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Abstract
Mental disorders represent inevitable emotions in our society. These psychological states
affect the cognitive, emotional and behavioural functioning of individuals. Common men-
tal disorders fall into two main diagnostic categories: depressive disorders and anxiety
disorders. The aim of this work is to find a new method for detecting whether a given
patient suffers from anxiety or depression using EEG classification. In this work, we use
combination of genetic algorithms and models from deep learning.

Abstrakt
Duševné poruchy predstavujú širokú škálu emócií v našej spoločnosti. Tieto psychické
stavy významne ovplyvňujú kognitívne, emocionálne a behaviorálne fungovanie jednotliv-
cov. Bežné duševné poruchy sa vzťahujú na dve hlavné diagnostické kategórie: depresívne
poruchy a úzkostné poruchy. Cielom tejto práce je nájsť novú metódu na detekciu či daný
pacient trpí úzkosťou alebo depresiou pomocou klasifikácie EEG. V tejto práci používame
kombináciu genetických algoritmov a modelov z hlbokého učení.
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Chapter 1

Introduction

Mental disorders are a wide range of emotions in our society. These psychological conditions
significantly affect individuals’ cognitive, emotional, and behavioural functioning. Common
mental disorders refer to two main diagnostic categories: depressive disorders and anxiety
disorders [35].

The World Health Organization estimates that 264 million people worldwide suffered
from anxiety disorder and 322 million from depressive disorder in 2015, corresponding to
prevalence rates of 3.6 [35].

Through the COVID-19 pandemic, many people suffer financial loss, loneliness, or even
the death of close friends. Furthermore, mental disorders are correlated with cardiovascular
disease, as well as with the death rate in the population[78]. Quality of life ( QoL ) is a
subjective measure of happiness, although groups with mental disorders automatically have
a lower QoL than others[35]. Furthermore, mental disorders reduce the quality of life over
time[35].

The primary purpose of this Master’s thesis is to use various techniques of machine
learning and genetics algorithms to classify if a patient suffers an anxiety or Major Depres-
sive Disorder when the subject is correctly connected to the Brain-Computer Interface.

Another purpose of this thesis is to help psychiatrists and specialists with hard evidence
of data based on the classification of actual measured data. Most of the time, diagnosing
Anxiety or Major Depressive Disorder starts with a physical exam and questionnaire [81].
Diagnosis using an EEG device-based classification could improve or even speed up a pro-
cess, preventing more health damage or even preventing suicides. Automating the process
of detecting mental disorders is necessary.
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Chapter 2

Anxiety and Depression

Anxiety and Depression are known as common mental illnesses, although there is a signif-
icant difference. Feelings of nervousness, worry, and fear cause anxiety. Anxiety feels like
you are constantly on edge or scared.

Depression includes sadness, hopelessness, and fatigue. Depression significantly affects
daily functioning. Treatment for anxiety usually involves talking to a therapist about being
afraid, treating by mixing medications and talking with therapists and psychiatrists. If
anxiety is not properly treated at the right time, it can develop into major depressive
disorder [2]. Furthermore, the prevalence of anxiety and depression among college students
is a growing concern, with a significant percentage reporting these mental health disorders
[33].

2.1 Anxiety Disorders
Experiencing anxiety is a health concern that involves feelings of stress, panic or fear that
can greatly affect ones life [63]. It’s important to understand that anxiety is distinct, from
fear even though people often use these terms interchangeably. Individuals with anxiety
disorders may have thoughts or concerns that lead them to avoid situations as a way of
coping. This avoidance behaviour is an indicator of anxiety. Physical symptoms of anxiety
can include a heart rate, tightness in the chest, sweating, trembling, dizziness and a rapid
heartbeat [57]. In addition to these signs, anxiety also manifests itself psychologically.
These mental signs may involve thoughts of losing control or the desire to escape from
challenging situations.

The causes of anxiety can vary significantly between individuals due to the contributing
factors involved in its nature. Some common triggers for anxiety include imbalances in
brain chemistry, traumatic experiences, chronic illnesses and substance abuse [57]. There
are types of anxiety disorders, such as Generalised Anxiety Disorder (GAD), Social Anxiety
Disorder (SAD), Panic Disorder, and specific phobias [3]. Managing anxiety requires a vari-
ety of treatments, including therapy sessions, medication regimens, and self-care practices.
Dealing with anxiety effectively involves addressing both the psychological aspects since it
is a complex condition that impacts individuals holistically.

Anxiety is a health concern marked by feelings of stress, panic or fear, which can sig-
nificantly impact an individual’s life.

Anxiety symptoms can differ, ranging from signs like a heartbeat and sweating to mental
cues, such as intrusive thoughts and avoidance behaviours. People often mix up anxiety
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with fear, though they are experiences. The reasons behind anxiety vary, with triggers
being unique to each individual. Dealing with and addressing anxiety requires a mix of
approaches, including therapy, medication and self-care routines. Due to the availability
of relevant datasets online, my thesis is specifically interested and restricted to classifying
Social Anxiety Disorder.

2.2 Research of Social Anxiety Disorder
This research study [51] of Social Anxiety Disorder (SAD ) discusses examining Electroen-
cephalogram (EEG) recordings, especially indicators such as ERN, which stands for error-
related negativity or correct-response negativity CRN. An extensive analysis of 66 articles
underscores the value of ERN in regulation as a strong cross-diagnostic characteristic in-
dicative of clinical anxiety. Nevertheless, future investigations are needed for individuals
of older ages ( 60 and above) to confirm this indicator and its clinical application. The
research encompassed in the analysis employed emotional attentional control tasks, under-
scoring the necessity for further exploration in this domain with broader clinical anxiety
populations like those with specific phobias and SAD to validate ERN clinical relevance as
a cross-diagnostic trait marker for clinical anxiety overall.

Another study [12] is about classifying several anxiety levels using Convolutional Neural
Networks (CNN), Long short-term memory (LSTM) and CNN+LSTM models on prepro-
cessed EEG signals, which are converted then to a Pairwise Channel Difference (PCD)
matrix. The PCD is used here as a source of normalisation of EEG signals.

𝑃𝐷𝐶𝑖𝑗 =
𝐴𝑖𝑗(𝑓)√︁

𝑎𝑗 −𝐻(𝑓)𝑎𝑗(𝑓)
(2.1)

where:

• 𝑃𝐷𝐶𝑖𝑗 represents the directional influence and intensity of the information flow from
channel j to channel i at a frequency of f.

• 𝐴(𝐹 ) =
∑︀𝑝

𝑟=1 A𝑟𝑒
−𝑖2𝜋𝑓𝑟

The calculation of the PDC matrix for each frequency band was obtained using contin-
uous 3-second segments of EEG recording. Since the duration of the EEG signal for each
subject is 180 seconds, a total of 60 (8 × 8)-PDC matrices are obtained for each frequency
band. Therefore, the PDC matrices for each subject from 5 frequency bands are equal to
300 [12]. The study has results better in using a combination of CNN+LSTM with per-
formation of 93% accuracy. However, in this study, we don’t see a comparison between
different segments of time for the calculation of PCD metrics. In this study, we can see
that a combination of CNNs and RNNs has better results overall in Table 2.1. We can also
clearly see that LSTM preform worse than CNN in Every category. It’s worth noting that
the Sensitivity of the label Moderate reaches 100% without the combination of LSTM.
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Deep Model Eval. Metrics Severe Moderate Mild Control Average

LSTM

Sensitivity 57.14 71.43 71.43 85.71 71
Specificity 85.71 90.48 90.48 95.24 90
Precision 57.14 71.43 71.43 85.71 71
Accuracy 78.57 85.71 85.71 92.86 86

CNN

Sensitivity 71.43 100.00 75.00 85.71 83
Specificity 90.48 95.45 95.00 95.24 94
Precision 71.43 85.71 85.71 85.71 82
Accuracy 85.71 96.43 89.29 92.86 91

CNN+LSTM

Sensitivity 85.71 85.71 87.50 83.33 86
Specificity 95.24 95.24 100.00 90.91 95
Precision 85.71 85.71 85.71 71.43 86
Accuracy 92.86 92.86 96.43 89.29 93

Table 2.1: Performance of Deep Models by SAD Level from [12].

This paper [53] suggests that biomarkers of anxiety also depend on the location of the
subject, not only on EEG recordings. This is understandable because subjects can feel
differently in a work or school environment than at home. This suggests a slight bias in
every EEG recording session. Subjects can definitely feel anxious and fearful when they
visit the doctor. The research involved 60 subjects using Apple iPhones and Oura Rings.
Data was collected through the Delphi data acquisition app. The study suggests there is a
need for further investigation, which can help to predict and diagnose the anxiety levels of
the subject.

Depression Anxiety Stress
Category Feature r p r p r p

GPS features

Location variance -0.31 0.035* -0.26 0.110 -0.28 0.077
Total distance -0.26 0.111 -0.28 0.077 -0.17 0.572
Location entropy -0.30 0.035* -0.17 0.572 -0.22 0.251
Norm. loc. entropy -0.26 0.100 -0.13 0.788 -0.20 0.298
Homestay 0.12 0.788 0.13 0.788 0.07 0.788

Smartphone Usage time 0.09 >0.99 0.05 >0.99 0.07 >0.99
Usage frequency 0.15 0.716 0.24 0.079 0.12 0.971

Wearable device

Steps -0.23 0.516 -0.16 >0.99 -0.19 >0.99
Metabolic equi. -0.21 0.99 -0.07 >0.99 -0.06 >0.99
Total sleep time 0.15 >0.99 0.04 >0.99 0.12 >0.99
Sleep onset latency 0.08 >0.99 0.06 >0.99 0.04 >0.99
Waking up 0.20 >0.99 0.14 >0.99 0.16 >0.99
Time in bed 0.15 >0.99 0.03 >0.99 0.11 >0.99

Mood Arousal -0.30 0.003* -0.35 0.001* -0.36 0.001*
Valence -0.48 <0.001* -0.44 <0.001* -0.48 <0.001*

Table 2.2: Correlation of Features with Depression, Anxiety, and Stress from [53].
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In Table 2.2, we can see that the Usage time of Smartphones correlates with Depression
and Anxiety and also with Stress. Also, sleep time is correlated with Depression, Anxiety
and as well Stress.

