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ANNOTATION 

 

Cities attract individuals for a variety of reasons, including job possibilities and 

economic growth potential. As a result, the complex spatial dynamics of urban settings 

provide novel obstacles to efficient urban planning. However, typical two-dimensional 

representations frequently fail to capture the intricacies of three-dimensional systems, 

making informed decision-making difficult. As Czech cities grow and face new issues, 

there is an increasing demand for creative 3D modelling approaches. Esri CityEngine 

provides a viable answer by allowing the production of reusable CGA scripts while also 

improving the quality and speed of 3D modelling procedures. The application of this 

technology in urban contexts has the potential to transform urban planning by offering  

a better knowledge of urban morphology. 

The research illustrates the feasibility of using Esri CityEngine with ArcGIS Pro to 

create a systematic, user-friendly pipeline for creating LOD2 (Level of Detail 2) models 

with minimum GIS skills. The pipeline automates the computation of factors such as eave 

height, ridge height, and certain roof kinds, resulting in a feature layer that can be used 

in CityEngine to generate automated LOD2 models. 

The findings demonstrate the successful construction of LOD2 models for specific 

research areas while also supporting a simplified processing pipeline that conceals 

workflow difficulties from users. This created pipeline provides thorough advice to users, 

from initial data gathering to final accuracy evaluation. The created CGA script now 

supports simulating 15 of the most popular roof shapes in Czechia. 

This study marks a huge step forward in urban modelling and analysis, providing 

a rigorous and scalable framework for creating LOD2 structures in Olomouc and beyond. 

In addition to addressing current difficulties in building generation, this study provides 

the framework for future improvements in the area using sophisticated GIS technology 

and computational tools. 
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INTRODUCTION 

People are drawn to cities for a variety of reasons, including the promise of jobs and 

prosperity (National Geographic, n.d.). According to the recent report by the World Bank 

(2023), the urban population is projected to reach 7 out of 10 people by 2050, with over 

80% of global GDP generated in cities, emphasising the potential for sustainable growth 

through effective urban management, innovation, and increased productivity. According 

to a report published by UNDESA (2019), the urban population is predicted to go beyond 

the 6 billion mark, while the rural population is predicted to decrease slightly.  

Urbanisation's rapid pace and scope, however, present difficulties in meeting 

the growing demand for jobs, basic services, affordable housing, and a workable 

infrastructure, especially for the nearly one billion urban poor who reside in informal 

settlements. As a result, Cities' physical layout and patterns of land usage can be 

permanent for many generations, resulting in unsustainable sprawl toward suburbs and 

exurbs (Liu and Yang, 2015; Al-Bilbisi, 2019). According to the findings of Rahaman, 

Kalam and Al-Mamun (2023), uncontrolled development in Dhaka City has resulted in 

a variety of public health problems, including air pollution, insufficient sanitation and 

water supplies, ineffective waste disposal, overpopulation, slums, and unsuitable housing 

conditions.  

In terms of the Czech Republic, suburbanisation is impacted by several variables, 

such as changing housing and lifestyle choices, better transportation networks, and 

economic growth. The growth of residential neighbourhoods and infrastructure 

construction outside of large cities are clear indicators of the trend. There has been 

a noticeable increase in migration to Prague East, Prague West, Brno Countryside, and 

Pilsen's northern and southern districts (Šašek, Hlaváček and Holub, 2019). This has led 

to an increasing trend of suburbanisation. As a result, the capital city has seen the 

greatest proportional population loss from migration. Šašek, Hlaváček and Holub (2019) 

further highlighted that in the Czech Republic, suburbanisation has a considerable 

influence on dwelling construction; it changes the social environment and outskirts of big 

cities and causes uneven development in towns with selective growth of certain social and 

demographic categories. 

With its diverse spatial dynamics, urban settings bring unique problems and 

possibilities for efficient urban planning. Traditional two-dimensional representations 

frequently fail to capture the complexities of three-dimensional systems, reducing the 

accuracy needed for informed decision-making (Franz, Scholz and Hinz, 2015). As the 

Czech cities continue to grow and confront new difficulties, there is a rising demand for 

innovative 3D modelling techniques. Esri CityEngine provides a potential solution for 

creating reusable CGA scripts, as well as a tool for improving the quality and efficiency of 

3D modelling procedures. The use of this technology in cities has the potential to 

transform urban planning techniques by providing a more thorough grasp of the city's 

urban form. 

This research intends to investigate the background of 3D building modelling in urban 

planning, highlighting the unique issues and providing a rationale for using Esri 

CityEngine to automate roof generation as a step towards efficiently addressing 

the challenges emphasised above. Furthermore, embracing the broader applicability of 

3D models in fields like as history, tourism, and other cultural initiatives improves the 

discussion by emphasizing their importance outside traditional planning domains. This 

emphasizes the potential of advanced urban modelling tools to improve not just 

sustainable urban development, but also cultural understanding and resource allocation.  
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1 OBJECTIVES 

The aim of this thesis is twofold: firstly, to address the existing research gap in 

the Olomouc region, where there is currently no reusable and automated method for 

creating a Level of Detail (LOD) 2 model; secondly, to create a Computer-Generated 

Architecture (CGA) procedural programming script with Esri CityEngine, thereby 

developing a scalable and transferable model. The goal is not only to enhance 

the replicability of 3D building modelling in Olomouc but also to check the usability of 

the generated models for solar energy potential assessments. Through this integrated 

approach, the research aims to contribute to advancing 3D modelling in Esri CityEngine, 

providing practical solutions for Olomouc while offering insights applicable to diverse 

urban environments. 
 

• Primary objective 

Develop a systematic methodology to automatically generate LOD2 buildings in 

the city of Olomouc. 

• Specific objectives 

1.  Determine the building roof types, roof components and building height. 

2.  Develop CGI scripts in Esri CityEngine to automate building generation. 

3.  Accuracy assessment of the generated 3D roof models. 

4.  Utilize the developed model to estimate solar energy potential. 

 

The scope of this research is defined by its focus on the integration of 3D building 

modelling methodologies within the context of Olomouc's changing urban landscape, 

utilising Esri CityEngine as a central technological tool. Geographically, the research is 

bounded by the urban dynamics of Olomouc, encompassing diverse areas such as the 

city centre, rural zones, and apartment regions. The temporal scope is constrained by 

the available data sources, such as LiDAR data and optical imagery published by the 

State Administration of Land Surveying and Cadastre (ČÚZK). 

The results of the work will enrich the multidisciplinary fields of Geographic 

Information Systems (GIS), 3D building modelling in urban landscapes. The implemented 

workflow allows users to generate a LOD2 building model, which will open doors for 

a multitude of applications, including but not limited to 3D visualisation, Solar energy 

cadastre preparation, noise propagation, et al. research, which is critical in decision-

making to resolve intricate problems in an urban environment.  
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2 STATE OF THE ART 

In the forthcoming literature review chapter, several key topics relevant to building 

modelling are discussed. These include an exploration of the historical development and 

diverse applications of building modelling, as well as an examination of the accuracy of 

models produced in various domains. The review will also encompass specific aspects of 

building modelling, such as building footprint detection, height determination, roof slope 

analysis, and the identification of roof edges. Additionally, the range of software tools 

used for building modelling will be analysed, and a literature review will be concluded 

with an analysis of methods for assessing the accuracy of generated models. 

2.1 The importance of 3D building modelling 

Based on empirical evidence, the utilisation of 3D modelling in established cities 

proves to be a highly efficient tool for resolving challenges and enhancing urban planning 

and development. In a period where we are experiencing an energy crisis, 3D modelling 

is widely used in estimating solar energy potential research. Chiabrando et al. (2017) 

highlighted the importance of renewable energy, thus identifying appropriate locations to 

leverage solar energy. In the study, they utilised digital photogrammetry techniques and 

tested the available open-source software systems. The results of the analysis indicated 

that the 3D structures generated from Structure from Motion (SfM) software are accurate 

enough to match the collected ground truth data. Machete et al. (2018) examined the 

impact of urban context on buildings' solar energy potential using 3D GIS. The study was 

conducted on a city block in downtown Lisbon during summer and winter with varying 

degrees of contextual details. The study also demonstrated the great capability of the 3D 

approach to fully assess solar energy potential in intricate urban layouts, considering the 

irradiation of all building surfaces exposed to the sun. While 3D models have proved to 

be an excellent approach for solar data modelling, Willenborg, Pültz, and Kolbe (2018) 

argued that its analytical capabilities are limited due to the simple data models. Thus, 

they proposed a semantic 3D city data model instead of the conventional 3D mesh model. 

Their approach was applied for a solar potential analysis, which showed a significant 

increase in estimation quality as a result of mesh integration. 

Over several decades, the use of 3D models in noise propagation research has greatly 

advanced our understanding of how sound propagates through complex environments. 

Hewett (2010) conducted a comprehensive analysis of sound propagation in an urban 

environment. While the primary goal of the analysis is to examine how sound spreads in 

urban environments, taking into account elements like energy absorption by walls and 

the surrounding environment, redistribution at intersections, etc., the study also 

emphasises how crucial it is to have a three-dimensional model of the city for studies on 

noise propagation. Deng, Cheng and Anumba (2016) argued that conventional 2D maps 

fall short of capturing the full spectrum of noise level variations, particularly pronounced 

in high-rise buildings, where the difference between the first and top floors can be 

significant; 3D Geographic Information System (GIS) models have emerged as 

a sophisticated solution for representing real-world traffic noise impact. Another 

important study on noise propagation was done by Cai, Yao and Wang (2018). They 

implemented a methodology to simplify the computation-intensive noise propagation 

tasks in 3D space. They contended that, despite the distance attenuation principle of 

sound, a building's upper floors should have quieter levels than its lower floors; this is 

frequently not the case. This disparity results from neighbouring buildings obstructing 
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noise on the lower floors while leaving the upper floors clear. This emphasises even more 

how crucial it is to have 3D models available for analysis in noise propagation studies. 

Based on empirical evidence, 3D models have proven to be useful not only for 

addressing noise level variations within multi-story buildings but also for Urban Planning 

and Zoning. As it offer a thorough depiction of urban landscapes, these models are 

invaluable resources for architects, policymakers, and urban planners. They make it 

possible to evaluate prospective building projects, visualise already-existing structures, 

and analyse in three dimensions how these might affect the surrounding area. In the work 

of Danilina, Slepnev and Chebotarev (2018), they emphasised the detailed reality that the 

3D model shows can not only mirror the static state but also be a basis for modelling 

dynamic processes in different areas of urban life, which includes mobility of vehicles and 

non-motorized vehicles, emergency escape routing et cetera. Users can now run 

simulations that let them communicate with the virtual model in a manner similar to 

what they would do in real life because 3D data and visual representation are available 

within a 3D city model (Alam, 2011). Examining the urban system at different resolutions 

or levels of detail can benefit from the enhanced and simplified user interactions provided 

by 3D models (Allen and Berkley, 1979). 

In emergency response, 3D building modelling has proven to be an invaluable tool. 

It is essential for disaster management, preparedness, and quick response times. 

The ability of first responders, emergency managers, and decision-makers to handle 

a variety of emergencies - from man-made crises to natural disasters - has been 

substantially improved by this technology. By combining CCTV data with a 3D model of 

a city, Hong, Lu and Chen (2019) demonstrated a novel approach that has the potential 

to go beyond the traditional methods and improve data collection, management, and 

decision-making during emergency response. Also, Hong and Tsai (2020) suggested 

a web-based decision support system (DSS) that made use of a 3D building framework. 

Within the DSS, users could enter hypothetical or actual disaster scenarios, and the 

system would automatically produce information on damage assessment that could be 

visualised. 

3D modelling has emerged as a strong tool for tourism and cultural heritage. Virtual 

reconstructions may bring historical locations to life, providing immersive experiences for 

both tourists and academics. These models enable the safeguarding and documentation 

of historic buildings, as well as in-depth explorations of ancient cultures and historical 

events. In addition, 3D models are important educational materials, offering interactive 

platforms for learning about other cultures and locations. 

In summary, 3D building models have shown to be an incredibly useful and adaptable 

tool in a variety of fields. 3D models have proven invaluable in a variety of applications, 

from improving our understanding of noise propagation and its effects on urban 

environments to optimising solar energy harnessing through precise shading analysis. 

Furthermore, they have helped make well-informed decisions and contributed to the 

development of more sustainable and peaceful cities in the field of urban planning and 

zoning. Their importance is further highlighted by the fact that they help allocate 

resources, enhance disaster preparedness, and offer situational awareness when it comes 

to emergency response activities. The empirical data exhibited in these four applications 

highlights the significant influence of 3D building models on various domains, rendering 

them a priceless resource for scholars, decision-makers, and practitioners in search of 

data-driven solutions. 
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2.2  Study area 

Olomouc is a significant city in Moravia and the administrative centre of the Olomouc 

region. It is the country's sixth biggest city and the most significant city in Moravia's Haná 

area. Its well-preserved Old Town is one of the most picturesque in the country Although 

it receives many local and international tourists, the city nevertheless appears to be 

underrated. 

