BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INTELLIGENT SYSTEMS
USTAV INTELIGENTNICH SYSTEMU

GENERATING CODE CHANGE PATTERNS FROM C

GENEROVANI SABLON ZMEN KODU V JAZYCE C

MASTER’S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. TOMAS KUCMA
AUTOR PRACE
SUPERVISOR Ing. VIKTOR MALIK

VEDOUCI PRACE

BRNO 2024



BRNO  FACULTY
UNIVERSITY | OF INFORMATION
OF TECHNOLOGY | TECHNOLOGY

r

Master's Thesis Assignment i IillH

Institut: Department of Intelligent Systems (DITS) 157087
Student: Kuéma Tomas, Bc.

Programme: Information Technology and Artificial Intelligence

Specialization: Mathematical Methods

Title: Generating Code Change Patterns from C

Category: Software analysis and testing

Academic year:  2023/24

Assignment:

1. Get acquainted with DiffKemp, a tool for static analysis of semantic differences between versions of
large-scale C projects.

2. Investigate DiffkKemp's approach to handling user-defined patterns of changes that should be
considered semantically equal (so-called custom change patterns).

3. Propose a way to define custom change patterns by describing the correspodning changes in the C
language.

4. Implement the proposed solution in a way such that the defined patterns can be used by DiffKemp.

5. Evaluate the created solution by implementing at least 5 custom change patterns in C and
demonstrating that they help DiffKemp eliminate false positive results.

Literature:
» Malik, V., Vojnar, T.: Automatically checking semantic equivalence between versions of large-scale
C projects. In: 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST).
pp. 329-339. IEEE (2021)
« Malik, V., Silling, P., and Vojnar, T.: Applying Custom Patterns in Semantic Equality Analysis. In:
The 10th Edition of the International Conference on NETworked sYStems (NETYS). pp. 265-282.
Springer (2022)

Requirements for the semestral defence:
The first two points of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Malik Viktor, Ing.

Head of Department:  Hanacek Petr, doc. Dr. Ing.
Beginning of work: 1.11.2023

Submission deadline:  17.5.2024

Approval date: 6.11.2023

Faculty of Information Technology, Brno University of Technology / Bozetéchova 1/2 /612 66 / Brno



Abstract

Ensuring the semantic stability of software projects is often a costly task. DIFFKEMP
is a tool that automatizes this process, with a special emphasis placed on performance
and usability in large-scale projects. A trade-off for its efficiency is a greater degree of
inaccuracy compared to formal tools. To minimize this issue, DIFFKEMP allows users to
define their own semantics-preserving patterns, describing what kind of changes are to
be treated as equal. Currently, this support is restricted to patterns written in LLVM
internal representation, which is not a user-friendly language. The purpose of this work
is to extend this capability to patterns written in C, significantly simplifying the process
of their creation. This includes a proposal of a representation of the patterns, which must
be able to encode all necessary meta-information, and subsequent design, implementation,
and testing of a DIFFKEMP extension that allows utilization of patterns encoded in C.

Abstrakt

Zabezpecenie sémantickej stability softvérovych projektov je ¢asto nakladnou tlohou. Na-
stroj DiffKemp automatizuje tento proces so Specidlnym doérazom na vykon a pouzitelnost
v rozsiahlych projektoch. Cenou za jeho efektivnost je vicsia nepresnost oproti formalnym
nastrojom. Na minimalizaciu tohto problému DiffKemp umoznuje pouzivatelom defino-
vat vlastné vzory zachovavajice sémantiku, opisujice, aké zmeny maju byt povazované
za ekvivalentné. V sucasnosti je tato podpora obmedzend na vzory napisané v internej
reprezentacii LLVM, ktora nie je priatelska pre pouzivatela. Cielom tejto prace je rozsirit
tto podporu na vzory napisané v jazyku C, ¢o vyrazne zjednodusi proces ich vytvarania.
To zahfna navrh reprezentacie vzorov, ktord musi byt schopnd zakédovat vSetky potrebné
metainformaécie, a nasledny navrh, implementéiciu a testovanie rozsirenia DiffKemp, ktoré
umozni vyuzivat vzory zapisané v jazyku C.

Keywords

code change patterns, DiffKemp, semantic analysis, refactorization

Kltcové slova
vzory zmien kédu, DiffKemp, sémanticka analyza, refaktorizacia

Reference

KUCMA, Tomas. Generating Code Change Patterns from C. Brno, 2024. Master’s thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Ing. Viktor
Malik



Rozsireny abstrakt

Pri vyvoji softvéru je dolezitym aspektom nezavadzat do softvéru netimyselné zmeny. Za-
medzuje sa tym zbytoénym chybam, zaistuje sa, ze rozhrania funguju tak ako to od nich
uzivatelia ocakavaji, a podobne. Preto je velmi doélezité, aby aj pri vyvoji a aktualizaciach
zostavali niektoré casti sémanticky stabilné. Zaroven je ale v niektorych pripadoch narocné
tuto poziadavku zabezpecovat aj pri vysokom pocte Uprav a rozsiahlejsich refaktorizaciach.
7 toho dévodu boli na tito dlohu vyvinuté automatizované nastroje, ktoré zachovanie sé-
mantickej stability overuji pomocou statickej analyzy zdrojového kédu. Funguju tak, ze pre
dve verzie softvérového projektu porovnavaji sémantiku programov, napriklad jednotlivych
funkcii, a o vysledku néasledne informuji uzivatela. Jednym z takychto nastrojov je otvoreny
nastroj DIFFKEMP, vyvijany primarne firmou Red Hat.

DirrKEMP sa od ostatnych nastrojov v tejto oblasti lisi tym, Ze je zamerany na vysoku
skalovatelnost. Bezny pristup pozostava z pouzivania formalnych metod, vdaka ¢omu byva
dosiahnutd vysokda spolahlivost, ale casové néklady rasti prudko s velkostou kédu, a teda
v praxi je ho vac¢sinou mozné pouzit iba na malé izolované funkcie. Aby DIFFKEMP bolo
mozné pouzivat aj na projekty velkosti napriklad Linuxového jadra, bolo potrebné zvolit
iny pristup. Skumany kdéd sa prevedie do internej reprezenticie LLVM, nizkotroviového
jazyka podobného strojovému kédu, vykonaja sa urcéité analyzy a zjednodusSujtce trans-
formacie, a potom samotné porovnavanie prebieha zvéicsa na baze jednotlivych dvojic in-
strukcii. Takto je dosiahnuté omnoho lepsie skalovanie, avSak za cenu vic¢sej nepresnosti.
DirrKEMP je navrhnuty tak, aby sémantickt ekvivalenciu porovnavanych verzii hlasil iba
vtedy, ak je skutoéne potvrdend. Nepresnosti vo vyhodnocovani sa preto (okrem vynimiek)
tykaju toho, ze pri zlozitejsej refaktorizacii DIFFKEMP hlasi rozdiel v sémantike, aj ked st
obe verzie ekvivalentné. Napriek tomu ma DIFFKEMP velky prinos pre Setrenie ¢asu a zdro-
jov, aj zvysovanie kvality softvéru, kedze vyraznu cast potencidlnych zmien v sémantike vie
skontrolovat a spracovat tspesne.