Another paper [71] for research in Social Anxiety Disorder uses Stacked Sparse Au-
toencoders models for classifications of award-winning Dasps dataset [15]. The results they
achieved are accuracies of 83.93% and 70.25% using Stacked Sparse Autoencoders and
Decision Tree for two-class anxiety classification. They were also able to reduce feature
redundancy. The problem with this paper is that they compare just the results with binary
labelled data, even though the Dasps dataset has four labels. Authors of [15] mainly use
Support vector machine classifiers and k-Neirest-Neighbours classifiers, which are compared
in this paper with Stacked Sparse Autoencoders.

2.3 Major Depressive Disorder
Major Depressive Disorder ( MDD ) is a mental health condition. It is characterised by
persistent sadness, chaotic sleep cycles, loss of interest and dramatic changes in weight
[67]. It also correlated with thoughts on death and suicide [67]. Many subjects who were
diagnosed with MDD have a loss of interest in things and the presence of negative feelings
as indicators of depression. Also, poverty and unemployment are risk factors for developing
this condition.

Brain Regions Impacted

The critical difference between Major Depressive Disorder and Social Anxiety Disorder is
that MDD physiologically change brain itself [21]. The most consistent findings in the
affected brain regions are reduced hippocampus volumes and cortical volume in the medial
and superior temporal regions. These changes are often seen with Major depressive disorder,
Alzheimer and Schizophrenia [21]. We can clearly see the brain damage in figure 2.1.

Figure 2.1: Blue: Regional Core thinking. Green White matter tract damage from [21].

2.4 Research in Major Depressive Disorder

Automated classification of Major Depressive Disorder

This paper [59] discussed the detection of MDD using deep learning models. The proposed
research suggests that the classification of MDD is better performing on eyes-closed sub-
jects than on eyes-open subjects. Also, study discussed the idea of removing the channels
based on their significance with a backwards-elimination algorithm [36]. Overall, 91.67%
accuracy with the full set of channels and 87.5% after channel reduction.
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Figure 2.2: Channel selection from [59].

EEG properties of MDD

In a research study [38], an EEG analysis was performed to compare differences in brain
activity between groups of individuals. The study involved 25 patients with major depres-
sive disorder (MDD), 26 individuals, and 19 patients with depression. Interestingly, it was
observed that those in the depression group had less alpha activity (indicating higher
activation) in the right anterior hemisphere compared to the left. It should be noted that
participants with right and left hands were included in this study.

Using EEG features to the classification of MDD

This paper [68] compares classical models of Machine Learning like SVM, k-NN, etc., to
the classification of depression using EEG features instead of recorded EEG signal or PCD
matrix. The paper, however, doesn’t explain why they picked the represented feature.
In chapter number 7, we introduce a possible solution for selecting the features based on
genetics algorithms.

Figure 2.3: Bar graph of performance from [68].
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2.5 Relation between SAD & MDD
This paper [45] analyses similarities between Social Anxiety Disorder and Major Depressive
Disorder. Using network analyses, the study aimed to examine the symptoms that may
play a role in the co-occurrence of SAD and MDD. The clinical subjects diagnosed were
picked, specifically 130 women. The research lacks of male subjects. The study showed
that the main symptoms of social fear and depression were found at opposite ends of the
network and were only slightly connected. Bridges linking these symptoms were formed
through other factors, especially feelings of worthlessness.

Another paper [9] is trying to analyse the subject who suffers from Social Anxiety
Disorder with Major Depressive Disorder. The analysis consists of 𝑁 = 20123 subjects who
suffer from MDD or MDD-SAD combination or MDD with one anxiety disorder or more
than two anxiety disorders. In Table 2.3, we can see that younger people aged between 18
and 29 suffer less than other people in the population. Also, the paper suggests that the
male gender has a more significant factor in developing MDD-SAD. Still, the female gender
has a more significant factor in developing more than two anxiety disorders.

MDD alone MDD-SAD MDD-1 ANX MDD-≥2 ANX
Total 4.71 (4.27–5.19) 0.77 (0.55–1.08) 3.71 (3.33–4.12) 7.43 (6.58–8.37)
Gender
Male 4.36 (3.79–5.02) 0.88 (0.55–1.40) 2.71 (2.19–3.35) 4.92 (4.16–5.83)
Female 5.01 (4.47–5.63) 0.67 (0.49–0.93) 4.61 (4.04–5.25) 9.68 (8.60–10.88)
Age
18–29 3.92 (3.07–4.98) 0.89 (0.62–1.28) 3.70 (3.05–4.48) 7.28 (6.11–8.65)
30–44 5.38 (4.63–6.25) 0.98 (0.58–1.65) 4.14 (3.26–5.24) 8.61 (7.43–9.95)
45–59 5.34 (4.49–6.34) 0.52 (0.31–0.85) 4.14 (3.46–4.94) 9.07 (7.26–11.29)
60+ 3.80 (2.95–4.88) 0.66 (0.33–1.30) 2.55 (1.94–3.34) 3.80 (2.86–5.03)

Table 2.3: Prevalence Rates by Category

Although numerous studies have shown a high rate of comorbidity between Social Anx-
iety Disorder (SAD) and Major Depressive Disorder (MDD), our understanding remains
limited regarding how individuals transition from experiencing one set of symptoms to the
other[45].
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Chapter 3

Brain & EEG

The brain is the most complex part of the human body. It weighs around 1.4 kg. This
organ is the centre of the nervous neural system in our bodies. We can categorise the
responsibilities of the human brain in cognitive function, sensory processing, motor con-
trol, emotional regulation, language processing, homeostatic functions, autonomous control,
awareness, sleep regulation, learning, and adaptation.[4] The brain is also a vital part of
the memory system for storing facts, ideas, and personal experiences.

3.1 Anatomy of Neuron
The main building block of the brain is the neurone. Neurones are structural, functional,
and central to the nervous system. They transmit information through chemical and elec-
trical signals [46]. The central part of the neuron is the cell body called Soma. Soma acts as
the nucleus of the neurone. Soma contains all genetic material essential for neuronal func-
tion. Dendrites act as an input receiver. It has a tree structure and accepts information
from other cells.

Figure 3.1: The components of neuron from [46].

The pivotal juncture for decision-making in a neuron occurs at the Axon hillock, where
the Axon begins from the cell body. If electrical inputs from dentrites exceed a certain
threshold, an electrical impulse is created that is shown as an action potential. These spikes
are then measured and recorded on an EEG.
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The Axon is a cable-like structure which connects Dentrites from two cells. It transmits
action potentials over a distance between these two cells. This process of transferring an
action potential ensures information transmission between neurones.

3.2 Anatomy of the Brain
Knowing the brain’s structure is essential for caring for it and understanding health treat-
ment techniques. The brain consists of two parts: the left and right cerebral hemispheres.

The frontal lobe is associated with complex cognitive functions such as thought, plan-
ning, problem-solving, and aspects of personality and emotional makeup. The right frontal
lobe excelled in mathematical processing and planning, and the left frontal lobe excelled in
cognitive flexibility and mental flexibility.[22].

The perilateral lobe processes sensory information from the body. Then, it helps to
understand spatial orientation and navigation. The occipital lobe is the centre of visual
processing in the brain. The temporal lobe is essential for processing auditory information
and involves memory and emotion. The prefrontal cortex is considered the executive part of
the brain, it is responsible for decision making, social behaviour, and personality expression.

Figure 3.2: Brain structure from [1].

The Primary Motor Cortex is located just in front of the central sulcus. This area is re-
sponsible for executing voluntary movements. The Central Sulcus is a prominent landmark
of the brain. It separates the parietal lobe from the frontal lobe and the primary motor
cortex from the somatosensory cortex.

Primary Somatosensory Cortex (yellow-green area): Positioned just behind the central
sulcus in the parietal lobe, it processes sensory information from the body.

Broca’s area is usually found in the left hemisphere, and this region is involved in
speech production and language processing. The Wernicke area is typically located in the
left temporal lobe and is essential for language comprehension.

The primary visual cortex is located in the occipital lobe at the back of the brain, where
it receives and processes visual information. The Sylvian fissure separates the temporal lobe
from the frontal and parietal lobes.
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3.3 EEG
EEG stands for electroencephalogram, which collects brainwaves from the brain using small
metal discs or electrodes attached to patients’ scalp [31]. Electroencephalography (EEG)
was discovered in 1929 by the German psychiatrist Hans Berger and was a historical break-
through providing a new neurologic and psychiatric diagnostic tool at the time [77]. Most of
the time, the examination of patients is not noninvasive [50]. It is a standard for diagnosing
patients with dementia, head injuries, concussions, and sleep disorders.

Electroencephalography (EEG) has become widely used in recording brain activity be-
cause it is an invasive and affordable method. One area of focus within EEG-based Brain-
Computer Interfaces (BCI) is motor imagery (MI), which involves generating responses
through the imagination of movements, such as moving the left or right hand. Understand-
ing these activities during MI allows people with motor neurone disorders (such as stroke
or Parkinson’s disease) to regain some motor skills with the help of devices. In addition
to rehabilitation, EEG-based MI also finds applications in controlling wheelchair operating
arms and controlling quadcopters [84].

