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Anotace  

Zobrazování doby života fluorescence (FLIM) patří mezi hojně rozšířené přístupy pro analýzu materiálů v 

široké škále výzkumných témat. Je však vždy nutné zvolit vhodnou principiální metodu pro měření 

dynamiky fotoluminiscence (PL) vzhledem k měřenému vzorku.  

V rámci  dizertační práce je představen návrh nové robustní metody, kde není nutná předběžná 

znalost PL dynamiky vzorku. Princip využívá náhodně modulovaný excitační signál, což umožňuje měřit 

dohasínání na širokém rozsahu frekvencí v rámci jedné datové sady. To zaručuje přesnou rekonstrukci 

multi-exponenciální křivky dohasínání PL. Metoda získala název RATS z anglického „Random temporal 

signals“. Pro účely FLIM lze metodu RATS přenést do 2D snímání například pomocí konfigurace jedno-

pixelové kamery (SPC). Zde jsou prezentovány dvě  optické uspořádání metody RATS využívající SPC. 

První z nich využívá dvou difusorů (dvakrát rozptýlené světlo), které jednak zajistí náhodnost časového 

signálu, ale i náhodné prostorové osvětlení měřeného vzorku -- stěžejní pro rekonstrukci SPC scény. Druhé 

optické uspořádání je implementace metody RATS do SPC mikroskopu, kde je prostorová náhodnost 

zajištěna digitálně ovládaným mikro-zrcátkovým čipem (DMD) a časová náhodnost je zajištěn náhodně 

digitálně modulovaným laserem.   

Kromě toho práce představuje dva rekonstrukční přístupy FLIM spektrogramu. První z nich se blíží 

standardním přístupům rekonstrukce spektrogramu FLIM v SPC. Proto sdílí podobné vlastnosti, jako je 

počet nutných rekonstrukcí vedoucí k dlouhé době výpočetního zpracování výsledků. Druhý z 

navrhovaných rekonstrukčních přístupů však potřebuje pouze tolik rekonstrukcí, kolik je dílčích životů 

dohasínání obsaženo v multi-exponenciální křivce PL dohasínání (obvykle bi-, tri-). To výrazně šetří čas 

následného zpracování. Navíc umožňuje zobrazení amplitudových map jednotlivých životů PL, což může 

být přínosné pro výzkum materiálového inženýrství. Oba přístupy jsou analyzovány pomocí simulací z 

hlediska šumových charakteristik a jsou vzájemně porovnávány. 

Nakonec jsou uvedeny myšlenky přímé rekonstrukce parametrů multi-exponenciálních křivek do-

hasínání v případech se šumem. První návrh, založený na řešení nedourčeného systému, očekává řídké ře-

šení. Poskytuje přesné výsledky, ale není vhodný pro systém se šumem. Druhý návrh, využívá hlubokého 

učení a ukazuje na možnost získat hledané parametry dohasínání i v systému se šumem. Hladina šumu (0-

1%) navíc neovlivňuje přesnost zjištěných parametrů. Tyto přístupy by nahradily regresní zpracování a dále 

zjednodušily metodu. 

 

Klíčová slova: spektrometrie FLIM, metoda RATS, komprimované snímání, jedno-pixelová kamera 

 



 

Annotation 

Fluorescence lifetime imaging (FLIM) is one of the most widespread approaches to materials analysis in a 

broad range of scientific fields. However, it is always necessary to choose a principal method for measuring 

the dynamics of photoluminescence (PL) concerning the measured sample.  

As a part of the dissertation thesis, a new robust and straightforward method for PL dynamics 

measurement is presented, eliminating the need for prior knowledge about the PL dynamics of the sample. 

The method is based on a randomly modulated excitation signal, which makes it possible to measure PL 

decay at a wide range of frequencies within a single dataset. This guarantees an accurate reconstruction of 

the multi-exponential PL decay curve. The method was named RATS according to the "Random temporal 

signals". The RATS method can be transferred to 2D imaging by using a single-pixel camera (SPC) 

configuration. Here are presented two optical arrangements of the RATS method in SPC. The first of them 

is based on two diffusers (double-diffused light), which both ensure the randomness of the temporal signal 

and the random spatial illumination of the measured sample -- crucial for the SPC scene reconstruction. 

The second optical arrangement is an implementation of the RATS method into the SPC microscope setup, 

where spatial randomness is ensured by a digital micro-mirror device (DMD) and temporal randomness is 

ensured by a randomly digitally modulated laser. 

Moreover, two reconstruction approaches for the FLIM spectrogram are introduced. The first of 

them is close to the standard approaches to FLIM spectrogram reconstruction in SPC and therefore shares 

similar properties, such as the number of necessary reconstructions leading to the long postprocessing time. 

However, the second of the proposed reconstruction approaches only needs as many reconstructions as the 

number of partial lifetimes of multi-exponential PL decay (usually bi-, tri-). This significantly saves post-

processing time. In addition, it allows displaying the amplitude maps of individual lifetimes, which can be 

beneficial for material engineering research. Both of them are analyzed via simulations in terms of noise 

characteristics and are compared.  

The thesis is concluded by ideas of precise and direct reconstruction of multi-exponential decay 

parameters in a noisy system. The first proposed solution, based on an undetermined system, expects a 

sparse solution. It gives precise results but is not suitable for noisy systems. However, using the second 

proposal, based on deep learning, it is possible to get precise decay parameters even in noisy systems. 

Moreover, the noise level (0-1%) does not seriously affect the precision of the found parameters.  The 

algorithms would replace the regression processing and would further simplify the method. 

 

Keywords:  FLIM spectrometry, RATS method, compressed sensing, single-pixel camera 
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1 Introduction 

Due to the ever-evolving research of new materials, optical spectrometry is an essential analytical method, 

especially because it is a non-destructive and contactless method. One area of spectrometry is focused on 

photoluminescence (PL) properties. The PL occurs when charged carriers in a material are excited to a 

higher energy state by a suitable wavelength of photon radiation [1]. The excited carriers spontaneously 

return to their stable electronic state, partly by generating the above-mentioned PL. The material itself can 

then be evaluated in terms of the PL wavelength spectrum or studied from the point of view of the PL 

lifetime, generally referred to as the study of PL dynamics. 

The study of PL dynamics thus makes it possible to reveal the lifetimes of PL decay [2] but also 

deals with the energy levels of charge carriers [3,4] or examines the mechanisms of relaxation and the 

transfer of excited energy [5,6]. All this information can be obtained for both transparent and non-transpar-

ent samples. Therefore, the measurement of PL dynamics is one of the most used characterization methods 

in the field of chemical physics [7,8], biochemistry [9] but also material sciences in general [10,11]. 

While the measurement of the time-integrated PL spectrum could be performed using a conven-

tional spectrometer, time-resolved measurement needs advanced optical experimental arrangements,  espe-

cially for rapid PL decays (nanosecond or sub-nanosecond timescales). Nowadays, there exist several 

approaches to measuring PL dynamics. Nevertheless, all standard approaches are often based on a pulsed 

laser, which makes the method expensive. Moreover, we frequently need to have a prior assumption of a 

measured lifetime. Besides, each method performs best in a limited range of lifetimes [1,12]. Therefore, it 

is still of great importance to deal with the development of new methods and approaches to measuring PL 

dynamics. 

All these methods can be converted to 2D imaging of PL lifetimes, which is called "Fluorescence 

Lifetime Imaging" (FLIM) [13]. This approach is used mainly for biological samples (tracing using PL 

markers), where it is necessary to monitor ongoing processes [14,15]. Therefore, the main development 

direction is focused on fast data acquisition in terms of the photodegradation of biological samples and PL 

markers [16,17]. This is aided by a number of approaches, such as avalanche field sensing (SPAD) [18] or 

the concept of compressed sensing [19]. Besides, an important direction in the field of instrumentation is 

to create FLIM setups, which are versatile, low-cost and robust with respect to various experimental factors. 

This thesis is devoted to the development and optimization of an entirely new approach to the meas-

urement of PL dynamics and FLIM. The novel method - RATS - is proposed as the central part of this 

work. The method uses a randomly modulated excitation signal for sample excitation, which makes it pos-

sible to reconstruct any multi-exponential decay from a single acquired dataset. The method is robust and 

does not require any signal-timing. For FLIM measurements, the method was implemented in an optical 
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setup of a single-pixel camera configuration. The thesis comprises all steps, ranging from proof-of-principle 

experiments, noise analysis, optimization of the method performance with respect to the temporal and spa-

tial resolution, and a novel approach to the analysis of the PL decays in FLIM. 

In the following Chapter 2, commonly used measurement methods for FLIM are introduced. There 

are pointed out their advantages and ideal working range. Furthermore, a single-pixel camera -- compressed 

sensing (CS) technique -- is presented, and the intersection of PL dynamics study and CS techniques is 

outlined. Based on Chapter 2, Chapter 3 defines the main goals of the work. The individual solutions are 

further described in Chapters 4 -7. Chapter 4 introduces the principles and basic properties of the proposed 

time-resolved RATS method. Chapter 5 shows possible implementations of the RATS method into 2D 

measurement using SPC and proposes algorithms to obtain the FLIM spectrogram. In Chapter 6, extensive 

noise analysis of the method is performed, and Chapter 7 deals with approaches for direct determination of  

PL decay parameters (amplitudes, lifetimes) to further refine the results and speed up the postprocessing 

process. 

 

2 Summary of current knowledge of the issue 

2.1 Measuring methods of PL dynamics 

As it was mentioned, there are many different methods for PL dynamics detection. Such methods are, for 

example, gated photon counting [20], a streak camera [21], a time-domain analog recording technique [22], 

or a frequency-domain analog recording technique [23]. However, the most commonly used method, 

especially due to biological sample research, is time-correlated single-photon counting (TCSPC) [24, 25]. 

Many of these methods can be used for FLIM, where the current focus of development is primarily 

on data acquisition speed. In general, the acquisition speed that the FLIM technique can achieve depends 

on the required signal-to-noise ratio SNR, the number of PL photons emitted from the sample, the time 

resolution, the method used, the efficiency of the PL collection optics, and the electronics speed. 

The factors above show that the crucial parameter is the number of the emitted PL photons from the 

sample which hit the detector, i.e. the so-called photon budget. The photon budget can be often improved 

by simply increasing the intensity of the excitation signal. However, it is necessary to pay attention to the 

parameters of the sample, as it may destroy or bleach the PL of the active substance (so-called 

photobleaching) [16]. In addition, in some techniques, such as TCSPC, a higher number of photons may be 

redundant and will distort the resulting decay. All mentioned facts must be taken into account when 

choosing a suitable method. 
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2.1.1 Gated photon counting 

Gated photon counting is the first time-domain method that has been commonly used for FLIM, and still, 

it counts among the standard methods [26]. This method uses gating pulses, during which the intensity of 

PL photons is measured. PL decay is sequentially sampled for different gate pulse delays after the excitation 

pulse. The limit of the gating interval, i.e. the temporal resolution, is given by the electron response of the 

photomultiplier, which commonly reaches 100 MHz. Several parallel gate counters can be used, and data 

can be acquired for all pixels at the same time. Hence, with an electrically and optically tuned system, it is 

possible to take a picture of 256×256 pixels in 1s for a single delay [17]. However, as it was mentioned 

previously, the acquisition time also depends on the measured sample (number of emitted PL photons, time 

resolution). Moreover, depending on the sample PL dynamics and desired temporal resolution, the optimal 

duration of gating pulses must be set. The method can be optimally used in the range of lifetimes of 500 ps 

– hundreds of ns [1].  

2.1.2 Streak camera 

The FLIM system based on a streak camera was first described in 2003 [27]. The principle is that the emitted 

PL photons are detected by a photocathode, where the emitted electrons are deflected by a rapidly changing 

electric field in the vacuum tube. The deflection is specific for each electron with a corresponding delay - 

given by the PL decay (see Fig. 1). In modern streak camera setups is used microchannel plate electron 

multiplier (MCP) -- for a higher gain of electrons. The deflected electrons are incident on a phosphorescent 

screen, which is again converting the electrons into photons recorded on a CCD camera.  

 

Figure 1: Principle of a streak camera. Emitted electrons (photoelectrons) from the photocathode are 

deflected with a sweep circuit. Deflection is specific according to the photoelectron's arrival. Adapted 

from Liu et al. [17], Fig. 7.    

 The detected PL photons in a streak camera can also be resolved spectrally (x-direction in Fig. 1), 

for example, through a diffraction grating. An example of such a spectrogram describing both time and 

spectral information is shown in Fig. 2. The optimal range of the method is similar to gated photon counting 
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(0.5 –  hundreds of ns). However, using optimized electronics, it is possible to reach units of picoseconds 

[1]. So, for the single-shot measurement, the temporal resolution of a streak camera can reach even hundreds 

of femtoseconds. 

 

Figure 2: An example of the streak camera spectrogram, where the vertical axis can observe the PL 

decay of individual wavelengths (horizontal axis). Adapted from Junek et al. [46], Fig. 5(A). 

2.1.3 Time-correlated single photon counting (TCSPC) 

The TCSPC  uses a pulsed laser to excite the sample. Typically, it employs picosecond pulses. The method 

principle assumes that one excitation pulse will correspond at most to one detected PL photon, which will 

always reach the detector at a different delay after excitation. Reaching the low number of detected PL 

photons can be achieved by several means. Since PL is omnidirectional, it is possible to ensure that a limited 

number of photons pass to the detector by selecting a suitable detection solid angle. The limited number of 

photons can also be done by tuning the intensity of the excitation source or by placing neutral density filters 

in front of the detector.  

 

Figure 3: PL decay sensing in each SPAD pixel. Adapted from Liu et al. [17], Fig. 2(A). 
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If the sample is excited by a sufficient number of pulses, we get a photon detection histogram that 

copies the PL decay curve because the delay of PL photons follows the statistics set by the PL intensity 

dynamics after excitation. The acquisition time is given by the laser repetition rate, which must be selected 

according to the length of the expected PL decay. Therefore, the detection of microsecond PL decay can 

take several hours, while nanosecond PL decay can be captured within a few seconds. 

This method is the most widely used approach for FLIM in biology, as PL markers with a known 

lifetime are used for tissue staining, and the system can be optimized for them. In addition, it is possible to 

use an array of avalanche diodes (SPAD), where each diode forms one pixel, and the data in them can be 

measured simultaneously [17]. The optimal method range is lifetimes from 0.1 ns to 100 ns [1]. 

2.1.4 Time-domain analog recording technique 

The time-domain analog recording technique is one of the most straightforward methods, where the sample 

is excited by a pulsed laser, and fast electronics then directly record the PL intensity dynamics over the 

decay. It is often possible to use an oscilloscope or digitizer to read the PL data. In FLIM experiments using 

advanced electronics, image acquisition of 150×150 pixels was presented in 1s [28]. However, the detected 

PL decay is distorted by the excitation pulse length, which mainly affects the fast PL decay exponential 

components. Therefore, the method is usually used in a range of lifetimes from 0.1 to 1 μs [1]. 

2.1.5 Frequency-domain analog recording technique  

The frequency-domain acquisition of PL decay used to be one of the most used methods but later lost its 

popularity, as a single measured frequency response can only describe a mono-exponential PL decay curve. 

In order to obtain more components of a multi-exponential PL decay curve, the measurement must be 

repeated with a different excitation signal configuration. This arises because the sample is excited by a 

sinusoidal modulated signal and uses the fact that generating a PL involves a signal phase shift and a change 

in signal modulation, which correspond with the present lifetime. The PL lifetimes can be determined 

typically in the range of 1 ns – 100 ms [1]. 

State-of-the-art assemblies use a fast pulsed laser on this principle and sinusoidal the detector gain 

[17]. The system is not suitable for experiments and samples with low PL intensity.   

2.1.6 Summary of the above findings  

As described above, the acquisition time for FLIM methods is a complex function of many parameters. In 

addition, it also depends on whether the experiment records the entire PL decay curve or only a part of it 

and whether the acquisition is made in all pixels simultaneously or separately [17]. Essential is also the 

optical technique of FLIM image recording. The choice of method depends on the required image 

resolution, the time resolution of the decay curve, and the type of decay (mono-exponential, multi-
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exponential, non-exponential, ...). It is worth noting that the FLIM method, which is adequate for one 

application, may be entirely unsuitable for another. 

Conventional widescreen FLIM often uses the SPAD field, which allows parallel scanning both in 

space and over time. Therefore, it is possible to achieve very fast measuring times in the order of seconds 

or even milliseconds. Such acquisition times can only be assumed for nanosecond or picosecond decays. 

On the other hand, the conventional approaches may be unsuitable for microseconds or sub-microseconds 

(hundreds of nanoseconds) decays. For example, the TCSPC acquisition time would be shifted to the order 

of hours. Materials that manifest themselves by microsecond or sub-microsecond PL decays include halide 

perovskites [8], nanocrystalline silicon [6,11], or various luminophores [29]. 

The need for a pulsed laser, advanced electronics, or an array of SPAD avalanche diodes makes 

FLIM a relatively costly analytical tool. Therefore, it is still of practical importance to come up with 

proposals for new approaches to measuring PL dynamics that will be robust in terms of the optical 

arrangement, allow coverage of a wide range of extinction times and reduce the cost of FLIM. 

2.2 Compressed sensing and single-pixel camera    

The concept of compressed sensing is based on the knowledge associated with signal approximation by a 

linear combination of a very small number of vectors in a given representation system, whose origin dates 

back to the 1990s [30]. The concept has become popular mainly because it is not necessary to use complete 

signal information, yet it is possible to reconstruct the whole signal successfully.  

The concept uses the assumption that if it is possible to express the signal of interest in a base (e.g., 

Fourier, wavelet) where it is sparse, the sparse representation can be reconstructed even in an undetermined 

system. The sparsity of a signal in a certain basis denotes the fact that the signal can be expressed in this 

basis as a vector or a vectorized matrix, where the vast majority of elements is equal to zero. In this case, 

the useful information is stored in a few non-zero components. An example is an image, which can be well 

approximated in the wavelet basis by a sparse vector, and this fact is used in JPEG compression.  

As stated above, the sparse vector can be reconstructed even from an undetermined system of linear 

equations. The precondition is to capture a sufficient number of random combinations of the base 

components. Therefore, the complete information does not necessarily need to be stored, which 

significantly saves data acquisition time and necessary storage capacity. Several algorithms, such as the so-

called greedy or proximal algorithms, help the reconstruction [31,32]. 

Many measured signals are sparse on a certain basis, and therefore it is possible to retrieve them 

with a reduced number of measured data – respectable whether we talk about a temporal signal or an image. 

The theory implies that we need to scan a random combination of components of the basis where the 

measured signal is sparse. For instance, to reconstruct a 2D scene, i.e. an image, Fourier or wavelet 
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components must be scanned. An analogous approach can be used also for temporal signals. However, it is 

not experimentally straightforward to capture a specific random combination of wavelet components of an 

image. Therefore, especially in the case of 2D scene reconstruction, it is more common to use an arbitrary 

random pattern. This means that we can measure a random combination of pixels instead of the random 

combination of wavelet components. In practice, it turns out that this approach is sufficient, and it is 

frequently used, for instance, in the optical single-pixel camera configuration. 

The single-pixel camera is the most common experiment of compressive imaging and it is 

frequently used. The single-pixel camera measurement can be done using only one pixel – a diode or a 

photomultiplier – to capture the total intensity of the image encoded by a random pattern, referred to as a 

mask. The total intensity needs to be measured repeatedly for a set of independent masks. The number of 

masks then corresponds to the number of measurements and is denoted by M. The number of pixels of the 

reconstructed image is denoted as N. It holds that M<N and the M/N ratio determine the sensing 

compression ratio k, which is related to the incompleteness of the system. 

Let us declare the scene, which needs to be reconstructed, as vectorized image, which is hence 

converted into vector x featuring size N. Then we define the matrix A, where each row of the matrix is a 

single vectorized 2D random mask. After M measurements (M different masks), the dimension of the matrix 

A is M×N, where M<N, i.e. we attain an undetermined system of linear equations. As mentioned, for each 

mask, we measure one total intensity of the scene, which together forms the vector y with a size of M. The 

measured intensities can be expressed via matrix multiplication as y = Ax. This expression cannot be solved 

for an undetermined system, but including a suitable regularization parameter 𝜙 ensures that minimization 

finds the correct solution: 

  2
  + ( ) .m yin Ax x  (1) 

The roots of the single-pixel camera can be dated back to 2005 [33]. Since then, it has found 

utilization in various imaging domains, especially in spectral regions, where 2D detectors are difficult to 

access – infrared or even terahertz optics. Moreover, it is possible to use SPC to replace even high-speed 

detectors (SPADs, iCCD, high-speed cameras) used to sense very fast processes. However, in this case, the 

measured phenomenon must be recurring. 

Nevertheless, the essential factor enabling high-quality reconstruction is the signal-to-noise ratio 

SNR of the detected signal. It is necessary to keep in mind that the detected signal in a single-pixel camera 

experiment is a randomly fluctuating value around a certain mean value. The higher the number of pixels, 

the lower the relative level of fluctuations due to statistical reasons. Since small variations in the measured 

value carry useful information, noise can easily overwhelm the signal. Therefore, the SNR should be taken 
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into account during the construction of a setup – especially in infrared or terahertz regions of the spectrum. 

The effect of noise also depends on used reconstruction algorithm. 

The single-pixel camera setup can be constructed in two modes - structured detection mode or 

structured scene illumination mode, i.e. one can either apply the random mask on the detected image or on 

the scene illumination, respectively. The choice depends primarily on the application.  

The random mask is most commonly generated using a digital micro-mirror device DMD, which 

ensures appropriate resolution. An advantage of using DMD is the ability to impose an arbitrary binary 

pattern to encode the image. Apart from random mask patterns, it is also appropriate to use Hadamard or 

Fourier-based patterns, which can provide image retrieval with a lower compression ratio [34]. 

 

Figure 4: Scheme of the single-pixel camera principle. Adapted from Don et al. [35], Fig. 6. 

2.3 Compressed sensing and deep learning in PL dynamics measurements and FLIM 

Compressed sensing (CS) has expanded into many applications, but it has been successful, especially in the 

fields where it is difficult to access a 2D detector (see Section 2.2). Since, in this work, we are interested 

mostly in the visible region of the spectrum, it may seem that high-speed cameras would be enough. 

However, available frame rates for high-speed cameras reach tens of kHz, which is by far inappropriate for 

PL decays in nanosecond and microsecond timescales. Moreover, the number of emitted PL photons 

depends on a measured sample and most often, the intensity is not detectable with standard CCD or CMOS 

detectors. Therefore, gated 2D array detectors, such as SPAD or iCCD are widely used in FLIM 

implementations. Nevertheless, it is a highly costly solution and is not implementable to all-time resolved 

methods.  

To eliminate the demands of the cost, it is possible to substitute a 2D array detector with a single 

fast and sensitive detectors like an avalanche diode or photomultiplier (PMT). Both are frequently reachable 

as a 0D detector, i.e. a single-pixel detector. The most straightforward option is to measure in a raster mode 
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that is, however, time-consuming – particularly for the long integration time required for the low intensities. 

Nevertheless, using the principles of CS, such as a single-pixel camera, it is necessary to acquire a lower 

number of measurements given by the compression ratio. Hence, the total acquisition time is shortened. 

One of the first ideas of CS application in time-resolved measurement is connected with 

compressive hyperspectral fluorescence microscopy research, where CS was used for fluorescence imaging 

extended to a spectral domain, i.e. reconstruction of a spectral 3D datacube (x,y,𝝀). Nevertheless, the 

similarity of the reconstruction of a spectral 3D datacube (x,y,𝝀), i.e. hyperspectral imaging, and time 

domain 3D datacube (x,y,t) was discussed [36].  

The idea of 3D datacube reconstruction (x,y,t) was implemented and optimized in combination with 

hyperspectral imaging, where FLIM was performed on a 16-channel time-resolved spectrometer (each 

channel represented one PMT). Each channel was taken as one SPC, so the reconstruction took place in 

parallel on each channel [37]. This approach effectively created a 4D dataset, where for each pixel, one 

attains the PL decay in 16 different spectral regions. 

The same research group subsequently states that reconstruction (post-processing) is time-

consuming, reaching about 4 hours. This large data post-processing is caused by the fact that in each 

temporal frame are 16 images, which need to be retrieved separately. Therefore, the authors came up with 

a solution using a neural network, which has a compression-scanned 3D datacube as an input. The neural 

network is called Net-FLICS and it was trained on simulated data. Nevertheless, it was proved to perform 

well even in a real experiment. The Net-FLICS training took 4.5 h, but, in the end, it shortens the total 

reconstruction results to the order of seconds [38]. This example illustrates the power of using neural 

networks to process CS-based datasets. 

However, the above-mentioned approaches can only capture a repetitive phenomenon with a stable 

repetitive PL decay over the acquisition time since each mask needs to be scanned ideally under the same 

conditions. In the above-mentioned articles, the total measurement time is stated to reach tens of minutes 

[37,38]. For some less stable samples, such acquisition times can be problematic. Therefore, in parallel to 

the given approach, the possibility of using a compressive method based on shearing in the time domain 

called Single-shot compressive ultrafast photography CUP was investigated [39,40]. This experiment is 

based on a different CS approach, where a 3D datacube can be captured in a single snapshot by using a 2D 

detector. CUP implementation to FLIM is connected with a principle of a streak camera. The key property 

is that an image encoded by a single mask is sheared in the time domain on a 2D detector. Thus, in each 

time point, we have one mask imaged on a different area of a detector, and the total intensity is given by 

the sum of overlaying encoded images from all time points. The reconstruction of the scene is therefore 

possible from a single 2D image encoded by a single pattern (mask). Therefore, it is possible to measure 

unstable PL samples using the CUP approach and assuming a sufficiently recurring phenomenon (PL 
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decay) is not necessary. Due to the nature of the CUP experiment, the method is well suited for simple 

scenes featuring a high-intensity level. 

Apart from FLIM spectrogram (2D scene) reconstruction,  CS  makes it possible to directly 

determine the parameters of multi-exponential decays. So far, the direct determination of lifetimes via CS 

has been verified only via simulations for the TCSPC method [41]. The direct reconstruction of decay 

parameters (amplitudes and lifetimes) is possible in TCSPC due to the principle of the method (see Section 

2.1.3). Namely, the idea of a reconstruction algorithm uses the properties of the Poisson distribution when 

it is assumed that the photon detection is sparse at a given time channel [41]. The approach primarily 

replaces standard PL decay fitting because it can be imprecise and often needs an experimenter's input to 

ensure a physically correct solution. 

However, the paradigm of replacing fitting with a CS algorithm has gradually begun to be 

substituted by deep learning and neural networks (NN). The NNs can be efficiently trained using artificially 

simulated data and provide FLIM with a fast alternative to the previously used lifetime and image retrieval. 

The first possibility is to analyze the time signal (PL decay). This was reported by Zickus et al. by using a 

time-gated SPAD camera when the lifetime τ for each pixel was determined using NN. However, the 

authors assumed a mono-exponential decay and considered a fully-connected system of NN [42]. Instead 

of analyzing individual time signals separately, another option is to insert a 3D image as the input of the 

NN. Since one attains a scene “photo” at each time point using TCSPC, the method creates a 3D image and 

the lifetime of each pixel can be determined from all voxels using convolutional neural networks (CNN). 

This approach was verified on real experimental data [43]. However, this approach requires using an 

expensive 2D SPAD detector to capture the temporal snapshot at each timepoint and, with respect to this 

thesis, this data processing is not primarily connected with CS. 

To summarize the information, should the user need to measure unstable PL phenomena, it is 

necessary to use fast data acquisition. This can be achieved using the single-shot compressive ultrafast 

photography CUP implementation, which can only be implemented for the streak camera. Alternatively, 

TCSPC or gated-photon counting methods with the use of an expensive 2D array of SPAD detectors or 

iCCD (non-compressive method) are characterized by similarly fast acquisition. Here the acquisition of the 

3D datacube allows for the possibility of extracting the PL decay parameters using trained NNs. Standard 

CS principles can hardly compete here due to the time of measurement and post-processing 

(reconstruction). Apart from CUP, there is no suitable way for single-shot measurement of unstable PL 

phenomena. In the case of studying stable PL phenomena or in instances where the 2D array of SPAD 

detectors cannot be used, it is advantageous to avoid raster mode and use the single-pixel camera principle 

(SPC).  
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SPC saves measurement time due to a lower number of measurements given by the compression 

ratio. At the same time, it reduces the SNR due to the fact that we measure a sum of light emitted from 

many pixels. The results can be consequently analyzed via frame-by-frame reconstructions, or they can be 

reconstructed as a 3D datacube (x,y,t). In the case of TCSPC, the aforementioned Net-FLICS can be also 

used for reconstruction. 

Although the existing approaches seem to cover the issue of FLIM, there are several notable gaps 

in the current instrumentation and data processing. There is an ongoing search for more versatile methods 

able to (I) cover a broader range of photoluminescence timescales, (II) measure samples with long-lived PL 

decay, (III) measure samples without any prior knowledge about the PL decay, and (IV) keep a reasonable 

cost of the experimental setup. 

The reconstruction CS algorithms are lively studied as well since the standard approach is often 

extremely computationally demanding. Therefore, it is still necessary to come up with new solutions that 

eliminate, for example, the need for reconstruction of the entire 3D datacube (x,y,t) or implement deep 

learning that would cover the outputs of the whole spectra of time-resolved methods (see Section 2.1).  
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3 Goals definition based on the analysis of the current state-

of-the-art 

Based on the issues identified in the previous chapter, we have set the goals for the thesis: 

 

1. Design a robust approach to measuring PL dynamics that eliminates the need for prior 

knowledge of the PL sample. 

 

Considering the conclusions of Section 2.1, it is most often necessary to consider the appropri-

ateness of the given time-resolved method before the actual measurement of the given sample. 

We also often need to have some prior knowledge about the PL of the sample and set the 

parameters of the measurement method accordingly. To provide an example, the presence of a 

long-lived PL component makes TCSPC measurement extremely time-consuming and such 

samples need to be measured by a different FLIM method.  Therefore, finding an approach that 

eliminates these assumptions would mean a significant simplification of the field.    

 

2. Apply the novel approach to 2D PL lifetime imaging (FLIM) using compressed sensing 

techniques and define a reconstruction algorithm of the FLIM spectrogram with low post-

processing time. 

 

As stated in the conclusions of Section 2.3, it is beneficial to substitute a raster mode with an 

SPC configuration because of shortened measuring time (depending on the compression ratio). 

However, such an approach suffers from the time cost of post-processing (FLIM spectrogram 

reconstruction). Therefore, it is advisable to come up with a new solution in the form of an 

algorithm, where it will not be necessary to reconstruct the entire 3D datacube (x,y,t).  

