
T
BRNO UNIVERSITY OF TECHNOLOGY
V Y S O K É U Č E N Í T E C H N I C K É V B R N Ě

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA I N F O R M A Č N Í C H T E C H N O L O G I Í

DEPARTMENT OF COMPUTER SYSTEMS
Ú S T A V P O Č Í T A Č O V Ý C H S Y S T É M Ů

APPLICATION OF MACHINE LEARNING ALGORITHMS
FOR GENERATION OF CHECKING CIRCUITS
V Y U Ž I T Í A L G O R I T M Ů S T R O J O V É H O U Č E N Í PRO KONSTRUKCI HL ÍDACÍCH O B V O D Ů

MASTER'S THESIS
D I P L O M O V Á PRÁCE

AUTHOR Be. OLIVER LELKES
AUTOR PRÁCE

SUPERVISOR Ing.JAN KAŠTIL, Ph.D.
V E D O U C Í PRÁCE

BRNO 2017

Abstract
This thesis deals w i th the applicat ion of machine learning algorithms for generation of online
checking circuits. It contains description of the principles of checking circuits and presents
existing checking circuit implementations relevant to this thesis. The work is focused on
applying checking circuits on hardware components w i th sequential logic. Machine learning
algorithms are trained on data sets consisting of the hardware components' input-output
sequences, stored as t ime series data. Processing t ime series requires special type of machine
learning algorithms, which are described and compared. The ind iv idua l algorithms are
ut i l ized as machine learning classifiers i n order to determine their sui tabi l i ty for use in
checking circuits. The experiments of the thesis were performed on a low-pass F I R filter.
The settings of the employed machine learning classifiers are presented and the results w i th
the ind iv idua l classifier settings are evaluated. Based on the obtained results it is discussed
which machine learning algorithms are applicable in checking circuits.

Abstrakt
Tato d ip lomová p r á c e se zabývá v y u ž i t í m a lgo r i tmů s t ro jového učen í pro konstrukci hlí­
dac ích obvodů . P r á c e obsahuje popis p r inc ipů hl ídacích obvodů , jejich existuj ící imple­
mentace a o s t a t n í t eore t ické znalosti vz tahuj íc í se k s y s t é m ů m o d o l n ý m prot i p o r u c h á m .
P r á c e je z a m ě ř e n a na apl ikaci h l ídac ích o b v o d ů na hardware komponentech se sekvenční
logikou. A lgo r i tmy s t ro jového učení jsou t r é n o v á n y p o m o c í d a t o v ý c h množ in , k t e r é se sklá­
daj í ze v s t u p - v ý s t u p sekvencí h a r d w a r o v ý c h k o m p o n e n t ů a uk láda j í se jako časové řady.
Cí lem p r á c e je u rčen í vhodnosti j edno t l i vých a l g o r i t m ů pro jejich apl ikaci v h l ídac ích ob­
vodech. P r o dosažen í tohoto cíle, bylo provedeno s r o v n á n í v y b r a n ý c h a lgo r i tmů s t ro jového
učení . Součás t í p r áce je popis p a r a m e t r ů a lgo r i tmů a generování d a t o v ý c h sad. P r á c e tak­
též zahrnuje experimenty provedeny na d o l n o p r o p u s t n é m F I R fil tru a jejich v y h o d n o c e n í .
Podle výs ledků e x p e r i m e n t ů je d i sku továno , k t e r é algori tmy jsou použ i t e lné v h l ídacích
obvodech.

Keywords
machine learning, checking circuits, classification, supervised learning, t ime series, F I R filter

Klíčová slova
s t rojové učení , h l ídac í obvody, detekce chyb, klasifikace, učen í s uč i t e lem, časové řady, F I R
filter

Reference
L E L K E S , Oliver . Application of Machine Learning Algorithms for Generation of Checking
Circuits. Brno , 2017. Master 's thesis. Brno Univers i ty of Technology, Facul ty of Informa­
t ion Technology. Supervisor K a s t i l Jan.

Application of Machine Learning Algorithms for
Generation of Checking Circuits

Declaration
Hereby I declare that this master's thesis was prepared as an original author's work under
the supervision of M r . Jan K a s t i l . A l l the relevant information sources, which were used
during preparation of this thesis, are properly cited and included in the list of references.

Oliver Lelkes
M a y 24, 2017

Acknowledgements
I would like to thank M r . Jan K a s t i l for his help dur ing solving the thesis, for his valuable
guidance and hints and t ime spent on consultations.

Contents

1 Introduction 3

2 Principle of checking circuits used in field programmable gate arrays 5
2.1 Concepts of dependability 6

2.1.1 At t r ibutes of dependabili ty 6
2.1.2 Threats to dependabili ty 6
2.1.3 Means of dependabili ty 7

2.2 Fault-tolerant systems 7
2.2.1 Hardware redundancy 7
2.2.2 Information redundancy 11
2.2.3 T ime redundancy 11

2.3 Checking circuit implementations 11

3 Machine learning 13
3.1 Types of machine learning 14

3.1.1 Supervised learning 14
3.1.2 Unsupervised learning 15

3.2 Machine learning algorithms for processing t ime series 16
3.2.1 Stochastic process 17
3.2.2 Markov models 17

3.3 Machine learning algorithms applicable on transformed time series 27
3.3.1 Ar t i f i c i a l neural networks 27
3.3.2 Decision trees 30

4 Appl icat ion of algorithms for checking circuit generation 33
4.1 Fault injection 33
4.2 D a t a sets for machine learning 34

4.2.1 D a t a set formats 34
4.2.2 D a t a set generation 36

4.3 Used machine learning algori thm implementations 39
4.3.1 H M M W e k a l ibrary 39
4.3.2 R a n d o m Forest 40
4.3.3 Mul t i layer Perceptron 40
4.3.4 Transformation methods for non-time series data learners 40

1

5 Experiments on a finite impulse response filter 43
5.1 F I R filter design 43
5.2 Compar ing audio files 45

5.2.1 Subjective listening tests 45
5.2.2 P E A Q algori thm 46

5.3 Configuration of the injected faults 47
5.4 D a t a sets 49
5.5 Parameter settings for algorithms 49

5.5.1 M l W r a p p e r 50
5.5.2 Hidden Markov model 50
5.5.3 Mul t i layerPerceptron w i t h S impleMI 54
5.5.4 RandomForest w i t h S i m p l e M I 58

5.6 Evalua t ion based on the significance of the injected faults 60

6 Conclusion 64

Appendices 70

A Contents of the attached D V D 71

B E r r o r detection on a F I R filter 72

B . l Add i t i ona l fault configuration results 72
B.2 Classification results on the fir_30_io_vals data set 78

B.2.1 Hidden Markov model 78
B.2.2 RandomForest w i t h transformation methods 78
B.2.3 Mul t i layerPerceptron w i t h transformation methods 80

B .3 State t ranis i t ion diagrams of H M M s
trained on the fir_diff_io_vals data set 81

2

Chapter 1

Introduction

Technology of digi ta l systems develops at a very quick pace. The endeavour to increase
logic density and reduce power consumption requires more and more smaller transistors
on the chips. However, decreasing the size of transistors can lead to negative effects on
the system's reliability. Due to sensitivity to radiation, systems are more prone to faults,
which is why ensuring rel iabil i ty is necessary. H i g h rel iabil i ty is essential i n many fields of
life and science: healthcare [27], spacecraft [] or aircraft [], etc. The focus of this thesis
is on improving rel iabil i ty by u t i l iz ing fault tolerance methods. Systems employing fault
tolerance operate correctly also i n the presence of faults [3].

In this thesis the technique of checking circuits is used for achieving fault tolerance.
Checking circuit , also denoted as online checker, operates as a supervisor of a given hardware
component which is desired to be fault-tolerant. The a im of the online checker is to detect
faults occurring i n the supervised hardware component. After a successful fault detection
a corrective action can be taken.

The proposed checking circuit of this thesis contains the implementat ion of a certain
machine learning a lgori thm. Machine learning is a branch of art if icial intelligence 1 that
deals w i t h the construction and study of systems that can learn from data. The machine
learning algori thm (classifier) present in the checking circuit , is taught (trained) on the ob­
served hardware unit 's input-output data. After the learning process finished, the classifier
should be able to determine whether the observed hardware component works correctly or
a fault has occurred. The fault detection is based on the hardware unit 's recent input-
output values, which are classified by the machine learning classifier into two ma in classes:
0 (faulty), 1 (correct).

The main objective of this thesis is to assess which machine learning algorithms are
suitable to use for construction of online checkers. Secondly, it is aimed to determine what
settings the chosen algorithms require i n order to maximize their efficiency and accuracy
of fault detection.

This thesis is focused on hardware components w i th sequential logic, whose output
values are dependent not only on the present input values of the unit, but also on a certain
number of past input values. The subsequent input-output values of the hardware unit
constitute a time series. T i m e series consists of observations (input-output values) which
were taken sequentially i n t ime. For handling t ime series data special machine learning
algorithms are needed, which are studied and described i n this paper.

Part of computer science that is concerned with making computer programs that can solve problems
creatively and behave like humans.

3

Chapter 2 deals w i th the principles of checking circuits and w i t h the basic concepts
of fault tolerance. The ensuing chapter 3 introduces machine learning and its basic ap­
proaches. The chapter also describes the theoretical properties of the machine learning
algorithms which were chosen to perform the experiments of this thesis. The applicat ion
of the ind iv idua l machine learning algorithms for checking circuit generation is presented
in chapter 4. In this chapter the format of the used data sets and the process of data set
generation, including fault injection are also explained. Chapter 5 contains the description
of the experiments, performed on a finite impulse response filter. The results are evaluated
and discussed i n each experiment individual ly . The last chapter 6 contains the summary of
this thesis, including final evaluation of the results and plans for future work.

4

Chapter 2

Principle of checking circuits used
in field programmable gate arrays

Fie ld Programmable Gate Arrays (F P G A s) are integrated circuits containing an array
of logic blocks. The blocks can be programmed using a hardware description language
(V H D L , Veri log, etc.) after the manufacturing of the F P G A . They can also include memory
units, like flip-flops or more complex blocks of memory. The blocks' configuration can be
changed by par t ia l reconfiguration which makes F P G A a flexible device. F P G A offers
high computat ional power, fast time-to-market and relatively cheap product ion. Another
advantage of F P G A s is that they are suitable for developing checking circuits (see [28] and
[46]).

Checking circuit , also called as online checker (see figure 2.1) works as a supervisor on a
chosen function unit where it can validate the unit 's outputs depending on its inputs. A n y
occurring errors are reported in real t ime which is why their operation is also described
as Concurrent Error Detection (C E D) . This fault-detection process plays a major role in
making the system more dependable. The concepts of dependabili ty are further presented
in section 2.1.

Inputs
F u n c t i o n U n i t

Outputs

Figure 2.1: Onl ine checker

Achieving fault tolerance requires not only to detect faults, but also to recover from the
occurred error. Checking circuits which have this capabil i ty are suitable for implementing
fault-tolerant systems (F T S) . The properties and realization of F T S are described in section
2.2.

Section 2.3 deals w i t h the specific uti l izations of checking circuits used in F P G A for
constructing F T S .

5

2.1 Concepts of dependability

The p r imal goal of checking circuits is to make the supervised system as dependable as
possible. Dependabi l i ty has 3 fundamental elements: attributes, threats and means. These
are described based on [L] and [8].

2.1.1 A t t r i b u t e s of dependab i l i t y

The attributes of dependabili ty are properties of a system which can be assessed i n order
to determine the overall dependabili ty of a system. Accord ing to [8] there are 3 pr imal
attributes of dependability:

• availability - the system must be always ready for providing the correct service

• reliability - the provided service must be continuous

• safety - the provided service must not have catastrophic consequences on the user and
the environment

Other possible attributes (without being exhaustive) []:

• maintainability - the system can be repaired and modified

• testability - the system can be tested, giving confidence about correctness

• confidentiality - absence of unauthorized disclosure of information

• integrity - absence of improper system state alterations

The significance of the ind iv idua l attributes relies upon the given system's priorities. For
example in case of a pacemaker device the continuous functioning (reliability) is crucial ,
while for a nuclear power plant system, safety is of greater importance.

2.1.2 T h r e a t s to dependab i l i t y

The threats to dependabili ty which are also called as dependabili ty impairment, are usually
defined in terms of faults, errors and failures.

A fault is physical defect, imperfection or flaw that occurs i n some hardware or software
component. Faults can be distinguished based on different criteria, for instance based on

• phase of their creation: developmental, operational

• system boundaries: internal, external

• domain: software, hardware

• persistence: permanent, transient

Permanent faults are active in the given hardware unit un t i l a corrective action is taken.
They can be induced by some k ind of physical defect in the hardware, such as shorts i n a
circuit , stuck bits in a memory or broken interconnections.

Transient faults remain active only for a short period of t ime. They are causing mal­
function only i n unspecified (usually random) time intervals and they disappear without

G

any intervention. Often they are detected only through errors that results from their prop­
agation.

A n error is a deviat ion from correctness or accuracy i n computat ion, which occurs as
a result of a fault. Errors are usually associated wi th incorrect values i n the system state.
Errors can cause subsequent failures.

A failure is an event that occurs when the service delivered by the system deviates from
the correct service. The delivery of incorrect service can manifest itself i n performance of
some function i n subnormal quali ty or quantity. For example deterioration or instabi l i ty of
operation.

2.1.3 M e a n s of dependab i l i t y

Term means of dependability encompasses a l l methods and techniques which are util izable
for bui lding a dependable system. Accord ing to [] these methods are the following:

• fault tolerance - ensuring that the system works correctly also i n presence of faults

• fault prevention - preventing of occurrence or introduct ion of faults

• fault removal - reduction of number or severity of faults

• fault forecasting - estimating the present/future number of faults and their conse­
quences

2.2 Fault-tolerant systems

A fault-tolerant computing system according to [3] can be described as a system which
has the bui l t - in capabil i ty to preserve the continued correct execution of its programs and
input /output (I /O) functions (without external assistance) i n the presence of a certain set
of operational faults. A n operational fault is an unspecified (failure-induced) change i n the
value of one or more logic variables i n the hardware of the system.

Faults occurring i n a fault-tolerant system can be handled by exploi t ing and managing
two basic types of redundancy: space redundancy and time redundancy. Space redundancy
can be further classified into hardware, software and information redundancy based on the
the type of resources added to the system. Software redundancy is applicable mainly for
tolerating faults in the software-part of a system (e.g. by implementing the same program
mult iple times and comparing the results). Since this thesis is focused on hardware faults,
software redundancy w i l l not be further discussed. The description of hardware, information
and t ime redundancy are based on [23] and [8].

2.2.1 H a r d w a r e r e d u n d a n c y

Hardware redundancy can be implemented by adding extra hardware components into the
existing design i n order to detect or override the effects of a failed component. Since it
often goes together w i th a large area overhead, it is mainly used when other techniques
(better components, quali ty control, etc.) have been exhausted or proved to be inefficient.
Hardware redundancy have 3 basic subtypes: active redundancy, passive redundancy and
hybrid redundancy.

7

Act ive redundancy is used in F T S where faults are rather temporary and occasional. In
this type of redundancy fault tolerance is ensured by both detecting the fault and recov­
ering from it i n specified interval of t ime. There are various active redundancy techniques
presented in [8]: duplication with comparison (duplex), standby sparing, pair-and-a-spare.

The duplex system (see 2.2) consists of two function units doing the same computat ion
in parallel and a comparator which decides based on their outputs i f a fault has occurred.
If the outputs are identical, the comparator assumes that the results are error-free. After
a successful fault-detection an error handling can take place. However, duplex system can
guarantee the detection of only a single fault, two or more faults could cause a failure in
the system.

FU 1 Output w FU 1

Inputs
V \ Error signal ^

FU2 J

Figure 2.2: Dupl ica t ion wi th comparison

Standby sparing is another scheme for active redundancy where only one of n function
units (F U) is operational, the remaining n — 1 units serve as spares (see figure 2.3). Spares
are redundant components which are not needed for the regular functioning of the system.
Faults are detected by the fault-detection units (F D) . If a fault is detected the currently
operating function unit is switched to one of the spares i f at least one is s t i l l available. In
case there are no more spares left, the system can s t i l l detect the faults, but cannot recover
from them. A standby sparing system wi th n function units can tolerate n — 1 function
unit faults, the n- th fault is only detected.