Figure 3.3: Example of EEG graph of subject 4 from Dasps[16] dataset.

How it works

The electroencephalogram is a record of oscillations of brain electric potentials acquired
from electrodes on the human scalp [49]. We can measure this electric potential by attaching
a voltage meter to any two points on the ionic surface. There are two types of EEG devices:
those that utilise gel for electrode conductivity and those that do not require gel application.

3.4 Types of EEG waves
EEG-based signals are nonstationary. The nonstationary signals have properties that vari-
ance and mean change with time. EEG waves can be separated into five leading bands:
𝛿 delta (0.5-4 Hz), 𝜃 theta (4-8Hz), 𝛼 alpha (8-12 Hz),𝛽 beta (12-30 Hz), 𝛾 gamma (> 30
Hz). We can see that picture in 3.5. Different literature shows ranges like ( 8-13 Hz) for
alpha.
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Figure 3.4: Measuring electronic potential schema from [49].

Delta Band

Delta waves are in the range of 0.5 Hz -4 Hz. They are generally seen when the subject is
sleeping. In addition, they are seen in subjects with brain injuries, coma, and brain trauma
[50]. A possible explanation for why they are seen under these conditions is the slow neural
activity of the subjects.

Theta band

Theta waves are in the range of 4Hz to 8Hz. Like delta waves, Theta waves are non-
sinusoidal. They are generally seen in subjects with a lack of presence or attention deficit
disorders.

Alpha band

Alpha waves occur in awake and relaxed subjects but have closed eyes [8]. They are at
a maximum in the occipital area [50]. The measurement of alpha waves is critical for
classifying an anxiety disorder. If they are measured in large amounts of diffuse, this would
indicate an anxiety disorder. Measurements like coherence, synchrony, and asymmetry can
also be used as biofeedback for an utterly normal subject [28].

Beta band

Beta waves are commonly associated with alertness, thinking, and maintaining focus. They
usually fall within about 14 to 30 cycles per second (referred to as Hertz or Hz). Beta waves
are often the predominant feature in EEG recordings during tasks such as problem-solving
exercises or mental concentration periods.

Gamma band

Gamma waves are the fastest group in the EEG frequency bands. Thanks to the frequency,
Gamma waves are smaller than other bands. They are believed to be involved in the
integration of sensor input information, such as visual or audio stimulus [18].
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Figure 3.5: EEG bands [58]

EEG artifacts
EEG artifacts are signals found in EEG recordings that do not come from brain activity
itself but from other sources. They are divided into physiological artifacts and external
artifacts. These unwavering signals can significantly impact EEG analysis and the accuracy
of machine learning models.

Figure 3.6: Rapid eye movement artifacts [52].
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Physiological artifacts in EEG include:

• Ocular artifacts, which are generated by eye movements and blinking

• Muscle artifacts, made by movement of muscles.

• Cardiac artifacts, made by movement of heart. Heartbeats create a small electrical
signal that EEG electrodes can pick.

External artifacts are:

• Electrical Interference: Electrical devices can cause an interference with EEG
recording devices.

• Electrode Popping: Bad contact with the skull.

• Movement artifacts: Walking and moving the body can disturb the electrode place-
ment.

EEG montage
An EEG montage, or an electroencephalogram montage, refers to how the electrodes are
placed on a patient’s scalp during an EEG test to record and interpret brain activity
accurately. Different montages are used for this purpose. The International 10 to 20
system is the EEG montage. It ensures placement across different patients by using specific
locations based on percentages of distances between anatomical landmarks on the scalp
(nasion, inion and preauricular points). This system provides a view of brain activity.

The 10 to 10 system is an extension of the 10 to 20 system. It offers electrodes for more
detailed spatial coverage and is commonly used in cases.

A bipolar montage represents the difference in potential between two electrodes in each
channel. This setup helps identify how activity propagates in seizure disorders.

Figure 3.7: International system of EEG electrode placement from [62]

17



3.5 Signal analysis and EEG features
Analysis of signal can be complex, and EEG recording is even more difficult because instead
of having noise interference from a microphone, for example, analysis of speakers, we have
all-new categories of physiological artefacts. So, the analysis of EEG signals originates from
the analysis of the signal itself. However, there are specific techniques that are applied only
to EEG signal analysis (such as Event-Related Potential Analysis (ERP) [26]). In this
section, we will discuss some of the most critical features, which also resulted from our
genetic algorithm.

EEG-recorded data contains time information (such as voltage amplitude ) and fre-
quency information. Therefore, we can divide the EEG analysis into three domains: Time
Domain Analysis, Frequency Domain Analysis and combined Time-Frequency
Analysis.

Time Domain Analysis
Time Domain Analysis analyses signals and how they change and vary over time. Statistical
features such as mean, median, variance, standard deviation, skewness, kurtosis, and similar
are also used in the frequency domain [72].

Mean

𝑥 =
1

𝑁

𝑁∑︁
𝑖=1

𝑥𝑖 (3.1)

The mean value of the EEG signal reflects the activity observed throughout the recording
session.

Kurtosis

Kurtosis measures the relative flatness of a distribution. Distributions with positive kurtosis
are termed ”super-Gaussian“, while those with negative kurtosis are ”sub-Gaussian“ [80].

Kurtosis = 𝑁(𝑁 + 1)

(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)

𝑁∑︁
𝑖=1

(︂
𝑥𝑖 − 𝑥̄

𝑠

)︂4

− 3(𝑁 − 1)2

(𝑁 − 2)(𝑁 − 3)
(3.2)

• 𝑁 : This represents the dataset’s number of observations or samples. In the context
of an EEG signal, it would be the number of signal measurements or data points you
have collected.

• 𝑥𝑖: This variable represents the EEG signal’s individual observations or data points.

• 𝑥: is mean of these observations.

Frequency Domain Analysis
Frequency domain analysis examines the signal’s frequency content. Here are relevant
features which came from the genetic algorithm for the Support Vector Machine.
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Spectral Slope

Spectral Slope can help researchers and clinicians identify specific frequency ranges that
are more or less active in the brain, which can indicate various neurological conditions or
states, such as epilepsy or sleep stages [41]. It was also used to detect multiple levels of
anxiety in this article [47].

Spectral Slope =
log(𝑃𝑓 )− log(𝑃𝑖)

log(𝑓𝑓 )− log(𝑓𝑖)
(3.3)

• 𝑃𝑓 is Power spectral density at 𝑓𝑓

• 𝑃𝑖 is Power spectral density at 𝑓𝑖

• 𝑓𝑓 represents the final frequency point.

• 𝑓𝑖 represents the initial frequency point.

Hjorth Mobility

Hjorth Mobility represents the average rate of change of the EEG signal, giving an idea of
the signal’s frequency content without requiring a Fourier transform [42].

Mobility =

⎯⎸⎸⎷Var
(︁
𝑑𝑆(𝑛)
𝑑𝑛

)︁
Var(𝑆(𝑛))

(3.4)

• 𝑆: is signal

• Var: is Variance

• 𝑑𝑆(𝑛): is its first derivative

Hurst Exponent

The Hurst exponent estimates the degree of self-similarity and predictability of a time
series, which, under this non-linear statistical model, can adopt two opposing tendencies
regarding how these data series are mobilised over time [27].

𝐻 =
log(𝑅(𝑛)

𝑆(𝑛) )

log(𝑛)
(3.5)

• 𝑅(𝑛): is the range of the cumulative deviations from the series’ mean, rescaled by the
standard deviation.

• 𝑆(𝑛): is standard deviation of the time series.

• 𝑛: is the number of data points in the time series
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Time-Frequency Analysis

The Teager-Kaiser Energy Operator

The Teager-Kaiser Energy Operator is used to compute a signal’s energy and is a popular
feature for Machine Learning methods [19].

Ψ(𝑥[𝑛]) = 𝑥[𝑛]2 − 𝑥[𝑛+ 1]𝑥[𝑛− 1] (3.6)

• Ψ(𝑥[𝑛]): represents the energy of the signal at sample.
• 𝑥[𝑛]: is the signal value at the current sample.
• 𝑥[𝑛− 1] and 𝑥[𝑛+ 1] are neighbour signals.

The method operates by squaring the signal value and deducting the result of the
neighbouring signal values. This approach highlights the strength of elements that vary
rapidly, which proves especially effective for signals displaying linear and non-stationary
traits, such as EEG signals.

SVD Entropy

The Singular Value Decomposition is a technique to analyse the signals matrix, including
EEG signals [32]. The SVD algorithm treats EEG as a linear combination of multiple
features, each characterised by its spatial and temporal distribution and amplitude. This
approach facilitates transparent methodologies for sampling, data reduction, normalisation,
and statistical significance calculation, advantages that are less apparent when analysis is
confined to a single domain.

𝐻 = −
𝑟∑︁

𝑖=1

𝑝𝑖 log(𝑝𝑖) (3.7)

• 𝑝𝑖: is the normalized singular value, calculated as 𝑝𝑖 =
𝜎𝑖∑︀𝑟

𝑗=1 𝜎𝑗
.

• 𝜎𝑖: are the singular values obtained from the SVD of the EEG signal matrix.
• 𝑟 is a rank of the EEG matrix.

Phase Locking Value

Phase Locking Value is widely used for EEG correlation between electrodes in EEG signals.
These characteristic spatial and temporal shifts in synchronisation are strongly related to
emotional activity [23].