2.2.1 History 

Thousands of years ago, prehistoric humans explored the region where Olomouc now 

stands, and archaeological findings reveal that the ancestors of today's Olomouc 

residents have roots dating back to the Stone Age (Holpuch, n.d.). The fertile local soil 

supported early agricultural activities, attracting both Celtic and Germanic settlers 

(Information Centre Olomouc, n.d.). Notably, the Romans established a military camp in 

Neředín in the second half of the second century AD, strategically positioned during 

conflicts with the Marcomanni, marking the northernmost evidence of Roman presence 

in Central Europe (Holpuch, n.d.). 

Olomouc's architecture is a wonderful combination of historical styles from different 

ages. It is home to a wealth of architectural marvels dating back to the medieval period 

and continuing through the Baroque and Renaissance. The city's historic centre is made 

up of lovely cobblestone lanes flanked by vivid façades of Gothic, Renaissance, and 

Baroque buildings (Radio Prague International, 2012). The Town Hall, with its elegant 

tower and exquisite paintings, is a fine example of the Renaissance style and serves as 

the centre of the main plaza. Figure 1 demonstrates some of the significant historical 

attractions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, there were difficulties throughout this time, as Olomouc lost its university 

for almost eight decades, only to be restored after World War II (Palacký University 

Olomouc, n.d.). Nonetheless, the city suffered difficulties under both Nazi and Communist 

totalitarian governments, which resulted in the destruction of the synagogue and the 

erection of prefabricated housing. Olomouc saw a terrible flood in 1997, which was paired 

with the designation of the Baroque Column of Honour of the Holy Trinity as a UNESCO 

World Heritage Site, demonstrating the city's perseverance in the face of both natural 

A B C 

Figure 1: Attractions in Olomouc (A. Column of Holy Trinity; B. St 

Wenceslas' Cathedral; C. Town hall) 
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Figure 2 Selected study areas for the analysis 

catastrophes and historical trials, especially during the 1713 – 1715 plague (UNESCO, 

2000). 

2.2.2 Areas of Interest (AOI) 

Figure 2 depicts three research areas of varying complexity. Accordingly, the city 

centre represents the most complex with different architectural and roof structures, while 

the rural region has more semidetached dwellings. Finally, in residential area, 

most structures consist of apartment complexes with flat roofs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

2.3 Building footprint detection 

In 3D building modelling, the identification of building footprints is crucial since it 

serves as the basis for many important applications. Precise building footprints guarantee 

that 3D models accurately depict actual structures, which makes infrastructure 

development, zoning, and urban planning easier. Many techniques have been used for 

building footprint detection over time, which reflects how data sources and technology 

are always changing. With the increasing complexity and accuracy of these methods, it 

is now possible to detect building footprints in a variety of contexts with greater accuracy 

and efficiency. The empirical studies indicate three main ways of delineation of building 

footprints (manual, semi-automated and automated). 

2.3.1 Definition of building footprint 

The term "building footprint" takes on diverse definitions depending on the specific 

application or the thematic focus of the study. According to Lawinsider (n.d.), the 

horizontal area visible on a plan, measured from the outer borders of all external walls 

and supporting columns, is known as the building footprint; moreover, It includes houses 

and connected garage spaces larger than 200 square feet; however, it does not include 

detached garages, carports and other auxiliary structures. In the field of construction, 

building footprint refers to the extent of the ground occupied by the building (ECC, n.d). 

Several institutions and researchers also defined the building footprint in various ways. 

Biljecki et al. (2021) mentioned that building footprint is depicted as complete blocks, 

whole buildings, building components, or, in certain circumstances, numerous levels; 

however, he further emphasised that it is sometimes ambiguous and may change between 

areas, which can lead to interoperability challenges and noisy findings in large-scale 

models. Figure 3 demonstrates the captured building footprint by Ecopia Building 

Footprint – DigitalGlobe.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:Capturing building footprint - Source: DigitalGlobe (2017) 
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2.4 Methods of building footprint detection 

2.4.1 Manual digitising 

Manual digitising of building footprints is one of the oldest methods of extracting 

building footprints from high-resolution remotely sensed images, which involves moving 

a digitiser on captured features (Huang and Liu, 1997).   

Manual on-screen digitisation can be an extremely labour- and time-intensive 

process. Building footprints can be distinguished without a high degree of expertise, but 

the operator's level of experience does influence how quickly the digitisation process 

moves along. Even though it can be used across a large city, the time required for 

digitisation in the application of Building Information Modelling (BIM) is labour-intensive 

and time-consuming (Wang, Cho and Kim, 2015; Bassier, Vergauwen and Van 

Genechten, 2017; Paliwal et al., 2021). Having several GIS operators split up the work 

and compile the results at the end could help with scalability. With this approach, you 

have complete control over the outcome and can achieve the highest level of accuracy in 

your digitised building footprints. 

Over the years, many researchers compared manual digitising with other approaches 

to building footprint extraction. Sahin et al. (2008) conducted a study to compare feature 

extraction using Object Based Image Analysis (OBIA) and manual digitising. They 

conducted a comprehensive analysis involving the manual digitisation of building 

boundaries and road centrelines juxtaposed with the object-oriented classification 

process within the same geographical area. The study area encompassed both orderly 

and disordered zones, discerning between areas constituted by buildings and 

independent houses. The results indicated that both methods possess inherent 

drawbacks. Overall, they concluded that the OBIA method could not achieve the 

anticipated accuracy; thus, the manual method is more accurate in comparison to the 

OBIA approach. 

Sahar and Faust (2013) also conducted a combined approach which involve manual 

digitising and utilising GIS parcel layers. In this study, they used parcel geometry to 

locate building locations, which was followed by manual or automatic extraction. Later, 

they compared the results using the following approaches: 1- Fully manual (Manual 

digitising from the entire scene), 2- Simplified manual (Manual digitisation following the 

simplification process). They emphasised that the manual procedure is simplified to 

provide a pragmatic approach, which relieves the arduous task of manually digitising 

buildings of any kind from imagery by localising the extraction to a relatively small area. 

2.4.2 Algorithms and mathematical modelling 

Over the years, numerous well-known methods and algorithms for building and urban 

mapping have been introduced. These developments have been essential in helping to 

solve the problems brought on by the growing scale and complexity of urban 

environments.  

Michelin, Mallet and David (2012) implemented a novel 3-step approach to detect 

building edges. The proposed methodology is underpinned by the fundamental 

assumption that buildings can be effectively approximated by polygons, meaning they 

can be fragmented into segments. Step 1 – building areas are coarsely retrieved and 

classified into boundary and non-boundary regions; step 2- the 3D boundary segments 

are estimated using the standard RANSAC algorithm (Fischler and Bolles, 1981); step 3- 

Boundary adjustment, the last stage of the process, involves fine-tuning the locations of 
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the 3D segments and supporting 3D points using a physical model. The results indicated 

that 87% of building edges were detected with 12% of false detection rates. However, they 

further mentioned that the proposed approach exhibits a primary limitation in that it 

exclusively considers segments, neglecting the potential inclusion of other primitives, 

such as circles or curves, that may be more suitable for certain landscapes. 

Background Discriminant Transformation (BDT) is also a technique that is used in 

building extraction. Using BDT, the discriminant function is used to improve the 

distinction between the background and foreground classes. It works especially well in 

situations where it is difficult to discern building features from the background. Sohn et 

al. (2005) used this method to reduce the prominence of the background to emphasise 

the building as a non-background. Later, Hausdorff distance and colour indexing 

algorithms were adopted to detect building pairs, thereby further enhancing the accuracy 

by point matching. Finally, 3-D building models were generated by utilising least square 

image matching. Empirical evidence suggests that the use of BDT in building detection 

applications has been extremely limited since 2010, with very few publications occurring 

between 2000 and 2010—the majority of which were written by the same author.   

Hough Transformation is another algorithm used for detecting linear structures, such 

as building edges or outlines. This method has been used in many studies (Overby et al., 

2004; Liu, Wang and Liu, 2005; San and Turker, 2010; Cui, Yan and Reinartz, 2012; Li 

et al., 2018) to extract buildings by identifying the lines that denote building boundaries 

as it is strong at detecting geometric patterns. San and Turker (2010) used Hough 

transformation for building extraction using satellite imageries. The results of the study 

indicated that the average building detection percentages are over 93% for industrial 

buildings, and residential circular and rectangular buildings are over 78% and 95%, 

respectively. 

Müller and Zaum (2005) utilised a Combination of Geometric (object form and size), 

Photometric (most frequent and mean hue), and Structural Analysis (shadow and 

surrounding). It considers the spatial arrangement, radiometric properties, and 

structural patterns in the building footprint extraction process. The method that is being 

presented only uses aerial photos to extract buildings. The process starts with the entire 

image being segmented using a seeded region growing algorithm. Starting from seed 

points, this algorithm expands regions according to pre-established criteria, thereby 

clearly defining discrete areas within the aerial imagery. 

2.4.3 Object-based Image Analysis (OBIA) 

OBIA is an alternative to pixel by pixel approach that uses image objects as 

fundamental evaluation units (Lang, 2008; Blaschke, 2010). By grouping several pixels 

into forms with a meaningful representation of the objects, this method intends to avoid 

the problem of artificial square cells as used in the per-pixel method (Blaschke, 2010). 

OBIA's goal is to handle more complicated classes defined by spatial and hierarchical 

relationships both within and outside of the classification process (Lang, 2008; Wienert 

et al., 2013). OBIA is typically divided into three stages: image segmentation, feature 

extraction and classification. 

Geographic object-based image analysis (GEOBIA) is a modified OBIA approach to 

remote sensing image analysis that identifies and investigates image-objects: groups of 

adjacent pixels representing real-world geographical features (Blaschke, 2010). Recent 

reviews comparing GEOBIA and pixel-based methods showed methodological issues and 

emphasised how GEOBIA surpasses the pixel-based methodology that has been around 
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for more than three decades, especially for high-resolution imaging (Kucharczyk et al., 

2020). The efficacy of using GEOBIA in the application of building footprint extraction 

has been consistently demonstrated by empirical evidence (Kumar and Bhardwaj, 2020; 

Prathiba et al., 2020; Zhang, Han and Bogus, 2020; Norman et al., 2021).  

The intrinsic heterogeneity of urban environments has limited the accuracy of 

conventional pixel-based approaches in extracting building footprints, which has led 

researchers to investigate alternative approaches. In addressing these challenges, the 

study of Prathiba et al. (2020) employs OBIA as a robust technique for building footprint 

extraction, specifically utilising Cartosat-2 series data. The synergy of supervised nearest-

neighbour classification decision rules had yielded a compelling result demonstrating an 

accuracy surpassing 82.5% in building footprint extraction. The work of Zhang, Han and 

Bogus (2020) also shows the applicability of OBIA in building footprint extraction in three 

different study areas. In this work, features such as trees and buildings were extracted 

using aerial LiDAR data based on height information. Afterwards, trees were separated 

and eliminated from the identified items using colour-infrared aerial photographs. Then, 

building footprints were defined using OBIA. The accuracy assessment indicated 

a success rate of 75% for two study areas and a 50% success rate to detect building 

footprints in one study area.  

Certain studies highlighted the advantage of utilising OBIA rule-based classification 

methods (decision rules based on object primitives and fuzzy rules) in building footprint 

extraction. The work of Kumar and Bhardwaj (2020) used a combination of orthoimages 

along with the Digital Elevation Model (DEM) to create a rule-based classification guided 

by object primitive and fuzzy rules. The results showed that overall accuracy was higher 

than 93%, especially in regions with more substantial but sparsely populated structures. 

On the other hand, regions with denser populations and smaller buildings showed 

marginally worse overall accuracy. This implies that the suggested method performed 

exceptionally well in correctly recognising and categorising buildings, especially in areas 

that were less populated and had larger structures. Another interesting study was 

conducted by Norman et al. (2021), where they used medium-resolution sentinel 2B 

images instead of high-resolution images like most studies. They carefully chose features 

that are essential for building detection and established the appropriate segmentation 

parameters (scale, shape, and compactness). They used machine learning (ML) 

algorithms, specifically the Support Vector Machine (SVM) and Decision Tree (DT) 

classifiers and found that the SVM classifier performed better than the DT classifier, 

yielding an amazing 93% accuracy with a kappa value of 0.92 and a notable 20% increase 

in accuracy. This result demonstrates how well applying ML algorithms to improve 

classification methods in OBIA works, especially for medium-resolution images. 

2.4.4 Deep learning 

Deep Learning (DL) algorithms have witnessed a remarkable surge in popularity for 

remote-sensing image analysis over the past few years, revolutionising the field with their 

capacity to automatically learn hierarchical representations of data. Deep learning's 

remarkable capacity for hierarchical learning of representative and discriminative 

features has sparked a fresh wave of exciting work on the processing and analysis of 

Remote Sensing big data (Chi et al., 2016; Parente et al., 2019; Sedona et al., 2019). 

