
features like all installed and available packages stored in the database, current package
state and repository which the package comes from.

There is one more aspect which should be described here and it is a lock file. As it
was stated before, M y l S A M engine doesn't support A C I D transactions. Even if it did, this
lock would have to be implemented, it just could be in the database. The point of this

34

lock file is that it will be created before the operation starts and it will be deleted after
the operation safely ends. That means when rpm is started and this file exists, it is telling
to R P M that the original transaction should be finished before the new one is started. To
be more implementation-specific: if the lock file was implemented by a database table, it
would have to be opened with —flush parameter which would sync the updated table to
disk right away. If it is implemented by a lock file, f sync() has to be called right after the
locking value is written.

5.1 Data model of SQL part

Entity relationship diagram 5.1 shows, how the SQL database part of stored data will look.
Data type byte represents enumeration data type.

relation

type : byte
related-name : String
related-version : String
flag : byte

has

0..*

directory

path : String
attributes : int
type : byte
uid : int
gid : int
a c l : String

1

0..*

contains

0..'

group

id : int
name : int

contains

0..*

package

id : int
name : String
epoch : int
version : String
release : String
architecture : String
license : String
summary : String
description : String
signature : int
hash : int
pre : int
post: int
preun
postun : int
install-timestamp : int
repositoryjd : String
automatical: Boolean
state : byte
next-state : byte

file

name : String
attributes : int
hash : int
size : int
uid : int
gid : int
type : byte
a c l : String

_has 1^,

additional-info

build-timestamp : Time
build-host: String
vendor: String
relocation : int
packager: String
URL : String
bugURL : String

0..* 0..4

0..* 0..*

triggers

action : byte

scriptlet

hash : int
source-code : String
system : boolean

71V

1..* defines

0..*

contains

trigger-template

action : byte
package_name : String
package_version : String

Figure 5.1: Concept of rpmdb-mysql

A l l package relations (dependencies, conflicts, provided features, . . .) are represented
by class relation. The type attribute defines which kind of relation this is. The flag has the
same function as currently used tag RPMTAG_REQUIREFLAGS and similar ones have, hence it
defines mathematical relation (less than, more than, . . .) to border package version. Border

35

package version is then given by attribute related-version. As it is now obvious related-name
gives the name of package, which is in relation. This concept might be considered even for
feature-based dependencies.

Package entity itself contains the mostly used information for each package. This in
formation can be further divided based on estimated (or later measured as well) frequency
the data are accessed. The ones which are likely to be accessed more often are placed in
entity package. The rest of them is placed in additional info. What data are stored where
isn't important at this moment and so it isn't important which data are even stored and
which aren't (this can be considered just as a proof-of-concept design and after all the data
required to be stored can change over time). The division into two distinct entities (and
subsequently into two different tables) is in place for potential performance boost. The
two tables are in 1:1 relation. If some test are performed and if it turns out that it has no
effect on performance, it is possible to join them in one. Currently they are conceptually
divided because reading smaller tables should be faster (less disk blocks have to be loaded
to memory).

There are some significant attributes of package entity. First of all, there is an id at
tribute, which might look like redundant, because every package is identified by its N E V R A .
This attribute is present to simplify identification of related package in all other entities.
Bottom line is that it will lead to less data stored on the disk, which means it in fact reduces
redundancy. Another attribute which might seem redundant is package description, one
can think about package summary as well. Because the database is meant as an index,
it is convenient to keep stored data at the lowest possible level. By this logic, at least
description should be excluded. The reason to include it is a fulltext search index that is
defined on it. It is possible to search package based on what does it do-that is particularly
useful for yum-like tools. Another interesting attributes are state, next-state, automatic
and repository-id. These are meant as a support columns for yum and related tools, as it
was described in chapter 5. The repositoryJid column is primarily intended to be equal to
identifier of repository used by yum in its configuration files (enclosed in square brackets).
The rest will be described in section 5.2. Color is special attribute, which is currently used
as a set of flags. By setting specific bits of this color we can tell R P M that the package is
for example multilib package. If no flags are set, this attribute is zero. Another significant
attributes are present to outline how regular scriptlets will be stored. As it was stated
in section 2.3, the package can have up to four scriptlets-°/

0
pre, °/

0
post, °/

0
preun, °/

0
postun.

Triggers are stored separately. But first an introduction of the scriptlet concept:
The concept is based on conary and its tags. The idea of tags is good and modern,

but not entirely sufficient. This concept takes the best of tags and complements it with
some features that are required for distributions like Fedora. There will be some standard
scriptlets provided by R P M , but each package can also carry its own scriptlets which will
be then included in scriptlet database. The idea if this is simple: scriptlet can be reduced
to its hash, which will be used as ID. If the package contains scriptlet which is already
present in the database, it will not add it once more, but it will create link to the existing
one. This concept is again designed to reduce redundancy.

There are three relations between package and scriptlet. First of them is contains rela
tion. This is not displayed at diagram 5.1, explanation will be given below. This relation
defines whether the scriptlet came with the package. Together with system attribute it
forms an information when the scriptlet should be removed. When it is a system scriptlet,
it won't be removed until the whole R P M is erased. Otherwise it will be removed once all
packages owning the scriptlet are removed from the database. The information about own-

36

ership won't be stored for system scriptlets, because it is irrelevant for them. Information
about ownership for other scriptlets is implied by other two relations between package and
scriptlet. Once there is one of these relations present, it automatically implies, that the
package owns given scriptlet.

The second and third relations define when the scriptlet will be used. The uses relation
will be implemented as it is outlined in package entity. There will be four attributes storing
information which scriptlet will be used at what time (empty value means no scriptlet is
scheduled for that time). Maximal cardinality on the scriptlet's end is four, even though
there seems to be no reason to store %pre scriptlet. It is present for the sake of robustness-
an anticipation is that during installation the database will contain information about
installation's process and in case of a system crash during installation and subsequent
transaction finishing, an information about all the scriptlets might be needed (depending
on a stage, when crash occurs).

There is one issue which is to be solved by rpm implementation and it is scriptlet
tracking. The operation can fail in the middle of executing scriptlet. There are two possible
approaches after such crash. We can either revert effects of the scriptlet or we can continue
from the point of crash. The first approach is very complex, since a revert scriptlet would be
needed to complement every classical scriptlet and even if this premise was fulfilled, some
operations are not revertible by their definition. Certainly there are ways to solve this, but
these aren't a subject of this thesis. The second approach is a little bit simpler, but again,
there are many issues to be solved before implementing i t - fo r example database can be
designed to store a marker where the scriptlet ended, but to use it, rpm would have to
implement a way to find it out first, not to mention a way to store scriptlet state (variables,
etc.) would be needed. That's why these issues are only outlined here and they are not a
part of the database design. Basically a shell interpreter has to be implemented before a
database solving this part is designed.