𝑃𝐿𝑉 =

⃒⃒⃒⃒
⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑒𝑖𝜃𝑛

⃒⃒⃒⃒
⃒ (3.8)

• 𝑁 is the number of samples where PLV is calculated
• 𝜃𝑛 represents the phase difference between two EEG signals at 𝑛.
• 𝑒𝑖𝜃𝑛 is complex exponetial using imaginary 𝑖.

20



Chapter 4

Machine learning techniques for
anxiety and depression

In this chapter, we will explain the current status of how Social anxiety disorder and Major
depressive disorder are classified. As well we will explain methods used for algorithm de-
sign discussed in chapter 7. Generally, as a machine learning method for EEG classifying,
the most popular methods are SVMs, CNN with LSTM layers, and Random Forest. They
have results as shown. However, Q learning methods are lacking. In this study[54], ma-
chine learning (ML) methods often face scalability challenges due to the reliance on crafted
features. However, deep learning (DL) approaches although lack interpretability. Genetic
algorithms (GAs) have emerged as a promising alternative to address this issue. GAs are
gaining attention for their stochastic search capabilities in scenarios, which make them ca-
pable of identifying suitable solutions from a wide range of possibilities. In today’s era of
data growth across activities and advancements in data processing and storage capabili-
ties, there is a growing need to select an optimal subset of features from large datasets for
research purposes[54]. In this regard, GAs have shown promise in the literature for their
ability to identify nearly optimal features by removing unnecessary or redundant elements
from high-dimensional feature spaces.

4.1 Support Vector Machine
The Support Vector Machine is a linear classifier. It is famous for classification in the
EEG domain [60]. Unlike CNN, it can not produce a probability of classes for specific
inputs. However, probabilities can be achieved by making a soft score for a particular
class and converting it using a Softmax function. The objective function is closer to the
recognised maximum count of actual positive classes than to maximising the probability
that everything is classified correct[17].

The fundamental idea of how SVM works is to find the best separation hyperplane that
separates datapoints of different classes. The criterion for finding the best hyperplane is to
maximise the margin between datapoint and hyperplane.

Not every problem is linearly separable, especially in EEG features domain. To solve
it, SVM uses a method called Kernel trick [17]. The choice of kernel function, such as
linear kernels, polynomial kernels, radial basis function (RBF) kernels, or sigmoid kernels,
depends on data characteristics and the specific use case [5].
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Figure 4.1: Visualition of SVM from [5].

In the default version, SVM can handle only binary data, but nowadays, it is used
with a one-vs-one scheme. One-vs-one splits a multiclass classification dataset into binary
classification problems. It splits the dataset into one dataset for each class versus every
other class. For example, three classes: Normal, SAD and MDD will produce three binary
classification problems.

• Normal vs SAD.
• Normal vs MDD.
• SAD vs MDD.

4.2 Convolutonal Neural Networks
Convolutional neural networks revolutionised image classifications, especially AlexNet in
2012 [44]. Convolution as a mathematical operation is a vital part of convolutional neural
networks.

(𝑓 * 𝑔)[𝑛] =
∞∑︁

𝑚=−∞
𝑓 [𝑚]𝑔[𝑛−𝑚] (4.1)

CNNs are nowadays a standard part of Deep Learning classification algorithms. CNN
are usually a forward network, but nowadays, there are also acyclic implementations. CNNs
consist of layers, which can be divided by type into Convolutional layers, Activation layers,
Pooling layers and Fully connected layers.

Convolutional layers have a learning parameter called kernel, also called a filter. The
kernel is a learnable parameter of the convolutional layer. The equation for this filter is
simple and defined in 4.2.

𝐼(𝑢, 𝑣) =

𝑏∑︁
𝑖=−𝑎

𝑑∑︁
𝑗=−𝑐

ℎ(𝑖, 𝑗)𝐼(𝑢+ 𝑖, 𝑣 + 𝑗) (4.2)
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Figure 4.2: Convolutional operations in CNNs from[6].

Padding and stride are also parameters that affect mathematical operation. These
parameters can significantly affect the network’s performance and efficiency.

Padding is a technique of adding zero values around the corner of the matrix. This
is typically done before the convolutional operation. The purpose of the padding is size
preservation and border information. After each convolution, the size of the result matrix
is reduced. The padding can preserve the size of the matrix if that is a desired goal.

The stride is defined as a movement of the kernel in the matrix. Stride one means that
the filter is moving by one pixel. If we want to down-sampling the input, we just increase
a stride number.

Activation layers introduce non-linear properties to the model, which allows them to
learn more complex patterns in the data. There is no manual, which network should
use which function [70]. The activation functions can be Binary Step Function, Linear,
Sigmoid, Tanh, ReLU, Leaky ReLU, Parametrized ReLU, Exponential Linear Unit, Swish
and SoftMax. Some of them are in 4.3.

Figure 4.3: Types of activation functions from [39].

The pooling layer is created using a pooling operator to gather information from each
small area of the input feature channels and then down-sample the aggregated results.
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Although hand-crafted pooling operations are commonly used for this aggregation, they
do not necessarily minimise the training error. [75]. The usual pooling operator is Max ,
another possible operators are average or min pooling.

Figure 4.4: Max pool operation.

4.3 Recurrent Neural Networks
Recurrent neural networks are types of neural networks which are designed to analyse
sequential data [66]. They are typically used in natural language processing and speech
recognition. They are distinguished from CNNs by their “memory” as they take information
from prior inputs to influence the current input and output. [7].

The first Recurrent neural network was Jordan’s sequential network in 1986 [69], which
introduced the cycle in the neural networks graphs. Backpropagation Through Time
(BPTT) adapts the backpropagation algorithm for RNNs [65]. We can calculate the loss
by:

ℒ(O,Y) =
𝑇∑︁
𝑡=1

ℓ𝑡(O𝑡,Y𝑡) (4.3)

The loss ℒ(O,Y) is the sum of all losses in 𝑇 where ℓ𝑡 can be specified loss function
depending on the problem. Like CrossEntropy or MeanSquareError loss.

RNNs have one fundamental problem: vanishing and exploding gradients. This problem
motivated the introduction of the long short-term memory units (LSTMs) to mainly handle
the vanishing gradient problem [65].

𝜕ℒ
𝜕Wℎℎ

=

𝑇∑︁
𝑡=1

𝜕ℓ𝑡
𝜕O𝑡

· 𝜕O𝑡

𝜕𝜑𝑜
· Wℎ𝑜

𝑡∑︁
𝑘=1

𝜕H𝑡

𝜕H𝑘
· 𝜕H𝑘

𝜕Wℎℎ
(4.4)

𝜕ℒ
𝜕W𝑥ℎ

=
𝑇∑︁
𝑡=1

𝜕ℓ𝑡
𝜕O𝑡

· 𝜕O𝑡

𝜕𝜑𝑜
· Wℎ𝑜

𝑡∑︁
𝑘=1

𝜕H𝑡

𝜕H𝑘
· 𝜕H𝑘

𝜕W𝑥ℎ
(4.5)

In equations for weight derivation in 4.4 and 4.5 they introduce a 𝜕H𝑘
𝜕W𝑥ℎ

and 𝜕H𝑘
𝜕Wℎℎ

.
These matrix multiplications can be done in a very long sequence. If they are minimal
values ( less than one ) in matrix multiplication, this causes the gradient to decrease with
each layer (or time step) and finally vanish [65]. This work vice versa, if the values are
tremendous, the gradient can explode [65].

4.4 Transformers
Transformers have become a trendy AI architecture. They replaced all LSTM-RNN model
architectures in NLP, thanks to better performance [48]. Also, this breakthrough is due

24



Figure 4.5: Differences between Feedfoward NNs und Recurrent NNs from [65].

to the popularised AI chatbot for generating text like ChaptGPT4 [10], which is based on
transformer architecture.

Transformers introduce a new concept, which is called self-attention. Self-attention is
a mechanism which allows transformers to process input data (like text) by enabling each
part of the input to interact with and weigh the importance of other parts, all within a
single representation. In practical terms, we calculate the attention function for a group of
queries simultaneously. The result is then packed into a matrix Q. The keys and values are
also packed into matrices K and V [79]. Matrix of outputs ( or we can say score ) is then:

Q = 𝑊𝑄𝑥 K = 𝑊𝐾𝑥 V = 𝑊 𝑉 𝑥 (4.6)

Attention(𝑄,𝐾, 𝑉 ) = softmax
(︂
𝑄𝐾𝑇

√
𝑑𝑘

)︂
𝑉 (4.7)

The input is converted to embeddings, vector representations of text or other data.
After converting the input to input embeddings, the positional encodings are applied. An
attention function can be described as mapping a query and a set of key-value pairs to an
output, where the query, keys, values, and production are all vectors [79].

Transformers are also auto-encoder architectures. In the original implementation, the
encoder consists of 𝑁 identical layers. Every layer consists of Multi-Head Attention and
FeedForward Neural Network. In the Decoder, there is another new sub-layer type addition
which is called Masked Multi-Head Attention.

The final linear layer and softmax operation transforms the float vector produced by
the decoder stack into a word. In our implementation, we do not use Transformers as is
stated in this version, but we use architecture Bert [24], which is based on the transformer.
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Figure 4.6: Transformer model architecture from [79].

4.5 Bert Transformer
BERT, or Bidirectional Encoder Representations from Transformers, is a transformer-based
machine learning model introduced by Google researchers in 2018 [24]. It’s designed to
deeply understand the nuances of language by processing words in the context of all the
other words in a sentence—rather than one direction at a time. This bidirectional approach
allows BERT to capture the full context of a sentence, making it robust for tasks like
language understanding and contextual word relationships [24].

The architecture is based on Transformer, which we discussed in the previous section.
BERT uses WordPiece tokenisation, breaking down words into smaller subwords or char-
acters. This allows BERT to handle out-of-vocabulary words and capture finer linguistic
details. In our implementation of Transformer, we do not use tokenisation but put our
custom embeddings into Bert.