Inputs

FU 1

FU 2

FU n

* FD

* FD

^ F D

n - t o - l

sw i tch

Output

Figure 2.3: Standby sparing w i t h n function units

Pair-and-a-spare technique is combined from standby sparing and dupl icat ion wi th com­
parison approaches (see figure 2.4). Cont ra ry to the standby sparing mechanism, here two

8

function units operate i n parallel instead of one. The results of the two function units are
compared to detect disagreement. In case of an error signal is detected, the two operating
F U s ' F D unit send their reports to the switch for analysing. The faulty F U is replaced
wi th a spare F U , i f any is s t i l l available. A pair-and-a-spare system can tolerate only n — 2
F U faults, because after the n — 1-st F U fault there are no more spare F U s which could be
used as replacement. W h e n the n — 1-st fault occurs the system produces a correct output
and it is reduced to a simplex system which is not able to detect any further faults. A s
a possible improvement, the system could be also reduced to a standby sparing model. It
would mean that the n — 1-th F U fault could be s t i l l tolerated and the n- th F U fault could
be detected in the same way as in case of the original standby sparing technique.

Using the previously proposed improvement, this technique is s t i l l not better than the
standby sparing technique, because both of them can tolerate the same number of faults.
However, it could be possible that i n some cases it is better to use the pair-and-a-spare
technique. The main difference between the two techniques is that the pair-and-a-spare
technique does not use its F D units each t ime when the output is checked for faults. Instead
of that the results of two F U s are compared. If the given F U requires a more complex F D
unit, it could be beneficial to use the pair-and-a-spare technique, which uses F D units only
after the fault was detected by the FU-compara tor . Hence, i n certain cases pair-and-a-spare
could operate faster than standby sparing.

Inputs

FU 1

FU 2

FU n

L> FD

> FD

^ F D

n-to-2

swi tch

Output

zrror signal

Figure 2.4: Pair-and-a-spare system wi th n function units

Passive redundancy, contrary to the active redundancy, does not warn the system about
the possibly occurring faults, but masks them i n order to insure that only correct values
are passed to the system output. A n example for this is a Triple M o d u l a r Redundancy
system (T M R , see 2.5) which can be constructed by binding three hardware components,
computing the same function for the same inputs. The outputs of the ind iv idua l components
are processed by a majori ty voting system which produces the final output of the system.
If one of the three components fails, the other two components can take care about the
correcting and masking of the fault.

9

Figure 2.5: Triple-modular redundancy system

H y b r i d redundancy is a combination of the previous two approaches (active and passive)
by both masking the momentary erroneous results and detecting faults from which the
system can subsequently recover. Based on [8] among the hybr id redundancy systems
can be mentioned: N-modular redundancy with spares, triplex-duplex redundancy and self-
purging redundancy which is i l lustrated on the below figure.

Figure 2.6: Self-purging redundancy system

Self-purging redundancy consists of n function units which can mask faults of n — 2
units in the following way: The outputs of the modules are compared by the voter, which
works as a threshold gate, receiving outputs of the F U s wi th weights of 1 (active) or 0
(purged). If the voter detects any disagreement in the F U s ' outputs, the system removes
the faulty F U by forcing its weight to zero, hence it w i l l not take part i n any further voting.
This removal process is also called as purging. After purging n — 2 units from the system,
the remaining two units work as i n case of the above presented duplex system (see 2.2).
However, this system includes certain l imitat ions regarding its observed function units.
Firs t ly , the F U s cannot produce val id outputs w i t h zero value because it would cause their
undesired purging. Secondly, i f a disagreement i n the voter occurs, the F U s cannot pass
new outputs to the voter t i l l the faulty F U is purged.

10

2.2.2 I n f o r m a t i o n r e d u n d a n c y

In case of information redundancy, usually extra bits are added to the original data bits, in
order to detect or even correct the occurred errors. The most known forms of information
redundancy are systems working w i t h certain versions of error detecting codes [8]: pari ty
codes (odd or even pari ty) , M - o f - n codes, Berger codes, C R C codes, the H a m m i n g code,
etc.

Parity code works wi th a single addi t ional bit , called as parity bit. Considering a code
wi th n bits, the pari ty bit , as the n- th bit of the code, contains information about the
number of l ' s in the preceding n — 1 bits which is the codeword. We can distinguish odd or
even pari ty codes based on what the pari ty bit signalizes, the even or odd number of l ' s
in the codeword. Pa r i ty code is able to detect single-bit errors, but their local izat ion (and
correction) is not possible.

2.2.3 T i m e r e d u n d a n c y

Time (execution) redundancy consists of repeating and acknowledging machine operations
at various levels [3]:

• micro-operations

• single instructions

• program segments

• entire programs, etc.

W h i l e hardware and information redundancy techniques have impact on physical entities
like weight, size, cost, power consumption, etc., t ime redundancy can be applied i n cases
when time is less important than extra hardware. The simplest way to at ta in t ime redun­
dancy is the re-execution of the same program on the same hardware. If the same fault
occurs after every re-execution of the program then it is a permanent fault, i f it disappears
we are ta lk ing about a transient fault, which is the p r ima l u t i l iza t ion of t ime redundancy.
In case of transient faults the faulty hardware unit is often s t i l l usable which can be handled
using some error-recovering method instead of switching off the operation. Based on how
many times the program is re-executed it can be decided how the occurring faults should
be handled. If the program is executed only 2-times the fault can be only detected. If it is
executed 3 or more times it can be also corrected.

2.3 Checking circuit implementations

The basic idea of implementing checking circuits i n fault-tolerant systems is to create a
new function unit which receives the same inputs as the supervised function unit (see 2.1),
but is implemented differently and is able to recognize the faults occurring i n the original
unit . Checking circuits do not have to necessarily implement the same functionality as their
tested function unit , their goal is l imi ted to the val idat ion of the supervised unit which is
done based on the tested unit 's inputs and outputs. O n the contrary, using a replica of the
original function unit should be avoided, because it could happen that both the tested and
replica unit fail i n the same manner and thus the fault detection might be unsuccessful.

A n extended version of the T M R system is presented i n [] where each function unit
(FU) has its own checker (see figure 2.7). In case of an error, both the voter and the adherent

11

checker of the failing F U signalizes i t . This mechanism unambiguously determines which
F U produced the error and hence the erroneous F U can be easily removed from the system.
The system remains fault-tolerant t i l l there are at least two checker-FU pairs operating.
Us ing a single checker and F U faults cannot be tolerated only detected.

error 1

Figure 2.7: T M R system wi th online checkers

In paper [45] a methodology for generating checking circuits for specific d igi ta l circuits
is introduced. It is based on a formal definition language describing the val id input-output
signal combinations of the tested function unit and also its correct and erroneous states. The
proper description of the tested unit is convertible to a finite state machine (F S M) from
which the final checking circuit i n V H D L / V e r i l o g hardware description language can be
generated. Final ly , the checking circuit w i th the original function unit are synthesizable into
F P G A . The advantage of this approach is that the generation of the checking circuit does
not require the presence of an experienced designer, only the mentioned formal definition
of the function unit needs to be described. In [] is presented how the formal description
is transformed to F S M and subsequently to V H D L . It also contains some real hardware
designs (counter-decoder, register w i th multiplexer, duplex, etc.) i n which the introduced
checker generation is ut i l ized.

Another approach for checking circuit generation is introduced i n [28]. It uses active
automata learning (combination of finite automata theory and machine learning techniques)
for their generation which allows a more automatic construction than previously presented
in [15]. The function units in this method are treated like black box, only some knowledge
about the signals of the tested unit 's interface is needed. This reduces the need for a
hardware designer and therefore the probabil i ty of human mistakes.

The a im of this thesis is to use machine learning algorithms for checking circuit genera­
t ion. S imi lar ly to [28], function units are considered as black box where only the input and
output signals of the tested units are significant. Tra in ing of machine learning algorithms is
performed using big amount of data, which means thousands of input-output combinations
gained from the given function unit . The ind iv idua l machine learning algorithms used in
this thesis are described i n the next chapter (see 3).

12

Chapter 3

Machine learning

This chapter is an int roduct ion to the machine learning techniques used i n this thesis. It
defines what machine learning is and presents its fundamental types and approaches.

According to T . M . M i t c h e l l [31] machine learning can be defined as follows:

Definition 1. „A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E."

A set of data combined wi th possible learning signals is called train data set. This is
received by the learner and after its processing (learning), the learner should be able to
predict the output for previously unseen data. Since this data was not part of the t raining
process, its use for the learner's evaluation should give an objective feedback about how
accurately the learning system works. Hence, a data set w i th previously unseen data is
called test data set.

We can distinguish various types of machine learning approaches based on the type and
content of the t ra in data set and steps required for its processing. The ind iv idua l types are
described i n section 3.1.

Usually, appl icat ion of machine learning to real world problems is realized in form of
machine learning algorithms. These can have different varieties based on their ut i l ized
computat ional structure, presented i n [33]:

• Functions

• Logic programs and rule sets

• Finite-state machines

• Grammars

• P rob lem solving systems

Machine learning algorithms can be also categorized by their capabil i ty to learn from
sequential (time series) data. Section 3.2 describes algorithms which are capable to learn
from time series data without any addi t ional help. Subsequent section 3.3 contains descrip­
t ion of machine algorithms (base algorithms) that require a wrapper a lgori thm to transform
(reduce) the data into a non-sequential form first. O n the reduced data one of the base
algorithms can be applied.

13

3.1 Types of machine learning

This section is devoted to the description of the ind iv idua l machine learning types. The
machine learning approaches used i n this thesis work wi th pre-generated sets of data, w i th
randomly chosen subsets for t raining and testing. These type of learning methods can be
categorized as passive learners because their input data is predefined, there is no further
interaction between the learner and the underlying (learnt) system. The learner processes
the previously generated t ra in data set and produces the resulting machine learning model
or classifier (see schema 3.1). Passive learning systems can be further divided based on the
presence of a learning signal into two ma in categories: supervised learning and unsupervised
learning. These are described in the below subsections 3.1.1 and 3.1.2.

L e a r n t Data
w

P a s s i v e Output M o d e l o r

S y s t e m W L e a r n e r C l a s s i f i e r

Figure 3.1: General schema for a passive learner

The second category of machine learning approaches encompasses a group of active
learners which contrary to the passive ones, gather data by asking queries and receiving
responses from the learnt system (see schema 3.2). The ind iv idua l queries do not need to be
set i n advance. Instead, the answers to the previous queries can influence the next queries.
The model or classifier can be considered as final when a l l the desired query-responses were
processed. Ac t ive learning is out of the scope of this thesis, hence it w i l l not be discussed
in more detail .

L e a r n t
Query

A c t i v e Output M o d e l o r L e a r n t A c t i v e Output M o d e l o r

S y s t e m L e a r n e r C l a s s i f i e r S y s t e m
Response

L e a r n e r C l a s s i f i e r

Figure 3.2: General schema for an active learner

3.1.1 S u p e r v i s e d l earn ing

Supervised learning works wi th fully labelled t ra in data sets where data is represented as
a pair of {X, Y} where Ys are actual labels of the data elements in X. The t ra in data
set is required to be labelled by a supervisor before the learning begins. The ma in goal
of supervised learning is the prediction of labels Ynew for a new set of data Xnew that are
without labels. There are several approaches and algorithms that use supervised learning,
for example []: neural network t ra ining using the backpropagation algori thm, decision tree
learning, naive Bayes classifier, etc.

In supervised learning there are two possible types of algorithms that can analyse the
t ra ining data and produce an inferred function. These are classification and regression [32].

Classification assigns each data element X a class Y from a group of discrete values.
There are two main classification types depending on the number of classes to which data
elements can be mapped. If there are only two classes, it is called binary classification
(X—>{Yi, Y2}), otherwise it is multi-class classification (X—>{Y"i,I2, Y3...}). The below fig­
ures (see 3.3) show the two classification types on data elements consisting of two attributes

14

X i and X2. Classification has many uti l izations i n real-wo r id applications, such as docu­
ment (text) classification [], email spam filtering [50], image classification [6], handwrite
recognition [11] and face recognition [53], etc.

X_2

X_l X_l

Figure 3.3: B i n a r y classification (left) and multi-class classification (right)

Regression is s imilar to classification except here the response variable Y is continuous.
It is about finding a function for the t ra ining data i n order to learn Y as a function of X.
Depending on the type of the found function we can distinguish different types of regressions.
For example, linear regression is fit t ing the data w i th a linear function Y = w\X + WQ
where w\ and WQ must be suitable. In cases where the linear model is too restrictive,
polynomial regression can be applied, for example w i t h a quadratic fitt ing function: Y =
W2X2 + w\X + WQ. The two regression types are i l lustrated on the below figures (see 3.4).
There are several opportunities to use regression i n the field of engineering, economics,
medical researches and marketing.

Figure 3.4: Linear regression (left) and polynomia l regression (right)

3.1.2 U n s u p e r v i s e d l earn ing

In this type of learning problems only data elements X are contained by the t ra in data
set, there are no labels Y. In cases when the presence of a supervisor is not possible,
unsupervised learning is applied.

Unsupervised learning is closely related to the problem of density estimation i n statistics
(see i n [1]). The a i m of density estimation in unsupervised learning is to bu i ld a model

15

p(Xi\9) which w i l l estimate the dis t r ibut ion of the observed data. Since the dis t r ibut ion is
created purely based on the observed data X j , in case of unsupervised learning we are ta lking
about uncondit ional density estimation. Cont ra ry to this, supervised learning techniques
can bu i ld models using condit ional density estimation. Condi t iona l density estimation can
be formally described as p(Yi\Xi, 9), where Yi is the provided learning signal.

One of the possible methods for density estimation is clustering (described i n [32]). It
aims to find clusters or groupings of input based on the observed data elements. However,
in unsupervised learning it is not clear to how many possible clusters can the data be
distr ibuted. Therefore, the first goal of clustering is to estimate the dis t r ibut ion over the
number of clusters p(K\D) where K denotes the number of clusters. The second goal is
to estimate which cluster each data element belongs to. It can be formally described as
Zi € { 1 , . . . , K} where Zj represents the cluster to which data element i is assigned. Since Zi
is not observable i n the t ra in data set, it can be also described as a hidden or latent variable.
Comput ing the dis t r ibut ion of the ind iv idua l data elements Xi to the clusters Zi can be
expressed as: Z* = a r g m a x f c p (Z j = k\Xi,V). O n figure 3.5 is i l lustrated clustering i n 2
dimensional space wi th 3 clusters. Cluster ing is applicable in many aspects of life: image
compression, bioinformatics, astrophysical measurements, customized targeted advertising
based on the users web-purchasing behaviour, etc. (see i n [1] and [32]).

Z_3

•
x _ i

Figure 3.5: Cluster ing wi th K = 3

3.2 Machine learning algorithms for processing time series

A t ime series is a sequence of observations taken sequentially i n t ime. The data points of
the series are recorded at equally spaced t ime intervals. T ime series data has an explicit
order dependence between the ind iv idua l observations, which can be considered as an extra
time dimension. Th is t ime dimension provides addi t ional information to the data stored in
the elements of the series. T ime series are ut i l ized i n several fields of science and technology:
weather forecasting [], marketing [], signal processing [], bioinformatics [], etc. In

16

this thesis it is used for storing subsequent inputs and outputs of hardware components
wi th sequential logic.

This section is a description of machine learning algorithms which can be used for pro­
cessing t ime series data. The difference between these and the standard learning algorithms
(decision trees, feed-forward neural networks, etc.) is that the model of these algorithms
does not grow proport ional ly wi th the length of the learnt data sequences. For example, i f
we would like to learn t ime series data using a decision tree algori thm like R a n d o m Forest,
the number and the size of the ind iv idua l trees of the forest would be needed to adjust
depending on the length of the learnt series.

In this thesis the below presented Markov models (see 3.2.2) were used from this category
of machine learning algorithms. These work based on a stochastic process (described in
3.2.1).

Except Markov models there are also other algorithms, having similar, native capabil i ty
of processing t ime series data. Here can be mentioned recurrent neural networks [16],
dynamic t ime warping techniques [18] and support vector machines [20], etc. Since these
were not ut i l ized i n the experiments of this thesis, they w i l l not be further described.

3.2.1 Stochast ic process

Stochastic (random) process is a collection of random variables ordered by an index set. A
formal definition can be read i n [9]:

Definition 2. Given a probability space (fl, P), a stochastic process is any collection
of random variables {X{t)}t&T where T is the index set and X(t) denotes the value of the
stochastic process at time t.