  

3. Analyze the method in terms of noise dependence and compare the stated reconstruction 

algorithms of the FLIM spectrogram. 

 

Noise dependency analysis is a crucial parameter of each method, giving an overview of its 

utilization. Describe possible ways to suppress noise effect to results and compare stated algo-

rithms of FLIM reconstruction.  

 

4. Analyze the possibility of using the compressed sensing technique to directly determine multi-

exponential decay parameters (amplitudes, lifetimes). 

 

Direct determination of decay parameters would avoid fitting and refine FLIM spectrogram 

reconstruction. In accordance with the conclusion of Section 2.3, investigate direct parameters 

determination using an undetermined system and NN.  

In the following Chapters of the text are presented only the own results solved within the Ph.D. studies 

that pursue the above-stated goals. 
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4 RATS method 

4.1 Introduction 

In general, all methods for detecting PL dynamics can be divided into two groups -- those that measure in 

the time domain and those that measure in the frequency domain. Time-domain methods require a light 

source that generates corresponding short pulses that excite the PL. At the same time, fast detection or 

gating electronics are needed. The frequency-domain measurement of PL decay requires a controllably 

modulated light intensity, such as an acoustic-optical modulator or an intensity-modulated laser. In order 

to capture PL decay at different time intervals, intensity must be possible to modulate over a wide range of 

frequencies. 

The core of this thesis lies in creating a novel RATS method which can bypass some of these 

requirements and represents a robust and low-cost solution. The basic idea of this method is to excite the 

measured sample with randomly fluctuating light intensity. Such a random excitation signal is characterized 

by a wide range of frequencies, which is a primary advantage in PL decay reconstruction.  

In this section, we describe the basic principles behind this method and propose two possible ways 

of random signal generation, which lead to an entirely different character of the random excitation signal. 

Based on the choice of the generator, possible optical setups for single-point measurement (0D-RATS) will 

be shown. The following parts of Section 4.5 then present basic properties of the RATS method, such as 

the method's robustness towards mutual shift or offset of excitation and PL signals. It is also necessary to 

discuss the effect of excitation signal periodicity and the parameters affecting the impulse response function 

(IRF) of the measurement system. All the mentioned properties are freely transferable to 2D-RATS, which 

will be the subject of the next Chapter. 

4.2 Principles of the RATS method 

The principles of the RATS method consist of the excitation of the measured sample with a random 

excitation signal IEXC, which generates a PL signal on the sample, which we designate as IPL. The IPL signal 

also has a random character because it is given by the convolution of IEXC and ID according to Eq.(2), where 

ID represents the PL decay curve:  

   .PL EXC DI I I   (2) 

It is necessary to mention that Eq.(2) is valid only for the PL intensity, which is linearly proportional 

to the excitation intensity. 

Because of using a signal with a random character, we get a wide range of frequencies in Fourier 

space. Therefore, an arbitrary shape of ID can be calculated from a single measured dataset, including multi-
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exponential or even non-exponential decay. Eq.(3) shows the deconvolution used with the so-called 

Tikhonov regularization [44]. The parameter ε controls the ill-conditioned cases where the denominator 

would approach zero. 
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The RATS concept can be illustrated by the simulated data shown in Fig. 5. The excitation signal, 

plotted in blue in Fig. 5(A), was obtained by simulating speckle patterns created via a rotating diffuser using 

Fraunhofer diffraction [45]. The principle of random signal generation via a rotating diffuser is mentioned 

in Section 4.1.3 and described in the article attached to the thesis [46]. The photoluminescence signal 𝐼𝑃𝐿 

plotted in Fig. 5(A) in red, was calculated using Eq.(2). 

For the sake of clarity, the PL decay curve in Fig. 5 was chosen to be mono-exponential with a 

lifetime τ = 50 µs, so that the difference between the excitation and PL signals is apparent both in the time 

domain (A) and in the Fourier space (B). The Fourier transforms of IEXC and IPL are shown in Fig. 5(B). Fig. 

5(C) shows the PL decay curve ID reconstructed using Eq.(3). 

 

 

Figure 5: Sequence showing the principle of ID evaluation by the RATS method. A) Simulated time-

modulated IEXC signal (marked in blue) and detected PL signal IPL (marked in red) resulting from mono-

exponential decay (τ = 50 µs). B) Fourier transform amplitudes of IEXC (marked in blue) and IPL (marked 

in red). C) Reconstructed ID using Eq.(3). Adapted from Junek et al. [47], Fig. 1. 

4.3 Random signal generation 

In the following subsection, two approaches to the generation of random excitation signals are presented. 

Since the two methods create a different character of the signal, simulated data are used to demonstrate that 

both approaches lead to the same retrieved PL decay. 
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4.3.1 Diffuser-based signal generator 

One way to generate a random signal is to transmit a coherent beam of light through a rapidly changing 

scattering element (rotary diffuser). This approach creates randomly varying interference patterns (see Fig. 

6), which we refer to as laser temporal speckles. The field of temporal speckles is cropped by the iris 

aperture, which gives rise to a random intensity fluctuation in time. This fluctuating signal can be then used 

to excite the sample. In the diffuser-based RATS experimental setup, any coherent light source can be used 

to excite the PL.  

So far, the diffuser-based RATS technique has been successfully used to measure PL decay in the 

sub-microsecond region, where it has been verified with conventional approaches to measuring PL decay, 

such as a streak camera or TCSPC [46, 47]. This approach we call random analog signal. 

 

Figure 6: The principle of random signal generation. Left part: An interference speckle pattern formation 

behind the optical diffusor. Middle part: An example of a speckle pattern with an aperture indicated. 

Right part: An example of a randomly modulated signal generated by the generator described above.   

4.3.2 Laser modulation-based signal generator 

The second way to generate a rapid random signal is using a digital random laser modulation, where a 

rectangular signal with a random duty cycle is generated. The modulation signal is produced by the 

development kit Digilent Cmod A7 and was generated in the FPGA Xilinx Artix-7 (VIVADO software 

package). The bitstream is generated via Linear Feedback Shift Register (LFSR) from flip-flops and XNOR 

gate feedback, configured in FPGA. The output of the LFSR meets many randomness tests [48].  

An example of a randomly modulated digital signal is shown in Fig. 8, where a short interval of 0.5 

ms is zoomed. Using a modulatable diode laser (Cobolt S06-01 – modulation up to 150 MHz), it is possible 

to obtain the resolution in units of nanoseconds. Details of the digital random signal generation are 

presented in Junek et al. [49]. 
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4.3.3 Verification of both random signal generators 

Fig. 7 and Fig. 8 present a simulation that verified the possibility of applying both analog and digital random 

signals. The simulations used a bi-exponential decay I0
D (see Eq.(4)) with parameters A1 = 1, A2 =15, 𝜏1 = 

40 μs and 𝜏2 = 5 μs.  

 1 20

1 2 .
t t

DI Ae A e 
 

   (4) 

The width w (FWHM) of an impulse response function (IRF) for random digital signal was wD = 

1.45 μs and for random analog signal was wA = 2.07 μs. In order to get a rigorous comparison, the I0
D curve 

obtained using the random digital signal was convolved with the Gaussian function G(w) with an FWHM 

w equal to the root mean square difference of wA and wD values: 

  0 2 2 .D D A DI I G w w    (5) 

This step ensured that the resulting IRF width was the same for both analog and digital cases. 

 

Figure 7: Left upper panel: Analog random excitation (blue line) and PL (red line) signal in time. Right 

upper panel: amplitudes of Fourier components in the excitation (blue line) and PL (red line). Left lower 

panel: retrieved PL decay curve in a linear scale. Right lower panel: retrieved PL decay (red line) 

compared to the original decay (blue line) in a semilogarithmic scale. Adapted from Junek et al. [49], 

Fig. 3. 
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Figure 8: Left upper panel: Digital random excitation (blue line) and PL (red line) signal in time. Right 

upper panel: amplitudes of Fourier components in the excitation (blue line) and PL (red line). Left lower 

panel: retrieved PL decay curve in a linear scale. Right lower panel: retrieved PL decay (red line) 

compared to the original decay (blue line) in a semilogarithmic scale. Adapted from Junek et al. [49], 

Fig. 2. 

Our results confirm that an arbitrary random signal can be used to excite the sample in the RATS 

method and both analog and digital forms of the random signal are able to successfully retrieve the PL 

decay. 

4.4 Optical setup (0D-RATS) 

In general, the RATS method does not require any significantly expensive elements, and due to its 

simplicity, there is no need for complicated adjustment or calibration of the optical arrangement. Moreover, 

the method is resistant to various experimental problems, such as signal delay or signal offset, described in 

the following Section 4.5. Experimental implementations of the RATS method were built with the vision 

of a simple, low-cost setup to preserve these major advantages of the method. 

4.4.1 Diffuser signal generator-based optical setup 

A diagram of the optical setup using a random analog signal is shown in Fig. 9. In general, any coherent 

light source suitable for sample excitation can be used as the excitation source. An essential part of the 

optical arrangement is the random signal generator, which consists of three components – a focusing lens, 

a rotating diffuser, and an aperture. The beam is focused onto a diffuser, generating a speckle pattern. The 

parameters of the used components affect the size of individual speckles and the rate of their variation. 
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Optimization can be achieved by controlling the focused beam spot size and choosing the grain size of the 

diffuser. The field of speckles is subsequently cropped with an aperture. The aperture size affects only the 

modulation depth of the resulting IEXC signal, not its frequency range. The frequency of the rotary diffuser 

is directly proportional to the highest frequency of the IEXC signal in Fourier spectra.  

 

Figure 9: Schematic of the used optical arrangement for single-point 0D-RATS measurement. Adapted 

from Junek et al. [46], Fig. 2. 

The output beam from the generator was divided by a beamsplitter into the reference branch, where 

the IEXC was detected via a photodiode. The transmitted part of the beam was directed to the measurement 

branch. Here, the sample was excited by the random temporal signal and the emitted IPL was detected using 

a photomultiplier. A colour filter was used to block the scattered excitation light not to reach the photomul-

tiplier.  

A significant drawback of the diffuser-based optical arrangement is the optical efficiency of using 

the excitation intensity, which reached in our setup  0.1% --  dominantly due to the random signal generator 

based on the diffuser, where the iris aperture blocks the vast majority of the excitation light.  

More information about the properties of the optical setup used for the verification measurement 

can be found in the published article by Junek et al. [46]. 

4.4.2 Digital signal generator-based optical setup 

In the case of using a random digital signal (see Section 4.3), the optical setup is significantly simplified, 

as can be seen from Fig. 10. In addition, the optical power efficiency is increased and depends purely on 

the properties of a used beamsplitter (BS). In the case of BS 50:50 and by using the digital random signal 

generation, we were able to improve the efficiency by 500 times compared to the analog case without any 

major optimization of the setup. 

In the case of digital random signal generation, the laser was directly modulated, which we de-

scribed in detail in Section 4.3.2. All other aspects of the setup remained the same as for the analog signal 

generation. 
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Figure 10: Schematic of 0D-RATS optical setup based on random digital modulation. 

4.5 Properties of the RATS method 

Due to the use of a random signal, the RATS method can be used to retrieve an arbitrary multi-exponential 

ID curve or even a non-exponential PL decay. Both excitation and PL signals (IEXC and IPL, respectively) 

have to be detected to carry out the reconstruction of PL dynamics. Nevertheless, it is not necessary to attain 

careful timing of the signals. The mutual temporal shift of the so-called "zero time" between the PL and the 

excitation data will only cause the decay of the PL to be multiplied by a constant complex number e-iφ, 

where the phase φ will be scaled according to the corresponding time difference. 

At the same time, the offset value present in the signals (the shift along the y-axis) is only reflected 

at the zero frequency of the Fourier transform and can again be avoided by removing low frequencies from 

the extinction reconstruction. Both the temporal shift and offset of the signals are discussed in Section 4.5.1. 

It is worth noting that all presented results in the attached papers were obtained without any timing or 

background correction [46,47,49,50]. 

At the same time, the RATS method – as a method based on the deconvolution of a signal – is 

sensitive to the periodicity of the random excitation signal. This feature is discussed in detail in Section 

4.5.2. Finally, we focus on the attainable temporal resolution of the setup in Section 4.5.3. There, we discuss 

the instrument response function width for both presented methods of signal generation and the major 

factors governing the attainable temporal resolution. 

4.5.1 Influence of the mutual shift of the excitation and PL signal 

We can demonstrate the robustness of the RATS method against the signal temporal shift and offset on 

simulated data. In Fig. 11, we depict the reconstruction of simulated data for τ = 1 ms, where the mutual 

delay between the PL and the excitation signal (see panel 11(A)) and the offset in the background of the 

IEXC and IPL signals (see panel 11(B)) have been added. 
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Figure 11: Effect of mutual delay and background offset of IEXC and IPL signals on the reconstructed ID. 

The reconstruction was made for different delays between the PL and the excitation signal (panel A). 

Relative delay (0-7.2%). The same data were reconstructed for several offsets in the PL intensity signals 

(panel B). The relative offset (0-400%) is given relative to the amplitude of the PL signal. All curves are 

artificially vertically shifted and displayed on a semi-logarithmic scale for better comparison. Adapted 

from Junek et al. [46], Fig. 6. 

The signals were delayed by up to 7.2% compared to the total acquisition time without any 

significant observable effect on the reconstructed decay curve (see panel 11(A)). Analogously, a signal shift 

of up to 400% of the original signal amplitude did not affect the reconstructed PL decay curve (see panel 

11(B)). For the sake of comparison, the extinction curves are shown on a semi-logarithmic scale and stacked 

with a constant vertical shift. 

4.5.2 Periodicity of the excitation signal 

The approach to the generation of a random analog signal based on a rotary diffuser can be problematic due 

to the periodicity of the IEXC. In particular, the excitation signal IEXC periodicity can introduce artifacts due 

to the deconvolution properties. From the nature of the deconvolution in Eq.(3), it follows that the periodic 

waveform of the excitation leads to a periodic ID signal with an amplitude distributed between the periodic 

replica of the PL decay. Therefore, the amplitude of the retrieved PL signal is correspondingly reduced, 

while the noise present in the data remains the same. 

In Fig. 12, we compare the entire deconvolved ID dataset in the case of a non-periodic IEXC signal of 

duration 0.1 s (left side) and a periodic IEXC signal (7 periods) with the same total duration of 0.1 s. Their 

comparison shows that the amplitude for the periodic signal IEXC is about seven times smaller compared to 

the non-periodic case. If the result is normalized and if we are in a noise-free system, periodicity will not 

introduce any distortion in terms of the overall dynamics of PL decay. However, if we consider a noisy IPL 
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signal (e.g., 3% as in Fig. 12), the periodicity of the signal will be reflected by the reduction of the signal-

to-noise ratio in ID, which will be reflected in the smoothness of the curve (see Fig. 13). 

 

Figure 12: ID reconstruction results using non-periodic IEXC (panel A) and periodic IEXC (panel B). 

Expected lifetime 𝜏 = 20 µs. Image adapted from Junek et al. [50], Fig. 4. 

 Fig. 13 was created by zooming in on Fig. 12 on the time axis. As mentioned, the periodicity of the 

excitation signal results more noisy curve, which can be observed in Fig. 13(B). The root mean square error 

for the curve in Fig. 13(B) reaches RMSE = 29.7×10-3. While in the case of a non-periodic excitation signal 

with the same noise level in IPL (3%), it reaches RMSE = 12.9×10-3, i.e., more than 2× lower (Fig. 13(A)). 

The results show that a higher signal-to-noise ratio can be achieved by using a non-periodic signal. 

 

Figure 13: Zoomed ID reconstruction from Fig. 12 (𝜏 = 20 µs). (A) IEXC as a non-periodic signal. (B) IEXC 

as a periodic signal (7 periods). The reconstructed data are shown in red; the reference data are in black. 

Reconstruction with a noise level of 3% in the IPL signal (corresponding to an SNR of about 15.2 dB). 

A non-periodic signal is difficult to achieve using the periodic rotation of the diffuser. However, 

the periodicity of the excitation signal can be entirely avoided by using a modulated laser (random digital 
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modulation), which can fully replace the analog generator of the random excitation signal (see Section 

4.3.2). 

4.5.3 Impulse response function 

The decisive parameter of PL dynamics spectroscopy is the temporal resolution of the method. This is 

characterized by the width of the impulse response function (IRF) method. The IRF in a given optical 

system can be determined by measuring a sample where the PL decays much faster compared to the 

expected IRF width.  

 IRF of the diffuser-based optical setup  

The IRF of the diffuser-based optical setup was measured using a solution of Rhodamine 6G, which has a 

PL decay time in units of nanoseconds [51]. This value is safely below the resolution of the method and 

can be considered as “infinitely” fast. The IRF width was then determined as the full width at half maximum 

(FWHM) of the calculated ID. 

In the case of the RATS method, the IRF width is mainly affected by the modulation rate of the IEXC 

signal, which is related to the speed of temporal fluctuation of the speckles. It can be shown that the width 

of the IRF is inversely proportional to the peripheral velocity of the diffuser v. It can also be observed that 

the width of the IRF decreases with decreasing mean grain size g and also with decreasing laser spot size 

d, which can be affected, for example, by choice of the focusing lens. This fact can be represented by the 

function ℎ(𝑔,𝑑). The prescription of the function ℎ(𝑔,𝑑) has not yet been described in more detail. For 

clarity, Eq.(6) is presented. 
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Fig. 14 demonstrates the dependence of the experimentally measured IRF width with respect to the 

increasing frequency of the rotary diffuser, which is inversely proportional to the peripheral speed of the 

diffuser. 

The results presented in Fig. 14 were attained for the width of the focused beam at the diffuser 

surface was approximately 50 µm, the spot of the beam on the diffuser was 50 mm from its center, and the 

average grain size g was about 8 µm. 

However, in the following experimental campaign, significant progress was achieved towards the 

optimization of the IRF of analog temporal speckles. The diameter of the focused beam was reduced to 2.3 

µm, the diameter of the rotating diffuser was 125 mm, the average grain size was around 4 µm, and the 

rotating frequency of the diffuser reached 230 Hz. In such an arrangement, an IRF width = 45 ns was 

obtained. 
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Figure 14: Experimentally measured FWHM dependence of the impulse response function for different 

diffuser rotation frequencies (red crosses) fitted with a reciprocal function (black line). Adapted from 

Junek et al. [46], Fig. 3. 

 IRF of the laser modulation-based optical setup 

Since the digital modulation of the laser speckles aimed at reaching nanosecond timescale, we used 

scattered excitation light from white paper as the detected fast signal. The measurement was carried out at 

five laser modulation frequencies (12, 24, 48, 96, and 120 MHz) when the selected modulation frequency 

corresponded to the fastest bit of the random bitstream pattern. The change in the modulation frequency 

applies only to the duration of the duty cycle. 

Since the digital modulation creates a rectangular signal, the signal contains, in addition to the 

carrier frequency, several significantly higher frequencies related to the steepness of the leading and falling 

edges. Therefore, when determining the IRF, the sampling frequency played an important role.  

The sampling frequency was always chosen to fulfil the Shannon-Nyquist theorem for carrying 

frequencies of the fastest bit of the signal. Data were read using Handyscope TiePie HS6-1000XM with a 

maximum sampling frequency of 500MS/s for each channel (simultaneous measurement on two channels). 

In the case of the sampling frequency of 500 MS/s and the laser modulation frequency of 120 MHz, we 

achieved an IRF width of around 6 ns. The results for all modulation and sampling frequencies are 

summarized in Fig. 15.  

The results reveal greater importance of the sampling frequency than the modulating frequency. By 

using a digitizer with even faster modulation than 500 MS/s, it might be possible to achieve smaller IRF 

width for the same modulation frequencies and thus get a better temporal resolution. By employing the best 
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settings within our setup, we were able to reach the IRF width of 6 ns, which is approximately an order of 

magnitude improvement compared to the analog mode of temporal speckles generation. 

 

 

Figure 15: IRF measurement for different modulation frequencies and different sampling frequencies. 

Adapted from Junek et al. [49], Fig. 9. 

5 2D-RATS 

The RATS approach to the PL decay measurement can also be used for 2D fluorescence lifetime imaging 

(FLIM) via several possible implementations. This thesis was directed towards compressive imaging and 

the single-pixel camera (SPC) configuration, which provides the advantage of the reduced number of 

measurements. Therefore, the SPC implementation will be discussed in detail. Nevertheless, sample 

scanning or other approaches can be implemented with the RATS method as well. The SPC data can be 

processed and evaluated via two different approaches, which were introduced in recent papers by Junek et 

al. [47,49], and they are described in Sections 5.1 and 5.2. 

In the SPC implementation of RATS, the sample is illuminated by a set of random excitation 

patterns (masks). The intensity of excitation masks fluctuates globally in time so that all pixels are excited 

with the same temporal waveform IEXC(t). The detected PL intensity corresponds to the sum of PL from all 

illuminated spots in the sample. Therefore, it can be detected by a single-pixel detector. The IPL signal is 

then given as the sum of the sub-signals IPL(i) from individual pixels, and Eq.(2) can then be rewritten for 

the total PL intensity as: 
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The number of excitation masks M is given by the total number of image pixels N and the so-called 

compression ratio k = M/N. Since the masks are not coherent, i.e., they are random to each other, each mask 

illuminates a different combination of sample points, and therefore each individual mask leads to a specific 

IPL signal. Following the 0D-RATS retrieval of the PL decay, here it is possible to extract the PL decay IDA 

for each mask as:  
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As a result, we attain M different PL decays IDA, which corresponds to M different masks. 

Two different approaches to FLIM spectrogram reconstruction are described and demonstrated. 

Both approaches diverge in the steps following Eq.(8). The approach described in Section 5.1 is the origi-

nally used procedure, which was described in the article by Junek et al. [47] and is very similar to other 

works [37]. For the purpose of this work, this approach will be denoted as FLIMB to follow the notation 

from Junek et al. [49].  

The approach presented in Section 5.2 is an alternative approach with a direct reconstruction of PL 

amplitude maps corresponding to individual PL lifetimes τ. This alternative approach takes more advantage 

of compressed sensing and significantly saves postprocessing time. The approach was first time introduced 

in the article by Junek et al. [49] and, for the purpose of this work, will be denoted as FLIMA. 

5.1 FLIMB reconstruction approach 

As stated in Section 5 introduction, the number of calculated PL decay curves IDA corresponds to the number 

of used masks M. By considering the data from the point of view of mask number, the set of all IDAs provides 

us with the PL intensity fluctuations at any delay after excitation – see Fig. 16(B). By plotting the intensity 

fluctuation only at a single delay, we obtain the ISPC signal, where the number of ISPC values corresponds to 

the number of used masks M (Fig. 16(C)). Using the knowledge of ISPC, the known pattern of the used 

masks, and compressed sensing algorithms, the PL image m(t) corresponding to the given delay after 

excitation can be reconstructed. The reconstruction is done via minimization according to Eq.(9). 

  2

2
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The matrix A is created from the vectorized random masks used for the sample excitation. TV stands 

for total variation. 
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Figure 16: (A)Scheme of the 2D-RATS approach where the sample is illuminated by a set of random 

patterns (masks) fluctuating in intensity according to IEXC(t). The overall IPL(t) corresponding to the given 

mask is detected by a single-pixel detector. (B)Example of a set of calculated IDAs for the corresponding 

set of masks – see Eq.(8) – and fluctuations ISPC in intensity for each delay after excitation. (C)Knowledge 

of the ISPC signal and the set of used masks will allow determining the PL map m(t) for a given time point t 

of the IDA curve using reconstruction algorithms. (D)An example of a final FLIM spectrogram as a map of 

PL lifetimes. Adapted from Junek et al. [49], Fig. 1. 

By reconstructing the temporal frame (a 2D image) for each time point of the IDA curve, we obtain 

3D datacube that contains the PL decay curve for each i-th pixel of the ID(i,t) sample. In each i-th pixel, it 

is, therefore, necessary to perform the fitting of the given curve to determine the lifetime 𝜏. The whole 

concept is illustrated and summarized in Fig. 16. 

5.2 FLIMA reconstruction approach 

This approach is also based on the use of a single-pixel camera configuration. The assumption is made that 

if we illuminate the entire measured area with a homogeneous illumination, which still fluctuates in time 

according to IEXC, we can reconstruct the total PL decay curve IDA0 according to Eq.(8). The IDA0 curve then 

contains all lifetimes τ present in the measured sample, which can be revealed via fitting. The extracted 
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lifetimes then create a cornerstone for the subsequent FLIM data processing. In practice, it is often appro-

priate to consider a bi-exponential curve, at most a tri-exponential one, mainly because of the similarity of 

individual multi-exponentials and the possibility of a wrong fit [1].  

 

Figure 17: (A) Example of fitting IDA curve amplitudes A1 and A2, where the distribution of 𝜏1 and 𝜏2 is 

already known from IDA0 fitting. The amplitude fitting provides vectors A1SPC and A2SPC. (B) 

Reconstructed amplitude map H𝜏1. (C) Reconstructed amplitude map H𝜏2. (D) Calculated FLIM 

spectrogram based on knowledge of H𝜏1 and H𝜏2. Adapted from Junek et al. [49]. Fig. 4. 

In the following elucidation of the data processing, we will consider a bi-exponential curve (see 

Eq.(4)), where we would obtain parameters τ1 and τ2 via fitting IDA0. Subsequently, the scene is illuminated 

by a set of M masks with N pixels. The two numbers are connected via the compression ratio k = M/N. For 

each mask, the corresponding IDA is determined according to Eq.(8). Each IDA is then fitted with the fixed 

parameters τ1 and τ2, which were obtained by the initial fitting of the total PL decay IDA0. Therefore, the 

only fitting parameters are A1 and A2 (see Eq.(4)). Since the amplitudes connected to the PL lifetimes are 

extracted for each mask, two vectors, A1SPC and A2SPC, of size M are obtained. Vectors A1SPC and A2SPC 

contain information about PL amplitude connected to the PL lifetimes τ1 and τ2. 
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From the knowledge of A1SPC and A2SPC and the dataset of random masks B, it is possible to 

calculate the amplitude maps Hτ corresponding to the individual lifetimes τ1 and τ2, where TV denotes the 

total variation, according to Eq.(10). 

  2
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The lifetime maps can be then evaluated individually, and an effective PL lifetime (FLIM spectro-

gram) is possible to calculate from them. There is no general approach to a correct calculation of a mean 

PL lifetime, and the particular solution depends on the studied system. In this thesis, we calculated the 

desired FLIM spectrogram by the weighted averaging of the present lifetimes. The weights in a given pixel 

are represented via Hτ maps. In the general case of the n-exponential case, we then define the FLIM spec-

trogram τ(x,y) as: 
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The principle of FLIM spectrogram determination using direct reconstruction of amplitude maps is 

summarized in Fig. 17. We would like to outline here a significant reduction of post-processing time be-

cause it is necessary to make just as many reconstructions as the n-exponential case is expected/found. The 

amount of the saved post-processing time compared to the standard algorithm (FLIMB) depends on the 

number of expected/found lifetimes, scene resolution, compression ratio and temporal resolution of IDAs. 

Nevertheless, for the typical experiments, the post-processing time decreased 10 times. More details can be 

found in Junek et al. [49]. 

5.3 Optical setup for 2D-RATS measurement 

The optical arrangement of the 2D-RATS depends on the choice of the random excitation signal generator, 

which was presented in Section 4.3. By choosing an analog signal generator based on a rotary diffuser (see 

Section 4.4.1), we can expect significant losses in the intensity of the excitation energy compared to a 

digitally random modulated laser (see Section 4.4.2).  

 Another decisive parameter is the approach to random mask generation. The first implementation 

of 2D-RATS used a laterally sliding diffuser, by which it was possible to generate masks in grayscale and 

the attained spatial resolution was based on the properties of speckle patterns generated by the diffuser. 

Since the speckles do not inherently feature sectioning to pixels, the speckle masks needed to be scaled 

with a suitable parameter to a certain 2D array, which also determined the resolution. Various scaling pa-

rameters were tested as a part of simulations, but within a reasonable range of scaling where a pixel size 

was set close to the mean speckle size, no significant effect on the image quality was detected. A certain 
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trend was observed by using a more coarse of fine pixelation with respect to the mean speckle size. Using 

a lower resolution, i.e. choosing a pixel size larger than the mean speckle size, causes a loss of image 

quality. In the other direction, a higher resolution, i.e. choosing a pixel size smaller than the mean speckle 

size, cannot provide adequate fineness of information – see Junek et al. [47] for more details. 

 The second way of generating a random mask is using a digital micro-mirror device (DMD) to 

generate binary masks with the option of choosing a resolution limited by the chip parameters and imaging 

optics within the experiment. 

Two optical arrangements based on the 2D-RATS method will be presented in the following sub-

sections. The first one shows the possibility of FLIM measurement using two diffusers. The second optical 

setup shows the implementation of the RATS principle into microscopy using DMD and a digitally modu-

lated signal. 

5.3.1 FLIM via RATS method using double-diffused light 

The optical arrangement using a double-diffuser spatiotemporal pattern generation is shown in Fig. 18. A 

continuous laser with a wavelength of 405 nm was used as a light source. The combination of a focusing 

lens A (f = 25.4 mm), a rotating diffuser (average grain size 4 µm) with a collimating lens B (f = 75 mm), 

and an aperture (diameter 1.5 mm) generated an intensity varying randomly in time IEXC(t). Random mask 

generation (for single-pixel camera purposes) was achieved using an additional focus lens C (f = 25.4 mm). 

The beam was focused onto a moving diffuser (average grain size 8 µm), and the scattered light was again 

collimated by lens D (f = 50 mm). The resulting mask pattern varied in intensity over time according to 

IEXC(t). 

 

Figure 18: Schematic of the optical arrangement for 2D-RATS in a single-pixel camera configuration 

based on two optical diffusers. Adapted from Junek et al. [47], Fig. 4. 

The beam was split twice by two 5° wedges N-BK7, which reflect about 6% of the incident 

intensity. The first reflection was used to detect IEXC(t) using a Si-amplified photodetector. The reflected 

beam from the second N-BK7 5° wedge was used to obtain the mask pattern using a CMOS chip. The 



41 

 

transmitted pattern was used to illuminate the measured sample. The PL emitted from the excited sample, 

i.e. the IPL(t) signal, was detected by a photomultiplier. The scattered excitation light was blocked by a cut-

off filter with a pass edge of 500 nm so that the excitation wavelength (405 nm) did not reach the 

photomultiplier. The detected PL signal was amplified by an amplifier and read by a USB oscilloscope. 

