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Changes in genome architecture often have a significant effect on

ecological specialization and speciation. This effect may be further

enhanced by involvement of sex chromosomes playing a dispropor-

tionate role in reproductive isolation. We have physically mapped

the Z chromosome of the major pome fruit pest, the codling moth,

Cydia pomonella (Tortricidae), and show that it arose by fusion be-

tween an ancestral Z chromosome and an autosome corresponding

to chromosome 15 in the Bombyx mori reference genome. We fur-

ther show that the fusion originated in a common ancestor of the

main tortricid subfamilies, Olethreutinae and Tortricinae, compris-

ing almost 700 pest species worldwide. The Z–autosome fusion

brought two major genes conferring insecticide resistance and clus-

ters of genes involved in detoxification of plant secondary metabo-

lites under sex-linked inheritance. We suggest that this fusion

significantly increased the adaptive potential of tortricid moths

and thus contributed to their radiation and subsequent speciation.

adaptive evolution | leaf-rollers | performance genes |
sex chromosome–autosome fusion | sex-linkage

Karyotype differences observed between closely related species
have stimulated long-standing debates over the role of chro-

mosome rearrangements in speciation. Recently, new empirical
evidence has inspired the development of theoretical models that
offer an explanation of how changes in genome architecture may
facilitate speciation in the face of gene flow. It has been suggested
that selection can favor chromosome rearrangements that de-
crease the incidence of recombination between alleles contributing
to local adaptations, which in turn can enhance fixation of karyo-
type differences within local populations (1). Of all such chro-
mosomal rearrangements, the scope of these models is limited to
inversion polymorphisms that directly suppress recombination.
However, another significant mode of karyotype change that often
leads to speciation is intraspecific differences in chromosome
numbers, altered by chromosome fusions and fissions (2). These
rearrangements have the potential to limit gene flow although
their effect is presumably smaller (1). Indeed, chromosome fusions
have been shown to influence recombination by decreasing the
number of chiasmata via their interference and, more importantly,
by coupling previously unlinked loci (3). Similar to chromosomal
rearrangements, genetic linkage between traits contributing to
reproductive and ecological isolation has been found to impede
breakdown of linkage disequilibria following recombination (4–7).
Both linkage disequilibrium and chromosome rearrangements

are important forces in the rise of sex chromosomes and their
subsequent differentiation. Natural selection appears to favor the
linkage of sexually antagonistic alleles to sex-determining loci and
inversion-mediated suppression of recombination in sex-specific
W or Y chromosomes (8). The lack of recombination ultimately
causes degeneration of sex-specific chromosomes via accumulation
of repetitive sequences and gene loss. In contrast, recombining X
and Z chromosomes are known to undergo fast adaptive evolution
and play a special role in speciation due to their involvement in

postzygotic reproductive isolation (8–10). Furthermore, recent
reports on the turnover of sex chromosomes have contributed to the
idea that sex chromosome–autosome fusions might actually pro-
mote speciation (11).
Moths and butterflies (Lepidoptera) have a WZ/ZZ sex chro-

mosome system with female heterogamety. Although sex chro-
mosomes have been identified in only a handful of species, derived
variants W1W2Z/ZZ and WZ1Z2/Z1Z1Z2Z2 were observed in nine
genera, suggesting a relatively high incidence of neo-sex chro-
mosomes in this species-rich group (12). Neo-sex chromosome
evolution via multiple sex chromosome–autosome fusions was
described in moths with highly derived karyotypes, Orgyia antiqua
andOrgyia thyellina (Lymantriidae), and in geographical subspecies
of Samia cynthia (Saturniidae) (13). Recently, it has been suggested
that the sex chromosome rearrangements in S. cynthia populations
may contribute to the formation of reproductive barriers and
facilitate divergence toward speciation (14).
A previous study predicted a translocation of an autosome onto

the Z chromosome in the family Tortricidae (15). To test this
hypothesis, we performed comparative physical mapping of the Z
chromosome in themajor pome fruit pest, the codling moth,Cydia
pomonella (Tortricidae: Olethreutinae), and found that a neo-Z
chromosome formed following fusion between an ancestral Z
chromosome and an autosome corresponding to chromosome 15
in the Bombyx mori reference genome. Furthermore, we show that
the fusion originated in a common ancestor of the main sub-
families Olethreutinae and Tortricinae, which comprise 97% of
extant species of tortricids. We discuss the relevance of our find-
ings for adaptive evolution and radiation of tortricid moths.