While the remarkable success of DL is highlighted in many studies, there are few 

studies that emphasise the concerns and challenges of DL methods in terms of data 

availability and its quality, computational resources, explainability, sensor variability, 

etc. For training, deep learning models frequently need a lot of labelled data, which can 
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be hard to come by in remote sensing (Ahmed et al., 2023; Cheng et al., 2023; Janga et 

al., 2023). In terms of computational resources, deep Neural network training requires 

a large amount of processing power. Large-scale remote sensing datasets, particularly 

those obtained at high resolutions, need a robust computer infrastructure to provide 

effective training and inference (Hong et al., 2021; Cheng et al., 2023; Janga et al., 2023; 

Safonova et al., 2023). Deep learning models are often considered "black boxes" due to 

their complex architectures, which raises the question of how much we can trust AI 

systems if we don't comprehend how they make their decisions (Eschenbach, 2021). DL 

models trained on data from one remote sensing sensor may not generalise well to data 

from a different sensor (Wold and Sandin, 2023); thus, Transfer learning techniques are 

essential for adapting models to various sensors (Donges, 2022). 

Despite the mere limitations of the deep learning approach, it has been widely used 

in BIM-related applications. Recently, Convolutional Neural Networks (CNN) have been 

successfully applied for building footprint extraction applications. Chafiq et al. (2021) 

conducted a U-Net-based deep learning approach for building boundary extraction, where 

it used images captured from a drone. One of the numerous benefits of the model 

presented in this research is its capacity to provide more precise identification and 

automated detection of building footprints using the training model. Furthermore, it 

demonstrates how AI has advanced to the point where it is advantageous to use better 

ground truth labels for segmentation construction without the need for human 

participation. Rastogi, Bodani and Sharma (2022) proposed a novel CNN model called 

UNet-AP, an improved U-Net architecture where they used Cartosat-2 series multi-

spectral images to extract building footprints. The outcomes showed that this innovative 

architecture consistently improves the result and outperforms both SegNet and UNet 

architectures. 

Compared to the aforementioned methods, there are unique approaches that utilise 

a combination of CNN architecture for automated building footprint extraction. Li et al. 

(2021) proposed a combined architecture that uses U-Net (create segmentation maps), 

Cascade R-CNN (detection of building bounding boxes) and Cascade CNN (detection of 

building corners) for each individual step of the process. Later, a Delaunay triangulation 

method was used to build final building footprints based on the results of the previous 

steps. Li et al. (2022) emphasised that although CNNs provide encouraging results on 

a smaller scale, one of their typical flaws is that they are unable to precisely identify 

building borders, which blurs the result. Therefore, Li et al. (2022) proposed a novel CNN 

architecture with two models: 1- Img2AFM (Enhance building surface and suppress 

background) and 2- AFM2Mask (predict segmentation masks of buildings). They tested 

the approach in three different datasets and concluded that it performs building detection 

significantly better than other methods.  

2.4.5 Existing data sources 

Building footprint data, which outlines the shapes and dimensions of structures, can 

be sourced from various channels with little to no post-processing. Government open data 

portals are primary resources, offering building footprint information processed through 

aerial surveys and satellite imagery. Additionally, geospatial data repositories like 

OpenStreetMap (OSM) provide collaborative mapping data where users contribute and 

edit geographical details, including building footprints. Moreover, commercial data 

providers such as Esri (living atlas web portal), Maxar and Nearmap also provide ready-

to-use building footprint datasets. 
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With its vast and ever-expanding collection of geographic data, OSM is one of the 

world's biggest and most active open data suppliers. For instance, China's OSM building 

data increased 20 times between 2012 and 2017 (Tian, Zhou and Fu, 2019). Based on 

the completeness check done by Biljecki et al. (2021) of OSM data with respect to 

government open data in 28 countries, coverage of OSM had a 95% (ratio of buildings 

recorded in EUROSTAT to the number of buildings retrieved from OSM in February 2021). 

Established in 2004, OSM functions as a cooperative, crowd-sourced mapping platform 

where a global community of contributors actively engages in mapping the surface of the 

planet (OpenStreetMap, 2023). Since OSM data is publicly available and free to use, 

a wide range of people, including academics, developers, companies, and nonprofits, may 

access it. Within the geographic community, creativity and cooperation are encouraged 

by this open-access ideology. 

As OSM coverage grows worldwide, several studies have examined the use of OSM 

data for BIM applications. Bagheri, Schmitt and Zhu (2019) conducted a comprehensive 

assessment of the feasibility of applying OSM building footprint data as source data to 

generate 3D models of buildings. They also highlighted that one of the major issues in 

OSM data is that building footprints are generated as a whole even though the building 

has multiple blocks of different heights; thus, a preprocessing step is necessary to split 

into multiple blocks. In a study conducted by Girindran et al. (2020) on the generation of 

3D models from open data, they realised that 3D models could be generated by a fusion 

of OSM with DSM data. However, it is important to highlight that this study did not 

consider available topological errors in OSM data.  

While OpenStreetMap (OSM) provides several benefits as a major open data source, it 

is critical to recognise specific limitations and concerns related to its use. These 

difficulties may influence OSM's appropriateness for various applications and 

environments. The quality of OSM data is one of the primary problems when utilising it. 

Because the majority of OSM data is contributed by non-professionals, both the coverage 

and the quality of the data are dubious (Haklay, 2010; Senaratne et al., 2016). Even 

though a sharp rise in OSM data is observed, the third dimension is very poorly 

represented in OSM data, specifically for building height (Masson et al., 2020; Bernard 

et al., 2022). According to Lao et al. (2018)- cited in Bernard et al. (2022), less than 3% 

of buildings worldwide have a height value, and less than 4% have a number-of-

floor value. While OSM is an excellent resource, users should be aware of its limitations, 

which include potential data mistakes, inadequate coverage, reliance on volunteers, 

limited attribute information, and the need for ongoing maintenance. Therefore, when 

considering if OSM is the best data source for 3D building modelling, these criteria must 

be carefully considered. 

The existing body of research often focuses on evaluating the quality of OSM data and 

assessing factors such as completeness, consistency, and positional accuracy. However, 

there appears to be a scarcity of studies specifically dedicated to proposing and testing 

methodologies to actively improve the accuracy of the data within the OSM platform, 

which marks a potential research gap in the literature. The work of Zhuo et al. (2018) is 

a significant contribution in this domain as it focuses on the optimisation of OSM 

footprints using UAV images. Their approach of using a deep learning neural network 

proved to produce a large offset in terms of quality when compared with original OSM 

building footprints.    

Government open data websites throughout the European Union, including the Czech 

Republic, are useful sources of reliable building information. These portals often include 

a variety of geographic data, such as building footprints, which may be used for urban 
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planning, infrastructure construction, and a variety of research purposes. Czech national 

mapping agency called State Administration of Land Surveying and Cadastre (ČÚZK), 

with the launch of the national online portal, has had a major influence on the availability 

of geographical data. ČÚZK started offering direct access download services for RÚIAN 

data, including digital cadastral maps in the digital format, on January 1, 2014, on the 

basis of the unified Creative Commons CC BY 4.0 license (ČÚZK, 2023).  

Hron and Halounová (2019) conducted a study on creating roof models from building 

footprints in the Czech Republic. In this study, they utilised building footprints published 

by the Land Survey Office (NMA) of the Czech Republic, which is responsible for managing 

the national GIS database. The authors conducted tests on a limited dataset comprising 

around 30 buildings with diverse characteristics, including different shapes (vertices 

ranging from 4 to 16) and varying roof complexities (roof types, which ranged from 1 to 

3) and mentioned that excellent results demonstrated particularly for simple and 

moderately complex buildings. 

2.5 Building height detection 

The precise identification of building heights is a crucial component in 3D building 

modelling as it forms the basis for many important applications. Building heights must 

be precisely determined to guarantee that 3D models accurately depict the real buildings, 

which will support the decision-making process. Determining the heights of buildings 

becomes especially important in situations when vertical dimensions are critical to the 

overall sense of space. Building height detection has been done using a variety of 

methodologies over time, demonstrating the ongoing development of technology and data 

sources. The complexity and accuracy of building height identification have significantly 

increased with the improvements in these approaches, enabling more accurate and 

efficient results in many scenarios. 

2.5.1 Definition of building height 

 The definition of building height varies across different studies and contexts, 

reflecting the nuanced considerations and objectives within each field and the 

application. According to American Legal Publishing (n.d.) In multifamily residential 

buildings built in compliance with unified residential development regulations, the height 

is determined by measuring from the top of the completed slab to the top of the tallest 

wall top plate (Figure 4). They further mentioned that in buildings other than multi-family 

homes, the height will be measured according to Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Measuring building height (ALP, n.d.) Figure 4: Height in 

multifamily residential 

(ALP, n.d.) 
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2.6 Methods of building height detection 

2.6.1 Deep learning 

The advent of deep learning neural networks has significantly influenced the field of 

building height estimation, leading researchers to increasingly adopt these advanced 

techniques. As building structures react differently to multiple viewing angles, such as in 

terms of spectral and structural changes, multi-view satellite images can explain the 

vertical information of buildings. However, deep learning-based building height estimates 

have not made use of these images. As a novel approach, Cao and Huang (2021) 

introduced M3Net, which uses multi-view ZY-3 images with a spatial resolution of 2.5m 

to estimate building height. After testing the methodology in 42 Chinese metropolitan 

areas having diverse building types, the results indicated lower root mean square error 

than the random forest method and vanilla single/ multi-task models. The approach also 

verifies the scalability of the methodology further since the test was also done in 

a comparably broader region of extent. Another neural network-based approach 

implemented by Li, Chen and Lin (2022) shows that single images can be used to restore 

height information, unlike the method implemented by Cao and Huang (2021). Lin's 

(2022) approach consists of two main stages: 1. Rotation shadow detection, 2. Building 

height calculation. Their methodology stands out from the rest due to its simpler 

implementation, fewer sources of data, and greater accuracy.    

2.6.2 Open data sources 

One of the major issues in building height estimation is the unavailability of open data 

sources. To address this issue, in recent years, many researchers have focused on 

implementing methodologies to estimate height information from open data, such as 

Sentinel 1/2, for large-scale mapping applications. Since Koppel et al. (2017) found 

a strong correlation between height information and Sentinel 1 backscatter 

characteristics, a whole new realm of applications was introduced in large-scale 3D 

modelling. Li et al. (2020) used these correlation characteristics to implement 

a comprehensive methodology to estimate building height from Sentinel 1 data. First, 

they implemented a height indicator using dual-polarization (VV and VH) and generated 

a building height model from the indicator. The RMSE was 1.5 meters when comparing 

the outcomes with a lidar-based model; this value also outperformed the precision of the 

data released by Advanced Land Observing Satellite (ALOS) DSM (X. Li et al., 2020). Even 

though very high accuracy was obtained in terms of RMSE, Huang et al. (2022) mentioned 

that due to layout, high reflectivity from some metal materials, double-bounce scattering, 

and other factors, backscatter coefficients from Sentinel-1 data were not consistent in 

some areas. Cai et al. (2023) implemented a multi-spectral and Synthetic Aperture Radar 

(SAR) data fusion approach that utilises Sentinel 1 and 2 publicly available data. Their 

method employs a multi-modal selective kernel (MSK), which can reach an RMSE of less 

than 5m after testing it in 63 Chinese cities. Therefore, considering the RMSE of 

methodologies of Cai et al. (2023) and Li et al. (2020), using the dual-polarization method 

seems more accurate. 

Huang et al. (2022) emphasised that there are two major issues even though the above 

methods from ALOS and Sentinel 1/2 data sources support the field of large-scale 

building height estimation: 1. Lacking considering the topographic environment, 2. Prior 

research mostly concentrated on predicting building height at coarse resolution; further 

work is required to estimate building height at fine resolution on a broad scale. Therefore, 
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the methodology implemented by Huang et al. (2022) is composed of utilising ALOS World 

3D-30m (AW3D30) DSM and other supplementary data with a novel slope correction 

algorithm for height estimation. 

Google Earth is a web-based geospatial application that gives users an interactive and 

thorough representation of the surface of the planet. With the use of aerial photography, 

satellite imaging, and GIS data, Google Earth provides a three-dimensional view of the 

world's cities, structures, and landscapes. In the context of building height estimation, 

Google Earth proves to be a valuable resource. The platform integrates 3D models to 

represent buildings and structures with realistic elevation data. Qi, Zhai and Dang (2016) 

implemented a comprehensive methodology to calculate building height using Google 

Earth. Their methodology utilises the shadow of the building to estimate building height 

using the length of the shadow and the terrain slope. In situations where the building 

shadow is not clearly visible, they proposed a new step which considers celestial 

geometry.  

2.6.3 LiDAR data processing 

Building height estimation has been transformed by Light Detection and Ranging 

(LiDAR) technology, which provides precise and comprehensive elevation data for a wide 

range of applications. LiDAR technology operates by sending laser pulses from an aerial 

or ground-based platform and measuring the time it takes for the laser to return after 

colliding with a surface (Wasser, 2023). This method enables LiDAR to produce very 

precise three-dimensional point clouds that capture the topography of the Earth's 

surface, including buildings and other structures. 

Utilising LiDAR data for 3D applications has been around for more than two decades. 

One of the earliest studies was done by Morgan and Tempfli (2000), where they used 

a LiDAR dataset of 2-3 points per m2 with Laplacian and Sobel operators to separate 

buildings from trees. Rottensteiner and Briese (2003) retrieved the building's top surface 

to create a polyhedron model, thereby calculating building height using region growth 

and curvature-based segmentation technologies from a DSM generated from LiDAR data. 