Aby sa nedostatky tohto néstroja este viac limitovali, pre uzivatelov existuje moznost
zadefinovat si vlastné vzory zmien v kéde. Uzivatelia nimi Specifikuji, ze uréitd zmena ma
byt povazovand za sémantiku-zachovavajicu zmenu. Okrem toho, Ze uzivatel ma moznost
takto pokryt konkrétne pripady, o ktorych vie, ze DIFFKEMP sam o sebe ich nevie spravne
spracovat, moze navyse takéto vzory vytvorit aj pre zmeny, ktoré sémantiku menia, ale
umyselne, lebo sa napriklad tykaju bezpecnostnych oprav.

Problém s tymto pristupom bol v tom, zZe tieto vzory zmien bolo nutné pisat v LLVM
internej reprezentacii, ktort vyuziva interne aj DIFFKEMP. Nie je to uzivatelsky privetivy
jazyk, kedZe je primarne navrhnuty na automatické analyzy a transformécie kédu, a tiez
nie je tak bezny, aby bol s nim a jeho $pecifikami Standardny uzivatel dobre oboznameny.
To vytvara vyraznu bariéru pri pouzivani tejto funkcionality nastroja.

Preto vznikla tato praca, ktorej cielom bolo rozsirit tento systém o moznost pouzivat
vzory zmien napisané v jazyku C. V prvom rade bolo teda potrebné navrhnitf konkrétny
format a spdsob zapisu vzorov zmien v jazyku C. Dalej bolo treba navrhnit rozsirenie
nastroja DIFFKEMP aby takéto vzory podporoval. KedZze uz obsahuje celi funkcionalitu
na spracovanie vzorov v internej reprezentacii LLVM a kedZe C je mozné previest do tohto
jazyka pomocou prekladaca Clang, prirodzene bol zvoleny pristup, kedy vzory v C st
prevedené na format uz podporovany. Vdaka tomu mozno znovu vyuzit celt uz existujicu
cast nastroja zodpovednu za spravne vyuzivanie poskytnutych uzivatelskych zdrojov pri
porovnavaniach verzii projektov.

Navrhnuté rozsirenie bolo implementované. Pre zapis samotnych vzorov bol vytvoreny
hlavickovy subor, ktory poskytuje rozhranie pre definovanie vzorov zmien pomocou makier



jazyka C. Dalej bol vytvoreny spracovavajici prechod — takzvany pass — pre generované
vzory, kedze samotny preklad z C do LLVM internej reprezentacie nevedie na validny vzor
zmien. Tento prechod prelozeny vzor spracuje tak, aby bol validny. Tieto veci boli zakom-
ponované do nastroja, aj s ipravami rozhrania a inych relevantnych aspektov, aby vzory
v jazyku C boli plne podporované nastrojom DIFFKEMP. Vdaka tomu pribudla moznost
pouzivanie tychto vzorov pri porovnavani, aj moznost vykonat len jednoduchy preklad vzoru
z jazyka C do validnej reprezentdacie LLVM, ktory potom méze uzivatel pripadne dalej up-
ravit ruéne. Tato implementacia je uz pridana do volne dostupného repozitaru projektu
DirrKEMP.

Rozsirenie bolo otestované vo viacerych ohladoch. Prvy sa tykal zdkladnej funkcionality
a tieto testy skiimali spravne spravanie pri jednoduchych konstrukciach jazyka C. Druha
sada testov replikovala uz existujice testy nad realnymi prikladmi z praxe, tento krat ale
vyuzivajic novo podporované kédovanie vzorov v jazyku C, miesto tych povodnych. Obe
mnoziny testov dopadli ispesne. Vystupom tejto prace teda je rozsirenie, ktoré vyrazne
zjednodusuje pracu s nastrojom DIFFKEMP, konkrétne v ohlade pisania a vyuzivania uzi-
vatelsky definovanych vzorov zmien.



Generating Code Change Patterns from C

Declaration

Prohlasuji, ze jsem tuto diplomovou praci vypracoval samostatné pod vedenim pana Ing.
Viktora Malika. Uvedl jsem vSechny literarni prameny, publikace a dalsi zdroje, ze kterych
jsem cerpal.

Tomas Kuéma
May 15, 2024

Acknowledgements

Rad by som sa podakoval vedicemu Ing. Viktorovi Malikovi za podporu, vedenie a rady v
stuvislosti s touto diplomovou préacou.



Contents

1 Introduction 4
2 Semantic Equivalence Analysis with DiffKemp 6
2.1 Semantic Equivalence Analysis State of the Art . . . . . ... ... ... .. 6
2.2 LLVM Internal Representation . . . .. .. ... .. ... .. ........ 7
2.3 DIrrKEMP Architecture . . . . . . . . ... 9
3 Code Change Patterns 12
3.1 Built-in Code Change Patterns . . . . . . . ... ... .. ... ....... 14
3.2 Custom Code Change Patterns . . . . . .. .. .. ... ... ........ 15
4 Design of DiffKemp extension for code change pattern encoded in C 21
4.1 Proposed form of code change patterns encoded in C . . . . . .. ... ... 21

4.2 Generating code change patterns from patterns encoded in C in DiIFFKEMP 23

5 Implementation of DiffKemp extension for custom C patterns 27
5.1 Header for pattern definition . . . . .. ... . ... ... ... ....... 27
5.2 Pass for LLVM IR patterns generated from C . . . . . . .. ... ... ... 30
5.3 Interface for patterns encodedin C . . . . . .. ... ... ... ... .... 33

6 Evaluation of patterns for DiffKemp written in C 35
6.1 Basic Cpatterntests . . . . . . . . . . . ... 35

6.2 Replicating existing custom LLVM IR pattern tests with C-encoded patterns 36

7 Conclusion 41
Bibliography 43
A Contents of the included storage media 46
B Header file for defining custom patterns 47



List of Figures

2.1

2.2

3.1
3.2

3.3

4.1

4.2

4.3

4.4

5.1

5.2
5.3

An example of a function written in C and its LLVM IR version compiled
with Clang, optimization level 1. This function calculates the sum of the
elements of an integer array. The ¢ (phi) instruction characteristic for the
Static Single-Assignment form is used multiple times. . . . . . . . .. .. ..
Control Flow Graph representation of the LLVM function in Figure 2.1.