The intensity of the laser beam exiting the laser was 138.5 mW, while the full average intensity that 

illuminated the measured sample oscillated around 5.5 µW. The total efficiency of the system was about 

0.003%, which, however, can be optimized through the parameters of the optical elements and by using an 

engineered diffuser scattering light more efficiently in a selected direction. The size of the measured area 

was approx. 18 mm2 and was determined by the size of the generated spotted masks. The field of view can 

be changed by adjusting the collimation lens D. 

5.3.2 FLIM via RATS method in a microscopy setup 

The microscope setup was based on the principle of random digital signal modulation and the generation 

of illuminating masks using DMD. A time-modulated Cobolt S06-01 MLD laser (405 nm) was used as a 

light source. The modulation signal was produced by the development kit Digilent Cmod A7 and was gen-

erated in the FPGA Xilinx Artix-7 (VIVADO software package). 

The optical beam was further enlarged by 20× using a beam expander and brought to the DMD chip 

(Texas Instruments DLPLCR65EVM) using mirrors M1 and M2 so that the beam propagated perpendicular 

to the surface of the DMD chip. However, the size of the chip's individual pixels (7.56 μm) generates the 

diffraction pattern corresponding to the rectangular grid. Therefore, the DMD was followed by a lowpass 

filter composed of lenses L1 (f = 75 mm), L2 (f = 50 mm), and iris aperture to use the zero diffraction order. 

Another important component was the beam splitter BS (N-BK7, 50:50 ratio), which ensureed beam 

deflection for IEXC detection on the photodiode and beam deflection in the opposite direction to the camera, 

thanks to which it was possible to determine the ideal focus. 

The sample was then illuminated through a bandpass filter F1 (405 nm), a dichroic filter DM (cut-

off 425 nm), and through an achromatic objective (4X Olympus (0.10 NA, 18.5 mm WD)). The intensity 

of illuminating mask followed the temporal fluctuations of IEXC(t). The IPL signal was collected by the ob-

jective lens and was reflected by the DM to the photomultiplier. The IPL was spectrally filtered before the 

photomultiplier with a cut-off filter (500 nm) for complete shielding of parasitic scattering of IEXC. The 

scheme of the optical setup is summarized in Fig. 19. More detailed information can be found in the attached 

article – Junek et al. [49].  
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Figure 19: Schematic of a 2D-RATS optical setup implemented in a microscope setup using DMD 

narrowing and digital time modulation. Adapted from Junek et al. [49], Fig. 7. 

5.4 Reconstruction parameters 

In both reconstruction approaches, FLIMA and FLIMB (see Sections 5.1 and 5.2), we used the TVAL3 

algorithm to calculate the undetermined systems [52,53]. The TVAL3 algorithm uses the total variation 

(TV) of reconstructed images as a regularization parameter. The minimization is governed by Eq.(9) or 

Eq.(10) [54]. The reconstruction parameters were set according to a number of test experiments and simu-

lations. 

In the case of grayscale speckle masks and the reconstruction principle FLIMB, the reconstruction 

parameters were: mu (29), beta (26) (see Junek et al. [47]). The same parameters were also used in the case 

of binary masks and the reconstruction principle FLIMA see Junek et al. [49]. However, it has been shown 

that if we use binary scale masks and the reconstruction principle FLIMB, it is more advantageous to use 

the reconstruction parameters: mu (211), beta (27) (see Junek et al. [49,50]). 

5.5 Proof of principle experiments 

The following section will present measurements of two different samples as proof of the principle experi-

ments of both reconstruction routines, FLIMB and FLIMA, described in Sections 5.1 and 5.2. More meas-

urements and more detailed data can be found in the attached articles [47,49]. 

5.5.1 2D-RATS using the FLIMB reconstruction approach  

The measured testing sample was an absorbing cut-off filter OG565, which was divided by an opaque tape 

into two regions with the same lifetimes. Such a situation corresponds, for example, to mapping one PL 

marker in the sample. The optical setup was based on two diffusers -- see Section 5.3.1.  
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Figure 20: Measurement of divided filter OG565 – two areas with the same PL decay. (A) compression 

ratio 0.4, (B) compression ratio 0.2, (C) compression ratio 0.05. Left panels: PL map reconstruction for 

two different timepoints. Middle part: “a” and “b” plots of ID reconstructed by 2D-RATS in a randomly 

selected pixel (“a” pix [14,10], “b” pix [16,25]) and ID calculated by 0D-RATS; blue and purple stars 

indicate time points corresponding to the depicted PL maps in the left part of the image. Right part: FLIM 

spectrogram with pixels where the PL amplitude exceeded 10% of the maximum PL intensity of the 

sample. Adapted from Junek et al. [47], Fig. 8. 
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The illuminated area was ∼18 mm2, and the number of masks M = 400. The mask resolution was 

set according to the mean speckle size, resulting in an image resolution of 28 × 36 pixels (N = 1008). 

Image reconstruction was tested for three different compression ratios k, where the number of pixels 

N always remained the same, and the number of used masks M was reduced accordingly. Specifically, the 

compression ratio k = 0.4 (see Fig. 20(A)), k = 0.2 (see Fig. 20(B)), and k = 0.05 (see Fig. 20(C)) were used. 

The corresponding measuring times were 47 minutes, 24 minutes, and 6 minutes, respectively. 

The left part of each panel (A), (B), (C) in Fig. 20 shows the reconstruction of the PL map for two 

different times of PL decay. The middle part contains plots “a” and “b”, which show the PL decay ID of a 

randomly selected pixel that corresponds to the reconstructed region “a” or “b”. Two timepoints of ID (blue 

and purple stars) correspond to the reconstructed PL maps on the left part of the figure. The reconstructed 

ID data via 2D-RATS (black lines) were compared with the 0D-RATS measurement (red circles). Although 

the reconstructed PL maps are noisier when using a low compression ratio of k = 0.05, the PL decay curves 

ID of the 0D and 2D-RATS methods are still in perfect agreement. 

The resulting FLIM spectrogram is shown on the right side of the figure for each panel. The indi-

vidual values of the lifetimes τ were determined by PL decay fit. The reconstructed ID curves at each pixel 

were fitted with a bi-exponential function, and the PL lifetime τ was then determined as the time when the 

intensity of the fitted bi-exponential decay decreased to 10% of the maximum of the curve. The width of 

the impulse response function of the given measurement was 0.47 µs. 

The average lifetimes for the sample measured with compression ratios of 0.4, 0.2, and 0.05 were 

1.31 µs, 1.29 µs, and 1.29 µs, respectively. The mean lifetimes shown vary with standard deviations of 0.09 

µs, 0.10 µs, and 0.13 µs. Statistical data do not include points that did not show a luminescence intensity 

lower than 10% of the sample maximum, as well as data from the edge of the sample, which are distorted 

by signal dispersion and high noise levels. 

5.5.2 2D-RATS using the FLIMA reconstruction approach 

Here we present the test of the 2D-RATS experimental setup using a DMD-modulated spatial pattern and 

laser-modulated temporal excitation waveform. We picked the testing sample LuAG:Ce crystal as the test-

ing sample. The material is mainly used for its scintillation properties but also has a strong PL [55]. We 

used a thin monocrystal polished on both sides, which suffered from visible scratches and cracks on the 

surface. One of these cracks was analyzed using the setup presented in Section 5.3.2. Since it was a mono-

crystal, a significant increase in PL intensity at the crack location was expected due to the efficient outcou-

pling of the PL light at this spot. In other words, we expected a higher amplitude value in Hτ.  

The mapped area (shown in Fig. 21) was 450x450 μm with a pixel size of 12.6 μm (35 x 35 pixels). 

The compression ratio was set to k = 0.4 (490 measurements). The scanning time for one mask took 10 ms. 
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Nevertheless, the resulting measurement time reached tens of minutes, primarily due to data storage and 

processing, which can be undoubtedly improved. 

The sampling frequency was set to 200 MS/s, and the modulation frequency of the fastest bit of the 

random signal reached 98 MHz, which resulted in IRF = 9.9 ns. 

 

Figure 21: Mapped surface area of LuAG:Ce captured by a monochromatic camera (see Fig.19). 

Adapted from Junek et al. [49], Fig.11. 

 

Figure 22: (Upper part) Fitted IDA0 with mono-exponential curve and reconstructed area H𝜏1 for 

corresponding 𝜏1. (Lower part) FLIM spectrogram determination and its overlay with the measured 

scene. Adapted from Junek et al. [49], Fig. 13. 

During IDA0 analysis, we found that it is sufficient to represent the PL dynamics via mono-exponen-

tial decay. Therefore, the obtained Hτ directly represents the FLIM spectrogram. The decay of the given 
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region was determined as 59 ns, which corresponds well with the PL lifetime of LuAG:Ce [56]. In this case, 

we achieved a clear image of the crack with a high PL intensity together with low-intensity PL regions 

surrounding the cracks, where the PL is outcoupled from the monocrystal inefficiently. 

 

6 Noise effect analysis 

Since the RATS method is a novel approach to FLIM measurement, it is appropriate to analyze the method 

from the point of view of noise stability. In order to maintain constant conditions, this analysis was per-

formed using simulations that faithfully copied real experimental data. The primary IEXC signal was simu-

lated using temporal speckle patterns [45], the random analog signal generator presented in [46]. White 

noise was added to the dataset, initially only to the IEXC signal, while the IPL signal remained absolutely 

noiseless and vice versa. The amount of noise added to the assembly was SNR 23 dB (0.5%), 20 dB (1%), 

18.2 dB (1.5%), 15.2 dB (3%), which corresponds to real experimental conditions. The duration of the 

simulated IEXC signal was 0.1 s with an impulse response function FWHM of 2.07 µs. ID was considered 

with 𝜏 = 20 µs. The IEXC excitation signal was simulated as non-periodic. Unless otherwise stated further, 

the regularization parameter ε (Eq.(3) and Eq.(8)) is kept as ε = 0.1. 

Within the following sections, only a brief overview of the most important results is presented. A 

general description of all investigated parameters can be found in Junek et al. [50]. Due to the timeline of 

the research of the RATS method, the noise analysis is aimed mainly at the original approach (FLIMB) of 

reconstruction (see Section 5.1), where the lifetimes are extracted by fitting the PL decay curve in each 

pixel. Therefore, the quality of reconstructed PL maps for every delay after excitation is crucial.  

Nevertheless, most of the knowledge, especially the optimization of the effect of noise on the 

reconstruction of the PL decay curve for a single random mask IDA, is also freely transferable to the 

alternative FLIMA reconstruction approach. We remind the reader that the FLIMA approach is based on the 

direct reconstruction of amplitude maps corresponding to lifetimes τ (see Section 5.2).  

A comparison of the noise effect on both reconstruction approaches, FLIMA and FLIMB, is provided 

in Section 6.4. 

6.1 0D-RATS 

To demonstrate the fundamental behaviour of the RATS method, we will start with a non-imaging RATS 

method, i.e., 0D-RATS. Excitation IEXC and PL IPL signals are used for the PL decay ID reconstruction. 

Therefore, the effect of the present noise is simulated in both excitation and PL datasets. Firstly, the noise 

was added to the IEXC signal while the IPL remained absolutely noiseless (Fig. 23(A)) and vice versa (Fig. 
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23(B)). In both cases in Fig. 23, the signal-to-noise ratio (SNR) was 15.2 dB, corresponding to 3% noise in 

the system. 

 

Figure 23: (A) ID reconstruction with a noise level of 3% in the IEXC signal, corresponding to an SNR of 

15.2 dB. IPL was considered noiseless. (B) ID reconstruction with a noise of 3% in the IPL, corresponding 

to an SNR of 15.2 dB. IEXC was considered noiseless. Adapted from Junek et al. [50], Fig. 2. 

It can be observed in Fig. 23 that the added noise had an effect on the ID reconstruction (red line) in 

both cases, but the shape of the ID PL decay curve was not distorted, i.e. the overall shape of the PL decay 

was in perfect agreement with the expected output (black line). However, it can also be seen that the noise 

in the IPL dataset had a significantly higher effect on the resulting noise in the obtained ID (Fig. 23(B)), 

despite using the same relative noise level in both panels. 

We can quantify the noise of the ID curve using the root mean square error, which reaches RMSEPL 

= 12.9×10-3 for the noise in the PL signal and RMSEEXC = 2.8×10-3 for the noise in the excitation signal. 

This apparent difference originates from the deconvolution step used to calculate the PL decay curve – see 

Eq.(3). This result suggests that the Tikhonov regularization in the denominator of Eq.(3) has a more 

pronounced effect on IEXC than IPL, which becomes the dominant noise source in the obtained ID. 

6.2 Noise effect on PL map reconstruction using the FLIMB approach 

The next step was to simulate the effect of the presence of noise in the IPL and IEXC signal on the data 

reconstruction in the 2D-RATS experiment. Here the situation is more complicated because the noise 

present in the IPL and IEXC datasets is first transposed into the noise of the IDA(t) curve (Eq.(8)). The noise 

present in these curves is then propagated into the ISPC signals, which are then used to obtain a set of m(t) 

PL images (Eq.(9)). 

All simulated reconstructions were performed assuming binary masks. The TVAL3 algorithm was 

used as the reconstruction algorithm, where the main parameters of the TVAL3 algorithm were set as mu 
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(211), beta (27). A predefined Phantom image was used as the measured sample in Matlab, where a mono-

exponential ID with PL lifetime 𝜏 = 20 µs was set over its entire "body". 

Below are the obtained PL images m(t) at the maximum IDA intensity, i.e. t = 0 µs, where the contrast 

of ISPC signal fluctuations is the highest. The case was studied for three different compression ratios k = 0.4, 

0.6, 0.8 and four signal-to-noise ratios SNR = 15.2, 18.2, 20, 23 dB, corresponding to 3%, 1.5%, 1%, 0.5% 

noise level in the signal. 

 

Figure 24: Left part: reconstruction of PL map m(t) at the ID timepoint of maximal intensity (t = 0 µs) in 

the case of noise in IEXC. Right part: reconstruction of the PL map m(t) at the timepoint (t = 0 µs) in the 

case of the noise in the IPL. Rows: signal-to-noise ratios SNR = 15.2, 18.2, 20, 23 dB (rows). Columns: 

compression ratios k = 0.4, 0.6, 0.8. Adapted from Junek et al. [50], Fig. 3. 

The results of the simulations are summarized in Fig. 24, where the reconstruction with noise in the 

IEXC signal is on the left side, while the reconstruction with noise in the IPL signal is on the right side. The 

corresponding parameters are listed in Table 1. 

Similar to 0D-RATS, the noise present in the IPL has a significantly higher effect on image 

reconstruction than the noise in the IEXC signal. By comparing the different noise levels (rows of Fig. 24), 

it is clear that the SNR in the IPL signal is a key factor in data acquisition. On the other hand, the effect of 

the compression ratio (columns of Fig. 24) does not play an essential role for values of k > 0.4. This means 

that it is not practical to compensate for the noise in the measured signal by simply increasing the number 

of measured excitation masks. 

To quantify the overall impact of the noise, three different criteria are introduced. First, we can 

assess the quality of the image reconstruction, where we compare the reconstructed PL map m (at the IDA’s 

timepoint t = 0 µs) with the reference U using the Frobenian norm: 
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Second, we focused on the secondarily affected SNR of the ISPC signal, which is used to acquire the 

image m(t) at the timepoint t = 0 µs. It can be seen that the ISPC signal indicates the fluctuation of the IDA 

curves. This fluctuation (ISPC) is affected by the noise of both IEXC and IPL. By extracting the resulting noise 

in ISPC, we provide a comparison for other SPC experiments. Thus, we define SPC-SNREXC, which stands 

for the noise level in the ISPC when the noise was in IEXC. Similarly, we also define SPC-SNRPL indicates the 

case when the noise was added to the IPL. Analogously, the indices "PL" and "EXC" have the same meaning 

for rEXC and rPL. 

Table 1: The quality of the reconstructed image (r, lower number = higher reconstruction quality) and the noise level 

in the ISPC signal (SPC-SNR, higher number = lower amount of noise). Corresponding to Fig. 24. 

 
noise source k 

amount of noise 

SNR 15.2dB SNR 18.2dB SNR 20dB SNR 23dB 

r 

EXC 

0.4 0.177 0.158 0.150 0.142 

0.6 0.175 0.155 0.149 0.142 

0.8 0.175 0.155 0.149 0.142 

PL 

0.4 0.328 0.265 0.242 0.191 

0.6 0.312 0.264 0.215 0.192 

0.8 0.326 0.261 0.224 0.181 

SPC-SNR 

 

EXC 

0.4 38.01 43.80 48.14 54.97 

0.6 38.06 43.84 48.05 55.04 

0.8 37.98 43.90 48.25 55.16 

PL 

0.4 34.67 37.52 39.53 43.24 

0.6 34.86 37.45 40.01 43.10 

0.8 34.84 37.83 39.48 42.72 

 

Finally, we can focus on the quality of PL dynamics reconstruction at each pixel i, where the 

reconstructed decay IDREC(i) is normalized and compared to the reference decay ID(i). The comparison was 

made from t0 = 0 µs to t𝜏 = 120 µs, which is a sufficient time range for a decay comparison with a lifetime 

of 𝜏 = 20 µs. We refer to this error as the decay deviation σ, which can be determined according to Eq.(13). 
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This parameter is of the greatest importance in characterizing the quality of the FLIM reconstruction 

and will be investigated in detail in the following section, where some optimization steps will be also 

proposed. 
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6.3 Optimization of noise effect on PL map reconstruction 

The noise in the optical system is determined by the properties of the optical assembly, which characterizes 

the number of detectable photons on the detector. For an optimized optical arrangement, these properties 

cannot be easily improved. 

On the other hand, it is possible to increase the quality of the acquired ID or IDA by increasing the 

acquisition time. This option is described in the following section. Since the RATS method is based on 

signal deconvolution, we used a non-periodic excitation signal IEXC (see Section 4.5.2). In addition, the 

influence of the choice of the regularization parameter ε from Eq.(3) and Eq.(8), respectively, was 

investigated. 

Due to the random nature of the signals, no mathematical filtering of the signal was intentionally 

applied, as important frequencies would easily be eliminated. Mathematical signal filtering could certainly 

be optimized for one random pattern of signal, but at the expense of the general applicability of the results. 

6.3.1 Data acquisition time prolonging 

Prolonging the acquisition time favours the frequencies representing the real signal in the Fourier spectrum 

and suppresses the contribution of artificially added white noise. Simulations of the 2D-RATS measurement 

were done for 5 different acquisition times tacq = 0.1 s, tacq = 0.2 s, tacq = 0.4 s, tacq = 1 s and tacq = 2 s (see 

Fig. 25). Other conditions, such as reconstruction parameters, regularization parameter ε, and signal prop-

erties, remained the same as in Section 6.2. 

 

Figure 25: Dependence of the acquisition time on the deviation σEXC – noise considered in IEXC (left part) 

and σPL – noise considered in IPL (right part). SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black), 23 dB 

(magenta) for three different compression ratios k = 0.4 (solid line), k = 0.6 ( circle), k = 0.8 (cross). 

Adapted from Junek et al. [50], Fig. 9. 

Unlike Section 6.2, this section focuses on the deviation of the entire reconstructed PL decay in 

each sample pixel, where the subscripts "PL" and "EXC" denote the noise source (σEXC, σPL). The 
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dependences of individual noise characteristics on acquisition time are shown in Fig. 25. In this figure, the 

colour of the line/symbol indicates the given SNR (red: 15.2 dB, blue: 18.2 dB, black: 20 dB, and magenta: 

23 dB); line/symbol type represents compression ratio k (cross: 0.8, circle: 0.6, solid line: 0.4). 

All the results in Fig. 25 confirm that the effect of the noise level (different colours) is much more 

pronounced than the compression ratio (different line/symbol type), i.e. increasing the number of excitation 

masks compared to the number of pixels has a negligible effect on the image quality. 

The decay curve reconstruction is improved for both noise in IEXC and IPL, and the deviation σ 

decreases with increasing acquisition time (see Fig. 25). Although both errors are of a different order, by 

increasing the acquisition time from 0.1 s to 2 s, both errors, σEXC, and σPL decreased by the same ratio. 

6.3.2 Choice of the regularization parameter ε 

Another way to eliminate the effect of noise is the choice of the regularization parameter ε in Eq.(3) or 

Eq.(8). The regularization parameter makes it possible to solve ill-conditioned problems where "division 

by zero" could occur, i.e. for frequencies with low amplitude in the IEXC signal [44]. The regularization 

parameter adds a specific amount of the averaged spectrum power to the denominator (see Eq.(3) and 

Eq.(8)). Thus eliminating the influence of less frequent frequencies in the signal (white noise). As a result, 

the calculated ID or IDA course is smoothed. 

All simulations were performed with an acquisition time of tacq = 0.1 s and ε ranging from 0.05 to 

1. Reconstruction parameters and signal properties were kept as in Section 6.2. Fig. 26 has an analogous 

colour and symbol marking as in the previous part of Fig. 25 - SNR (colour) and compression ratio 

(line/symbol type). 

 

Figure 26: Dependence of ε on deviation σEXC – noise considered in IEXC (left part) and σPL – noise 

considered in IPL (right part). SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black), 23 dB (magenta) for 

three different compression ratios k = 0.4 (solid line), k = 0.6 ( circle), k = 0.8 (cross). Adapted from 

Junek et al. [50], Fig. 12. 
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Choosing a higher ε smooths the ID/IDA but also causes a certain distortion of ID/IDA, affecting m(t) 

reconstruction. These two effects always go against each other. The issue is discussed in an article by Junek 

et al. [50]. It follows from the findings that for less noisy systems, it is advisable to keep the regularization 

parameter at a value of 0.1 to 0.2, but for systems with higher noise, it is advisable to increase ε 

proportionally to the noise level. As can be seen from Fig. 26, the dependence of both σEXC and σPL on ε is 

affected by the amount of noise in the system. The most significant improvement is made in the noisy PL 

signal (15.2 dB, 3%), where increasing ε from 0.05 to 1 reduced σPL by 79%. Analogously to the previous 

results, increasing the regularization parameter has a smaller effect on the noise introduced by the IEXC 

signal -- see the σEXC curve. 

6.4 Noise stability of reconstruction approaches FLIMA and FLIMB 

In the previous section, we focused on the noise effect on the retrieved PL decay curves IDA and PL maps 

reconstruction, which influence the resulted decay in each i-th pixel IDREC(i,t) and affect the final FLIM 

spectrogram. 

Now, we can focus directly on the effect of noise on FLIM spectrogram quality, i.e. to compare the 

precision of the retrieved PL lifetimes. By doing this, we can compare both approaches, FLIMA and FLIMB, 

which feature significantly different data processing, but both lead to a PL lifetime map. 

Based on the results presented in the previous chapters and the results presented by Junek et al. [50], 

we focused only on the compression ratio k = 0.4; the noise is present only in the measured PL signal IPL, 

while the excitation dataset IEXC was assumed to be noiseless. The level of noise was set to relative values 

of 0%, 0.5%, 1%, and 1.5%. The resulting FLIM spectrogram labelled F was evaluated by the percentage 

deviation R when compared to the simulated reference U.  
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We carried out simulations on a bi-exponential PL decay based on the Phantom image. The simu-

lated scene considered mono-exponential and bi-exponential regions with parameters 𝜏1 = 20 ns and 𝜏2 = 

70 ns and corresponding amplitudes A1 = 1 and A2 = 1. 

The simulation results are summarized in Fig. 27, where the individual row represents the different 

noise levels in the IPL signal, while the columns indicate (from the left) the amplitude maps of two PL 

components: H𝜏1, H𝜏2; resulting PL lifetime map composed from the amplitude maps: FLIMA; finally, the 

map was compared to the PL lifetime map attained by fitting each individual pixel independently: FLIMB. 

The dependence of the deviation R on the noise level is then provided in Fig. 28. Reconstructed pixels that 

were below 10% of the PL amplitude were removed from the statistics for both FLIMA and FLIMB in Fig. 
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27 and also in Fig. 28. The fitting curves for both FLIMA (IDA's) and FLIMB (3D-datacube) cases were 

always in the range of 0 ns to 400 ns, which is sufficient for the entered parameters 𝜏1 and 𝜏2. 

 

Figure 27: Above the line is the ground truth, which can be compared to the simulated results below the 

line. The results of simulations of noise effect on both post-processing approaches. The FLIMA approach 

is represented in the third column - supplemented by reconstructions of partial amplitude maps H𝜏1 (the 

first column) and H𝜏2 (the second column). The results of the FLIMB approach are presented in the fourth 

column. Each row corresponds to the chosen noise level in the system (0-1.5%). Adaptet form Junek et. al 

[49]. Adapted from Junek et al. [49], Fig. 5. 

To better understand the results, it should be noted that FLIMB depends mainly on noise in ISPC, i.e. 

the intensity dataset, which is used to retrieve the scene via the TVAL3 algorithm. The noise in ISPC affects 

the quality of PL map reconstruction in the 3D-datacube. As a result, fitting in individual FLIMB pixels can 

be distorted by these inaccuracies and cause local errors in the spectrogram. 

On the other hand, the approach to obtaining FLIMA can affect the overall result already in the 

zeroth step when we extract the PL lifetime component via IDA0 fitting of the overall PL dynamics. Although 
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the inaccuracy of the IDA0 fit will not directly affect the quality of the reconstruction of the Hτ amplitude 

map image, it will systematically affect the final error of the FLIM spectrogram, where the obtained life-

times from the zeroth step are directly considered.  

In view of Fig. 27 and Fig. 28, the FLIMA approach is more stable in terms of noise, while the 

FLIMB approach may experience local errors. Only in the 0% noise case was the FLIMB approach more 

accurate than FLIMA because the overall FLIMA spectrogram distortion was reflected by a slight deviation 

in the IDA0 fit (zeroth step). 

 

Figure 28: Evaluation of FLIM spectrogram reconstruction error – see Eq.(14) - via FLIMA (direct PL 

lifetime map) and FLIMB (frame-by-frame PL maps reconstruction) approach for a different amount of 

noise in a system (IPL signal). Adapted from Junek et al. [49], Fig. 6. 

Considering the exponential functions fitting issue, it is still important to deal with the problematics 

and find new approaches for determining function parameters, especially in noisy systems [57]. The possi-

bility of accurately determining exponential parameters in the presence of noise would further improve the 

quality of both considered approaches. Nevertheless, the FLIMA approach is less time-consuming in post-

processing than the FLIMB. A more detailed description can be found in Junek et al. [49]. Based on our 

findings, we directed our work towards the search for methods to effectively extract individual PL compo-

nents from the measured data. This effort is described in the following sections. 
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7 Direct determination of PL decay parameters 

As mentioned in the previous text, the RATS method can be used to obtain the dynamics of PL decay ID, 

which typically has a multi-exponential character in time (mono-exponential, bi-exponential, tri-exponen-

tial, …). For the sake of data interpretation, the PL lifetimes 𝜏 needs to be determined —typically through 

additional data processing by regression of a suitable exponential function (see Eq.(15), Eq.(16), and Fig. 

29). In the case of multi-exponential decay, the overall lifetime can be determined via weighted averaging 

of partial lifetimes of decay (see right part of Eq.(16)). The regression process can be very time-consuming, 

especially for a 2D scene. Often, it depends on the experimenter, which exponential function (mono-, bi-, 

tri-) is used for the regression. Therefore, it is advisable to avoid this step and obtain precise information 

about the lifetime of PL 𝜏 directly from the measured data (random IEXC/IPL signals).   
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Figure 29: Left part: An example of ID data by the RATS method. Right part: Fit 

of the ID using a bi-exponential curve.  

Moreover, it should be kept in mind that in general multi-exponential cases, the shape of the PL 

decays with two different multi-exponential components can be very similar [58]. This is summarized in 

Fig. 30, where the waveforms of two different bi-exponentials are compared. Then, even a small amount 

of noise can significantly distort the result. Therefore, the development of an algorithm that accurately 

determines the given parameters of the curve is of great importance. 
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Figure 30: Comparison of the course of two bi-exponential curves in a linear scale (left part) and in a 

logarithmic scale (right part). Adapted from Lakowicz et al. [58]. 

7.1 Direct determination of decay parameters via undetermined system 

The decay parameters (lifetimes, amplitudes) can be determined directly from the measured IEXC/IPL signals, 

i.e. without fitting the data, using computational algorithms for solving an undetermined system of linear 

equations when the sparse representation of 𝜏 is sought. 

We state a matrix B, where each column of the matrix represents a single exponential: 
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Let us also state the vector x, which has the number of elements N, with k-sparsity (k ≤ 3) and has 

the meaning of the amplitude of the exponential. The result of B and x multiplication then has the meaning 

of ID. 

 DI Bx . (18) 

After application of the Fourier transform to Eq.(2) and substitute Eq.(18) we get Eq.(19): 

 ( ) ( ) .PL EXCI I Bx  (19) 

Let us denote the 𝔽B as the matrix V and consider that 𝔽(IPL) can be understood as a vector with n 

elements, denoted by w. We then multiply the vector w member by the member (element-wise product) by 

each of the N columns of the matrix V and obtain the measurement matrix A: 
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All that remains is to denote the 𝔽(IPL) vector of size n as y, and we obtain the fundamental linear 

Eq.(21), where the vector x is assumed to be sparse:  

   .y Ax  (21) 

For simulation purposes, we define an exponential ID and calculate the IPL using the known IEXC:  
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7.1.1 Simulation of undetermined system-based algorithm 

Before starting the simulation process, it is necessary to define the assumed set 𝜏 of N members and generate 

the matrix B. Furthermore, the known (measured) signal IEXC and the calculated IPL are used to obtain the 

matrix A and the vector y. Then the following steps proceed: 

 

1. In order to obtain an undetermined system, we randomly select M rows of matrix A and the 

corresponding M elements of the vector y (M<N). Since the algorithm used is intended for 

calculations with real numbers, we create a vector y'=[Re(y); Im(y)]. We do the same with the 

measurement matrix A, so we get A'=[Re(A); Im(A)]. However, then it must be satisfied that N>2M. 

Thus, an undetermined system, according to Eq.(24), enters the algorithm: 

 ' ' .y A x  (24) 

2. As a reconstruction algorithm, we used ROLS (Regularized Orthogonal Least Squares for sparse 

reconstruction). The ROLS belongs to the group of Greedy algorithms and searches for columns 

(atoms) with maximum energy [59, 60]. This algorithm was written by Angshul Majumdar (2009) 

and is available at Mathworks [61]. 

 

3. If no solution is found with k-sparsity (k ≤ 3), it goes back to step 1.  A new random selection of y 

(components of Fourier domain) and A of size M is defined. 

 

In all cases, different M Fourier domain components of the IPL signal enter into step 2 of the 

algorithm above. However, it has not yet been possible to find an ideal distribution of frequencies that 
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would guarantee convergence to the solution after the first iteration of the process. Nevertheless, after a few 

iterations, the process converges to the correct result within a few seconds of computational time. The 

duration depends on the number of lifetimes in the ID. Results are shown in Fig. 31 and Fig. 32. 

