

Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Technologies

Bachelor Thesis

Evaluation of the efficiency using ReactJS JavaScript

library in development

Khasanov Ilkhomjon

 © 2019 CULS Prague

Declaration

I declare that I have worked on my bachelor thesis titled "Evaluation of the efficiency

using ReactJS JavaScript library in development" by myself and I have used only the sources

mentioned at the end of the thesis. As the author of the bachelor thesis, I declare that the thesis

does not break copyrights of any their person.

In Prague on 29/10/2019 ___________________________

Acknowledgement

I would like to thank my supervisor Mr. Miloš Ulman, Ph.D.

6

Evaluation of the efficiency using ReactJS JavaScript

library in development

Summary: The main aim this bachelor thesis is to evaluate how React performs

alongside with Angular 2 in regard to find out the superior framework when developing the

user interface in application.

Keywords: React JS, Angular, Components, JSX, Regular DOM, Virtual DOM, JavaScript,

TypeScript, Flux, Redux, React Native, HTML, Library, Front-end Framework.

7

Table of content

1 Introduction... 10

2 Objectives and Methodology ... 11

2.1 Objectives ... 11

2.2 Methodology ... 11

3 Literature Review ... 12

3.1 Web Technologies Architecture ... 12

3.1.1 Background ... 12

3.1.2 Front-end web technologies .. 13

3.1.3 Model-View-Control pattern ... 15

 Single-page application ... 17

3.2 JavaScript .. 18

3.2.1 Client-Side JavaScript ... 19

3.3 JavaScript UI Frameworks and Libraries ... 20

3.3.1 Web statistics and Survey .. 22

3.4 Angular ... 27

3.4.1 Typescript on Angular 2 .. 28

3.4.2 Directive and components ... 29

3.4.3 Modules ... 30

3.4.4 Services ... 31

3.4.5 Templates and Forms .. 32

3.4.6 Dependency Injection .. 32

3.4.7 Data Binding and Meta Data ... 33

3.5 React ... 34

3.5.1 JSX .. 36

3.5.2 Components of React, Props and State ... 36

3.5.3 Virtual DOM ... 38

3.5.4 Templates and Forms .. 39

3.5.5 Flux Architecture ... 40

3.5.6 Data binding in React .. 41

4 Practical Part .. 42

4.1 Real-World comparison of front-end frameworks with benchmarks 42

4.1.1 Performance ... 43

4.1.2 JS bundle size .. 44

4.1.3 First Contentful Paint .. 44

4.1.4 Line of codes ... 45

8

4.2 Stefan Krause’s benchmark tool ... 46

4.2.1 Head-to-head performance comparison .. 46

4.2.2 Performing the benchmark, Start-up time and Memory allocation 46

5 Results and Discussion ... 48

5.1 Which of the frameworks proposed better user interface? 48

5.1.1 Performance ... 48

5.1.2 Templating ... 49

5.1.3 Structuring data model .. 49

5.1.4 Code reshuffling .. 49

5.1.5 Package management .. 49

5.1.6 Learnability ... 50

6 Conclusion ... 51

7 References .. 52

8 Bibliography .. 52

9

List of abbreviations

SPA Single Page Application

UI User Interface

API Application Programming Interface

DOM Document Object Model

JS JavaScript

JSX JavaScript and XML

MVC Model View Controller

MVP Model-View-Presenter

MVVM Model View-View Model

ES5/6/7 ECMA Script 5/6/7

HTML Hypertext Mark-up Language

W3C World Wide Web Consortium

XML Extensible Markup Language

FCP First Contentful Paint

10

1 Introduction

Web development has seen a huge advent of Single Page Application (SPA) in the past

couple years. Early progress was simple related a complete page to perform a change in the

display or perform a user action. The problem with this was a big round-trip time for the

complete request to reach the web server and back to the client. (M, et al., 2016)

Then came AJAX, which sent a request to the server, and could update parts of the page

without reloading the current page. Moving in the same direction, it defined that the emergence

of the SPAs. (M, et al., 2016)

Wrapping up the heavy front-end contend and delivering it to the client browser just

once, while maintaining a small channel for communication with the server based on any event,

this is usually complemented by thin API (Application Programming Interface) on the web

server. (M, et al., 2016)

The growth in such apps has been efficiently complemented by ReactJS JavaScript

library, created by Facebook in 2013, to build user interface (UIs) that can respond to user’s

input events along with creating and maintaining states. States are used to maintain changes to

components, so the page loads faster by comparing only the changed and the updated part of

the web page. React provides a one-way data flow that reduces complexity compared with a

traditional data-binding system, which facilitates creating reusable and encapsulated

components. (Sengupta, et al., 2016)

Therefore, ReactJS is not just another JavaScript library though many developers

consider it to be the V of the MVC (Model-View-Controller) application. Nowadays,

performance and portability are vital to build UI, mainly due to the large use of Internet-

accessible devices and the fast-paced developmental phases of the projects. Hence this can

result in complex front-end code. The need for using a library that helps user’s code grow in

both performance and quality is important. Otherwise, it will end up writing big HTML

(Hypertext Markup Language) files with UI logic everywhere that takes ages to modify and can

compromise code quality. (Sengupta, et al., 2016)

11

2 Objectives and Methodology

2.1 Objectives

The main objective of the thesis is to evaluate the efficiency of ReactJS JavaScript

library in development.

The partial objectives of the thesis are such following:

Firstly, to make current literature review of current state of the area of JavaScript based

technologies and gather a structured information about advantages and disadvantages of the

frameworks.

Secondly, to develop a comparison test of the efficiency of ReactJS and Angular and to

offer developers an objective data to simplify and facilitate their choice between described

frameworks for their future projects.

At last, to evaluate the efficiency of ReactJS and formulate the conclusion using various

approaches.

2.2 Methodology

A methodology of the thesis is based on study and analysis of information resources.

The comprehensive overview of ReactJS will be described and evaluated alongside with

Angular. The comparison will be made by using a relevant empirical method from multiple-

criteria decision analysis. Depending on the research findings and results of the evaluation part,

final conclusion and recommendation will be stated.

12

3 Literature Review

3.1 Web Technologies Architecture

3.1.1 Background

A traditional web application engineering comprises of a client and a web server. The

client can be, for example, a browser in a work area PC or a cell phone. The client sends HTTP

requests to the web server, which at that point plays out some usefulness dependent on the

request and potentially restores some outcome. In the image beneath (Figure 1) is the example

of a traditional web application information move model.

Figure 1. web application data transfer model (source: sombra)

 In Figure 1, browser client requests a website page from the web server, and the web

server thusly asks a few information from the database, lastly restores a HTML report, alongside

CSS styles to the client's program.

https://sombrainc.com/web-application-architecture

13

A multi-page application for the most part comprises of various pages. At the point when

the client clicks a link on the page, it diverts the program to an alternate HTML document

existing on the server. The required template documents are recovered too, on the off chance

that they are not yet stored in browser's cache. The server generally has different undertakings

also, notwithstanding returning HTML records. The server can validate the client, make

database changes, or for example, send messages.

In web application engineering, routing is a procedure where each not same URL

compares to a particular page or content. In a multi-page application model, routing is more of

a plainly obvious piece of an application as the pages are isolated additionally in the record

framework. Utilizing URLs and routes, programs can bookmark, share a connection, and

explore on websites utilizing back and direct buttons

Some tasks can happen additionally at the client's end. Handling in the browser mostly

uses JavaScript and contains assignments like adjusting the DOM, making intuitive

representations, or showing alerts on the screen. HTML DOM (Document Object Model) is a

standard tree sort of structure, or model, which the program utilizes for getting to various

components. There are numerous sorts of arrangements, however, the most foundation of the

assignments separated is typically the equivalent in traditional multi-page web applications.