Example of refactoring while into for written in the language C. . . . . . .
Value pattern representing change to a | 1UL « |[NR_PAGEFLAGS kernel value,
due to change to macro value. . . . . . . . .. ... ... ...
Instruction pattern representing change of kernel function call from cleanup-
_srcu_struct to cleanup_srcu_struct_quiesced, requiring specific pre-
ceding context. Auxiliary structure definitions and function declarations are
not included. . . . . . . . . ...

Example of an LLVM IR instruction pattern without an output mapping
and its encoding in C using the proposed form. . . . . . ... .. ... ...
Example of an LLVM IR instruction pattern with output mapping and its
encoding in C using the proposed form. Macro definitions in C excluded for

Example of an LLVM IR value pattern and its enconding in C using the
proposed form. . . . . . . ...
Diagram showing the architecture of DIFFKEMP and its behavior with the
proposed extension when compiling patterns in C. What is not explicitly
shown is that compilation and related processing passes are not directly
performed by the Python module. Instead, the module uses installed clang
and opt tools. . . . . .. L

Example of a basic instruction pattern encoded in C using the implemented
header file. This pattern describes both a change in parameters used to call
a function and an addition of another function call. For more examples, see

The workflow of the C pattern pass. Green and red boxes mark changes. . .
Example of a YAML pattern configuration file, loading five C encoded pat-
terns, with one specific pattern being compiled with additional -00 Clang
compiler option, to compile it at optimization level 0 instead of the default
level 1. Failure to parse pattern is specified to lead to an error. . . . . . ..



6.1

6.2

6.3

6.4

Pattern adding a call. This specific pattern does not currently work properly,
because of how DIFFKEMP internally handles mapping of values between
compared modules and patterns. . . . . ... ... ... L.
User-defined pattern written in C specifying semantic equivalence between
two versions of used kernel masking macro. . . . .. ... ... ... .. ..
User-defined pattern written in C specifying semantic equivalence between
two versions of inlined assembly code. . . . . . .. ... ... .. ... ..
User-defined pattern written in C for a value, where an older version of used
macro mask had to manually defined as it is not possible to include both the
original and updated version. . . . . ... ... ... ... . ...



Chapter 1

Introduction

In our daily lives, software plays an ever-expanding role, influencing everything from com-
merce to medicine. However, this dependence on software also means that if something
goes wrong, the consequences might be severe. Potential security vulnerabilities may lead
to unauthorized access or leakage of private data. Minor bugs can cost organizations sub-
stantial amounts of dollars in both financial losses and reputational damage. A mistake in
one system can trigger a cascade of failures in other connected systems, creating a domino
effect that amplifies the impact of the initial error.

One of the ways such problems may occur is when unintended changes are introduced
into a program. Even a simple refactorization can actually change semantics in a nuanced
and unexpected way. That is why ensuring semantic stability is a must in some projects.
However, carefully reviewing all changes is labor intensive and often requires significant
expertise or knowledge of the modified software, while still leaving the possibility of having
some changes slip through the cracks.

Recognizing the potential consequences, there is a growing demand for automated tools
to analyze and prevent such software-related problems. One of such tools is the frame-
work DIFFKEMP. This program allows users to semantically compare different versions
of programs written in the C language, on a function-by-function basis. DIFFKEMP em-
ploys static code analysis, an aspect shared by many other programs with similar purposes.
However, what sets DIFFKEMP apart from most tools is its chosen approach. Traditionally
used formal methods are very accurate, but time-wise they struggle even with moderately
sized functions. This means that they are practically unusable for large-scale projects. DIF-
FKKEMP on the other hand, was designed for projects of enormous sizes, such as the Linux
kernel.

To handle projects of this scale, a different approach was needed. Since most of the
codebase, after one or few refactorizations are performed, will likely remain the same, it
is possible to save a lot of time by performing simple one-to-one instruction comparisons.
However, the C code is not suitable for such comparisons. Therefore, DIFFKEMP first
converts the code into an intermediate representation used by the LLVM project and the
Clang compiler, which is better suited for analysis. Afterward, various transformations and
simplifications are applied to the code, which has the effect of converting some semantics-
preserving changes into identical representations. However, that is still not enough to
handle all of the possible refactorizations. During the comparison itself, DIFFKEMP might
additionally explicitly try to seek relocated instructions, inline function calls, or handle
inverted conditions with switched if-else branches.



Due to this, DIFFKEMP is capable of comparing two versions of a Linux kernel in
ten minutes with significant accuracy. Although the possibility of false positives exists —
— indicating incorrectly identified inequalities — DIFFKEMP effectively minimizes false
negatives, except in the case of implementation bugs. Although complete accuracy is not
achieved, limiting the potential semantic changes that need to be reviewed to only a fraction
of the original changes still significantly increases the efficiency and quality of the code.

One of the reasons for false positives is that it is not practically feasible for DIFFKEMP to
account for all possible semantics-preserving changes. To address this issue, DIFFKEMP was
extended to support user-defined patterns. Users can provide code patterns that describe
changes to the code that are to be treated as semantically equal by DIFFKEMP. This finds
use not only in handling false positives but also when a change that modifies semantics is
intended. For example, a security fix will by definition change the program semantics, but
it is not interesting for the developer to see these changes when trying to avoid unintended
changes.

Currently, these patterns have to be provided in a representation using the aforemen-
tioned intermediate code. This representation is great for compilers and similar tools be-
cause its properties are fit for analyses and transformations, but it is not user-friendly. It
is lower level compared to the C language, contains various atypical instructions, the single
assignment rule is used, functions can often have hundreds of lines, and so on. A person
without expertise in working with this language will not be able to write a complicated
pattern without investing a lot of time.

The purpose of this work is to extend DIFFKEMP to support user-written patterns in
the C language. Users will be able to directly take the code of the refactorization performed
and with only small modifications rewrite it into a DIFFKEMP compatible C pattern. This
will greatly streamline the process.

This work is divided into several chapters. Chapter 2 serves as a detailed introduction to
DirrKEMP and its inner workings, along with a basic introduction to semantic analysis and
comparisons with other similar tools. The next chapter, number 3, dives further into the
subject DIFFKEMP’s pattern system, and code changes in general. The subsequent chapter,
4, proposes a pattern encoding in C and how DIFFKEMP can be extended to support these
patterns. It is followed by Chapter 5 that contains details on the implementation of the
design. The final chapter, 6, presents examples of written patterns and evaluates the
implemented extension on both artificial and real world examples.