Results

BAC-FISH Mapping of the Codling Moth Z Chromosome. Partial
sequences of 17 C. pomonella genes linked to the chromosomes Z
and 15 in the reference genome of B. mori (Table S1) were cloned
and deposited in GenBank (see Table S2 for accession numbers).
These genes included three major genes linked to insecticide re-
sistance (ABCC2, Ace-1, andRdl), four enzyme-coding genes (Idh-2,
Ldh, Pgd, and Tpi), and 10 protein-coding genes without enzymatic
function (ABCF2, apterous, kettin, mago, nanchung, Notch, RpL10,
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RpP0,RpS5, and Shaker). In the case ofAce-1 gene, a comparison of
the obtained sequence showed 100% identity with the corresponding
part of Ace-1 isolated earlier from C. pomonella susceptible strain
[accession no. DQ267977 (16)]. Additionally, a partial sequence of
the C. pomonella circadian gene period (per) was acquired from
GenBank [accession no. JX996071 (17)]. Hybridization probes
generated from the cloned gene fragments were used for
screening of the C. pomonella bacterial artificial chromosome

(BAC) library. Positive BAC clones were identified and confirmed
by PCR for all genes except Ace-1 (Table S3). For full gene names
and their abbreviated symbols, see Table S1.
Fluorescent in situ hybridization (FISH) of BAC-derived

probes on pachytene nuclei of the codling moth confirmed
conserved synteny of all nine tested orthologs of the B. mori
Z-linked genes. Eight of these orthologs mapped to about one
half of a long pachytene bivalent (Fig. 1 A and D). Also, the gene

Fig. 1. BAC-FISH mapping of genes on chromosome preparations of the codling moth, C. pomonella. Chromosomes were counterstained with DAPI (light

blue). Hybridization signals of BAC probes (yellow, green, red, and violet) indicate the physical positions of loci marked by abbreviated names. (A–D) Pachytene

spermatocyte complements. (A) Three runs of BAC-FISH localized seven orthologs of B. mori Z-linked genes (ap, ABCF2, ket, Rdl, per, Pgd, and Shkr) to a single

bivalent, the anticipated sex chromosome pair ZZ. (B) Two runs of BAC-FISH with orthologs of B. mori genes of the chromosomes Z (Pgd, Shkr, and Ldh) and 15

(RpP0, Idh-2, andNotch) revealed their positions on the same chromosome bivalent of C. pomonella. (C) Three runs of BAC-FISH localized six orthologs of B.mori

chromosome 15 genes (RpP0, nan, Idh-2, ABCC2, RpS5, and Notch) and the Z-linked Ldh gene to the same bivalent. Note the position of Ldh between RpS5 and

Notch genes. (D) BAC-FISH localized two orthologs of B.mori Z-linked genes, Rdl and Tpi, to the anticipated Z chromosome bivalent, whereasmago (an ortholog

of B. mori chromosome 15 gene) mapped to an autosome bivalent. (E) An autosome bivalent bearing hybridization signals of two orthologs of B. mori

chromosome 15 genes, RpL10 and mago. (F) Male mitotic metaphase consisting of 2n = 56 chromosomes showing two BAC probes containing ket and Ldh

genes, respectively, hybridized to two largest elements earlier identified as Z chromosomes. (G) A part of pachytene oocyte with the sex chromosome bivalent