We can distinguish discrete-time and continuous-time stochastic processes, defined as:

Definition 3. Given a stochastic process {X{t)}t&T with index set T = { 0 , 1 , 2 , . . . } or
T = No, {X(t)}teT is a discrete-time stochastic process which can be also denoted as
{ X (n) } „ e N .

Definition 4. Given a stochastic process {X{t)}t&T with index set T = [0, i n f) ; {X(t)}t&T
is a continuous-time stochastic process which can be also denoted as {X{t)}t>=o-

3.2.2 M a r k o v mode l s

Markov models (M M) , named after Andrey M a r k o v 1 , are stochastic models, consisting of
a set of states and a transi t ion function. A l l Markov models have a common property,
Markov property, which says that future states depend only on the current state, thus they
are always independent from sequences of past states. It can be formally defined as:

Definition 5. Given a stochastic process {X{t)}t&Tj its sequence of random variables has
the Markov property if for any t £ T the future process (X(m),m > t,m G T) is
independent of the past process (X(m),m <t,m G T), conditionally on X{t).

The types of Markov models can be distinguished based on two main properties:

• controllability of the model's stochastic process

1 Russian mathematician, best known for his work on stochastic processes.

17

• observability of the model's states

Markov models w i t h controllable state transitions belong to the category of Markov
decision processes (M D P) . M D P s are described in subsection 3.2.2.1.

This thesis is focused on M M s w i t h autonomous stochastic processes. Based on the
observability of these model's states can be distinguished two main types of M M s , Markov
chains and Hidden Markov models. These are described in more detail in the below sub­
sections 3.2.2.2 and 3.2.2.3.

3.2.2.1 M a r k o v decision processes

Markov decision processes (M D P) are controlled stochastic processes satisfying the Markov
property and assigning reward values to state transitions. Accord ing to [], formally they
can be described 5-tuple (S, A, T, p, r) where:

• S - is the state space i n which the process' evolution takes place

• A - is the set of a l l possible actions which control the state dynamics

• T - is the set of t ime steps where decisions need to be made

• p() - denotes the state transi t ion probabil i ty function

• r() - provides the reward function defined on state transitions

O n figure 3.6 we can see a general M D P diagram. Act ions at € A are made on state St £ S
in each t ime step t € T, which affects the transi t ion to next state s^+i £ S. The reward
obtained for the given transi t ion in t ime step t is denoted as r(st,at).

In case the states of the M D P are not fully observable we are ta lk ing about Partially
observable Markov decision processes. Since M D P s are not used i n this thesis, they are not
described i n more detail .

r(s_t, a_t)

Figure 3.6: Influence diagram of a general Markov decision process

3.2.2.2 M a r k o v chain

A Markov chain (M C H) is a stochastic process referring to a sequence of random variables
which satisfy the Markov property, and where the states of the model are fully observable.

18

Similar ly to stochastic processes, Markov chains can be also defined i n discrete-time and
continuous-time. The complete definition of discrete-time Markov chains can be formulated
as follows []:

Definition 6. A stochastic process X = {X{n),n G N} over the state space S is a discrete-
time Markov chain if

• for every n > 0,X(n) G S

• for every n G N and for all in, i n - i , • • • ,io £ S we have

Pi{X(n) = in | X(n - 1) = i n - i , X (0) = i0} = Px{X(n) = in \ X(n - 1) = in-i},

when both conditional probabilities are defined. The probabilities pij = P r { A (n) = in \
X(n — 1) = in-i} are called transition probabilities.

Definition 7. A discrete-time Markov chain with a finite number of states is called finite-
state discrete-time Markov chain. The transition probabilities p^ of a finite-state
discrete-time Markov chain are represented in a transition matrix P with entries p^.

This thesis deals w i th finite-state discrete-time Markov chains only, hence they are
further described without explicit mention. Markov chains can be represented using a state-
transi t ion diagram (see figure 3.7) which describes the transi t ion probabilities between the
ind iv idua l states of the chain. The below example shows a weather predict ion problem,
where the weather of tomorrow (next state) is determined based on the today's weather
(current state). The ind iv idua l states of an M C H can be transient or absorbing. These can
be defined as follows:

Definition 8. A state Si G S of a Markov chain is called absorbing if the transitions to
other than the current state are impossible: pu(t, t + 1) = 1 for all t > 0.

Definition 9. A state Si G S of a Markov chain is called transient if there is at least one
transition to other than the current state: pu(t, t + 1) < 1 for any t > 0.

A Markov chain is absorbing i f it has at least one absorbing state, and i f from every
state it is possible to go to an absorbing state (not necessarily i n one step). Therefore, the
below Markov chain is not absorbing because it has only transient states.

0.6

Figure 3.7: State-transition diagram of a Markov chain used for weather predict ion []

19

3.2.2.3 H i d d e n M a r k o v model

Hidden Markov model (H M M) is a Markov chain where the states are only par t ia l ly ob­
servable. The description of the elements, types and problems of H M M s were described
based on the book of L . R . Rabiner and B . H . Juang [39].
H M M has 3 p r ima l dr iv ing elements which determine its operation:

• states - it has finite, iV number of states

• transition probability distribution - based on it the model decides which state to enter
at clock t ime t

• observation (output) probability distribution - represents a random variable or stochas­
tic process, which is held fixed for each state indiv idual ly and is responsible for pro­
ducing observation variables

The following figure (see 3.8) illustrates a general H M M architecture, where the observed
outputs yt have an unobserved state xt at t ime t.

Figure 3.8: General H M M architecture

A classic example for an H M M is the urn and ball model (see 3.9) which shows the
functionality of H M M s on iV urns containing balls w i t h M possible colors. In this case,
the observation variables are the colors of the balls, which are produced based on the next
steps:

1. Select a starting urn based on an in i t i a l state distr ibut ion.

2. P u l l out a ba l l from the chosen urn according to the output probabil i ty dis t r ibut ion
of the chosen urn.

3. Record the color of the drawn ba l l and return it to the urn.

4. If the sequence of the recorded colors reached the desired length T, terminate the
process.

5. Select a new urn based on the state transi t ion probabil i ty dis t r ibut ion of the current
urn. Continue wi th step 2.

20

o o

Urn 1

Pr(R)= •

Pr (B)= •

Pr (Y)= •

Urn 2

Pr(R)=

Pr (B)= •

Pr(Y)= •

* * *

Urn N

Pr(R)= •

Pr (B)= *

P r (Y) = •

Figure 3.9: U r n and bal l model [39]

The type of an H M M is determinable based on different properties of the model. Re­
garding the H M M ' s state connections, the model can have three basic configurations, linear
(see 3.10), left-to-right (or Bakis , see 3.11) or ergodic (see 3.12).

M 2 -K 3 M 4

Figure 3.10: Linear H M M configuration

21

Figure 3.12: Ergodic H M M configuration

Based on the type of the produced observation variables we can distinguish discrete and
continuous H M M s . These are explained i n the next two paragraphs.

Discrete H M M produces symbols from a categorical dis t r ibut ion and its model con­
sists of the following components:

1. T = length of the observation sequence (total number of clock times)

2. Q = {qi,q2, • • • qN}, states

3. V = {v\, V2, • • • VM}, observation symbols

4. A = {aij}, ciij = Pr(qj at t + 1 | q\ at t), state transi t ion probabi l i ty dis t r ibut ion

5. B = {bj(k)},bj(k) = Pr(wfc at t \ qj at t), observation symbol (output) probabi l i ty
dis tr ibut ion i n state j

6. 7r = {7Tj},7Tj = Pr(gj at t = 1), in i t i a l state dis t r ibut ion

A n example for a discrete H M M is the above presented urn and bal l model (see 3.9). In
this case the observation probabil i ty dis t r ibut ion between the ind iv idua l states (urns) can
be represented table:

States

U r n l Urn 2 Urn N

Observation symbol

Red ball Pr_l[R) Pr_2(R) Pr_N(R)

Observation symbol Blue ball Pr_l[B) Pr_2(B) Pr_N(B) Observation symbol

Yellow ball Pr_l(Y) Pr_2(Y) Pr_N(Y)

Figure 3.13: Table representation of the observation probabil i ty dis t r ibut ion

Continuous H M M outputs observation variables using output probabilities based on
a continuous density function. Therefore the output probabi l i ty dis t r ibut ion bj(k) of the

22

discrete H M M is replaced here by a continuous probabi l i ty density function bj(x)dx, 1 <
j < N where x is a continuous vector. Th is function gives a probabil i ty that the observation
vector lies between x and x + dx [39]. There are different forms of the bj{x) function from
which one of the most common is its representation as a mixture of Gaussians which was
also used i n this thesis [39]:

M
bj(°) = C3m^[0, Hjm, Ujm], l<j<N (3.1)

m=l

where O is the vector being modelled, Cjm is the mixture coefficient for the mth mixture
i n state j and A/" is the normal density w i t h mean vector \Xjm

and covariance mat r ix Ujm

associated wi th state j and mixture m.
Besides the u t i l iza t ion of continuous H M M s i n this thesis, it also has several real-world

applications, among others i n speech processing and recognition [38].

H M M in machine learning

The use of H M M i n machine learning algorithms is closely related to the solution of the three
commonly known H M M problems. The description of these problems and their solutions
are presented based on [39]:

1. Scoring: Comput ing the probabil i ty of a given model 's observation sequence. For­
mally specified as P r (OjA) where O = Oi, O2, • • •, OT is the observation sequence and
A = (A, B, 7r) is the H M M model .

2. Match ing /Decod ing: Choosing a sequence of states Q = qi, 52, • • •, QT, op t imal for
a given observation sequence O = 0\, O2, • • •, OT in model A = (^4, B, TT).

3. Training: Adjust ing the parameters of a given model A = (^4, B, IT) to maximize the
probabil i ty of a given observation sequence P r (0 | A).

1. Scoring problem

The scoring problem usually appears when there are more H M M models and we need to
decide by which model a given observation sequence was generated. In case of classification,
the ind iv idua l H M M models each represent a class. Hence, by calculat ing which H M M
model produced the given observation sequence, it is determined to which class the given
sequence is assigned.

The most straightforward solution to this problem is calculat ing the probabil i ty of
the given observation sequence O = 0\, O2, • • •, OT for each possible state sequence Q =
qi,q2, • • • ,QT, formally described as:

P r (0 I Q,X) = bqi(01)bq2(02) ...bqT(0T)

The probabi l i ty of state sequence Q can be expressed as:

Pl(Q j A) = 7Taq1q2(lq2q3 . . . <lqT_1qT

The product of the above terms is a joint probabil i ty of O and Q, describing that they must
occur simultaneously:

P r (0 , Q I A) = P r (0 | Q, A) Pi(Q | A)

23

The scoring problem can be solved by summing the above joint probabil i ty over a l l possible
state sequences:

P r (0 | A) = P r (° I Q> A) Pl(Q I A) = E
nqibqi(Oi)aqiq2 bq2 (OT)

a l l Q 91,92,•••i9T

However, this calculat ion is computat ional ly unfeasible, because considering N states to go
through, it requires 2TNT calculations (NT(2T — 1) mult ipl icat ions and NT — 1 additions).
Therefore, a more efficient a lgori thm should be used, commonly known as the forward
algorithm (procedure).

Forward algorithm computes the probabi l i ty of a given observation sequence O on a
given H M M model A by introducing the forward variable at(i) defined as:

at(i) = P r (O i , 0 2 , . . . , Ot, qt = Si\ A)

The forward variable of a given model A expresses the probabil i ty of the par t ia l observation
sequence (unti l t ime t) and state Si at t ime t. It can be solved inductively (N denotes the
number of possible states i n the model):

1. a i (i) = t t A (O i) , for 1 < i < N

2- at+1(j)
N

^at(i)aij
i=l

bj(Ot+1), for t = 1 ,2 , . . . ,T - 1; 1 < j < N

3. The probabil i ty of the given observation sequence O in model A is then:

N
P r (0 I A) = 5> T (i

i=l

This a lgori thm requires only N2T calculations (N(N + 1)(T — 1) + N mult ipl icat ions and
iV(iV — 1)(T — 1) additions) [39] which is a lot more efficient than the direct calculation.

Backward algorithm can be used for computing the probabil i ty of the par t ia l obser­
vation sequence Ot+i, Ot+2, • • •, OT when state Si at t ime t and model A are given. Th is
probabil i ty can be expressed using a backward variable:

Pt(i) = P r (O m , O t + 2 , . . . , 0 T \ q t = Si,X)

Similar ly to the forward algori thm, fit{i) can be also solved inductively:

1. Pr(i) = 1, for 1 < i < N

N
2. Pt(i) = J2aijbj(Ot+l), for t = T - 1,T - 2 , . . . , 1; 1 < i < N

i = i

Th is a lgori thm is not necessary for solving the Scoring problem, but it is related to the for­
ward algori thm and it can be used for other H M M problems (e.g. t raining). The subsequent
computat ion of forward and backward variables is commonly called as forward-backward al­
gorithm (procedure).

24

2. M a t c h i n g / D e c o d i n g problem

F i n d i n g the op t imal state sequence Q for a given observation sequence O i n a model A can
be achieved in different ways. One way is to calculate the indiv idual ly most l ikely states
for each t ime step using the forward-backward algori thm. The probabil i ty of being in state
Si at t ime t, given the observation sequence O and model A can be expressed as:

a.t{i)Pt{i)
P r (0 | A)

Using 7 i (i) , the indiv idual ly most l ikely state qt at t ime t is:

qt = arg max
Ki<N

lt{i) for 1 < t < T

However, this method does not consider any disallowed transitions between the model's
states. Therefore, if = 0 for some i and j, this procedure can lead to an impossible
state sequence Q. In order to avoid such incorrect state sequences, techniques for finding
the single best state sequence should be used. This thesis ut i l ized the Viterbi algorithm for
this purpose.

V i t e r b i algorithm can find the most l ikely sequence of hidden states, also called as
Viterbi path. We define 5t(i) as the probabi l i ty of the highest probabil i ty path at t ime t [1]:

5t(i)= max p(q1,q2,...qt-i,qt = Si;01,02,...Ot\ X)
91,92,---qt-i

After recursive calculation of 6t+i(i), the V i t e r b i path can be read by backtracking from T.
The backtracking process requires saving the best previous state, denoted as tpt(i), which
maximizes 5t(i) at t ime t — 1. V i t e r b i pa th can be computed using the following 4 steps [1]:

1. Ini t ial izat ion:

5i(i) = t t A (O i) for 1 < i < N

Mi) = 0

2. Recursion, for 2 < t < T and 1 < j < N:

max
Ki<N

5t-i(i)aij bj(Ot)

ipt(j) = arg max 5t-i(i)aij
Ki<N L

3. Termination:

max
Ki<N L

qT = arg max
Ki<N

5r(i)

8T(i

4. P a t h (state sequence) backtracking, for t = T — 1, T — 2, . 1:

25

3. Training problem

Training an H M M model is about adjusting the model's parameters (A, B, TT) to maximize
the probabi l i ty of the observation sequence O i n the given model . Th is m a x i m u m likelihood
problem is usually solved iteratively. In this thesis the Baum-Welch algorithm was used,
described based on [39].

Baum-Welch algorithm uses the Expectation-maximization (EM) algorithm for the it­
erative re-estimation of the model's parameters. The E M algori thm consists of two steps:
Expecta t ion (E) and M a x i m i z a t i o n (M) , which are described in the below paragraphs.

The calculation of the E step requires the definition of the probabil i ty of a path being
in state Si at t ime t and making a transi t ion to state Sj at t ime t+ 1, given the observation
sequence O and model A:

£t(i,j) = Pr(<?t = Si,qt+i = Sj I O, A)

This probabil i ty can be further expressed by u t i l iz ing the forward-backward algori thm,
calculating the a, ß variables:

t C -\ _ at{i)aijbj{Ot+i)ßt+i(j)
W , 3) ~ P r (0 I A)

The probabi l i ty of being in state qi at t ime t, previously defined as 7*(i), given the obser­
vation sequence O and model A can be defined as:

N

Using 7t(z) and £t(i,j) can be computed the two expectations of the E step, needed by next
step M :

• Expected number of transitions from state Si:

T - l

t=i

• Expected number of transitions from state Si to Sj:

T - l

*=i

The M step is about re-estimating the model's parameters based on the previously
calculated expectations. This step is repeated mult iple times to maximize the probabil i ty
of sequence O, being observed from the model A, un t i l some l imi t ing point is reached. The
M step's re-estimation formulas for TT, A and B are the following:

1. Wl = 7 i (t) for 1 < i < N

Tf:^i,j)
t=i 2. ä

1 3 T - l

t=i

26

T

E it{j)
q TTTTA T = 1 ' ° T = K

3. bj(k) =
£ 7t(i)
i = l

After re-estimating the model's parameters A(7r, ^4, I?) we gain a new model A(7f, A, B)
where 7f = {Wi}, 4̂ = {(%} and B = {bj(k)}. It can be stated that the new model A can
produce the same observation sequence O w i t h greater or equal probabil i ty than the former
model A: P r (0 | A) > P r (0 | A) . Therefore, after each A calculation, A is replaced by A.
This iterative approach leads to the convergence of the model's parameters to their opt imal
values to produce the given observation sequence O.