Erener, Sarp and Karaca (2020) used a data fusion approach that used aerial imageries 

and LiDAR data to estimate building height. In their study, Normalized Digital Surface 

Model (NDSM) was created considering the first and last return of the LiDAR dataset. The 

definition of building height is considered to be the maximum height value within the 

building footprint outline. Although the study displays the accuracy evaluation for the 

predicted number of floors in relation to ground truth, there is no accuracy assessment 

for the building height. 

In order to calculate building height, some researchers utilised statistical approaches 

such as zonal statistics and normal distribution functions. Zhang, Han and Bogus (2020) 

conducted a study to extract building height and footprint extraction from LiDAR and 

Aerial imagery. In their study building height is considered as the mean of the NDSM 

covering the building footprint. They used zonal statistics calculation to determine the 

height of the building. However, when modelling 3D models of existing buildings, it is 

important to have actual height information of buildings, such as highest and lowest 

points rather than mean value.  

Calculating building height by integrating LiDAR data with building footprints poses 

challenges, notably when ground pixels in the NDSM overlap with the footprint. This 

situation can lead to inaccuracies in roof values, introducing errors in metrics such as 

minimum and maximum roof heights. To address this issue, outliers resulting from these 
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discrepancies must be identified and removed to ensure the precision of the height 

estimation. A solution proposed by Hron and Halounová (2019) involves using the 95th 

percentile as the top height value within the footprint. Simultaneously, the roof bottom 

value is determined as the third percentile within a 1-meter radius both inside and 

outside the building footprint. By adopting this approach, the overall roof height is 

calculated as the difference between the top height and the bottom height, mitigating the 

impact of outliers and enhancing the reliability of the building height estimation process. 

2.7  Roof modelling 

Roof modelling stands as a pivotal facet in architectural and geospatial research, 

providing a comprehensive understanding of the built environment's intricate details. 

This process involves the digital representation of rooftops, capturing their diverse forms 

and features. Beyond mere visual aesthetics, Its applications, ranging from urban 

planning and energy efficiency to telecommunications and disaster management, 

highlight its significance as a multifaceted tool in enhancing our understanding of the 

built environment (Hron and Halounová, 2019). 

Various studies have explored and proposed diverse methods for identifying the type 

of roof in roof modelling, leveraging advancements in technology and data analysis. One 

of the most common methodologies is to utilise slope and aspect calculations to identify 

the type of roof. In the GIS domain, the rate of change between each cell and its 

neighbours is estimated via raster-based slope computing algorithms, while the aspect 

refers to the compass direction that a slope faces (wiki.gis.com, n.d.). Gergelova et al. 

(2020) used these tools to identify different types of building roofs as an initial step for 

the reconstruction of roofs. The study used mean slope values of the roof to identify flat 

roofs and pitched roofs; thus, slope <=100 are flat roof buildings; in contrast, 10° < slope 

<45° are pitched roof buildings. In their work, they considered six types of roofs, as 

mentioned in Figure 6.  

 

 

 

 

Figure 6: Types of roofs considered by Gergelova et al. (2020) 

Another important step in roof modelling involves identifying the shape of the roof and 

roof planes. Many researchers used the floor direction algorithm- a method originally 

used for deriving the direction of the flow and the volume of the flow. The eight 

neighbouring cells that flow might enter have eight appropriate output directions 

associated with them, as mentioned in Figure 7. This method, sometimes called an eight-

direction (D8) flow model, is based on a strategy that Jenson and Domingue (1988) 

introduced.  

 

 

 

 

 

 

 

Figure 7: Flow direction D8 method by Jenson and Domingue (Esri, n.d.) 
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Gergelova et al. (2020) used this approach to identify the form of the roof ridge and 

determine the number of planes and their slope directions, thereby determining the type 

of roof. In the work of Hron and Halounová (2019), they used a line segment detector 

(LSD) algorithm which detects straight contours on grayscale images without tuning 

parameters. They claim that the edge detection technique, which is a component of the 

Open-Source Computer Vision Library (OpenCV), is incredibly fast and produces good 

results without the need to modify any parameters. They have also highlighted certain 

drawbacks of their approach, such as the current implementation does not allow 

modelling of roof ridges except in the middle or on the outline of buildings and obstacles 

resulting from assigning rules for individual roof types. 

Random sample consensus (RANSAC) is another approach that multiple researchers 

used to extract roof planes (Tarsha-Kurdi, Landes and Grussenmeyer, 2007; Kleineberg, 

2018; Gönültaş, Ati ̇k and Duran, 2020; Mohammadzadeh, 2020; Chen et al., 2021). 

According to Fischler and Bolles (1981) – the founders of the algorithm, RANSAC takes 

the least amount of information possible and then expands it with consistent data points 

in contrast to traditional sampling approaches that utilise as much data as feasible to 

generate an initial answer and then proceed to trim outliers. Multiple researchers have 

used the RANSAC algorithm to extract roof planes from LiDAR data. Mohammadzadeh 

(2020) applied the RANSAC algorithm to a LiDAR point cloud of a building dataset and 

determined the optimal plane through the candidate points that comprise the roof plane 

based on the geometric location of the points and distance to the plane. Kleineberg (2018) 

also used the RANSAC algorithm to detect roof planes, which is an initial step in 

generating 3D meshes of building roofs using a LiDAR point cloud. Later, he created 

a new algorithm to generate convex roofs in a unity engine. Therefore, considering the 

final results of Mohammadzadeh (2020) and Kleineberg (2018), it is evident that the 

RANSAC algorithm looks promising for finding roof planes, which is an initial step in 

generating 3D models of roof structures. However, according to Canaz Sevgen and Karsli 

(2020), the RANSAC algorithm has certain limitations in situations when some points are 

located within the roof plane which are not part of the roof plane. To mitigate this problem, 

they developed I-RANSAC, a modified algorithm that searches just points on the surface 

based on a specific threshold value, excluding outliers over the threshold value. 

Clustering in roof modelling is a data analysis technique that involves grouping 

together roofs with similar characteristics, patterns, or attributes. This process is 

particularly valuable for identifying commonalities among roofs within a dataset, aiding 

in the classification, segmentation, and analysis of diverse roof types. Many researchers 

have utilised numerous clustering methodologies to identify roof planes (Sampath and 

Shan, 2008; Kong, Xu and Li, 2013; L. Li et al., 2020; Hong et al., 2021). One of the 

earliest studies that used clustering techniques for roof segmentation was done by 

Sampath and Shan (2008). They used eigenvalue and eigenvector analysis to determine 

locations that lie along the roof edges, i.e. along the links of multiple roof planes, and 

thereby create a 3D model of the roof. , and Li (2013) used a combined approach using 

two clustering methods: K-plane and K-means algorithms. In order to identify the initial 

cluster centres, they also implemented a new initialisation method that uses 

mathematical morphology and the Hough transform technique.  

2.8 Software and built-in workflows for 3D modelling 

3D modelling software plays a pivotal role in the field of architecture and building 

design, offering architects, engineers, and designers powerful tools to visualise, analyse, 

and communicate complex ideas. These software applications enable professionals to 
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create detailed 3D representations of buildings, facilitating a more comprehensive 

understanding of spatial relationships, aesthetics, and functional aspects.  

Esri's ArcGIS Pro is a full-featured commercial desktop GIS program that allows users 

to explore, view, and analyse data, as well as compile 2D and 3D maps (Esri, n.d.b). 

Additionally, ArcGIS Pro provide step-by-step automated workflows with minimal user 

interaction for various application domains, including 3D modelling with LiDAR point 

cloud data. According to Esri (2023), 3D building solutions provide automated workflows 

for extracting normalised elevation surfaces, creating building footprints and 

subsequently generating 3D models, creating building floors and predicting the type of 

building roof. However, there has been little to no empirical proof of the workflow's 

performance for modelling 3D structures since it was initially announced in July 2023.   

Esri CityEngine is another commercial urban planning and modelling software that 

enables the creation of realistic cityscapes. It streamlines the design process by 

generating detailed urban environments and enhancing spatial analysis for architects, 

urban planners, and GIS professionals. Oskoue, Babaei and Teymuri (2023) noted that 

the main aspect of modelling with Esri's CityEngine software is employing commands and 

rules, as well as scalability, to create large cities as easily as small cities without 

sacrificing quality. Since its inception, numerous researchers have extensively tested Esri 

CityEngine, affirming its prowess as a potent tool for city modelling (Edvardsson, 2013; 

Hu et al., 2013; Badwi, Ellaithy and Youssef, 2022). The software consistently 

demonstrates robust capabilities, earning recognition as an asset for researchers and 

professionals in urban planning and design. Badwi, Ellaithy and Youssef (2022) 

conducted a recent study with CityEngine, the main objective of which was to highlight 

the importance of 3D procedural modelling and its capabilities. They analysed and tested 

the CityEngine procedural modelling idea in Beni-Suef, Egypt, and concluded that 

CityEngine is a powerful 3D-GIS modelling program that creates realistic 3D models from 

2D spatial data. However, it is important to emphasise that more complex scenarios 

should be investigated (Badwi, Ellaithy and Youssef, 2022). Another important highlight 

of Esri CityEngine is its capability to batch create 3D models (Esri, 2015). Unlike 

traditional modelling platforms, CityEngine is capable of creating reusable Computer 

Generated Architecture (CGA) scripts and integrating semantic rules (Hu et al., 2013). 

Also, Esri R&D Center Zurich (2010) created recommended CGA references and updated 

in 2014 to guide users to generate different building’s roof types and incorporating 

different textures.   

Trimble Inc.'s SketchUp is a flexible 3D modelling program that is extensively used in 

architecture, interior design, and other industries. SketchUp's user-friendly interface 

allows users to quickly generate and modify 3D models (Sketchup, n.d.). According to 

Singh, Jain and Mandla (2013), photogrammetry and laser scanning are common image-

based approaches with limitations. To overcome these limitations, they proposed 

a simple, low-cost method for creating virtual 3D campuses for educational institutions. 

The model may be generated in a variety of formats, published on the web, and exported 

to Google Earth (Singh, Jain and Mandla, 2013). Sketchup also facilitates the automatic 

creation of models without primarily depending on manual push and pull methods. Since 

Sketchup supports Ruby programming language, users have the ability to automate 

workflows with minimal user interaction. Alizadehashrafi (2015) used Ruby language 

within Sketchup to generate windows and doors automatically. Ying, Li and Guo (2011) 

used a combination of software workflows such as ArcGIS and Sketchup to create a 3D 

cadastral system parameterising 2D survey plans. Ying, Li and Guo (2011) further 
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mentioned that as long as the original 2D set of polygons follows the Ruby criteria, the 

reconstruction could be made automatic. 

Apart from the above software, numerous 3D modelling applications are available on 

the market. Autodesk Revit is a popular BIM program that includes 3D modelling, 

parametric modelling, collaborative capabilities, and documentation. It can handle 

complicated geometries and huge projects. Bentley Systems is also a popular BIM 

software which comes in editions including PowerDraft, Connect Edition, and V8i. 

Graphisoft ArchiCAD is renowned for its user-friendly interface, capacity to manage 

complicated projects, and other important capabilities, including parametric modelling, 

3D modelling, documentation, and collaboration tools. 

2.9 Accuracy assessment of 3D models 

Accuracy assessment is an important aspect of 3D city and building modelling, 

playing a crucial role in ensuring the reliability and usefulness of these models. Assessing 

the accuracy of these models involves evaluating the fidelity of the representation of real-

world structures and features. This process aids in identifying discrepancies between the 

virtual models and the actual physical environment. Sanz-Ablanedo et al. (2018), 

a fundamental way of assessing 3D model accuracy is by comparing the RMSE of Ground 

Control Points (GCP) or by measuring coordinates in the real world and the model. 

Unfortunately, this method can be used only for models created using photogrammetric 

methods. Therefore, it is evident that most of the accuracy assessment studies conducted 

for the models which were generated by photogrammetric methods.  

When conducting an accuracy assessment of 3D models, it is important to 

characterise types of errors and their sources. Borkowski and Jóźków (2012) focused on 

this aspect and identified six sources of errors associated with 3D modelling: errors of 

Terrestrial and Aerial Laser Scanning (TLS and ALS), errors of integration of datasets, 

errors due to generalisation and topology correction and finally texturing errors. On the 

other hand, Michelin et al. (2013) highlighted three main sources of errors in 3D 

modelling: 1. footprint error- errors in building outline, 2. reconstruction errors- errors 

associated with algorithms and mathematical functions, 3. vegetation errors – when 

canopy covers the building and making difficult to model the 3D structure. However, 

Gabara and Sawicki (2021) argued that a new error category should be added to address 

problems associated with object complexity due to multi-part roofs, roof texture and type.  