(WZ) easily discernible by DAPI-positive staining of a heterochromatic thread of the W chromosome (arrowhead) and characteristic twisting of paired chro-

mosomes. Hybridization signals of BAC probes confined the Shkr, RpP0, Idh-2, Ldh, and Notch loci to the Z chromosome. (Scale bar: 10 μm.)
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order of all but one marker (Ldh, see below) was conserved.
However, a terminal position of the apterous gene and its distance
from its closest neighbor ABCF2 (Figs. 1A and 2) suggested
a possible inversion in the subterminal chromosome region. The
only exception to a strong colinearity was a BAC clone containing
the Ldh gene, which hybridized to the other half of the same
bivalent instead of its expected position between Pgd and Shaker
(Fig. 1B). Six out of eight orthologs of the chromosome 15 genes
of B. mori mapped to the same codling moth bivalent as the
Z-linked markers. In this case, the genes retained the same gene
order as their B. mori orthologs in chromosome 15, with Ldh
inserted between RpS5 and Notch (Fig. 1 B and C). The results of
gene mapping indicate that a large chromosome rearrangement,
probably a fusion event involving chromosome regions corre-
sponding to the B. mori linkage groups (LG) Z and 15, differ-
entiated karyotypes of the two species from a common ancestor.
Two remaining orthologs of B. mori LG15 genes, namely RpL10
andmago, mapped to another chromosome pair (Fig. 1 D and E),
revealing a translocation corresponding to a 0.5- to 2.8-Mb seg-
ment of the B. mori chromosome 15. However, the distance be-
tween hybridization signals of the RpL10 and mago genes on the
codling moth autosome seems to greatly exceed the expected size
of the translocated segment. A plausible explanation could be
that the two originally closely linked genes were separated from
each other by a subsequent inversion. All mapping data are in-
tegrated in Fig. 2.
BAC-FISH with selected probes on male mitotic chromosomes

of the codling moth identified the rearranged chromosome as the
largest element in the karyotype (Fig. 1F) reported earlier as the
sex chromosome Z (18). Furthermore, in female preparations of
pachytene oocytes, the BAC-derived probes hybridized to the
WZ bivalent, which was easily discernible according to the DAPI-
positive heterochromatic thread of the W chromosome. In this
case, hybridization signals were confined only to the Z chromo-
some thread (Fig. 1G), which is in accordance with overall de-
generation of the codling moth W chromosome (19). Taken
together, we conclude that the codling moth Z chromosome is
composed of two sets of genes, one originating from the ancestral
Z chromosome and the other from an autosome referred to as
chromosome 15 in the model species, B. mori.

Sex-Linkage Analysis of Selected Genes by qPCR. Because no BAC
clone containing Ace-1 was identified in the codling moth BAC
library, quantitative real-time PCR (qPCR) using genomic DNA
as template was used to determine a gene dose, i.e., copy number,
of Ace-1 in the codling moth males and females. The results
clearly showed a twofold difference in the Ace-1 gene dose be-
tween males and females, thus establishing its linkage to the Z sex
chromosome (Fig. 3, SI Text, Fig. S1, Fig. S2, and Table S4).
Furthermore, two other tortricid species, the European grape-

vine moth Lobesia botrana (Olethreutinae) and the vine moth
Eupoecilia ambiguella (Tortricinae), were studied to trace the
evolutionary origin of the rearrangement between the sex chro-
mosomeZ and an autosome corresponding toB.mori chromosome
15. Partial sequences of L. botrana and E. ambiguella orthologs of
the Ace-1, EF-1α, mago, and Notch genes were cloned and se-
quenced (see Table S2 for their accession nos.). Sex-linkage ofAce-
1, mago, and Notch was then tested using qPCR with the EF-1α as
a reference in all three tortricid species examined. The Ace-1 and
Notch gene doses differ significantly between males and females,
suggesting their linkage to the Z chromosome (Fig. 3, Table S4).
Therefore, Z chromosome–autosome fusion appears to be com-
mon to all species of subfamilies Olethreutinae and Tortricinae.
Consistent with the results of BAC-FISH, the C. pomonella mago
gene doses did not differ between males and females. Similar
results were obtained by comparison of the mago to EF-1α gene
dose ratios in L. botrana, suggesting that the mago gene is located
on an autosome in both members of the subfamily Olethreutinae.