Chapter 2

Semantic Equivalence Analysis
with Diff Kemp

DirrKEMP [18] is a tool used to semantically compare functions written in the C language.
It was originally developed by Red Hat for their Red Hat Enterprise Linux kernel [26]
(RHEL). RHEL provides a set of functions and symbols called Kernel Application Binary
Interface [23] (kABI for short). These functions and symbols are used by drivers and other
kernel modules to interface with the kernel. Because of this, it is important that the func-
tions behave as their users expect them to behave, and therefore Red Hat guarantees that
the semantics of these functions will not change across minor versions, with the exception
of security fixes. Using DIFFKEMP to compare updated versions of functions with original
versions, many of the refactorizations performed can be easily handled and only a fraction
of them need a further manual review. However, DIFFKEMP has not been developed purely
for the Red Hat Linux kernel. It is open source software and can be used for any C project
in general using the make build system.

The first section of this chapter — 2.1 — provides an introduction to static analysis of
semantic equivalence, lists other similar tools, and describes the differences in the approach
utilized. Next, in Section 2.2, the LLVM intermediate representation is introduced, as
understanding it is instrumental in understanding how DIFFKEMP itself works. Section
2.3 describes the implementation and architecture of DIFFKEMP. Information is taken
primarily from [18], unless otherwise noted.

2.1 Semantic Equivalence Analysis State of the Art

Program analysis is the study of the properties of computer programs [12]. It is usually
divided into two disciplines. Dynamic analysis is performed by executing the program and
observing its behavior. Static analysis is performed without execution. Dynamic analysis
is the simpler of the two — it is only necessary to provide the inputs and then compare
the result with the expected outputs, or monitor a certain aspect of the behavior (e.g.
memory access). However, it is difficult to use it to examine the behavior of the program
in a comprehensive way. For example, to determine whether two functions are semantically
equivalent, one might need to test every possible input and compare the results. On the
other hand, static analysis requires an explicit analysis of the semantics of the instructions
but can be used to provide general answers about the system as a whole.



The field of semantic comparisons of programs has been researched for years, and thus
there are multiple tools that provide the ability to compare semantics of functions. One of
them is a tool called LLREVE [5]. It was designed to automate regression verification in C
projects. The goal is to determine whether two versions of the same program behave identi-
cally or to determine the specific differences in their behavior. To this end, LLREVE tries to
infer predicates that mathematically describe the relationship between these two versions.
Horn clauses are used to represent the verification conditions, which are then solved using
model checking [12] techniques. In practice, Horn clauses are solved with a Satisfiability
Module Theory (SMT for short) solver such as Z3 [19] developed by Microsoft.

SYMDIFF [13] (Symbolic Diff) is another tool developed for this purpose. In this
case, the tool is language-agnostic. Specifically, it operates on an intermediate verification
language Boogie [3], for which translators from various languages, such as C, C# or x86,
exist. SYMDIFF operates on two loop-free programs (loops can be unrolled to a specific
depth or transformed into tail-recursive functions). In the intermediate language, a new
function is created, which executes both compared functions sequentially, each from an
identical state, while storing the results and the global state. The function ends with the
assertion of equality of the results and global state. The generated code is then transformed
using Boogie Modular Verifier [3] into a verification condition, and as with LLREVE, the
solver Z3 is used.

Most of such tools work in a similar way. They rely on formal methods that often
guarantee soundness and completeness. However, the problem is with their performance.
Publication [18] showed that when comparing LLREVE and DIFFKEMP, both of which use
LLVM intermediate representation, on thirty selected functions with a 30 second timeout
per each, DIFFKEMP processed all functions within the time limit and all except two were
correct. LLREVE timed out on every function except one, where the result was identical
to the one determined by DIFFKEMP. These results show that the use of formal methods
for large-scale projects is not feasible.

2.2 LLVM Internal Representation

The LLVM Compiler Infrastructure [15] is a project whose purpose is to provide a collection
of various modular, reusable compiler and toolchain technologies. It was originally devel-
oped as a research project of the University of Illinois and is available under Apache-2.0
with LLVM-exception license [27]. Today, LLVM consists of a large number of subpro-
jects, some of the most notable being LLVM Core, libraries that provide language-agnostic
optimization and code generation support for various CPUs, the Clang compiler for C /
C++ languages, the LLDB debugger, and the implementation of the standard C++ library
libc++ . LLVM finds use in many different commercial and open source projects.

The fundamental aspect of LLVM is its intermediate representation code, also called
the LLVM IR. It is a low-level representation with only slightly more abstraction compared
to standard assembly languages. It can be used to represent various high-level languages.
A very important attribute of LLVM IR is the use of the Static Single-Assignment (SSA
for short) form [1]. This means that every assignment is into a variable with a distinct
name. However, we might want to use the same variable name on two different control flow
paths. To account for this situation while following the SSA rule, each of these variables is
given a different name. The value of these variables after the paths rejoin is represented by
a new variable defined by an assignment with a ¢ instruction. This instruction can return



int foo(int *data, int len) {
int sum = 0;
for (int i = 0; i < len; i++) {
sum += datalil;
}

return sum;

define 132 @foo( nocapture noundef readonly %0, i32 noundef %1) {
%3 = icmp sgt i32 %1, O
br i1 %3, label %4, label %6
4: ; preds = /2
%5 = zext i32 %1 to i64
br label %8
6: ; preds = /8, 12
%7 = phi i32 [ 0, %2 1, [ %13, %8 ]
ret i32 %7
8: ; preds = J4, 48
%9 = phi i64 [ 0, %4 1, [ %14, %8 1]
%10 = phi i32 [ 0, %4 1, [ %13, %8 1]
%11 = getelementptr 132, %0, i64 %9
%12 = load i32, %11, align 4, !'tbaa !4
%13 = add i32 %12, %10
%14 = add nuw nsw i64 %9, 1
%15 = icmp eq i64 %14, %5
br i1 %15, label %6, label %8, !1lvm.loop !8

Figure 2.1: An example of a function written in C and its LLVM IR version compiled with
Clang, optimization level 1. This function calculates the sum of the elements of an integer
array. The ¢ (phi) instruction characteristic for the Static Single-Assignment form is used
multiple times.

different values based on the path previously taken, solving the problem of branching in
the SSA form. LLVM IR also contains type system that is language-independent.

These aspects, along with the tools provided by the LLVM project for the purposes of
working with the LLVM IR, make it suitable for static analysis and various code trans-
formations. This can be seen by looking at some examples that use it — for example,
BIN2LLVM [11] converts binary code to LLVM IR for the purpose of detecting and identify-
ing cryptographic routines, and NUMBA [14] is an LLVM-based Just-in-Time compiler for
Python. DIFFKEMP uses LLVM-IR for similar reasons.