Over the years, many researchers introduced methods for the accuracy assessment 

of 3D models. Cheuk and Yuan (2009) implemented a simple method to evaluate the 

accuracy of generated 3D models according to a reference dataset. They transformed the 

referenced 3D building model into a grid structure, utilising the elevation attribute of 

building polygons. Subsequently, the building height grid was subtracted from the lidar 

data, and the resultant differences were categorised into five distinct classes. Borkowski 

and Jóźków (2012) also created multiple 3D models of buildings from different sources of 

data: ALS and TLS data, both representing identical locations. Subsequently, 

a comparative analysis was conducted to assess the errors inherent in the ALS and TLS 

datasets (Borkowski and Jóźków, 2012). Moreover, they proposed that the correctness of 

the models might be assessed by comparing the coordinates of the characteristic points 

in the models with the corresponding coordinates of these places on real structures. They 

gathered reference points on buildings using a Leica total station and compared them to 

matching model points. Gabara and Sawicki (2021) conducted a comprehensive analysis 

to compare the accuracy of the same 3D model from two different sources: 1. Polish 
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National Geoportal, 2. Trimble SketchUp Warehouse. They used the RIEGL point cloud 

as the reference dataset for assessing the quality and accuracy of 3D building models. 

This methodology provided a comprehensive analysis, combining visual insights from 

heat maps with quantitative metrics from histograms, to ensure a thorough assessment 

of the 3D building models' quality and accuracy against the reference RIEGL point cloud. 
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3 METHODOLOGY  

In this chapter, the important stages of the research methodology will be presented 

briefly. Additionally, the tools and software utilised for gathering, analysing, and 

interpreting data will be outlined. Subsequently, an abstract representation of the overall 

methodology will be provided, offering readers a comprehensive overview. Finally, the six 

main stages of the methodology will be further explained, highlighting the purpose and 

significance of each. 

3.1  Data and software used 

To achieve the research goals, a variety of software tools and data sources have been 

used to facilitate data collection, analysis, and visualisation. These resources are 

essential to our methodology's resilience and effectiveness. 

3.1.1 Data Sources 

• LiDAR data 

LiDAR data has been used as the major data source due to its ability to acquire 

extremely detailed and precise elevation data. LiDAR data gives exact three-dimensional 

reconstructions of the Earth's surface, making it possible to identify topographical 

features, land cover characteristics, and urban buildings with unprecedented accuracy. 

The data was created as part of the MOSPREMA project https://mosprema.upol.cz/. It 

consists of data from aerial laser scanning conducted by Primis company. The data was 

created in 03/2023 with a point density of 20 points per square meter of the last return. 

• Ortho imagery 

These high-resolution aerial images offer detailed visual representations of the Earth's 

surface, providing valuable context and spatial information for the analysis. The imagery 

sourced from the ČÚZK Geoportal is renowned for its quality and reliability, making it an 

indispensable asset in our research. However, a high degree of parallax error is observed 

in certain cases. 

• Building footprints 

Building footprint data offers critical information on the geographical distribution and 

features of developed buildings in the research area. It is also the key data utilised to 

calculate LOD2 buildings in research locations. The datasets were also collected from the 

ČÚZK Geoportal. 

3.1.2 Software and programming languages 

• ArcGIS Pro 

ArcGIS Pro, a sophisticated GIS platform built by Esri, is the foundation of our spatial 

analytic methodology. ArcGIS Pro's advanced geoprocessing capabilities and intuitive 

interface make it easy to integrate, visualise, and analyse a wide range of spatial 

information, such as LiDAR point clouds, orthoimages, and building footprints. 

• Esri CityEngine 

Esri CityEngine allows for the production and study of detailed 3D urban models. 

CityEngine uses procedural modelling approaches with CGA to generate accurate 

representations of urban landscapes, including buildings, topography data, and 

vegetation layers. This software tool allows us to model urban development scenarios and 

evaluate the spatial effect of planning initiatives. 
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Figure 8: Abstract methodology 

• Python 

Python is a popular programming language within the scientific community. In the 

study, multiple Python packages were used for accuracy assessment and visualisation 

(Matplotlib, Pandas, Scikit-learn and mplcursors). Matplotlib is a sophisticated Python 

charting package. It supports a broad range of customisable plots and charts, such as 

line plots, scatter plots, bar charts, histograms, and others. mplcursors is a Python 

module that improves the interactivity of Matplotlib graphs by including cursor 

annotations. It lets users see further details about points of data when they hover over 

them with the cursor. Scikit-learn is a Python machine-learning package that provides 

easy-to-use data mining and analysis capabilities. In this study, it was utilised to assess 

the accuracy of parameter calculations. 

3.2  Abstract representation of the methodology 
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3.2.1 Stage 1 – Initial data extraction and data processing 

• Generate elevation surfaces (DTM, DSM and NDSM) 

Esri published a workflow to automate the generation of 3D multi-patch buildings 

(Esri, 2023). Although the final output could be more accurate, one of the steps involves 

running a Python-based script within ArcGIS to extract the above-mentioned elevation 

surfaces by processing .las files, which is the most common LiDAR data storage format. 

This study uses this script to extract elevation surfaces for further processing. These 

surfaces provide valuable insights into the topography of the study area, the distribution 

of above-ground features, and the morphology of buildings and structures. 

• Generate slope and slope direction of each building. 

The Building Slope Analysis Model, created using Model Builder in Esri ArcGIS Pro, 

is designed to assess the slope of building structures based on high-resolution elevation 

data. The model comprises four primary steps: create a 2m Buffer for building, extract 

NDSM raster by mask, fill voids, generate flow direction, and evaluate slope. 

3.2.2 Stage 2 - Building footprint database preparation 

• Calculate eave height, ridge height and roof slope. 

Another critical stage of 3D building modelling involves extracting roof parameters 

such as ridge height, eave height, and roof slope. The model employs the “Zonal Statistics 

as a Table” as the primary tool to generate the above parameters. Instead of relying on 

traditional mean calculations which may be susceptible to outliers, the model adopts 

a more robust approach by evaluating percentile values and median using the Zonal 

Statistics as Table tool. This methodology ensures that extreme values do not unduly 

influence the analysis, resulting in more reliable and representative results. After 

calculating these parameters, the values will automatically update the attribute table of 

the building footprint feature layer. Table 1 shows the configuration used to calculate the 

above parameters. 

Table 1: Statistical values and methods for calculating the above parameters 

Parameter Method Statistical value 

Eave height 1 – Consider NDSM heights 0.25m on either 

side of the building boundary 

 

 

 

 

 

2 – Consider NDSM heights within a 0.5m 

inward buffer from the building's edge. 

 

 

 

 

 

50th percentile, 

median, 90th and 

95th percentile 
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Ridge height Consider the entire building footprint when 

evaluating with NDSM and slope raster.   

 

 

 

 

Median, 75th, 90th 

and 95th percentile 

for ridge height. 

Roof slope 
Median, mean, 90th 

and 95th percentile 

 

• Evaluate the roof form 

Classifying roof types is a crucial aspect of 3D building modelling. The methodology 

outlined below presents a systematic approach to classify roof types, incorporating both 

slope characteristics and directional analysis of roof structures. 
 

Step 1: Identification of sloped and flat roofs 

Ridge height and eave height difference: The first step involves distinguishing 

between sloped and flat roofs. This is primarily achieved by evaluating the difference in 

elevation between the ridge height and the eave height of buildings. A significant disparity 

between these two heights typically indicates a sloped roof structure. 

Slope calculation: Additionally, mean slope calculations are employed to further 

differentiate between sloped and flat roofs. Higher mean slope values correspond to sloped 

roof structures, while lower values suggest flat or nearly flat roofs. 

Step 2: Classification of different pitched roofs: 

After identifying sloped roofs, the next step focuses on classifying different pitched 

roof types, such as Shed, Gable, and Hip roofs. This classification is achieved by analysing 

the distribution of roof pixels in eight different directions relative to the building footprint 

by conducting flow direction analysis and calculating overall pixel percentages in each 

direction.  

3.2.3 Stage 3 – Accuracy assessment 

Step 1 – Select a set of random buildings from the study area. 

This step randomly selects a representative set of buildings from the study area. This 

selection aims to ensure a diverse sample that adequately represents the variability of 

building structures within the study area. This step is done automatically by running 

a Python script within a model builder code block.  

Step 2 – Digitize and generate eave lines and ridge lines of the selected buildings. 

Once the random buildings are identified, their respective eave lines (the lower edge 

of the roof where it meets the walls) and ridge lines (the highest point of the roof) are 

manually digitised from available building footprints or point cloud data. The digitisation 

process ensures an accurate representation of the roof geometry, enabling precise 

calculations of ridge height and eave height for accuracy assessment. 

Step 3 – Update roof forms based on ortho imageries.  

After digitising the eave and ridge lines, a new field is added to update the roof forms 

based on the ortho imageries. This step helps validate and adjust the accuracy of the 

initially detected roof forms by comparing them with visual evidence from the imagery. 

Any discrepancies or inaccuracies between the detected roof forms and the Ortho imagery 

are identified and corrected, ensuring the reliability of subsequent analyses. 
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Figure 9: Basic types of roofs that can be generated 

    Gambrel          Half-hip        Gable-hip              Gablet                  Dome 

  Mansard-flat         Mansard         Gambrel-flat            Vault               Butterfly 

Figure 10: Complex building roof types considered 

Step 4 – Calculate error statistics. 

Error statistics are calculated to quantify the accuracy of the ridge height and eave 

height calculations, as well as the automatic detection of roof forms. Common error 

metrics include: 

Mean Absolute Error (MAE): The average absolute difference between the detected and 

ground-truth ridge heights and eave heights. Lower MAE values indicate higher accuracy. 

Root Mean Square Error (RMSE): The square root of the average of the squared 

differences between the detected and ground-truth heights. RMSE measures the overall 

deviation between the predicted and actual values. 

Confusion matrix: The proportion of buildings for which the automatically detected roof 

forms match the updated forms based on ortho-imagery. 

These error statistics provide insights into the precision and reliability of the ridge 

height and eave height calculations, as well as the effectiveness of the automated roof 

form detection algorithm. 

3.2.4 Stage 4 – Develop CGA script in Esri CityEngine 

• Modelling basic roof types 

Esri CityEngine provides CGA syntax for four main types of roofs (Hip, Gable, Shed and 

Pyramid) in addition to flat roofs (Figure 9). This syntax can be adopted to generate several 

other roof types, as explained in the Esri CityEngine tutorial series. 

 

 

 

 

 

 

 

• Modelling complex roof types 

In addition to the five basic roof types, including flat roofs, ten additional roof types are 

implemented. Figure 10 visualises each of the ten roof types, illustrating their distinctive 

shapes and architectural characteristics. 
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• Implement a Graphical User Interface (GUI) for user interaction 

A user interface is implemented to allow users to interactively manipulate 33 parameters 

related to the 3D building modelling. These parameters encompass various aspects of the 

3D modelling process, including visualisation options, building attributes, roof-related 

attributes, single-dormer attributes, and double-dormer attributes.  

• Modelling CGA rules for texturing 

Two distinct methods of visualising roofs and facades are implemented: realistic 

visualisation and solid colour representation. Realistic visualisation utilises textures 

imported from the Esri CityEngine built-in library. These textures enable intricate 

detailing and lifelike rendering of roofs and facades, enhancing the visual appeal and 

realism of the models; however, these textures do not correspond to the actual 

appearance of the models. Conversely, solid colours provide a simplistic yet customisable 

approach, allowing users to interactively adjust colours according to their preferences 

and requirements. 

3.2.5 Stage 5 – Generate 3D model 

Stage 5 of the methodology for generating 3D models using Esri CityEngine begins 

with importing essential geospatial data, including shapefiles detailing building 

footprints, DEMs capturing terrain elevations, and orthophotos providing aerial imagery. 

This data forms the foundational framework for subsequent modelling steps. Next, the 

imported shapefiles are aligned with the terrain to ensure spatial accuracy, facilitating 

proper placement of building structures atop the terrain surface according to the DEM. 

Later, according to Figure 11, CGA rule parameters are linked with shapefile attributes, 

automating 3D building model generation based on predefined rules and attribute values. 

This linkage enhances adaptability and responsiveness to building attribute variations. 

Furthermore, the generated 3D models are refined using additional parameters to 

enhance realism and accuracy, including adjustments to building heights, roof styles, 

facade textures, and architectural details like dormers. Through these systematic steps, 

the methodology aims to create accurate and visually compelling representations of the 

built environment. 

 

 
 

 

3.2.6 Stage 6- Prepare systematic workflow 

ArcGIS Pro allows users to create tasks, giving users a streamlined and easy approach 

to automate workflows and execute repetitive activities quickly. According to Esri (n.d.), 

a task is a preset series of steps to lead users through a workflow or business process. 

Thus, it may be used to create interactive tutorials, increase workflow efficiency, or help 

apply best practices. This study used ArcGIS Pro task implementation to create 

a systematic pipeline so users could easily execute the steps accordingly.  

Figure 11: Parameters - attribute linking 
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4 ROOF PARAMETERS CALCULATION 

4.1 Initial data processing 

Initial data processing consists of four main steps, each essential for preparing 

geospatial data for analysis. These steps include creating a 2-meter buffer around 

building footprints, extracting NDSM raster data within the buffered area, filling voids 

within the NDSM raster, and generating flow direction while evaluating slope. To 

streamline the entire workflow, the model represented by Figure 12 was implemented. 