However, different doses of themago gene in males and females of
E. ambiguella, a representative of the subfamily Tortricinae, in-
dicate that this gene is located on the Z chromosome (Fig. 3, Table
S4). Thus, the translocation of a chromosomal region containing
themago andRpL10 genes to an autosome, identified in the codling
moth by BAC-FISH (Figs. 1D andE and 2), has no causal link with
the Z chromosome–autosome fusion. The translocation event
originated independently and much later, after the divergence of
the subfamilies Olethreutinae and Tortricinae.

Discussion

We performed physical mapping of the Z sex chromosome in
a major pest of pome fruit, the codling moth, Cydia pomonella
(Tortricidae: Olethreutinae) (Figs. 1 A–E and 2). Although ge-
nome organization of the nontineoid Ditrysia (21) was shown to
be highly conserved (22–24), our results revealed that a neo-Z
chromosome formed following fusion between chromosomes
corresponding to the linkage groups Z and 15 of the Bombyx mori
reference genome, henceforth referred to as F(Z;15), thus sup-
porting an earlier anecdotal prediction (15). Sex-linkage of the
Acetylcholinesterase 1 (Ace-1) and Notch orthologs of the B. mori
chromosome 15 genes in two other tortricid pests (Fig. 3),L. botrana
(Olethreutinae) andE. ambiguella (Tortricinae), strongly suggests
that the F(Z;15) fusion occurred in a common ancestor of these
lineages, which comprise about 97% of the tortricid species (25).
The fate of the maternally inherited homolog of chromosome 15
cannot be conclusively resolved with current data sets. However,
a previous molecular analysis of the codling mothW chromosome
sequence library (19) along with the results of BAC-FISH (Fig.
1G) support the existence of extensive molecular degeneration of
the codling mothW chromosome, ultimately leading to the loss of
W-linked alleles.
Recently, resistance of the codling moth to a highly specific and

virulent pathogen, Cydia pomonella granulovirus (CpGV) (Bacu-
loviridae), has been reported. TheCpGV resistance is mediated by
a major gene with concentration-dependent dominance linked to
the Z chromosome (26). Although other CpGV isolates were
shown to overcome CpGV resistance (27, 28) caused by an early
blockage of virus replication (29), its genetic basis remains elusive
possibly due to false assumption of conserved gene content of the
Z chromosome between B. mori and C. pomonella.
We found that three other targets for either chemical or biological

insecticides, namely Resistance to dieldrin (Rdl), Ace-1, and ABC
transporter C2 (ABCC2), are linked to chromosome Z in the codling
moth (Figs. 2 and 3), and presumably in all other species of the
tortricid subfamilies Olethreutinae and Tortricinae, which comprise
almost 700 economically important pests worldwide (30). Whereas
Rdl orthologs conferring resistance to cyclodiene insecticides are
also Z-linked in other Lepidoptera (31, 32), the Ace-1 and ABCC2
associated with insensitivity to organophosphates and carbamates,
and resistance to Bacillus thuringiensis toxin Cry1Ab, respectively,
are assignable to the autosomal linkage group corresponding to B.
mori chromosome 15 in distantly related species (15, 33–35). By
contrast, in most tortricids, the sex-linkage of these two genes is thus
a direct consequence of F(Z;15). Theory predicts that recessive
mutations conferring resistance spread faster in a pest population if
they are Z-linked due to their hemizygosity in the females (36).
Although ABCC2 mutations are reported to be recessive (33–