LLVM IR represents functions in the form of Control Flow Graphs [2]. Control Flow
Graph is a directed graph consisting of nodes called basic blocks. Basic block consists of
a sequence of instructions that are always executed sequentially. Jumping is possible only
from the end of a basic block and only to the beginning of a basic block. An example of



%2:
%3 = icmp sgt i32 %1, 0
bril %3, label %4, label %6

T | F

%4 :

%5 = zext i32 %1 to i64
br label %8

%8:

%9 = phii64 [ 0, %4 ], [ %14, %8 ]

%10 = phii32 [0, %4 1, [ %13, %8 ]

%11 = getelementptr i32, ptr %0, i64 %9
%12 = load i32, ptr %11, align 4, !tbaa !4
%13 = add i32 %12, %10

%14 = add nuw nsw i64 %9, 1

%15 = icmp eq i64 %14, %5

br il %15, label %6, label %8, !llvm.loop !8

T | F

\

%06:
%7 = phii32 [0, %2 ], [ %13, %8 ]
ret i32 %7

Figure 2.2: Control Flow Graph representation of the LLVM function in Figure 2.1.

a C function and its LLVM IR version can be seen in Figure 2.1. The Control Flow Graph
representation of this function can be seen in Figure 2.2.

2.3 DiffKemp Architecture

DirrKEMP works in two separate stages. First, a snapshot must be created for each ver-
sion of the compared project. Afterwards, it is possible to compare functions of any two
snapshots for semantic equivalence.

The purpose of the snapshot stage is to prepare the chosen version of the project for fur-
ther analysis. Parts of the source code that are necessary for the comparison are compiled
into LLVM IR code. During this, several standard compiler optimizations are performed.
This alone has the capacity to resolving some of the refactorizations by transforming dif-
ferent code snippets with the same semantics into identical LLVM IR code.

The two generated snapshots can be then compared. First, all LLVM source files used
for the specified comparison are loaded by DIFFKEMP, so that they can be processed using
the API of the official LLVM library. Preprocessing is performed using so-called LLVM



passes [25]. They can be written for functions, modules, loops, regions, or call graphs.
These passes are standardly used for compiler optimization, but the LLVM library provides
developers with the option to define their own passes. DIFFKEMP uses this functionality
to perform various analyses that provide information for later use — such as analysis of all
potentially called functions (transitively) by a given function — and transformations that
help unify different, but semantically equivalent code snippets — for example, removing
unused return values.

After the preprocessing is done, it is possible to proceed directly to the comparison
itself. The basic structure of the comparison is very simple and occurs in a hierarchical
manner. Comparisons of functions lead to comparisons of basic blocks; those are performed
by comparing individual instructions, which can lead to operation and operand comparisons,
and so on. Ultimately, this can lead to a new comparison of different functions in the case
of function calls. The algorithm describing this behavior can be seen in Algorithm 2.3.1.
In the algorithm, synchronization points primarily represent individual instructions. The
synchronization points of the compared versions are mapped to each other using smap. The
algorithm also utilizes a mapping between variables called varmap. The algorithm tries
to sequentially compare instructions, alternatively applying a pattern if possible, while
updating and checking the described mappings. This approach is computationally very
cheap and effective.

Some of the possible refactorizations cannot be effectively handled in practice using
only preprocessing transformations. Therefore, DIFFKEMP has explicit built-in support
for various semantics-preserving change patterns. This includes changes such as inlining
function call (or the opposite), relocating blocks of code (assuming doing so does not break
any data), inverting condition and switching if-else branches, and so on. Furthermore,
DirrKEMP includes support for user-defined patterns. These patterns have to be written
in the LLVM IR code, and they use special debugging annotations. It is not necessary for
these patterns to describe semantically equivalent changes, which can be useful in cases
such as fixing security vulnerabilities. A deeper dive into the inner workings of the built-in
and user patterns is provided in Chapter 3.

From an implementation point of view, DIFFKEMP mainly uses the C++ and Python
languages. The core of the tool is a C++ library called SimpLL. This library is respon-
sible for preprocessing and comparisons. The main comparison functionality is handled
by DifferentialFunctionComparator, which inherits functionality from LLVM library’s
FunctionComparator, but extends it to work more generally. The preprocessing passes are
located in a separate subfolder Passes. In addition, the library includes various utilities,
such as a debugging logger and support for user-defined patterns. The rest of the DIFF-
KEMP’s functionality is implemented in Python. A collection of Python scripts, utilizing the
Simpll library and various LLVM command line tools (Clang, Opt, etc.), packaged together
forms the Python library diffkemp. The DIFFKEMP executable is a simple Python file that
uses this library. The project supports LLVM versions from 9 to 16 (LLVM 17 [21] is the
newest LLVM version at the time of writing this thesis). Each LLVM version uses slightly
different representations, which can lead to slightly different results or minor changes in
performance.

10



Input: Functions fi, fo
Result: true if f; and fo are semantically equal, false otherwise
preprocess fi1 and fo
if |Py| # | P»| then
return false
Sl = {iiln}’ SQ = {Zl2n}
smap(iy,) = i,
for 1 <i<|P| do
varmap(pt) = p?
for g1 € G1 do
varmap(g1) = g2 € G, such that g; has the same name as go
// Main loop
10 Q= {(lenvl?n)}
11 while @ is not empty do
12 take any (s1, s2) from Q
13 p = detectPattern(sy, s2)

© 00N O Uk W N

14 for each pair sy, st € succPairp(s1,s2) do
15 if (8/1 €51V 8/2 € 52) then
16 if smap(s)) # s, then
17 return false
18 else
19 continue
20 if p is none then
21 equal = empInst(sy, s2)
22 else
23 equal = comparep((s1,5}), (s2,55))
24 if —equal then
25 return false
// Update synchronisation sets and maps
26 S1=81U{s1}, Sa=5U{s3}, smap(s}) = s}
27 update warmap according to p
28 insert (s}, ) to @

29 return true

Algorithm 2.3.1: Algorithm used to check a pair of functions f; and f5 for semantic
equivalence, adapted from [18]. The algorithm is simplified for illustration purposes.
The sets P; denote the parameters of the compared functions. The sets S; denote the
mapped synchronization points of the function ¢, initialized to contain their first in-
struction. smap denotes synchronization point mapping and varmap variable mapping.
Successor synchronization points are generally understood to be the next instruction,
in the case of pattern the instruction following the snippet that matched the pattern,
and in the case of branches all of the entry points of the successor basic blocks.