BERT consists of multiple layers of Transformers. The number of layers can vary de-
pending on the specific variant of BERT (e.g., BERT-base, BERT-large). Each layer refines
the representation of the input text by processing it through self-attention mechanisms and
feed-forward neural networks.

BERT is built using several layers of Transformers, with the exact number depending
on the variant, such as BERT-base or BERT-large. The input text is refined through self-
attention mechanisms and feed-forward neural networks to enhance its representation in
each layer. The critical difference between original Transformer from [79], is using only
the encoder part. Another key difference is that BERT, for the representation of each
word, is informed by the entire sentence context (bidirectional). In contrast, in the original
transformer, the decoder processes words in a left-to-right sequence when generating text.

Layer normalisation is used in BERT to help stabilise the learning process. It normalises
the inputs across the features instead of the batch dimension:

LayerNorm(𝑥) = 𝛾

(︂
𝑥− 𝜇

𝜎

)︂
+ 𝛽 (4.8)
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• 𝜇 and 𝜎 where are the mean and standard deviation of the features, and
• 𝛾 and 𝛽 are learnable parameters, for normalisation of the data

4.6 Genetic algorithms
The genetic algorithm is a metaheuristic inspired by the natural selection process. Genetic
algorithms are commonly used to generate high-quality solutions to optimisation and search
problems by relying on bioinspired operators such as mutation, crossover, and selection [82].
Genetic algorithms are computational models inspired by Darwin’s theory of evolution[64].

Figure 4.7: Concept behind GA algorithms 1.

The genetics algorithms are a type of evolution algorithm. Evolution algorithms include
a wide variety of algorithms. Evolution algorithms are classified as state space search algo-
rithms. To find a solution, they used a population of candidates. Using just a parallelism,
getting a quality of genetics algorithm is impossible. The Differential Evolution (DE) al-
gorithm is an evolution-based algorithm proposed by Storn [73] in 1996. This algorithm
implements mutation, crossover, and selection as operators in its structure. In this thesis,
the Differential Evolution algorithm is used. Other popular algorithms are Particle Swarm
Optimization [43] and Ant Colony Optimization (ACO) [29]. The PSO and ACO were
not applied in this thesis, becauseour problem’s characteristic isn’te easily interpreted and
coded in these two algorithms.

Figure 4.8: GA operations on binary strings.

4.7 AI trends in EEG
The paper [14] provides a comprehensive review of machine learning and deep learning
methods for diagnosing depression. The study categorised the models into classification and
deep learning. The models they inspected were state-of-the-art [14]. Among the survey,
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the Support Vector Machine was the most used classifier for EEG anxiety depression. SVM
are also very resistant to overfitting in the State-of-the-art models [14]. The accuracies of
SVM classifiers are mostly greater than 75%. The paper doesn’t mention using EEG-based
Transformers for classifying depression.

Figure 4.9: Trends in EEG Machine learning vs Deep Learning from [14].

However, Transformers are used in EEG classification of fatigue or attention, specifically
model named EEG-deformer from [25]. They introduce an architecture where the input,
instead of a tokeniser of the word for the transformer, applied a CNN layer as an input for
this transformer. Also, instead of using EEG features, they used EEG recordings, which
are then used in CNN. Problems with attention or fatigue can be a symptom of some
mental disorders. This paper suggests that models based on Transformers can be successful
with classifications of Mental Disorders when fatigue and attention were accurate with the
accuracy of 82.72 %, 79.32 % and 73.18 %.

Genetics algorithms are also used in EEG classification. This paper [55] uses a non-
dominated sorting genetic (NSGA-II) evolutionary algorithm to find the best features and
best frequencies. They achieved on MDD dataset 93.3%, specificity of 93.4% and accuracy
of 93.5%. The key idea was to find specific frequencies for classification by selecting
channels in evolution.

4.8 Limitations
The EEG classifications tasks are overall hard due to numerous factors. Artifacts in EEG
recordings cause noise, which is not easily eliminated as in audio task. Another problem is
that, EEG devices are not widely popular as smartphones or smartwatches, usually their
cost with 14 channels and more is around 1000$. Also, in EEG classification, we need to
instead of dividing the data to seen and unseen to seen subjects and unseen subjects to
eliminate a bias. Lastly one more factor is critical and that is, datasets for anxiety disorders
as well as Major Depressive Disorder are not that many publicly available. With factors
above, is hard to examine a lot of people diagnosed with social anxiety disorders or Major
Depressive Disorders.
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Chapter 5

Datasets

5.1 DASPS dataset
It’s a databases of subjects with levels of anxiety disorders based on stimuli response. The
levels of anxiety is Normal, Light, Mild and Severe. To obtained label data, the technique
Psychological Stimulation [15] was used. The protocol of this dataset was discussed with
psychotherapists with use of exposure therapy. The number of subjects is 23 participants.
For every subject, 6 situations are made before and after stimulation. In total, there are 276
samples annotated by the hamilton1 score and the hamilton2 score. The paper to produce
the results does not mention which labelled part was used for classifying (Hamilton1 or
Hamilton2).

Figure 5.1: Methodology from [15]

The therapist requests that the participant assess the intensity of each symptom using
a four-point scale to indicate its severity. This data is then utilised to calculate a score re-
flecting the anxiety severity level experienced by the individual [15]. After that, the subject
is prepared to begin the experiment with eyes closed to minimise muscle movement so that
there are fewer artefacts in the EEG graph. The psychotherapist starts the stimulation by
talking to the subject to imagine it. This phase is divided into two stages, before and after
talking, where there is a recall.

The number of EEG channels is 14 with the names AF3, AF4, F3, F4, FC5, FC6, F7,
F8, T7, T8, P7, P8, O1, O2. The SPS ( Samples per second ) is 128.

For the DASPS data set and generally for medical data, a lot of time when there are not
enough data, kernel machine learning methods like GMM, SVM K-NN are more suitable
solution than Neural Networks. Most of the time the problem of not enough data is solved
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Figure 5.2: Emotiv EPOC electrodes placement [15].

by data augmentation or data generator. We can see in tables 5.1 and 5.2 that the shorter
the duration of the trial (more data is split and more trains) the better the results are
given. It is also because of how the features are computed differently, but the idea is the
same. The best results are given for the binary classification of k closest neighbours 81.40%
accuraccy.

Table 5.1: 4 LEVELS [15]

Trial Feature #Feat SVM k-NN
15s Hjorth 42 56.20 56.50

qEEG 25 56.50 56.50
HHT 10 57.00 56.80
Power 56 58.30 57.60
RMS 56 59.10 56.50

5s Hjorth 42 57.40 58.80
qEEG 25 56.80 56.40
HHT 9 56.90 56.30
Power 56 62.00 63.20
RMS 56 65.30 64.30

1s Hjorth 42 60.10 57.00
qEEG 25 58.30 56.40
HHT 7 56.60 56.30
Power 56 64.40 68.00
RMS 56 70.20 73.60

Table 5.2: 2 LEVELS [15]

Trial Feature #Feat SVM k-NN
15s Hjorth 42 66.30 63.80

qEEG 25 64.10 63.80
HHT 10 64.10 64.10
Power 56 66.30 66.30
RMS 56 66.30 67.00

5s Hjorth 42 72.90 64.90
qEEG 25 64.00 63.60
HHT 9 64.00 64.10
Power 56 73.10 70.50
RMS 56 72.90 73.40

1s Hjorth 42 67.40 81.40
qEEG 25 64.00 63.50
HHT 7 64.00 63.60
Power 56 76.00 74.90
RMS 56 77.40 80.30
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Figure 5.3: Topomaps of subjects during the time in DASPS.

5.2 MDD Patients and Healthy Controls EEG dataset
In this study [56] two groups of subject were involved. 33 patients with Major Depressive
Disorder with age 𝑥 = 40.33, and 30 healthy subjects with age with 𝑥 = 38.227. Par-
ticipants were recruited from the outpatient clinic of hospital Universiti Sains Malaysia
(HUSM), Malaysia [56]. The subjects in MDD group were diagnosed with MDD by se-
nior psychiatrists in the psychiatric clinic. Subjects with psychotic symptoms, pregnant
patients, alcoholics, smokers and patients with epilepsy were excluded. This was necessary
to exclude any other bias in the MDD group. The subjects were recorded with 19-channel
BCI with channels Fp1, Fp2, F3, F4, F7, F8, Fpz, T3, T4, T5, T6, P3, P4, P7, P8, O1, O2,
C3, C4 with a sample rate of 256 samples per second.

In the paper [56], the features were ranked according to criterion i.e., receiver operating
characteristics (ROC). They iteratively ran the simulation of the top 5,10,15 and 19 features
based on z-score values to obtain the best features. In result, they switched the SVM
classifier for Linear Regression classifier with accuracy 98.33% achieved. One of the key
problem of this dataset is that the labels are binary, which contributes to better results in
the end.

Figure 5.4: Topomaps of subjects during the time in MDD.
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5.3 Social Anxiety Disorder dataset
The last dataset used in this thesis is the Social Anxiety Disorder dataset from paper [11].
It consists of eighty-eight individuals from 502 group, who self filled the Social Interaction
Anxiety Scale ( SIAS ) questionnaire1. The participants were from the range of 18 to 25,
and it consisted of 36 with age mean 𝑥 = 21.97 females and 52 males with mean 𝑥 = 22.73.
BCI recording device name is not mention but it was recorded in 2048 Hz and reduced to
256 Hz. The channels name are FP1, FP2, FPz, F7, F8, F3, F4, FC5, FC1, FC2, FC6, Fz,
Cz, T8, P7, P8, C3, C4, C3, CP2, CP4, CP1, CP6, CP5, P3, P4, Pz, O1, O2, and Poz.
They were located on cerebral cortex with referred to CPz [11]. The raw EEG data were
already processed to remove unnecessary and noisy segments. Artifacts caused by eye
movements, breathing, power interference, and cardiac movements were visually inspected,
removed, or corrected using spatial filters.