(Sambra, 2019)

3.1.2 Front-end web technologies

With current web developing, there are 2 ordinary layers have in the web programming

architecture, to be specific, the introduction layer, which is recognized as front-end and the data

access layer prevalently recognized as back-end. Thus, front-end component includes in each

and everything worried about the client or the customers in a web application. This incorporates

every one of the users with the UIs. The front-end of web improvement is essentially handled

with the utilization of standard advances, for example, JavaScript, HTML and CSS.

14

HTML is one of the huge tools and known as the foundation of the web innovations which

works as a translator of ordinary plain content, pictures, and other sound, visual segments into

the internet browsers. HTML records are masterminded and composed with blends of various

labels, in the form of various Angular brackets. The fifth significant form of HTML was

presented in 2013 as HTML5 and it carried a progressive adjustment to web improvement.

HTML gives the major base to all innovations. (Dev, 2019)

Correspondingly, CSS is another significant web innovation, which is in charge of styling

a HTML report. Whole special visualizations, format, colors, text styles and so forth are

managed by CSS. Between whole front-end advances, CSS has an essential job in UI structure.

HTML and CSS are approved with W3C an institutionalized Markup validator administration.

In addition, HTML and CSS are remaining as the center advances required for present day web

improvement. Figure 2 delineates the range of innovations in front-end web development.

 Figure 2 - Front-end Spectrum (source: medium)

https://medium.com/@withinsight1/the-front-end-spectrum-c0f30998c9f0

15

Furthermore, another useful and ostensibly the best significant web innovation for

completely practical and dynamic web advancement is JavaScript. JavaScript is a significant

level, coordinated programming language, that is institutionalized with the ECMAScript

language detail. JavaScript is regularly considered as a practical programming language, which

floats in the whole present-day program. It has carried a transformation to World Wide Web,

due to its similarity and versatility in various parts of the web. Along the presentation of various

open-source libraries and frameworks over the most recent couple of decades, and JavaScript

has changed the manner in which how developers are engaged with structure of creating the

web programming. In any case, JavaScript is going forward and advancing so quick that the

developers need to adapt new adjustments in the libraries and systems. Which has come about

as an overwhelming assignment for each programmer to choose which frameworks or libraries

to pursue and push ahead.

3.1.3 Model-View-Control pattern

The structure of the best UI application begins with a great application design. UI

application plans are constantly connected with explicit arrangements of structure issues and

patterns. While discussing client-side web advancement, there are distinctive structural

examples, presented for a decent UI. Configuration examples as MVC (Model-View-

Controller), MVVM (Model-View-View-Model), also MVP (Model-View-Presenter) gives

great backing system to present day web UI advancement.

Model-View-Controller (MVC) is a structural pattern where the data model, the obvious

view, and the utilitarian controller are isolated. The data model displays all the information

substance of the application, the view part demonstrates noticeable portrayal of data, and the

controller manages the preparing of the information and movements it between a model and a

view. Figure 3 represents the MVC design.

16

Figure 3. Model-View-Controller model (Source: geeksforgeeks)

In Figure 3, because of client's activities, the controller is manipulating the model, as well

as, hence the view is refreshed also. The MVC model characterizes a standard method to

separate application in parts, thus understanding the usefulness of the application ends up

simpler indifferent of the technology utilized. The MVC model is utilized broadly in multi-page

applications. (GeeksforGeeks, 2019)

https://www.geeksforgeeks.org/mvc-design-pattern/

17

Building up a UI application is an unpredictable task, when it is related with manipulating,

processing and rendering huge business information. Sometimes developers get lost whenever

into the visual parts of the applications containing countless client interfaces related with the

business rationale. The control of enormous business information gets confusion to the code

association the development process. The fundamental prerequisite for acceptable code

association target around reusable, clear and viable codes.

The plan of a decent UI application begins with great application design. UI application

plans are constantly connected with explicit arrangements of structure issues and examples.

When discussing client-side web improvement, there are distinctive architectural examples

offered for a decent UI. Configuration examples like MVC (Model-View-Controller), MVVM

(Model-View-View-Model), and MVP (Model-View-moderator) gives great helping

architecture for present day web UI advancement. A significant angle to note about the UI

architecture tool is that it changes very quick. The innovations that are on promotion today will

never again be in exist a year after. In this way, whatever the disarray the new innovation brings,

it will consistently be a smart thought to start work with great application architecture.

 Single-page application

 A single page application (SPA) works distinctively as far as information move or

routing, contrasted with a multi-page application. Single-page applications theoretically

comprise just one single page. At the point when a user requests a web page, it gets a full

websites code instantly. Arrived content frequently contains just a halfway complete HTML

report. It is supplemented powerfully at the user's end, generally with JavaScript. Generally, the

visible view is made by a progression of JavaScript functions, which supplements the HTML

DOM on run-time. No further demands are required. However, all the obvious content is made

and adjusted by JavaScript. Therefore, for example, the page changing in a SPA isn't generally

page changing, yet rather replacing the content of the current page with another content. This

content is created by JavaScript functions.

18

3.2 JavaScript

JavaScript is an interpreted programming language with object-oriented (OO) functions.

Linguistically, the central JavaScript language looks like C, C ++ and Java, with programming

constructs such as the if statement, the while loop, and the operator &&. The similarity ends

with this syntactic agreement. Nevertheless, JavaScript is a bit of a written language, which

means that variables do not have to have the specified type. Objects in JavaScript assign

property names to random property values. So that, they are closer to hash tables or associative

arrays (in Perl) than structures (in C) or objects (in C ++ or Java). The OO inheritance

mechanism of JavaScript is based on prototypes such as little-known native language. This is

very different from inheritance in C ++ and Java. Like Perl, JavaScript is an interpreted

language and it inspired by Perl in different areas, for example its common expression and array

handling functions. (Flanagan, 2006)

The main JavaScript language supports strings, numbers, and Boolean values as primitive

data types. As well as, it includes integrated support for data, array and regular expression

objects.

JavaScript is the most commonly used in web browsers, and in this context the general-

purpose core is extended with objects that allow scripts to communicate with the user, control

the web browser, and change the contents of the document that appears within the web browser

window. The built-in version of c executes scripts that are embedded in HTML web pages. It

is usually called JavaScript on the client-side to emphasize that scripts are executed by the client

computer instead of the web server. (Crockford, 2019)

The basis JavaScript language and the integrated data types are subject to international

standards and the compatibility between the implementations is very fine. The parts of

JavaScript client-side are formally standardized, other parts are the actual standards and the rest

parts are specific extensions of the browser. Compatibility with cross-browser is often a vital

concern for JavaScript programmers on the client-side. (Crockford, 2019)

However, one of the most common misconceptions about JavaScript is that it is a

simplified version of Java. In addition to the incomplete syntactical correspondence and the

fact that Java and JavaScript can provide executable content in the web browser, for that reason

the two languages have no relation to each other. (Crockford, 2019)

19

3.2.1 Client-Side JavaScript

When a JavaScript interpreter is embedded in a web browser, the result is client-side

JavaScript. This is by far the most common variant of JavaScript, when most people refer to

JavaScript, they usually mean client-side JavaScript. (Flanagan, 2006)

Client-Side JavaScript combines the scripting ability of a JavaScript interpreter with the

Document Object Model (DOM) defined by a web browser. Documents may contain JavaScript

scripts, and those scripts can use the DOM to modify the document or control the web browser

that display the document. In other way, it can be defined that the client-side JavaScript adds

behaviour to otherwise static web content. Thus, Client-side JavaScript is at the heart of web

development techniques such as DHTML (Dynamic HyperText Markup Language). (Flanagan,

2006)

JavaScript program, or "script," embedded in a Web page. When loaded into a JavaScript-

enabled browser, it produces the output shown in Notice that the <script> and </script> tags are

used to embed client-side JavaScript code within an HTML file. (WebMaster, 2019) (Figure 4)

Figure 4 - Client-Side JavaScript Simplified Examples (source: modified according to w3schools)

https://www.w3schools.com/code/tryit.asp?filename=FQ9T4MH309XV

20

3.3 JavaScript UI Frameworks and Libraries

JavaScript frameworks are the application framework made and written in centre

JavaScript to give a generic usefulness to a totally different application with the goal that the

codes and functionalities of the product could be reused. JavaScript UI systems give framework

highlights to various libraries, tools and API. When working in cutting edge projects, JavaScript

systems support in architecting codes that make them increasingly coherent also secure.