The third relation stores an information about when the scriptlet will be triggered by
some action on the package. Triggers are the same scriptlets as all others, but they are
handled differently than regular ones, because their relation with packages is a little bit
different. From database point of view, a trigger is a link connecting two packages in a
similar way relation connects two packages. The only difference is that from the trigger
point of view, both linked packages are equal in the relation - trigger is executed (therefore
a lookup of a scriptlet is needed) once given action is performed on either one of these
linked packages. More detailed description of trigger design will be provided in section 5.2.

The last important part of the design is a part storing information about files and
directories owned by packages. The concept operates with the fact, that one file can be
owned by multiple packages. In order to avoid database overload, only files of installed
packages will be in the database. This could mean that package-file association is defined as
1:N. However, it is possible that two packages will claim the same file-even with previous
limitation this situation means that package-file association is defined as M:N and the
database has to be designed accordingly. Also in case of conflicting files from different
packages, R P M should handle it - administrator will be either asked for solution, or the
operation will fail entirely. One exception is possible and that is if files are equivalent - in
that case file will be loaded to database and won't be overwritten. Equivalency means
that files will have the same attributes and content. Since comparison of a file content
can be non-trivial operation, there is an attribute hash in the database. Its meaning is to
contain e.g. SHA-256 has of file contents (calculated at build time). In both conflict cases
(equivalent files, one file replaces another) there should be an information kept about this

37

conflict in each file record. That's the goal of attribute conflict, which will be described in
detail in section 5.2.

Similar concept applies for directories, except their content won't be considered. It will
be possible for multiple packages to own one directory and the only condition is that its
attributes equals for both packages. As same as before, attribute conflict determines which
record is valid and which is not.

The very last entity in diagram 5.1 is group. This is again related with usage by R P M
frontends, which are aware of groups. This entity has only informational character without
any deeper meaning. This entity might be also modeled as an attribute of package or addi
tional info. Considering that the database engine probably stores the string describing each
string separately, this is better way to reduce size of a table and thus increase performance
(less blocks might be needed to be read from HDD) , because only one number is used for
representation of a group in case this information is not target of a lookup.

5.2 Final design

Now follows SQL code used to create the database equal to diagram 5.1:

CREATE TABLE IF NOT EXISTS 'package' (

'id' int(10) unsigned NOT NULL AUTO.INCREMENT,

'name' varchar(256) NOT NULL,

'epoch' tinyint(3) unsigned NOT NULL,

'version' varchar(16) NOT NULL,

'release' varchar(32) NOT NULL,

'arch' varchar(8) NOT NULL,

'os' varchar(16) DEFAULT NULL,

'color' int(10) DEFAULT NULL,

'license' varchar(32) NOT NULL,

'summary' varchar(256) NOT NULL,

'description' text NOT NULL,

'pre' mediumint(8) unsigned DEFAULT NULL,

'post' mediumint(8) unsigned DEFAULT NULL,

'preun' mediumint(8) unsigned DEFAULT NULL,

'postun' mediumint(8) unsigned DEFAULT NULL,

'install-timestamp' int(10) unsigned DEFAULT NULL,

'repository' varchar(128) DEFAULT NULL,

'state' enum('purged','pre','files','post','installed') NOT NULL,

'next-state' enum('install','update','remove') NOT NULL,

'automatical' enum('0','1') NOT NULL DEFAULT '0',

PRIMARY KEY ('id'),

UNIQUE KEY 'name_2' ('name','epoch','version','release','arch'),

FULLTEXT KEY 'name' ('name','summary','description')

) ENGINE=MyISAM DEFAULT CHARSET=latinl AUT0_INCREMENT=1;

Id was chosen here as a primary key, because it is the smallest candidate key. Seeing epoch
column, one can think that many packages don't have any epoch stated, so it should be
possible to store NULL there. In fact from the definition it is not possible - this column
is used as a part of an identification of the package. In SQL terminology, is is a part of
compound candidate key, which means it cannot be NULL. Because of this, the default value

38

(simulating NULL) is zero. To sum u p - i f the package doesn't have any epoch stated, it
will be stored as zero. In this case, the epoch number shouldn't be used nor displayed
to user. Size of all text fields was chosen, so the common string used in that particular
field can be filled in. Pre, preun, post and postun fields and their data types correspond
with scriptlet identifier. Repository can be NULL, because the package can be installed from
hard drive. Similar rule applies for install-timestamp - the reason is that package might
not be installed. State here defines the state package is currently i n - i t is either installed
or uninstalled. The other states signify, that package has already gone through that given
stage during installation/uninstallation/upgrade. Next state is derived from concept used
in Debian-based distributions. It is a marker of the direction we are planning to follow with
the package. It can be particularly useful when transaction with the package fails in the
middle- in combination with current state we can easily see where did it end and how is it
supposed to continue. Automatic flag just states that the package has been installed as a
dependency and once every package depending on it is removed, it can be safely removed
as well.

CREATE TABLE IF NOT EXISTS 'group' (

'id' smallint(5) unsigned NOT NULL AUTO.INCREMENT,

'name' varchar(128) NOT NULL,

PRIMARY KEY ('id'),

UNIQUE KEY 'name' ('name')

) ENGINE=MyISAM DEFAULT CHARSET=latinl AUT0_INCREMENT=1 ;

Here it is possible to have index on both column, because we can safely assume that this
table won't have many records in i t - tha t means the index won't grow too large (which
would mean major slowdown).

CREATE TABLE IF NOT EXISTS 'additional-info' (

'package' int(10) unsigned NOT NULL,

'group' smallint(5) unsigned NOT NULL,

'build-timestamp' int(10) unsigned DEFAULT NULL,

'build-host' varchar(64) DEFAULT NULL,

'vendor' varchar(64) DEFAULT NULL,

'packager' varchar(128) DEFAULT NULL,

'url' varchar(128) DEFAULT NULL,

'bugurl' varchar(128) DEFAULT NULL,

'signature' text,

PRIMARY KEY ('package'),

KEY 'group' ('group')

) ENGINE=MyISAM DEFAULT CHARSET=latinl;

This table contains mostly non-essential (but potentially often accessed) information for the
package, that's why majority of columns can have NULL values. It is linked with previous
table through column package, which represents the package id here. Column group is
indexed, because an application may want to look up all packages belonging to one group.