1. Create a 2m Buffer for Building: In this step, a 2-meter buffer zone is generated 

surrounding the outlines of building footprints. This buffer defines the area of 

interest for subsequent analysis, with a specific focus on the surroundings of the 

buildings. The buffer is used as the foundation for further processing and analysis, 

ensuring that the relevant geographic features are encompassed within the 

designated zone. Creating a buffer is critical to identify if the roof structure is 

expanded beyond the boundaries of the initial building footprints. 

2. Extract NDSM Raster by Mask: The buffer created in the previous step serves as 

a clipping mask for extracting the NDSM raster data corresponding to the defined 

area of interest. The NDSM provides crucial elevation information relative to 

ground level, which is essential for conducting detailed slope analysis. By isolating 

the NDSM data within the buffered area, a focus is placed solely on the terrain 

surrounding the buildings, enabling meaningful insights to be derived. This step 

ensures fast execution in later steps since it only focuses on specific regions. 

3. Fill Voids: Any voids or missing data within the NDSM raster are addressed to 

ensure the completeness and accuracy of the dataset. Voids or missing data can 

arise due to various factors, such as data acquisition errors or inconsistencies. 

This step is critical when conducting flow direction analysis in the next step.  

4. Generate Flow direction and evaluate slope: The final step involves computing 

the flow direction based on the filled NDSM raster and evaluating the slope of the 

building surfaces using specialised tools such as the Surface Parameter tool. 

Valuable insights into the steepness or gradient of the building's terrain are 

obtained by analysing the flow direction and slope, which will utilised during roof 

classification. 

 

 

 

 

 

 

 

 

 

In the initial data processing phase of 3D modelling, one crucial step involves 

addressing building footprints that exhibit multiple roof types. This scenario often arises 

in urban environments where structures composed with heterogeneous roof designs 

within a single footprint. To ensure accuracy and fidelity to the original structures, it is 

Figure 12: Model generated for extracting initial data 
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Figure 13: Calculation of slope of each roof 

Figure 14: Calculation of ridge height of each roof 

important to split these complex footprints into distinct components, each representing 

a unique roof type that is supported by the system. 

4.2 Slope, ridge and eave height calculation 

4.2.1 Evaluation of roof slope 

In the calculation of slope, the Zonal Statistics tool of ArcGIS Pro was utilised, with 

the building slope raster generated in the previous step serving as the input raster 

dataset. Building footprints were employed as the zone layer parameter for the Zonal 

Statistics tool, defining them as the zones for which slope statistics were to be computed. 

This approach allowed for the aggregation of slope values within each building footprint, 

providing insights into the overall characteristics of the building roof. 

Following the execution of the Zonal Statistics tool, statistics such as median, mean, 

90th percentile and 95th percentile slope values were computed for each building 

footprint. To enhance the interpretability of the output, alterations were made to the field 

names associated with these statistics within the attribute table, ensuring clarity and 

consistency. Subsequently, the modified field names were joined back to the building 

footprints as new fields in the attribute table, facilitating further analysis and 

visualisation of the calculated slope parameters alongside other pertinent attributes of 

the buildings. Figure 13 shows the sub-process of the model that is used to automate the 

above workflow. 

 

 

 

 

 

 

 

4.2.2 Evaluation of ridge height 

A similar process was conducted for the calculation of ridge height. Instead of using 

the building slope raster, NDSM was utilised as the input raster dataset. The NDSM 

provides elevation information relative to ground level, which is essential for analysing 

ridge heights. Building footprints were again employed as the zone layer parameter for 

the Zonal Statistics tool, delineating the areas for which ridge height statistics were to be 

computed. This approach facilitated the aggregation of elevation values within each 

building footprint, allowing for the determination of ridge heights across the study area. 

Figure 14 represents a crucial part of the process, depicting a visual representation or 

diagram illustrating the steps involved in calculating ridge heights. 
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Figure 15: Eave height evaluation model (method 1) 

Figure 16: Eave height evaluation model (method 2) 

Upon executing the Zonal Statistics tool, statistics such as median, 75th percentile, 

90th percentile, and 95th percentile ridge height values were computed for each building 

footprint. These statistics provide a comprehensive understanding of the variation in ridge 

heights across the landscape. During the accuracy assessment stage, the most suitable 

indicator among these statistics was selected, ensuring the reliability and relevance of 

the ridge height measurements for subsequent steps. 

4.2.3 Evaluation of eave height 

• Method 1 

For the calculation of eave height, the building footprints were converted to polylines 

to facilitate further spatial analysis. Subsequently, a buffer of 0.5 meters was created 

around each polyline. This buffer delineated an area around the roof, focusing specifically 

on the eave region. The Zonal Statistics tool was then employed to compute relevant 

statistics for eave height estimation. In this case, the NDSM was used as the input raster 

dataset, providing elevation information relative to ground level. However, to ensure that 

only the eave region was considered for analysis, the zones for the Zonal Statistics tool 

were defined as the buffer features around the boundary of each building footprint.  

Multiple statistical approaches, including the 50th percentile, median, 90th percentile, 

and 95th percentile, were utilised to capture the variability in eave height across the study 

area. Incorporating these statistical values helped to determine which method was more 

responsive to outliers. Figure 15 demonstrates the generated model to automate the 

steps. 

 

 

 

 

 

 

 

 

• Method 2 

For the second method, a distinct approach was adopted. Initially, a negative buffer 

of 0.5 meters was created around each building's footprint. This negative buffer 

delineated a portion surrounding the eave area inside the footprint. Subsequently, the 

Pairwise Erase tool was utilised to extract the difference between the original footprint 

and the negative buffer. This process resulted in the generation of a refined area 

corresponding to the eave region inside each building footprint. Following this step, the 

Zonal Statistics tool was employed once again. Accordingly, different statistical units, 

including median, mean, 90th percentile, and 95th percentile, were utilised to compute 

relevant statistics for eave height estimation. Figure 16 represents the entire workflow 

implemented to automate the process. 
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Figure 17: Roof direction extent calculation 

4.3 Percentage of pixels in each direction 

To assess the percentage of pixels covering the building footprint in each direction, 

the model represented in Figure 17 was implemented. Initially, the Tabulate Area tool 

was utilised to determine the extent of pixels covering the roof in each direction. This step 

provided valuable insights into the spatial distribution of pixel coverage across the 

building footprint. Following the determination of pixel extents in each direction, the total 

area was calculated by summing the extents in all directions using the Calculate Field 

tool. This cumulative total represented the overall area covered by pixels on the roof, 

serving as a reference for normalisation.  

To facilitate comparison and analysis, it was essential to normalise these values. This 

was achieved by calculating the percentage of pixels in each direction relative to the total 

area. Each direction's extent was divided by the total area and multiplied by 100 to 

express the coverage as a percentage. This normalisation process ensured that all values 

were brought to a common reference, enabling the creation of common classification 

rules. 
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5 CLASSIFICATION OF ROOF TYPES 

Roof type categorization is an important stage in the 3D modelling workflow since it 

allows for proper representation of LOD2 models. This section provides a full explanation 

of the processes for automatically recognising various roof types. 

5.1 Classification of flat roofs and pitched roofs 

The classification of roofs into pitched and flat categories relied on a key indicator: the 

slope of the building. This methodological approach aimed to discern the structural 

characteristics of roofs within diverse geographic regions (residential, rural and city 

centre). Initially, data collection involved importing Excel files containing comprehensive 

building information for each study area. These files served as the foundation for 

subsequent analysis and have information such as the slope of the roof calculated using 

different methods, roof area, percentage of pixels in eight different directions, and the 

actual status of the roof, whether it is pitched or flat. 

The most important step was to find the most suitable indicator for slope calculation. 

Accordingly, four statistical methods were utilised (95th percentile, 90th percentile, median 

and mean). To quantify and decide the most effective statistical method, an accuracy 

score was calculated to assess the classification's performance. It measures the ratio of 

correctly classified roofs to the total number of roofs. By plotting evaluation metrics 

against varying thresholds for each study area, the graphical representation facilitated 

a comprehensive understanding of the classification accuracy across different thresholds 

and select the best indicator. 

According to Figure 18, it is evident that Mean (around 24°) and Median (around 15°) 

statistical indicators provide the best separation for pitched and flat roofs for all study 

areas. However, the Median give slightly more accuracy with respect to the mean 

(Table 2). 

  

Mean 

90th percentile 

Median 

95th percentile 

   Residential 

   City center 

× Rural 

Figure 18: Accuracy vs roof threshold for different indicators 
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Figure 19: Distribution of pixel percentages of certain sample roof types 

Table 2: Accuracy score of mean and median 

Study area Indicator Threshold Accuracy score 

Residential Median <15° 0.8552 

Mean <24° 0.8448 

Rural Median <15° 0.8754 

Mean <24° 0.8190 

City centre Median <15° 0.7984 

Mean <24° 0.7345 

 

5.2 Classification of pitched roof types 

According to Figure 19, certain roof types can be distinguished by the distribution of 

pixel percentages. This differentiation was achieved by analysing the directional pixel 

percentages derived from multiple radial graphs for each type of roof. 

Flow Direction Analysis: The directions for analysis are obtained through flow 

direction analysis, which delineates the flow path of surface water runoff (Esri, n.d). This 

directional raster is utilised to determine the number of dominant directions, which is an 

indication of the number of roof directions. 

Percentage Calculation: For each direction, the proportion of roof pixels in the 

associated segment is determined. This research sheds light on the prevailing orientation 

of the roof surface and aids in the classification of pitched roof types based on their 

various shapes and configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 

Figure 20: Python function to classify roof types 

Gable roofs predominantly exhibited pixel percentages in opposite directions, while 

Shed roofs predominantly accounted for pixel percentages in a single direction. This 

observation was made by analysing radial graphs generated for each type of roof. After 

identifying these relationships between roofs, a Python code was used to model this 

relationship.  

The code (Figure 20) utilised a function called check_roof to classify the roof types 

based on specific criteria. For instance, the function categorised roofs as Shed, Gable, or 

Hip based on the directional pixel percentages and other factors such as the sum of pixel 

percentages and the presence of pixel percentages in opposite directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This function takes a row of data as input, typically representing a single roof, and 

returns the classified roof type. This conditional statement checks if the roof status is 

'Pitched'. If it is, the function proceeds with further analysis; otherwise, it categorises 

the roof as 'Flat'. Within the loop, if the sum of the three percentages' consecutive 

direction exceeds or equals 60, the roof type is classified as 'Shed'. This threshold value 

is based on observations from the majority of the shed roof types.  

After analysing for Shed roofs, the function proceeds to analyse for Gable and Hip 

roofs based on additional criteria. This includes checking for pairs of percentages in 

opposite directions and sum thresholds. In this stage, the program takes the top 4 

percentages and checks if these are in opposite directions. Accordingly, if there are two 

opposite pairs in the top 4 directions and the sum of the top is over 60, then that roof is 

classified as Gable. In the second condition for Gable, the top 2 percentages are 

considered, and if its sum is greater than 40 and is also an opposite pair, it is classified 

as Gable. As per the last condition, the program checks that the lowest percentages are 

less than 15 and are pairs.  
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6 GENERATE CGA SCRIPT AND LOD2 MODEL 

6.1 Modelling roof types 

6.1.1 Basic roof types 

The implementation of different roof types, namely shed, gable, hip, and pyramid roofs, 

based on the CityEngine CGA rules, is integral to the generation of the LOD2 model. 

Figure 21 demonstrates a part of the CGA script that is used to implement the following 

basic types.  

Shed Roof: defined in the CGA rules as 'roofShed'. It is characterised by a single 

sloping surface with an adjustable angle parameter. The 'RoofExtentReform' operation 

is applied to refine the roof extent and height, providing additional control over its 

appearance and alignment. 

Gable Roof: represented by 'roofGable' in the CGA rules, features two sloping 

surfaces meeting at a ridge. Key parameters include the angle of the roof slopes, overhang 

dimensions, and the option to change the orientation of the ridge using the index 

argument. The 'RoofExtentReform' operation is again utilised to fine-tune the roof extent, 

ensuring optimal integration with the building geometry. 

Hip Roof: in contrast to the gable roof, the hip roof, defined as 'roofHip' in the CGA 

rules, features multiple sloping surfaces converging to form the ridge. The angle 

parameter dictates the slope of each surface, with uniformity contributing to the 

characteristic appearance of the hip roof. 

Pyramid Roof: implemented as 'roofPyramid' in the CGA rules, is characterised by 

multiple sloping surfaces with the same angle converging to form a point at the top. Like 

the hip roof, the angle parameter governs the slope of the roof surface. 

 

 

 

 

 

 

 

 

 

 

 

 

6.1.2 Complex roof types 

In CGA modelling, the implementation of complex roof types involves the combination 

of primitive roof structures defined above. Figure 22 and the following descriptions 

explore the methodology behind implementing different roof types using CGA rules, 

showcasing the flexibility of this approach in creating complex roof types using CGA. 

Figure 21: Implementation of basic roof types with CGA rules 
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Gambrel roof- starts with a gable roof of a specified angle. It then splits the roof 

vertically and applies a mass to the lower part while invoking a gable roof on the upper 

part at a different angle. 

Half-hip roof- starts with a gable roof of specified angles and sets its height 

accordingly. It then splits the roof vertically and applies a mass to the lower part while 

invoking a hip roof on the upper part. 