Numerous frameworks have been presented throughout the years. Such as, ReactJS,

Vue.js Ember.js, AngularJs, Angular 2 are the striking names that remain as essential JavaScript

frameworks. These frameworks are made with various determinations, yet they all have shared

objectives to facilitate the improvement procedure. Therefore, there are gigantic advantages of

utilizing JavaScript frameworks for current client side-web advancement.

As, frameworks are the eventual fate of web development, utilization of frameworks in

an application decreases time and cost that prompts the stock of value items for users.

Frameworks give impeccable code architecture that makes codes utilized in the application

increasingly readable and comprehensible.

Codes composed by utilizing frameworks can be reusable for example same codes can be

reused the application on numerous occasions. This aides in the improvement of complex

application quicker. Also, it lessens the game between user-side and server-side web

improvement by making a decent link, good validation backing and correspondence with

servers. The highlights utilized, for example, two-way data binding, controllers, segments and

modules give unrivalled administration support in client-side web development. (Educba, 2019)

Essentially, with the requests of JavaScript, there has been dynamic improvement of

JavaScript libraries by the enormous companies, for example, Microsoft, Instagram, Netflix,

New York Times, WhatsApp, Khan academy, Dropbox, Reddit, Sony, Google, PayPal, Nike,

General Motors and Facebook. JavaScript libraries are the piles of pre-composed codes in

JavaScript which intends to make web-driven application advancement simpler. The

fundamental purpose for the advancement of JavaScript libraries is to render the enormous

21

information into the UI segment of the web. ReactJS, JQuery, vue.js are the eminent names of

JavaScript libraries. (TechMagic, 2019).

JavaScript libraries can be sent into any of the progressed JavaScript frameworks, for

example, AngularJs, Angular 2 and Backbone.js that pursues the MVC configuration design.

JavaScript libraries give the V for instance View, in MVC configuration design.

AJAX backing is the most central thing for a smooth UI and JavaScript libraries fit into

this.

JavaScript libraries have extraordinary open-source networks which are continually

refreshing the changes.

Contrasting with the libraries of other useful programming languages, JavaScript libraries

are relatively big and can deal with a gigantic quantity of data the user interface segments.

JavaScript libraries are basic and simple to understand for the beginner developers.

In no way JavaScript frameworks give a similar degree of performance as JavaScript

Libraries.

Both the frameworks and libraries of JavaScript give a broad scope of highlights for the

plan of a strong UI. In any case, it has been truly a troublesome assignment to choose the correct

innovation. An ongoing pattern demonstrates that Angular 2 and React are the most supported

frameworks and libraries for web UI improvement. The utilization of both these innovations

includes prevalent performance, code lucidity and code reusable highlights in the application.

(Guide, 2019)

This theory consolidates an investigation and usage of features of React and the ongoing

adaptation of AngularJs: Angular 2. it was presented in 2016 with the underlying arrival of beta

form and numerous developers really relocated from its past version AngularJs. Despite the fact

that React being was at its best in 2016. Developers migrated from React to Angular 2.

22

3.3.1 Web statistics and Survey

Angular and React are the frameworks and libraries from Google and Facebook

individually, however the side-effects of both of these innovations are the aftereffect of open-

source communities. The excellence of open-source networks is that it gives each developer

with an opportunity to contribute and participate in any open-source venture. Open-source

people group of Angular and React are extremely enormous and there are gigantic heaps of

commitments from the developers in online networks like Github, Stackoverflow.

(freeCodeCamp, 2019)

Github repositories of Angular and React demonstrate the fame of these two advances

throughout the year. Straight on examination among Angular and React is demonstrated as

follows:

Figure 5 - side-to-side comparison between Angular (left) and React (right) as of 2019 (source:

freecodecamp

https://www.freecodecamp.org/news/a-comparison-between-angular-and-react-and-their-core-languages-9de52f485a76/

23

Figure 5 demonstrates that React has greater prominence and has solid open-source

communities over Angular starting at 2019. In any case, the steady arrival of Angular 2 was

later than that of React. Angular 2 has not been embraced hardly. As, it has presented the

entirely different style of improvement which isn't perfect with the past versions. Developers

need to gain proficiency with the Angular 2 syntax structure and everything without any

preparation and this may be definitive after some time. Be that as it may, taking a look at the

information from Figure 5, Angular 2 won't meet a similar level as that of React inside a similar

span of time.

Correspondingly, the Stackoverflow overview of 2019 which was come about 74,000

developers demonstrates that React is the most prominent than some other web innovation.

Angular made the 9th place in the rundown.

Figure 6 - Most Loved, Dreaded, and Wanted Web Frameworks in 2019 (source: stackoverflow)

https://insights.stackoverflow.com/survey/2019

24

As Figure 6 demonstrates that React is remaining in the principal position in the survey

aftereffects of the most loved web advances in 2019 with 74.5% out of 74,000 developers when

Angular stands with 56.6% out of aggregate.

Google search trends could be precarious for demonstrating enthusiasm for specific

subjects. As, you need to ensure that the terms are on equivalent balance. For this situation, we

saw catchphrases "React javascript" and "Angular javascript" to ensure we weren't looking at

inconsistent varieties of watchwords.

Figure 7 trend demonstrates that React is on top subsequent to outperforming Angular in

2019. While these numbers aren't indisputable, they give another point of view on React's

predictable prominence. (Tecla, 2019)

Figure 7 - Google search trends survey in 2019 (source: googletrends)

https://trends.google.com/trends/explore?cat=31&date=2013-01-01%202019-10-01&q=React,Angular

25

Designers' fulfilment with React is affirmed by the 2018 State of JS Report also. For this

situation, the diagram mirrors the developer fulfilment of the system, in light of whether they

would utilize it once more, take a look at below results:

As per Figure 8, React beats the two classes, with 64.8% saying they would utilize it once

more, contrasted with 28.8% for Vue and 23.9% for Angular. Nonetheless, there's a major hop

in fulfilment among Vue and Angular. 46.6% of developers might want to learn Vue, while

33% would not utilize Angular once more. That is a remarkable difference. (Tecla, 2019)

At long last, how about we study why those developers like these frameworks. As you

can see the most enjoyed part of each in the State of JS Report down below:

Figure 8 - Developer Framework Satisfaction in 2018 (source: Tecla)

https://2018.stateofjs.com/front-end-frameworks/react/
https://www.tecla.io/blog/2019-stats-on-top-js-frameworks-react-angular-and-vue/

26

As Figure 9 shows the most liked viewpoint for every one of them was special. So, that

gives us the point that no one framework is superior than the other. They all have remarkable

highlights and perspectives that make them stand apart among the rest. However, React has

more overall scores comparing Angular. (Tecla, 2019)

The fundamental explanation for most of the respondents inclining toward React is a

direct result of its JavaScript driven features. Respond enables the developer to compose

everything in one record and there is no requirement for discrete HTML, CSS and JavaScript.