 

Figure 31: ID reconstruction consisting of three exponentials with amplitudes - 5, 15, 20 and PL lifetimes 

𝜏 - 10, 30, 50 μs. 

 

Figure 32: ID reconstruction consisting of three exponentials with amplitudes - 15, 18, 10 and PL 

lifetimes 𝜏 - 20, 35, 70 μs. 

Although many strategies of M Fourier domain components selection were tried, e.g., to favour the 

components with high amplitude in the Fourier spectrum, i.e. a higher signal-to-noise ratio – yet it was not 

possible to obtain a solution for systems with a realistic amount of noise. The solutions were obtained for 

systems with SNR > 78 dB. Once we simulate more noisy data, the algorithm fails to converge to the correct 

result. 

The failure of the algorithm with noisy data is apparently caused by the inappropriateness of matrix 

A, whose randomness is lost due to the character of matrix B. In the ideal case of matrix A, a completely 

different IEXC (different w) for each τ (column of matrix B) should be ensured. However, this is apparently 
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impossible to ensure in realistic experimentation conditions. Therefore, we turned to a different approach 

to retrieve the PL lifetimes. 

7.2 Direct determination of PL decay parameters using neural network 

The issue of PL lifetime retrieval was also investigated using deep learning and neural networks (NN) as 

an alternative to the previous algorithms. The problem can be defined as a search for the correct lifetimes 

from a list of possible options. Therefore, the so-called "multi-task learning" approach was implemented. 

The multi-task learning is typically used to recognize multiple objects in the image -- e.g. during image 

analysis in autonomous vehicles [62]. Since the extensive topic of NN reaches far beyond the scope of the 

thesis, we present the solution as a possible way of investigation, which adequately represents proof of 

principle.  

The training and testing datasets in this subsection are purely synthetic simulated data which relia-

bly copy the real experiment. Nevertheless, the results show that the introduced NN solution can provide 

satisfying results despite its simplicity. 

7.2.1  Problem definition and datasets interpretation 

In this part, we describe our search for direct determination of PL lifetimes of two decay components in a 

noisy dataset using NN. The retrieval was carried out from the RATS IPL signal with a random character 

without prior knowledge of the spectrum of lifetimes 𝜏. 

Data (IPL signals) were generated according to Eq.(2), assuming the same IEXC pattern for all simu-

lations. White noise was then added to the IPL so that the noise level corresponded to a random 1/SNR value 

selected from the 0-1% range. In training and testing datasets, we considered only bi-exponential decays, 

i.e. two present lifetimes 𝜏1 and 𝜏2, with a random distribution of amplitudes A1 and A2 (see Eq.(4)). 

For the sake of simplicity and as proof of the principle, the NN was always trained for a set of 5 

lifetimes 𝜏, picked from the interval 1-100 μs. The choice of units does not play here an important role as 

the temporal scaling of data can be arbitrary in the simulations. The output of NN was 6 neurons. Neurons 

1-5 represented the investigated lifetimes, and the sixth neuron represented any other lifetime. The training 

dataset consisted of X = 216 000 simulated traces, where X/6 traces from the data belonged to each inves-

tigated lifetime. The same amount of data (X/6) also belonged to the IPL with a different lifetime (6th neu-

ron). The data in the testing dataset was distributed according to the same logic, where the total number of 

data was Y = 24 000. 

Two cases were explored. In the first case, the training and testing datasets contained closely spaced 

lifetimes from a selected interval (𝜏1 = 20 μs 𝜏2 = 21 μs 𝜏3 = 22 μs 𝜏4 = 23 μs 𝜏5 = 24 μs). In the second case, 

the datasets contained more distinct lifetimes within the interval 1-100 μs, namely 𝜏1 = 5 μs 𝜏2 = 23 μs 𝜏3 = 

40 μs 𝜏4 = 58 μs 𝜏5 = 75 μs. Due to the facts mentioned in the previous sections, determining adjacent 
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lifetimes (the first case) in noisy data is a significantly more difficult task, and it is often problematic or 

impossible to solve using commonly used methods [57, 58]. 

The training of the NN in this work was based on the assumption that the same random excitation 

pattern IEXC is used all the time, which might be approached in practice using a digital modulation of the 

laser. Therefore, a random digital signal (see  Section 4.3) was used for generating the training and testing 

datasets. The signal featured a length of 10 ms and a width of IRF = 2.5 μs. 

7.2.2 NN architecture 

Keras and Tensorflow libraries were used to create the NN model based on 1D convolutional neural net-

works (1D-CNN). In each layer of 1D-CNN, it is possible to choose a number of filters with an optional 

convolutional kernel size. Several different architectures were tested. Nevertheless, the best results were 

achieved for the configuration sketched in Fig. 33, which is used throughout this section. We applied three 

convolutional layers with a descending number of filters, i.e. 12, 6, 3 using kernel size s = 3. After the 

individual convolutional layers, an average pooling is always implemented with a pooling size p matching 

the convolutional kernel size p = s. The functionality of the average pooling layer lies in averaging p con-

secutive inputs. The output is a list of averaged values so that the number of output values is p-times reduced 

compared to the input. Therefore, e.g., the first average pooling layer reduces 12 288 inputs to 4 096 outputs 

(see Fig. 33). 

The combination of convolutional and average pooling layers is repeated three times in a sequence. 

Then, the application of flatten function creates a so-called fully connected (FC) layer from the convolution 

block. The penultimate FC layer has 100 neurons, while the output FC layer has 6 neurons (the number 

matches the number of searched lifetimes - see 7.2.1). Between the last layer of average pooling and flatten, 

as well as between flatten and the penultimate FC layer were implemented a dropout function with a rate 

of 0.2. The dropout function with a rate of 0.2 disables the input of 20% of randomly selected neurons in 

the following layer in each iteration. Dropout serves as a regularization element that prevents NN over-

learning [63]. 

Overlearning is an unwanted effect, which manifests itself in the fact that the accuracy of the train-

ing and testing datasets significantly differs. The NNs then usually feature high accuracy on the training 

dataset, while the testing dataset is significantly worse. The difference in the accuracy of the training and 

testing dataset is called variance. 

The ReLu function was selected as an activation function within the entire NN model except for the 

output layer, where a sigmoid activation function was applied. A binary cross-entropy loss function is cho-

sen for the classification and evaluation of the problem, where each neuron within the last layer indicates 

the presence or absence of the corresponding lifetime. 
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Figure 33: Architecture of used NN 
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NN training was performed using a mini-batch learning technique, which enables faster NN training 

[64]. This approach divides the entire dataset into small chunks (i.e. mini-batches) of a selected size.  In 

our case, the batch size was chosen to be 16. The data corresponding to the batch size is then gradually 

submitted to the NN for training. One passage of all data through the training process is denoted as an 

epoch. The Adam optimizer with a learning rate of 10-3 was selected as a minimization algorithm, which 

suitably combines the Gradient descent with momentum and “RMSprop” (root-mean-square propagation) 

minimization methods [65]. 

7.2.3 NN results 

The presented results were obtained after 20 epochs of training. As mentioned in the previous chapter, the 

training dataset always had 216 000 values and the testing 24 000 values. 

The accuracy of the trained NN was evaluated by using two metrics following different approaches. 

The first one corresponds to the standard assessment of accuracy in multi-task learning, where all correctly 

predicted classes are included, regardless of whether the other classes were mispredicted. We denote such 

accuracy as 𝜎A, and can be expressed using Eq.(25). 𝜃A is equal to the number of mispredictions in each 

class, n is the number of output neurons (number of all classes), and N is the number of data in the testing 

dataset. 

 1 .A
A

nN


    (25) 

However, for practical reasons regarding the PL lifetime analysis, we are more interested in cases 

where the whole decay curve, i.e. both partial PL lifetimes, are determined precisely. Therefore, the cases 

where at least one output class (lifetime) was mispredicted are also included in the incorrectly determined 

dataset 𝜃B. So we denote the accuracy as 𝜎B, where N is again the number of values in the test set: 

 1 .B
B

N


    (26) 

The resulting accuracy of the NN evaluations with close PL lifetimes (𝜏1 = 20 μs 𝜏2 = 21 μs 𝜏3 = 22 

μs 𝜏4 = 23 μs 𝜏5 = 24 μs) are shown in Fig. 34. The 𝜎A [%] accuracy is shown on the left-hand side, and the 

𝜎B [%] accuracy on the is shown on the right-hand side. In the case of 𝜎A [%], we achieved after 20 epochs 

the accuracy of 97.8% on the training set and 94.6% on the testing set. The accuracy of the complete PL 

decay lifetime retrieval (𝜎B [%]) reached 90.9% for the training set and 80.5% for the testing set.  
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Figure 34: The case of close 𝜏. Left side: 𝜎A [%] accuracy depending on the number of epochs. Right 

side: 𝜎B [%] accuracy depending on the number of epochs.   

Fig. 35, on the left-hand and right-hand side, illustrates how the accuracy 𝜎A [%] and 𝜎B [%], re-

spectively, depends on the amount of added noise. All of the accuracies in Fig. 35 are listed for the testing 

dataset only.   

 

Figure 35: The case of close 𝜏. Left part: The accuracy of individual lifetimes prediction (testing dataset) 

as a function of noise in the system. Right part: The accuracy of the exact determination of the decay 

curve (testing dataset) depends on the noise in the system. 

The same simulations were carried out for the second above-stated dataset of more distinct PL life-

times covering a large interval (𝜏1 = 5 μs 𝜏2 = 23 μs 𝜏3 = 40 μs 𝜏4 = 58 μs 𝜏5 = 75 μs). In the case of 𝜎A [%], 

we achieved after 20 epochs the accuracy of 96.2% on the training set and 95.3% on the testing set. The 

accuracy of the complete PL decay lifetime retrieval (𝜎B [%]) reached 84.6% for the training set and 81.9% 
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for the testing set. Analogously, we also studied the role of noise on lifetime retrieval. The results are shown 

in Fig. 36 and Fig. 37. 

 

Figure 36: The case of remote 𝜏. Left side: 𝜎A [%] accuracy depending on the number of epochs. Right 

side: 𝜎B [%] accuracy depending on the number of epochs.   

 

Figure 37: The case of remote 𝜏. Left part: The accuracy of individual lifetimes prediction (testing 

dataset) as a function of noise in the system. Right part: The accuracy of the exact determination of the 

decay curve (testing dataset) depends on the noise in the system. 

7.2.4 NN results discussion 

Solving the problem using NN is presented as an alternative for determining the lifetimes 𝜏 in noisy IPL 

data. It is worth mentioning that NN architecture can be further optimized and that better results can also 

be achieved by simply increasing the number of training datasets. 

We are aware that it would be appropriate here to compare the obtained results of a given NN 

with the accuracy of regression using fitting algorithms depending on the noise. However, this is not a 
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simple task in the case of bi-exponential decay. It is necessary to realize that trained NN with the indicated 

accuracy of prediction points to completely accurate results. However, by fitting, we usually get an ap-

proximate result, which can greatly deviate from the prescription in situations with a high level of noise. 

The above-mentioned holds especially for a multi-exponential decay (see Fig. 30).  

For a rigorous verification, it would be necessary to define the neighbourhood of the fitted value 

(interval), which would mark the approximate value that falls within the given neighbourhood as exact. 

That will be a valid verification approach if the activation function (sigmoid) of the output neuron has the 

same threshold as the neighbourhood of the fitted value. The threshold of the sigmoid activation function 

determines whether the given lifetime is present or not (that is, whether the output will be 1 or 0). How-

ever, determining the size of the neighbourhood of the value (interval) for fitting, based on the input values 

to the activation function or its threshold, is not a trivial task. Nevertheless, in the near future, we plan to 

deal with the issue and find out whether the given comparison is possible. 

From the point of view of realistic measurement, it is clear that a broad interval of the lifetime 

spectrum needs to be covered for an arbitrary sample. Moreover, it is reasonable to expect a wider lifetime 

spectrum than we used in our simulations (1-100 μs)). This can be solved by expanding the number of 

output neurons (more searched lifetimes 𝜏), which will change the NN architecture and increase the num-

ber of optimizable parameters. However, the situation can also be solved by training a higher amount of 

the same NN models, each covering a different part of the spectrum. Considering the above-reported 

results, training for remote lifetimes in the search spectrum (the second case) is more appropriate. 

Overall, the results in both training cases (the first case expects close and the second remote life-

times in the search spectrum) clearly show that by using NN, the accuracy of determining decay lifetimes 

does not necessarily deteriorate for the noisy cases (tested 0-1%), as it is with standard algorithms. These 

findings are important not only for spectrometry dealing with photoluminescence dynamics but also for a 

wide range of other disciplines where the exponential fitting is essential, e.g., cavity ring-down spectrom-

etry or high reflectance coating measurements [66,67].  
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8 Conclusion 

The RATS method was presented as a new method for PL decay measurement, which was fully developed 

during my Ph.D. study. The method can be used in a single-point measurement (0D-RATS) but also in the 

imaging mode (2D-RATS), which finds application in fluorescence lifetime imaging (FLIM). The method 

was successfully verified with the streak camera and TCSPC [46,47]. 

The demonstration experiments of two implementations of the RATS method were presented in this 

thesis. In the first implementation, a random excitation signal was generated using a rotary diffuser, and 

illuminating masks were produced using a laterally moving diffuser (grayscale speckle mask). This 

implementation is straightforward and incomparably low-cost with respect to standard FLIM approaches. 

Nevertheless, it is very ineffective in using the excitation light intensity. The second implementation of 2D-

RATS was a microscopic setup. It used a DMD to generate illuminating masks (binary masks), and the 

excitation signal was based on a randomly modulated diode laser. With this approach, it is possible to 

achieve a temporal resolution in the order of units of a nanosecond and spatial resolution on the micrometer 

scale. 

Nevertheless, the main strength of the 2D-RATS method still lies in the lifetime imaging in a 

microsecond or a sub-microsecond timescale. The RATS acquisition in this timescale is fast compared to 

commonly used FLIM methods, such as TCSPC. Among other reasons, the acquisition time is shortened, 

also thanks to the use of compressed sensing. In the nanosecond timescale, optimized TCSPC setups using 

SPAD detectors still provide superior performance – on the other hand, their cost is an order of magnitude 

above the cost of a 2D-RATS microscopic implementation. If the RATS method was further optimized 

using a SPAD detector, it could achieve similar acquisition times as TCSPC while featuring a better 

versatility of the setup. 

The acquisition speed of 2D-RATS depends on several factors. The crucial factor is the resolution 

of the reconstructed image and the related compression ratio. Another important factor is the level of PL 

intensity. This comes into play since FLIM spectrogram error is highly dependent on the PL intensity itself. 

Therefore, for a high PL intensity, faster sensing can be achieved by significantly reducing the acquisition 

time. Under ideal conditions, with a highly emitting sample (OG565 filter), it was possible to complete a  

measurement within the time of 6 minutes. More notably, this time was achieved for a setup without any 

optimization regarding the time required for the instrument control and data transfer, which together took 

the dominating portion of the acquisition time. 

The thesis also describes two approaches for obtaining a FLIM spectrogram, which we called as 

FLIMA and FLIMB. The FLIMA approach is chronologically younger, and it succeeded in avoiding the need 

for determining the PL decay curve and lifetime (via fitting) in each pixel separately as in FLIMB. Hence, 
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the postprocessing routine is significantly speeded up. In addition, using FLIMA, it is possible to display 

the amplitude map directly for each partial lifetime, i.e. the distribution of partial lifetimes of multi-

exponential decay within the sample. 

An important step in the optimization of the RATS method was the analysis of the noise effect on 

PL data reconstruction. The analysis revealed a significantly higher sensitivity of the results towards the 

noise corrupting the measured PL signal IPL. In general, the noise level in data turned out to be a key 

parameter of reconstruction quality, which cannot be effectively compensated by simply increasing the 

number of measurements, i.e. by increasing the compression ratio. 

The simulations showed that an efficient way to significantly increase the signal-to-noise ratio is 

either a straightforward prolongation of the acquisition time or the possibility of choosing a suitable 

regularization parameter ε. In the case of prolonging acquisition for one IDA reconstruction, it is necessary 

to consider a significant increase in the total measurement time. The choice of the regularization parameter 

ε is related to the noise level in the system since it smoothes the ID/IDA curve but also causes a slight 

distortion. Therefore, in situations with low noise, it is convenient to keep the regularization parameter at 

values ε = 0.1 or ε = 0.2. In the case of higher noises, it is adequate to choose a significantly higher ε. 

Simulations have shown that with the correct choice of regularization parameter and acquisition time, the 

RATS method can achieve results that are not distorted and can accurately map a 2D scene even with a 

relatively high noise level (3%). 

The periodicity of the excitation signal IEXC was discussed as part of the noise analysis. The attained 

data showed that periodicity decreases the signal-to-noise ratio. This issue arises due to the application of 

the deconvolution step in the PL decay retrieval. Since the original means of generation of the random 

signal was based on a rotating diffuser, the periodicity effect could play a significant role. Therefore, we 

replaced the original method with a randomly modulated laser with a random seed, which became a cor-

nerstone of the so-called second generation of the 2D-RATS setup. Direct laser modulation turned out to 

be a better solution for the RATS systems. 

Most of the insights gathered through the detailed noise analysis could be applied to both FLIMA 

and FLIMB reconstruction approaches. Although FLIMA and FLIMB are different, it is necessary to recon-

struct the PL decay curve in both cases. The two different approaches to data treatment were compared 

through their FLIM spectrograms for noise levels of 0-1.5%.  The FLIMA approach showed more accurate 

results in situations with higher noise levels than 0%. 

Finally, we pursued the idea of creating an algorithm for the direct reconstruction of the PL decay 

parameters with the assumption of an undetermined system. The algorithm searched for a sparse solution 

and worked successfully in noiseless systems. However, in a situation with noise > 78 dB, the algorithm 

failed to converge to correct results due to the similarity of the different multi-exponential decays.  
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Therefore, the possibility of using neural networks (NN) with a multi-task learning approach was 

investigated. The NN model was built on a 1D convolutional neural network (CNN), assuming a limited 

number of searched lifetimes 𝜏, noise presence from 0-1%, and considering only a bi-exponential decay 

system. Considering the difficulty of the issue, NN shows high accuracy in precise determining of PL 

decay curve. In addition, on the tested area of noise (0-1%), the results did not show any significant 

dependence on the accuracy of lifetime determination with respect to arising noise level. These findings 

would be beneficial for a wide range of other disciplines of spectrometry, where the exponential fitting is 

a fundamental part of the analysis, including, for instance, cavity ring-down spectrometry [66,67]. 

Overall, the thesis presents a novel robust time-resolved method RATS for studying PL dynamics. 

The method can be easily implemented into a FLIM measurement based on SPC configuration. In the 

search for a noise-resistant FLIM analysis, we developed two reconstruction strategies, where the direct 

extraction of decay lifetimes shows better noise stability and significantly reduces post-processing time. 

We verified that using trained NN, it is possible to determine the lifetime distribution of the bi-exponential 

system without the result being significantly affected by the amount of present noise (0-1%). 
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Abstract: Time-resolved photoluminescence (PL) is commonly used to track dynamics in a
broad range of materials. Thus, the search for simplification of the acquisition of PL kinetics
attracts continuous attention. This paper presents a new robust and straightforward approach to
the measurement of PL decay, which is based on randomly fluctuating excitation intensity. The
random excitation waveform is attained by using laser speckles generated on a rotating diffuser.
Owing to this, the presented technique is able to utilize any coherent excitation source without
the necessity to generate short pulses or to controllably modulate the light. PL decay can be
computationally reconstructed from the Fourier image of the PL trace. The paper demonstrates
the performance of the method, which is able to acquire sub-microsecond dynamics as the
impulse response function reaches 300 ns. The reconstructed PL decays were compared to streak
camera measurements to verify the method. Finally, potential limitations and applications of the
technique are discussed.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Photoluminescence (PL) spectra and dynamics provide a vast amount of information about
the emitting material – revealing energy levels of charge carriers [1,2], resolving processes
governing the excited energy routes [3,4], even resolving lifetimes of the processes [5]. All the
information can be extracted in a non-contact experiment, even in opaque samples. Therefore, PL
time-resolved spectroscopy counts among the most used characterization methods in the fields of
chemical physics [6,7], biochemistry [8], and material sciences in general.

All reported methods for time-resolved PL measurements require an excitation source able to
provide us with a short pulse or to be controllably modulated [9–11]. In general, all the methods
can be divided into two groups, which measure PL kinetics in the time and the frequency domains.
Methods working in the time domain need a source producing correspondingly short pulses.
The pulses excite PL, which is either detected by a speedy detection system, is spatially swept
(streak camera), or the PL signal is gated (by up-conversion technique, iCCD). Measurements of
PL decay in the frequency domain demand using a controllably modulated light intensity, for
instance, an acousto-optic modulator or a modulated laser. In order to capture PL decay stretched
over different timescales, the intensity modulation has to be facilitated over a broad range of
frequencies.
In this article, we present a method that, in contrast, can use any source of coherent light to

measure PL dynamics on the microsecond and sub-microsecond timescales. The core of this
method lies in the excitation of the measured sample with a randomly fluctuating intensity of light.
This can be achieved by transmitting a coherent light source through a rapidly varying scattering

#382811 https://doi.org/10.1364/OE.382811
Journal © 2020 Received 14 Nov 2019; revised 24 Mar 2020; accepted 26 Mar 2020; published 10 Apr 2020



Research Article Vol. 28, No. 8 / 13 April 2020 / Optics Express 12364

element creating fluctuating speckle patterns, which we denote as temporal speckles. The field of
temporal speckles is cropped with an aperture, providing us with a random signal for sample
excitation. Such a random excitation signal features a broad range of frequencies, which can be
used to reconstruct back the PL decay from the measured fluctuations of the PL intensity. We
demonstrate that this technique can be used to attain PL decay with sub-microsecond temporal
resolution without the need for a pulsed excitation. We also prove that the attained decay is in
agreement with conventional approaches to PL decay measurement.
Moreover, as we show later, this method is remarkably robust against various experimental

conditions such as signal delay or offset. Owing to its simplicity, no elaborate setup alignment or
calibration is needed.

2. Methodology and experimental setup

2.1. Principles of the method

For the sake of brevity, we will hereafter denote the method as RATS (RAndom Temporal
Speckles). The goal of the RATS method is to excite the tested sample with temporal speckles,
i.e., randomly fluctuating intensity of light. To reconstruct the PL decay Idecay we need to acquire
the excitation signal IExc and the PL signal IPL. We can illustrate the RATS concept on simulated
data depicted in Figs. 1(A)–1(B). The excitation signal was attained by simulating the generation
of laser speckles from a rotating diffuser via Fraunhofer diffraction (far-field speckle pattern) [12].
Following the real experimental setup, which is described later, the resulting random pattern was
cropped with an aperture and the total intensity of light within the aperture is plotted in Fig. 1(A)
as a random signal for the excitation IExc. The photoluminescence signal IPL plotted in Fig. 1(B)
was calculated via the convolution of IExc and Idecay:

IPL = IExc∗Idecay (1)

It is worth noting that Eq. (1) holds only for PL intensity which is linearly proportional to the
excitation intensity, as we discuss later.

Fig. 1. Simulated intensity of the fluctuating temporal speckles (panel A) which are used to
calculate a PL waveform (panel B). We assume a single-exponential PL decay with τ = 1
ms. Fourier transform of intensity of fluctuating temporal speckles (panel C) and Fourier
transform of PL waveform (panel D).

For the sake of clarity, the PL decay lifetime in Fig. 1 was chosen to be mono-exponential
with the lifetime in the millisecond range (τ = 1 ms), so that the difference between the excitation
and the PL waveform is apparent both in the time domain and in the Fourier space. The Fourier
transformations of IExc and Idecay are depicted in Figs. 1(C) and 1(D), respectively.
By using a fluctuating random signal for excitation, we get a wide range of frequencies in

the Fourier space. This is important because the Idecay can be determined on the timescale
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corresponding to the highest available frequency. The Idecay can be simply calculated via the
convolution theorem. Equation (2) shows the used deconvolution applying the so-called Tikhonov
regularization [13]. The regularization prevents cases from being ill-conditioned, which can
happen when the denominator approaches zero due to data corrupted by noise.

Idecay = Re

{
F−1

[
F(IPL) F∗(IExc)

F(IExc)F∗(IPL) + εF(IExc)F∗(IExc)

]}
(2)

We, therefore, attain the full PL decay dynamics Idecay, analogously to the other methods. The
decay can be subsequently fitted with a set of exponential functions to determine the characteristic
PL lifetimes.

Naturally, since the temporal speckle pattern is formed by a rotating diffuser, excitation and PL
waveforms repeat with every period of rotation. Nevertheless, for the purpose of the PL decay
retrieval, we do not need to determine the frequency of the diffuser and its timing, i.e., phase.
This is owing to the fact that the shift in the “zero time” between the PL and the excitation data
will cause the PL decay to be multiplied with a constant complex number e(−iϕ), where the phase
ϕ will scale with the timing difference. Such a problem can be easily eliminated.

2.2. Optical setup

A scheme of the optical setup used is presented in Fig. 2. In the setup, we used a cw laser
(Sapphire, Coherent) at the wavelength of 488 nm, intensity 6 mW. But it should be stressed that
one can use any coherent light source which is suitable for excitation of a sample. A diffuser
(ground glass, diameter 10 cm, average grain size 1.52 µm) was mounted on a Mitsumi DC motor,
which rotated up to the frequency of 65 Hz.

Fig. 2. Scheme of the experimental setup used.

The laser beam was focused onto the diffuser with a lens with a focal length of 30 mm. The
laser beam hit the spinning diffuser 4.8 cm from the center and the beam spot size on the diffuser
was approximately 50 µm. Under those conditions, we generated speckle patterns in the so-called
far-field regime, which means that the generated intensity pattern does not change with distance.
The field of speckles was cropped with an iris aperture at the distance of 110 mm from the

diffuser. As a result, we attained a randomly fluctuating intensity of light behind the aperture,
which was used to excite the sample of interest. The best results were achieved when the
aperture diameter was set to the same size as the mean size of speckles. A larger size of the
aperture decreases the contrast of the temporal speckles; a smaller size reduces the excitation
light intensity.

A small fraction of the excitation intensity was divided by a thin BK7 window and directed onto
a biased Si photodiode (Thorlabs, 35 ns rise time) to acquire the excitation signal. The remaining
part was used to excite a sample. Samples were excited by a fluctuating excitation intensity
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with the typical mean value of 5 µW, hence the efficiency of the excitation light extraction is
approximately 0.1%. The PL signal was detected with a Hamamatsu photomultiplier (PMT)
module type H10721-20 (rise time 0.6 ns). The module was placed close to the sample so that no
collecting lens needed to be used. A cut-off color filter (OG 515) was placed in front of the PMT
to shield out the excitation wavelength. Both the excitation and the PL signals were amplified by
an SRS amplifier model SR445A and read out by a TiePie Handyscope HS3 USB oscilloscope.
In order to compare the results of the RATS method with a commonly used technique, we

measured the same test samples on the RATS setup and on a Hamamatsu StreakScope C10627-11
streak camera coupled with a spectrograph. In the streak-camera measurements, we excited the
sample with 515 nm pulses featuring a low excitation energy of 15 nJ/pulse and 190 fs pulse
length. The spectrally resolved PL dynamics were attained with the central detection wavelength
of 650 nm.
The modulation frequency of a generated random excitation signal is proportional to the

peripheral speed of the diffuser and increases when the mean grain size on the diffuser is reduced.
The mean size of speckles is given by the size of the focused laser spot on the diffuser and we set
accordingly the diameter of the iris aperture in order to crop the speckle pattern (see Fig. 2). It
is possible to improve the modulation frequency of the random excitation signal by reducing
both the speckle size and the iris aperture diameter. However, a significant improvement in the
modulation frequency also leads to a vast reduction of the excitation intensity and this effect was
not used in our experiments.

3. Results and discussion

3.1. Instrument response function

A crucial parameter of time-resolved spectroscopy is the attainable temporal resolution of a
method. This is characterized by the impulse response function (IRF) of the method. The IRF
can be determined as a reconstruction of scattered excitation light, or by measuring a sample,
where PL decays very rapidly compared to the expected IRF width. We measured IRF by using
PL from Rhodamine 6G solution, which has got PL lifetime in units of nanoseconds [14], and
evaluated its full width half maximum (FWHM) for each experimental parameter. The IRF width
is affected by several factors, which we discuss in the following paragraphs.
Analogously to standard methods, the presented method can be limited by the available

bandwidth of the used photodetectors and amplifier. Since we used detection systems and
electronics with a bandwidth exceeding 300 MHz, this fact did not limit the performance of the
RATS setup.

As the method is based on the use of Fourier transform, it holds that the detection acquisition
rate is the principal limitation of the shortest attainable lifetime and the total acquisition time is
the principal limitation of the longest measurable lifetime. Nevertheless, the detected signal in
the RATS experiment has to be sampled on a level where no aliasing occurs. Aliasing can cause
severe distortion of the reconstructed PL decay. Therefore, it is essential to adjust the sampling
rate according to the highest available frequency in the temporal speckle fluctuation or to use a
low-pass frequency filter before the signal sampling.
Finally, it transpired that the main limiting factor in the RATS method case is the rate of

temporal speckle fluctuation. The width of the IRF is inversely proportional to the maximum
frequency present in the temporal speckle waveform. The frequency of speckles is directly
proportional to the peripheral speed of the diffuser v. The frequency of speckles increases when
the mean grain size is reduced and also when the beam spot size is reduced. This fact can be
represented by function h(g, d). Dependence of h(g, d) will be described in our future work. For
clarity, Eq. (3) can be written:

FWHM(IRF) ∝
h(g, d)

v
(3)
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To test this fact, we evaluated the IRF for an increasing frequency of the rotating diffuser.
The beam spot size was approximately 50 µm. The diffuser was 100 mm in diameter, featuring
the mean grain size g of 1.52 µm. Since the frequency of the temporal speckles is proportional
to the peripheral speed of the diffuser, the IRF becomes inversely proportional to the diffuser
rotational frequency, as one can also observe in Fig. 3. For a diffuser frequency reaching 65 Hz,
the FWHM of the IRF decreased to 870 ns. Hence, the presented setup allowed us to measure PL
dynamics with the microsecond and sub-microsecond resolution. On the other hand, the longest
measurable PL lifetime is only limited by the acquisition time.

Fig. 3. Experimentally measured impulse response function width (FWHM) for different
rotation frequencies of diffuser (red crosses) fitted with a reciprocal function (black line).
Laser wavelength 488 nm, diffuser diameter 100 nm, grain size 1.52 µm.