Gable-hip roof- combines elements of both gable and hip roofs. It is implemented by 

creating an envelope with a normal direction and specifying different components for the 

sides and front of the roof. While one side of the roof is normal to the eave, the other side 

has a specific angle, which corresponds to a hip roof. 

Gablet roof- like the Half-hip roof, this begins with a hip roof and splits it vertically. 

It sets the height of the upper part and applies a gable roof to it. 

Mansard roof- The roof begins with a hip roof and splits it vertically. It sets the height 

of the upper part and applies a hip roof to it, creating the characteristic double-sloped 

profile of a Mansard roof. 

Gambrel-flat and mansard-flat roof- types start with a gable roof and a hip roof, 

respectively. Later, a flat top is placed over both roof forms. 

Vault and dome roof– structures rely on a recursive design pattern. Vault roofs utilise 

a series of gable roofs. In contrast, dome roofs employ stacked hip roofs to form 

a spherical shape. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 22: Implementation of CGA rules for complex roof types 
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6.3 Implement user interface for user interaction 

Figure 23 represents a GUI implemented to allow users to interactively manipulate 33 

parameters related to the 3D building modelling. These parameters encompass various 

aspects of the 3D modelling process, including visualisation options, building attributes, 

roof-related attributes, single-dormer attributes, and double-dormer attributes. Table 3 

represents all the parameters and their variable names that can be controlled by users 

within CityEngine GUI. 

 

Table 3: 3D modelling parameters supported by user interface 

Parameter 
category 

Parameter name Remarks 

Visualisation 
options 

Representation Solid colour or realistic representation 

Roof colour 
Hexa-decimal colour code 

Wall colour 

Cleanup Whether shape errors should be corrected 

Outline status Add building edges 

Building 

attributes 

EvHGT_2 Height of the eave from the ground 

RidgeHeigh Height of the roof ridge 

AccuRoofFo Type of the roof 

DrmFrm 
Whether a single dormer, double dormer 

or triple dormer 

DrmDrc Orientation of the dormer 

DrmRoof Type of the roof of dormers 

drmRot Rotate the orientation of the dormer 

Roof related 

attributes 

Index Orientation of the main building roof 

GabHipSid1 / 

GabHipSid2 
The slope of the sides in Gable-hip roofs 

GabHipFrnt The slope of the front in Gable-hip roofs 

Saltbox_ratio Ratio of the division in Saltbox roofs 

Dormer related 

attributes 

(Sng/Dbl)DrmLen 
Length (Width if the index is 1) of the 

dormer 

(Sng/Dbl)DrmWid 
Width (Length if the index is 1) of the 

dormer 

(Sng/Dbl)DrmHgt Height of the dormer 

(Sng/Dbl)DrmbdHt Dormer body height 

(Sng/Dbl)DrmDtEd Distance to the dormer from the roof edge 

(Sng/Dbl)DrmDtEv Distance to the dormer from the roof eave 

(Sng/Dbl)DrmHtEv Height to the dormer bottom from eave 

(Sng/Dbl)DrmAngl Dormer roof slope 
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6.4 Generate LOD2 model 

After conducting the previous processing steps inside ArcGIS Pro, the generation of 

the LOD2 model was conducted in Esri CityEngine. The process is carried out through 

a series of systematic steps aimed at creating accurate and visually compelling 

representations of the study area. 

Step 1: The process commences with the importation of essential geospatial data, 

including pre-processed shapefiles delineating building footprints with supplementary 

information, DEM capturing terrain elevations, and orthophotos providing aerial imagery. 

This data serves as the foundational framework for the subsequent modelling. 

Step 2: The imported shapefiles are aligned to the terrain to ensure spatial accuracy 

in the generated 3D models. This alignment process facilitates the proper placement of 

building structures atop the terrain surface, ensuring that the models conform to the 

underlying topography captured by the DEM. 

Step 3: As captured in Figure 15, CGA rule parameters are linked with shapefile 

attributes. This crucial step enables the automated generation of 3D building models 

based on predefined rules and attribute values derived from the shapefile data. By 

establishing this linkage, the generation process becomes highly adaptable and 

responsive to variations in building attributes. However, if the parameter and attribute 

name are the same, this step will be applied automatically once the CGA rule file is 

applied to the shapefile. 

Step 4: The generated 3D models undergo refinement using additional parameters 

mentioned in Table 3 to enhance their realism and accuracy. This refinement stage may 

involve adjustments to building heights, roof styles, facade textures, and other 

architectural details such as dormers. By fine-tuning these parameters, the 3D models 

achieve a higher level of fidelity and coherence, closely resembling real-world structures. 

Figure 24 illustrates some of the dormers added during the final refinement stage. 

 

Figure 23: GUI parameters for 3D modelling 
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Figure 24: Dormers added during final refinement stage. 
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7 ACCURACY ASSESSMENT 

7.1 Accuracy assessment of ridge height 

Ridge height, which is the height of the roof from ground level, is calculated based on 

a statistical methodology proposed by Hron and Halounová (2019), which involves using 

the 95th percentile as the top height value within the footprint. However, in addition to 

the 95th percentile, three more statistical values were considered in this study to evaluate 

the most accurate metrics.  

To validate the accuracy of the proposed methodology, an extensive accuracy 

assessment is conducted. This assessment involves comparing the ridge height values 

generated through the statistical methodology against manually digitised values. By 

juxtaposing these two sets of data, it was evaluated how close each method was to the 

actual value of the ridge height. Figures 25, 26, and 27 represent the Absolute Error 

distribution of each study area for each method of consideration. According to the error 

distribution, it is evident that in all three study areas, there are some building footprints 

which have extreme RMSEs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: City area ridge height absolute error distribution. 

Figure 26: Rural area ridge height absolute error distribution. 

Figure 27: Residential area ridge height absolute error distribution 
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Figure 28 represents the RMSE of each study area for each method of ridge height 

calculation. Overall, ridge height calculation by median gives the least error for residential 

and city centres. However, in rural areas, calculating ridge height by the 90th percentile 

gives a lower RMSE, around 1m less than the median method.   

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

After using the 95th percentile to identify and eliminate outliers, a notable 

improvement was observed in the RMSE values (Figure 29). Across all study areas, the 

removal of outliers led to a substantial reduction in RMSE, bringing it closer to 1 meter 

for rural and urban locales while achieving less than 0.5 meters for residential regions. 

Interestingly, upon outlier removal, the method based on the 90th percentile for ridge 

height estimation exhibited the lowest RMSE for rural and residential areas, averaging 

around 0.25 meters. However, for urban areas, the RMSE remained relatively high, 

approximately 2.5 meters. 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

Figure 28: RMSE before removing outliers 

Figure 29: RMSE after removing outliers 
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Figure 30: City area eave height absolute error distribution 

Figure 31: Rural area eave height absolute error distribution 

Figure 32: Residential area eave height absolute error distribution 

The median method was selected for calculating ridge height due to its inherent 

stability and consistently low RMSE values, both before and after the removal of outliers. 

Even though outlier removal resulted in lower RMSE values for ridge height estimation 

based on the 90th percentile, the median method maintained its appeal due to its 

reliability and relatively stable performance across all scenarios. 

7.2 Accuracy assessment of eave height 

Eave height, which is the height of the roof bottom from ground level, is calculated 

using a statistical methodology proposed by Hron and Halounová (2019). However, in 

addition to the 75th percentile, three more statistical values were considered in this study 

to evaluate the most accurate metrics for eave height calculation. 
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Based on the observations from Figures 30, 31, and 32, it becomes apparent that 

outliers are present across all scenarios when calculating eave height using each 

statistical method, as outlined in the methodology section. These outliers, which deviate 

significantly from most data points, can potentially skew the estimation process and lead 

to inaccuracies in the results. This highlights the importance of identifying and 

addressing outliers to ensure the robustness and reliability of the eave height calculation 

methodology. 

Figures 33 and 34 represent a comparison of different eave height calculation methods 

before and after removing outliers. Accordingly, it is evident that in all cases, the city 

centre study area accounted for the highest RMSE. Apart from that, it is also important 

to point out that in almost all cases, using the median to calculate eave height is more 

consistent and accurate, except for the city centre, where the third percentile’s RMSE is 

slightly lower than using the Median. According to Figure 34, a substantial reduction in 

RMSE is evident across all study areas. Post-outlier removal, RMSE values for the Median 

method outperform the 75th percentile, except for the residential region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: Eave height RMSE before removing outliers 

Figure 34: Eave height RMSE after removing outliers 
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As a result, using the median approach produces the best results for ridge height and 

eave height calculations. This assumption is substantiated by the significant drop in 

RMSE found across several study areas prior to and following outlier elimination. The 

Median method typically outperforms other statistical approaches, including the 75th 

percentile, across areas. Although the 75th percentile outperforms marginally in 

residential areas, in other areas, the median technique outperforms it significantly. 

As a result, in this study, the median will be utilised as the preferred option for estimating 

ridge and eave heights in the context of 3D building modelling. 

7.3 Accuracy assessment of roof type classification 

In this section, a thorough evaluation is conducted for each roof type across different 

study areas. By analysing these metrics, it is possible to gain insights into the model's 

effectiveness in correctly identifying various roof types and assess any potential biases or 

challenges encountered during the classification process. Figure 35 represents confusion 

matrices calculated for each study area. 

 

 

 

 

 

 

 

 

 

 

7.3.1 Residential area 

In the Residential region, the classification results exhibit varying levels of accuracy 

across different roof types. Most roofs in this area are categorised as flat, which 

demonstrates a high producer's accuracy (PA) of approximately 0.89, indicating that the 

classification model effectively identifies Flat roofs when they are present. However, it's 

important to note that the user's accuracy (UA) for Flat roofs is slightly lower at around 

0.91, suggesting that there may be some misclassification of other roof types as Flat. For 

Gable roofs, while the PA is reasonable at 0.80, the UA is notably lower at approximately 

0.71. This indicates that while the model correctly identifies many Gable roofs, there is 

a higher likelihood of misclassifying other roof types as Gable. The classification of Hip 

roofs shows a particularly low PA of around 0.08, suggesting that the model struggles to 

accurately identify Hip roofs when they are present. However, the UA for Hip roofs is 

perfect (1.0), indicating that when the model predicts a Hip roof, it is almost always 

correct. Regarding Shed roofs, the PA is moderate at 0.50, indicating that the model 

correctly identifies approximately half of the Shed roofs present. However, the UA is lower 

at approximately 0.29, suggesting that there is a higher rate of misclassification of other 

roof types as Shed. 

7.3.2 Rural area 

In the Rural region, the classification results display varying accuracies across 

different roof types. The abundance of Flat roofs is accurately captured by the model, 

Figure 35: Confusion matrix of each region 

 Residential           Rural          City center 
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with a high PA of approximately 0.89 and a respectable UA of around 0.87. This indicates 

that the model effectively identifies Flat roofs when they are present and maintains a high 

level of accuracy in its predictions. Similarly, for Gable roofs, the model demonstrates 

a high PA of around 0.87 and a strong UA of approximately 0.96. This suggests that the 

classification model effectively identifies Gable roofs and maintains a high level of 

accuracy in its predictions for this roof type. Hip roofs exhibit lower accuracies compared 

to Flat and Gable roofs, with a PA of 0.60 and a UA of 0.30. This indicates that while the 

model identifies some Hip roofs correctly, there is room for improvement in accurately 

classifying this roof type. Shed roofs also show reasonably good accuracy metrics, with 

a PA of 0.75 and a UA of approximately 0.74. This suggests that the model is relatively 

successful in identifying Shed roofs, although there is still room for improvement. 

7.3.3 City Centre area 

In the City Centre, the classification accuracies vary across different roof types, with 

noticeable differences compared to the Residential and Rural regions. The model's 

performance in identifying Flat roofs is relatively weak, with a PA of approximately 0.54 

and a UA of around 0.73. This suggests that there is a higher rate of misclassification of 

other roof types as Flat in this area. For Gable roofs, the model demonstrates a high PA 

of around 0.81, indicating that it effectively identifies Gable roofs when they are present. 

However, the UA is slightly lower at approximately 0.76, suggesting some 

misclassification of other roof types, such as Gable. Hip roofs exhibit the lowest accuracy 

metrics in this region, with a PA of 0.12 and a UA of 0.21. This indicates that the model 

struggles to accurately identify Hip roofs when they are present, leading to a higher rate 

of misclassification. Shed roofs, on the other hand, show relatively good accuracy metrics, 

with a PA of approximately 0.84 and a UA of around 0.63. This suggests that the model 

is relatively successful in identifying Shed roofs, although there is still room for 

improvement. 

In summary, the classification performance varies across different roof types and 

regions. While the model demonstrates high accuracy in identifying certain roof types 

such as Flat and Gable in the Residential and Rural regions, it struggles with accurate 

classification of Hip roofs, particularly in the City Centre. Shed roofs generally exhibit 

moderate accuracy across all regions, indicating room for improvement in the model's 

ability to classify this roof type accurately. 
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8 IMPLEMENTATION OF THE WORKFLOW 

One of the primary goals of this study is to provide a systematic workflow that will 

allow users to easily traverse through the procedures needed in designing complicated 

roof kinds utilising CGA rules. While the intricacy of the models remains inherent, the 

goal is to shield users from those models, allowing them to easily comprehend the process 

and execute it. 