React consolidates HTML and JavaScript into the new features called JSX.

Figure 9 – Most liked Aspects of Each Framework survey in 2018 (source: stateofjs)

https://2018.stateofjs.com/front-end-frameworks/react/

27

Numerous developers and organizations have adopted these two advances. The decision

of the developer and organizations varies by their experience and the backend advances they

pursue. The UI of well-known web applications like Netflix, Imgur, Airbnb, Yahoo Mail and

so on. are composed and kept up in React. Likely, the page modules and single page applications

like YouTube player, Instagram filters, and YouTube patterns are composed in Angular 2.

After far reaching research among Angular 2 and React, it appears that both are

attempting to keep up their matchless quality in the realm of front-end web improvement. Being

a crisp innovation, Angular 2 is on an extended publicity right now. React has figured out how

to remain as a leader beginning from its release and it appears that React will be the developer’s

selection for such a significant number of years to originate from now.

3.4 Angular

AngularJs has turned into a principal framework of decision for each front-end developer

for couple of years from 2009. The idea of AngularJs was presented in 2009 by Misko Hevery

and Adam Abrons, however, now it is authoritatively been kept up by the huge enterprise

Google. The underlying form of AngularJs version 1.0 was came out in 2012, and on August

2018, AngularJs released its most up to date form 1.7.8 and this is as yet considered as the

present stable version. The name Angular is presented from the idea of the HTML labels for

example HTML tags are Angular and Angular naming came up from the Angular brackets of

HTML. AngularJs was created to conquer the helplessness and difficulties in a web application,

for example, bug fixing, top notch UI and security. (o7planning, 2019)

After research for roughly two years, a similar group from AngularJs announced the last

form of Angular 2 in late 2016. Angular 2 is centred around giving the best server-side rendering

functionalities for immaculate UI. Angular 2 is essentially known as the names, Angular or

Angular 2. There are numerous problems overwhelmed by Angular 2 over AngularJs. A couple

of them are featured underneath. (stuff, 2019)

28

Firstly, Angular 2 gives a lot better execution over AngularJs. Also, Angular 2

applications put small weight on the virtual machines as a result of less memory utilization.

Unrivalled format reusing functionalities, cache review highlights are among the prominent

things in Angular 2 that give better execution.

Secondly, Angular 2 has progressed and amazing templating highlights. The

advancement condition and IDES are present day in Angular 2 and are superior to the runtime

of AngularJs. This causes the format authors to discover the mistakes quick and can spare time

in the layout composing process.

Thirdly, Angular 2 is progressively worried for the future works in examination with

AngularJs, since web advances are increasingly committed on live information catching with

the web works, for example, web crawling. Angular 2 is engaged to satisfy the requirements

for smooth activity of server-side rendering to the UI.

Lastly, Angular 2 has feature support for web stage portable applications, such as mobile

applications. The local mobile user interface framework of the Angular 2 makes the completely

practical local portable user interface in iOS and android platforms. (colorlib, 2019)

3.4.1 Typescript on Angular 2

Typescript is an open-source programming language created by Microsoft. It's scripting

language written in core JavaScript, and typescript much like present day item arranged

programming languages, for example, C#, C++ or Java. Typescript is utilized to build up the

web-based JavaScript application on client-side or server side. (C#Corner, 2019)

Despite, Angular 2 applications could be consisting with ES5, Es6 and dart, Typescript

gives a wide scope of highlights in making an enormous Angular 2 application. The primary

purpose for utilizing Typescript on Angular 2 applications is that it gives extraordinary tooling

features. Exploring, code refactoring, auto finishing, static composing and affluent syntax

generator are among the eminent highlights of Typescript in creating Angular 2 applications.

Figure 10 demonstrates the connection between Typescript with the ES5, ES6 and ES7.

29

For each situation Figure 10 TypeScript generates code that carries on the equivalent in

ES5, ES6 and ES7. There isn't distinction in expressivity of TypeScript and ES6. The thing that

matters is that TypeScript compiler encourages you with static analysis of your code. Apart

from that, whatever you can program in ES6, you will be able to program in TypeScript and the

other way around. (stackoverflow, 2019)

3.4.2 Directive and components

Essentially, there are three sorts of order in Angular 2, attributes, structural and

component directives. Component orders manages the templating part to make the UI, while

structural directives change the record article models format by including and disengaging the

DOM object. So also, attributes assume a job in changing the visual appearances of segments

and components.

A case of a code property and its application into the Angular 2 directive is demonstrated as

follows shown in Figure 11.

Figure 10 - Relationship of Typescript with ES5, ES6, and ES7 (source: infoQ)

https://www.infoq.com/presentations/angular-typescript/

30

Here, sample attribute is written in the directive code demonstrated as follows Figure 12.

The model directives appeared in listings 1-2 is enhanced with the import explanation

which underscores the Angular 2 core library that has three explicit symbols: directive,

ElementRef (feature that allows the security assault in DOM item) and Input. The directive

gives functionalities to the @Directive decorator. Thus, ElementRef goes about as a constructor

for code access in DOM, and input is in charge of information binding. (Angular, 2019)

3.4.3 Modules

The route module in Angular 2 is a class that depicts how various pieces of the application

are overseen all the while in Angular 2. Each Angular 2 application should be equipped with at

least one Angular 2 module that is known as the route module. Naming of the Angular 2 course

module could be everything besides official Angular 2 documentation has recommended the

name "AppModule". Fundamentally, route modules are utilized to make a straightforward

application however numerous applications utilize the element modules. Each Angular 2

module, regardless of whether it is route or feature, is a class with a decorator called

@NgModule, and it’s demonstrated as follows Figure 13.

Figure 11 - Listing 1, Angular 2 code attribute. (source: own)

Figure 12 - Listing 2, Angular 2 Directive application. (source: own)

31

Overhead code in listing 3 diagrams the root module with its properties. Imports,

providers, declarations, exports and bootstrap are the significant properties of a root module.

(Angular, 2019)

3.4.4 Services

A Service in an Angular 2 application is additionally a class that doesn't own anything to

do with itself. However, Angular 2 part includes a few things from services. Services in Angular

2 are injection with dependency injection that alludes to the highlights such logging,

information incorporation, application setup and so on. Listing 2 represents the model code for

Angular 2 services, see Figure 14. (v2, 2019)

Figure 13 - Listing 3, Angular 2 route module (source: own)

Figure 14 - Listing 4, login services to the web browser in Angular 2. (source: own)

32

3.4.5 Templates and Forms

Angular 2 templates are much like the HTML documents, however, they really a type of

HTML that aides Angular 2 when rendering the segment to its user interface segment. Angular

2 formats utilizes all the HTML based syntaxes uses and components, for example, <h1> <p>

 and so forth, yet in the event that offers some exceptional highlights, for example,

interpolation and expression. (Angular, 2019)

3.4.6 Dependency Injection

Dependency in basic terms is really an administrations and reliance injection that is a

conventional method for giving a support of the Angular 2 segment, so as to make another

occasion of class. A dependency injection is ended up with Angular 2 and they are utilized

generally.

Figure 15 represents the dependency Injection segments in Angular 2. A dependency

injection in Angular 2 essentially gathers three specific things: an injector, provider and

dependency.