Figure 5.5: Topomaps of subjects during the time in SAD.

Artifacts resulting from eye movements, respiration, power interference, and cardiac
activity were visually examined and removed or corrected using spatial filters. To improve
signal quality and remove high-frequency artifacts, signal noise, and low-frequency deflec-
tions, a bandpass filter was used to isolate segments with optimal signal quality between
0.4 and 40 Hz. The montage is 10 to 20 system. In addition, for cleaning, the independent
component analysis (ICA) negatively affects the PDC estimation [11]. In this thesis, the
ICA was not applied in the cleaning process to this dataset.

1https://en.wikipedia.org/wiki/Social_Interaction_Anxiety_Scale
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Chapter 6

Preprocessing techniques

6.1 Filters
Finite impulse response filter (FIR) and infinite impulse response filter (IIR) are essential
in signal processing [20]. The filters are mainly used to noise removal in Audio processing.
These techniques are also applied to EEG signal processing1. In frequency domain, the
filter is defined:

𝐻(𝑧) =
𝑏0 + 𝑏1𝑧

−1 + 𝑏2𝑧
−2 + . . .+ 𝑏𝑀𝑧−𝑀

1 + 𝑎1𝑧−1 + 𝑎2𝑧−2 + . . .+ 𝑎𝑁𝑧−𝑁
=

∑︀𝑀
𝑘=0 𝑏𝑘𝑧

−𝑘

1 +
∑︀𝑁

𝑘=1 𝑎𝑘𝑧
−𝑘

(6.1)

In time domain , the filter is defined:

𝑦(𝑛) = 𝑏0𝑥(𝑛) + . . .+ 𝑏𝑀𝑥(𝑛−𝑀)− 𝑎1𝑦(𝑛− 1)− . . .− 𝑎𝑁𝑦(𝑛−𝑁) (6.2)

𝑦(𝑛) =
𝑀∑︁
𝑘=0

𝑏𝑘𝑥(𝑛− 𝑘)−
𝑁∑︁
𝑘=1

𝑎𝑘𝑦(𝑛− 𝑘) (6.3)

FIR (Finite Impulse Response) and IIR (Infinite Impulse Response) filters each offer
unique advantages and drawbacks as proposed in [20]. FIR filters can be designed to
have linear phase, meaning they provide consistent time delays across all frequencies, a
feature not achievable with causal IIR filters. Typically, FIR filters also exhibit superior
phase and group delay characteristics. On the other hand, IIR filters can achieve sharper
cutoffs compared to FIR filters of the same order, making them effective for applications
requiring strict frequency separation with fewer calculations. However, IIR filters tend to
be less numerically stable than FIR filters. This instability often results from the recursive
calculations they perform, which can accumulate errors over time. In EEG preprocessing
the FIR filters with additional implementation FIR windowed (FIRWIN) filters are used.

1https://mne.tools/stable/auto_tutorials/preprocessing/25_background_filtering.html#disc-
filtering
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6.2 Independent Component Analysis
Independent Component Analysis is a statistical signal-processing method. The main ob-
jective of Independent Component Analysis (ICA) is to reduce the statistical dependency
among the elements of a random vector, effectively eliminating additive background noise
and distinguishing between blended signals.[13]. Criterion which has the following multi-
variate probability density function of u factorizes given as:

𝑓𝑢(𝑢) =

𝑁∏︁
𝑖=1

𝑓𝑢𝑖(𝑢𝑖) (6.4)

In the context of EEG analysis, ICA is applied to solve the problem of signal preprocess-
ing, source localization, and cancellation of artifacts. In practice, real EEG signals either
include super-Gaussian’s noise, especially for ERPs, or sub-Gaussian background such as
EOG or other power frequency [74].

Figure 6.1: ICA Compoments of subject S02 in DASPS using MNE library2.
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6.3 Normalization
The Normalization is statistical technique to adjust or scale the data. In this thesis, nor-
malization is used to eliminate differences between DASPS, SAD and MDD datasets. This
is crucial to eliminate different biases from BCI devices, which were different in all three
dataset. There are numerous techniques to normalize data like Z-score Normalization, Min-
Max normalization. In this thesis, the z-score normalization algorithm was re-implemented
from EEGLAB3 for MATLAB4. This 6.5 normalization was applied per subject, after pre-
processing techniques like FIRWIN and ICA. Also, in the pipeline, common channels of all
datasets were used.

𝑥′𝑖,𝑗 =
𝑥𝑖,𝑗
𝜎𝑖

(6.5)

where:
• 𝜎𝑖 is the standard deviation of the channel
• 𝑥𝑖,𝑗 is old point
• 𝑥′𝑖,𝑗 is new rewritten point

Figure 6.2: MDD subject before normal-
ization.

Figure 6.3: MDD subject after normal-
ization.

3https://eeglab.org/
4https://www.mathworks.com/products/matlab.html
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6.4 AutoReject
Autoreject5 is EEG library for repairing or removing bad epochs of EEG recordings. This
tool is a helpful to utilize more information from brain activity and removing noise from
EEG recordings. The implementation is on cross-validation in conjunction with a robust
evaluation metric to estimate the optimal peak-to-peak threshold – a quantity commonly
used for identifying bad trials in M/EEG [40].

Figure 6.4: Effect of Autoreject from [40].

By automating the detection and correction of epochs, Autoreject helps to improves the
quality and dependability of EEG data analysis. This leads to a understanding of the brains
electrical activity crucial, for applications, like clinical diagnoses, neuroscientific studies and
brain computer interfaces.

6.5 Result of preprocessing
These techniques in Sections 6.1, 6.2, 6.3, and 6.4 were applied to the EEG recordings per
subject in DASPS, MDD and SAD dataset. In figures 6.7 we can clearly see a differences
on last channels. Also movement artifacitfacts were repaired in channels F4.

5https://autoreject.github.io/stable/index.html
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Figure 6.5: EEG graph of S03 before
cleaning.

Figure 6.6: EEG graph of S03 after clean-
ing.

Figure 6.7: Power Spectral Density graph
of S03 before cleaning.

Figure 6.8: Power Spectral Density graph
of S03 after cleaning.
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Chapter 7

Algorithm Design

The main idea of algorithm design is to combine all promising techniques from chapter 2.
The main goal of this thesis is to classify patients who have Social Anxiety Disorder as
well as Major Depressive Disorder. The dataset, which includes healthy subjects, subjects
diagnosed with Social Anxiety Disorder and Major Depressive Disorder, did not exist at
the time of implementing and writing this thesis. To solve this issue, combining datasets
together with the normalization step is necessary to solve this issue. In addition, the
merging of these three datasets will give us more data, which is generally a positive factor
to train neural networks and not overfit the data. Another key point of the algorithm design
is to divide the segments into different time lengths, as experiments from Tables 5.1 and
5.2 suggest different accuracies across time.

7.1 Conceptual Framework
The algorithm pipeline consists of several steps. Preprocessing, normalizing, splitting,
getting the best features and using a more robust classifier to obtain a result. This exper-
imental pipeline is combining the techniques from papers [55], [25], [68] and [12]. Instead
of removing the channels by evolutionary algorithm, we used a genetic algorithm to find a
best features of our eeg signals for classification. The problem of a lot of papers is that the
mathematical findings, formulas and results can’t be easily replicated [37]. To be sure of
the correct implementation of EEG features, the standard library called mne_feauters1 is
used for extraction of EEG recordings. These extracted features from EEG recordings are
then given as input to CNN, CNN GA and Bert Transformer with removed tokenizer. The
loading and preprocessing of EEG recordings is done by applying with techniques discussed
in chapter 6. The pipeline is shown in Figure 7.1.

1https://mne.tools/mne-features/
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Figure 7.1: Algorithm design flow graph.

7.2 Finding best features
To find the best features for our dataset, we used an evolutionary algorithm, specifically a
genetic algorithm. The genome of our candidate solution is coded in binary strings consist-
ing of 1 or 0. The genome’s length is the count of all features, which is 31 features in total.
Specifically: App entropy, Decorr time, Higuchi fd, Hjorth complexity, Hjorth complexity
spect, Hjorth mobility, Hjorth mobility spect, Hurst Exp, Katz FD, Kurtosis, Line Length,
Mean, Pow Freq Bands, Ptp Amp, Quantile, RMS, Samp Entropy, Skewness, Spect Edge
Freq, Spect Entropy, Spect Slope, Std, SVD Entropy, SVD Fisher Info, Teager Kaiser En-
ergy, Variance, Wavelet Coef Energy, Zero Crossings, Max Cross Corr, Nonlin Interdep,
Phase Lock Val, Spect Corr, Time Corr. We used all features available in mne_features
library. The fitness function of GA is the accuracy of the SVM algorithm. We used the
SVM classifier because in most papers discussed in section 4.7, SVM is the state-of-the-art
model. SVM is also used for the genetic algorithm in this paper [54]. This classification is
not as precise as CNN or Transformers, but it can give us a faster evaluation of the features
than CNN or Transformers. However, different features give us different vector lengths. To
not implement a custom architecture for every input without padding, the SVM classifier
is the best option for that.
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Figure 7.2: Evaluation of one candidate in SVM GA.