3.3 Machine learning algorithms applicable on transformed
time series

W h i l e the algorithms described i n the previous chapter (see 3.2) were designed to be appli­
cable on t ime series data directly, there is also another type of machine learning algorithms
that does not have this capability. The algorithms described i n this section are usually far
less effective to use on t ime series data directly, because they would require much more
resources and computat ion to handle the higher number of data elements, contained by
t ime series data. For instance a feed-forward neural network would require more neurons or
hidden layers. In case of decision tree algorithms it could mean an increase of the number
of the used trees. Another problem is that the length of t ime series data is not always
predefined. It makes hard to configure the parameters of these algorithms (how many neu­
rons/trees are needed). Therefore, instead of applying these algorithms directly, the time
series data goes through some reduction or redistr ibution of its data elements first. F ina l ly ,
the originally given algori thm (base algorithm) is applied for the transformed data. In this
thesis feed-forward neural networks (see 3.3.1) and decision tree algorithms (see 3.3.2) were
used as base classifiers.

The transformation of t ime series data can be performed in different ways, but mainly
depends on the 3 following aspects:

• capabilities and properties of the chosen base algori thm

• difference between the data elements of the t ime series: i f there is no significant
difference between the ind iv idua l data elements of the series and a l l the elements have
numeric type, it might be possible to reduce the series using some averaging-method.

• coherence between the subsequent data elements: i f the subsequent data elements
of the series do not lose their meaning if they are separated, it could be possible to
redistribute the ind iv idua l elements of the series to separate instances which could be
used for t ra ining and testing the base algori thm.

The used transformation method implementations are described i n section 4.3.4.

3.3.1 A r t i f i c i a l n e u r a l networks

Art i f i c i a l neural networks (A N N s) are models constructed based on the knowledge gained
in the field of different biological sciences in order to a t ta in such a mechanism that w i l l be

27

able to solve problems like the human brain. The human brain has around 86 to 120 bi l l ion
neurons (see [15]), which makes it very hard to imitate. A N N s also consist of neurons but
their behaviour is far more simple than ours.

The neurons in A N N s (also known as units or cells) have two basic tasks: receive
inputs from their neighbours and after computing their adherent outputs, propagate these
to other neurons. They have weighted connections between each other which influence
the propagation of the outputs. Based on the posi t ion of these neurons wi th in the neural
system, three types of neurons can be distinguished: input neurons, output neurons and
hidden neurons. After computing the output signals it is also needed to adjust the weights
of the connections.

Based on the patterns of connections between the neurons, two types of network topolo­
gies can be distinguished []:

• Feed-forward networks are such types of networks where data can flow through
several layers from input to output neurons without feedback connections. A classic
example of feed-forward A N N s is the Perceptron whose multi layer variant is charac­
terized in the next subsection.

• Recurrent networks (R N N s) contain also feedback connections. In contrast to the
feed-forward A N N s , R N N s can process t ime series data directly, hence they belong
to the previous category of machine learning algorithms, described i n section 3.2.
Recurrent neural networks are one of the best approach for language model l ing [29].
Since no recurrent network was used for the purpose of this thesis, the A N N s in the
ensuing parts of this paper should be considered as feed-forward networks.

Mult i layer Perceptron

Mult i l ayer Perceptron (M L P) is a feed-forward artificial neural network model that maps
sets of input data onto a set of appropriate output. M L P is a modification of the standard
linear perceptron w i t h the difference that M L P can distinguish non-linearly separable data.
A n M L P consists of three or more layers (an input layer, an output layer and one or more
hidden layers). We can imagine it as a finite directed acyclic graph where the nodes are the
neurons wi th a non-linear activation function (see Figure 3.14). Each neuron has a weighted
input which is mapped by the given activation function to the neuron's output. There
are different act ivat ion function types, for example it can be a logistic sigmoid function
f(z) = 1/(1 + e~z) w i th an output range from 0 to 1 or a hyperbolic tangent function
f(z) = tanh(z) w i th a range from -1 to 1 []. The neurons of i - th layer serve as input
features for neurons of i + 1-th layer. The nodes i n the input layer are called input neurons.
These are not a target for any connection. A n M L P wi th n dimensions must have n input
neurons (one for each dimension). The nodes in the output layer are called output neurons.
These are not a source of any connection and their number depends on the way how target
values of the t ra ining patterns are described. The nodes that are neither input neurons nor
output neurons are called hidden neurons. H idden neurons belong to the hidden layer. The
connections that hop over several layers are called shortcuts. The weight between neuron i
and j is denoted as Wij, which is a real number (wij G M) . The act ivation (output) value
for neuron i is denoted as O j . The input received by a neuron j i n the hidden layer is given
by the formula:

M

Netj = WjjOj

28

Figure 3.14: Mul t i layer Perceptron []

where M is the number of neurons feeding into neuron j . Ac t iva t ion value Oj can be
expressed using the activation function / :

Oi = f(Neti)

Backpropagation is a supervised learning technique which can be used for t ra ining the
M L P . Th is a lgori thm consists of two main processing steps []. The first step includes
forward-propagation of inputs, generation of output activations and subsequent backward-
propagation of errors. The algori thm calculates delta-differences from the actual and desired
output values of the ind iv idua l neurons. The desired output values are determined by the
t ra in data set. The difference between the actual output value Ok at neuron k and the
expected output value is denoted as:

Afc = tk — Ok

From the computed differences are computed the error signals (5k) for the ind iv idua l
output neurons:

5k = Akf'(Netk)

where / ' is the derivative of the activation function / . W h e n the error signals are computed
for each neuron, the second step of the a lgori thm begins: weight-update of the connections
in the network. Upda t ing weight Wij between neuron i and j can be performed based on
the following formulas:

Au>jj = lr5jOi

wi,j = wi,j + Awij

where Awij is the change i n the weight between neurons i and j . lr is the learning rate,
indicat ing the relative change of the calculated weight. Usual ly it is a smal l constant (0
to 1) which influences the speed and quali ty of the learning. If lr is too low, the M L P
w i l l learn slowly but usually more accurately. However, i f lr is too low it can also induce
that the network w i l l not be trained properly. O n the contrary, i f it is set too high,
the learning is faster but the opt imal weight is not always reached, because it can be

29

overshot. Propagat ion and weight updat ing is repeated un t i l the performance of the network
is satisfactory, meaning that the error on the output neurons becomes min imal . To minimize
the error on a l l output neurons over a l l t ra ining patterns presented to the network, the
following error function is defined:

^ (£ p f c — Opk)2

k

where p is the subscript for the t ra ining pattern and k is the subscript for the output
neurons. Accordingly to this, tpk is the desired value of output neuron k for pattern p and
Opk is the actual output value of neuron k for pattern p.

3.3.2 D e c i s i o n trees

A decision tree (D T) is a hierarchical data structure that can be applicable i n supervised
learning. It can be ut i l ized for both classification and regression. The D T algorithms belong
to the group of non-parametric methods where the input space is d ivided into local regions
based on a distance measure (for example Eucl idean norm). For each region a local model
is computed [].

Like any other tree structures, D T s also consist of nodes, which are called decision
nodes. A decision node which is a leaf node in the D T , is commonly called as terminal
node. B y each decision node a discrete function is implemented, based on which the node's
output is chosen from one of its branches. This process is repeated recursively from the
root node unt i l one of the tree's leaf node w i l l be found. The leaf nodes' input value is
equal to the output of the tree which can have two possible representations: a class code
in case of classification or a numeric value i f the tree was used for regression.

Decision trees can have many different implementations. One of the possible approaches
is to perform a top-down, greedy search through the space of possible nodes of the tree [31].
Th is approach is ut i l ized by the Iterative Dichotomiser 3 (ID3) a lgori thm [36] and also by
its successor, the C4.5 algori thm [37]. Since these methods are not used i n this thesis, they
w i l l not be described in more detail .

This thesis ut i l ized another type of tree algorithms, called as Classification A n d Re­
gression Trees (C A R T) . Specifically it focused on the use of the Random Forest algorithm,
described i n the next subsection 4.3.2.

R a n d o m Forest

R a n d o m Forest (R F) is an ensemble learning method which was developed by Leo Bre iman
[5]. The idea of ensemble learning is to bu i ld a predictive model by integrating multiple
models [11]. In case of R F these models are unpruned trees that can be used for both
classification and regression. The ind iv idua l trees are gained by selecting random samples
from the t ra ining data. The main purpose of R a n d o m Forest is to make separate predictions
firstly by each ind iv idua l decision tree member and then aggregate these predictions. The
aggregation process is distinct based on whether it is a classification (majority vote) or
regression (averaging). A l l these properties are conducive to the R F classifier's accuracy
and its very fast classification. O n figure 3.15 we can see a schematic construction of an
R F .

2 ^

30

Dec i s ion

Figure 3.15: R a n d o m Forest construction schema []

For growing trees, R F uses the C A R T (classification and regression trees) methodology
and grows its trees to m a x i m u m size without pruning. Accord ing to [], growing trees
wi th the C A R T methodology has 2 basic aims: predict continuous dependent variables (re­
gression) and predict categorical predictor variables (classification). C A R T can be divided
into 4 basic steps which are the following:

1. Tree bui lding: Th i s is performed by spl i t t ing of nodes recursively. The terminal
nodes are assigned to classes depending on the classes probabil i ty dis t r ibut ion of the
dependent variable at terminal node.

2. Stopping tree bui lding: It is about the stopping of the tree's growing process.

3-4. Tree pruning and opt imal tree selection: These final two steps are applied in the
general C A R T methodology only. R a n d o m Forest is a special case where trees remain
unpruned, hence this step is omitted.

The feature wi th the help of which R F can yield an improved classification accuracy
is the ensemble of trees which are voting indiv idual ly for the most promising class during
the classification process. The R F algorithm's tree bui lding process has certain differences
compared to the simple C A R T methodology. The reason why R F can be more successful
than simple decision tree algorithms lies in the two randomized procedures applied during
its tree bui ld ing. Let ' s define the following parameters for latter explanations:

• N is the number of a l l data set instances in the t ra ining data set.

• n is a sample gained from a l l data set instances N, also called as bootstrap sample.
This is the number of instances which w i l l be randomly chosen from the t ra in data
set (with replacement) to create a subset.

• M is the number of attributes in the data set instances.

31

• m is the number of randomly selected attributes from M, which should be used for
the decision making at the ind iv idua l nodes of the tree.

After choosing parameters n and m, the a lgori thm calculates the best split on the bootstrap
sample. Cont ra ry to the general C A R T method, R F calculates the split based on the
reduced number of instances n and attributes m. The bootstrap sample is further divided
into two parts: The first part, approximately the two-thirds of the sample, is used for
t ra ining the classifier in the given ensemble. The second part, commonly named as out
of bag data, is used for estimating an unbiased test error for each tree. The averaged test
error of the ind iv idua l trees is called out of bag error. The out of bag error can be used
for internal evaluation of the classifier's accuracy, no extra val idat ion data set is necessary.
The random selection of the mentioned n instances and m attributes is repeated before
each new tree-building process.

32

Chapter 4

Application of algorithms for
checking circuit generation

The previous chapter has described various machine learning algorithms suitable for pro­
cessing t ime series. Since the a i m of this thesis is to apply these algorithms for automatic
construction of checking circuits for hardware components w i th sequential logic, this chap­
ter deals w i th the specific implementat ion of these algorithms and wi th other processes that
their use requires. The used machine learning algori thm implementations are described in
section 4.3.

The p r imal role of the machine learning algorithms i n the generated checking circuits
is to verify whether the chosen hardware component works correctly or not. The operation
of this verification process is i l lustrated on the below figure (4.1). The hardware compo­
nent, implemented i n a hardware description language (H D L) , computes the outputs for
its received inputs. The input and output values are both passed to a machine learning
classifier which is able to decide whether the component works correctly or a fault has been
occurred.

Inputs
V H D L c o m p o n e n t

Outputs
V H D L c o m p o n e n t

M a c h i n e l e a r n i n g

c l a s s i f i e r

True/False

>

>

M a c h i n e l e a r n i n g

c l a s s i f i e r *•

Figure 4.1: Verification process w i th machine learning classifier as online checker

In order to be able to precisely detect the possible faults in the monitored hardware
component, the machine learning classifier must be well-trained. The t ra ining of the classi­
fiers requires big amount of data sets whose generation is just as important as the classifier
itself. In the below sections can be read a thorough description of the data set generation
process, including the used data set formats.

4.1 Fault injection

Machine learning algorithms also require data, produced by some faulty behaviour, i n order
to be able to detect the occurring faults. Generat ion of faulty data instances can be achieved
by employing various fault injection (FI) techniques.

33

In this thesis fault injection is realized by parametrizing the original hardware compo­
nent and inverting specific bits in the component's logic based on the values of the added
parameters. The parameters are added as new input ports for the hardware component, so
they can be driven from a testbench program (described i n 4.2.2). Fault injection can be
turned on/off using a boolean parameter gen_err. If it has fa lse value, no fault injection
is performed and the values of the other F I parameters have no effect on the functionality of
the hardware component. Otherwise, the rest of the F I parameters specify where the given
fault should be injected (in which signal, which bit should be inverted). The time-interval
when a fault should be injected is adjustable using the the main parameter gen_err. B y
setting it to true, without setting it back to false, permanent faults can be injected. In
the same manner also transient faults can be injected: set it to true, wait based on what
is the desired time-interval of the fault, and set it back to false.

There are also other F I techniques which have more advanced settings, for example in
[25] is presented a fault injection system which works on both combinational and sequential
digi ta l circuits and is able to inject bo th transient and permanent faults.

Generation of data sets is usually performed by simulat ing the given hardware compo­
nent. Therefore, it would be also possible to inject faults using the functions of the used
simulator (for example M o d e l S i m 1) . Most of the simulators support forcing the simulated
hardware components signals to another (faulty) value. The advantage of this technique is
that the original hardware component does not need to be extended wi th further parame­
ters and their processing. Even i f the currently used approach works well for the purpose
of this thesis, it could be considered as a possible future improvement to use this technique
instead.

4.2 Data sets for machine learning

The data sets used i n machine learning have a few common properties which need to be
defined before the description of the ind iv idua l data set formats. A data set can be defined
as a set of instances where usually one data set instance is one row of the data set file. The
size of the data set is given in terms of number of instances. E a c h data set instance consists
of a specific number of attributes containing the data for the algorithm's learning. In case
of supervised learning, data set instances must also contain a special class at tr ibute which
provides an extra information about the currently learned data set instance's affiliation
(e.g. to which class the given data set instance belongs). The representation of the data
set attributes can be different for each data set format which is described in the below
subsections.

4.2.1 D a t a set formats

Since the experiments of this thesis were performed using the Weka machine learning frame­
work, the data set types and their format are also introduced through its terminology.