39

CREATE TABLE IF NOT EXISTS 'directory' (

'path' varchar(996) NOT NULL,

'package' int(lO) unsigned NOT NULL,

'attributes' smallint(5) unsigned DEFAULT NULL,

'acl' varchar(256) NOT NULL,

'user' varchar(16) DEFAULT NULL,

'group' varchar(16) DEFAULT NULL,

'flags' set('config','doc','donotuse','config-missingok',

'config-noreplace','ghost','license','readme','exclude',

'pubkey','policy') DEFAULT NULL,

'conflict' enum('no','replaced','valid') NOT NULL,

PRIMARY KEY ('path','package')

) ENGINE=MyISAM DEFAULT CHARSET=latinl;

CREATE TABLE IF NOT EXISTS ' f i l e ' (

'path' varchar(996) NOT NULL,

'package' int(10) unsigned NOT NULL,

'attributes' smallint(5) unsigned DEFAULT NULL,

'acl' varchar(256) DEFAULT NULL,

'user' varchar(16) DEFAULT NULL,

'group' varchar(16) DEFAULT NULL,

'hash' varchar(128) DEFAULT NULL,

'size' bigint(20) unsigned NOT NULL,

'flags' set('config','doc','donotuse','config-missingok',

'config-noreplace','ghost','license','readme','exclude',

'pubkey','policy') NOT NULL,

'conflict' enum('no','replaced','valid') NOT NULL,

PRIMARY KEY ('path','package')

) ENGINE=MyISAM DEFAULT CHARSET=latinl;

These two tables represent everything related to the filesystem. M : N relation between
packages and directories and files respectively could be represented by tables like file-owner
and directory-owner, but that would disable the option that one file can have different
characteristics in two different packages. Hence this solution was designed. In section 5.1
a conflict attribute was outlined. Here it is specified as enumeration which might have
values no, replaced or valid. The first one says that R P M is not aware of any conflicts
with this file in the filesystem. Replaced means that there is a conflict and the original
package file has been already replaced by another one. In such case, it would be nice if
there was a backup managed by R P M . After package with conflicting file is erased, the
original one can be restored. Columns user and group represent respective system entities.
In diagram 5.1 they were denoted as UID and GID with int data type. Here they are text
based because of internal package format. But theoretically they can be both numbers if
converting algorithm is implemented. Attributes are stored in a form of four digit integer.
Each digit will signify one digit of user access rights. Flags column in both cases can be
extended on every flag that R P M provides. This is just a concept design. It is possible to
notice that even though an association between file and directory exists in the model, it is
not implemented here. This has two reason. The major one is that M y l S A M has significant
limitation - only 1000 bytes are allowed to be indexed in each row. That means a limitation
for directory and file path length. In such case half length would be maximal and that's

40

not an option. In fact those 996 characters is a bold limitation, since filesystem usually
allows larger. The second reason is that the association can be implemented by substring
lookup directly in the code of R P M .

CREATE TABLE IF NOT EXISTS 'relation' (

'package' int(10) unsigned NOT NULL,

'type' enum('requires','recommends','suggests','provides','conflicts',

'obsoletes') NOT NULL,

'related_name' varchar(256) NOT NULL,

'related_version' varchar(16) DEFAULT NULL,

'version_relation' enum('lt','le','eq','ge','gt') DEFAULT NULL,

PRIMARY KEY ('package','type','related_name')

) ENGINE=MyISAM DEFAULT CHARSET=latinl;

One thing worth of noticing in this table may come to an attention. Since there is only
one table representing all relations, it can grow to enormous sizes. There are about twenty
thousand packages in fedora everything repository. Now another five thousand packages in
updates, five hundred in rpmfusion. This is commonly used Fedora repository configuration
and it makes around 25 500 packages, which will be in the database simultaneously. Each
of these packages has a number of relations, whether they are provides, requires or other.
From section 2.1 we know that the mean number of features per package is twenty two,
which means that the table will have at least half a million records. Considering that
this table will be under heavy stress during dependency solving, the solution is needed.
There are two solutions. Either to divide this table and for every relation type use its own
database table or to consider change of relation concept. This change should replace current
feature and file-based dependencies with package and virtual package dependencies. That
should reduce size of this table. In fact virtual package dependencies can be considered as
an equivalent of feature based dependencies. The only difference is a granularity, which is
coarser in case of virtual packages. But before redesigning the database, this concept has
to be tested if it even needs redesigning.

CREATE TABLE IF NOT EXISTS 'scriptlet' (

'hash' int(10) unsigned NOT NULL,

'source' text NOT NULL,

'system' enum('0','1') NOT NULL,

PRIMARY KEY ('hash')

) ENGINE=MyISAM DEFAULT CHARSET=latinl;

CREATE TABLE IF NOT EXISTS 'trigger' (

'scriptlet' int(10) unsigned NOT NULL,

'owner' int(10) unsigned NOT NULL,

'trig_name' varchar(256) NOT NULL,

'trig_version' varchar(16) DEFAULT NULL,

'trig_flag' enumClt', 'le', 'eq', 'ge', 'gt') DEFAULT NULL,

'action' enum('post','preun','postun') NOT NULL,

PRIMARY KEY ('scriptlet','owner','action')

) ENGINE=MyISAM DEFAULT CHARSET=latinl;

Finally, these two tables represent scriptlets and their usage by packages. As it was outlined
in section 5.1, the ownership of scriptlet is implied by existence of a trigger or by particular

41

attribute in package entity. Hence there is only one extra attribute added to scriptlet and
that if a flag saying whether scriptlet is owned by R P M system. The purpose of this was
already described. Primary key of trigger table is compound and it has three items. It
basically means that each scriptlet can be used by multiple packages as a trigger and it
can be used by one packages as a trigger on multiple occasions. Possible occasions are
only three, because current R P M doesn't allow scriptlet to be triggered before package
installation, only afterwards. See section 2.3 for details.