11



Chapter 3

Code Change Patterns

This chapter delves deeper into the issues of code change patterns. In this work, the term
code change patterns is used to talk about patterns that describe a certain kind of relation
between pairs of code, provided that they fit the given pattern. In a narrower sense, we
understand them as pairs of parameterized segments of code, each of them having a list
of input and output variables, with mapping existing between these variables. A specific
focus is placed on semantics-preserving code change patterns, meaning that the behavior
described by the two segments is semantically identical. Therefore, if each of the mapped
pairs of input variables is set to an identical value, the mapped pairs of output variables
will also have an identical value.

These kinds of pattern are useful for describing various standard refactorizations in
particular. The work [6] proposes a list of 29 refactorings in four categories, specifically for
the C language. These categories are as follows:

1. Adding a Program Entity:

(a) Add a variable

(b)

(c) Add a typedef definition encapsulating an existing type
(d) Add a field to a structure

(e) Add a pointer to a variable

Add a parameter to a function

2. Deleting a Program Entity:

(a) Delete unused variable
(b) Delete unused parameter

(c) Delete a function
3. Changing a Program Entity:

a) Rename variable

(
(b

)
) Rename constant
(c) Rename user-defined type
(d)

)

d

(e) Rename function

Rename structure field

12



/.

int i = 0;

while (i < len) A{
sum += datalil;
i++;

}
//... (i is not used)

/S

for (int i = 0; i < len; i++) {
sum += datal[il

}

/S

Figure 3.1: Example of refactoring while into for written in the language C.

Replace the type of a program entity
Contract variable scope
Extend variable scope

Replace value with constant

)
)
)
)
(j) Replace expression with variable
) Convert variable to pointer

) Convert pointer to direct variable access

) Convert global variable into parameter

)

Reorder function arguments

Group a set of variables in a new structure.
Extract function

Inline function

For into while
While into for

)
)
)
(d) Consolidate conditional expression
)
)
) While into do while

An example of one of these refactorings can be seen in Figure 3.1. These refactorings
form the basis for the semantics-preserving changes considered.

Section 3.1 describes how code change patterns with built-in support are handled in
DirrKEMP, as described by [18]. The next section — 3.2 — includes a formal definition for
user-defined code change patterns, describes how these user-defined DIFFKEMP patterns
can be written, and how DIFFKEMP handles user-defined patterns implementation-wise.

13



3.1 Built-in Code Change Patterns

The approach used by DIFFKEMP, specifically the performed preprocessing transformations
and the way comparisons are handled, gives the tool the capability to handle many of the
refactorizations described in the introduction to this chapter. However, that is not the case
for all of them. Additionally, other kinds of refactorization were identified that were present
in the examined in the Linux kernel repository, which were not included in the provided
list, and also require individual approach. These two sources of unhandled refactorings
were used as a springboard for the DIFFKEMP’s built-in pattern support.

DirrKEMP provides native support for the following kinds of changes:

e Changes in Structure Data Types

— Changed Offset of a Structure Field
— Different Ways to Access the Same Field

e Moving Code into Functions

e Changes in Enumeration Values
e Changes in Source Code Location
e Inverse Branch Conditions

e Code Relocations

Internally, DIFFKEMP does not use a standardized interface for these kinds of changes.
Instead, each of them is implemented individually, directly in the source code used for
comparisons. However, handling of these situations is always conditional, based on the
used configuration, and so the user can pick and choose which changes get supported and
which not.

Changed Offset of a Structure Field is a type of change that occurs when some of the
fields in structure change order, type, get removed, or added. Even an unmodified field
may in this case move to a different offset within the structure, which leads to a different
operands when using LLVM’s GEP (get element pointer) function, which is used to access
structure field. To address this type of change, DIFFKEMP considers both the name of
the field contained in the debugging information and the offset value. If both match, the
equality holds. If only the name has changed, but the new structure does not contain any
field with the original name, DIFFKEMP assumes that the structure field has been renamed,
and equality still holds. If neither match, the compared instructions are determined to be
unequal. The most complicated case is when only the name is identical. If no pointer
arithmetic is performed on the pointers calculated as a result of the GEP instruction, the
instructions are considered equal. In the other case, the absolute value of the offsets matters,
and thus the instructions cannot be considered equal.

Different Ways to Access the Same Field change applies in situations where, for example,
a structure field was nested into a union within the structure. This may lead to two different
sequences of GEP instructions in the old and the new code, with their input — source
pointer used in the first instruction — being identical and having only single output —
variable containing the pointer calculated by the last instruction of the sequence. If such
a sequence is detected and all index operands are constants, DIFFKEMP uses this knowledge

14



to calculate the final access offset. If the offsets match, the sequences are considered equal,
and the resulting outputs are mapped to each other.

Mowing Code into Functions is a common refactorization that improves the readability
of the code. In DIFFKEMP, this kind of change is handled by inlining called functions into
the code. This is not done automatically, but lazily. Specifically, if a comparison of an
instruction fails, with at least one of the instructions being a call, the call(s) gets inlined.
Afterwards, additional preprocessing is performed to eliminate dead code and propagate
constants. This ensures that if, for example, the newly defined function is more general than
the original code, but this particular call passes arguments that ensure identical behavior,
comparison after inlining will be successful. When this is done, the function comparison
process can run again. This may occur multiple times during a single function comparison.

Changes in Enumeration Values occur, when enumeration values are added or removed.
The underlying value of enumeration constant changes, but generally the way enumerations
are used does not rely on the specific numerical values they are assigned. If enumeration
constants are used in both instructions, their name is retrieved using associated debugging
information, and comparison is performed by comparing their names, not values.

Changes in Source Code Location concerns Linux kernel specifically. It contains various
warning functions, where the specific message is not considered important. Often these
functions also contain information about file and line of the source code, where the call is
located, which is also not relevant to the semantics of the code. For these specific instruc-
tions, operands representing the aforementioned values are ignored during comparisons.

Inverse Branch Conditions are those, where the condition was inverted and the branches
were swapped. To handle this, in cases where a compared pair of comparison instructions
evaluates opposite value and the result is used only as branching condition, the instructions
are considered equal and the order of branch instruction successors is swapped.

Code Relocations — perhaps the most general type of change, but also one that is most
difficult to handle. DIFFKEMP specifically supports relocations anywhere within sequential
code, as long as there is no dependency between the relocated code and the code skipped
by the relocation. In the cases where instruction comparison fails, relocation detection
begins. For either of the compared instructions, a matching instruction is searched in
the unprocessed sequence of instructions on the other side of the comparison. If this is
successful, the skipped code block is marked as potentially relocated and the comparison
continues from the point where the successful comparison was performed. Later, it is
necessary to match the potentially relocated block. This is called relocation matching and
an attempt to match it happens if another instruction pair is compared as unequal. It is
necessary for all potentially relocated blocks to be matched for the function comparison
to be resolved as equality. After matching the block, another phase follows — relocation
checking. Tt consists of checking, whether there is a data dependency between the relocated
code and the skipped code, in other words, whether one block writes to a variable and
another reads from the same variable. There being no data dependency between these
blocks is another necessary condition for returning a result indicating equality.