W e k a data set format

The Weka machine learning framework supports two main data set formats. Its data sets
can be stored either i n .csv (comma-separated values) 2 files or in special . a r f f (Attribute-

1 <https : //www.mentor.com/products/iv/modelsim/>
2 <https: //en.wikipedia.org/wiki/Comma-separated_values>

34

http://www.mentor.com/products/iv/modelsim/
http://wikipedia.org/wiki/Comma-separated_values

Relation File Format)^ files. The . csv file format is rather a universal file format, while
the . a r f f format was designed to store specifically machine learning data sets for t raining
and testing. Therefore, in this thesis the . a r f f format was used. The content of an .arff
file can be divided into two sections:

1. header section - contains the relation declaration and the declaration of n at­
tributes:

© r e l a t i o n < r e l a t i o n N a m e >
© a t t r i b u t e < a t t r i b u t e N a m e _ l > < d a t a T y p e _ l >
© a t t r i b u t e < a t t r i b u t e N a m e _ 2 > < d a t a T y p e _ 2 >

© a t t r i b u t e < a t t r i b u t e N a m e _ n > < d a t a T y p e _ n >

In . a r f f 4 attr ibute types are supported: numeric, string, date and nominal. A
typica l nominal attr ibute is the class of data set instances. It is declared as a set of
possible values, for example if the instances should be classified based on the color of
the described object:

© a t t r i b u t e c l a s s { b l a c k , w h i t e , r e d , g r e e n }

2. data section - contains the data declaration and the list of data set instances. Each
line (instance) contains comma-separated values of the ind iv idua l attributes:

© d a t a
< a t t r i b u t e V a l u e _ 1 > , < a t t r i b u t e V a l u e _ .2 > , . . , < a t t r i b u t e V a l u e _ n >
< a t t r i b u t e V a l u e _ 1 > , < a t t r i b u t e V a l u e _ 2 >,. . , < a t t r i b u t e V a l u e _ n >

The . a r f f file format can have one of the 2 following sub-formats:

• propositional format - flat file format which s imilar ly to the . csv file format cannot
be used for describing relations between the ind iv idua l attributes of one data set
instance. The above described properties apply to this format.

• mult i-instance format - each data set instance has a hierarchical structure where
on the first level there are only 3 attributes:

— bag-id - nominal attr ibute which holds an unique identifier for the given bag

— bag - relational at tr ibute containing another level of m attributes into which
coherent data is generated. The bag attr ibute introduces a new attr ibute type:
relational which can be defined as follows:

© a t t r i b u t e bag r e l a t i o n a l
© a t t r i b u t e < b a g A t t r i b u t e N a m e _ _ 1 > <da taType_ _1>
© a t t r i b u t e < b a g A t t r i b u t e N a m e _ _ 2 > <da taType_ _2>

© a t t r i b u t e < b a g A t t r i b u t e N a m e _ _m> <da taType_ m>
© e n d b a g

3 <http://weka.wikispaces.com/ARFF+\7.28book+version\7.29>

35

http://weka.wikispaces.com/ARFF+/7.28book+version/7.29

The values for these attributes can be specified mult iple times i n a data set
instance, creating a nested sequence of instances. The number of nested instances
in the bag can be defined as the length of the bag: bag_len. It means that the
bag contains 6a<?_Zen-times m attributes. The values of the bag's attributes are
surrounded by quotes i n the data section of the file. The nested instances of the
bag are separated by line-feeds (\n):

© d a t a
< b a g _ i d > , "<b 1- i l > , < b 2 - i _ 1 > , . . , < b _ m - i _ l > \ n

<b 1- i _ 2 > , < b _ 2 - i _ _ 2 > , . . , < b _ m - i _ 2 > \ n . . . " , < c 1 a s s >

— class - nominal attr ibute specifying the class label for a l l the instances residing
in the given bag

The following example shows how time series data can be stored i n the multi-instance
format which was used i n this thesis. Let ' s consider a hardware component w i t h sequential
logic, processing t ime series data. The component has 1 numeric input value and 2 numeric
output values i n each time-step. The instances of the data set can be classified as OK or
ERR. For the sake of s implic i ty the data set w i l l consist of 4 instances only. The header
section of the . a r f f file can be defined then as:
© a t t r i b u t e b a g - i d { i d _ 0 , i d 1 , i d _ 2 , i d _ 3 }
© a t t r i b u t e b a g r e l a t i o n a l

© a t t r i b u t e i n p u t n u m e r i c
© a t t r i b u t e o u t p u t _ o n e n u m e r i c
© a t t r i b u t e o u t p u t _ t w o n u m e r i c

© e n d bag
© a t t r i b u t e c l a s s { O K , E R R }

Firs t , it needs to be determined how many subsequent input-output values of the com­
ponent we would like to have i n one data set instance. Let ' s consider having 3 I / O values
in the data set instances, which means that the bag at tr ibute w i l l have 3-times 1 input and
2 output values. The data section of the . a r f f file could look like as follows (with random
numeric values):

© d a t a
i d _ 0 ," 1 ,5 , 6 \ n 7 , 2 , 7 \ n 5 4 , 1 " , E R R
i d 1 ," 5 ,4 , 4 \ n l , l , 5 \ n 4 7 , 2 " , O K
i d _ 2 ," 7 ,3 , 4 \ n 5 ,5 , l \ n 9 5 , 3 " , O K
i d _ 3 ," 5 ,1 , 5 \ n4 ,6 , 9 \ n 4 1 , 6 " , E R R

4.2.2 D a t a set generat ion

D a t a set generation is based on the given hardware component which needs to be verified
whether it works correctly. The first phase of data set generation includes simulat ion of
the given hardware component to gain its input-output values for further processing (see
4.2). The simulat ion is performed using M o d e l S i m 10.0 4 developed by Mentor Graphics.
The Reference component (or Golden model) is the original hardware component which
produces correct outputs for its input values during the simulat ion. Fault injection (FI) is

4 <https : //www.mentor.com/products/f v/modelsim/>

36

http://www.mentor.com/products/f

performed on the Fault-prone component which is identical w i th the Reference component,
containing some addi t ional parameters suitable for fault injection (described i n 4.1). To
simulate the involved components a Testbench program was implemented. The testbench
passes data read from the Input file to the two components without modification. It is
also responsible for passing F I parameters to the Fault-prone component which leads to
a faulty behaviour. The Testbench program was designed to set the F I parameters either
randomly or based on some generic parameters (e.g., received from command line). One
of these generic parameters is the length of the component's I / O series generated into one
data set instance (in . arff : bag_len). The time-interval, when a fault should be injected,
is specified relatively to the I / O series i n the ind iv idua l data set instances by specifying
the start ing time-step (index) and the length of the fault. For example i f we set bag_len
to 5, the starting time-step to 2 (counted from 0) and the length of the fault to 2, the data
instance i n . a r f f would look like:

< b a g _ i d >," < O K _ r > \ n < O K _ l > \ n < ^ R R _ 2 > \ n < E R R _ 3 > \ n < O K _ 4 > " , < E R R _ c l a s s >

where < O K i > / < E R R i > represent correct/faulty I / O values at time-step i.
W h i l e s imulat ing the two components (reference and fault-prone) in parallel , the testbench
stores the inputs and the subsequently received outputs of the components to separate
files. File of correct 1/O data w i l l contain only the inputs and outputs from the Reference
component and File of faulty I/O data only the inputs and outputs from the Fault-prone
component. Therefore, the input values i n both files w i l l be the same, only the related
output values w i l l be different. The files have .csv file format where the comma-separated
input-output values have binary representation. The simulation process is i l lustrated on
the below figure 4.2.

Testbench

Input File

Reference
Component

Fault-prone
Component

File reader

File writer

Transmitter Process

File writer

Correct
1/O data

Faulty
1/ O data

Fault-activation signals

Figure 4.2: Simulat ion using testbench

37

The second phase of the data set generation is about post-processing the data produced
by the first phase. Since the data stored i n the two output files File of correct I/O data
and File of faulty 1/O data is not suitable for immediate processing by a machine learning
algori thm, it needs to be transformed first. The files are read by the Data set generator,
which is a P y t h o n script for converting and mix ing the correct and faulty I / O data into
the final data set files: Train data set, Validation data set and Test data set. The Data set
generator works based on a set of input parameters which specify how the conversion and
mix ing should be performed. The conversion usually means transformation of the ind iv idua l
I / O values from binary to decimal representation, but it can also involve redistr ibution or
omission of some I / O values. For example i f a component has an input or output value
which has no real impact on the subsequent learning process, it can be left out from the final
data set. The generator is also responsible for setting the class attr ibute for the ind iv idua l
instances i n the generated data sets. The class at tr ibute can have only two values i n the
experiments of this thesis: „0" for faulty data set instances and „ i " for correct data set
instances. Therefore, its value depends on how the given data set instance is mixed from
the two I / O data files. If the data set instance contains at least one output value taken from
the File of faulty I/O data, the class w i l l have „0" value. Otherwise, it is considered as a
correct instance, w i th class value „ i " . A n exception is when the output values of the two
mixed files are identical for the same input value. This means that the fault injected to the
Fault-prone component d id not induce a faulty-behaviour. In such cases the given data set
instance w i l l also have class value „ i " . The process of data set generation is summarized
in the following flowchart diagram:

38

Inputs Data set generation process Outputs

Start

c
o

E
(75
v (A CD

Reference
Component

Create fault-prone
component

Input file

Fault-prone
Component

Create testbench
program

/ Fault-injection
Signals /

Testbench

Run simulation

01 c
'</> in a o o

(A
o
a.
ai in CD £
a.
(N

Data set
generator

Train data set

End

Validation data set

Test data set

Figure 4.3: D a t a set generation process

4.3 Used machine learning algorithm implementations

The below subsections describe the origin and the parameters of the specific machine learn­
ing algori thm implementations used i n this thesis.

4.3.1 H M M W e k a l i b r a r y

For running experiments using a hidden Markov model, the H M M W e k a library, developed
by Marco Gil l ies [] was used. It is available as an external package for the Weka machine
learning framework [13]. The l ibrary offers several parameters to adjust the algorithm's
classification accuracy, described on: <http://www.doc.gold.ac.uk/-mas02mg/software/
hmmweka/index.html >.

The l ibrary contains solutions for both Training and Scoring H M M problems (see
3.2.2.3) which are essential for the classifier's use and its evaluation. The training is imple­
mented using the Baum-Welch algori thm wi th the expectat ion-maximizat ion algori thm and
forward-backward procedures. The scoring problem is realized using the forward-algorithm.

39

http://www.doc.gold.ac.uk/-mas02mg/software/hmmweka/index.html
http://www.doc.gold.ac.uk/-mas02mg/software/hmmweka/index.html

One of the l ibrary 's missing part was the solution for the Matching/Decoding problem.
The implementat ion of the V i t e r b i a lgori thm is part of the thesis. It was added to the
H M M W e k a l ibrary to gain addi t ional statistics about the dis t r ibut ion of the output values
between the model's states.

4.3.2 R a n d o m Forest

The RandomForest a lgori thm is used from Weka's weka. c l a s s i f i e r s . trees. RandomForest
class. The parameters of the a lgori thm are described on documentation page [22].

4.3.3 M u l t i l a y e r P e r c e p t r o n

This a lgori thm is used from Weka's weka. c l a s s i f i e r s .functions .MultilayerPerceptron
class. The parametrization of the classifier is described on page [51].

4.3.4 T r a n s f o r m a t i o n m e t h o d s for n o n - t i m e series d a t a learners

The methods of this section transform time series data to a reduced form on which standard
(non-sequential) learning algorithms (see 3.3) can be applied. Since the experiments which
attempted to use non-sequential learners were performed using the Weka machine learning
framework [13], the implementat ion of these transformation methods was also used from
this framework.

M l W r a p p e r

M l W r a p p e r is a simple wrapper method for applying standard proposit ional learners to
multi-instance data. It was developed by E . T . Frank and X . X u []. M l W r a p p e r converts
the multi-instance data set by separating the nested instances of the relational bag attribute
(Instance 0 to Instance n on figure 4.4) to distinct mono-instance data set instances (see
figure 4.5). The class of the bag is copied to a l l the separated instances. The M l W r a p p e r
algorithm's base classifier is t rained on a l l the mono-instance instances, gained by trans­
forming the multi-instance instances of the t ra ining data set. The below figures illustrate
this conversion on a data set which has two attributes (X and Y) in its bag.

Bag id

X_0 V_0

Bag

X _ l V _ l X_n Y_n

Class

Figure 4.4: Mult i - ins tance data set instance

40

Class

Class

Class

Figure 4.5: Converted multi-instance data set instance to mono-instance data set instances

Testing of the trained base classifier starts w i th computing the class-probability dis­
t r ibut ion for each nested instances (0 . . . n) that the given bag contains. The final class-
probabil i ty d is t r ibut ion for the original multi-instance data set instance is computed then
by one of the following approaches:

• arithmetic averaging: from the class-probabilities of the nested instances an ari th­
metic average is calculated

• geometric averaging: from the class-probabilities of the nested instances a geomet­
ric average is calculated

• maximal probability selection: the highest probabil i ty of the nested instances'
class-probabilities is selected

SimpleMI

The S imp leMI wrapper a lgori thm transforms the original multi-instance (time series) data
to mono-instance data before both t ra ining and testing. After the transformation the base
algori thm can work on the simplified mono-instance data which has no longer sequential
character. The reduction of the t ime series data can be performed by one of the following
methods:

• mean value selection: selects the mean value from the bag instances' ind iv idua l at­
tributes. Based on figure 4.4 the new data set instance would look like:

Transformed Instance Class

Hean(X_0 .. X_n) Mean(V_0 .. Y_n)

Figure 4.6: Transformed multi-instance data set instance using mean value selection

41

averaged minimax: selects the min ima l and max ima l values from the bag instances'
ind iv idual attributes and computes their average:

Transformed Instance Class

Min(X") + Max(X") MinfY^ + MaxfY*)
2 2

X* = X_0 .. X_n

V* = V_0 .. V_n

Figure 4.7: Transformed multi-instance data set instance using min imax averaging

• merged minimax: after selecting the min ima l and max ima l values (same as in previous
case), the selected instances are merged together:

Transformed Instance Class

Min(X_0 .. X_n) Min(V_0 .. V_n) Max(X_0 .. X_n) Max(Y_0 .. V_n)

Figure 4.8: Transformed multi-instance data set instance using min imax merging

42

Chapter 5

Experiments on a finite impulse
response filter

This chapter is a collection of experiments which were performed i n order to determine
which machine learning algorithms can be used for generating checking circuits. This thesis
aimed to find algorithms suitable for checking hardware components w i th sequential logic.
For this purpose a finite impulse response (F IR) filter was chosen, which is described in
section 5.1.

The goal of the machine learning algorithms of these experiments is to detect the oc­
curring faults in the F I R filter. Us ing the most accurate algorithms it could be possible to
create an online checking circuit which would be able to detect faults in real-time and thus
bui ld a fault-tolerant F I R filter. Since F I R filter is used mainly in signal processing, this
experiment ut i l ized it for processing audio (.wav) files, which is i l lustrated on the below
figure (see 5.1).

Fault tolerant FIR filter > f

Input audb (.wav)

FIR filter Online checker
Ok/Not

Output audb (.wav)

Figure 5.1: Fault-tolerant F I R filter

5.1 F I R filter design

F I R filter is one of the most frequently used filters i n signal processing. Its impulse response
is finite because it settles to zero in a finite number of sample intervals. F I R filters can be

43

distinguished based on different aspects. They can work either in discrete or continuous
t ime and can be either d igi ta l or analogue. Th is experiment deals w i th d igi ta l discrete-time
F I R filters, thus the following descriptions w i l l be restricted to this filter type.

A general discrete-time F I R filter consists of 3 basic components (see figure 5.2): mul­
t ipl ier (v) , adder (e) , delay unit (Z-1) and for its implementat ion it also needs to have
some memory to store the filter's coefficients (/in...at)- The coefficients influence the filter's
behaviour, for example whether it w i l l pass low or high frequencies only.

X[n] r 7 " ' r 7 " '
+

Figure 5.2: General discrete-time F I R filter [21]

The output of this discrete-time F I R filter is defined by the next formula:

N
y[n] = hox[n] + h\x[n — 1] + • • • + h,Nx\n — N] = hix[n — i]

i=0

where:

• x[n] is the input signal

• y[n] is the output signal

• N is the filter order

• hi is the i - th coefficient of the filter

For the purpose of this experiment was chosen an already implemented parametrizable
F I R filter, developed by D . Pardo [35]. It has internal fixed-point implementat ion (12
bit decimal part resolution) designed as a low-pass filter w i th 15 symmetric coefficients
(ho ... / 1 1 4) . The F I R filter's configuration for this experiment is shown on the figure 5.3.

44

Figure 5.3: F I R filter w i th symmetric coefficients

The output for this symmetric F I R filter configuration can be defined i n the following
way:

y[n] = ho(x[n] +x[n —14]) + h\(x\n — 1] +x[n —13]) + • • • + hQ{x\n — 6] +x[n — 8]) + h-jx\n — 7]

where the coefficients ho = hu, hi = /113 . . . , h§ = h% are equal, except the middle coefficient
h7.