Some of used data types and constructs are MySQL specific. First of all unsigned is not
common in relational databases and its meaning is obvious. What might not be obvious is
auto_increment column specification. This can be used only on numeric columns which
are primary keys. It means that if no value is specified here while inserting new row a
default will be picked as a sequential value of an internal counter. This value of course
increases every time it is generated. It is possible to manually specify number in auto
incremental column. One disadvantage is that it is very difficult to reset this counter. It
is important to keep this on mind and give the column its range accordingly. In our case
32-bit number will be enough for quite some time. There are two data types that are not
common in relational databases- enum and set. Both are text-based data types and their
functionality is obvious from their names. Enumeration allows us to pick one of defined
values and set allows us to pick multiple values out of defined ones. Parameters engine,
charset and their values are self-explaining.

Section 4.2.2 described normal forms in relational data model. Let's now analyze
database compliance with these normal forms:

• Conditions of the first normal form are met. The only columns which might be
unclear are following: package. color is a set of flags, which can be defined as multiple
columns with bit data type. But it can be also described by single column with set
data type. Considering how R P M currently works with colors, this is equivalent
and better representation. Thus it is atomic. Another two candidates for compound
columns are directory .acl and f i l e .ac l . Those would be compound if we wanted
to use their parts separately. But since we want to use them as a whole, it is atomic
as well.

• Only columns looking like they might be breaking the second normal form are columns
in file and directory tables. Here it is sufficient to remind that every package can have
its own version of file (or directory) with different attributes. Hence full functional
dependency is achieved. Another arguable column is package. arch. Here it is im
portant to remember that even though in most cases attributes will be the same for
different architectures (which would mean they wouldn't be fully functionally depen
dent on N E V R A) , it is possible that package will have different attributes for different
architectures (rpm spec files allow conditional processing base on architecture). That
implies that full functional dependency is preserved. Hence the second normal
form is achieved.

• The third normal form is also achieved, the database was originally designed to
eliminate redundancy (i.e. functional dependency of non-key attributes)

• Boyce-Codd normal form can be broken in tables with multiple candidate keys in
case they are functionally dependent. The only case this rule might seem broken
is in table file, where file.hash might seem to be functionally dependent on com
pound primary key. This however is not the case, because hash depends only on file

42

content. This content always depends on package and file, but there is a situation
which breaks functional dependency - the package owning given file can have different
number. Thus another package owning the same file with different content would
lead to different hash. Hence all conditions of B C N F are met and the form is
achieved.

• higher normal forms weren't targeted by this design, so they won't be analyzed

Solution of the entire database part was introduced, now only disk storage part remains.
Current database is placed in /var/lib/rpm. The new one will be placed there as well.
Following text will consider every directory path as relative to this location, i.e. / will in
fact be /var/lib/rpm. The database directory structure is very simple. Every package will
have its "home" directory situated in

/name/<name>/<nevra>/

Where <name> represents package name (e.g. rpm) and <nevra> represents complete identi
fication string (e.g. rpm-4.8.0-14.f cl3 or aspell-en-50:6.0-11.f cl2 .x86_64-notice
that the first package doesn't have epoch and arch). The complete path would then look
like

/name/rpm/rpm-4.8.0-14.fcl3/

Every home directory will have at least two files in it:

• header.dat will be rpm package header stored in file. Compared to entire package
header, this won't have some unnecessary parts, such as R P M lead and magic number.
It will simply be a header index and its payload.

• header.txt will be a textual representation of header file. It won't be compressed,
because storage place isn't expensive and user typically demands speed of every oper
ation he performs, including operations with this textual file. This textual file is here
just as a concept. As it was stated before, it is good to include it in design plan, but
the reality in near future will most likely lie with the header file.

Because package in database is represented by its numeric ID, the disk data part will include
ID-based referenced to packages. They will be in a form of links, either hard or symbolic.
Links will eliminate redundancy which would be present if copying was used. The directory
structure will follow this model:

/id/<id>/ -> /name/<name>/<nevra>

Considering reader has knowledge about naming conventions explained previously in this
section, the description is self-explaining (<id> is package id stored in the database). In
this file-based database part only installed packages will be present, because of potentially
enormous data volume that would have to be downloaded and stored. Essential informa
tion about every package available in repositories will be stored in the database. Sample
directory structure is included on attached D V D .

43

Chapter 6

Design and implementation of new
R P M database module

The goal of this thesis is to analyze current rpmdb A P I and if possible, provide its imple
mentation for newly designed database, using MySQL as backend. If this won't be possible,
the ideal goal is to implement entirely new A P I for the database. The purpose of this A P I
should be to serve as a base for completely new implementation of R P M . But in case an
old A P I can't be implemented, just to create sample programs demonstrating work with
new database is a sufficient outcome.

6.1 Current A P I

Since the priority is to design A P I compatible with the current one, it is important to
thoroughly analyze it and identify main points of contact which should be preserved in
order to ensure the compatibility with the rest of system. Described A P I is a part of
rpm 4-7.1. The rpmdb module of rpmlib has two different parts - backend and rpmdb itself.
Backend part contains only the basic functions encapsulating the B D B function calls. These
are adding only the very basic set of unrelated code, like setting important flags, handling
errors and setting default values. Backend A P I corresponds with A P I of B D B . The whole
idea behind this A P I was most likely possibility of switching backends and this A P I is
supposed to be an interface between database and the rest of rpmlib. Despite good idea of
this dividing A P I , it has one big disadvantage - because the original A P I has been designed
to correspond with B D B A P I , it is difficult to adapt any different database to it. Embedded
MySQL is a good example of it. B D B uses two different functions for reading and writing
data, but MySQL uses only one multipurpose function. This situation perfectly illustrates
the problem. Now its important to identify key functions of rpmdb A P I . They will be
described in following list. Items in this list represent only those parts of current A P I ,
which should remain preserved. There are some other important parts, but those either are
B D B specific or aren't compliant with the the definition of A P I term. Also some function
which can be implemented as simple aliases are omitted. This is just a core part of A P I .

• rpmdbAdd: this function adds new package to the database (package header is
expected as an input)

• rpmdbRemove: removes a package from the database, based of its ID number (how
it gets it isn't important - this makes the whole process flexible)

44

• rpmdbSync: calling this makes the database store its data to disk, instead leaving
this duty to operating system. Syncing behavior of current rpmdb will be very difficult
to to emulate, because M y l S A M engine simply doesn't have this user-forced sync
capability.

• rpmdbOpen: opens the database for further operations. Because current solution
consists of several databases, this function has to be called multiple times to open all
of them.

• rpmdbClose: opposite of rpmdbOpen, this closes one database file. Multiple calls
are required for closing all databases.