Figure 15 - Components in Dependency Injection (source: github)

https://pascalprecht.github.io/slides/di-in-angular-2/#/48

33

Those are: An injector: Injector uncovers the APIs so as to make dependency cases, a

supplier: Provider gets aid from the injector to make reliance examples, a dependency: An item

is made with the conditions. (v2, 2019)

3.4.7 Data Binding and Meta Data

Data binding is the procedure of synchronization of information between various parts.

In Angular 2 application, data binding does the coordination among the part and the formats.

Angular 2 applications utilize 2-way data binding that updates the information in the view and

controller of the application at the same time.

Favourable circumstances of data binding in Angular 2 application are featured beneath:

• Data binding has made the client sources of info quick. Prior, client's responses

were pushed into HTML.

• Data binding gives the productivity in an Angular 2 application for client input as

it fills in as an imparting bridge among layouts and segments.

Nevertheless, 2-way data binding systems makes couple vulnerability in web

applications, those are stated as follows:

• The adjustment in value in data binding alters the occasion.

• At the point when a few directives are utilized many times, there is the opportunity

of break in the applied data binding.

Likewise, another best significant basic design tool utilized in the Angular 2 application

is meta-data. Meta-data is in charge of the preparing class into Angular 2 applications. A class

will stay a class in Angular 2 application and it never acts as part. Meta-data is expected to

process the class into parts in Angular 2 application.

34

Points of interest of utilizing Meta data in Angular 2 application is featured underneath:

• Meta-data gives the reasonable dependency injection style in Angular 2

application.

• Make-data causes developers to feel the applications as a type of segment tree and

Angular 2 style.

• Meta data in Angular 2 is future arranged as it is by all accounts concentrated on

upgrading of frameworks. (v2, 2019)

Similarly, Angular 2 Meta-data likewise offers couple disadvantages:

• A manual connecting of the parts can lead the clients denied of getting out

majority of the user experience.

3.5 React

The story of React (ReactJS, React.js) was created by Jordan Walke, who was a software

engineer at Facebook. At that point in 2013 React was open-sourced and the last release was

made in 2019 version 16.10. React centres around making the best interactive UIs in contrast

with its challengers AngularJs, and Angular 2. The greatest changes came with React over other

existing frameworks and libraries are the utilization of the virtual DOM. Truly, React isn't

simply viewed as an ordinary front end library, yet it has turned into a worldview in the realm

of front-end web development. (o7planning, 2019)

React isn’t similar like the huge frameworks, for example Angular 2. React is established

upon the principles of UNIX, such as, consolidating the basic things to get the most out of it.

React enables developers to write the definitive JavaScript segments, which are very

progressively better than the traditional way wrapping up the HTML code layouts into

JavaScript.

Essentially, MVC configuration examples are viewed as the most basic structure design

for UI configurations in front-end web advancement. MVC patterns based on three parts: the

model, view and controller as you can see in Figure 3. Most of the front-end frameworks centre

35

around these three sections. In any case, React just spotlights on the DOM, since it is the

acceptable portrayal of the View. Truly, React gives the view part "V" in the MVC

configuration design.

In addition, React is completely an alternate idea in the web application improvement.

React has adopted one of kind strategies in taking care of the issues looked by huge scale UIs.

This is in actuality made to comprehend the enormous scale UI issues of Facebook and

Instagram. Alongside taking care of the issues in UI, React accompanied making the

development procedure simpler for developers with changed aptitude levels. (Sengupta, et al.,

2016)

Principal points of utilizing React are featured beneath:

• Parsing HTML into JavaScript is a standard, although React is JavaScript driven

for example, it enables the developer to write JavaScript codes to produce HTML. This

component is very exceptional and loved by larger part of the web developers. As, JavaScript

innovations are running everywhere throughout the web applications from front-end to back-

end. In this way, modifying with the React will be a smart thought.

• Though, React applications are created with the settlement of the components.

React application could move up the style, view and state in one part, which is clearly superior

to the moving up with segments and directives.

• Bugs fixing in React is quick in contrast with the enormous frameworks like

Angular 2.

• Despite the fact that it requires some time to build up the React application,

however later it will spare much additional time with regards to upkeep.

• React is created with the way of thinking, adapt once, write anyplace. In terms of

React, it doesn’t matter about the technology stacks. Because, React segments can be rendered

utilizing node.js into the server. Additionally, it enables the developer to include new highlights

in it without the utilization of any prior existing codes.

We will discuss more about React features starting from section 3.5.1.

36

3.5.1 JSX

JSX is a HTML-like language structure expansion features presented by React. JSX is

utilized in the React to portray the UI segment of the application. JSX may look something like

the mark-up language like HTML or XML yet it is completely JavaScript driven and completely

useful highlights used to make React application. Be that as it may, it isn't obligatory to utilize

JXS in any React application, however the application outfitted with JSX gives superior level

of execution, quick blunder dealing with and simple deployment.

In another words, to benefit fully from React, code and HTML are written in a new

language called Java Serialization to XML (JSX). The JSX is a JavaScript syntax extension

that looks similar to XML. It is used to build UI components in ReactJS. It’s very likely to

HTML with some subtle differences. JSX extends JavaScript in such a way that it can be easily

build ReactJS components with the same understanding as building HTML pages. It’s

commonly mixed with JavaScript code because ReactJS thinks about UI in a different way. In

other meaning developer can embed HTML and CSS within the JavaScript code. This allows

for rapid development of a single feature of a single component in a single file. The JSX code

is “compiled” into normal JavaScript to enhance performance while running in the browser.

(Craig Klementowski, 2017)

JXS contains precisely the comparable components as HTML, for example, <h1>, <p>,

 and so forth, yet these elements should be settled inside one <div> component in JXS,

which later should be put into a component. Actually, all the JXS components have to be

included within the React segment pursued by rendering in record Object Model or exporting

it into another part. (React.js.org, 2019)

3.5.2 Components of React, Props and State

React components are the structure obstruct in React application advancement,

particularly when looking at refreshing the UI. When all is said in done, React part is viewed

as like as the JavaScript functions. React grants to make the parts with a way called

React.createClass ().

37

"Props" are the communication channel highlights utilized in React segment. It goes about

as an extension between the parent and child parts see Figure 16.

Also, the "State" is known as the core of the React part. The "State" is main element in

React part that makes the segment progressively intuitive and dynamic. The "State" enables the

part to restore an identical output for the provided information.

Figure 16 - Listing 5, Representation of components, state and props in React. (source: own)

38

3.5.3 Virtual DOM

DOM manipulation in modern and dynamic web is viewed as a groundwork highlight.

Be that as it may, it is quite slow in correlation with other JavaScript tasks. The purpose for the

sluggishness of the DOM control is a direct result of its customary updates created by the

cutting-edge JavaScript frameworks. JavaScript frameworks should update just specific item in

DOM, yet things are not occurring in that manner. A framework really reconstructs and

afterward updating the whole item in DOM regardless of whether the updates is required for

just specific item. Along these lines of updating from JavaScript structures are letting down the

execution of each web applications. Thinking about this specific issue in the DOM control,

React presented the idea of Virtual DOM.

Virtual DOM is totally founded on the DOM object and designed as the lightweight

duplicate of DOM. The DOM items are mindful to show the data into the UI part of the

application, however virtual DOM Object has nothing to do with the UI, yet it provides unique

highlights of modifying and updating the items in the back of user interface. (bitsofco.de, 2019)

While browser's DOM is known more slower than JavaScript, React utilizes its very own

Virtual DOM, to play out all the interface handling activities and at exactly that point applies

the progressions to the browser DOM, and it's demonstrated as follows Figure 17.