5.2 Comparing audio files

In the described F I R filter faults can occur w i th different severities which is manifested
in the resulting audio file. The more serious the occurred fault is, the more damaged the
resulting audio output w i l l be. Since it is more important to detect faults which are more
serious, it is necessary to dist inguish them based on this property. Th is can be either done
by subjective listening tests or the P E A Q algori thm. B o t h methods require two signals for
their operation, a test signal and a reference signal, which are compared to each other. In
case of this experiment the reference signal is a product of a faultless F I R filter, generated
for the same F I R input signal for which the test signal was generated.

5.2.1 Subjec t ive l i s tening tests

Subjective listening tests involve classification of reference and test signals based on the I T U
Radiocommunicat ion Sector's (I T U - R) 1 5-anchor grade (treated as continuous, see figure
5.4). I T U - R is one of the three sectors of the International Telecommunication U n i o n (I T U) ,
next to the Telecommunication Standardizat ion Sector (I T U - T) and Development Sector
(I T U - D) . It is mainly responsible for managing the international radio-frequency spectrum
and satellite orbit resources.

1 <http: //www.itu.int/en/ITU-R/inf ormation/Pages/def ault.aspx>

45

http://www.itu.int/en/ITU-R/inf

Imperceptible

Perceptible but not annoying

Slightly annoying

Annoying

Very annoying

Figure 5.4: The I T U - R five-grade impairment scale

Generally, the final output of subjective listening tests is the Subjective Difference Grade
(S D G) , defined as:

SDG = GradeTestSignai ~ GradeR

eference signal
where GradeTestSignai and Grade Reference signal are from the above scale (see 5.4). There­
fore, the SDG values should be from interval 0 to -4 where 0 corresponds to an imperceptible
difference and -4 to an impairment considered as very annoying.

Compar ing audio files by subjective listening tests is bo th t ime consuming and expensive
because without an expert who is able to judge the audio quality, the results are not reliable.
Therefore, a method for objective measurements of the perceived audio quali ty (Perceptual
Evalua t ion of A u d i o Quali ty, P E A Q) was used, recommended by I T U [17].

5.2.2 P E A Q a l g o r i t h m

The basic concept of the P E A Q algori thm is to make objective measurements on the ref­
erence and test audio file, and t ry to predict the outcome of subjective listening tests. The
output of the P E A Q algor i thm is the Objective Difference Grade (O D G) w i t h resolution
l imi ted to one decimal. Since the O D G values should be as close as possible to the S D G
values obtained for the same input signals, their grading is identical, as shown on the below
figure 5.5. Accord ing to [17] the general difference between two O D G values of a tenth of
the grade is not significant.

0 —I— Imperceptible

-1 Perceptible but not annoying

-1 Slightly annoying

-3 Annoying

-4 — I — Very annoying

Figure 5.5: Object ive/Subject ive Difference Grade

The steps of the P E A Q algori thm are summarized in the below figure (see 5.6). The
algori thm w i l l not be described in detai l i n this thesis, for more information refer to [17].

46

The ear model is based on the Fast Fourier Transformation (F F T) and decomposes the input
signals in order to apply weighting processes and to send the signals to other preprocessing
methods (e.g. loudness, mask and modulat ion calculation). After the preprocessing phase,
based on the calculated patterns the a lgori thm calculates various module output variables
(M O V) , which capture different aspects of the the given signals. F ina l ly , the M O V s are
passed to an art if icial neural network which outputs the resulting O D G value.

Reference S i g n a l Test S i g n a l

I I
Ear M o d e l

Preprocessing

M o d e l Output Variables C o m p u t a t i o n

N e u r a l N e t w o r k

I I
D I O D G

Figure 5.6: Steps of the P E A Q algori thm [26]

The P E A Q algor i thm has more implementations, but most of them does not meet the
conformance requirements recommended by I T U , declared in []. For the purpose of this
thesis an open-source implementat ion was chosen which does not meet the conformance
requirements neither, but its obtained results closely resemble the ones of listening tests.
It is called G s t P E A Q [26] and is available as a GSt reamer 2 plug-in.

5.3 Configuration of the injected faults

The faults which were injected to the F I R filter were produced based on the following
parameters:

• err sum: Faults were injected to the result of the F I R filter's ind iv idua l adders,
therefore this parameter specifies the index of the affected adder: from 1 to 10 (see
2^-s on figure 5.3).

• err inv bit: This parameter specifies which bit of the given adder's result is in ­
verted. For adders Yli • • • which have 10-bit result values it can have 0 to 9 values.
For adders J2s^ ^ 9 a n d X a o which have 20-bit result values it can have 0 to 19 values.

• err sample len: The durat ion of the given fault, given i n number of samples
when the given fault is present i n the filter. In the below described experiments this
parameter can have one of the following values: {3, 6,12, 24, 30}.

2 <gstreamer.freedesktop.org>

47

Detecting faults which cause significant (audible) differences i n the resulting output signal is
more important than detecting almost imperceptible faults. Since each fault-configuration
can have different impact on the resulting audio quality, it was necessary to measure which
configuration produces faulty audio signals w i th an adequate O D G value. The O D G value
was measured using the previously described G s t P E A Q [] tool , by comparing the F I R
filter's faultless output w i t h the ones which include one of the fault types i n themselves.
The results of these measurements revealed that on adders Ylo to YIa n o significant fault
can be induced, only adders ^ 5 • • • X a o show more significant faults which could be worthy
to detect. The below graphs (see 5.7 and 5.8) show the measured O D G values on some of
the adders, the rest of the graphs are presented i n Append ix B . l . Each graph shows a l l
the possible fault-types on the given adder: the x-axis has information about the inverted
bit 's posi t ion w i t h 5 bars describing the length of the given fault as a number of fault-
injected samples. O n the y-axis are presented the O D G values which were computed as an
average from 10 measurements. The range of y-axis was chosen to be the same on a l l below
presented graphs i n order to facilitate the comparison of results on the ind iv idua l adders.
Each O D G value on the graphs was measured by injecting only one fault configuration
(err_sum, err_inv_bit, err_sample_len combination) to the F I R filter. The given fault
was injected for a given time-interval: specified by a randomly generated start ing sample
and by the length of the injected fault (err_sample_len). The start ing sample was different
for each of the 10 measurements from which the average O D G was computed.

• I III |l III III III HI II' *
0 1 2 3 4 5 6 7 8 9

Inverted bit as fault injection

Number of fault injected samples:

• I III H HI W P1 ^
0 1 2 3 4 5 6 7 8 9

Inverted bit as fault injection

Figure 5.7: O D G values on ^ 0 (left) and ^] 4 (r igh t)

18

0 1 2 3 4 5 6 7 S 9 0 1 2 3 4 5 6 7
Inverted bit as fault injection Inverted bit as fault injection

Figure 5.8: O D G values on (left) and ^ i o (r i g h t)

5.4 Data sets

The F I R filter's sequential logic requires the use of data set formats which are able to
describe t ime series data. Therefore, the data sets of this experiment a l l use the Weka
machine learning framework's multi-instance format (described in 4.2.1).

The experiments were performed using two types of data sets. The first data set type is
called fir_30_io_vals. Its bag attr ibute consists of 30 subsequent F I R input-output values:

(inn, out0); (ini, owt{];(in2g, out29)

The second data set type is called fir_diff_io_vals. Its bag contains the differences of the
subsequent F I R input and output values:

(| i n 0 - m i | , \out0 - outi\); (\ini - in2\, \out\ - out2\); • • .; (| m 2 8 - m 2 g | , \out2S - out2g\)

In bo th cases the ind iv idua l values have decimal representation. The class of the data set
instances can have two possible values: „ i " if the bag's input-output values were generated
by the reference F I R filter, „0" i f they were generated by the fault-injected F I R filter. The
data sets are generated as described i n 4.2.2. The exact content and size of data sets differs
in the following experiments (see 5.5 and 5.6).

5.5 Parameter settings for algorithms

The experiments described i n this section were performed in order to determine which
parameter settings of the ind iv idua l machine learning classifiers yie ld better classification
results. The source of the data sets were 3 different .wav files which were mixed together to
get a reliable data set for learning. The t ra in data set contained 5000 instances, the valida­
t ion set 2500 instances and the test set 1500 instances, a l l w i t h cca 50% dis t r ibut ion of the
classes (0 or 1). After t ra ining the ind iv idua l classifiers on the training data set, 5 separate
validat ion data sets were used. The classifiers were evaluated on each of the validat ion sets,
and from the measured classification accuracies an average value was calculated. The below
experiments use this average classification accuracy value without explicit mention. The fi­
nal (best) parameters for the ind iv idua l machine learning classifiers were determined based

49

on their achieved results on the t ra ining and testing data set. Subsequently, the classifiers
were evaluated on the testing data set to measure their final classification accuracy.

In the experiments of this section, the calculated O D G values were not taken into ac­
count when injecting faults to the F I R filter. Therefore, the faults were generated randomly
from the previously described fault configurations (see 5.3).

The below results are a l l presented on the fir_diff_io_vals data set (see 5.4) because
the classification on the fir_30_io_vals data set was less successful (see Append ix B.2) .

5.5.1 M I W r a p p e r

Initially, it was planned to use the M l W r a p p e r a lgori thm i n the experiments on the F I R
filter, however, it was diagnosed that for this use-case it is not suitable. The reason lies
in M l W r a p p e r ' s conversion of multi-instance data instances to distinct mono-instance data
instances, which is described i n section 4.3.4. Let ' s consider a F I R I / O value sequence,
where the first 20 I / O values are correct, and the last 10 were generated after a fault has
been injected to the filter. For the sake of simplicity, the below example is presented on a
general F I R I / O data sequence, but the problem is the same for both fir_30_io_vals and
fir_diff_io_vals data set types.

< O K _ 0 > , < O K _ 1 > , . . . , < O K _ 1 9 > , < E R R _ 2 0 > , . . . , < E R R _ 2 9 > , < E R R _ c l a s s >

After the conversion of the above presented multi-instance data instance we get the following
mono-instance data instances:

<OK_0> , < E R R _ c l a s s >
< O K _ l > , < E R R _ c l a s s >

< O K _ 1 9 > , < E R R _ c l a s s >
< E R R _ 2 0 > , < E R R _ c l a s s >

< E R R _ 2 9 > , < E R R _ c l a s s >

The problem is that M l W r a p p e r copies the class of the original multi-instance data instance
to a l l mono-instance data instances. Since the first 20 mono-instance data instances are
not faulty, the given base classifier would be mislead during the t raining. Therefore, this
method is rather not used i n this thesis.

5.5.2 H i d d e n M a r k o v m o d e l

Hidden Markov model (H M M) was used w i t h the following settings: full-matrix untied
covariance, ergodic transi t ion model, non-random state ini t ia l izat ion (see 3.2.2.3 and 4.3.1).
The number of states needed for reaching the classifier's best accuracy was measured on
the t ra ining and validat ion data set. The results (see graph 5.24) show that 6 states are
ideal for the model's desired functioning.

50

o
§ si

8 5 , 8 2 85,66

85,04

M S J . I S

8 1 , 7 6 ^ ^ " * * "

äi,85

Ä2 , 5 2

8̂2762
81,99

8 0 , 1 4 > ^

80,07

77,«4

: 2 3 4 5 6 7

"Train data set

"Validation data set

Number of states

Figure 5.9: H M M classification results by number of states

The subsequent evaluation of the classifier on the testing data set showed 86.4% accu­
racy.

Except determining the number of states required for the H M M ' s proper operation, there
are two other H M M parameters which can be evaluated: transition probability distribution
and observation probability distribution. B o t h of them are described i n the theoretical
part of the thesis (see 3.2.2.3). The remaining part of this subsection analyses these two
parameters of the above evaluated H M M (with 6 states). The a im of this analysis is to
reveal whether the chosen number of states is reasonable. For example, using unnecessarily
many states should be avoided.

To perform classification using hidden Markov models for each class a separate model
is trained. The training and the subsequent classification (scoring) is described i n sec­
t ion 3.2.2.3. In this experiment two H M M s were trained: one on correct t ime series data
(HMM_corr), another one on fault-injected t ime series data (HMM_err). The below
graphical representations allow the comparison and better comprehension of these models.

Transi t ion probabil i ty dis t r ibut ion can be either expressed using a state t ransi t ion d i ­
agram or a table containing the transi t ion probabilities between the ind iv idua l states of
the model . Since the evaluated model has 6 states, it was more transparent to tabulate
the transi t ion probabilit ies (see 5.10 and 5.11). The state transi t ion diagrams were also
prepared, but because of their size they were attached only to the appendix of this thesis
(see B.3) .

51

Init
End-State

Init
S O 5 1 S3 S_4 S 5

Start-State

S O 2,95 0 33,76 0 4,54 42,84 18,86

Start-State

s_i 1,78 39,99 54,77 0 0 1,62 3,62

Start-State
S 2 60,35 0 0 98,48 1,08 0,44 0

Start-State
S3 18r47 0,33 0 0,83 79,83 13,08 5,93

Start-State

S_4 13 7,38 0,16 5,17 18,12 65,91 3,27

Start-State

S_5 3,45 13,2 1,62 0 33,91 12,52 38,75

Figure 5.10: Transi t ion probabilities between the states of HMM_corr

Init
End-State

Init
S O 5 1 S3 5 5

Start-State

S O 10,27 39,58 1,3 9,54 46,2 3,03 0,36

Start-State

s_i 0,16 9,7 1,96 1,74 31,61 1,21 53,77

Start-State
S 2 1,61 41,91 1,11 31,33 20,01 2,74 2,9

Start-State
S3 30,09 15,91 1,03 0 78,01 2,94 2,11

Start-State

S_4 0,57 9,66 0,64 1,94 27,53 4,15 56,07

Start-State

S_5 57,31 0 1,06 0,28 0,96 3,25 94,45

Figure 5.11: Transi t ion probabilit ies between the states of HMM_err

Observation probabi l i ty dis t r ibut ion is demonstrated on the observation sequences of
the testing data set. For this purpose two diagrams were prepared, which are presented on
figures 5.12 and 5.13. They show how the ind iv idua l items of the observation sequences are
distr ibuted between the states of the given H M M . Since the data sets of this experiment have
the fir_diff_io_vals format (see 5.4), the observation sequences consist of F I R I / O value
differences. Hence, the items of the observation sequences are {inciiff,out(iiff) value-pairs,
where in^f f is the difference between two subsequent F I R input values and out<n// between
two subsequent F I R output values. Each observation sequence of the test data set was
decoded to its op t imal state-sequence using the given model {HMM_corr or HMM_err).
Subsequently, the items of the ind iv idua l observation sequences were assigned to their
decoded state. In case a given i tem was observed i n mult iple states, it was assigned to
the most often decoded state. The diagrams show the injiff (x-axis) and outdiff (y-axis)
value-pairs i n a 2-dimensional space. The color of the data points indicates the state of the
given H M M model i n which the given value-pair was observed.

52

35r

OJ 3 0 -
a>
it

aj

= 2S[

20 • i • • •

o
• • • • • • • • • • • • •

t • • • 4

> • • • • <
• • • • •

) O • • • • • •
1 0 . o o o o o « « « « « » « «

o o o o o o o o o o o o o

c

• • • •
• • •

• • S t a t e 0
o o S t a t e 1
o o S t a t e 2
o 0 S t a t e 3
o o S t a t e 4
0 0 S t a t e 5

o o • • o o o • o o o o o o
o o o o o o o o o o)0OOO0O0O00OOOO0oooo oo o o o)OOOOOOO••••••OOOOOOOO0O0 0 ••••••••••OOOOOOOOOOOOOOOOOOO

••ooooooooooooooooo o o o o o •••oooooooooooooooooooooo ••••oooooooooooooooooooooo • • • • • o <

o o
o o

10
n diff =

15 20 25 30 35 40 45
subsequent FIR input value difference

Figure 5.12: Dis t r ibu t ion of observation sequence items between the states of HMM_corr

300 r

200[

o
150

S loot

50fe
I ' M * i . i •• ••'

n

II

• • S t a t e 0
• • S t a t e 1
• • S t a t e 2
o o s t a t e 3
• • S t a t e 4

o o s t a t e 5

iiiHiiiiiiiiiHiii.i!;::.;l.. -:..
10 20 30 40 50
in_diff = subsequent FIR input value difference

Figure 5.13: Dis t r ibu t ion of observation sequence items between the states of HMM_err

The above presented diagrams show that the ind iv idua l states of the trained hidden Markov
models (both HMM_corr and HMM_err) each correspond to a certain range of (itidiff, outdiff)
value-pairs. One of the visible differences between the two models is in the range of the y-
axis (outdiff) values: for HMM_corr it is between 0 and 33 (see 5.12), while for HMM_err
it is between 0 and 254 (see 5.13). Since model HMM_err was trained on fault-injected
data sequences, the possible difference between two subsequent F I R output values (outdiff)
is much higher than in case of the HMM_corr model.