• rpmdblnit: initializes an empty database on specified directory

• rpmdbVerify: consistency check of rpmdb (sets the flag for B D B engine to verify
the database before closing it)

• rpmdblnitlterator: this initializes match iterator structure. These match iterators
will be closely described below

• rpmdbAppendlterator: adds another set (of package numbers) of packages to
match iterator. Added package numbers aren't inspected for their existence in database
This is currently the only option how to create a match iterator without any lookup
in secondary database. Let's say, we have a list of packages that have been installed
during one transaction and we want to perform some operations on them. This is the
way, how to assemble their list in form of match iterator.

• rpmdbPrunelterator: removes given packages from match iterator. This can be
used for example as deleting the reference to deleted package in secondary indices

• rpmdbNextlterator: moves to the next item in match iterator and parses it

• rpmdbGetlteratorOffset: returns package ID (index number in Packages database)

• rpmdbGetlteratorCount: returns a number of packages which are selected by
match iterator

• rpmdbFreelterator: destroys structures associated with given iterator

• rpmdbSetlteratorRE: adds filtering rule to match iterator. Filtering rules will be
described below

• rpmdbRebuild: rebuilds the database-this brings better performance and less over
head by ordering the data in database and optimizing indices in both primary and
secondary databases

One very important principle was mentioned and that is the match iterator, implemented
by structure rpmdbMatchlterator and its several handlers. This structure represents the
means of searching in the database. There are two basic types of search performed on the
database. The first of them is direct lookup of a package by its number and the second
one is lookup using one of secondary indices. In both cases, the lookup itself is performed
by function rpmdblnitlterator. This function fills in default values to rpmdbMatchlterator
and then decides what to do depending on the database it should perform the lookup on.

45

If it's operating on Packages database, it only stores the number of package which should
be looked up. If it operates on one of indices, it opens required index and looks up a set of
packages which fit lookup criteria. This set of packages is then stored as lookup result.

The second part of this concept is implemented by function rpmdbNextlterator which
iterates over the list of packages stored by rpmdblnitlterator. Each call of this function
means it goes to the number of next package in the list, retrieves its header from Packages
database and parses it. The header it then returned. If the end of matching packages list
is reached, N U L L is returned. This function also implements secondary lookup (or rather
secondary selection). This subsists in utilizing match iterator regular expressions. These
can define a series of conditions which the package we want has to meet. A l l of these
conditions have to be met, which means they are connected with logical operator AND.

This behavior strongly supports claim from section 3.1, that loading the whole header is a
problem. Here another problem is presented - some headers are loaded only to be dropped
directly afterwards.

In listed functions above, there is one particular that might seem to be missing and that
is function handling database updates. It doesn't mean that current solution can do update
only by deleting and re-inserting package. Of course there is a was to perform updates, but
it is pretty obscure. To perform update a lookup is needed first. After match iterator is
retrieved as a lookup result, an iteration through it is needed. If desired package header is
found during this iteration, the modification is done directly in structure representing the
header and a flag is set which indicates that header has to be updated in database (function
rpmdbSetlteratorModif ied). Pointer to header structure is stored in match iterator and
described modification is done in the original header, not on its copy. That implies that
match iterator has in fact a pointer to updated data. In ordinary circumstances every time
rpmdbNextlterator is called it drops the header from previous iteration and replaces it with
the current one. But if the update flag is set, the header is transformed back to byte string
and stored in the database again. This brings not just obscurity, but it also brings another
slowdown- again we have to work with the entire header, not just with its part that has
to be updated. Not to mention we have to iterate through headers to achieve an update.

After performing a deep analysis, it turns out there is no acceptable way to im
plement new functionality into current interface. There is one main blocker and
several smaller issues. Let's begin with the smaller ones. A list of the key functions was
already presented. During analysis a complete list of functions used outside of rpmdb was
compiled. It showed that the rpmdb A P I was not well designed. To be more specific, it
isn't prepared for another data format in the database. That means some functions (from
those which are used from outside of rpmdb) would disappear entirely when using backend
design other than the current one, simply because they would become needles, or because
they'd be not applicable to another database paradigm. Usage of data structures specific to
database paradigm might also cause complications. But the main blocker is the design of
rpmlib (and subsequently whole R P M) itself. The main goal of new implementation was to
avoid loading entire headers from the database. But this issue doesn't lie in rpmdb, but it
is embedded in every part of R P M - e v e r y component was designed to work with the whole
header and extract only needed information from it. This brings a simple and final answer
whether to implement A P I compatible with the current one: no\ It might be possible to
adapt the new implementation: extract only needed information from database, fill it to
header structure and return this structure incomplete. But this would mean either a new
parameter or a set of functions should be added for this purpose. Also a calls of these
functions would be needed in every place of rpmlib which is using rpmdb iterators.

46

6.2 Use cases analysis

As it has been explained in section 6.1, in case old A P I can't be implemented, either new
A P I has to be built or it is possible to implement just some rpmdb use cases to demonstrate
work with new database. In this thesis only some use cases will be implemented - design of
new A P I would have an extent of entire bachelor or diploma thesis. Some thoughts about
this will be described in section 6.4. Complete list of rpmdb use cases with code references
and description what does referenced code do is described in attachment. Here just a brief
list:

Find packages:

• find packages based on their N E V R A (either name, name+version, or the entire
N E V R A)

• find packages which have one of specified IDs

• find packages which provide given feature or given basename

• find packages which require given feature

• find packages which conflict with given feature

• find scriptlets (or their owners) triggered by current operation

• find out how many packages are installed

• find packages in given group

• find package based on its hash

• find owner of given file

• find all files sharing given basename

• find files based on their fingerprint

• filtering lookup result set with various parameters (color, list of IDs)

Inspect given package:

• find out if package provides features it obsoletes

• retrieve package ID

Other actions:

• install package

• remove package

It would be good to implement at least one write and one read operation. From read
operations mostly used is N E V R A lookup in various forms. As a write operation obviously
at least installing a package is needed.

47

6.3 Use cases implementation

Sample programs attached on D V D were implemented to demonstrate the main advantages
and disadvantages of new solution over the original one. This section offers a brief summary
and description of the implementation.