7.3 Finding best architecture
The next step was to find the best architecture optimized for a given best-feature dataset.
The best architecture would be based on an algorithm called CNN-GA [83]. The algorithm
will build the architecture based on the genome on a given maximum length and depth.
This algorithm was modified so that instead of merely classifying images, it will classify a
given feature vector. CNNs often perform better than SVMs on large and complex datasets.
To verified this, CNN and CNN-GA was implemented.

CNN

This convolutional neural network was implemented to analyse 1-dimensional data. Usually,
1-dimensional data are time-series signals or audio signals. In this implementation, the
input is a 1-dimensional data vector of features, which were given as a result of the SVM
classifier. The network architecture begins in a 1D convolutional layer with 16 filters. The
kernel size is 5. Padding is set to 2 to preserve the dimensionality of the input through this
layer. Then, the activation function ReLu is applied. The pooling layer applies MaxPool
with kernel size 2 and padding is 2. The second convolutional layer doubles the filter size
to 32 then with same Relu and pooling layers. The result from these layers is then flatten
and used to Linear fully connected layers which they gives a output for one hot encoding
label data[61]. This simple Convolutional Neural Network is not complicated enough to
overfit the data. The architecture is shown in Figure 7.3.
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Figure 7.3: Architecture of simple CNN.

CNN-GA

The problem of finding a best architecture, which is not design by people, is a space state
search problem [76]. To get valuable results, we needed to limit the search space. To
generate the best architecture, we limited how big the architecture can be. The architecture
is inspired from [76], but is simplified and re-implemented to our problem. Again, to
represent a candidate, the binary number is used. The binary number is split into two
numbers, which represent count of layers. For example, the binary number 110001 is split
into 110 and 001, which corresponds to 6 convolutional layers blocks and 1 linear blocks.
Also the architecture can’t be big as Resnet-56 [34], because there is not enough vector data
after that much convolutions. Also, in the early stages of implementation, LSTM block was
used as paper[12] suggest a better accuracy. In my experiments, these CNN-LSTM-GA
would not learn above accuracy 50%, so they were excluded from this thesis.

Figure 7.4: CNN GA evaluation of one candidate.
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7.4 Experimental Bert Transformer implementation
The design is based on BERT model, which is typically known for its strong performance
in natural language processing tasks as discussed in Section 4.5. In this thesis instead of
using BERT tokenizer for words, we applied a Convolutional Layers as a input to extract
the spatial information from features vectors. We decided to try this approach instead of
using EEG-deformer [25], to be able to explain, which features are put as an input into
Neural Network as well as explain what numbers behind the input means, because we can
by mathematically express every number from math formula, which we discussed in Section
3.5. Also this gives a control how big the input vector is, to reduce a memory performance.
The final touches of the architecture can be seen in Figure 7.5.

Figure 7.5: The experimental Bert Architecture.

7.5 Implementation
The implementation was done by using by Python 3.10 using Anaconda2 environment. The
library for loading and cleaning the EEG recording is called MNE library[30]. The Support
Vector Machine, which we discussed in Section 4.1, is implemented from standard library
Scikit3. The implementation of Convolutional Neural Networks is done in the library called
Pytorch4. The bone of BertArchitecture is from library called HugginFace 5. The algorithm
for generating genomes candidates, with cross-over implementation is from library called
Pygad6. To replicated results for every step in the pipeline can be run also with Makefile7.

2https://www.anaconda.com/
3https://scikit-learn.org/stable/modules/svm.html
4https://pytorch.org/
5https://huggingface.co/
6https://pygad.readthedocs.io/en/latest/
7https://en.wikipedia.org/wiki/Make_(software)
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Distribution of the data
The DASPS 5.1 dataset have labels light, normal, modern and severe. The SAD 5.3 dataset
have labels Control, Average, Mild and Severe. The MDD 5.2 dataset have labels H which
stands for normal and MDD, which stands for Major Depresive Disorder.

After normalization, the models separate these labels into four groups. The light and
normal from DASPS with Control and Average from SAD to the class called Normal. The
moderate from DASPS and Mild from SAD is in class called Mild Moderate. At last, the
labels severe and Severe from DASPS and SAD are in class Severe.

After re-labeling, the data was distributed in 70 to 15 to 15 ratio for training, validation
and testing. We can see that the Figure 7.6. Which specific subjects were used, we can
see in the Table 7.1. It’s worth noting that even if we mixed three datasets, 15 subjects
validation is not a representative sample of population. This is a general problem of EEG
classification as well as classification in medical data.

Figure 7.6: Distribution of classes in Mixed dataset.

Dataset Training Subjects Validation Subjects Testing Subjects
MDD S27, S6, S28, S17, S23, S1, S21, S24, S25, S5, S22,

S2, S3, S10, S19, S30, S20, S8, S32 S26, S16, S34
S14, S15, S9, S7, S11,

S13, S29, S4, S18
DASPS S09, S17, S10, S03, S16, S23, S18, S14, S15, S08, S05,

S02, S12, S19, S04, S01, S22, S07, S13 S20, S21
S06, S11

SAD C8, C9, C1, C17, C15, C2, C4, C10 C5, C16, C14
C11, C18, C3, C6, C7,

C13, C12

Table 7.1: Training, Validation, and Testing Sets for Each Dataset.
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Chapter 8

Results

8.1 SVM GA
The results were achieved with parameters of 20 generations with 20 candidates with adap-
tive mutation. The trials were done for 1, 3 and 5 seconds segments to achieved the best
features for specific segments.

For 1 seconds segments is accuracy 0.68. List the best features identified by the SVM
model for 1 seconds segment: decorr time, higuchi fd, hjorth complexity, hjorth complexity
spect, hjorth mobility, hurst exp, mean, pow freq bands, spect entropy, spect slope, time
corr.

Table 8.1: Val. Class Report for 1 second

Class Precision Recall F1-Score

Normal 0.72 0.71 0.72
Mild Moderate 0.50 0.01 0.01
Severe 0.30 0.42 0.35
MDD 0.83 0.99 0.90

Accuracy 0.68

Table 8.2: Test Class Report 1 second

Class Precision Recall F1-Score

Normal 0.64 0.62 0.63
Mild Moderate 0.92 0.04 0.08
Severe 0.41 0.54 0.47
MDD 0.63 0.82 0.72

Accuracy 0.60

Figure 8.1: Confusion Matrix for Validation
Data in Mixed 1 sec.

Figure 8.2: Confusion Matrix for Test Data
in Mixed 1 sec.
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Figure 8.3: Box plot of SVM GA 1 during generations.

In Figure 8.3, we can clearly see that the SVM GA classification suffers to find a bet-
ter solution than generation 4, which would be better and the algorithm tries a different
combination of features, which in most cases has worse results than in generation 4.

For mixed 3 seconds is accuracy 0.64. List the best features identified by the SVM
model for 1 seconds segment: higuchi fd, hjorth complexity spect, hjorth mobility spect,
katz fd, mean, pow freq bands, spect slope, std, svd fisher info, nonlin interdep, phase lock
val, time corr. The results and graphs can be seen in Appendix A.

For mixed 5 seconds is accuracy 0.68. List the best features identified by the SVM
model for 5 seconds segment: app entropy, decorr time, higuchi fd, hjorth complexity,hjorth
complexity spect, hurst exp, katz fd, line length, mean, pow freq bands, ptp amp, rms, spect
entropy, spect slope, std, svd entropy, svd fisher info, teager kaiser energy, variance, wavelet
coef energy, nonlin interdep, phase lock val, time corr. The results and graphs can be seen
in Appendix A.

Figure 8.4: Accuracy based on length of features vector for SVM GA.
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The feature vector length for specific features was recorded with accuracies. In Figure
8.4, we can clearly see that 1 and 5 seconds segments are overall better than 3 seconds
segment. Also, we can have a same accuracy with smaller vector than with longer vectors
in SVM classification.

8.2 CNN
Training CNN was done with Adam Optimizer and with early stop callback to prevent
a overfitting. On Best features from a SVM GA results in Section 8.1 was preform next
training. Using a CNN as a classifier, we can see a dramatical improvement by 12%. The
validation accuracy during training with validation loss can be seen in Figure 8.5 and in
Figure 8.6. Because of early stop, we can also see that 1 second best features preforming
better over training. The explanation of this result can be interpreted as 1 second features
segments have more data, which CNN benefits from.

Figure 8.5: CNN val. acc. during training. Figure 8.6: CNN val. loss during training.

To preform more detailed inspection on how CNN classify, The AUC and DET graphs
were made. They can be seen in 8.7 and 8.8. The 3 and 5 second CNN suffer to classify
correctly Anxiety classes. Otherwise for classyfing Major Depressive Disorder we can see
a 97% AUC value. We can say, that CNN are more than suitable to identifying a Major
Depressive Disorder.

Figure 8.7: AUC graph for Normal vs Mild Moderate vs Severe vs MDD.
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Figure 8.8: DET graph for Normal vs Mild Moderate vs Severe vs MDD

Even if AUC and DET graphs suggests, that by 1 second segment can be tune by
different thresholds, the actual trained CNN have statistics, where almost all Anxiety labels
were classified as Normal label. We can see in confusion matrices for validation in Figure 8.9
and in Figure 8.10. As consequence, Precision , Recall and F1-score are 0 in Mild Moderate
class. It’s worth noting that in that Recall values for MDD are 0.87% and 0.77%. The
classification report tables can be seen in Table 8.3 and Table 8.4.