53

The second difference is i n the state transi t ion probabilit ies of the models. Based on
diagrams 5.10 and 5.12, i n case of model HMM_corr, it can be seen that transitions between
two states of the model have low probabil i ty i f the data points observable i n the start-state
are relatively distant from the data points observable in the end-state. For example, on
diagram 5.12 the observed data points of state 2, 3, 4 and 5 are a l l distant from the
observed data points of state 1, therefore transi t ion from states 2, 3, 4 or 5 to state 1
have a l l low probabil i ty (see transi t ion probabi l i ty table 5.10). The same applies to the
opposite direction: from state 1 to state 2, 3, 4 or 5. However, model HMM_err does
not work this way. O n the contrary, in certain cases the t ransi t ion probabi l i ty between
states wi th distant observed data points is high. For example, on diagram 5.13 we can
see that data points observed i n state 1 are distant from data points observed i n states
3 and 5, but the state t ransi t ion table 5.11 show high probabilities from state 1 to state
3 or 5. The difference between the data points observed i n the two subsequent states of
the transit ion is mainly i n the outdiff value (on the y-axis). The subsequent observation
of two very different out^i// values usually indicates a transi t ion between the correct and
faulty behaviour of the F I R filter. M o d e l HMM_err contains such transi t ion probabilities,
because it was trained on fault-injected data. The reason why model HMM_corr does not
contain the above described transi t ion probabilities, is because it was trained on purely
correct data sequences.

5.5.3 M u l t i l a y e r P e r c e p t r o n w i t h S i m p l e M I

Mult i layerPerceptron (M L P) was used w i t h a single hidden layer, where the number of
required neurons was assessed by the below presented experiments. The other parameters
of the M L P were set to Weka's default values: 0.3 learning rate, 0.2 momentum, the
activation function of the M L P was a logistic sigmoid (see 4.3.3).

S impleMI was tested wi th each of its transformation methods, which are described in
section 4.3.4. Diagram 5.14 shows the results gained by using the mean value selection
transformation method. It is followed by graph 5.15, which contains the results yield by
the averaged minimax transformation method. F ina l ly , the classification results measured
wi th the merged minimax transformation method are demonstrated on graph 5.16.

54

3 4

Numberof neurons

"Train data set

Validation data set

Figure 5.14: S i m p l e M I wi th mean value selection using M L P as base classifier

as

(0

o
IS
' S 92

ra
u

93,06 93,02

9 2 , 9 2 » > V

/ 92,63

/ jS*^^ ^ ^ 9 2 , 5

92 ,53 , \ A

/ 92 ,2

/ JT 92 ,31

91,46 ' 91,52

•Train data set

Validation data set

Numberof neurons

Figure 5.15: S imp leMI wi th averaged min imax using M L P as base classifier

55

3 4

Number of neurons

"Train data set

Validation data set

Figure 5.16: S i m p l e M I wi th merged min imax using M L P as base classifier

The best results were produced by S i m p l e M I wi th the averaged minimax transformation
method, hence it was chosen for further experiments. G r a p h 5.15 shows that it is enough
to have one single neuron i n the M L P ' s hidden layer to maximize the neural network's
classification accuracy. Its evaluation on the testing data set showed 92.73% accuracy.

O n the below figure 5.17 are described the settings of the trained M L P classifier. The
differences between the subsequent F I R input values are denoted as vector d_in:

(\in0 - i n i | , \ini - in2\, • • . , | i n 2 8 - in 2 g |)

Similarly, d_out is a vector of subsequent F I R output value differences:

(\outo — OUt\\, \out\ — OUt2\, • • • , \0ut28 ~ OUt29\)

The inputs of the neural network are set accordingly to the S i m p l e M I wrapper method
wi th averaged minimax transformation. There are two output neurons, one for each class,
where Class 0 is the class representing a faulty F I R I / O sequence and Class 1 represents
a correct F I R I / O sequence. The weights between the neurons are expressed using values
of w. The threshold in the ind iv idua l nodes are denoted as values of t.

Min(d_in)+Max(djn)

Min(d_out)+Max(d_out)

Class 0

Class 1

Figure 5.17: Mul t i l ayer perceptron after applying S imp leMI wi th averaged min imax

56

file:///outo
file:///0ut28

Since the neural network uses sigmoid act ivation function (f(x) = 1+

1

e-x), the output
value of the hidden neuron w i l l be:

h, Olli I _|_ e-(-22A3in_avg+83.04out_avg+57A5)

i • Minid in)+Max(d in) n ,
where m_avg = 2 —- and out_avg
values of the two output neurons are the following:

out_classo

Min(d_out)+Max(d_out)
2 • The output

1

out_class\

1 _|_ e-(7.48h o u t-2.68)

1
1 _|_ e-(-7.48/w+2.68)

The input values of the network (in_avg and out_avg) are classified based on which output
value (out_classo or out_class\) has greater value. If out_class\ > out_classo then the
inputs are classified as correct (class 1), otherwise they are classified as faulty (class 0).
The dis t r ibut ion of the (in_avg, out_avg) value pairs between the two classes (class 0 and
1) are demonstrated on diagram 5.18.

25G

2 uii

15 Ü

D

• class 1

class 0
100

in_avg

Figure 5.18: Dis t r ibu t ion of the neural network's (in_avg, out_avg) value pairs between
classes 0 and 1

For comparison, below are presented the structures of the other two, less successful
neural networks. O n figure 5.19 we can see the M L P trained after applying S i m p l e M I wi th
mean value selection (see results on graph 5.14). S imi lar ly to 5.17, it also has only a single
neuron i n its hidden layer. Figure 5.20 shows the M L P wi th two neurons i n its hidden
layer, trained on data set which was transformed by S impleMI ' s merged minimax method
(see results on diagram 5.16).

57

F i g ;ure 5.19: Mul t i l ayer perceptron after applying S i m p l e M I wi th mean value selection

Min(djn) ^ = 0 . 2 0

Min(d_out)

Max(cMn)

w=-51.81.

Max(d_out)

Class 0

Class 1

Figure 5.20: Mul t i l ayer perceptron after applying S i m p l e M I wi th merged min imax

5.5.4 R a n d o m F o r e s t w i t h S i m p l e M I

Similar ly to M L P , RandomForest (R F) was also used wi th S i m p l e M I to measure the required
number of trees for its best functioning. The depth of the trees i n the RandomForest
were not l imi ted . S imp leMI was used w i t h each of its transformation methods, as i n the
previously described M L P experiment (see 5.5.3).

58

^ S4

1 97,82

93,52 94,04
94 ,66 ^ -

90,2 S 9 , 7 R /

78 ,94 79 ,26

7 5 , 7 4

» 7 4 , 2 ^ /

78 ,12

7 7 , 1 6 ,
• " * 7 S , 3 7

: : 3 5 :c 2C

-T ra in data set

-Val idation data set

Number of trees

Figure 5.21: S i m p l e M I wi th mean value selection using R F as base classifier

c 9 2- 5

.o

Ü 92

93,62 93,6

94,46

91 ,67 91 ,7

9 4 ^ 94,(

4 5 1C 2C

- T ra in data set

Validation data set

Number of trees

Figure 5.22: S imp leMI wi th averaged min imax using R F as base classifier

59

Figure 5.23: S i m p l e M I wi th merged min imax using R F as base classifier

The best classification accuracy was measured again wi th S impleMI ' s averaged minimax
transformation method. G r a p h 5.22 shows the best classification results w i th 2 trees of the
RandomForest classifier. The out of bag error w i th 2 trees is 9.25% (equals to 90.75%
accuracy) which is similar to the accuracy measured on the validat ion sets (91.52%). The
size of the trees is: 543 and 553 nodes. The classifier's evaluation on the test data set
resulted i n 91.46% classification accuracy.

5.6 Evaluation based on the significance of the injected faults

Since it is more important to detect faults which cause an audible dysfunction than detect­
ing those which are merely audible, this experiment shows how the measured classification
accuracy depends on the significance of the injected faults. Considering the previous ex­
periment's results on the fir_diff_io_vals data set type (described i n 5.4), this experiment
was also performed on it . The t ra in data set of this experiment consisted of 5000 instances
i n which the injected faults were not l imi ted based on their O D G value (could also con­
ta in almost imperceptible faults). The classifiers were trained using the previously chosen
parameters (see 5.5).

For each fault-type a separate test data set was generated based on the previously de­
scribed parameters of fault injection: err_sum, err_inv_bit, err_sample_len (see 5.3).
The ind iv idua l types of faults were gained by combining the possible values of these pa­
rameters: Each resulting test data set consisted of 500 instances, containing only one of the
fault-types. The classification accuracy was computed for each testing data set separately.

The ind iv idua l fault-types (test data sets) were distr ibuted to 5 intervals based on
their induced O D G value: < 0 .0 , -0 .5) , < - 0 . 5 , - 1 . 0) , < - 1 . 0 , - 1 . 5) , < - 1 . 5 , - 2 . 0) and
< —2.0, —4.0 >. These intervals are shown on the x-axis of the below diagrams (see 5.24,
5.25 and 5.26). The classification results of the ind iv idua l intervals are described by three
bars:

• M i n i m u m : The lowest classification accuracy of those which were computed for the
given interval.

60

• Median: The median classification accuracy from the classification accuracies of the
given interval.

• M a x i m u m : The highest classification accuracy of those which were computed for
the given interval.

Each bar has an information about the given fault-type injected to the test data set for
which the bar's classification accuracy was computed. It is described i n the top-part of the
bars as a triplet: err_sum;err_inv_bit;err_sample_len.

In this experiment it was diagnosed that the faults injected wi th parameter value
err_sample_len = 30, cannot be used for learning on the used data set type fir_diff_io_vals
(see 5.4). Since the fir_diff_io_vals data set contains only 30 subsequent F I R input-output
values i n its bag attribute, parameter err_sample_len = 30 would mean generating a l l these
I / O values w i t h an injected fault when class = 0 is generated. However, the used algorithms
of this experiment were not able to detect faults without the transi t ion from the correct to
faulty behaviour, therefore this parameter setting was excluded from the below results.

100

90 -

ODG interval

Figure 5.24: H M M classification accuracy by O D G intervals

61

100

<0.0;-0.5) <-0.5;-1.0) <-1.0;-1.5) <-1.5;-2.0) <-2.0;-4.0>

ODG interval

Figure 5.25: R F wi th S imp leMI classification accuracy by O D G intervals

Figure 5.26: M L P wi th S imp leMI classification accuracy by O D G intervals

Despite that Hidden Markov M o d e l is designed for learning from time series data, bo th
RandomForest and Mult i layerPerceptron classifiers produced better classification results
using the S i m p l e M I transformation method. It can be seen that below the -1.0 O D G value
of the injected faults the classifiers give more reliable results. The min ima l classification

62

accuracy i n these cases is above 90% for both R F and M L P classifiers. Since the faults
injected between O D G values 0.0 and -1.0 are almost imperceptible, the results on the lower
O D G value intervals can be assessed positively.

A final experiment w i t h the above evaluated classifiers was performed, now only w i t h
faults types which have less than -1.0 O D G value. The results show significant improvement
compared to the previous ones (see 5.5), where fault types were not l imi ted based on their
O D G value (including fault types wi th O D G values from interval 0.0 to -1.0). The below
results were measured on the testing data set (1500 instances). H idden Markov model w i th
6 states was accurate i n 92.8% of the cases (before this 86.4%). S i m p l e M I combined wi th
M L P (1 neuron in hidden layer) achieved 98.6% classification results (previously 92.73%).
S imp leMI wi th R F (2 trees) showed results w i th 97% classification accuracy (previously
91.46%).

63

Chapter 6

Conclusion

The a i m of the thesis was to propose a solution for increasing the dependabili ty of digi ta l
systems. For this purpose fault tolerance w i t h different types of redundancy was studied.
The fundamental types of redundancy applicable i n fault-tolerant systems were presented.
The reader was acquainted wi th the basic principles of checking circuits applicable i n fault-
tolerant systems. A s target platform for checking circuit development, the F P G A was
proposed. The properties of existing checking circuit implementations available for F P G A
were discussed.

The thesis focused on creating checking circuits w i t h machine learning algorithms for
hardware components w i th sequential logic. The theoretical background and the ind iv id­
ual types of machine learning were presented. Hardware components w i th sequential logic
required special types of machine learning algorithms which are able to process t ime se­
ries. The thesis distinguishes two types of machine learning algorithms for handling time
series. The first type was presented as a group of machine learning algorithms capable
of processing t ime series data directly. The second type included non-time series learning
algorithms which can work w i t h t ime series data only by cooperating wi th specific types of
transformation methods.

The applicat ion of the ind iv idua l machine learning algorithms was attained by employ­
ing the Weka data min ing framework [13]. Besides the machine learning algorithms, Weka
also has a specific file format for machine learning data sets. The reader is informed about
both the ut i l ized machine learning classifier implementations and the ind iv idua l properties
of the used data set types. The data sets are generated in two steps: simulation of the
observed hardware component and post-processing of the simulation-generated files. These
are described including the fault injection techniques applied during the simulation.

The experiments of the thesis were performed on a low-pass F I R filter, implemented by
D . Pardo []. The main goal of the experiments was to determine which machine learning
algorithms would be possible to use i n checking circuits. For this purpose various machine
learning classifiers were chosen and their classification accuracy was measured. In the first
section of the experiments, the reader can be acquainted wi th the design of the used F I R
filter. D u r i n g the experiments the F I R filter was used for processing audio (.wav) files.
After injecting faults to the F I R filter, the resulting audio file was usually damaged, but
the severity of the damage was unknown. It was proposed to measure the difference between
the damaged audio signals to be able to dist inguish the severity of the injected faults. For
this purpose the P E A Q algori thm [26] was used and also explained. The ensuing parts of
the experiments describe the configuration of the injected faults and the content of data
sets.

64

The ma in outcomes of the thesis are experimental results. The first experiments were
performed to find the best settings for the tested machine learning classifiers. In this ex­
periment (see section 5.5) 7 combinations of machine learning classifiers were used. The
faults injected to the F I R filter were not l imi ted based on the severity of the induced audio-
damage. The results of each classifier were evaluated and discussed. The best classification
accuracy was achieved by the S imp leMI wrapper a lgori thm using averaged min imax trans­
formation combined wi th the Mult i layerPerceptron classifier. Its classification was accurate
in 92.73% of the cases, measured on the testing data set w i th 1500 instances. Considering
that S imp leMI performs significant reduction of the original t ime series data (in this case
from 60 attribute-values to 2), this result can be evaluated positively. O n the other hand
it also means that the complexity of the F I R filter does not require a more sophisticated
learning algori thm.

The second group of experiments was focused also on the severity of the injected faults
(see section 5.6). W i t h this approach it was possible to dist inguish different categories
of faults, and hence ignore those which are almost imperceptible i n the resulting audio
signal. The results were evaluated and compared, after which it can be stated that ignoring
almost imperceptible faults increases the classification accuracy of the previously evaluated
algorithms in a significant way. The above described S i m p l e M I has 98.6% accuracy wi th
the same settings.

The future work should focus on performing new experiments on more complex hard­
ware components. Hardware components w i th more complex logic, or w i th more input and
output values could also require the use of new machine learning algorithms. Another pos­
sible continuation of this thesis would be to implement one of the most successful classifiers
in V H D L to F P G A . Classifiers RandomForest and Mult i layerPerceptron wi th the S imp leMI
wrapper a lgori thm achieved promising results, hence they could be integrated to a checking
circuit . For measuring the quali ty of the online checker on F P G A a separate fault injection
platform should be designed.

65

Bibliography

[1] A l p a y d i n , E . : Introduction to Machine Learning. Massachusetts Institute of
Technology. 2010. i S B N 978-0-262-01243-0.

[2] Anderson, P . M . ; Coyne, J . W . : A lightweight, high reliability, single battery power
system for interplanetary spacecraft. In Proceedings, IEEE Aerospace Conference,
vol . 5. 2002. pp. 5-2433-5-2444 vol.5.

[3] Avizienis , A . : Fault-Tolerant Systems. IEEE Trans. Comput.. vol . 25, no. 12.
December 1976. I S S N 0018-9340.

[4] Avizienis , A . ; Laprie , J . ; Randel l , B . : Fundamental Concepts of Dependabi l i ty . 2001.