Everything has been prepared in one package, which is ready to go, the only prerequisite
is installed MySQL client, M y S Q L server (for init script) and M y S Q L embedded library.
The package has one directory and several files. The directory is important, it will be root
directory for the database. There are two init files-init. sql and init.sh. To initialize
database, you can simply run . / i n i t . sh. The script utilizes the other mentioned file to
create basic database schema. Files common.c and common.h contain mostly some routines,
data structures and definitions related to the current implementation of R P M . And finally,
there are source files for individual programs. It is important to know that these programs
work with the database designed in previous sections, but they work with one simplification
in the concept-only installed packages are in the database. To compile these programs, it
is important to set environment variable specifying database home dir and afterwards run
make.

export RPMDB_H0ME='pwd'/data

make

This will compile programs and prepare empty database. Some testing packages can be
downloaded by yumdownloader <package>. These downloaded packages can be installed
by calling ./install <path-to-package>. Although it has been tested on some packages,
the magnitude of R P M system suggests that it is possible to run to an error because there
might be a package containing some combination of tags which has not been encountered
and thus it might be problematic. However this can be acceptable for a proof-of-concept
program like this.

Before describing the first program itself, some basic concepts of embedded MySQL
should be explained, so the reader understands the code better. Every connection to the
database is represented by structure MYSQL. This is a general descriptor, which has to be
initialized, some options have to be set and finally the connection itself has to be made.
Following code demonstrates a connection sequence (because it is only a demonstration, so
the code is also demonstrative).

MYSQL mysql;

static char *server_args[] = {

"this_program",

"—datadir=/path/to/data/dir",

"—skip-innodb",

"—default-storage-engine=MyISAM",

"—skip-grant-tables" };

mysql_library_init(<arg-count>, server_args, NULL);

mysql_init(femysql);

mysql_options(femysql, <option-id>, <option-value>);

mysql_real_connect(femysql,NULL,NULL,NULL,<database>,0,NULL,0);

18

Possible arguments are the same as arguments for MySQL daemon. Other options can be
given to connection by mysql_options(). It is important to give at least and option to
activate embedded library mode, otherwise it won't work. The counterpart of init sequence
is very simple, just call mysql_close (femysql) and mysql_library_end() afterwards.

The second important concept of MySQL are prepared statements. A big part of the
code is related to prepared statements. The concept is to prepare a query with some places
where particular values will be known later. Another reason is where one query should be
used in iteration, only with different values each time. The code demonstrating prepared
statements is following:

MYSQL mysql;

MYSQL_BIND package_bind[8];

MYSQL_STMT *package_statement;

char *package_query = "INSERT INTO 'package' "

"SET 'name' = ?, 'epoch' = ?, 'version' = ?, "

" 'release' = ?, 'arch' = ?, 'license' = ?, "

" 'summary' = ?, 'description' = ?, 'state' = 'installed', "

" 'automatical' = '0'";

#define PACKAGE_QUERY_LENGTH 196

fill_bind(package_bind);

package_statement = mysql_stmt_init(femysql);

mysql_stmt_prepare(package_statement, package_query, PACKAGE_QUERY_LENGTH);

mysql_stmt_bind_param(package_statement, package_bind);

mysql_stmt_execute(package_statement);

mysql_stmt_close(package_statement);

Of course some other parts are added when considering retrieving data from prepared
statements which represented SELECT query. These are not important right now. The code
above shows that a lot of code is needed for simple query to be executed. The important part
begins after definition of PACKAGE_QUERY_LENGTH. The first routine isn!t a part of MySQL,
it is a placeholder for any routine preparing MYSQL_BIND structures. The principle is that
every parameter which is to be given later is replaces by ? and this placeholder is replaced
by actual parameter in routine mysql_bind_param(). After binding the right parameters,
it is possible to execute the query. Filling the structures representing parameters is more
complex and it would be pointless to describe it here. Much better description is provided
by the code itself. One more important thing about parameters. The query expects exactly
as many parameters as there are question marks in the query. So it is common mistake
to provide an array which is not large enough and end up with segfault. There are some
situations in which this parameter-binding approach isn't desired. For such situations there
is a simpler solution-a call of mysql_query() routine, which replaces practically all the
routines in code above. The only thing it wants is query string and its length. The string
isn't processed further, it is just given to the database engine.

Now when important MySQL concepts were explained, it is possible to describe the
implementation itself. The code of the install program demonstrates one of the greatest
challenges which has to be dealt with when designing a new database and implementing
a new A P I on the top of i t - a n d that is format conversion. The main() routine han
dles the majority of operations directly related with inserting data into the database.
It uses some minor service functions like getld which returns an ID number of last in
serted record to the database. This is possible for IDs which are automatically created

49

by M y S Q L in AUTO_INCREMENT columns. Most functions in the program are designed
to transform R P M tags to MySQL bindings. Every bind has to be initialized, filled
and checked before it is bonded before execution. Functions parse_f ile_structure(),
parse_relation_structure and parse_trigger_structure () demonstrate how difficult
is work with current package format. For example for files and directories, each of their
attributes (mtime, access restrictions, link targets, ...) is stored in separate array. In case
the file doesn't have this attribute filled, en empty value is presented, usually in a form of
zero byte. Transforming this design into bindings must have two stages. In the first stage,
the data are identified and stored in a temporary pointer variables. Then these variables
are iterated over and correct values for each record are extracted and inserted into bindings.
Then these bindings are used in query execution which takes place in main() function.

The query program is much more simpler and it shows how easy is extracting informa
tion from the database in comparison with current solution. A few use cases from section 6.2
have been implemented. Function queryByLabel () implements lookup based on N E V R A
or any part of it as it is described in comments of [20]. That means at least a name of the
package has to be given to the function. A l l other arguments are voluntary, but the basic
concept has to be met-epoch, release and architecture can be only given when version is
also present. There is also argument mode. This argument is meant for all lookup functions.
Since a number of use cases were only about finding out either about existence or count
of packages matching given criteria, a switch between these modes should be implemented.
This is exactly the purpose of mode argument. This argument is also present in every
other function in query program. Function queryByld looks up which of given packages
exist in the database by testing symlinks in filesystem part of the database. Functions
queryWhatRequires and queryRequires demonstrate lookup of relations in both direc
tions (we know package and want to know all of its relations vs. we know a relation and
want to know which packages have it). There are some other functions implementing other
lookups in the database. They all work on the same concept, they only use different queries,
so there is no need to describe them here further.

The last program is the one which deletes package from the database. Some dependency
checks and similar stuff are performed only as a demonstration, but full coverage of this
isn't a part of this thesis. Of course if full database A P I was designed, this program
would use it to perform those checks related to the database. The delete program is
very straightforward - deletion from every single part of the database is handled by specific
routine. A l l checks are performed in function checkDeletion or its subroutines. After
everything is checked, the deletion is performed from both SQL database and the disk part.