35), the resistance conferred by insensitive Ace is in most cases
semidominant. However, dominance levels of insensitive Ace
alleles were shown to vary from recessivity to dominance and
correlate with the activity of insensitive Ace forms in mosquito
Culex pipiens. When activity of the resistant allele is low, hetero-
zygotes, which possess only half the amount of insensitive Ace
present in resistant homozygotes, display a lower tolerance to in-
secticide (37). This explanation seems to exclude the occurrence of
recessive Ace-1 conferred resistance in tortricids because there
would be no difference in Ace-1 activity between heterozygous
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males and hemizygous females due to absence of global dosage
compensation in Lepidoptera (38). However, Kanga et al. (39)
reported that Ace-1 insenstitivity, the major mechanism of car-
bamate resistance in a tortricid pest, Grapholita molesta, is both

sex-linked and recessive. The recessivity of G. molesta Ace-1 in-
sensitivity was probably facilitated by a female-specific modifier
compensating for lower dosage of Ace-1, which evolved in-
dependently before resistance as suggested by Ace-1 activity ratios
between sexes in both susceptible and resistant strains. Thus, the
Z-linkage of both ABCC2 and Ace-1 is of importance to pest
management programs attempting to delay the onset of insecticide
resistance in tortricid pests.
It has recently been suggested that gene content might be rele-

vant for maintenance of neo-sex chromosomes (40). TheAce-1 and
ABCC2 genes belong to insect carboxylesterase and ATP-binding
cassette (ABC) transporter gene families, whose members are in-
volved in metabolism and regulated absorption of both insecticides
and plant secondary metabolites, respectively (41–44). Along with
glutathione S-transferases and cytochrome P450 monooxygenases
(P450s), they represent the so-called performance genes affecting
growth and survival of insect larvae on host plants (45). Recent
analyses revealed an uneven distribution of performance gene
clusters in the B. mori genome. In particular, chromosome 15 was
shown to bear two clusters of Lepidoptera-specific esterases and
a major cluster of ABC transporters (Fig. 2) (46, 47). Functions of
these genes are largely unknown. However, sex-related response to
organophosphates (48) correlating with sex-specific levels of gen-
eral esterase activities (49) reported inG.molesta is consistent with
sex-linkage and the absence of dosage compensation of involved
genes. These findings suggest that the sex-linked esterases of tor-
tricids play a role in detoxification of xenobiotics. Moreover, ex-
pansion of ABC transporters, including two genes located in B.
mori chromosome 15, observed in the genome of the diamondback
moth, Plutella xylostella (Yponomeutoidea), suggests their potential
role in detoxification of plant secondary metabolites (50). There-
fore, it is reasonable to assume that F(Z;15) physically linked
a battery of performance genes to the tortricid Z chromosome.
Physical linkage between performance and either preference or

host-independent isolation genes, shown to be disproportionately
associated with the lepidopteran Z chromosome (51–54), is ex-
pected to generate genetic covariance between traits and thus fa-
cilitate ecological speciation under divergent selection (4, 55).
Furthermore, performance genes are importantly associated with
shifts in host plant utilization. Duplications and subsequent func-
tional divergence of P450s have been reported to play a crucial role
in dietary specialization of swallowtail butterflies of the genus
Papilio (56). In general, duplications of performance genes are
thought to be an adaptive response to environmental stress (57),
a scenario well-supported by the role of gene amplification in
metabolic resistance to insecticides (42, 58). Following this line of
reasoning, we hereby hypothesize that duplicates of tortricid sex-
linked performance genes, compensating for the loss of the
W-linked alleles, were in all probability fixed as beneficial and
acquired novel functions increasing the detoxification capacity of
tortricid larvae. Therefore, F(Z;15) constitutes an evolutionary
key innovation, potentially conferring physiological advantage in
plant–herbivore interactions (59) and resulting in adaptive radi-
ation of the species-rich tortricid subfamilies Tortricinae and
Olethreutinae. Our findings thus not only contribute to manage-
ment of tortricid pests but also allow a unique perspective con-
cerning the role of neo-sex chromosomes in the adaptive radiation
and ultimately speciation of phytophagous insects, a huge group
of the class Insecta.