Figure 17 - Virtual DOM workflow visual representations (source: dev.afas.nl)

https://dev.afas.nl/blog-dev/virtual-dom-how-inefficiency-can-lead-to-better-performance

39

At the time rendering a JSX component, each virtual DOM receives updated. This doesn't

look intriguing, yet with regards to the effectiveness and performance, virtual DOM is amazing

comparing to the ordinary DOM. (bitsofco.de, 2019)

3.5.4 Templates and Forms

React provides a straightforward working layout that doesn't need a runtime situation.

Syntaxes in React are understandable as HTML, these are supported by whole programs and

IDEs (Integrated development environment). while examining the codes in a program, the

assessment in HTML and the coding doesn't look very different as a result of the decisive

coding. The formats created with React are steady in every one of the stages, for example,

Typescript, ES6, and CommonsJs.

React templates perform contrastingly while contrasting and the Angular 2 layouts. In the

first place, format containing the *.rt document should be aggregated into the JavaScript record.

The record consequently incorporated returns a capacity and later provides a Virtual DOM

dependent on the first DOM and client segments.

Essentially, React functions as an amazing UI library, since it centres around the view

part of the application which is a UI segment. A view gets refreshed immediately, when there

is an adjustment in the state. This method of updating the view in React settles on it a decent

decision to conquer the structure approval blunder, because it effectively illustrates the errors

in the structure. Be that as it may, it is quite difficult to state that structures made in React are

completely secured. Though extra safety effort should be applied to the structure, in light of the

fact that a programmer or a hacker could without much of a stretch bypass the React codes by

basically permitting the regular variables directly into the server. (React.js.org, 2019)

40

3.5.5 Flux Architecture

Flux is an architecture utilized in React application. It isn't like the customary libraries or

frameworks; however, it gives a well round of highlights to the unidirectional data flow in the

React application. Besides, Facebook has supported a library named dispatcher for the Flux

architecture. Prototypical Flux design contains the dispatcher library, so as to facilitate the event

gaze by building the event framework alongside the assistance of Node 'Js eventEmmitter

module. (Zone, 2019)

Fundamentally, Flux design is comprised of four diverse individual segments: Actions,

Dispatcher, Store, and Component (Views).

Figure 18 outlines the data stream in the middle of the individual parts of the Flux system.

The Action creators are helper methods, collected into a library, that creates an action from

method parameters, assign it a type and provide it to the Dispatcher as it supports to pass data

into the Dispatcher effectively. So, every action is sent to all stores via the callbacks the stores

register with the dispatcher. After stores update themselves in response to an action, they emit

a change event. Special views called controlled-views, listen for change events, retrieve the

new data from the stores and provide the new data to the entire tree of their child views. (Zone,

2019)

Figure 18 - Unidirectional Data flow in Flux Architecture (github)

https://github.com/facebook/flux

41

Moreover, Dispatcher gets the actions and then it advances to the callback function. The

information consequently will be sent, thus it stored in a holder for the application "Logic" and

"State". At long last, the Data State from the

"Store" will at that point passed it to the user interface segment over the React "Props"

strategy.

The data stream in the Flux design is unidirectional and expressed key to the pattern.

There three unique parts, State, Dispatcher and Views, are absolute with well-characterized

Output and Input. Be that as it may, Action part in Flux are expressed as an object with fresh

data and recognizing property type.

The structure created in the Flux design provides an unmistakable thought regarding its

motivation for a particular progression of data in the application. This provides a feeling that it

depends on the reactive useful programming. In reactive functional programming, data streams

just one way, for example application state is just sustained in the store. (Craig Klementowski,

2017)

3.5.6 Data binding in React

Reacts provides a one-way data binding, however it likewise bolsters the bidirectional

data stream by the assistance of some other plugins. The one-way data stream gives the ground

to the transmission of information from parent to child. The "Props" properties in React are in

charge to transfer data from parent to child. The adjustment in "Props" modifies a React part

which prompts the adjustment in Component tree and its properties. (React.js.org, 2019)

42

4 Practical Part

4.1 Real-World comparison of front-end frameworks with

benchmarks

In the course of the most recent few years, we have seen a blast of front-end frameworks.

Every last one of them is more than fit for making extraordinary web applications. There are

many thoughts and master discussions on this topic, and everybody has their decision. Be that

as it may, in this thesis, Author will adopt progressively functional strategy to look at these two

frameworks by making a straightforward application utilizing every one of them.

Project portrayal. Application makes a programming interface call, to obtain the movie

having (Crazy, Stupid) in their title, in 2018, then shows them in table format. The following

are the connections to the application facilitated on GitHub.

Angular: Link at (Abhay07, 2019)

React: Link at (Abhay07, 2019)

Comparison metrices

I will compare these applications on beneath criteria’s using (Lighthouse Audit and

GTmetrix)

• Performance - To what extent does this App take to display content and will be

usable? Thus, performance of a site is dictated by numerous components, like Author is going

to illustrate a couple of them on my "For what reason is my page slow?" page. PageSpeed and

YSlow centre around the front-end execution of your site, along with components that are to a

great extent in your control, similar to pictures and main website architecture. PageSpeed and

YSlow scores reveal to you that how good your front-end is improved for loading time.

(GTmetrix, 2019)

• JS bundle size - JavaScript pack size is the main asset that contrasts for the

application in every framework. Pictures, CSS, and different parts are same.

43

• First Contentful paint - First Contentful Paint, also known as FCP, evaluates the

time from route to the time, while the program renders the main piece of substance from the

DOM, and for more information on FCP links at (GTmetrix, 2019) and (Developers, 2019)

• Line of codes - What number of lines of code did the creator or developer have to

make the movie website, while both sites have identical contend and same components. The

main folder, I will measure src/ in each application. Here are those folders for Angular 2

(Abhay07, 2019) and for React (Abhay07, 2019)

4.1.1 Performance

Front-end is characterized as your page and every one of its parts, as rendered through

browser. It covers those components: HTML, CSS, JavaScript, Media (picture, video and so

on. Those are the components which browser utilizes to develop and render the page. GTmetrix

investigates your webpage to check whether your site's front-end is following prescribed

procedures, so you get PageSpeed and YSlow evaluations dependent on your page's equivalent

to rule sets. The best grade implies that your page is advanced for a program to render as quick

as could be allowed, see results in Figure 19.

Figure 19 - Overall performance compare report (source: Gmetrix)

https://gtmetrix.com/compare/UF9krrow/gWIv2can

44

4.1.2 JS bundle size

Thus, the name proposes, this shows transferred bundle size of a record or file. The

complete consolidated record size of every one of your requests gather up the Total Page Size.

Smaller the sum is, the easier your page is to download and along these it's quicker. As we can

see in Figure 20 Angular's js pack size is slightly higher comparing to React, 357KB to 337KB

4.1.3 First Contentful Paint

Author tried to compare both frameworks with Lighthouse audit which comes with

google chrome using my personal laptop MacBook Pro 13-inch, 2018.

Audit settings:

• Device – Mobile

• CPU and Network throttling – Simulated Fast 3G, 4x CPU Slowdown

• Clear storage – checked

The performance grade from the below measurements:

• First Contentful Paint

• First Meaningful Paint

• Speed Index

• First CPU Idle

• Time to Interactive

• Max Potential First Input Delay or Estimated Input Latency

Figure 20 - JS bundle size (source: Gmetrix)

https://gtmetrix.com/compare/UF9krrow/gWIv2can

45

Figure 21 - Lighthouse audit (source: own)

As per Figure 21 React performed superior with 1.1 s as First Contentful Paint than

Angular’s 1.6 s

More details regarding Lighthouse scoring guide check at (Developers, 2019) and (Web,

2019)

4.1.4 Line of codes

That determines, how concise provided library/framework/language is. What number of

lines of code does developer have to implement nearly the equivalent application? After adding

up all the lines of code in src/ folder, Angular came with 502, while React had only 350 to

create almost the same movie application.