6.4 Possible A P I design

This section should give only a very rough outline of what should new A P I support, and
what might be the design needed to implement such functionality easily. First of all it's
important to define functionality it should support based on use-case list from section 6.2.
We will start with selection related functionality.

• support for simple selection

• support for multiple selecting parameters connected with logical operator A N D . No
other logical operations are needed by current solution. Although it would be better
to think about them and at least prepare supporting data types for them.

50

• support for version comparison (to evaluate epoch-version-release string)

• support for comparing, arithmetical and logical operators. Logical operations will be
necessary for filtering based on package color

• usage of comparing operators must not be limited to comparing field to a value, but
also comparing two fields with each other is necessary. This is utilized in use case,
when a goal is to find out, whether the package provides what it obsoletes.

• working with a set of packages in selection (this is used quite often - either to select
those in a list or exclude them)

Now projection and sorting:

• retrieve one or more information from one table

• retrieve aggregated data. Currently only a count is needed. Some use cases of this
aggregated value reduce this requirement only to an action to find out whether given
records exist. Considering this in a design can bring a performance boost for this
kind of queries, since there is no need for the database to walk through all records
and simply first one will mean return from function.

• sorting result by one or more parameters. This is not really a requirement from use
cases, but from observation, it will lead to cleaner code of the rest of rpmlib.

There are some unlisted, generic use case requirements. As same as in section 6.2, some
service operation requirements such as opening and closing the database aren't listed.

As for the design outline: there are several approaches which might be chosen. The
most simple way would be if entire rpmlib would be aware of underlying database and its
structure. This is the case for other packaging managers, such as conary. The design of this
approach basically defines only very basic A P I . Let's say the design goal it to provide at
least some degree of freedom. Using SQL database it would be represented by possibility
to switch backend engine without the need for modification of every code using database.
Such code has to meet two conditions: first of all all queries have to be SQL compliant,
no engine specific extensions used. The second condition is that backend A P I has to be
written such as it is in current solution. This backend would follow generic principles used
when working with relational databases (cursors, S E L E C T / I N S E R T / U P D A T E / D E L E T E
operation character, num_rows, num.cols, ...). A n advantage of this concept is its sim
plicity - minimum amount of code is needed to implement rpmdb module itself. The main
disadvantage is distribution of code- in case database schema changes, every part using
database will have to be checked and adjusted.

Still simple, but more powerful approach is to use identified use cases and implement
service function for each one of them. Attached list of use cases is verbose, so this should
pose no problem. Usage of this approach however would lead to one of three possible
outcomes: either the A P I would be bent in overlying layers, modification of A P I would be
needed or new alias functions will arise. Now an explanation of all three cases. Everything
starts with the need for database functionality which is not yet developed (or maybe only
a close one exists, but it doesn't fully comply with what is needed in current one). Now
there are three options. Programmer can use that currently existing solution and slightly
modify its results so they are coherent with what is needed. Another possibility is that
this modification is implemented in rpmdb module, which is basically the third case-new

51

alias function. The third option is that A P I is modified (just adding a parameter to one
function might be sufficient). From module implementation point of view the best one, but
from the rest of the rpmlib, this is the worst one, because every change in A P I means there
is at least one more part of rpmlib to be changed as well.

The third approach is the most powerful, but also the most complex one. It consists
in creating an A P I which would in fact simulate declarative language. User of this A P I
tells it what information does he need, what are constrains of this information (e.g. only
installed packages, packages with given name, etc.) and what should the order be (e.g.
order the information by the time of installation). Based on these requirements, rpmdb
module compiles a query for given database backend. Once compiled, it is executed and it
is simple to iterate over results.

52

Chapter 7

Comparison

The comparison of old and new solution should start from the design of the database.
The new database was designed to minimize issues of the old one. SQL part introduces a
significant improvement over original solution. First of all it defines clear rules how to store
the data. Whats more important, these rules are documented! Relational data model forces
its basic concept, which has potential to improve the performance significantly - atomic
information. Thanks to this, the information stored in rpmdb is much more effectively
divided into small pieces. It is possible to work with these pieces independently on other
information. That reduces the amount of data which has to be transferred between H D D
and memory. Also if any information about package is needed which isn't in the database,
there is secondary data source and that is directory structure containing every available
information about installed packages. It is stored in very effective directory structure
which reduces information lookup time. Directory structure in this concept is basically
an index implemented directly by operation system. This concept can be also extended
and another indexing parameters (not just ID and N E V R A) can be added. In case system
administrator wants to work directly with R P M database for some reason (e.g. find and
grep some information), it provides much more human-friendly face, especially when plain
text files are used. Both solutions offer two-level design of the database. First level as a
complete information about packages and the second level used as cache storing the most
important information. This cache is far better in new solution because of its extent. In
the old solution it is represented by secondary databases, which contain only a fragment of
information that should be indexed today. The new solution on the other hand contains
much more information, and yet it is better ordered thanks to relational data model. This
only shows that this design greatly emphasize the significance of cache to make lookup
faster. Also there is already mentioned possibility to look up records in primary database
not only by key, but also by N E V R A . Together with easy creation of yet another indices
this makes great shortcut to load the header if it is needed.

The new concept has also its disadvantages. In section 2.6 an analysis of disk space
related issues was provided. The new solution will clearly take more space and the overhead
will be also greater because of the expanded cache in a form of SQL database. Cache here
has been measured by du -sh <database>, where <database> is a path to SQL database
where all packages are installed. This is natural measurement of overhead, since data stored
in header files, have no redundancy at all (except for internal filesystem structures). The
overhead of new solution is 650 MiB.

The last part of comparison in implementation of the program build on the top of
the database. As it could be seen, rpm 4.7 has very complex code which is difficult to

53

comprehend, sometimes even for skilled developer. This has changed significantly since
the development of this thesis has begun. But to reach a level when the code is easy
to comprehend an easy comprehension of all concepts is required. The implemented code
shows where the hardest part is - transformation of current data format into something more
developer-friendly. If this new design is accepted and everything essential is implemented,
this is where the development should continue - plain text format of both database and
package headers. In both current and new solutions, the database format can be modified
very easily. Although in the new solution, it offers much cleaner way in a form of SQL
queries. Again it would lead to more straightforward code, which was the main goal of
this thesis. The code of query program revealed the biggest contribution of this solution.
By using SQL database as backend it is possible to achieve code several times simpler and
cleaner than the current one. This claim is also confirmed by program implementing the
deletion of the package. Here the effect would be much higher if the database engine was
InnoDB and consistency checks were utilized. On the other hand, this would have to be
very well commented in order to avoid obfuscation (code handling one situation split in
two places - library and database schema definition). Another advantage over the original
solution is platform independence. As it was described in section 3.1, some operations
dealing with byte order and variable size exist in current implementation. These operations
won't be necessary any more, because MySQL will be handling them. Another part of R P M
might need these operations (e.g. loading of package header files), but that's not up to this
thesis to analyze. From the A P I point of view, the new implementation offers cleaner A P I
with open possibility of simple extension any time it is needed.