3.2. Test measurements

To test the presented method, we used an orange color filter (SCHOTT, OG 565, glass matrix
containing CdSxSe1−x nanoparticles), which absorbs all wavelengths below 550 nm and can be
therefore excited with the used laser (488 nm). Another test sample was a layer of nanoporous
silicon, which was prepared by electrochemical etching of Si wafer in hydrofluoric acid and
ethanol solution. Details of the porous silicon preparation process and its optical properties can
be found in previous publications, see [2,15].
Figure 4 summarizes the detected random signals (top panels), their Fourier representation

(middle panels), and the determined PL decay for both samples (black crosses in bottom panels).
The PL decay of the OG 565 filter was fitted with a sum of two exponentials convolved with
a Gaussian IRF (FWHM 1.2 µs), which shows good agreement between measured IRF for
corresponding rotation frequency (55 Hz) and fitted IRF when the PL decay was evaluated (see
Fig. 4(A), left panel). The PL fitted decay of the OG 565 filter (red line) was Aet/τ1 + Bet/τ2 ,
where A= 0.14, B= 0.006, τ1 = 0.6 µs (sub-IRF), τ2 = 4.8 µs.

Nanoporous silicon PL features a broad range of lifetimes, as it decays via the so-called
stretched exponential function A.exp[−(t/τ)β] [16]. The measurement of this sample was done
for the frequency of the diffuser of 23 Hz (IRF FWHM of 1.9 µs). The determined PL decay
[see Fig. 4(B), right panel] was fitted with the stretched exponential function convolved with the
Gaussian IRF (red line). The attained fitted parameters of the PL decay were τ = 0.7 µs, β= 0.35.

The performance of the RATS method was verified by measuring the PL decay of the two test
samples using a streak camera [17]. We picked the streak camera, as it is a commonly used device
with a PL resolution very well below the RATS setup. The streak camera spectrograms were
acquired on several timescales for each test sample. Figure 5(A) shows a selected spectrogram of
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Fig. 4. Results of the RATS method for the orange filter OG565 (A) and nanoporous Si (B).
Top panels: measured excitation and PL waveforms – note that the first 0.2ms is zoomed in;
middle panels: Fourier amplitudes of the signals – note the logarithmic y-axis; bottom panels:
reconstructed PL kinetics (black crosses) fitted with PL decay convolved with Gaussian IRF
(red lines). λexc= 488 nm. IRF width: OG565: 1.2 µs; nanoporous Si: 1.9 µs. Note that the
sharp peaks in the temporal signals originate from a highly scattering spot on a diffuser.
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the orange filter, in which the vertical axis represents the time axis, whereas the horizontal axis
represents various wavelengths.

Fig. 5. Streak camera spectrogram of the orange filter sample (A). Excitation wavelength:
515 nm; energy 15 nJ/pulse; 190 fs pulse length. Comparison of PL decays of nanoporous
silicon (B) and OG 565 filter (C) acquired by the RATSmethod (black curves) and integration
of the streak camera data (red lines). For the sake of comparison, the data were normalized.

The attained PL decay curves are plotted in Figs. 5(B) and 5(C), where the red lines correspond
to the streak camera curves, and the black lines were measured with the RATS method. The PL
decays are in perfect agreement. The negligible difference could arise due to the fact that the
PMT used in the RATS setup and the streak camera feature different spectral sensitivities. Since
PL decay depends on PL wavelength (as can be clearly seen in Fig. 5), the total decay can vary
for distinct sensitivities.

4. Method potential and limitations

The presented method has several advantages compared to its standard counterparts. Firstly,
as we stressed previously, the excitation source can be any coherent light source without the
necessity to be modulated controllably. Instability of the source is not an issue since it will only
positively contribute to the random fluctuations.
Moreover, the method is very robust against signal offsets both in the temporal and detector

background sense. A temporal offset between the PL and the excitation intensity will lead
to a constant offset in the complex phase in the reconstructed decay, i.e., the resulting curve
will be the actual decay curve multiplied by e−iϕ . This can be corrected easily. At the same
time, the background offset of the signals will manifest only on the zero-frequency edge of the
Fourier transform and can again be avoided by removing the low frequencies from the decay
reconstruction. It is worth noting that all presented results were acquired without any timing or
background correction.
In order to demonstrate the robustness of the method, we provide in Fig. 6 a reconstruction

of the simulated data from Fig. 1, where we applied the mutual delay between the PL and the
excitation signal (see panel A) and the offset of excitation and the PL signal (see panel B). Signals
were delayed up to 7.2% compared to the total acquisition time without any observable significant
effect on the reconstructed decay curve. Analogously, the signal offset reaching 400% of the
original signal amplitude did not affect the reconstructed PL decay curve. For the sake of better
comparison, the PL decay curves are presented vertically stacked in a semi-logarithmic scaling.
The method has specific advantages compared to both the time-domain and the frequency-

domain methods. Although the phase-based measurement in the frequency domain is well
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Fig. 6. Effect of temporal and background detection signal offset on the PL decay
reconstruction. The simulated data from Fig. 1 were reconstructed for various delays between
PL and excitation signal (panel A). The relative delay (0-7.2%) is given with respect to
the total acquisition time. The same data were reconstructed for several offsets in the PL
intensity signals (panel B). The relative offset (0-400%) is given with respect to the PL
signal amplitude. Note that all curves are vertically stacked in a semilogarithmic scale in
order to allow a better comparison.

developed on the sub-microsecond timescales, PL decay with a broad range of lifetimes – for
instance, nanoporous silicon – requires scanning of the modulation frequencies. On the contrary,
the RATS method, owing to the random sample excitation, extracts the PL decay from a single
dataset. This is caused by the fact that the randomness of the signal covers a wide set of
frequencies which is needed for proper reconstruction of PL decay.
The PL decay measurements in the time domain can be carried out efficiently at a low cost

by using LED pulsed excitation sources [18]. However, the proposed method raises the term
“low-cost” to a different level, as the excitation source can essentially be any laser module
combined with a rotating diffuser (or any different means of random modulation).

The RATS method provides a very simple means of signal averaging. Experiments with pulsed
excitation sources often rely on the measurements of many sequential excitations, where the
detection has to be triggered with a corresponding precision. This part is entirely skipped in our
setup, as the PL signal can be acquired for any period sufficient for the desired signal-to-noise
ratio and the detection timing has no impact on the signal reconstruction.

At first sight, the proposed method uses inefficiently the excitation light, which is scattered by a
diffuser. The ratio between the laser power and the mean excitation power in our experiments was
0.1%. Nevertheless, the sample is continuously excited by the source, whereas pulsed excitation
uses a short flash of light from an LED. As a result, the LED provides a significantly lower
number of excitation photons.

The presented method shares with the other methods for the measurement of PL decay in the
temporal domain the need for a fast detection system and electronics. Nevertheless, such devices
are widely available on the market, providing bandwidth of several hundreds of MHz. Therefore,
the real limiting factor in our case lies in the properties of the diffuser, i.e., its peripheral speed
and its grain size. The principal limitation of the method lies in the fact that the intensity of the
PL emission must be linearly proportional to the excitation intensity. Under this condition, the
measured PL waveform follows Eq. (1) and the convolution theorem can be used. Nevertheless,
since the method relies on using a weak excitation intensity, this condition is satisfied for the
majority of materials. Moreover, the method can be extended to be used for more general PL
properties, namely, by changing the approach to PL decay reconstruction, where PL properties
and lifetimes would be fitted to agree with the measured data.
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The presented method can be simplified even more by pre-calibrating the IExc waveform. For a
fixed position of the diffused beam and the diffuser center of rotation, the waveform will remain
the same and does not need to be measured for each sample. Therefore, the entire optical setup
can become even simpler by avoiding using a beam splitter and a reference photodiode.

5. Conclusions

We present a new approach to measuring PL decay, which can be used as a simple means of
material characterization. The RATS (RAndom Temporal Speckles) method generates sample
excitation by using a rotating diffuser without any need for a dedicated light source. With that
approach, the method overcomes the need for advanced optical equipment and becomes a low-cost
option for PL decay measurement.
By using this entirely different approach to the excitation signal, we can benefit from several

advantages. Namely, no special requirements are put on the excitation source and its stability, and
the method uses a low-cost setup enabling rapid data acquisition. Moreover, the random character
of the excitation signal allows us to bring in advanced methods for computational reconstruction
of PL decay, which will be addressed in our future work.

It should be mentioned that we optimized the diffuser and its peripheral speed so that the IRF
width of 300 ns was achieved. Further reduction of the IRF width can be attained with a finer
diffuser, a better-focused beam, or higher peripheral speed. However, the optimized diffuser was
produced by using one of the finest abrasives (SiC 1000) and further increase in the peripheral
speed is demanding with respect to the balancing of the diffuser disc. But e.g. using a proper
microscope objective, it is still possible to reduce the size of the focused spot on the diffuser and
thus reduce the width of IRF.
Nevertheless, the power of the idea of using a random signal for excitation of the measured

sample can be, in principle, implemented by using any means of random modulation.
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Abstract: Photoluminescence (PL) spectroscopy offers excellent methods for mapping the PL
decay on the nanosecond time scale. However, capturing maps of emission dynamics on the
microsecond timescale can be highly time-consuming. We present a new approach to fluorescence
lifetime imaging (FLIM), which combines the concept of random temporal speckles excitation
(RATS) with the concept of a single-pixel camera based on spatial speckles. The spatio-temporal
speckle pattern makes it possible to map PL dynamics with unmatched simplicity. Moreover,
the method can acquire all the data necessary to map PL decay on the microsecond timescale
within minutes. We present proof-of-principle measurements for two samples and compare the
reconstructed decays to the non-imaging measurements. Finally, we discuss the effect of the
preprocessing routine and other factors on the reconstruction noise level. The presented method
is suitable for lifetime imaging processes in several samples, including monitoring charge carrier
dynamics in perovskites or monitoring solid-state luminophores with a long lifetime of PL.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Fluorescence lifetime imaging (FLIM) is an essential spectroscopic method in various fields,
including medicine, biology, and material science. Interest in FLIM and its broad applicability
stimulate its development. Therefore, FLIM has many different implementations based on a
variety of fundamental methods for measuring photoluminescence (PL) decay, which include
gated photoluminescence counting [1], streak camera [2], time-domain analog recording technique
[3], or frequency-domain analog recording technique [4]. However, the most commonly used
method is time-correlated single-photon counting (TCSPC) [5,6].

TCSPC is a powerful method to trace PL decay with a lifetime in the order of nanoseconds.
However, due to the principle of TCSPC operation, data acquisition can take several hours
for samples with a PL lifetime on the microsecond timescale. Therefore, the reduction of the
acquisition time in FLIM has become a topic discussed in the literature in its own right [7]. A
possible way to reduce the acquisition time is to apply so-called compressed sensing, where
the image can be reconstructed from a highly reduced dataset [8,9]. However, these works rely
on TCSPC and, despite reducing the acquisition times, FLIM of the samples with a long-lived
PL decay still represents an issue. It is also worth noting that standard FLIM methods usually
require costly setups.

In this paper, we present an entirely new concept of FLIM. The concept is based on the use of
speckle patterns, both in the spatial and temporal sense, to map the PL decay of a sample. We
combine compressive imaging, namely the concept of a speckle-based single-pixel camera [10],
with our recent work [11], where random temporal speckles (abbr. RATS) make it possible to
trace PL dynamics. In the presented concept, we employ spatio-temporal speckles, which are

#413650 https://doi.org/10.1364/OE.413650
Journal © 2021 Received 29 Oct 2020; revised 15 Jan 2021; accepted 20 Jan 2021; published 5 Feb 2021
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generated by using two diffusers. The speckles can be generated with any coherent excitation
source, i.e., without the need for a pulsed laser. At the same time, the detector is a standard
single-pixel detector, e.g., a photomultiplier. The setup is, therefore, very simple, robust, and
low-cost. Owing to the novel approach to PL decay acquisition, the method is highly suitable for
mapping PL dynamics on the microsecond timescale, where the FLIM dataset can be acquired
within minutes. We demonstrate this on proof-of-principle measurements by imaging PL decay
of selected scenes (colour filters and Si nanocrystal layers) and we also discuss the effect of
speckle properties on the resulting noise level.

The presented method can serve as a simple approach to characterizing the morphology of
samples with prominent PL decay in the order of microseconds, which include halide perovskite
samples, solid-state luminophores, or Si nanocrystals [12–14].

2. Principle of the method

2.1. Concept of RATS method

The cornerstone of the presented FLIM concept is the RATS method, which is described in detail
in our previous work [11]. This novel method for the measurement of PL decay uses randomly
fluctuating intensity IEXC to excite a sample. The PL signal IPL is then given as a convolution of
IEXC and PL decay ID:

IPL = IEXC ∗ ID. (1)

Therefore, ID can be extracted via the convolution theorem using the Fourier transform, where
we apply the so-called Tikhonov regularization weighted with the factor ε [15]:

Idecay = Re

{︄
F−1

[︄
F(IPL) F

∗(IExc)

F(IExc)F∗(IPL) + εF(IExc)F∗(IExc)

]︄}︄
. (2)

The random character of IEXC allows us to measure a broad range of frequencies. Thus, a single
measurement of IEXC and IPL provides information sufficient for the complete ID reconstruction.
Since the original method acquires PL decay for a single spot only, we will hereafter denote the
method as 0D-RATS. The principle of the method is described in Fig. 1, based on simulated data.
In order to get a randomly-fluctuating excitation signal, the demonstrated 0D-RATS method uses
temporal speckles generated via a rotating diffuser. However, the presented approach can use
any principle of random temporal signal generation, which means the RATS method can be
understood in more general terms as the RAndom Temporal Signals method.

Fig. 1. Sequence showing the principle of ID evaluation using the 0D-RATS method. A)
Simulated temporally fluctuating intensity IEXC (blue) and detected photoluminescence
signal IPL (red) arising due to a monoexponential decay (lifetime τ= 50 µs). For clarity,
a shorter time section is shown, than was used for reconstruction (0.1 s). B) Amplitudes
of Fourier transform of IEXC (blue) and IPL (red). C) Reconstructed ID via convolution
theorem, Eq. (2).
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New approaches to generating a temporally random light signal are likely to be found. This
could mean an improvement both in terms of excitation intensity and higher frequency of the
excitation signal.

2.2. Concept of proposed 2D-RATS method

An efficient approach to converting the 0D-RATS method to the imaging mode is to use the
single-pixel camera. The principle of a single-pixel camera can be seen in many review articles
[16]. In a single-pixel camera experiment, the measured sample is illuminated by a set of masks
(see Fig. 2), which, in our experiment, were speckle patterns. Each illuminating random mask
excites PL in different parts of the sample. After illuminating the sample with a sufficient number
of masks, it is possible to retrieve the spatial information by detecting the overall level of the
emitted PL and by using dedicated algorithms, as we will describe below. However, the condition
that must always be met is the linear dependence between the measured and the reconstructed
data.

Fig. 2. Scheme of single-pixel camera image acquisition by using speckle patterns – see
text for details.

In our FLIM approach, the illuminating masks are generated with a movable diffuser, which
is placed behind the source of light with randomly fluctuating intensity in time, i.e., temporal
speckles. Thus, we attain spatio-temporal speckles, which retain the same spatial pattern S(x,y),
while the overall intensity is blinking rapidly as IEXC(t). In other words, the measured sample
is illuminated with a blinking pattern P(x,y,t)= S(x,y)IEXC(t). To map the PL decay ID, i.e., to
retrieve ID (x,y,t), it is necessary to detect IEXC (t) with a diode, IPL (t) with a photomultiplier,
and the speckle pattern S(x,y) with an array 2D detector (e.g., CMOS camera).

Equation (1) can be rewritten for a 2D sample into a more general case, where n areas with
different ID are measured. The total emitted IPL is the sum of the contributions from all sample
spots:

n∑︂
i=1

IPL(i) = IEXC ∗

n∑︂
i=1

ID(i). (3)

For a given mask, we can evaluate from the measured data an average PL decay of the entire
illuminated area IDA:

IDA = Re

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩F
−1

⎡⎢⎢⎢⎢⎢⎢⎣
F

(︃
n∑︁

i=1
IPL(i)

)︃
F∗(IExc)

F(IExc)F∗
(︃

n∑︁
i=1

IPL(i)

)︃
+ εF(IExc)F∗(IExc)

⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (4)
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A different IDA will be detected for each mask, as illustrated in Fig. 3(A). The variation of
the IDA value, i.e., PL decay, for a selected time and different masks will be denoted as d. See
Fig. 3(B) for an example of a short subset of seven masks and four different times. We can
vectorize each illumination mask into a single row of the so-called observing matrix A and we
can also vectorize the map of the PL intensity into a vector m. In this case, we can express their
relation as a simple matrix multiplication:

d = Am. (5)

Fig. 3. (A) Examples of simulated ID curves, which differ due to the change of the
illuminating mask. (B) Varying intensity for the seven different masks in selected time-points
of simulated ID curves – see dashed lines in panel A. (C) Example of reconstructed PL maps.
Selected pixels are marked with a colour corresponding to the time point. (D) A simulated
example of reconstructed ID in four time points. Reconstruction at multiple points would
copy the entire ID (solid black line).

Matrix A has a number of columns corresponding to the number of map pixels N, while the
number of rows follows the number of used masks M, i.e., the number of measurements. The
ratio between M and N determines the compression ratio k=M/N.

We aim at solving an underdetermined system, which can be accomplished by means of
a compressed sensing algorithm where we employ a regularization. In this work, we used
the algorithm TVAL3 [17,18], which is based on the minimization of total variation TV of
reconstructed images and follows Eq. (6) [19].

min{| |d − Am| |22 + TV(m)}. (6)

Using Eq. (6), it is possible to reconstruct the PL map m(x,y) for each time point t [see
Fig. 3(C)]. Knowing that we are reconstructing a PL image, we can constrain the solution to m∈R
and m≥0. If we stack the individual m(x,y) behind each other, we create a 3D matrix m(x,y,t)
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that corresponds to the appropriate PL intensity ID (x,y,t) of the sample. Therefore, we can also
extract PL decay for any selected spot of the sample [see Fig. 3(D)] and we can fit the obtained
PL dynamics ID with a single- or multi-exponential decay to get the lifetime map.

3. Optical setup

The used optical setup is depicted in Fig. 4. We used a CW laser at wavelength 405 nm (IO
matchbox laser diode, free-space) as a light source. The combination of a focusing lens A (f= 25.4
mm), a rotating diffuser (average grain size 3.87 µm) with a collimating lens B (f= 75 mm), and
an aperture (diameter 1.5 mm) generated intensity randomly fluctuating in time IEXC (t).

Fig. 4. Scheme of the used optical setup – see text for details.

The generation of a random mask (spatial speckles) is achieved with another focusing lens
C (f= 25.4 mm). The beam is focused on a movable diffuser (average grain size 8.06 µm) and
the diffused light is again collimated with lens D (f= 50 mm). The resulting mask pattern was
blinking, according to IEXC (t).

The patterned beam is split twice with two N-BK7 glass wedges (5°), which reflect about
6% of the incident intensity. The first reflection is used to detect IEXC(t) with a Si amplified
photodetector (Thorlabs PDA8A2, rise time 7 ns). The second reflected beam is used to acquire
the mask pattern with a camera (CMOS, IDS UI-3240ML-M-GL). The transmitted pattern is
used to illuminate the measured sample. The PL emitted from the excited sample, i.e., the IPL(t)
signal, was detected with a type H10721-20 Hamamatsu photomultiplier (PMT) module (rise
time 0.6 ns). The scattered excitation light was blocked by a cut-off filter at 500 nm (Thorlabs,
FEL0500). The detected PL signal was amplified by a model SR445A SRS amplifier and read
out by a TiePie Handyscope HS5-110XM USB oscilloscope.

The laser beam intensity entering the setup is 138.5 mW, while the full average intensity that
illuminates the measured sample oscillates around 5.5 µW. The overall efficiency of the system
is about 0.003%, which can be, however, improved approximately 10 times by optimizing the
parameters of the optical elements. The size of the measured area was about 18 mm2 and is given
by the size of the generated speckle masks. It is possible to scale the field of view by adjusting
the collimating lens D.

The TCSPC setup which was employed for the reference measurements used a picosecond
laser at 405 nm, 100 kHz repetition rate, and 0.2 nJ/pulse. The laser pulses excited a PL signal
detected by a PMT. The decay data were acquired by a PicoHarp 300 module. The impulse
response function (IRF) of the TCSPC setup was negligible (< 1 ns) in comparison with the
lifetimes of the measured samples, and, therefore, it has not been taken into account.
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4. Results and discussion

As a proof-of-principle experiment, we carried out imaging of a combination of an OG565 orange
absorbing cut off filter and a Si wafer with a nanoporous surface prepared by electrochemical
etching of the Si wafer in hydrofluoric acid and ethanol solution [14,20]. Both samples had
been measured previously by the 0D-RATS method and the resulting PL decay shapes had been
verified with a standard method, namely the streak camera, and can be found in a previously
published article [11].

In order to compare the data with methods commonly used for FLIM, we verified the 0D-RATS
method with a reference TCSPC method. The comparison depicted in Fig. 5 confirms the
correctness of the RATS approach. The 0D-RATS data (symbols) were measured in the same
configuration and with the excitation light parameters described in Section 3. For the sake of
this comparison, the detected spectral region in both setups (RATS and TCSPC) was restricted
by colour filters to 500–800 nm. To compare the decays from the zero time, the TCSPC data
were convoluted with the IRF of the 0D-RATS method, i.e., Gauss function with a full width half
maximum (FWHM) equal to 0.59 µs. This convolution caused the depicted TCSPC curves (blue
curves in Fig. 5) to be very smooth, in spite of the significant noise level in the raw data.

Fig. 5. 0D-RATS method verification with TCSPC method. Excitation wavelength: 405 nm;
energy 19 µW/pulse, 100 kHz repetition rate. Comparison of PL decays of OG 565 filter (A)
and nanoporous Si wafer (B) acquired by 0D-RATS method (blue lines) and TCSPC data
convoluted with impulse response function of RATS measurement (red marks). See text for
details. For the sake of comparison, the data have been normalized.

For the benefit of the comparison of the two methods, it is worth noting that, due to the long
PL lifetimes, it was necessary to use a low excitation repetition rate (100 kHz) in the TCSPC
setup. This led to the TCSPC acquisition time of 20 minutes (used for data in Fig. 5). In contrast,
the 0D-RATS method acquired the PL decay data within 2 seconds. This value is proportionate
to the acquisition time of the methods commonly used for microsecond PL measurement, such as
direct PMT decay acquisition. Nevertheless, as we showed in the previous section, the RATS
method allows a simple and low-cost implementation of FLIM based on the use of a single-pixel
camera.

4.1. Single-pixel camera PL map reconstruction

Our method is based on compressive imaging and requires iterative image reconstruction, which
was described in Eq. (6). The crucial parameters (together with their set value) were: mu (29),
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beta (26). The reconstruction parameters were set according to the reconstruction of the testing
experiments and simulations, and the same parameters are used for all the presented images.

4.2. Mask preprocessing

We captured the speckle mask on a CMOS chip and, prior to its use, we carried out a set of
operations to convert the speckle image into a form suitable for our calculation.

The first part of preprocessing was cropping of the mask. Since the mask did not occupy the
entire camera chip, the image was cropped so that the information value remains and at the same
time we reduce the number of reconstructed pixels N.

The second part was the mask rescaling. A laser speckle pattern is a natural random pattern,
where the dimensions of each speckle vary around a certain mean value. For this reason, it is
unclear how the high-resolution camera image of laser speckles aM should be rescaled into the
image aM’ used in the measurement matrix A while retaining the useful information. An example
of such rescaling is presented in Fig. 6.

Fig. 6. Cropped original camera image of speckle patterns (aM, left-hand side) compared to
the processed mask pattern (aM’, right-hand side) with a scaling factor h= 35 pixels, which
corresponds with the mean speckle size of the aM pattern.

4.2.1. Mask rescaling effect

By using a set of simulations, we examined how the image reconstruction quality is affected by a
varying mask scaling factor. The set of masks employed in the simulations, i.e., camera images
of speckles, was acquired in the real measurements. The mean speckle size h for the examined
set of masks is h= 35 pixels, which was calculated as the full width half maximum (FWHM)
of the speckle pattern autocorrelation function [21]. The compression ratio k was set for the
purpose of the simulations to 0.4, and the noise level of the PL intensity was set to the σ = 0.5%.

The reconstruction error of the PL maps was calculated as an l2 norm of the vectorized
reconstructed image m and the original image U. To normalize the error for the image intensity,
we calculate the relative error r:

r =
| |m − U | |2
| |U | |2

. (7)

Since the scaling factor changes the number of pixels of a mask, the number of reconstructed
image pixels N changed accordingly. The straightforward evaluation of the reconstruction quality
by using residues was not meaningful because a smaller number of pixels leads to a lower level
of residues despite worse image quality since we are solving a highly underdetermined system.

The simulations based on two different PL maps in Figs. 7(A)–7(B) show that the relative error
r does not have a strong systematic dependence on the scaling factor [see Fig. 7(C)]. It is only
possible to observe a slightly decreasing trend of the error towards smaller scaling values.



Research Article Vol. 29, No. 4 / 15 February 2021 / Optics Express 5545

Fig. 7. Effect of scaling factor h on relative error in image reconstruction of two different
PL maps depicted in panel A (red line in C) and panel B (blue line in C). The black line in
panel C denotes the scaling factor according to the mean speckle size.

However, maintaining a given compression ratio for a higher resolution implies increasing the
number of scanned masks, thus increasing the total acquisition time. Therefore, as a reasonable
compromise, we used the scaling factor h= 35 that corresponded to the average speckle size of
the used patterns. The effect of this scaling is illustrated in Fig. 6, which was processed based on
this value.

4.3. Proof-of-principle measurements

The first analyzed sample was an OG565 orange absorbing cut-off filter, which was divided
with an opaque line into two regions with the same PL decay dynamics ID. Such a situation
corresponds, for instance, to a mapping of a single PL marker in a sample. The illuminated
spot was the size of ∼ 18 mm2, the number of masks M= 400. The mask resolution was
rescaled according to the speckle size (h= 35 pixels), leading to the image resolution of 28× 36
(N = 1008).

We tested image reconstruction for three different compression ratios k, where the number
of pixels N remained the same and the number of used masks M was decreased accordingly.
Namely, we employed the compression ratio k= 0.4 [see Fig. 8(A)], k= 0.2 [see Fig. 8(B)], and
k= 0.05 [see Fig. 8(C)]. The corresponding data acquisition times were 47 min, 24 min, and
6 min, respectively. The results are summarized in Fig. 8 and divided into areas A, B, and C,
correspondingly.

The left part shows the reconstruction of the PL map for two different times. The middle part
includes graphs “a” and “b”, which show the ID of a randomly selected pixel, which corresponds
to the reconstructed area “a” or “b”. The graphs include two time points (blue and violet), which
correspond with time points of the PL maps from the left part of the figure. The reconstructed ID
data (lines) were compared to the 0D-RATS method (red circles). In all cases, the PL decays
obtained by the 2D-RATS method are in perfect agreement with the data from the 0D-RATS
method. Although the reconstructed PL maps for the compression ratio k= 0.05 are noisy
compared to the higher compression ratios, the PL decays from 0D and 2D RATS methods are
still in perfect agreement.

The FLIM spectrogram is shown on the right side of the image. Individual τ values were
determined by the fitting algorithm. The reconstructed ID curves for each pixel were fitted with
a bi-exponential function. Lifetime τ was then determined as the time when the intensity of
the fitted bi-exponential decay decreased to 10% of the curve maximum. The impulse response
function of the measurement was 0.47 µs.
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Fig. 8. Measurement of a masked OG565 filter: (A) compression ratio 0.4, (B) compression
ratio 0.2, (C) compression ratio 0.05. Left panels: reconstruction of the PL map for
two different times. Middle section: graphs “a” and “b” show the reconstructed ID from
2D-RATS in a randomly selected pixel (“a” pix [14,10], “b” pix [16,25]) and ID given
via 0D-RATS; blue and violet stars denote the time of the PL maps on the left. Right
section: map of the PL lifetimes for the points where the PL amplitude exceeded 10% of the
maximum PL intensity.
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The mean lifetimes for the sample measured with compression ratios 0.4, 0.2, and 0.05 are
1.31 µs, 1.29 µs, and 1.29 µs. The mentioned average lifetimes vary with standard deviations
of 0.09 µs, 0.10 µs, and 0.13 µs. The statistical data do not include points that did not show a
luminescence intensity lower than 10% of the sample maximum, as well as data from the sample
edge, which were suffering from scattering signal and high noise level.

We observed that the lifetime precision, i.e., acquired standard deviations, are only marginally
affected by the used compression ratio. This ratio has more effect on the quality of the lifetime
maps.

In the second measurement, we acquired FLIM data of an artificially prepared sample with
two different dynamics of PL decays ID. The first area was an OG565 colour filter, while the
second area consisted of a Si wafer with a nanoporous surface.

Both the OG565 filter and the nanoporous Si had been previously tested with a standard
method and the 0D-RATS method, and the results from both 0D-RATS methods (Fig. 9, red
crosses) were compared in randomly chosen pixels of the 2D PL map (see Fig. 9, solid lines).
The results are summarized in Fig. 9 which follows the same logic as Fig. 8 but the compression
ratios are different.

The measured area was around 18 mm2; in total, 600 masks were scanned. Mask resolution
was rescaled again according to the mean speckle size (35 pixels), leading to a resolution of
the reconstructed PL map of 26× 24 (N = 624). Due to the lower IPL amplitude of nanoporous
Si, the reconstructed data suffer from a lower signal-to-noise ratio. For this reason, we present
reconstructed data for compression ratios k= 0.9 [Fig. 7(B)], and k= 0.5 [Fig. 7(C)]. The
corresponding data acquisition times were 63 min, 49 min, and 35 min, respectively. The PL
maps in Fig. 9 (left-hand side) have been normalized so that each data point has the same
amplitude. Therefore, we observe a flat PL image at the early times (0.6 µs), while for the later
time (1.6 µs), the prominent PL intensity is emitted from the upper part, i.e., nanoporous Si with
a long PL decay.