Table 8.3: Val. Class Report for 1 second

Class Precision Recall F1-Score

Normal 0.68 0.47 0.56
Mild Moderate 0.00 0.00 0.00
Severe 0.04 0.01 0.02
MDD 0.77 0.87 0.82

Accuracy 0.81

Table 8.4: Test Class Report for 1 second

Class Precision Recall F1-Score

Normal 0.67 0.60 0.63
Mild Moderate 0.00 0.00 0.00
Severe 0.62 0.14 0.22
MDD 0.64 0.77 0.70

Accuracy 0.81

Figure 8.9: Val Confusion Matrix 1 second. Figure 8.10: Test Confusion Matrix 1 sec-
ond.
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8.3 CNN GA
CNN GA was ran in 5 generation cycle with 5 individuals for every type of segment. The
actual number of trained neural networks of this section is 75. Every CNN GA use own
best features which came as a result from Section 8.1. We can see in the Figures 8.11, that
using Evolutionary algorithm for CNN GA did enhanced the generation overall accuracy,
but it never outperformed the CNN results discussed in Section 8.2.

Figure 8.11: Box plot of CNN GA 1 during
generations.

Figure 8.12: Box plot of CNN GA 3 during
generations.

To inspect more, second generation of AUC graph is shown in Figure 8.13. We can
from this best generation conclude that the our implementation of CNN GA didn’t preform
better than CNN implementation. We also need to discussed a architecture efficiency to

Figure 8.13: Second Best generation of CNN by accuracy.

accuracy. In Figure 8.14, we can see that architectures of CNN GA preforms better when
they have less learnable parameters. Also the 1 seconds segments preforms better than the
rest of the architectures. For CNN GA 3 we can see also a outliers with 3.5×1𝑒7 but didn’t
preform better then the rest of the architectures. CNN and CNN GA can classify Healthy
subjects and subjects with Major Depressive Disorder but it struggle with different Anxiety
levels.
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Figure 8.14: Architecture efficiency to accuracy.

8.4 Experimental Bert Transformer
The last experiment is using our custom Bert implementation. Transformers are generally
used for sequential data and in general, they outperform the CNN in this fields. With
our results, we can confirm it. The optimizer for training was Adam, same as in CNN for
comparison purpose. We run the experiments on 100 epochs without Early stopping. There
are two main differences than on SVM and CNN category. First, in training accuracy we
hit more than 90% in 1 seconds segments and 5 second segments. Second, in validation
accuracy for 5 seconds we hit 85% accuracy. The training and validation are shown in
Figure 8.15.

Figure 8.15: Train Loss, Train Accuracy, Validation Loss, and Validation Accuracy over
100 epochs.
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To evaluate closely, classification report for validation and test dataset is shown in
Tables 8.5 and 8.6. One second segments are displayed as in previous Sections 8.1 and 8.2
. Transformers in some cases was able to dissociate the some cases of SEVERE and Mild
Moderate of Anxiety levels. Also is more certain if subject have Major Depressive Disorder
with Recall 0.98%.

Table 8.5: Val. Class Report for 1 second

Class Precision Recall F1-Score

Normal 0.80 0.59 0.68
Mild Moderate 0.22 0.00 0.01
Severe 0.27 0.37 0.31
MDD 0.81 0.98 0.89

Accuracy 0.85

Table 8.6: Test Class Report for 1 second

Class Precision Recall F1-Score

Normal 0.70 0.52 0.59
Mild Moderate 0.39 0.01 0.03
Severe 0.42 0.53 0.47
MDD 0.62 0.83 0.71

Accuracy 0.80

Figure 8.16: Transformer Validation Confu-
sion Matrix 1 second.

Figure 8.17: Transformer Test Confusion
Matrix 1 second.

To summarize, for our dataset which was correctly splitted to 70 to 15 to 15 ration,
we applied different technique of Machine Learning as well as Genetics algorithm. The
result speaks in that SVM machines can be used and a evaluation technique to find best
features. These selected features by genetic algorithm can be in shorter segments improved
by stronger classifier like CNN about 10%. The bigger architectures of CNN in this field
doesn’t performer dramatically better. In the end the most accurate models were Trans-
formers, specifically Bert Transformer with 85% accuracy for 5 seconds segments, with
features: app entropy, decorr time, higuchi fd, hjorth complexity, hjorth complexity spect,
hurst exp, katz fd, line length, mean, pow freq bands, ptp amp, rms, spect entropy, spect
slope, std, svd entropy, svd fisher info, teager kaiser energy, variance, wavelet coef energy,
nonlin interdep, phase lock val and time corr. The graph which sumarize all validation
results can be seen in Figure 8.18.
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Figure 8.18: Results of applied techniques of different time segments.
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Chapter 9

Conclusion

The purpose of this thesis was to investigate and develop classification methods that could
classify healthy subjects, subjects with anxiety disorder, and subjects with major depressive
disorder. In Chapter 2, we explain what anxiety disorders and depression are and what the
relationships are between them. We also discuss different methods for classifying mental
disorders and their long-term effects. In Chapter 3, I researched the anatomy of the brain
and what an electroencephalogram is. Next, we discussed signal analysis of EEG and the
properties of EEG signals. In Chapter 4, I explain and explore current popular machine
learning methods, which were also used in developing our algorithm. We discussed current
trends in EEG classification as well as the limitations of our classification of Anxiety and
Depression. In Chapter 5, we discussed datasets used for classifying Social Anxiety Disor-
der and Major Depressive Disorder. In Chapter 6, we discussed the actual preprocessing
techniques, specifically FIR filters, Independent Component Analysis and Normalization,
which were then used to clean our dataset for classification. In Chapter 7, we deeply discuss
every step of our algorithm and the solution for this thesis. We propose a solution that
uses a genetic algorithm to select the best features for our dataset. After finding signifi-
cant features, we developed three architectures to enhance our accuracy for classification.
This solution allows us to optimize input vectors for classification and the number of train-
able parameters. We also developed an experimental Transformer architecture based on
Bert[24] Transformer. In Chapter 8, we discussed our achieved results. Best accuracies
were achieved when the EEG recordings were split into 1-second segments. The classifica-
tion was improved overall using transformer-based models by 16%, and the best achieved
accuracy was 85%. The results were evaluated using benchmark statistics F1, Recall, Pre-
cision, Confusion Matrix AUC, and DET graphs. In our results, we provide an analysis
of memory usage by how the vector length affects accuracy as well as how the count of
trainable parameters affects the score. The contribution of this thesis is a model which
can classify Healthy subjects, subjects with Anxiety and subjects with Major Depressive
Disorder. Also, we provide a solution based on a genetics algorithm and deep learning
models.
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Appendix A

Results and Graphs

For mixed 1 seconds is accuracy 0.6838831291234684. List the best features identified by
the SVM model for 1 seconds segment: decorr_time, higuchi_fd, hjorth_complexity,
hjorth_complexity_spect, hjorth_mobility, hurst_exp, mean, pow_freq_bands,
spect_entropy, spect_slope, time_corr.

Class Precision Recall F1-Score Support
0 0.72 0.71 0.72 2665
1 0.50 0.01 0.01 535
2 0.30 0.42 0.35 645
3 0.83 0.99 0.90 1460
Accuracy 0.68
Macro Avg 0.59 0.53 0.50 5305
Weighted Avg 0.68 0.68 0.65 5305

Table A.1: Validation Class Report for 1 second SVM𝐺𝐴

Class Precision Recall F1-Score Support
0 0.64 0.62 0.63 2545
1 0.92 0.04 0.08 535
2 0.41 0.54 0.47 720
3 0.63 0.82 0.72 1250
Accuracy 0.60
Macro Avg 0.65 0.51 0.47 5050
Weighted Avg 0.63 0.60 0.57 5050

Table A.2: Test Class Report 1 second SVM GA.
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Class Precision Recall F1-Score Support
0 0.72 0.64 0.68 597
1 0.00 0.00 0.00 131
2 0.30 0.55 0.38 167
3 0.84 1.00 0.91 292
Accuracy 0.64
Macro Avg 0.46 0.55 0.49 1187
Weighted Avg 0.61 0.64 0.62 1187

Table A.3: Validation Class Report for 3 second segment SVM GA.

Class Precision Recall F1-Score Support
0 0.63 0.57 0.60 557
1 0.00 0.00 0.00 131
2 0.40 0.62 0.49 192
3 0.63 0.82 0.72 250
Accuracy 0.57
Macro Avg 0.42 0.50 0.45 1130
Weighted Avg 0.52 0.57 0.54 1130

Table A.4: Test Class Report for 3 second segment SVM GA.

Figure A.1: Confusion Matrix for Validation Data in Mixed 3 sec SVM GA.
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Figure A.2: Confusion Matrix for Test Data in Mixed 3 sec SVM GA.

Table A.5: Validation Class Report

Class Precision Recall F1-Score Support
0 0.73 0.71 0.72 533
1 0.00 0.00 0.00 107
2 0.30 0.44 0.36 129
3 0.84 1.00 0.91 292
Accuracy 0.69
Macro Avg 0.47 0.54 0.50 1061
Weighted Avg 0.63 0.69 0.66 1061

Table A.6: Test Class Report

Class Precision Recall F1-Score Support
0 0.63 0.63 0.63 509
1 0.00 0.00 0.00 107
2 0.40 0.50 0.45 144
3 0.63 0.81 0.71 250
Accuracy 0.59
Macro Avg 0.42 0.48 0.45 1010
Weighted Avg 0.53 0.59 0.56 1010
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Figure A.3: Confusion Matrix for Validation Data in Mixed 5 sec.

Figure A.4: Confusion Matrix for Test Data in Mixed 5 sec.
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Figure A.5: SVM_ALL_GA_3

Figure A.6: SVM_ALL_GA_5
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Appendix B

SD card structure

MasterThesis
src

zcorefinal
main.py
SVM
CNN
Transformers

datasets
documentation
README.MD
installInstruction.txt
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