3.2 Custom Code Change Patterns

DirFFKEMP was extended to support user-defined custom code change patterns in 2021,
as part of the bachelor’s thesis [28]. The thesis introduces two kinds of code change pat-
terns, namely instruction patterns and value patterns. Instruction patterns are more general
and consist of sequences of instructions. However, these patterns can become quite large.

15



Metadata Kind Semantics

pattern-start Marks the first pair of differing instructions (used for
pattern matching optimization).
pattern-end Labels the end of the main body of a code fragment. Af-

ter this kind of metadata, only the code fragment output
and its mapping may get specified.
group-start Denotes the start of an instruction group. Grouped in-
structions have to be matched as a single block (no ad-
ditional instructions are allowed between them).
group-end Indicates that the active instruction group has ended.
disable-name-comparison | Disables name-based comparison of structures, replacing
it with a complete type equality verification.

Table 3.1: List of the metadata symbols used for defining custom code change patterns,
along with their description. Adapted from [28].

define i64 @diffkemp.old.NR_PAGEFLAGS() {
ret i64 33554431
}

define i64 @diffkemp.new.NR_PAGEFLAGS() {
ret i64 67108863

}

Figure 3.2: Value pattern representing change to a 1UL << NR_PAGEFLAGS kernel value, due
to change to macro value.

Furthermore, when the change concerns only a specific value, to address all possible instruc-
tions in which this value can appear, one would need to create multiple instruction patterns.
Value pattern is a special pattern variant designed to address this problem. They allow the
user to simply define two values that are meant to be treated as semantically equivalent,
regardless of context. Internally, they are implemented using instruction patterns.

Formally, these patterns are defined using parametrized control flow graphs [17]. The
parameterized control flow graph c is a triple:

¢ = (in, cfg, out)

Here, cfg is a control flow graph that uses undefined variables and types — parameters.
The set of these parameters, labeled in, is the input to the control flow graph. out denotes
the set of outputs, that is, the variables that can be used outside of the control flow graph.
Using this definition of parametrized control flow graphs, we can define the code change
pattern as a quadruple:

p = (o, tn, imap, omap)

co = (ing, cfg,,out,) and ¢, = (iny, cfg,, out,) are parametrized control flow graphs
representing the old and the new versions of the code, respectively. imap : in, < in, is
a bijective function that maps old inputs to new inputs and vice versa. In the same way,

16



define void @diffkemp.old.free_user(%struct.kref*) {

%2 = bitcast Ystruct.kref* %0 to i8%

%3 = getelementptr i8, i8* 2, i64 -50456

%4 = bitcast i8% %3 to Ystruct.ipmi_userx

»5 = getelementptr inbounds %struct.ipmi_user, Y%struct.ipmi_user* %4,

-~ 132 0, 132 2

call void @diffkemp.old.cleanup_srcu_struct()struct.srcu_struct* %5),
— !diffkemp.pattern !pattern-start

ret void, !diffkemp.pattern !pattern-end

define void @diffkemp.new.free_user(%struct.krefx) {

%2 = bitcast Ystruct.kref* %0 to i8x%

%3 = getelementptr i8, i8* 2, i64 -50456

%4 = bitcast i8% %3 to Ystruct.ipmi_userx

»5 = getelementptr inbounds %struct.ipmi_user, Y%struct.ipmi_user* %4,

- 132 0, i32 2

call void

< @diffkemp.new.cleanup_srcu_struct_quiesced(Ystruct.srcu_struct* %5),
— !diffkemp.pattern !pattern-start

ret void, !diffkemp.pattern !pattern-end

Figure 3.3: Instruction pattern representing change of kernel function call from cleanup-
_srcu_struct to cleanup_srcu_struct_quiesced, requiring specific preceding context.
Auxiliary structure definitions and function declarations are not included.

omap : out, < out, is a bijective function that describes the mapping between the old
outputs to the new outputs and vice versa.

3.2.1 Pattern Representation

Custom patterns, as they are currently implemented, must be written in LLVM IR.
This representation was a natural choice for this purpose, because it matches the actual
representation of programs used by DIFFKEMP for comparison. Each pattern control flow
graph is described by a specially named function, with its parameters denoting the in-
puts. These function pairs are prefixed with diffkemp.old and diffkemp.new, respec-
tively. The outputs are denoted using a special diffkemp.mapping function, called just
before the function exit. It is also possible to use parametrized types by prefixing them
with diffkemp.type. The input and output mappings are inferred automatically, based
on the order of the input/output variables provided. Furthermore, to ensure compatibil-
ity with the chosen pattern matching algorithm and to provide additional information, it
is necessary to use special metadata symbols. These symbols are listed in Table 3.1. To
represent a value pattern, the two functions have to contain a single instruction, returning
the old/new value.

An example of a value pattern can be seen in Figure 3.2. An example of an instruction
pattern can be seen in Figure 3.3.

17



3.2.2 Pattern Matching

Because the number of user-loaded patterns is not directly limited, trying to apply the
pattern on every instruction would be ineffective. For this reason, attempts to apply dy-
namically loaded user-defined patterns occur only after a comparison of two instructions
fails, but before actually ending the function comparison with false result. For this rea-
son, it is necessary to use the metadata symbol pattern-start specified in the previous
subsection when defining patterns to mark the first pair of differing instructions.

The top-level instruction matching algorithm can be seen in Algorithm 3.2.1. For each
user-defined pattern, DIFFKEMP attempts to match the two parameterized control flow
graphs with the old and new versions of the code, starting from the failed instruction pair.
If the pattern matches successfully, a mapping is created between the program variables
and the input/output pattern variables. Then, it is checked whether each pair of input
variables, as defined by imap, is also mapped in the program according to varmap (as
defined in Algorithm 2.3.1). Finally, for each output, varmap and snmap are updated to
map the pairs of program variables used as output together. All instructions that were
resolved using this pattern and in this way determined to be equal are returned as a result
of this comparison.