Analogously to the previous measurement, individual τ values were determined again by fitting
the data with double-exponential decay for both areas (OG565 and nanoporous Si). Lifetime
τ corresponds, analogously to the previous measurement, to the time where the intensity of
fitted ID drops to 10% of the curve maximum. The impulse response function of measurement
was 0.47 µs. For the nanoporous Si wafer, the mean lifetimes for the compression ratios of 0.9,
0.7, and 0.5 correspond to 21 µs, 21 µs, and 20 µs with a standard deviation of 3 µs, 3 µs, and
4 µs, respectively. For the OG565 filter, the mean lifetimes were 1.19 µs, 1.24 µs, and 1.28
µs, varying with a standard deviation of 0.09 µs, 0.16 µs, and 0.27 µs. The statistics included
again only points that did not have a luminescence intensity greater than 10% of the sample
maximum, as well as the edge points of the sample with the prevailing scattering signal. In the
combined sample, we attained for all measurements a slightly lower lifetime of the OG565 filter
area compared to the first sample. This arises due to the highly scattering Si wafer, which leads
to a stronger leakage of the excitation signal compared to the first measurement. Subsequently, a
larger amount of scattered excitation light reaches the detector and influences the results because
it forms a response-function-limited peak, which it is not possible to completely separate from
the PL decay.

4.4. Reconstruction error vs. intensity of PL decay

The intensity of PL is crucial for the resulting data reconstruction. This can be documented by
the fact that the attained PL decay of the nanoporous Si suffers from a significantly higher noise
level compared to the OG565 filter data. Analogously, we observed that the noise level of the PL
decay increases with the delay after excitation, as the PL intensity decays and decreases. This
effect was studied by using a relative error of reconstruction on the real dataset to capture the
realistic behaviour of the experimental system, including the noise characteristics of the detectors.
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Fig. 9. Measurement of nanoporous Si wafer. (A) compression ratio 0.9, (B) compression
ratio 0.7, (C) compression ratio 0.5. Left panels: reconstruction of the PL map for two
different times. Middle part: graphs “a” and “b” show the reconstructed ID from 2D-RATS
in a randomly selected pixel (“a” pix [14,10], “b” pix [16,25]) and ID given via 0D-RATS;
blue and violet stars denote the time of the PL maps on the left. Right part: map of the PL
lifetimes for the points where the PL amplitude exceeded 10% of the maximum PL intensity.
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The relative error σ was determined as the average absolute deviation of the back reconstructed
intensity signal dR=Am [see Eq. (6)] and the original signal d at a given time point relative to the
average value d:

σ =
1
M

M∑︂
i=1

|dR
i − di |

di
. (8)

Figure 10(A) (top panel) shows representative reconstructed decays for the first measurement
(two areas with the same PL decay (OG565)). The PL decay of the upper part of the measured
sample is indicated by a red line and the lower part with a blue line. In the bottom panel of
Fig. 10(A), the relative error of reconstruction is evaluated. The same logic is also applied in
Fig. 10(B), which shows representative decays for the combined sample (nanoporous Si+OG565
filter). The red line shows the PL decay of the upper part of the sample (nanoporous Si) and
the blue line shows the PL decay of the lower part of the sample (filter OG565). The bottom
panel of Fig. 10(B) then shows the relative reconstruction error. The relative error comparison
according to Eq. (8) depicted in Fig. 10 (bottom panels) was done for the same compression
ratio k= 0.6 and identical image resolution 26× 24. This ensures that the length of the vector d
remains constant. For cases where the length of the vector d changes, it is more appropriate to
observe the reconstruction error with Eq. (7) because a lower number of elements of d can cause
the reconstruction algorithm TVAL3 to reach a better agreement between d and d0 while the
reconstruction of the PL map can feature a lower quality.

Fig. 10. Relative reconstruction error evaluation with respect to the level of ID intensity.
Upper panels: Two examples of PL decay curves (red and blue lines) extracted from the
sample with two identical areas (filter OG565, panel A) and from the sample with two
different areas (nanoporous Si+ filter OG565, panel B). Bottom panels: reconstruction error
σ is evaluated as a relative error via Eq. (8) in each reconstructed time point.

For both cases in Fig. 10, we observe that the relative error level steadily increases with the
decreasing PL intensity (see the bottom panels). Thus, we can conclude that for a higher intensity
of detected PL it would be possible to reconstruct decays with a lower relative error even for
small compression ratios. However, the relative error still increases with the decreasing intensity
of PL decay.

5. Conclusion

We present a new approach to FLIM, which is based on a combination of the random temporal
speckles (RATS) method with the concept of a single-pixel camera. Spatio-temporal random
speckle patterns make it possible to track both PL images and dynamics on the microsecond
timescale. The speckle generation is based on rotating and movable diffusers, which reduces
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system requirements. The result is a low-cost FLIM setup of unrivalled simplicity. The strength
of the new concept lies in the imaging of PL decay on the microsecond timescale because the
lifetime acquisition time is reduced owing to the use of compressed sensing. At the same time,
the method can be performed using a simple single-pixel detector.

When compared to other commonly-used options of FLIM, the sample point-by-point scanning
of PL decay rapidly reaches extremely high acquisition times as the resolution of an image
increases. For instance, a 60×60 pixel image measured at 2 s per decay requires a total acquisition
time of two hours. The use of intensified CCD or TCSPC with a 2D array of single-photon
avalanche diodes (SPAD) can provide fast FLIM even in the microsecond timescale. Nevertheless,
the use of such an array detector dramatically increases the cost of the setup.

The acquisition time of 2D-RATS depends on several factors. The most prominent one is the
PL map resolution and the related compression ratio. We have shown that it is reasonable to
use scaling according to the mean speckle size. A lower resolution causes a loss in the image
quality, while a higher resolution cannot provide more information, as the resolution is limited by
the mean speckle size. The FLIM data reconstruction error also highly depends on the intensity
of PL. Hence, we can achieve fast acquisition by using a higher PL intensity while decreasing
the compression ratio. Under ideal conditions, i.e., highly emitting samples, we were able to
reach an acquisition time of 6 minutes. For a standard sample, it was necessary to increase the
compression ratio and the resulting acquisition time reached 35 minutes.

We would like to stress that the 2D-RATS method is a general concept, which uses spatio-
temporal random patterns to carry out time-resolved imaging. It can be therefore generalized for
the imaging of any temporal signal and has many possible ways of implementation. Since this
article serves as a demonstration of the new method, further optimization of the optical setup can
provide us with more efficient excitation use and PL collection. For instance, the use of a pair of
diffusers causes the vast majority of the excitation light energy to be lost in the setup and the
resulting low excitation intensity can be limiting. Nevertheless, this can be solved by modifying
the approach to mask generation – for instance, by using a digital micro-mirror device (DMD) or
a multimode fibre. An increase in the excitation intensity and the signal to noise ratio (SNR)
allows a further reduction of the compression ratio, thus decreasing the number of measurements
and saving additional data acquisition time.

In summary, the method is a low-cost and straightforward alternative to commonly-used
methods, providing the possibility of speedy measurement of fast mapping of PL decays on the
microsecond timescale.
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Abstract: Using a random temporal signal for sample excitation (RATS method) is a new,
capable approach to measuring photoluminescence (PL) dynamics. The method can be used in
single-point measurement (0D), but also it can be converted to PL decay imaging (2D) using
a single-pixel camera configuration. In both cases, the reconstruction of the PL decay and PL
snapshot is affected by ubiquitous noise. This article provides a detailed analysis of the noise
effect on the RATS method and possible strategies for its suppression. We carried out an extensive
set of simulations focusing on the effect of noise introduced through the random excitation signal
and the corresponding PL waveform. We show that the PL signal noise level is critical for the
method. Furthermore, we analyze the role of acquisition time, where we demonstrate the need
for a non-periodic excitation signal. We show that it is beneficial to increase the acquisition
time and that increasing the number of measurements in the single-pixel camera configuration
has a minimal effect above a certain threshold. Finally, we study the effect of a regularization
parameter used in the deconvolution step, and we observe that there is an optimum value set by
the noise present in the PL dataset. Our results provide a guideline for optimization of the RATS
measurement, but we also study effects generally occurring in PL decay measurements methods
relying on the deconvolution step.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Fluorescence lifetime imaging (FLIM) is a frequent spectrometric analysis in biology [1,2],
chemistry [3], and materials engineering [4]. There are various techniques for measuring or
evaluating photoluminescence (PL) dynamics, such as time-correlated single photon counting [5],
gated PL counting [6], streak camera [7], time-domain or frequency-domain analog recording
technique [8,9]. Another available method for PL decay measurement is based on random
excitation of the measured sample - the RATS method (RAndom Temporal Signals) [10], which
could also be set in a single-pixel camera (SPC) configuration [11] and carry out the FLIM
experiment. We abbreviate this measurement as 2D-RATS. At the current state, the method
can characterize morphology in the order of microseconds or sub-micro seconds (hundreds of
nanoseconds), including halide perovskite samples, solid-phase luminophores, or Si nanocrystals
[12–14]. However, ongoing research shows that it will be realistic to measure even at the
nanosecond scale.

The 2D-RATS method combines the SPC technique with the excitation of the PL with random
patterns (masks) blinking randomly in time. Each mask leads to a specific PL decay, which is
measured for a set of uncorrelated masks. Then, using algorithms for undetermined systems,
it is possible to reconstruct PL decays in each individual pixel of the 2D scene. The quality of
reconstruction is affected by noise, which is inevitably present in all measured data. Therefore,
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the noise analysis of the method is an essential piece of knowledge that allows optimization of
the method and identifies the most sensitive aspects of the setup. Moreover, many results valid
for the RATS method are also relevant for the PL measurement, where the deconvolution step is
used [15].

In this article, we carry out a detailed study of various noise effects on the 2D-RATS
measurement and their impact on the resulting FLIM information. Our analysis is based on
extensive simulations and a set of synthetic data faithfully following the real experimental
conditions for the SPC experiment carried with a digital micro-mirror device (binary illumination
mask). A digital micro-mirror device is part of our latest 2D-RATS setup, where it replaced an
optical diffuser (greyscale mask) [11]. Nevertheless, both binary and greyscale masks lead to the
same trends with respect to the noise level, and the presented results are generally valid for both
random mask implementations.

We analyze the benefits of various approaches to noise reduction. Besides the generally used
option to prolong the acquisition time [16], the deconvolution step in the RATS method allows
us to optimize the regularization parameter of the deconvolution [17,18]. Due to the random
nature of the excitation signal in RATS, we avoid the use of any mathematical filters which can
be apparently optimized for one type of signal, but due to the possibility of choosing a different
signal frequency and sampling, such a filter can be difficult to transfer to a general case.

Our article provides guidelines for optimizing experiments for PL decay measurement and
FLIM, where the deconvolution-based retrieval of PL dynamics is used. We demonstrate that the
noise present in the PL dataset is the most critical factor. At the same time, we show that the
resulting noise level in the FLIM dataset can be highly decreased by using a longer non-periodic
excitation signal or by optimizing the regularization parameter. The parameter features an
optimum value for a given noise level. We point out the issues connected to a periodic excitation
signal.

In particular, we demonstrate that with proper choice of regularization parameter and acquisition
time, the RATS method can attain results that are not distorted at all and can accurately map a
2D scene even with a relatively high noise level (3%).

2. RATS method

We will first introduce the principles of the single-spot 0D-RATS method and imaging 2D-RATS
measurement. The cornerstone of the RATS method is sample excitation with a random signal
IEXC. The random signal IEXC could be generated using a generator (lens, rotating diffuser,
aperture) described in our previous work [10]. However, there are many different ways to generate
a random signal. In the experiment should be detected IEXC (photodiode) and PL signal IPL
(photomultiplier), which is given as convolution of IEXC and PL decay ID (Eq. (1)).

IPL = IEXC ∗ ID. (1)

This fact can be used to recover the PL decay from IPL by using the Fourier transform and
the convolution theorem. The deconvolution is attainable only for the frequencies where the
excitation signal has a non-zero amplitude. Nevertheless, due to random excitation, a single
measurement contains a broad range of frequencies in a single dataset. PL decay ID could then
be determined via deconvolution (Eq. (2)), wherein the denominator is regularization parameter
ε adding a part of the average power of the spectrum due to it is possible to solve ill-conditioned
problems.

ID = Re

{︄
F−1

[︄
F(IPL) F

∗(IEXC)

F(IEXC)F∗(IEXC) + εF(IEXC)F∗(IEXC)

]︄}︄
. (2)

The 2D-RATS measurement is carried out in an SPC configuration, as we described in
our previous article [11]. We point the reader to numerous articles summarizing the SPC
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experiment for more details [19–22]. In our implementation of the SPC experiment, the sample
was illuminated with a set of random excitation patterns (masks). The excitation masks were
“blinking” with the same waveform IEXC(t), and the whole PL from each illuminated point i is
collected to a single-pixel detector. The time t for which a single mask illuminates the sample
following the intensity fluctuation of IEXC(t) is stated as acquisition time and is marked as tacq.
For the 0D-RATS, the acquisition time is equal to the total duration of the experiment. For the
2D-RATS experiment, the measurement over the acquisition time is repeated for each random
mask.

The photoluminescence IPL is given as a summation of IPL(i) signals. Then Eq. (1) can be
rewritten for the total PL intensity as:

IPL =

n∑︂
i=1

IPL(i) = IEXC ∗

n∑︂
i=1

ID(i). (3)

The number of excitation masks M is set by the number of image pixels N and the so-called
compression ratio k=M/N. Because masks are not coherent, i.e., one pattern is not correlated with
each other, each mask illuminates a different combination of the sample pixels, and, therefore,
each mask represents its own IPL, which can be used to retrieve the PL decay IDA:

IDA = Re

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩F
−1

⎡⎢⎢⎢⎢⎢⎢⎣
F

(︃
n∑︁

i=1
IPL(i)

)︃
F∗(IExc)

F(IExc)F∗(IExc) + εF(IExc)F∗(IExc)

⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (4)

PL snapshot m(t) can be reconstructed in each delay after excitation t using the calculated
IDA(t) curves. For the given delay and each excitation mask, the IDA(t) provides a dataset ISPC
describing intensity fluctuation of M values – see Fig. 1(C), where each curve corresponds to a
single ISPC dataset. Then PL snapshot m(t) is then retrieved from the underdetermined dataset by
using a standard SPC retrieval:

min{| |Am(t) − ISPC | |
2
2 +TV(m(t))}. (5)

The sensing matrix A is formed from vectorized excitation patterns, TV stands for the total
variation calculation.

By reconstructing a temporal snapshot for each delay t, we get a 3D datacube, which contains
PL decay in every i-th pixel of the sample ID(i,t). The whole concept is illustrated and summarized
in Fig. 1.
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105 Fig. 1: (A) Scheme of 2D-RATS approach, where the sample is illuminated with a set of random 
106 patterns (masks) blinking according to IEXC. The total PL intensity waveform IPL is detected for 
107 each mask with a single-pixel detector. (B) Example of a set of calculated IDA's for corresponding 
108 masks – see Eq.(4). (C) Intensity fluctuation for each delay after excitation of IDA. Knowing the 
109 fluctuation (ISPC signal) and set of masks makes it possible to determine the PL map m at a given 
110 delay after excitation of IDA using compressed sensing algorithms. (D) An example of 
111 reconstructed PL maps in delays t1 and t2. Plotted ID’s corresponding to pixel [14 10] (area "a") 
112 and to pixel [16 25] (area "b").

113 The number of excitation masks M is set by the number of image pixels N and the so-called 
114 compression ratio k = M/N. Because masks are not coherent, i.e., one pattern is not correlated 

Fig. 1. (A) Scheme of 2D-RATS approach, where the sample is illuminated with a set of
random patterns (masks) blinking according to IEXC. The total PL intensity waveform IPL
is detected for each mask with a single-pixel detector. (B) Example of a set of calculated
IDA’s for corresponding masks – see Eq. (4). (C) Intensity fluctuation for each delay after
excitation of IDA. Knowing the fluctuation (ISPC signal) and set of masks makes it possible
to determine the PL map m at a given delay after excitation of IDA using compressed sensing
algorithms. (D) An example of reconstructed PL maps in delays t1 and t2. Plotted ID’s
corresponding to pixel [14 10] (area “a”) and to pixel [16 25] (area “b”).

3. Noise effect simulation

A small contribution of noise can be expected in each measured signal in the experiment. In
order to maintain stable conditions, the role of the noise was explored through simulations. A
primary signal IEXC was simulated using temporal speckles patterns [23], which are cornerstones
of a random analog signal generator presented in our previous work [10]. The length of the
simulated IEXC signal was 0.1 s with an impulse response function of FWHM of 2.07µs. The PL
decay ID was considered with the lifetime τ = 20 µs. Used noise levels throughout the article are
consistent with the noise that can be expected in a realistic experiment [15]. In the current optical
setup, an amplified signal from a photomultiplier is used for IPL detection, and this sensitive part
is the main source of the noise. The noise originates from scattered excitation photons and the
noise induced in the detector itself, which is based on shot noise and standard electronic noise.
The experimentally observed noise can be very well described with a flat frequency dependence,
i.e., white noise.
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The excitation signal IEXC was simulated as a non-periodic random signal. The importance of
a non-periodic signal will be explained in section 4.1. It is worth noting that with the exception
of section 4.3, the regularization parameter ε (Eq. (2) and Eq. (4), respectively) is considered as
ε= 0.1.

3.1. 0D-RATS

To demonstrate the basic steps, we shall start with the non-imaging RATS, i.e., 0D-RATS. We
use two datasets of IEXC and IPL, which are subsequently used to retrieve the PL decay via Eq. (2).
Therefore, we initially simulated the effect of noise present in these two datasets.

Firstly, we added white noise to IEXC, while IPL was kept absolutely noiseless (Fig. 2(A)) and
vice versa (Fig. 2(B)). In both datasets in Fig. 2, the signal-to-noise ratio (SNR) was 15.2 dB
which corresponds to 3% percent of noise in the system (see Eq. (6)).

158
159 Fig. 2: (A) Reconstructed ID with a noise level of 3% in IEXC, which corresponds with SNR about 
160 15.2 dB. IPL was assumed noiseless. (B) Reconstructed ID with a noise level of 3% in IPL, 
161 corresponding with SNR about 15.2 dB. IEXC was assumed noiseless.

162 10
[%][ ] 10log .

100
noiseSNR dB     

 
(6)

163 We can quantify the noise level by the root-mean-square error, which reaches RMSEPL = 
164 12.9·10-3 for the noise in the PL signal and RMSEEXC = 2.8·10-3 for the noise in the excitation 
165 signal. That suggests that regularization in the denominator of Eq.(2) has a more pronounced 
166 effect on IEXC than IPL, which becomes the dominating source of noise in the retrieved decay.

167 3.2 2D-RATS

168 As the next step, we also simulated the effect of noise in the IPL and IEXC signal on the 2D-
169 RATS experiment. Here, the situation is more complex because the noise present in the IPL and 
170 IEXC datasets is first transposed into the noise of the retrieved PL decay curve IDA(t) from Eq.(4). 
171 The noise present in these curves is then propagating into the SPC signal ISPC, which is then 
172 used for the retrieval of the set of PL snapshots for each delay in Eq.(5). 
173 All simulated reconstructions were performed using binary masks. We used the 
174 reconstruction algorithm based on the sparsity of total variation TVAL3 [24,25]. The main 
175 parameters of the TVAL3 algorithm were: mu (211), beta (27). As an investigated sample, we 
176 used Matlab predefined image Phantom, where the PL decay with a single lifetime of 𝜏 = 20 µs 
177 was set to be constant all over the Phantom's "body". Acquisition time and other conditions 
178 simulating real experiments were kept the same as for the 0D-RATS simulations above.
179 We carried out the same calculation as we presented in Section 3.1, and we show in Fig. 3 
180 the retrieved PL snapshots m(t) in the peak PL intensity, i.e., t  = 0 µs, where the contrast of the 
181 PL signal is the highest. The case was studied for three different SPC compression ratios k = 
182 0.4, 0.6, 0.8 and four signal-to-noise ratios SNR = 15.2, 18.2, 20, 23 dB, which corresponds to 
183 3%, 1.5%, 1%, 0.5% level of noise in the signal.
184 The results are summarized in Fig. 3 for the noise introduced in the IEXC signal (left-hand 
185 side) and the noise introduced in the IPL signal (right-hand side), and the corresponding resulting 
186 noise levels are presented in Table 1.
187 Analogously to the 0D-RATS, the noise in IPL has a significantly worse effect on the image 
188 retrieval than the noise in the IEXC signal. By comparing different noise levels (compare lines 
189 in Fig. 3), one can see that the SNR of the IPL is the main limiting factor in the snapshot retrieval. 
190 The effect of compression ratio (compare columns in Fig. 3) does not play any significant role 
191 for the values above 0.4. This means that it is not efficient to compensate for higher noise in 
192 the measured signal by simply increasing the number of measured excitation masks.

Fig. 2. (A) Reconstructed ID with a noise level of 3% in IEXC, which corresponds with
SNR about 15.2 dB. IPL was assumed noiseless. (B) Reconstructed ID with a noise level of
3% in IPL, corresponding with SNR about 15.2 dB. IEXC was assumed noiseless.

For both retrieved decays in Fig. 2 (red lines), the noise had an effect on reconstructed ID, but
the investigated PL dynamics were not biased, i.e., the overall decay shape was not altered, and it
was in perfect agreement with the expected output (black lines). Nevertheless, we observed that
the noise in the IPL dataset had a significantly more pronounced effect on the resulting noise in
the retrieved PL decay (Fig. 2(B)).

SNR[dB] = −10log10

(︃
noise[%]

100

)︃
. (6)

We can quantify the noise level by the root-mean-square error, which reaches RMSEPL = 12.9·10−3

for the noise in the PL signal and RMSEEXC = 2.8·10−3 for the noise in the excitation signal. That
suggests that regularization in the denominator of Eq. (2) has a more pronounced effect on IEXC
than IPL, which becomes the dominating source of noise in the retrieved decay.

3.2. 2D-RATS

As the next step, we also simulated the effect of noise in the IPL and IEXC signal on the 2D-RATS
experiment. Here, the situation is more complex because the noise present in the IPL and IEXC
datasets is first transposed into the noise of the retrieved PL decay curve IDA(t) from Eq. (4). The
noise present in these curves is then propagating into the SPC signal ISPC, which is then used for
the retrieval of the set of PL snapshots for each delay in Eq. (5).
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All simulated reconstructions were performed using binary masks. We used the reconstruction
algorithm based on the sparsity of total variation TVAL3 [24,25]. The main parameters of
the TVAL3 algorithm were: mu (211), beta (27). As an investigated sample, we used Matlab
predefined image Phantom, where the PL decay with a single lifetime of τ = 20 µs was set to be
constant all over the Phantom’s “body”. Acquisition time and other conditions simulating real
experiments were kept the same as for the 0D-RATS simulations above.

We carried out the same calculation as we presented in Section 3.1, and we show in Fig. 3 the
retrieved PL snapshots m(t) in the peak PL intensity, i.e., t = 0 µs, where the contrast of the PL
signal is the highest. The case was studied for three different SPC compression ratios k= 0.4, 0.6,
0.8 and four signal-to-noise ratios SNR= 15.2, 18.2, 20, 23 dB, which corresponds to 3%, 1.5%,
1%, 0.5% level of noise in the signal.

193
194 Fig. 3: Left part: reconstructions of PL map m in delay with maximal intensity (t = 0 µs) in case 
195 of noise in IEXC. Right part: reconstructions of PL map m in delay with maximal intensity (t = 0 
196 µs) in case of noise in the IPL. The noise parameters are for both SNR = 15.2, 18.2, 20, 25 dB 
197 (rows) and the compression ratios are k = 0.4, 0.6, 0.8 (columns).

198 Table 1: Quality of the retrieved image (R, lower number = higher quality) and SPC signal (SPC-SNR, higher 
199 number  = higher quality) corresponding to Fig. 3 for noise introduced via IEXC and IPL signal.

noise level
noise source k

SNR 15.2dB SNR 18.2dB SNR 20dB SNR 23dB

0.4 0.177 0.158 0.150 0.142

0.6 0.175 0.155 0.149 0.142EXC

0.8 0.175 0.155 0.149 0.142

0.4 0.328 0.265 0.242 0.191

0.6 0.312 0.264 0.215 0.192

R

PL

0.8 0.326 0.261 0.224 0.181

0.4 38.01 43.80 48.14 54.97

0.6 38.06 43.84 48.05 55.04EXC

0.8 37.98 43.90 48.25 55.16

0.4 34.67 37.52 39.53 43.24

0.6 34.86 37.45 40.01 43.10

SPC-SNR

PL

0.8 34.84 37.83 39.48 42.72

200
201 To quantify the effect of each parameter, we introduced three different measures. Firstly, 
202 we can judge the image reconstruction quality, where we compare the retrieved snapshot m (in 
203 delay t = 0 µs) with the actual image used in simulations U by using Frobenius norm of the 
204 two:

205 .F

F

m U
R

U


 (7)

Fig. 3. Left part: reconstructions of PL map m in delay with maximal intensity (t= 0 µs)
in case of noise in IEXC. Right part: reconstructions of PL map m in delay with maximal
intensity (t= 0 µs) in case of noise in the IPL. The noise parameters are for both SNR= 15.2,
18.2, 20, 25 dB (rows) and the compression ratios are k= 0.4, 0.6, 0.8 (columns).

The results are summarized in Fig. 3 for the noise introduced in the IEXC signal (left-hand side)
and the noise introduced in the IPL signal (right-hand side), and the corresponding resulting noise
levels are presented in Table 1.

Analogously to the 0D-RATS, the noise in IPL has a significantly worse effect on the image
retrieval than the noise in the IEXC signal. By comparing different noise levels (compare lines in
Fig. 3), one can see that the SNR of the IPL is the main limiting factor in the snapshot retrieval.
The effect of compression ratio (compare columns in Fig. 3) does not play any significant role for
the values above 0.4. This means that it is not efficient to compensate for higher noise in the
measured signal by simply increasing the number of measured excitation masks.

To quantify the effect of each parameter, we introduced three different measures. Firstly, we
can judge the image reconstruction quality, where we compare the retrieved snapshot m (in delay
t= 0 µs) with the actual image used in simulations U by using Frobenius norm of the two:

R =
| |m − U | |F
| |U | |F

. (7)
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Table 1. Quality of the retrieved image (R, lower number=higher quality) and SPC
signal (SPC-SNR, higher number=higher quality) corresponding to Fig. 3 for noise

introduced via IEXC and IPL signal.

noise source k
noise level

SNR 15.2dB SNR 18.2dB SNR 20dB SNR 23dB

R

EXC
0.4 0.177 0.158 0.150 0.142

0.6 0.175 0.155 0.149 0.142

0.8 0.175 0.155 0.149 0.142

PL
0.4 0.328 0.265 0.242 0.191

0.6 0.312 0.264 0.215 0.192

0.8 0.326 0.261 0.224 0.181

SPC-SNR

EXC
0.4 38.01 43.80 48.14 54.97

0.6 38.06 43.84 48.05 55.04

0.8 37.98 43.90 48.25 55.16

PL
0.4 34.67 37.52 39.53 43.24

0.6 34.86 37.45 40.01 43.10

0.8 34.84 37.83 39.48 42.72

We can also focus on the PL dynamics for each pixel i, where the reconstructed decay curve
IDREC(i) is normalized and compared with the actual decay curve ID(i), which was used to
simulate the data. The comparison was made from t0 = 0 µs to tT = 120 µs, which is a sufficient
temporal range for the decay curve with a lifetime of 20 µs. We denote this error as the decay
deviation σ:

σ =
1
N

N∑︂
i=1

tτ∑︂
t=t0

√︂
(IDREC(i, t) − ID(i, t))2. (8)

Finally, we also determined the SNR of the ISPC signal, which is used for the image retrieval m
in delay t= 0 µs. Note that the ISPC signal indicates the fluctuation of IDA curves corresponding
to the respective delay. The fluctuations (ISPC) are affected by the noise in both IEXC and IPL. We
extract the ISPC noise level to provide a comparison to other SPC experiments. SPC-SNREXC
denotes the signal-to-noise level in ISPC when the noise was added to IEXC and SPC-SNRPL
indicates the case when the noise was added to the IPL. Analogously, the indices “PL” and “EXC”
have the same meanings for REXC and RPL or σEXC and σPL.

4. Noise level optimization

In Section 3, we studied the effect of the noise level in the IEXC respective IPL simulated dataset
on the retrieval of the PL decay curve and PL snapshot. The noise levels are determined by the
properties of an optical setup, which features a certain photon budget (number of detectable
photons), types of detectors, and samples. For an optimized optical setup, such characteristics
can not be easily improved.

On the other hand, it is possible to enhance the quality of the retrieved PL decay or FLIM on
the expenses of the acquisition time. Therefore, we studied the benefits connected to a longer
acquisition time. Due to the fact that the RATS method is based on signal deconvolution, an
important factor is the periodicity of the signal, as we discuss in the following subsection.

4.1. Periodic extension of acquisition time

A straightforward approach to improve the quality of the PL decay ID retrieval via Eq. (2) is to
repeat the same measurement for the same excitation waveform. Hence, we attain a periodic IEXC
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and IPL signal. However, it is worth stressing that the use of a periodic signal IEXC will create
unwanted artefacts in the retrieved data. It follows from the nature of deconvolution in Eq. (2)
that such periodic excitation waveform leads to a periodic ID signal with a lower amplitude. We
will demonstrate this effect on a 0D-RATS simulation.

We compared the retrieved PL decay (ID curve) in the case of a non-periodic IEXC signal with a
duration of 0.1 s and a periodic IEXC signal (7 periods) with the same total duration of 0.1 s. This
is illustrated by Fig. 5. For completeness, we present in Fig. 4 the non-periodic signal used and
the periodic signal counting seven periods. Both signals were simulated based on simulations of
randomly changing speckle patterns [23], which corresponds with excitation signals generated
via a random signal generator (lens-rotary diffuser-aperture) presented in our previous work [10].
Due to the rotating diffuser, a periodic signal can be expected, which due to small vibrations may
be rather quasi-periodic. However, a perfectly periodic and non-periodic signal can be achieved
via a suitable laser modulation.

249
250 Fig. 4: Used excitation non-periodic signal (left panel) and periodic signal with 7 periods (right 
251 panel). Both signals were simulated based on simulations of randomly changing speckle patterns 
252 [23], which corresponds with excitation signals generated via generator (lens-rotary diffuser-
253 aperture) presented in our previous work [10].

254
255 Fig. 5: Results of ID reconstruction (deconvolution), when non-periodic (panel A) and periodic 
256 (panel B) IEXC was used for sample excitation with lifetime 𝜏 = 20 µs.