[5] Bre iman, L . : R a n d o m Forests. Machine Learning, vol . 45, no. 1. 2001: pp. 5-32.

[6] Carneiro, G . ; Chan , A . B . ; Moreno, P . J . ; et a l . : Supervised Learning of Semantic
Classes for Image Anno ta t ion and Retr ieval . IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol . 29, no. 3. M a r c h 2007: pp. 394-410. I S S N 0162-8828.

[7] Downes, P . T . : Appl ica t ions of chaotic t ime series analysis to signal processing. In
[1992] Conference Record of the Twenty-Sixth Asilomar Conference on Signals,
Systems Computers. Oct 1992. I S S N 1058-6393. pp. 98-104 vol.1.

[8] Dubrova, E . : Fault-Tolerant Design. Springer Publ i sh ing Company, Incorporated.
2013. I S B N 1461421128, 9781461421122.

[9] Florescu, I.: Probability and Stochastic Processes. Wi ley . 2014. I S B N 9780470624555.

[10] Frank, E . T . ; X u , X . : A p p l y i n g proposit ional learning algorithms to multi-instance
data. Technical report. Universi ty of Waika to . Department of Computer Science,
Univers i ty of Waikato , Hami l ton , N Z . 06 2003.

[11] F u , H . - C ; Chang, H . - Y . ; X u , Y . Y . ; et al . : User adaptive handwri t ing recognition by
self-growing probabil ist ic decision-based neural networks. IEEE Transactions on
Neural Networks, vol . 11, no. 6. N o v 2000: pp. 1373-1384. I S S N 1045-9227.

[12] Gi l l ies , M . : H M M W e k a . <http://doc.gold.ac.uk/~mas02mg/software/hmmweka/>.
accessed September 24, 2015.

[13] H a l l , M . ; Frank, E . ; Holmes, G . ; et a l . : The W E K A D a t a M i n i n g Software: A n
Update . SIGKDD Explorations, vol . 11, no. 1. 2009.

[14] H a n , X . ; Yang , B . ; Lee, S.: App l i ca t i on of R a n d o m Forest A l g o r i t h m i n Machine
Fault Diagnosis. In Engineering Asset Management. Springer London . 2006. I S B N
978-1-84628-583-7. pp. 779-784.

66

http://doc.gold.ac.uk/~mas02mg/software/hmmweka/

[15] Herculano-Houzel , S.: The human bra in i n numbers: a l inearly scaled-up primate
brain. Frontiers in Human Neuroscience. vol . 3. 2009: page 31. I S S N 1662-5161.
Retrieved from:
<http://journal.frontiersin.org/article/10.3389/neuro.09.031.2009>

[16] H ú s k e n , M . ; Stagge, P.: Recurrent neural networks for t ime series classification.
Neurocomputing. vol . 50. 2003: pp. 223 - 235. I S S N 0925-2312.

[17] I T U Radiocommunicat ion Assembly: R E C O M M E N D A T I O N I T U - R BS.1387-1 -
M e t h o d for objective measurements of perceived audio quality. I T U . 2001.

[18] Jeong, Y . - S . ; Jeong, M . K . ; Omi taomu, O . A . : Weighted dynamic t ime warping for
t ime series classification. Pattern Recognition, vol . 44, no. 9. 2011: pp. 2231 - 2240.
I S S N 0031-3203.

[19] K a i m i n , W . ; Xiaofei , N . ; Yumei , C ; et a l . : D T S P - V : A trend-based Top Scoring
Pairs method for classification of t ime series gene expression data. In 2016 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM). Dec 2016. pp.
1787-1794.

[20] K a m p o u r a k i , A . ; Manis , G . ; N ikou , C : Heartbeat T ime Series Classification W i t h
Support Vector Machines. IEEE Transactions on Information Technology in
Biomedicine. vol . 13, no. 4. Ju ly 2009: pp. 512-518. I S S N 1089-7771.

[21] K i b b e , H . : F in i te Impulse Response Fi l ters Us ing Apple ' s Accelerate Framework -
Par t I. <http: //hamiltonkibbe.com/f inite-impulse-response-f i l t e r s - u s i n g -
apples-accelerate-framework-part-i/>. 2014.

[22] K i r k b y , R . : RandomForest. Universi ty of Waika to . accessed: 2017-04-09.

[23] Koren , I.; Kr i shna , C . M . : Fault-Tolerant Systems. San Francisco, C A , U S A : Morgan
Kaufmann Publishers Inc.. 2007. I S B N 0120885255, 9780080492681.

[24] Krose, B . ; van der Smagt, P.: An Introduction to Neural Networks. Univers i ty of
Amste rdam. 1996.

[25] L a l a , P . K . : Transient and Permanent Fault Injection i n V H D L Descript ion of Dig i t a l
Ci rcu i t s . 2012.

[26] M . Holters, U . Zôlzer: G s t P E A Q - an Open Source Implementation of the P E A Q
A l g o r i t h m . Proceedings of the 18th International Conference on Digital Audio Effects
(DAFx'15). 2015. t rondheim, Norway.

[27] Matousek, K . : Security and rel iabi l i ty considerations for distr ibuted healthcare
systems. In 2008 42nd Annual IEEE International Carnahan Conference on Security
Technology. Oct 2008. I S S N 1071-6572. pp. 346-348.

[28] M a t ú š o v a , L . ; Kaš t i l , J . ; Ko tásek , Z . : Au tomat ic Construct ion of On-l ine Checking
Circui ts Based on F in i t e Au tomata . In 17th Euromicro Conference on Digital Systems
Design. I E E E Computer Society. 2014. I S B N 978-0-7695-5074-9. pp. 326-332.
Retrieved from:
<http: //www.f it.vutbr.cz/research/view_pub.php.cs?id=10734>

67

http://journal.frontiersin.org/article/10.3389/neuro.09.031.2009
http://www.f

[29] Miko lov , T. ; Kara f iá t , M . ; B ü r g e t , L . ; et a l . : Recurrent neural network based
language model . In Interspeech, vol . 2. 2010. page 3.

[30] M i s h u , S. Z . ; Raffuddin, S. M . : Performance analysis of supervised machine learning
algorithms for text classification. In 2016 19th International Conference on Computer
and Information Technology (ICCIT). Dec 2016. pp. 409-413.

[31] Mi tche l l , T . M . : Machine Learning. M c G r a w - H i l l Sc ience /Engineer ing /Math . 1997.
i S B N 0-07-042807-7.

[32] Murphy , K . P. : Machine Learning: A Probabilistic Perspective. Massachusetts
Institute of Technology. 2012. i S B N 978-0-262-01802-9.

[33] Nilsson, N . J . : Introduction to Machine Learning: A n E a r l y Draft of a Proposed
Textbook. <http: //robotics.stanford.edu/people/nilsson/mlbook.html>. 1998.

[34] Nogales, F . J . ; Contreras, J . ; Conejo, A . J . ; et a l . : Forecasting next-day electricity
prices by t ime series models. IEEE Transactions on Power Systems, vol . 17, no. 2.
M a y 2002: pp. 342-348. I S S N 0885-8950.

[35] Pardo, D . : V H D L Parametrizable F I R Fi l ter .
<http: //opencores.org/project,fir_filter> . 2013.

[36] Quin lan , J . R . : Induction of Decision Trees. Machine Learning, vo l . 1, no. 1. M a r c h
1986: pp. 81-106. I S S N 0885-6125.

[37] Quin lan , J . R . : C4-5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc.. 1993. I S B N 1-55860-238-0.

[38] Rabiner , L . R . : A tutor ia l on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE. vol . 77, no. 2. 1989: pp. 257-286.

[39] Rabiner , L . R . ; Juang, B . H . : A n introduct ion to hidden Markov models. IEEE
ASSP Magazine. January 1986: pp. 4-15.

[40] Riedmil ler , P . D . M . : Machine Learning: M u l t i Layer Perceptrons.

[41] R o k á c h , L . : Ensemble-based Classifiers. Artif. Intell. Rev., vol . 33, no. 1-2. February
2010: pp. 1-39. I S S N 0269-2821.

[42] Rubino , G . ; Sericola, B . : Markov Chains and Dependability Theory. EBL-Schwei tzer .
Cambridge Universi ty Press. 2014. I S B N 9781107007574.

[43] Sigaud, O. ; Buffet, O. : Markov Decision Processes in Artificial Intelligence. Wiley .
2010. I S B N 9781848211674.

[44] Straka, M . : Ap l ikace h l ídacích o b v o d ů v a r c h i t e k t u r á c h odo lných prot i p o r u c h á m . In
Počítačové architektury a diagnostika 2008. Liberec Univers i ty of Technology. 2008.
I S B N 978-80-7372-378-1. pp. 97-102.
Retrieved from: <http: //www.fit.vutbr.cz/research/view_pub.php.cs?id=8698>

68

http://stanford.edu/people/nilsson/mlbook.html
http://www.fit.vutbr.cz/research/view_pub.php.cs?id=8698

[45] Straka, M . ; Kotasek, Z . ; Winter , J . : The Design of Hardware Checkers for
Verification and Diagnostic Purposes. In CSE'2008 International Scientific
Conference on Computer Science and Engineering. The Univers i ty of Technology
Kosice. 2008. I S B N 978-80-8086-092-9. pp. 320-327.
Retrieved from: <http: //www.f it.vutbr.cz/research/view_pub.php.cz?id=8646>

[46] Straka, M . ; Kotasek, Z . ; Winter , J . : D i g i t a l Systems Architectures Based on On-line
Checkers. In 11th EUROMICRO Conference on Digital System Design DSD 2008.
I E E E Computer Society. 2008. I S B N 978-0-7695-3277-6. pp. 81-87.
Retrieved from: <http: //www.f it.vutbr.cz/research/view_pub.php.cs?id=8621>

[47] Taylor, J . W . ; McSharry , P . E . ; Bu izza , R . : W i n d Power Densi ty Forecasting Using
Ensemble Predict ions and T ime Series Models . IEEE Transactions on Energy
Conversion, vol . 24, no. 3. Sept 2009: pp. 775-782. I S S N 0885-8969.

[48] Tveter, D . R . : The Backprop A l g o r i t h m , Chapter 2. 2001.
Retrieved from:
<http: //www.cim.mcgill.ca/-jer/courses/ai/readings/backprop.pdf >

[49] Udantha , M . : Markov Models and Hidden Markov Models .
<http: / /madhukaudantha. blogspot.cz/2014/05/markov-models-and-hidden-
markov-models.html>. accessed September 24, 2015.

[50] Vyas, T. ; Prajapat i , P. ; Gadhwal , S.: A survey and evaluation of supervised machine
learning techniques for spam e-mail filtering. In 2015 IEEE International Conference
on Electrical, Computer and Communication Technologies (ICECCT). M a r c h 2015.
pp. 1-7.

[51] Ware, M . : MultilayerPerceptron. Univers i ty of Waika to . accessed: 2017-04-09.

[52] Yeh , Y . : Dependabi l i ty of the 777 P r i m a r y Fl igh t Con t ro l System. In Dependable
Computing for Critcal Applications 5. I E E E Computer Society Press. 1998. pp. 3-17.

[53] Zhang, D . ; M a b u , S.; Wen, F . ; et a l . : A supervised learning framework for
P C A - b a s e d face recognition using G N P fuzzy data mining. In 2011 IEEE
International Conference on Systems, Man, and Cybernetics. Oct 2011. I S S N
1062-922X. pp. 516-520.

69

http://www.f
http://www.f
http://vutbr.cz/research/view_pub
http://www.cim.mcgill.ca/-jer/courses/ai/readings/backprop.pdf
http://blogspot.cz/2014/05/markov-models-and-hidden-

Appendices

70

Appendix A

Contents of the attached D V D

Below is presented the simplified directory structure of the attached D V D . In the file Use r
manua l .doc is described how the experiments can be executed. It also contains a more
accurate description of the directory structure of the experiments.

/
Experiments Directory containing the source codes of the experiments.

Sim_DatasetGen
CalcODG_of_FaultTypes
GenDataset_for_each_FaultType

1 GenDatasets_with_DecreasingODGInterval
Weka_Experiment s

configs
dataset_gens
graph_gens
results

J weka
1 User manual .doc
Text Directory containing this technical text in electronic format.

source . . .Editable I^TgX documentation sources.
_xlelkeOO.pdf

71

Appendix B

Error detection on a F I R filter

This chapter contains addi t ional graphs and results which were not included in the above
experiments chapter (see 5) i n order to keep the description of the results transparent.

B . l Addit ional fault configuration results

A l l the injected fault types and their induced O D G value can be seen i n this section. The
below figures show the fault types on the ind iv idua l adders of the F I R filter.

-2 .5 -

-2.0

5 - 1 . 5 -
(J
Q
O
<u
5? -l.Oh
i_

> <

Number of fault injected samples:

mm 3

mm 6
mm 12

mm 2 4

mm 30

- 0 . 5 -

0.0 mm [fp3 c m

2 3 4 5 6 7
Inverted bit as fault injection

Figure B . l : Faults on adder ^ 0

72

- 2 . 5

-2.0

g - 1 . 5

(J
Q
O
m
5? - 1 . 0
i_

> <

-0.5

0.0

-

Number of fault injected samples:

3

6
12

I Z Z l 24

I 1 1 B B rrrm ^ T J ^ -

B i IF ^ 1 2 3 4 5 6 7
Inverted bit as fault injection

8 g

Figure B .2 : Faults on adder

Number of fault injected samples:

H 3

6
12

IZZ1 24

W P P W «* F
J 1

2 3 4 5 6 7
Inverted bit as fault injection

Figure B .3 : Faults on adder ^ 2

73

Number of fault injected samples:

mm 3

6

mm 12

mm 2 4

2 3 4 5 6 7
Inverted bit as fault injection

Figure B.4 : Faults on adder

Number of fault injected samples:

mm 3

mm 6

Inverted bit as fault injection

Figure B .5 : Faults on adder

74

Number of fault injected samples:

3

6

Inverted bit as fault injection

Figure B.6 : Faults on adder

Inverted bit as fault injection

Figure B .7 : Faults on adder

75

Inverted bit as fault injection

Figure B.8: Faults on adder

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Inverted bit as fault injection

Figure B .9 : Faults on adder

76

- 2 . 5

-2.0

g - 1 . 5
(J
Q
O
m

Number of fault injected samples:

3

6
12

IZZ1 2 4

01
> <

-1.0-

-0 .5 -

0.0 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Inverted bit as fault injection

Figure B.10: Faults on adder

2 3 4 5
Inverted bit as fault injection

Figure B . l l : Faults on adder V_ 10

77

B.2 Classification results on the fir 30 io vols data set

The below graphs show the classification results on the fir_30_io_vals data set (see 5.4).
The rest of the classifiers' parameters are specified i n section 5.5.

B.2 .1 H i d d e n M a r k o v m o d e l

61

60
1 2 3 4 5 6 7

Number of states

Figure B.12: H M M classification results by the number of states

B.2 .2 R a n d o m F o r e s t w i t h t r a n s f o r m a t i o n m e t h o d s

1 2 3 4- 5 :c 20

Number of trees

Figure B.13: S i m p l e M I wi th mean value selection using R F as base classifier

78

91

87,54

srt

Number of trees

Figure B.14: S imp leMI w i t h averaged min imax using R F as base classifier

70 1

1 2 3 4 5 1C 20

Number of trees

Figure B.15: S imp leMI wi th merged min imax using R F as base classifier

79

B.2 .3 M u l t i l a y e r P e r c e p t r o n w i t h t r a n s f o r m a t i o n m e t h o d s

61 1

1 2 3 + 5

Number of neurons

Figure B.16: S i m p l e M I wi th mean value selection using M L P as base classifier

80

'Train data set

'Validation data set

1 2 3 4 5

Number of neurons

Figure B.18: S i m p l e M I wi th merged min imax using M L P as base classifier

B.3 State tranisition diagrams of H M M s
trained on the fir diff io vols data set

In this appendix section are presented two state transi t ion diagrams gained by training
of hidden Markov models on data set format fir_diff_io_vals i n experiment 5.5. The
diagrams were excluded from the experiments section of the thesis because their size is too
big, and because presenting them i n table form is more transparent. For their generation
the graphviz tool1 was used.

1 <http://www.graphviz.org>

81

http://www.graphviz.org

10.27%

Figure B.19: State transi t ion diagram of H M M wi th class 0

82

Figure B.20: State transi t ion diagram of H M M wi th class 1

83