46

4.2 Stefan Krause’s benchmark tool

Every one of the benchmarks shown beneath originated from Stefan Krause's practical

examination. Author has chosen to utilize these with the goal for everybody to have an online

reference for discussion. Thus, it will be available in GitHub. Results were last updated on

27.09.2019, and all the benchmarks were performed on a Razer Blade 15 Advanced, with the

following specifications: (i7-8750H, 32 GB RAM, Ubuntu 19.04 (Linux 5.0.0-29,

mitigations=off), Chrome 77.0.3865.90 (64-bit)) (GitHub, 2019)

4.2.1 Head-to-head performance comparison

Since we already have a complete overview of both frameworks. They will be analysed

by those three factors:

• DOM manipulation: it shows us to figure out which frameworks run better for

profoundly dynamic apps, which demands a ton of collaboration with the DOM.

• Start-up time: it will provide us a thought of which frameworks are progressively

appropriate when you need a quicker introductory load time, valuable for apps which demands

higher speed.

• Memory allocation: it uncovers which frameworks superior, in terms of

operation with the memory. For instance, performing mass activities, for example,

writing/reading a large number of files from a database.

4.2.2 Performing the benchmark, Start-up time and Memory allocation

Each color you will find in a picture Figure 22 has a particular importance. Such as, A

greener color implies that given framework runs superior to another.

When it gets yellowing implies shown framework runs worse. Every one of the tests are

demonstrated between the keyed versions of the frameworks, and all units are shown in

milliseconds divided by 95% confidence interval (Slowdown = Duration / Fastest).

47

Figure 22 - Stefan Krause’s benchmark (source: github)

https://github.com/krausest/js-framework-benchmark

48

5 Results and Discussion

A complete study of those 2 frameworks React and Angular 2 were made through the

thesis thinking about various methodologies. Two significant steps were used to discover the

objectives of the study. Right of the bat, author made complete literature review of both Angular

2 and React, including advantages and disadvantages of the frameworks. Furthermore, to

develop a comparison test which evaluates the efficiency of React in development of UI.

The two stages offered strong highlights and viewpoint to the user interface application.

Nonetheless, the objective of the investigation was to make various approaches. A specific

arrangement of comparable rules was presented, and findings were talked about to do

productive comparison among the frameworks.

5.1 Which of the frameworks proposed better user interface?

It's a significant question which can be asked each time concerning UI advancements.

Thus, the responses to the above question is entirely broken down by the result of this

proposition. Six significant central points are put into comparison between these two

frameworks.

5.1.1 Performance

React shows better results in terms of performance in comparison with Angular 2. When

refreshing and synchronizing the segments in the apps, React utilized virtual DOM in the

application, though when the application design was complex and that brought about the better

outcome. While with Angular 2 user interface the standard DOM was included for the

refreshing all the DOM parts, not refreshing the essential one, which came about the slowness

in the application.

49

5.1.2 Templating

While looking at the templating among 2 frameworks, Angular 2 proposed predominance,

as the user interface development doesn't really require the JavaScript driven templating style.

Templating is progressively concerned about user interface parts and even a straightforward

mark-up provides modesty in templating than the complex JSX. Angular 2 utilizes the HTML

mark-up in a basic way, that is obviously superior than composing the monotonous JSX codes.

While building up the user interface, that was discovered that the templating structure in

Angular 2 was more straightforward than ReactJS.

5.1.3 Structuring data model

At the point while it involves the information modelling comparison between Angular 2

and React, the two advancements provide similarity. Thus, performance of Angular 2 is delicate

when it manages (Scopes) and it recommends utilizing huge models won't be allowed. This

outcomes in an increasingly testable and straightforward codes on one hand, and then again

powers to separate the typical techniques for revamping the back-ups. Be that as it may, React

offers freedom of decision in organizing the information model without scaling down the

performance. Nonetheless, it's up to totally on the capabilities of designers.

5.1.4 Code reshuffling

When looking at the code reshuffling between ReactJS and Angular 2, there are a lot of

instant libraries accessible for Angular 2. Nonetheless, React gives the adaptability to reshuffle

the code in its own specific manner.

5.1.5 Package management

React offers higher adaptability in package management comparing to Angular 2. React

utilizes Require.js and Webpack to improve bundle management. In any case, Angular 2 doesn't

enable the codes to run and deploy much flexibility. Thus, this outcomes in weak packaging of

codes.

50

5.1.6 Learnability

In terms of learnability in React is increasingly better comparing Angular 2. However,

learning Angular 2 is intriguing toward the start yet the later stage becomes disappointing as a

result of its complex lifecycle. Then again, React is special due to the JavaScript driven feature

and though a beginner engineer can ace it up to seven days. The straightforward eco-system

and solid lifecycle are the extensive highlights, which put React ideal for the developers. Easier

learning curve stands for there will constantly a superior possibility of concentrating on the user

experience by beating the current issues.

51

6 Conclusion

The main objective of thesis was to evaluate the efficiency of Javascript frameworks, and

summarizing every one of the methodologies applied, the study was at long last finished up as

React being progressively better innovation for the advancement of a UI.

In this thesis Author only compared 2 identical simple applications in order to evaluate

the efficiency of both frameworks, thus the main idea was to see the real difference how they

perform.

The innovations for the improvement of UIs develop quickly like any other relatable part

in the web development. The manner in which advances are developing in the front-end

structures has been changing the logic and strategies utilized in the improvement procedure.

The front-end and UI were intended for the creators. Nevertheless, the utilization of frameworks

and libraries in the front-end has made dynamism in the web.

The final proposal of this examination is that it recommends designers to experience a

pragmatic way to develop an indistinguishable UI application in the two innovations, and

mainly results of this thesis for those developers who are trying to find out which frameworks

more preferable in order to build and application mostly focused on user interface.

52

7 References

8 Bibliography

Facebook/Flux. [Online] [Cited: 10 April 2018.] https://facebook.github.io/flux/docs/in-

depth-overview.html#content.

Abhay07. 2019. Github. [Online] 2019.

https://github.com/Abhay07/movieAppReact/tree/master/src.

—. 2019. Github. [Online] 2019.

https://github.com/Abhay07/movieAppAngular/tree/master/src.

—. 2019. Movies of 2018 (Angular). [Online] 2019.

https://abhay07.github.io/movieAppAngular/.

—. 2019. Movies of 2018 (React). [Online] 2019.

https://abhay07.github.io/movieAppReact/.

Angular. 2019. Angular. [Online] 2019.

https://ngdocsdev.firebaseapp.com/docs/ts/latest/guide/ngmodule.html.

—. 2019. Angular. [Online] 2019. https://angular.io/api/core/Component.

bitsofco.de. 2019. bitsofco.de. bitsofco.de. [Online] 2019. https://bitsofco.de/understanding-

the-virtual-dom/.

C#Corner. 2019. C#Corner. C#Corner. [Online] 2019. https://www.c-

sharpcorner.com/article/what-is-typescript/.

colorlib. 2019. colorlib. colorlib. [Online] 2019. https://colorlib.com/wp/angular-

components/.