257 When we zoom in Fig. 5(B) into the PL dynamics during the first hundreds of microseconds, 
258 i.e., one of the PL decay replicas, we get after normalization the correct ID following the actual 
259 decay – see Fig. 6. However, the resulting SNR is decreased. We tested in Fig. 6 the noise 
260 introduced via the excitation signal IEXC (panel A) and PL signal IPL (panel B). The root-mean-
261 square error for curves in Fig. 6 reaches RMSEPL = 29.7·10-3 and RMSEEXC = 7.8·10-3 for the 
262 noise introduced in the IPL and IEXC signal, respectively. The noise level in Fig. 6 can be directly 
263 compared to Fig. 2, where we used a non-periodic signal and where RMSEPL = 12.9·10-3 and 
264 RMSEEXC = 2.8·10-3. For the non-periodic signal, the resulting noise level was more than 2-
265 times lower. 
266 To further illustrate this behavior, we carried out a set of simulations, where we kept a 
267 constant total acquisition time of 0.1 s, while the IEXC signal was set to be periodic with up to 
268 16 periods – see Fig. 7. The root-mean-square error increases with the number of periods for 
269 both situations – noise in the IEXC and IPL signal.  Therefore, for the sake of optimum signal 
270 reconstruction in the RATS method, it is worth avoiding any periodicity in the IEXC signal.

Fig. 4. Used excitation non-periodic signal (left panel) and periodic signal with 7 periods
(right panel). Both signals were simulated based on simulations of randomly changing
speckle patterns [23], which corresponds with excitation signals generated via generator
(lens-rotary diffuser-aperture) presented in our previous work [10].

The entire retrieved PL dataset is depicted in Fig. 5. The comparison between the periodic and
non-periodic excitation – see right and left-hand side, respectively – shows that the amplitude
of the retrieved PL for the periodic IEXC signal is about seven times smaller compared to the
non-periodic case and the PL signal has multiple replicas.

When we zoom in Fig. 5(B) into the PL dynamics during the first hundreds of microseconds, i.e.,
one of the PL decay replicas, we get after normalization the correct ID following the actual decay
– see Fig. 6. However, the resulting SNR is decreased. We tested in Fig. 6 the noise introduced via
the excitation signal IEXC (panel A) and PL signal IPL (panel B). The root-mean-square error for
curves in Fig. 6 reaches RMSEPL = 29.7·10−3 and RMSEEXC = 7.8·10−3 for the noise introduced in
the IPL and IEXC signal, respectively. The noise level in Fig. 6 can be directly compared to Fig. 2,
where we used a non-periodic signal and where RMSEPL = 12.9·10−3 and RMSEEXC = 2.8·10−3.
For the non-periodic signal, the resulting noise level was more than 2-times lower.

To further illustrate this behavior, we carried out a set of simulations, where we kept a constant
total acquisition time of 0.1 s, while the IEXC signal was set to be periodic with up to 16 periods –
see Fig. 7. The root-mean-square error increases with the number of periods for both situations –
noise in the IEXC and IPL signal. Therefore, for the sake of optimum signal reconstruction in the
RATS method, it is worth avoiding any periodicity in the IEXC signal.
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258 i.e., one of the PL decay replicas, we get after normalization the correct ID following the actual 
259 decay – see Fig. 6. However, the resulting SNR is decreased. We tested in Fig. 6 the noise 
260 introduced via the excitation signal IEXC (panel A) and PL signal IPL (panel B). The root-mean-
261 square error for curves in Fig. 6 reaches RMSEPL = 29.7·10-3 and RMSEEXC = 7.8·10-3 for the 
262 noise introduced in the IPL and IEXC signal, respectively. The noise level in Fig. 6 can be directly 
263 compared to Fig. 2, where we used a non-periodic signal and where RMSEPL = 12.9·10-3 and 
264 RMSEEXC = 2.8·10-3. For the non-periodic signal, the resulting noise level was more than 2-
265 times lower. 
266 To further illustrate this behavior, we carried out a set of simulations, where we kept a 
267 constant total acquisition time of 0.1 s, while the IEXC signal was set to be periodic with up to 
268 16 periods – see Fig. 7. The root-mean-square error increases with the number of periods for 
269 both situations – noise in the IEXC and IPL signal.  Therefore, for the sake of optimum signal 
270 reconstruction in the RATS method, it is worth avoiding any periodicity in the IEXC signal.

Fig. 5. Results of ID reconstruction (deconvolution), when non-periodic (panel A) and
periodic (panel B) IEXC was used for sample excitation with lifetime T= 20 µs.

271
272 Fig. 6: Zoomed results of ID reconstruction (𝜏 = 20 µs.), when IEXC was used as a periodic signal 
273 (7 periods). Redline is reconstructed data, and the black line is reference data. (A) Reconstruction 
274 with an amount of noise of 3% in IEXC (correspond with SNR about 15.2 dB). (B) Reconstruction 
275 with an amount of noise of 3% in IPL (correspond with SNR about 15.2 dB).

276
277 Fig. 7: RMSE of ID for a periodical IEXC with a constant total acquisition time of tacq = 0.1 s. The 
278 number of periods in the IEXC signal is varied.  IPL respective IEXC noise level: SNR 15.2 dB.

279 4.2 Non-periodic acquistion time extension

280 The possible way to suppress the noise effect is to extend the acquisition time so that we avoid 
281 any IEXC signal periodicity. This approach favors frequencies representing the true signal in the 
282 Fourier spectrum and suppresses the contribution of white noise. We carried out simulations 
283 corresponding to the 2D-RATS measurement presented in Fig. 3. Nevertheless, here we used a 
284 set of acquisition times tacq = 0.1 s, tacq = 0.2 s, tacq = 0.4 s, tacq = 1 s and tacq = 2 s. Other 
285 conditions, such as reconstruction parameters, regularization parameter ε, and signal properties, 
286 were kept the same as in Section 3.
287 As in Section 3.2, we focus on the quality of the retrieved image (REXC, RPL), noise 
288 introduced into the SPC signal (SPC-SNREXC, SPC-SNRPL) in delay t = 0 µs. Moreover, this 
289 section also focuses on the deviation of the whole reconstructed PL decay in each pixel of the 
290 sample (EXC, PL). 
291 Dependences of each noise characteristics on the acquisition time are presented in Fig. 8-
292 10. In these figures, the line/symbol color indicates the given SNR (red: 15.2dB, blue: 18.2dB, 
293 black: 20dB and magenta: 23dB); line/symbol type represent the compression ratio k (cross: 
294 0.8, circle: 0.6, full line: 0.4).

Fig. 6. Zoomed results of ID reconstruction (T= 20 µs.), when IEXC was used as a periodic
signal (7 periods). Redline is reconstructed data, and the black line is reference data. (A)
Reconstruction with an amount of noise of 3% in IEXC (correspond with SNR about 15.2 dB).
(B) Reconstruction with an amount of noise of 3% in IPL (correspond with SNR about
15.2 dB).
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275 with an amount of noise of 3% in IPL (correspond with SNR about 15.2 dB).
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282 Fourier spectrum and suppresses the contribution of white noise. We carried out simulations 
283 corresponding to the 2D-RATS measurement presented in Fig. 3. Nevertheless, here we used a 
284 set of acquisition times tacq = 0.1 s, tacq = 0.2 s, tacq = 0.4 s, tacq = 1 s and tacq = 2 s. Other 
285 conditions, such as reconstruction parameters, regularization parameter ε, and signal properties, 
286 were kept the same as in Section 3.
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292 10. In these figures, the line/symbol color indicates the given SNR (red: 15.2dB, blue: 18.2dB, 
293 black: 20dB and magenta: 23dB); line/symbol type represent the compression ratio k (cross: 
294 0.8, circle: 0.6, full line: 0.4).

Fig. 7. RMSE of ID for a periodical IEXC with a constant total acquisition time of tacq = 0.1
s. The number of periods in the IEXC signal is varied. IPL respective IEXC noise level: SNR
15.2 dB.

4.2. Non-periodic acquistion time extension

The possible way to suppress the noise effect is to extend the acquisition time so that we avoid
any IEXC signal periodicity. This approach favors frequencies representing the true signal in the
Fourier spectrum and suppresses the contribution of white noise. We carried out simulations
corresponding to the 2D-RATS measurement presented in Fig. 3. Nevertheless, here we used
a set of acquisition times tacq = 0.1 s, tacq = 0.2 s, tacq = 0.4 s, tacq = 1 s and tacq = 2 s. Other
conditions, such as reconstruction parameters, regularization parameter ε, and signal properties,
were kept the same as in Section 3.

As in Section 3.2, we focus on the quality of the retrieved image (REXC, RPL), noise introduced
into the SPC signal (SPC-SNREXC, SPC-SNRPL) in delay t= 0 µs. Moreover, this section also
focuses on the deviation of the whole reconstructed PL decay in each pixel of the sample (σEXC,
σPL).

Dependences of each noise characteristics on the acquisition time are presented in Fig. 8–10.
In these figures, the line/symbol color indicates the given SNR (red: 15.2dB, blue: 18.2dB, black:
20dB and magenta: 23dB); line/symbol type represent the compression ratio k (cross: 0.8, circle:
0.6, full line: 0.4).

All the results in Fig. 8–10 confirm that the effect of noise level (varying color) is much more
pronounced than the compression ratio (varying line/symbol type), i.e., increasing the number of
excitation patterns above 40% compared to the number of the pixel has a negligible effect on the
image quality.

When we focus on the noise introduced via IEXC signal, it has a low effect on the resulting
image reconstruction – see Fig. 3, left-hand side. For this reason, the change in the acquisition
time has almost no effect on the resulting noise level regarding the image quality and SPC signal
error (see Fig. 8,9). A subtle peak in Fig. 8 for the acquisition time 0.2 s and a decrease in Fig. 9
for the same acquisition time are connected. They both indicate an increased amount of noise in
the ISPC signal for the given case of PL map reconstruction at delay t= 0 µs, which is unexpected
in light of the other results. However, we should consider that this result is connected just with
only one delay point (t= 0 µs). If we take into account the whole decay curve ID (signal-to-noise
ratio in all SPC signals connected with delay points of the curve ID), which is shown in Fig. 10, it
can be observed that this irregularity is averaged out.

On the contrary, for the noise introduced via the IPL signal, we can highly improve the quality
of the retrieved image by the increased acquisition time. This image quality enhancement is
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295
296 Fig. 8: Reconstruction error REXC (left part), RPL (right part) at the delay t = 0 µs dependence on 
297 sensing time for different SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black), 23 dB (magenta) 
298 and three different compression ratio k = 0.4 (full line), k = 0.6 (circle), k = 0.8 (cross).

299
300 Fig. 9: Noise dependence in SPC signal (random fluctuation in intensity of ID in delay t = 0 µs, 
301 because of changing illumination masks) on sensing time according to added noise to IEXC (left 
302 part) and IPL (right part) with SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black), 23 dB (magenta) 
303 and three different compression ratio k = 0.4 (full line), k = 0.6 (circle), k = 0.8 (cross).

304
305 Fig. 10: Acquisition time dependance of σEXC – noise added to IEXC (left part) and σPL – noise 
306 added to IPL (right part). SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black), 23 dB (magenta) 
307 and three different compression ratio k = 0.4 (full line), k = 0.6 (circle), k = 0.8 (cross).

Fig. 8. Reconstruction error REXC (left part), RPL (right part) at the delay t= 0 µs
dependence on sensing time for different SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black),
23 dB (magenta) and three different compression ratio k= 0.4 (full line), k= 0.6 (circle),
k= 0.8 (cross).
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297 sensing time for different SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black), 23 dB (magenta) 
298 and three different compression ratio k = 0.4 (full line), k = 0.6 (circle), k = 0.8 (cross).
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300 Fig. 9: Noise dependence in SPC signal (random fluctuation in intensity of ID in delay t = 0 µs, 
301 because of changing illumination masks) on sensing time according to added noise to IEXC (left 
302 part) and IPL (right part) with SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black), 23 dB (magenta) 
303 and three different compression ratio k = 0.4 (full line), k = 0.6 (circle), k = 0.8 (cross).

304
305 Fig. 10: Acquisition time dependance of σEXC – noise added to IEXC (left part) and σPL – noise 
306 added to IPL (right part). SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black), 23 dB (magenta) 
307 and three different compression ratio k = 0.4 (full line), k = 0.6 (circle), k = 0.8 (cross).

Fig. 9. Noise dependence in SPC signal (random fluctuation in intensity of ID in delay t= 0
µs, because of changing illumination masks) on sensing time according to added noise to
IEXC (left part) and IPL (right part) with SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black),
23 dB (magenta) and three different compression ratio k= 0.4 (full line), k= 0.6 (circle),
k= 0.8 (cross).



Research Article Vol. 30, No. 8 / 11 Apr 2022 / Optics Express 12665

295
296 Fig. 8: Reconstruction error REXC (left part), RPL (right part) at the delay t = 0 µs dependence on 
297 sensing time for different SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black), 23 dB (magenta) 
298 and three different compression ratio k = 0.4 (full line), k = 0.6 (circle), k = 0.8 (cross).

299
300 Fig. 9: Noise dependence in SPC signal (random fluctuation in intensity of ID in delay t = 0 µs, 
301 because of changing illumination masks) on sensing time according to added noise to IEXC (left 
302 part) and IPL (right part) with SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black), 23 dB (magenta) 
303 and three different compression ratio k = 0.4 (full line), k = 0.6 (circle), k = 0.8 (cross).

304
305 Fig. 10: Acquisition time dependance of σEXC – noise added to IEXC (left part) and σPL – noise 
306 added to IPL (right part). SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black), 23 dB (magenta) 
307 and three different compression ratio k = 0.4 (full line), k = 0.6 (circle), k = 0.8 (cross).

Fig. 10. Acquisition time dependance of σEXC – noise added to IEXC (left part) and σPL –
noise added to IPL (right part). SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black), 23 dB
(magenta) and three different compression ratio k= 0.4 (full line), k= 0.6 (circle), k= 0.8
(cross).

much more pronounced for higher noise levels. In the case where the noise level is 15.2 dB (3%),
the RPL will decrease by 50%, while when the noise level is 23 dB (0.5%), the RPL will decrease
by only 25%.

The results described in Fig. 8 are linked to the results presented in Fig. 9. As expected,
the highest SPC-SNREXC and SPC-SNRPL are reached for the lowest noise level in the system
- SNR= 23 dB (0.5%). On the other hand, the SPC-SNRPL increases as the acquisition time
increases, which results in a decrease in the RPL. An interesting finding is that when the
acquisition time is extended to 2s, the SPC-SNRPL increases even above the SPC-SNREXC value
corresponding to this acquisition time. Consequently, the same trend is observed for the RPL and
REXC values at a scanning time of 2 s.

Although it was stated that REXC and SPC-SNREXC do not change significantly with the
acquisition time, it is worth noting that these values represent only a single PL snapshot at the
selected delay t= 0 µs. The effect of acquisition time is notable for the decay curve reconstruction,
which is highly improved both for the noise in IEXC and IPL – see σ in Fig. 10. Decay deviation
σ decreases with the increasing acquisition time. Although both errors are in a different order of
magnitude, by increasing the acquisition time from 0.1 s to 2 s, both σ errors decreased by the
same ratio.

4.3. Regularization parameter effect

Another way to suppress the effect of noise is to change the regularization parameter ε in Eq. (2)
and Eq. (4). The regularization parameter makes it possible to solve the ill-conditioned problem,
where “division by zero” could occur for frequencies with very low amplitude in the IEXC signal
[26]. The regularization parameter adds a part of the averaged power of the spectrum to the
denominator of the Eq. (2) respective Eq. (4) and thus suppresses the influence of less frequent
frequencies in the signal (white noise). As a result, the calculated ID or IDA is smoothed.

As in the previous section, the influence of the parameter ε was investigated regarding the
quality of the reconstructed PL snapshot at the zero delay after excitation, which corresponds
to the maximum PL intensity. All simulations were carried with the acquisition time of 0.1 s
and a range of ε from 0.05 to 1. Reconstruction parameters and signal properties were held the
same as in Section 3. Figure 11–13 follow the same color scheme as in the previous section with
respect to SNR (color) and compression ratio (line/symbol type).
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360 Fig. 11: Reconstruction error REXC (left part), RPL (right part) at the delay t = 0 µs dependence 
361 on ε - different SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black), 23 dB (magenta) and three 
362 different compression ratio k = 0.4 (full line), k = 0.6 (circle), k = 0.8 (cross).

363
364 Fig. 12: Noise dependence in SPC signal (random fluctuation in intensity of ID in delay t = 0 µs, 
365 because of changing illumination masks) on ε according to added noise to IEXC (left part) and IPL 
366 (right part) with SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black), 23 dB (magenta) and three 
367 different compression ratio k = 0.4 (full line), k = 0.6 (circle), k = 0.8 (cross).

368
369 Fig. 13: ε dependance of σEXC – noise added to IEXC (left part) and σPL – noise added to IPL (right 
370 part). SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black), 23 dB (magenta) and three different 
371 compression ratio k = 0.4 (full line), k = 0.6 (circle), k = 0.8 (cross).
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(magenta) and three different compression ratio k= 0.4 (full line), k= 0.6 (circle), k= 0.8
(cross).
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367 different compression ratio k = 0.4 (full line), k = 0.6 (circle), k = 0.8 (cross).
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370 part). SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black), 23 dB (magenta) and three different 
371 compression ratio k = 0.4 (full line), k = 0.6 (circle), k = 0.8 (cross).

Fig. 12. Noise dependence in SPC signal (random fluctuation in intensity of ID in delay
t= 0 µs, because of changing illumination masks) on ε according to added noise to IEXC
(left part) and IPL (right part) with SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black), 23 dB
(magenta) and three different compression ratio k= 0.4 (full line), k= 0.6 (circle), k= 0.8
(cross).
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Fig. 13. ε dependance of σEXC – noise added to IEXC (left part) and σPL – noise added to
IPL (right part). SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black), 23 dB (magenta) and
three different compression ratio k= 0.4 (full line), k= 0.6 (circle), k= 0.8 (cross).

In accordance with the previous results, the effect of the added noise is much more pronounced
than the compression ratio used. We will first focus on the influence of regularization parameter
ε on the quality of the retrieved image, i.e., REXC and RPL – see Fig. 11. In these results, we see
an interplay of two effects: the smoothing of the IDA and ID, respectively, and the bias of the
reconstructed IDA respective ID.

Since the noise level in the IEXC affects the IDA reconstruction less than in IPL, the effect of
biased reconstruction of IDA prevails and the REXC error increase with ε. Whereas in the case
of RPL, the noise smoothing effect prevails in IDA for the low ε values and the RPL decreases.
However, with increasing ε, the bias effect becomes dominant and the image quality is decreased
again.

This is confirmed by Fig. 12, which shows the amount of noise in the individual SPC-SNREXC
and SPC-SNRPL. This implies that for the given noise level in the IPL signal, there is an optimum
regularization parameter providing the best results and this provides a guideline of the optimum
ε value.

Figure 13 focuses on σ, which evaluates the fidelity of the reconstructed decay curves. Here,
with increasing ε, both σEXC and σPL decrease despite the bias effect, i.e., a higher ε value
provides a better estimate of the decay curve. We ascribe it to the fact that with decreasing
intensity of IDA (the following delay after excitation), the noise level in the SPC signal increases,
and thus the smoothing effect of the regularization parameter prevails over the bias effect.

Both the dependence of σEXC and σPL on ε are influenced by the amount of noise in the
system. Especially for the high-noise PL signal (15.2 dB, 3%), the increase of ε from 0.05 to
1 reduced the σPL by 79%. Analogously to the previous results, the increase in regularization
parameter has a lower effect on the noise introduced via IEXC signal – see σEXC, which decreases
by 32% for the same noise level and ε change.

5. Conclusion

In this paper, we carried out an extensive analysis of the effect of noise within the RATS technique
– a novel method for the PL decay reconstruction and FLIM. As we mentioned in the introduction,
the method can now be used mainly in materials engineering due to the possibility of detecting
PL decays at the microsecond or sub-microsecond level. However, ongoing research opens the
possibility of measuring in units of nanoseconds, which could open up further possibilities for
the characterization of a range of optical materials, chemical substances, as well as biological
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samples. Since this is a new method, the findings presented are important for the further direction
of the method. The problem was investigated using simulations for cases with noise levels
reaching 0.5–3% (SNR 23–15.2dB) of the signal. To disentangle the effect of each noise source,
the noise was added to IEXC only and IPL was left noiseless and vice versa.

We consistently observed that the same noise level has a significantly greater effect when
present in the IPL, which we ascribe to the fact that the regularization parameter ε is associated
with the IEXC in the denominator of the relationship Eq. (2) and Eq. (4). Hence, the most efficient
strategy to improve the data quality is to focus on the IPL intensity level and the connected noise.

Secondly, all our data simulations revealed that the effect of noise level is incomparably more
important than the compression ratio k, i.e., the number of measured excitation masks in the
single-pixel experiment. In other words, for k > 0.4, it is not possible to compensate for a higher
noise level by increasing the number of excitation masks.

It is also essential to avoid using periodic excitation signals, which can cause periodicity in
the retrieved decay and increase the resulting ID relative noise level. It is worth noting that the
RATS method was originally based on an analog random signal generator, the main component
of which is a rotary diffuser. Therefore, we attained a quasi-periodic signal, which played a
significant role in the method. Using a non-periodic signal, for instance, by laser modulation, a
greater signal-to-noise ratio will be obtained.

As expected, we observed that increasing the acquisition time of a single decay measurement
(single excitation mask) can highly reduce the resulting noise and effectively compensate for the
noise present in the PL measurement. The choice of acquisition time is also connected with
the IRF of the signal and the expected PL lifetimes. Moreover, it fundamentally manages total
sensing time during which the entire data set is acquired from all masks. Here we used lifetime
T= 20 µs, so that IEXC signal with IRF = 2.07 µs was selected with data sampling 0.99 µs. For
other signal parameters, different results than those presented here can be achieved after the same
signal length extension. If we focus on shorter lifetimes, a faster signal (smaller IRF) is needed,
and the total scanning time is also reduced in a given ratio. However, the simulated trends for R,
SPC-SNR, and σ can be applied without compromising generality.

In order to suppress signal noise, we have deliberately avoided any mathematical signal filtering
techniques so that we do not lose important information due to the random nature of the signal.
Mathematical signal filtering could be optimized on the expenses of the general applicability
of the results. Therefore, we explored instead the possibility to optimize the regularization
parameter ε used in the PL decay retrieval.

The parameter ε was changed in the range 0.05 to 1. We observed a trade-off between the two
effects. On the one hand, a higher value of ε smoothes the IDA curve, while, on the other hand, it
distorts the IDA because some frequencies of the Fourier spectrum are favored. Therefore, we
observed that there is an optimum value of ε connected to the noise level in the IPL signal. As a
rule of thumb, for a system with a low noise level, we recommend keeping the parameter ε at 0.1
or 0.2. For a system with a high noise level, it is possible to increase the regularization parameter
ε more significantly.
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Abstract: The RAndom Temporal Signals (RATS) method has proven to be a useful and 

versatile method for measuring photoluminescence (PL) dynamics and fluorescence lifetime 

imaging (FLIM). Here, we present two fundamental development steps in the method. First, 

we demonstrate that by using random digital laser modulation in RATS, it is possible to 

implement the measurement of PL dynamics with temporal resolution in units of nanoseconds. 

Secondly, we propose an alternative approach to evaluating FLIM measurements based on a 

single-pixel camera experiment. In contrast to the standard evaluation, which requires a lengthy 

iterative reconstruction of PL maps for each timepoint, here we use a limited set of 

predetermined PL lifetimes and calculate the amplitude maps corresponding to each lifetime. 

The alternative approach significantly saves post-processing time and, in addition, in a system 

with noise present, it shows better stability in terms of the accuracy of the FLIM spectrogram. 

Besides simulations that confirmed the functionality of the extension, we implemented the new 

advancements into a microscope optical setup for mapping PL dynamics on the micrometer 

scale. The presented principles were also verified experimentally by mapping a LuAG:Ce 

crystal surface. 

© 2022 Optica Publishing Group under the terms of the Optica Publishing Group Open Access Publishing 
Agreement 

1. Introduction 

Fluorescence lifetime imaging (FLIM) is an important part of spectrometry dealing with 

photoluminescence (PL) dynamics. It is used mainly in biology [1,2], chemical physics [3,4], 

as well as in materials engineering [5-8]. 

There are several methods commonly used for FLIM. The best-known are time-correlated 

single-photon counting (TCSPC) [9], streak camera [10], gated photon counting [11], and the 

analog time-domain or frequency-domain technique [12,13]. However, each method has its 

principle limitations and, as a result, its preferred field of application. In other words, while a 

given time-resolved method is perfect for a certain use, it may be completely unsuitable for 

another [14].  

Although FLIM has been developed for decades, new concepts which further improve the 

technique have been reported recently. The main goal is to obtain measurements and 

evaluations in real time, mainly to investigate biological and medical samples [15,16]. 

However, real-time FLIM acquisition depends on using pulsed lasers, digitizers, GPUs or 2D 

arrays of single photon avalanche diodes, which considerably increase the cost of such setups. 

This holds also for the new FLIM alternatives, such as phasor spectral FLIM (Phasor S-FLIM) 

[17]. Another competing concept, the analog mean delay method (ADM) [18], can be used for 

https://doi.org/10.1364/OA_License_v2
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real-time vivo measurements. Nevertheless, ADM cannot be used to determine the actual shape 

of PL decay. 

Therefore, FLIM research has also developed in the direction of using compressed sensing 

(CS), where the most typical application is the single-pixel camera (SPC) experiment, which 

makes the FLIM optical setup more affordable [19]. SPC experiments are very useful in terms 

of reducing the cost of the experimental setup, but they are typically not suited for real-time in-

vivo imaging—both due to the sequential signal acquisition and consequent data retrieval. 

However, new post-processing approaches for SPC in FLIM are still being developed, e.g., the 

use of deep learning, which significantly shortens reconstruction time [20]. On the other hand, 

the neural network needs to be properly trained in order to obtain the required performance 

over the necessary time range of the investigated lifetimes. 

Most of the improvements in CS are applied to standard time-resolved methods and thus 

still carry their principle limitations. E.g., TCSPC achieves excellent results for nanosecond or 

sub-nanosecond decays. However, for the measurement of decays on the order of hundreds of 

nanoseconds (field of material engineering), the method requires a measurement time of hours. 

 

Therefore, it is still essential to continue developing new PL dynamics analysis methods. An 

example is the RAndom Temporal Signals (RATS) method, which is one of the novel 

approaches to FLIM. The method is based on the excitation of the measured sample via a 

randomly fluctuating intensity in time, which makes it possible to fully retrieve the PL decay 

from a single measured dataset. The RATS and 2D-RATS methods have proven to be 

valuable, straightforward, and low-cost alternatives to the commonly used FLIM 

approaches, although their previous implementation had limited their use in real-life 

experiments. 

The initial proof-of-principle measurements of PL decay via RATS were based on a simple 

generator of a random excitation signal, where we focused a beam on a rotary diffuser and 

cropped the generated field of speckles with a suitable iris aperture [21]. Such a generator 

allows for the generation of an analog random excitation in the microsecond and sub-

microsecond region, which is well suited for long-lived luminophores or nanoporous silicon 

[3,22]. However, reaching faster timescales is not realistic in this configuration. 

At the same time, employing a diffuser limited the overall efficiency of the excitation laser 

because only a fraction of the diffused light was used. This fact was even more pronounced in 

our proof-of-principle implementation of the RATS method in FLIM (2D-RATS), which 

demonstrated that it is possible to map PL dynamics via an optical setup based on two diffusers 

[23].  

Finally, the initially used post-processing consists of the reconstruction of PL maps at each 

delay after excitation and subsequent fitting to obtain a lifetime in a given image pixel. This 

procedure is highly computationally costly.  

This article provides an overview of a new implementation of the 2D-RATS, i.e., the FLIM 

experiment, which overcomes all the above-stated shortcomings. This was enabled by three 

fundamental modifications in the RATS experiment. In particular, we introduced a new digital 

mode of random intensity fluctuation by using direct laser modulation. Fast laser modulation 

enabled us to reach the temporal resolution in the PL decay measurement of 6 ns. Secondly, 

using a digital micromirror device (DMD) to invoke random spatial masks, we gained 

incomparably higher efficiency reaching values a hundred times higher compared to the proof-

of-principle experiments [23].  

Finally, we propose a novel approach to PL data analysis where we first identify the 

significant PL lifetime components. An amplitude map of each component is subsequently 

computationally extracted. Therefore, a typical analysis—a bi-exponential fit of 35×35 map 

with a compression ratio of 0.4 and 100 timepoints of PL decay—leads to post-processing times 

about 10-times shorter compared to the approach used in our previous work [23].  



Overall, the presented implementation shifts the abilities of the 2D-RATS method to a 

different level, which we demonstrate in both the synthetic and experimental data. The ability 

to retrieve PL dynamics on the scale of tens of nanoseconds in combination with the ability to 

cover long-lived PL decay make the method very useful in the field of material engineering 

[7,8]. At the same time, the current implementation remains a low-cost solution compared to 

standard FLIM setups. 

2. Overview of the RATS method 

2.1 0D-RATS 

As mentioned in the introduction, the principle of the method is to excite the measured sample 

with a random excitation signal IEXC. The generated photoluminescent IPL signal, which is a 

convolution of the excitation signal and the PL decay of the measured sample ID, also has a 

random character as a result of the random excitation: 

 .PL EXC DI I I    (1) 

 The PL decay ID curve can be calculated by using deconvolution. In the presented results, 

the Tikhonov regularization was applied to avoid ill-conditioned problems [24]: 
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Moreover, the Tikhonov regularization parameter ε can also be used to suppress the noise 

effect of the system [25]. More details about a single-point measurement approach (0D-RATS) 

can also be found in our previous works [21, 23]. 

2.2 2D-RATS 

In the case of 2D measurements, a straightforward option is to use the 0D-RATS method in 

raster mode, which can be very effective, for example, using a mirror with a Micro Electro 

Mechanical System (MEMS) [26]. Nevertheless, the use of compressive sampling in the 

configuration of the single-pixel camera ensures the acquisition of the desired dataset by a lower 

number of measurements compared to the raster mode, where the number of measurements 

corresponds to the number of pixels of an image [27]. 

The principle of the so-called 2D-RATS measurement consists in illuminating the scene 

with a set of M random masks of N pixels, where the ratio M/N indicates the compression ratio 

k [23]. The individual masks have a random character in space, and their intensity varies in time 

according to IEXC—see Fig. 1(A). The randomness of the mask ensures that a different n 

illuminated segment of the sample is excited in each measurement. Therefore, Eq. (1) can be 

rewritten to the sum of the PL from each segment: 

    
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As a result, we always attain a unique IPL for each of the M masks. By using the IPL dataset, 

it is possible to reconstruct the individual IDA decay curves corresponding to the given mask: 
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Thus, each random mask is represented by one IDA. 