54

Chapter 8

Conclusion

Analysis provided in first chapters of this thesis is very useful not only for further design of
new R P M database. Few issues were discovered in the code of R P M itself. Some of them
were already reported and fixed, while others are still in the phase of debugging. There
is also quite large amount of information about repository content. This information can
be useful even for people who aren't working for R P M , but are responsible for planning
the direction of Fedora development. Pieces of information about current content and
future estimations are present through the entire thesis. Based on them, some suggestions
are formed to improve packaging policy (of course supported by R P M itself) in the entire
Fedora distribution.

Chapter 4 tried to bring some new ideas from competing package managers. Some im
provements and ideas were indeed used further. Also the idea of using SQL database engine
is very important because after all this is what brought most of the improvements. Com
parison of M y S Q L embedded and SQLite was provided as a proof of MySQL convenience
as R P M database engine instead of SQLite, which is greatly preferred by many people.

Luckily the mysql-embedded package doesn't have another mysql packages as a depen
dency, so R P M potential dependency isn't that much of an issue. Despite this it might
seem to be too large dependency to be included in core system for server distributions. But
considering that current R P M needs libdb-4.7 it can be considered as acceptable replace
ment.

The main contribution is that the new design is promising alternative to current R P M
database. The implementation provided in chapter 6 is only proof-of-concept work and
thus the main focus should be on the design, which is described in chapter 5. The design
has many advantages over the current one and once a suitable A P I is completed on top
of it, it has a good chance of being the next generation R P M database. In such case this
thesis will be a foundation for future development and implementation.

55

Bibliography

[1] Appropriate uses for sqlite. http://www.sqlite.org/whentouse.html.

[2] Gentooportage - portage is a package management system used by gentoo linux.
http://www.gentooportage.info/, May 2006.

[3] Pisi database schema.
http://svn.pardus.org.tr/uludag/trunk/pisi/doc/pisi-db.xmi, September
2006.

[4] Rpm 4.4.2.2 api documentation, http://rpm.0rg/api/4.4.2.2/pages.html,
December 2007.

[5] Archlinux propaganda: Arch linux is good, quite good. http://archpropaganda.
blogspot.com/2008/07/arch-linux-is-good-quite-good.html, July 2008.

[6] Rpm container file format specification.
http://rpm.org/wiki/DevelDocs/FileFormat, September 2008.

[7] Archlinux - arch build system.

http://wiki.archlinux.org/index.php/Arch_Build_System, December 2009.

[8] Sqlite fts3 virtual table, http://dotnetperls.com/sqlite-fts3, January 2010.

[9] M y S Q L A B . Mysql embedded data sheet.
http://www.mysql.com/oem/mysql_embedded_server_ds.pdf, November 2009.

[10] M y S Q L A B . Mysql reference manual.
http://dev.mysql.com/doc/refman/5.0/en/bdb-storage-engine.html, October
2009.

[11] M y S Q L A B . Mysql reference manual.

http://dev.mysql.com/doc/refman/5.4/en/libmysqld.html, November 2009.

[12] Edward C. B A I L E Y . Maximum RPM. Red Hat Software, Inc., Durham, N C , 2000.

[13] Jonathan C O R B E T . Ols: A n introduction to conary. LWN.net, July 2004.
[14] Florian FESTI . Rpmdb performance (rpm developer discussion).

http://lists.rpm.org/pipermail/rpm-maint/2009-August/002460.html, August
2009.

[15] Eric F O S T E R - J O H N S O N . Rpm guide.
http://docs.fedoraproject.org/drafts/rpm-guide-en/, 2005.

56

http://www.sqlite.org/whentouse.html
http://www.gentooportage.info/
http://svn.pardus.org.tr/uludag/trunk/pisi/doc/pisi-db.xmi
http://rpm.0rg/api/4.4.2.2/pages.html
http://archpropaganda
http://rpm.org/wiki/DevelDocs/FileFormat
http://wiki.archlinux.org/index.php/Arch_Build_System
http://dotnetperls.com/sqlite-fts3
http://www.mysql.com/oem/mysql_embedded_server_ds.pdf
http://dev.mysql.com/doc/refman/5.0/en/bdb-storage-engine.html
http://dev.mysql.com/doc/refman/5.4/en/libmysqld.html
http://LWN.net
http://lists.rpm.org/pipermail/rpm-maint/2009-August/002460.html
http://docs.fedoraproject.org/drafts/rpm-guide-en/

[16] Jan KOMÁREK. Teorie relačních databází: Normalizace.
http://www.manuály.net/article.php?articleID=13, August 2007.

[17] Oracle. Getting started with berkeley db. http://www.oracle.com/technology/
documentation/berkeley-db/db/gsg/C/index.html, December 2009.

[18] rSync. Conary api documentation, http://cvs.rpath.com/conary-docs/, October
2009.

[19] Luke M A C K E N Seth VÍDAL and James A N T I L L . Source code of createrepo utility,
http://createrepo.baseurl.org/git/createrepo.git, December 2009.

[20] Eric T R O A N and Marc E W I N G . Source code of rpm 4.7.0.

http://rpm.0rg/releases/rpm-4.7.x/rpm-4.7.l.tar.bz2, July 2009.

[21] Jaroslav Z E N D U L K A and Ivana RUDOLFOVÁ. Databázové systémy ids - studijní
opora, July 2006. Internal document of Faculty of Information Technology, Brno
University of Technology.

57

http://www.manu�ly.net/article.php?articleID=13
http://www.oracle.com/technology/
http://cvs.rpath.com/conary-docs/
http://createrepo.baseurl.org/git/createrepo.git
http://rpm.0rg/releases/rpm-4.7.x/rpm-4.7.l.tar.bz2

List of attachments

A . D V D

B. Profiling graphs

58