To achieve this, Esri tasks were used, a recently added feature in ArcGIS Pro. 

By incorporating Esri tasks into the workflow, users have access to optimised procedures 

and intuitive interfaces that enable the execution of complicated models and Python 

scripts without revealing their complexity. This method ensures that users can easily 

traverse the implementation process step by step. Figure 36 demonstrates the 

implemented workflow, which has five main stages. Each of these stages is built with 

sub-tasks and provides information and instructions for the users.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36: Implemented pipeline to streamline the workflow 
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9 RESULTS 

9.1 Results of roof parameters calculation  

This thesis details a comprehensive workflow aimed at automating the generation and 

classification of complex roof types through the integration of geospatial data processing 

techniques and CGA principles. The parameter calculation stage, outlined in section 4, 

plays a fundamental role in preparing the geospatial data for subsequent analysis. In this 

stage, NDSM is extracted from LiDAR data and generates the flow direction and slope of 

the area. In section 4.2, the analysis experiment uses multiple methods for calculating 

slope, ridge height, and eave height. Tables 4 and 5 demonstrate a summarised RMSE 

and MAE of different methods used to calculate ridge height and eave height. 
 

Table 4: Ridge height calculation results 

 

 

 

 

 

 

 

 

 

 

 
 

Table 5: Eave height calculation results 
Eave H

eigh
t 

RMSE 

  City Residential Rural 

Method 1 (Median) 2.494 1.164 0.482 

Method 2 

Median 2.013 0.560 0.496 

75th percentile 1.949 0.684 0.947 

95th percentile 3.528 2.266 1.639 

MAE 

Method 1  
(Median) 

1.532 0.855 0.346 

Method 2 

Median 1.296 0.365 0.320 

75th percentile 1.403 0.289 0.658 

95th percentile 2.589 1.028 1.275 

 

Choosing the most effective slope indicator is also an important part of the procedure. 

Four statistical approaches were tested to establish the most efficient slope indicator, and 

accuracy scores were compared. By comparing f-scores at different thresholds, Mean and 

Median indicators were shown to be the most dependable, with Median marginally 

surpassing Mean in all research areas. Figure 18 and Table 2 show the accuracy values 

obtained for each method. 

R
id

ge H
eigh

t 

RMSE 

  City Residential Rural 

Median 1.484 0.634 1.586 

75th Percentile 2.186 2.518 1.107 

90th percentile 3.340 1.192 0.596 

95th percentile 4.034 1.949 1.380 

MAE 

Median 1.093 0.371 1.120 

75th Percentile 1.531 0.991 0.725 

90th percentile 2.394 0.332 0.311 

95th percentile 2.877 0.537 0.837 
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Realistic texture                                          Solid colour texture 

City center 

Residential 

Rural 

Figure 37: Sample buildings generated from the pipeline. 

9.2 Results of the LOD2 model 

In this section, the primary outputs of our research are presented: LOD2 models of 

three distinct study areas – the City Centre, Rural, and Residential regions. These models 

could be considered as the final output of the implemented workflow, showing 

a comprehensive representation of urban landscapes. 

Figure 37 depicts six photos of LOD2 models chosen to demonstrate each research 

location's various architectural typologies and contextual details. Each study region is 

represented by two photos that provide different viewpoints of building representations 

using solid textures and realistic textures. The lifelike textures are not a true depiction of 

reality. However, it is merely to emphasise the built model's capacity to include genuine 

textures acquired as photographs of real-life facades and roofs. The photos with solid 

textures provide a simple but useful representation of the built environment, emphasising 

the spatial distribution and structure of buildings in the study region. In contrast, 

pictures with realistic textures create a vivid and immersive depiction of the study 

regions, resulting in a more lifelike visualisation. 
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10 DISCUSSION 

The methodology adopted for the calculation of ridge height occasionally yields 

unusually high outliers, which can be attributed to several factors. One prominent reason 

is the presence of natural and man-made features within the building footprint, such as 

towers, trees, and other components. These features can significantly affect the 

calculation of ridge height, particularly when they extend above the roofline of the 

building. As a result, the algorithm may erroneously attribute the height of these features 

to the ridge height, leading to inflated measurements. However, as shown in the accuracy 

assessment, by taking the Median values as a statistical measure, most of these outliers 

can be reduced. Furthermore, inaccuracies stemming from blunders during the 

digitisation of building footprints contribute to the occurrence of outliers in ridge height 

calculations. In some cases, the actual footprint area of the building may be smaller than 

the digitised area due to errors in delineating the boundaries of the building (Figure 38). 

Consequently, the methodology may inaccurately estimate the ridge height based on the 

larger digitised footprint area, resulting in exaggerated measurements. 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

In the work of Hron and Halounová (2019), they suggested and used the 95th 

percentile for ridge height calculation; however, in this study, the same parameter gave 

the highest RMSE for city centre ridge height calculation. In the case of rural and 

residential regions, it did not perform considerably as well. Since the median performed 

well in terms of RMSE, it is recommended to use it for calculating ridge height across 

three different study areas. When calculating the eaves height, they recommended using 

a buffer on both sides of the building footprint with the third percentile. The accuracy 

assessment showed that constructing a buffer on both sides of the footprint generates 

a much higher RMSE than creating a buffer solely inside the footprint boundary when 

the results were compared with the buffer built exclusively inside. 

In the process of modelling complex buildings, it is often necessary to incorporate 

additional components within the building footprint, such as dormers and roof drains. 

These architectural features play crucial roles in the functionality and aesthetic of the 

building but are not always adequately represented in the initial building footprint data. 

As a result, the omission of dormers, roof drains, and similar elements can lead to 

inaccuracies in the building model. To address these challenges, it becomes necessary to 

manually add these additional components within the building footprint during the 

modelling process. Figure 39 demonstrates a comparison of the original building footprint 

(green colour) and the updated footprint (red colour) to address these complexities. As 

a result of splitting the roof into distinct components, this segmentation often results in 

variations in both eave height and ridge height across these components. Consequently, 

2 1 3 

Figure 38: Building footprints with extreme RMSEs for ridge height. 
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it becomes necessary to adjust these heights to ensure uniformity and coherence among 

the different parts of the same roof within the City Engine. 

 

 

 
 

 

 

  

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

The current method employed for roof classification falls short of achieving acceptable 

accuracy levels, particularly in accurately classifying pitched roof types. To address this 

limitation, it is imperative to explore alternative approaches that are combined with the 

current approach and other advanced technologies. One promising avenue for 

improvement is the adoption of a deep-learning image recognition approach. By training 

the deep learning model on a diverse dataset containing labelled examples of various roof 

types, it can learn to recognise key characteristics indicative of pitched roofs with high 

accuracy. Furthermore, the deep learning approach has the potential to continuously 

improve over time as it encounters new data. 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

In certain extreme scenarios, buildings are situated across sloped regions, leading to 

inconsistencies in eave height despite the eaves being at the same level. As depicted in  

Figure 40, such situations pose challenges for the created script, particularly in 

Figure 39: Comparison of before and after building footprint update. 

Figure 40: A Building located in high slope area (Laharchitect, 2020) 
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accommodating varying eave heights within the same building structure. To mitigate this 

issue, it is advisable to implement a strategy of splitting buildings into distinct sections 

and applying CGA rules separately to each section. By treating each section 

independently, we can ensure that eave heights are accurately represented in accordance 

with the surrounding terrain. 

Since its launch in 2004, the Copernicus Atmosphere Monitoring Service (CAMS) has 

been a vital source of information on solar radiation levels in both cloud-free and actual 

weather circumstances. To assess the overall solar energy potential of any building, users 

may easily merge CAMS solar radiation data 

with 3D building models created with the 

provided pipeline. Since solar radiation 

levels per square meter are provided by 

CAMS data, an accurate evaluation of each 

building's ability to generate solar energy 

may be obtained by multiplying this number 

by the size of its roof. By enabling 

stakeholders to recognise and rank 

buildings with the greatest potential for solar 

energy generation, this capability maximises 

the use of solar energy systems. 

Additionally, as seen in Figure 41, users may 

dynamically alter the sun's azimuth and 

angle within the city engine. Using this 

interactive tool, stakeholders may determine 

the best places to put solar panels to 

maximise energy generation efficiency and 

overall system performance while 

minimising building shadows. 

Stakeholders may promote sustainable 

development practices and stimulate innovation in the energy industry by fusing 3D 

models with Copernicus solar data. This integration leads to a more effective use of 

renewable energy resources by improving the accuracy of solar energy evaluations and 

facilitating informed decision-making processes. In the end, stakeholder cooperation, 

a 3D model creation pipeline, and CAMS data synergy open the door to a more robust 

and sustainable energy future. 

It is important to draw attention to certain constraints of the methodology. Although 

the created technique accommodates the majority of the roofs (15 types), there could be 

situations that limit its application to regions with a wider variety of architectural styles. 

Furthermore, even with a single footprint, certain structures may have varying altitudes 

or several types of roofs, which makes manual separation necessary for precise modelling. 

The current pipeline is designed to automatically identify flat, shed and gable with 

acceptable accuracy levels. However, the CGA script support modelling 15 different roof 

types. Therefore, during the building footprint database generation stage end user should 

manually identify and fill the additional roof types. It can be labour-and time-intensive to 

manually add many dormers to the building footprint when there are multiple dormers 

on the roof. It would be ideal to use extra 3D modelling tools, like Sketchup, to model 

unique, unusual buildings like cathedrals.  

 The elevation data used to generate 3D models was obtained by analysing a high-

density LiDAR point cloud. These models were then translated to coincide with LiDAR-

Figure 41: Sun azimuth and angle 
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derived digital elevation models (DEMs). However, when these models were visualised as 

a scene on the ArcGIS Online platform, there was a clear gap between the ground and 

the structures. This mismatch is due to the intrinsic accuracy variations between ArcGIS 

Online terrain and LiDAR-derived terrain. LiDAR technology provides incredibly precise 

elevation data, but the landscape depiction in ArcGIS Online may lack the same degree 

of precision and resolution. As a result, disparities between the two datasets might occur, 

causing visual inconsistencies such as the visible gap between the ground and the 

structures. 

There are several future directions that might be taken to improve the approach and 

address its drawbacks. First off, adding support for other roof kinds would make the 

automated building production process more flexible and applicable. This can entail 

carrying out an in-depth study to find new roof typologies that are frequently observed in 

urban settings and incorporating them into the current framework. The existing approach 

to identifying roof types needs to be more accurate. Investigating novel methods with deep 

learning to automatically detect different types of roofs from aerial photography or LiDAR 

data is one strategy that may be used. It could be able to create more reliable and accurate 

categorisation models by utilising machine learning algorithms, which would lessen the 

need for manual intervention. 
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11 CONCLUSION 

The major goal of this project was to provide a systematic process for automatically 

generating LOD2 buildings in the city of Olomouc. Specific goals were established, such 

as determining building roof types, roof components, and building height, as well as 

creating CGI scripts in Esri CityEngine for building generation automation, assessing the 

accuracy of the generated 3D roof models, and using the developed model to estimate 

solar energy potential. 

To fulfil these goals, ArcGIS Pro and Esri CityEngine were used, which enabled the 

building of a reusable CGA script. This script assisted in the automatic production of 

structures by identifying roof kinds, components, and building height. 

The study findings provide substantial contributions to the disciplines of Geographic 

Information Systems (GIS) and 3D building modelling in urban environments. The 

developed procedure allows for the creation of LOD2 building models, which may be used 

for a variety of applications, including 3D geovisualization, solar energy cadastre 

preparation, noise propagation study, and other research critical for urban decision-

making. The outputs will be immediately used for a scientific project of the Czech Ministry 

of Culture, "Olomouc in 3D - A New Dimension of the City's Cultural Heritage: Past, 

Present, Future". 

This work established the feasibility and efficacy of the approach for autonomously 

producing LOD2 buildings in Olomouc. The objectives were met by devising a methodical 

strategy, writing reusable CGI scripts, and evaluating the correctness of created 3D roof 

models. Furthermore, the research opens the door to a wide range of applications, 

ultimately leading to better urban planning and decision-making processes. 

To sum up, this research marks a significant milestone in the field of urban modelling 

and analysis, providing a robust and adaptable methodology for generating LOD2 

buildings in Olomouc and beyond. By leveraging advanced GIS technologies and 

computational tools, this study has not only addressed current challenges in building 

generation but has also paved the way for future advancements in the field. 
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ATTACHMENTS 

Free attachments 

Attachment 1: Map poster 

Attachment 2: Thesis website 

 

Microsoft Teams attachments 

Attachment 3: Project files 

 

Project file structure 

Root directory Subfolder Content 

Deliverables 

City engine shapefiles City 

City Multipatch3D 

Residential 

Residential Multipatch3D 

ESRI_GDB City 

Residential 

Rurla 

DTM and Ortho Images City DTM 

City Ortho image 

Residential DTM 

Residential Ortho image 

Rural DTM 

Rural Ortho image 

ProjectFiles 3DBuildings.aprx project 

Python notebook Python notebooks for roof and 

height accuracy assessment 

Rule_file CityEngine CGA script 

Sample_LAS OLOMOUC 8-0_2.las 

 

 