Materials and Methods
Insects. A laboratory strain (Krym-61) of the codling moth, C. pomonella

(Olethreutinae) (for its origin and diet, see ref. 18) was used. Laboratory cul-

tures of the European grapevinemoth L. botrana (Olethreutinae) and the vine

moth E. ambiguella (Tortricinae), both originating from field collections in

wine-growing regions in Germany, were obtained from Annette Reineke

(Research Center Geisenheim, Geisenheim, Germany) along with a rearing

protocol and the composition of an artificial diet. The diet was prepared

Fig. 2. A gene-based scheme of the Z chromosome of the codling moth,

C. pomonella, integrating all BAC-FISH mapping data (Fig. 1) and its com-

parison with the B. mori chromosomes Z and 15. Locations of B. mori genes

were retrieved from KAIKObase (Table S1). The mean relative positions of

loci in the codling moth were calculated from data obtained by measuring

physical distances between hybridization signals and the chromosome end in

at least 10 ZZ bivalents; the distances were then related to the total length

of the Z chromosome. Note the conserved synteny and conserved gene order

between Z-linked genes of B. mori and the corresponding segment of the

codling moth Z chromosome, except for Ldh, which moved to the part cor-

responding to B. mori chromosome 15. Carboxylesterases (CCE) and ABC

transporters (ABC) with putative role in detoxification of synthetic and nat-

ural xenobiotics are annotated on the left of the B. mori chromosomes. Major

genes conferring insecticide resistance are in red (for details, see Discussion).
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according to the recipe of Christoph Hoffmann (Julius Kühn Institute, Sie-

beldingen, Germany). All three tortricid species were reared in a constant-

temperature roomunder nondiapausing conditions (25± 1 °C; 16:8 light:dark).

Isolation of Genes for Comparative Mapping. Genes of interest were selected

from a public genome database of the silkworm, B. mori, KAIKOBase (http://sgp.

dna.affrc.go.jp/KAIKO) (Table S1). Degenerate primers were designed for regions

of coding sequences conserved between the B. mori genes and other insect

species and used for RT-PCR amplification of partial orthologous sequences

in the tortricids examined (Table S2). The primer concentrations in RT-PCR

were increased to 5 μM to compensate for their degeneration. First-strand

cDNA synthesized from larval total RNA by oligo-dT primed SuperScript III

Reverse Transcriptase (Invitrogen) was used as a template. Amplified frag-

ments were cloned into pGEM-T Easy Vector (Promega) and confirmed by

Sanger sequencing.

Identification of BAC Clones Containing Selected Genes. We used a copy of the

codling moth BAC library constructed by GENEfinder Genomic Resource Labo-

ratory (Texas A&M University, College Station, TX). Partial sequences of codling

moth orthologs of selected B.mori geneswere used as hybridization probes for

screening of 18,432 C. pomonella BAC clones of average insert size 140 kbp,

spotted as duplicates on high-density colony filters (obtained from GENEfinder

Genomic Resources). Probeswere labeled with alkali labile DIG-11-dUTP (Roche

Diagnostics) using PCR and purified by gel filtration. Screening procedure fol-

lowed a standard Southern hybridization protocol as described in ref. 19.

Hybridization was carried out overnight at 42 °C. Positive BAC clones were

confirmedbyPCRwith specific primers (Table S3). BAC-DNAwasextractedusing

Qiagen Plasmid Midi Kit (Qiagen) according to the manufacturer’s instructions.