 

Fig. 1. (A) Scheme of principles of the 2D-RATS method. The sample is illuminated with masks 

following a temporal fluctuation of excitation signal IEXC, which generate the corresponding PL 
signal IPL. (B) Set of calculated IDA (solid lines in the main graph) corresponding to the set of 

masks can be recalculated into the ISPC signals (inset graphs for several delays t). By using Eq. 

(5) we attain the corresponding reconstructions of the PL maps. (C) Scheme of a 3D datacube 
of reconstructed PL maps and indicated fitting. (D) Example of a final FLIM spectrogram as a 

map of PL lifetimes. 

The measured set of IDA curves then needs to be converted into the temporal slides of PL 

decay. To do this, we need to determine the PL intensity ISPC at a selected delay for all masks—

see Fig. 1(B). The ISPC dataset is simply extracted from the IDA curves for the studied delay after 

excitation t. By using the knowledge of the random masks and the ISPC, the PL map for each 

delay after excitation m(x,y,t) can be determined using standard compressed sensing algorithms 

employed for the single-pixel camera experiment. We aim at solving an undetermined system 

using Eq. (5), where the set of vectorized masks is stated as B and TV is stated for total variation 

and the PL map for a given delay after excitation is declared just as m(x’, t) because it is 

vectorized: 
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The presented approach uses a well-established image retrieval procedure from the single-

pixel camera experiment. A significant drawback is that this approach requires reconstructing 

PL maps for all delays after excitation and creating a 3D datacube to obtain complete 

information—see Fig. 1(C). This implies carrying out typically tens of iterative solutions of Eq. 

(5), which is computationally very costly. Finally, to attain the FLIM spectrogram (Fig. 1(D)), 

it is necessary to fit the third dimension (temporal dependence) of the 3D datacube in each pixel 

with a suitable function—typically a multi-exponential fit—and determine the lifetime 𝜏. For 

better understanding, refer to Fig. 1, which summarizes the whole procedure.  

Compared to standard FLIM approaches, such as TCSPC or gated photon counting, 2D-

RATS provides very robust PL retrieval, where the only parameter to be kept in mind is to 



ensure is that the setup has a sufficiently low width of the impulse response function (IRF) 

compared to the measured lifetimes, i.e., a sufficiently fast random signal. In contrast,  the 

suitability of the setting parameters in TCSPC must be checked with respect to the repetition 

rate of excitation pulses or PL intensity. In the case of using gated photon counting, the user 

should choose the appropriate number of gates, length of gate, and other parameters. 

3. Digital RATS modulation with direct PL lifetime map reconstruction 

3.1 Digital random signal generation 

The previously published proof-of-principle RATS experiment was based on generating a 

random excitation pattern by using a rotary diffuser. This leads to a rapidly fluctuating signal, 

which we denote as a random analog signal, as the light intensity continuously randomly varies 

in time. While this approach is useful owing to its simplicity and negligible cost, it limits the 

use of the RATS setup with respect to the reachable temporal resolution.  

Therefore, we implemented an advanced mode of random signal generation with higher 

efficiency by using a modulated laser. One of the lasers that makes this possible is the Cobolt 

S06-01 (405 nm), which can be modulated digitally up to 150 MHz in a random fashion. The 

result is a rectangular signal with a randomly distributed duty cycle, which we denote as a 

random digital modulation. 

We compare the digital and analog generation of a random signal in 0D-RATS on simulated 

data, while the experimental demonstration can be found in Section 4. An example of a 

simulated digital signal can be seen in Fig. 2 (upper left panel), where the character of the signal 

is more apparent in a zoomed part of the signal from 0 to 0.5 ms (see inset).  

 

Fig. 2. Simulated measurement of bi-exponential ID with parameters A1 = 1, A2 =15, 𝜏1 = 40 μs, 

and 𝜏2 = 5 μs using digital random signal with IRFD = 1.45 μs. Upper left panel: excitation (blue 

line) and PL (red line) signal in time; upper right panel: amplitudes of Fourier components in 
excitation (blue line) and PL (red line); lower left panel: retrieved PL decay curve in a linear 

scale; lower right panel: retrieved PL decay (red line) compared to the original decay (blue line) 

in a semilogarithmic scale. 

Fig. 2 also shows a simulated measurement of bi-exponential PL decay ID (see Eq. (6)) 

using the aforementioned modulated IEXC with a random distribution of duty cycle (random 

digital signal).  
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Fig. 2, which shows the digital modulation, can be directly compared with Fig. 3, which 

presents the simulated measurement of the same bi-exponential PL decay ID using a random 

analog IEXC signal. In both figures, the parameters of the used bi-exponential ID were A1 = 1, A2 

=15, 𝜏1 = 40 μs and 𝜏2 = 5 μs. Impulse response function (IRF) for random digital signal was 

IRFD = 1.45 μs and for random analog signal it was IRFA = 2.07 μs.  

 

Fig. 3. Simulated measurement of bi-exponential ID with parameters A1 = 1, A2 =15, 𝜏1 = 40 μs 

and 𝜏2 = 5 μs using analog random signal with IRFA = 2.07 μs. Upper left panel: excitation (blue 
line) and PL (red line) signal in time; upper right panel: amplitudes of Fourier components in 

excitation (blue line) and PL (red line); lower left panel: retrieved PL decay curve in a linear 

scale; lower right panel: retrieved PL decay (red line) compared to the original decay (blue line) 
in a semilogarithmic scale. 

By comparing the simulated PL decay retrieval for the digital and analog modulation, we 

can conclude, in agreement with our expectations, that both the approaches lead to identical PL 

decay. Therefore, digital modulation of excitation intensity can be used without losing the 

credibility of the retrieved PL decay. Although the spectrum of a digital signal features a 

narrower central peak in the Fourier space, it has higher amplitudes for higher frequencies. 

Therefore, the digital signal reaches a lower IRF width compared to the analog one.  

We present the experimental confirmation of the agreement in Section 4. It is worth noting 

that the applicability of the analog modulation approach had been previously verified with a 

streak camera or TCSPC [21,23].  

3.2 Direct PL lifetime map reconstruction 

The original approach to PL lifetime imaging (FLIM) was based on the retrieval of a PL map 

for each delay after excitation, as it is introduced in Section 2.2. The real-life measurements 

showed that this procedure makes the post-processing routine highly time-consuming. 

Therefore, we propose an alternative approach that allows determining the FLIM spectrogram 

solely from the number of reconstructions, which equals the expected number of lifetimes in 

the measured sample. Namely, by determining a set of viable PL lifetimes in the sample, we 

can mathematically reconstruct the amplitude maps directly for the given lifetime 𝜏. This 



approach is highly beneficial for samples with a set of PL markers, mapping samples with 

distinct defects, or color centers emitting with well-defined lifetime. 

In the cases where we know a priori the present lifetimes in a sample—for instance, a 

sample with a set of PL markers [28]—we can directly use this knowledge. However, in the 

opposite case, it is necessary to take the so-called zeroth step, i.e., illuminate the entire 

measured area of a sample with a homogeneous excitation spot and determine the PL decay 

curve IDA0 representing the whole sample, using Eq. (4). The IDA0 curve can be used to extract 

all present lifetimes via fitting. Since the entire spectrum of lifetimes is obtained from the zeroth 

step, it is then sufficient to fit only amplitudes of each lifetime during the IDA investigation (see 

text below). The literature states that it is appropriate to assume the fitting with a bi-exponential 

or tri-exponential decay [14]. Thus, we tested the novel principle of post-processing for bi-

exponential decay (see Eq. (6)).  

The direct PL lifetime map reconstruction is based on the single-pixel camera concept. 

Therefore, it can be used the same measurement routine. The measured sample was illuminated 

with random patterns (masks), which follow the temporal fluctuation of intensity according to 

IEXC. The IDA corresponding to each mask was reconstructed according to Eq. (4). The obtained 

IDA curves were then fitted with a multi-exponential function with a fixed set of lifetimes. The 

fitting provided us with the amplitudes corresponding to the individual lifetimes. 

If we consider the bi-exponential decay curve of the sample (see Eq. (6)), we obtain the 

parameters 𝜏1 and 𝜏2 from the fitted IDA0. We assume the presence of 𝜏1, 𝜏2 in all measured IDA 

curves and, therefore, we only fit parameters A1 and A2 of all IDA curves. Because the sample is 

illuminated by the number of masks M (given by the compression ratio k), we also get M 

different values of A1 and A2, which creates vectors A1SPC, A2SPC of size M. Since the 

amplitudes A1 and A2 are a linear superposition of all PL decays within the illuminated area of 

the sample, we can employ the same retrieval algorithms as we use for the PL intensity map. 

 The knowledge of the used masks and A1SPC, A2SPC vectors can be used to reconstruct 

amplitude maps using Eq. (7). In this case of bi-exponential decay, we obtain two amplitude 

maps of lifetime H𝜏1 and H𝜏2. 
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In the case of monoexponential decay, the reconstructed map H𝜏 represents the amplitude 

distribution for a given 𝜏. Nevertheless, if it is an n-exponential decay, the lifetime 𝜏 in each 

pixel (FLIM spectrogram) must be determined. There are multiple approaches to calculating 

the overall decay lifetime of a complex PL decay curve. Here we consistently used the weighted 

average:  
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The process of amplitude map retrieval is described in more detail in a scheme assuming 

the bi-exponential decay (𝜏1 = 20 ns, 𝜏2 = 70 ns), as shown in Fig. 4. Amplitude distribution of 

𝜏1 can be observed in H𝜏1 map, and amplitude distribution of 𝜏2 is shown in H𝜏2 map. Using 

Eq. (8) we calculated the total FLIM spectrogram with the mean lifetime. 

The proposed approach significantly accelerated the post-processing procedure, and the 

whole FLIM spectrogram can be determined using n reconstructions for n-exponential decay. 

Thus, in the case of bi-exponential decay, there are only two reconstructions of the 

undetermined system. Moreover, this approach offers excellent resistance to noise in the 

measured data, as shown in the next subsection. 

Due to its principles, the presented direct lifetime retrieval is more suited for materials with 

several emitting species with sharp PL lifetime values, where the contribution of each species 



varies over the scene. In such a case, the method outperforms the standard approach, as we will 

show later. In the case where each pixel of the scene features a different lifetime value from a 

broad distribution, the method can still attain reasonable results by including more lifetimes 

and calculating the mean PL lifetime according to Eq. (8). Nevertheless, for a very broad 

lifetime distribution, using the standard frame-by-frame retrieval can be considered as a better 

option.   

 

Fig. 4. (A) Example of fitting IDA curve amplitudes A1 and A2, where the distribution of 𝜏1 and 𝜏2 

is already known from IDA0 fitting. The amplitude fitting provides vectors A1SPC and A2SPC. (B) 

Reconstructed amplitude map H𝜏1. (C) Reconstructed amplitude map H𝜏2. (D) Calculated FLIM 

spectrogram based of knowledge of H𝜏1 and H𝜏2.  

3.3 The comparison of noise effect on both post-processing approaches 

The new approach to the FLIM spectrogram evaluation introduced in Section 3.2 significantly 

reduces the time required for post-processing compared to the original approach described in 

Section 2.2. In this section, we compare both approaches with respect to the quality of the 

obtained FLIM spectrogram with different levels of noise present in the measured data. 

In our previous work, we showed that the quality of the retrieved IDA and the 2D scene 

reconstruction is significantly more affected by the noise level present in IPL compared to the 

IEXC. Furthermore, it was shown that the quality of 2D scene reconstruction is negligibly 

affected by the change in compression ratio compared to the amount of noise in the system 

[25]. Therefore, for the following simulations, the compression ratio was always kept at k = 

0.4, and we tested only the noise present in the PL signal IPL, which we set to 0%, 0.5%, 1%, 

and 1.5%, respectively. The IEXC signal was kept noiseless. The resulting FLIM spectrogram of 

lifetimes F was always compared with the ground truth U to extract the percentage error of the 

reconstructed image R: 
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The spectrograms obtained by the original approach described in Section 2.2 are labeled as 

FLIMB, while the spectrograms obtained by the new, proposed approach are labeled as FLIMA. 

The simulation results are summarized in Fig. 5, where the individual row represents the 

different noise levels in the IPL signal, while the columns indicate gradually the H𝜏1, H𝜏2, 

FLIMA and compare them to the FLIMB. The dependence of the error R on the noise level is 

then provided in Fig. 6. 

 
Fig. 5. Above the line is the ground truth, which can be compared to the simulated results below 
the line. The results of simulations of noise effect on both post-processing approaches. The new 

approach, represented through FLIMA (the third column), is supplemented by reconstructions of 

partial amplitude maps H𝜏1 (the first column) and H𝜏2 (the second column). The results of the 
original approach are represented through FLIMB (the fourth column). Each row corresponds to 
chosen noise level in the system (0-1.5%). 

For this simulation, a scene with two areas 𝜏1 = 20 ns and 𝜏2 = 70 ns and corresponding 

amplitudes A1 = 1 and A2 = 1 was employed. The "sample" combines parts with a mono-

exponential decay with a region featuring a bi-exponential decay. 

The TVAL3 algorithm was used to reconstruct the undetermined systems in Eq. (7) [29,30]. 

In the case of FLIMB, it was the intensity PL maps reconstruction, where the main parameters 



of the algorithm were mu (211) and beta (27). In the case of FLIMA, amplitude maps 

reconstruction was used, where the main parameters were set to mu (29), and beta (26). The 

mentioned parameters mu and beta were optimized for both approaches independently to attain 

the best reconstruction results with the lowest residues. 

Reconstructed pixels that were below 10% of the PL amplitude were removed from the 

statistics for both FLIMA and FLIMB in Fig. 5 and also in Fig. 6. The fitting curves for both 

FLIMA (IDA's) and FLIMB (3D-datacube) cases were always in the range of 0 ns to 400 ns, which 

is sufficient for the entered parameters 𝜏1 and 𝜏2. 

For a rigorous discussion of results, it is important to realize that the FLIMB results (original 

approach) are dominantly affected by noise in ISPC (see Fig. 1(B)). This noise arises from 

inaccuracies in the reconstruction of individual PL maps m(x,y,t) when creating a 3D datacube 

(see Fig.1(C)). Due to the character of the image retrieval, the noisy data entering the fit can 

cause a vast local error of the PL lifetime value in a few pixels. Therefore, FLIMB spectrograms 

could deviate from the ground truth values locally, while the overall agreement might be kept. 

On the contrary, the FLIMA approach could introduce an error already in the zeroth-step of 

the process, when the whole sample is homogeneously illuminated, and the set of lifetimes 

contained in the sample is analyzed via IDA0 fitting. The obtained lifetimes from the zeroth step 

are further considered during the remaining IDA evaluation, where they are used to calculate the 

mean PL lifetime via amplitudes A1 and A2. Since the amplitude maps are calculated from an 

undetermined system with the condition of a low total image variation, we attained smooth 

images without local errors despite the present noise. On the other hand, the error of the initial 

lifetime fit propagates to the final FLIM spectrogram. Therefore, in our simulations, the 

reconstruction of 0% noise in the system, FLIMB (original FLIM analysis) has higher accuracy 

than FLIMA. However, in a situation with a PL noise of 0.5% and higher, FLIMA is more 

accurate than FLIMB (see Fig.6). 

 

Fig. 6. Evaluation of FLIM spectrogram reconstruction error – see Eq. (9) - via FLIMA (direct 

PL lifetime map) and FLIMB (frame-by-frame standard analysis) approach for a different amount 
of noise in a system (IPL signal).  

Although it may seem that an imprecise fit of PL lifetimes in the zeroth step will highly 

affect the FLIMA results, our tests proved that this effect is not pronounced. We summarized in 

Table 1 all the obtained lifetimes after the zeroth step (IDA0 fitting), which all suffer from the 

inevitable fitting error. Nevertheless, the total error of the FLIMA spectrograms—see Fig. 6— 

increases with the noise in the fitted data and does not follow the lifetime errors. As an example, 



the worst zeroth-step lifetime fit is associated with the noise of 1% in the system (see Table 1), 

while the highest total reconstruction error is linked to the data with the noise of 1.5% (see 

Fig.6). To outline the fitting issue, we present results obtained after a single IDA0 trace fitting. 

However, the imprecise determination of lifetimes can be improved by statistical averaging 

over several measurements in the zeroth step. 

Table 1. Summary of results of IDA0 fitting in zeroth step of FLIMA determination process. 

Noise in IPL 

signal [%] 
𝜏1 [ns] 𝜏2 [ns] 

0 21 70 

0.5 21 70 

1 24 72 

1.5 22 70 

 

Overall, it can be stated that the direct PL lifetime map reconstruction (FLIMA) is more 

stable in terms of noise. The standard frame-by-frame retrieval (FLIMB) may be locally 

accurate, while some pixels may be entirely out of scale, and it is not easy to determine whether 

this is an effect of the noise of an actual sample property.  

It is beneficial to address new methods for accurately determining the parameters of 

exponential curves [31], which would further improve the quality of both considered 

approaches. Nevertheless, the novel presented approach is less time-consuming in post-

processing than the standard one.  

4. Experimental implementation 

4.1 Optical setup 

The advanced optical setup stemmed from the original proof-of-principle experiments [23]. Its 

scheme is shown in Fig. 7.  

Temporal modulation was ensured via modulated Cobolt laser S06-01 MLD (405nm). The 

modulation signal was produced by the Digilent Cmod A7 development kit and was generated 

in the FPGA Xilinx Artix-7 (VIVADO software package). The bitstream is generated via 

Linear Feedback Shift Register (LFSR) from flip-flops and XNOR gate feedback, configured 

in FPGA. The output of the LFSR meets many randomness tests [32]. Using the above-

mentioned configuration, one can generate any bitstream with the desired repetition period of 

the random signal. Thus, it is possible to choose as long a period as necessary for one 

measurement and thus avoid the effect of IEXC periodicity described in our previous work [25].  

A temporally modulated laser beam is expanded using a GBE20-A Thorlabs beam expander 

and guided to the digital micromirror device (DMD) through mirrors M1 and M2 so that one of 

the reflected beams is reflected in the normal direction of the DMD chip surface. In order to 

achieve an even distribution of the DMD-generated illumination pattern, the laser beam 

diameter is magnified 20 times in front of the DMD, so it significantly exceeds the dimensions 

of the DMD chip.  

The DLPLCR65EVM DMD from Texas Instruments was controlled via a 

DLPLCRC900EVM module. We used 35×35 pixel patterns both in the simulations (Section 3) 

and in the demonstration measurements (Section 4). However, rather than the entire DMD chip 

size, only a limited part of the chip in its center was used to generate patterns. This enabled us 

to use a low numerical aperture within the setup.  

Because the DMD pixel size is in the micrometer scale (7.56 μm), diffraction on the pixels 

should be considered [33,34]. Therefore, the diffracted beam from the DMD is collected with 



an AR-coated fused silica lens L1 (Ø50mm, f = 75 mm) and then filtered using a low pass filter 

in the configuration of L1 and the second AR-coated fused silica lens L2 (Ø25mm, f = 50 mm) 

and iris aperture. Hence, only one diffraction order passes through the low pass filter and hits 

the Thorlabs N-BK7 beam splitter BS (CM1-BS013 (50:50)). The reflected part of the beam is 

targeted on a PDA10A2 photodiode for IEXC detection, while the transmitted part of the beam 

goes through a 405 nm bandpass filter F1 (Thorlabs FBH405-10) to avoid possible parasite IPL 

generation in N-BK7 glass (BS).  

Subsequently, the beam is transmitted through a dichroic mirror DM (Thorlabs DMSP425, 

425 nm cut-off) and imaged by a microscope objective—4X Olympus plan achromat objective 

(0.10 NA, 18.5 mm WD). Using the 4X Olympus plan achromat lens, we ideally get a single 

pixel size of 12.6 μm and a field of view of about 450x450 μm. The stated values were 

confirmed with calibration grids with a defined line spacing of 50 μm. 

The illumination pattern imaged by a microscopic lens on a sample can be captured using a 

CMOS camera (IDS UI-3240ML-M-GL) to find the optimal focus. The microscopic lens also 

collects the generated IPL signal, which is reflected and focused on a photomultiplier 

(Hamamatsu H10721-20) through a dichroic mirror and lens L3 (Ø25mm, f = 12 mm). Prior to 

PL detection, the collected light is filtered by the Thorlabs 500 nm cut-off filter F2 (FELH0500) 

to avoid a possible back reflection of IEXC. Thus, all decay curves correspond to PL in a range 

above 500 nm of wavelength. 

The temporal waveforms of both the IEXC and the IPL signals are collected by using the 

TiePie Handyscope HS6-1000XM. The impulse response function (IRF) depends on the 

modulation frequency and many additional parameters and we provide IRF width for each 

experiment.  

 

Fig. 7. The 2D-RATS method in a single-pixel camera configuration implemented into a 

microscope optical setup. 

In the current configuration, where we used a cw-operated laser at 125 mW, we attained an 

intensity of the excitation light of 0.35 mW at the sample plane. This means that the setup 

efficiency was about 0.3%. Note that the use of excitation laser efficiency was not optimized, 

and it was highly affected by using an excessive beam diameter at the DMD, the use of a part 

of the DMD chip, selection of a single diffraction order, or beam splitter ratio—these 

parameters can be tuned to improve efficiency. Yet, we reached efficiency a hundred times 

higher compared to the proof-of-principle diffusor-based 2D RATS setup (efficiency of about 

0.003%) [23]. 



4.2 Digital and analog modulation of the excitation signal 

By comparing the simulated PL decay retrieval for the digital and analog modulation in Section 

3.1, we concluded, in agreement with our expectations, that both the approaches lead to 

identical PL decay. We used the new optical setup to carry out the same comparison 

experimentally. 

Both approaches (analog vs. digital random IEXC) were compared in a single-point 

measurement (0D-RATS) configuration, where the SCHOTT OG565 absorption filter was used 

as a test sample. The setup described in this article was used for the digital excitation 

modulation, while the proof-of-principle setup was employed for the analog excitation 

modulation [21]. For the analog modulation, we reached an improved analog modulation speed 

by tightly focusing an expanded excitation beam (f = 25 mm, spot size 2.5 μm) on a fine diffusor 

produced with SiC1200 abrasives. Both the beam distance from the diffuser center of 115 mm 

and the rotation speed of 100 Hz contributed to the fast modulation. Therefore, the IRF width 

for the analog case was wA = 71 ns. The digital modulation was adjusted to reach a similar IRF 

width of wD = 47 ns.  

To gain a rigorous comparison, the I0
D curve obtained using the random digital signal was 

convolved with the Gaussian function G(w) with a FWHM w equal to the root mean square 

difference of wA and wD values:    
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The experimental results in a semilogarithmic representation are presented in Fig. 8. They 

confirmed that the digital and analog modulation of the signal can be equally employed in the 

PL decay analysis and lead to the same decay functions. 

 

Fig. 8. Comparation measurement of OG565 filter using analog and digital random IEXC with 

wA =71 ns and wD = 47 ns. 

4.3 Temporal resolution of digital modulation of the excitation signal 

By using the thorough optimization of the diffuser-based intensity modulation, we reached the 

IRF width of 71 ns, as stated before. Now, we will turn to show the potential of digital 

modulation using the Cobolt S06-01 laser. Here, we tested the variation of both the laser 

modulation frequency and the sampling rate—see Fig. 9. We can see that the fastest 

combination leads to the IRF width of 6 ns, which is an order of magnitude below the optimized 

diffuser-based modulation. 



 

Fig. 9. IRF measurement for different modulation frequencies and different sampling 

frequencies. 

That is primarily due to the laser parameters, especially modulation. Hence, it is easy to 

generate a much faster random signal than using our previously described rotary diffuser-based 

generator [21]. Apart from this, a prominent feature in Fig. 9 is that the IRF width does not 

strongly depend on the modulation frequency. This behaviour is the consequence of the 

rectangular character of the digital signal. From the general principles of rectangular signal 

generation, the signal contains rapidly rising and falling edges carrying significantly higher 

frequencies than the set modulation frequency of the digital signal. These frequencies would 

be revealed with sufficient sampling and bandwidth. Therefore, ideally, a digitizer with 

significantly faster sampling and a broader bandwidth should be used for such a (i.e., 

modulated) signal.  

 

Fig. 10. Comparison of ID measured on LuAG:Ce for different sampling frequencies (different 
IRF width). Measurements with lower IRF width were convolved with the root square deviation 

of IRF width related to measurements with the highest IRF width. 

The employed HS6-1000XM TiePie USB-handyscope allows sampling of up to 500 MSa/s 

with a bandwidth of 250 MHz when scanning on two channels simultaneously. Hence the 



Nyquist condition for the fastest bit carrier frequency was met, but the frequencies of leading 

and trailing edges were truncated. As a result, the IRF width strongly depends on the sampling 

rate, as shown in Fig. 9. 

However, since the carrier frequencies are not truncated, no aliasing occurs, and thus the 

resulting ID reconstruction is not distorted. To confirm this statement, we plot in Fig. 10 PL 

decay of the LuAG:Ce luminophore for various sampling options. As in Fig. 9, each 

measurement was convolved with a Gaussian function to match the largest IRF width within 

the measurements. This allows for a direct comparison of the curves. We did not observe any 

notable variation in the decay curves and corresponding PL lifetime for the sampling rates well 

above the PL decay rates. 

In total, a RATS setup with digital signal modulation, which is not limited by the bandwidth 

of the detector and the corresponding electronics, has the ultimate resolution due to the 

steepness of the rectangular laser signal edge and the sampling rate. 

4.4 Demonstration measurement 

The 2D-RATS experiment based on the advancements presented in Section 3.2 was 

experimentally implemented into a microscope setup based on a single-pixel camera 

configuration. The technical details of the setup are described in Section 4.1. Here we provide 

an example of data acquired by the advanced setup and data processing. 

We selected a LuAG:Ce scintillation crystal as a test sample [35],  which features strong 

PL emission. The test sample was a thin monocrystal plate polished on both sides with visible, 

microscopic scratches and cracks. One of the cracks was selected as the testing spot since we 

expected a significant increase in PL intensity at the defect. The PL intensity is higher due to 

high scattering, which improves PL signal outcoupling from the sample.  

A 4X Olympus plan achromat objective (0.10 NA, 18.5 mm WD) was used to map the 

testing area of 450×450 μm with a pixel size of 12.6 μm (35×35 pixels). The compression ratio 

was set to k = 0.4 (490 measurements) with a single PL decay dataset measured over 10 ms. 

However, the current total acquisition time in the order of tens of minutes was caused 

dominantly by the data transfer and data handling, which can be significantly optimized. The 

sampling frequency was 200 MHz and the modulation frequency of the fastest bit of the random 

signal reached 98 MHz, which resulted in IRF width of 9.9 ns. 

 

Fig. 11. Left panel: Measured area of the LuAG:Ce crystal. Right panel: Corresponding IDA0 

with fitted bi-exponential curve and revealed spectrum of the 𝜏1 and 𝜏2. 



 

Fig. 12. Upper panels: Reconstruction of H𝜏1 and H𝜏2 areas corresponding to expected lifetimes. 
Lower panels: FLIM spectrogram determination and its overlay with the measured scene.  

In the initial analysis, we tested the measurement for a more general bi-exponential fit, even 

though we expected the LuAG:Ce to show a monoexponential decay. The mapped region and 

the corresponding IDA0, together with the IRF, are shown in Fig. 11. Fitting the IDA0 revealed 

the PL lifetimes of 𝜏1 = 11 ns and 𝜏2 = 67 ns. 

The results of mapping H𝜏1, H𝜏2, and the FLIM spectrogram are presented in Fig. 12. The 

map of the first component can be assigned to random scattering points and scattered light along 

the crack. The map of the second component closely follows the shape of the crack, where the 

PL from LuAG:Ce is efficiently coupled out from the crystal. The FLIM spectrogram combines 

both amplitudes, where the second component dominates, owing to its high amplitude. The 

brightness of the individual pixels in the FLIM spectrograms was scaled according to the PL 

intensity, i.e., the sum of the amplitudes A1 and A2 in a given pixel. In Fig. 12, it is also possible 

to observe the overlay of the measured area and the obtained FLIM spectrogram. The overlay 

documents the agreement between the PL mapping and the sample properties. It is worth noting 

that only pixels with PL intensities greater than and including 10% of the maximum are shown 

in the FLIM spectrogram. 

As we stated before, the assumption of the bi-exponential decay of LuAG:Ce was not 

physically correct. Moreover, 𝜏1 is close to the IRF width, which distorts A1SPC. Therefore, we 

also provide an analysis of the PL, where we assume a monoexponential decay. Such a situation 

would, for instance, correspond to the mapping of a biological sample with a single PL marker. 

For the monoexponential decay, we obtained only one H𝜏 region for the lifetime of 59 ns, which 

corresponds well with the PL lifetime of LuAG:Ce [36]. The H𝜏 is directly represented in the 

FLIM spectrogram, as shown in Fig. 13. We can see that in this case we attained a clear image 

of the crack with high PL intensity together with low-intensity PL regions surrounding the 

cracks where the PL is outcoupled from the monocrystal inefficiently. 



 

Figure 13: Upper panels: Fitted IDA0 with monoexponential curve and reconstructed area H𝜏1 for 
corresponding 𝜏1. Lower panels: FLIM spectrogram determination and its overlay with the 
measured scene. 

5. Conclusion 

We outline two significant advancements for the RATS method for measuring PL dynamics 

and FLIM. The first is the possibility of random excitation via a digitally modulated signal. 

Using this approach, it is possible to achieve a time resolution down to units of nanoseconds 

and to significantly simplify the optical setup. Secondly, the article also presents a new 

approach to the evaluation of the FLIM spectrogram, which significantly reduces the number 

of necessary reconstructions of the undetermined system and reduces the post-processing time 

accordingly. Moreover, the novel approach to data processing reduces the required number of 

fitted curves in proportion to the chosen compression ratio k. 

The original and the newly proposed approach to FLIM retrieval were compared in 

simulations regarding noise analysis. The new approach was demonstrated to reduce the 

possibility of locally incorrect lifetime determination. Therefore, the proposed amplitude map 

retrieval is more robust compared to the standard analysis against increasing noise level. 

The advancements were implemented in a microscope setup based on the single-pixel 

camera technique. A digital micromirror device (DMD) was used to generate random patterns 

(masks), which also enables full illumination of the scene to determine lifetimes within the 

sample. In addition, the combination of DMD and random digital modulation of the laser 

increases the efficiency of the optical system a hundred times compared to the original 

arrangement using diffusers [23]. 

We analyzed the advancements on synthetic data, as well as on testing measurements. 

Namely, we carried out the imaging of a LuAG:Ce crystal, where a crack in the crystal was 

mapped. The resulting FLIM spectrograms from the PL analysis were in perfect agreement with 

the camera images.  
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