Craig Klementowski, Tiffany Reid, Norbert Antunes, Jaiden Choong, Liqiao Huang,

Ross Arnold. 2017. TACTICAL APPLICATIONS (TACAPPS) JAVASCRIPT

FRAMEWORK INVESTIGATION. [Online] January 2017. [Cited: 10 April 2018.]

http://www.bing.com/cr?IG=0F90B90087CE4E3B87BAF6820D0AC46D&CID=026BFF8

79F64678F27B8F4499ECB66E1&rd=1&h=NStbcaWkplozpb8nWbm1_7XzsnZGmYxoA

yhfp9aKXm0&v=1&r=http%3a%2f%2fwww.dtic.mil%2fdtic%2ftr%2ffulltext%2fu2%2f1

025789.pdf&p=DevEx,5066.1.

53

Crockford, Douglas. 2019. JavaScript: The Good Parts. [Online] 2019.

https://amontalenti.com/2019/08/10/javascript-the-modern-parts. 9780596517748.

Dev. 2019. Dev. Dev. [Online] 2019. [Cited: 10 4, 2019.] https://dev.to/javinpaul/the-2019-

web-development-frontend-backend-roadmap-4le2.

Developers, Tools for Web. 2019. First Contentful Paint. Tools for Web Developers.

[Online] 2019. https://developers.google.com/web/tools/lighthouse/audits/first-contentful-

paint.

—. 2019. Lighthouse Scoring Guide. Tools for Web Developers. [Online] 2019.

https://developers.google.com/web/tools/lighthouse/v3/scoring.

Educba. 2019. Educba. Educba. [Online] 2019. https://www.educba.com/angular-vs-react/.

Flanagan, David. 2006. JavaScript: the definitive guide. Sepastopol, CA : O'Reilly, 2006.

ISBN 978-0-596-10199-2.

freeCodeCamp. 2019. freeCodeCamp. [Online] 2019.

https://www.freecodecamp.org/news/a-comparison-between-angular-and-react-and-their-

core-languages-9de52f485a76/.

GeeksforGeeks. 2019. GeeksforGeeks. [Online] 2019.

https://www.geeksforgeeks.org/mvc-design-pattern/.

GitHub. 2019. GitHub. GitHub. [Online] 10 16, 2019. [Cited: 10 16, 2019.]

https://krausest.github.io/js-framework-benchmark/current.html.

github.com/facebook/flux. https://github.com/facebook/flux. [Online] [Cited: April 11,

2018.] https://github.com/facebook/flux.

GTmetrix. 2019. GTmetrix. [Online] 2019. https://gtmetrix.com/blog/waterfall-chart-

updates-sorting-filtering-by-type-keyword-and-visual-updates/.

—. 2019. GTmetrix. GTmetrix. [Online] 10 10, 2019. [Cited: 10 10, 2019.]

https://gtmetrix.com/why-is-my-page-slow.html.

Guide, Digital. 2019. Digital Guide. Digital Guide. [Online] 2019.

https://www.ionos.com/digitalguide/websites/web-development/popular-javascript-

frameworks-and-libraries/.

M, Vipul A. and Sonpatki, Prathamesh. 2016. ReactJS by Example - Building Modern

Web Applications with React. Birmingham, UK : Packt Publishing, 2016. ISBN 978-1-

78528-964-4.

54

o7planning. 2019. o7planning. o7planning. [Online] 2019.

https://o7planning.org/en/12077/introducing-angularjs-and-angular.

Pieces, Bits and. Bits and Pieces. Bits and Pieces. [Online] [Cited: 10 10, 2019.]

https://blog.bitsrc.io/benchmarking-angular-react-and-vue-for-small-web-applications-

e3cbd62d6565.

React.js.org. 2019. React.js.org. [Online] 2019. https://reactjs.org/docs/getting-

started.html.

report, State of JS. State of JS report. [Online] https://2018.stateofjs.com/front-end-

frameworks/react/.

Sambra. 2019. Sambra. [Online] 2019. https://sombrainc.com/web-application-

architecture.

Sengupta, Doel, Singhal, Manu and Corvalan, Danillo. 2016. Getting Started with React.

Livery Place, 35 Livery Street, B3 2PB, UK : Packt Publishing, 2016. ISBN 978-1-78355-

057-9.

SitePoint. The Basics of the Shadow DOM. [Online] [Cited: 11 April 2018.]

https://www.sitepoint.com/the-basics-of-the-shadow-dom/.

stackoverflow. 2019. stackoverflow. [Online] 2019.

https://stackoverflow.com/questions/35138080/relationship-between-typescript-and-es6.

stuff, net. 2019. net stuff. [Online] 2019. http://www.dotnet-stuff.com/tutorials/angular-

js/introduction-of-angularjs.

TechMagic. 2019. TechMagic. TechMagic. [Online] 2019.

https://blog.techmagic.co/angular-2-vs-react-what-to-chose-in-2017/.

Tecla. 2019. Tecla. [Online] 2019. https://www.tecla.io/blog/2019-stats-on-top-js-

frameworks-react-angular-and-vue/.

v2, Angular. 2019. Angular v2. [Online] 2019.

https://v2.angular.io/docs/ts/latest/cookbook/dependency-injection.html.

W3Schools. https://www.w3schools.com/. [Online] [Cited: 11 April 2018.]

https://www.w3schools.com/code/tryit.asp?filename=FQ9T4MH309XV.

Web. 2019. Lighthouse. Web. [Online] 2019.

https://developers.google.com/web/tools/lighthouse/#devtools.

55

WEBCOMPONENTS.ORG. https://www.webcomponents.org/.

WEBCOMPONENTS.ORG. [Online] [Cited: 11 April 2018.]

https://www.webcomponents.org/.

WebMaster. 2019. Client-Side JavaScript Examples. [Online] 2019.

https://docstore.mik.ua/orelly/web/webnut/ch21_02.html.

Zone, Web Dev. 2019. DZone. DZone. [Online] 2019. https://dzone.com/articles/a-detailed-

study-of-flux-the-reactjs-application-a.

	1 Introduction
	2 Objectives and Methodology
	2.1 Objectives
	2.2 Methodology

	3 Literature Review
	3.1 Web Technologies Architecture
	3.1.1 Background
	3.1.2 Front-end web technologies
	3.1.3 Model-View-Control pattern
	1.1.3 Single-page application

	3.2 JavaScript
	3.2.1 Client-Side JavaScript

	3.3 JavaScript UI Frameworks and Libraries
	3.3.1 Web statistics and Survey

	3.4 Angular
	3.4.1 Typescript on Angular 2
	3.4.2 Directive and components
	3.4.3 Modules
	3.4.4 Services
	3.4.5 Templates and Forms
	3.4.6 Dependency Injection
	3.4.7 Data Binding and Meta Data

	3.5 React
	3.5.1 JSX
	3.5.2 Components of React, Props and State
	3.5.3 Virtual DOM
	3.5.4 Templates and Forms
	3.5.5 Flux Architecture
	3.5.6 Data binding in React

	4 Practical Part
	4.1 Real-World comparison of front-end frameworks with benchmarks
	4.1.1 Performance
	4.1.2 JS bundle size
	4.1.3 First Contentful Paint
	4.1.4 Line of codes

	4.2 Stefan Krause’s benchmark tool
	4.2.1 Head-to-head performance comparison
	4.2.2 Performing the benchmark, Start-up time and Memory allocation

	5 Results and Discussion
	5.1 Which of the frameworks proposed better user interface?
	5.1.1 Performance
	5.1.2 Templating
	5.1.3 Structuring data model
	5.1.4 Code reshuffling
	5.1.5 Package management
	5.1.6 Learnability

	6 Conclusion
	7 References
	8 Bibliography