BAC-FISH Mapping. Meiotic chromosomes were prepared from gonads of male

and female larvae by the spreading technique as described in ref. 60. For FISH,

BAC-DNA was labeled using a Nick Translation Kit (Abbott Molecular). Fifty

microliters of labeling reactionmixture containing 1 μgof BAC-DNAand25 μM

dATP, dCTP, and dGTP each, 9 μM dTTP, and 16 μM fluorochrome-conjugated

dUTP was incubated for 4 h at 15 °C. Two-color BAC-FISH with Cy3-dUTP (GE

Healthcare) and ChromaTide Fluorescein-12-dUTP (Invitrogen)-labeled probes

was performed following ref. 61, with some modifications. The same pro-

cedure was used for multicolor BAC-FISH, except that the probes that were

labeled with Green-dUTP, Orange-dUTP, Red-dUTP (Abbott Molecular) and

Cy5-dUTP (GE Healthcare). For BAC-FISH mapping, we used a reprobing pro-

tocol as described in ref. 62. Briefly, chromosome preparations were postfixed

for 5 min in freshly prepared 4% formaldehyde in 2× SSC, washed twice in 2×

SSC for 3 min, and incubated for 30 min in 5× Denhardt’s solution in 2× SSC

shortly before their denaturation in the first FISH round. The preparations

were reprobed repeatedly with different probe mixtures. After each FISH

round, the chromosomeswere denatured during a stripping step, and the next

probe mixture was applied directly to the dehydrated and air-dried slides.

Chromosome preparations were observed either in a Zeiss Axioplan 2 mi-

croscope (Carl Zeiss) or DM6000B fluorescence microscope (Leica Microsystems)

equippedwithappropriatefluorescencefilter sets.Black-and-white imageswere

captured with a cooled F-View CCD camera equipped with AnalySIS software,

version 3.2 (Soft Imaging System), and a DFC350FX CCD camera with Leica LAS

Image Analysis software (Leica Microsystems), respectively. The images were

pseudocolored and superimposed with Adobe Photoshop CS3. Image analysis

was carried out using freeware ImageJ (National Institutes of Health).

Quantitative Analysis of Gene Dose. qPCR using genomic DNA as a template

was used to test sex-linkage of selected genes in the tortricid species studied.

Gene doses of the target genes were compared with a single-copy autosomal

(AA) reference gene, elongation factor 1α (EF-1α), in the male (AA, ZZ) and

female (AA, WZ) genomes. If the target gene is autosomal, its copy number

ratio to the autosomal reference gene is expected to be 1:1 in both sexes. In

the case of Z-linkage, a target to autosomal reference gene dose ratio is

expected to be 1:1 in males (ZZ) but 1:2 in females (WZ) (SI Text). W-linked

genes should be missing completely in males.

Quantitative analysis was carried out in iQ 96-Well PCR Plates covered by

Microseal “B” Adhesive Seals using the C1000 Thermal cycler CFX96 Real-

Time System (Bio-Rad). Each qPCR reaction contained 1× SYBR Premix Ex Taq

II (Perfect Real Time) (Takara), 0.4 μM forward and reverse primer (Table S5),

and 100–150 ng of either male or female genomic DNA (gDNA) isolated

from adult moths by a DNeasy Blood Tissue Kit (Qiagen). The target and

reference genes were analyzed simultaneously in triplicates of three in-

dependent samples of both male and female gDNA. Default amplification

efficiencies (E) of 1 were used to calculate target-to-reference gene dose

ratio (R) using the formula R = (1+Etarget)
CtTarget/(1+ERef)

CtReference. However,

if R deviated considerably from the expected value of 1:1 in males, the PCR

efficiencies were determined from the slope of the standard curve gener-

ated by plotting the threshold cycle (Ct) values against the log-concen-

trations of serial dilutions of male genomic DNA. The obtained data were

processed using CFX Manager Software (Bio-Rad), and their significance was

statistically assessed by unpaired two-tailed t test for unequal variances. The

t test was used to test null hypothesis of no difference or a twofold differ-

ence in the means between males and females.
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