Input: (io,i,): pair of differing instructions
smap and varmap: as defined in Algorithm 2.3.1
P;: set of available instruction patterns
Result: A set of matched instructions, which is empty if no pattern is matched

1 for (c,, ¢y, imap, omap) € P; do
2 (ro,imatchy, omatchey, My) = matchCFG (i, ¢,)
3 (rn, imatchy,, omatchy,, M) = matchCFG iy, c,)
4 if r, A r, then
// Check the mapping of inputs
5 valid = true for (i2,i,) € imatch, do
6 it = imap(i?) if varmap(i%)) # imatch, (i) then
7 valid = false
8 break
9 if —walid then
10 continue
// Synchronize outputs
11 for (02, 09,) € omatch, do
12 o = omap(0?)
13 smap(0S,) = omatch, (o)
14 varmap(o2,) = omatchy (oY)
15 return M, U M,

16 return ()

Algorithm 3.2.1: Top-level algorithm for matching instruction patterns, adapted
from [28]. For i € {o,n}, r; indicates the result of CFG matching, imatch;/omatch;
mapping between pattern inputs/outputs (respectively) and the code variables, and M;
is the set of instructions matched by the pattern. Code fragment matching performed
by matchCFG is further described by Algorithm 3.2.2.

18



The matching of parametrized control flow graphs of a certain pattern with a code
fragment of a compared program can be seen in Algorithm 3.2.2. It proceeds somewhat
similarly to a standard DIFFKEMP comparison, however, with certain differences. A local
mapping varmap. between the pattern and program variables is initialized with shared
global variables. Next, a working set (), initially containing the first differing instruction of
the program and the first differing instruction of the pattern, labeled with pattern-start,
is continually processed, until it is empty. Processing consists of attempting to match the
instruction pair, then on success updating the mapping between the program variables and
input/output variables of the pattern based on the operands, updating the local varmap,
mapping with the used instruction, and finally marking the matched instruction as pro-
cessed. Whether the instruction match was successful or not, its successors are added to the
working set Q). If all pattern instructions are matched, one more check must be performed.

Input: c = (in, cfg, out): pattern code fragment, where i% is the instruction
tagged with pattern-start
ig: differing instruction from one of the programs
Result: A tuple of (7, imatch,, omatchy, M,), where
ry: true if pattern matched, false otherwise
tmatch,: mapping between pattern inputs and code variables
omatch;: mapping between pattern outputs and code variables
M, set of matched instructions
matchCFG (ig,c):
1 M=10
2 initialize varmap. with shared global variables
3Q= (Zlc)v Zg)
4 while Q # () do

5 take any pair (ic,ip) from @ if i. can be matched to i, then
// Let (0f,...,0%) and (of,...,oh) be the operands of i, and iy,
respectively.
6 for k € {1,2,...,n} do
7 if of € in(c) then
8 imatch(of) = of,
9 if i. € out(c) then
10 omatch(ic) = iy
11 M =MuU{i,}
12 varmape(ic) = iy

// Queue up the following instruction pair

13 for (il,,i]) € succInstPair(ic,ip) do

cr'p
14 insert (i, i) into @
15 if all instructions in ¢ have been matched N\ checkContext(matchy, ctx,,in,) then
16 return (true,imatch,omatch, M)

17 return (false,imatch, omatch, M)

Algorithm 3.2.2: Algorithm for matching custom pattern control flow graphs to code
fragments, adapted from [17] and [28]. Note that succInstPair(ic,i,) may return a
successor pair (ic, succ(ip). This is called instruction skipping and is performed when
the current pair did not match successfully.

19



That is, whether the so-called context of the pattern, meaning unchanged instructions at
the beginning of the pattern, before the instruction tagged with pattern-start, is correct.
Only then is the match resolved as successful.

Value patterns are handled by converting them to instruction patterns. This is done
lazily, before each top-level matching algorithm evaluation. For each value pattern, an
instruction pattern is generated for the particular pair of unequal program instructions, if
possible.

20



Chapter 4

Design of DiffKemp extension for
code change pattern encoded in C

This chapter discusses the design of the DIFFKEMP extension using code change patterns
generated from patterns written in C. Section 4.1 specifies the proposed form of the patterns
written in C, such that they are compatible with the representation of code change patterns
used natively by DIFFKEMP. The subsequent chapter — 4.2 — contains information on
how support for such patterns can be incorporated into DIFFKEMP.

DirrKEMP currently utilizes LLVM IR for representation of both the compared projects
and the custom patterns. Compilation from C to LLVM IR is natively provided by the Clang
compiler (which is a part of LLVM project) since it utilizes LLVM IR as its own intermediate
representation. Therefore, it is natural choice to exploit these facts, by choosing LLVM IR
as the target representation for code change patterns generated from C, and by performing
the compilation of C code into LLVM IR using the Clang compiler. However, because of
the specific requirements placed on the encoding of code change patterns in LLVM, this
alone is not sufficient, and additional processing is be required.

4.1 Proposed form of code change patterns encoded in C

This section concerns the form of code change patterns written in C. It is necessary
for the proposal to allow the user to explicitly encode all the necessary information that is
required from code change patterns encoded in LLVM IR, unless that information can be
automatically inferred and generated from the provided pattern. As described previously in
Section 3.2, each pattern must have a name, two bodies in the form of control flow graphs
representing the old and the new code snippet, a list of inputs for each body and mapping
between them, a list of outputs for each body and mapping between them, and metadata
about the location of the start and end of the pattern for each body. Since the LLVM
IR encoding uses functions for the representation, it is natural to use functions in C as
well. This representation already includes the name and list of inputs by default. Mapping
between inputs can be defined by their order, analogously to how it is done with LLVM IR
patterns. For the list of outputs and mapping between them, a special mapping function can
be defined, called at the end of the pattern function, again akin to the LLVM IR encoding.
The function bodies in C are not explicitly encoded as control flow graphs, however, they
are directly converted into these graphs when compiled to LLVM IR. The only significant
problem is with encoding the metadata. One statement in C may be compiled into multiple

21



define void @diffkemp.old.free_user(%struct.kref*) {

%2 = bitcast Ystruct.kref* %0 to i8%

%3 = getelementptr i8, i8* 2, i64 -50456

%4 = bitcast i8% %3 to Ystruct.ipmi_userx

»5 = getelementptr inbounds %struct.ipmi_user, Y%struct.ipmi_user* %4,

-~ 132 0, i32 2
call void @diffkemp.old.cleanup_srcu_struct()struct.srcu_struct* %5),
— !diffkemp.pattern !pattern-start
ret void, !diffkemp.pattern !pattern-end
}
define void @diffkemp.new.free_user(Vstruct.krefx) {
%2 = bitcast Jstruct.kref* %0 to i8%

%3 = getelementptr i8, i8* %2, i64 -50456
»4 = bitcast i8% %3 to Jstruct.ipmi_user*
%5 = getelementptr inbounds Y%struct.ipmi_user, %struct.ipmi_userx %4,

-~ 132 0, i32 2

call void

< @diffkemp.new.cleanup_srcu_struct_quiesced(struct.srcu_struct* %5),
— !diffkemp.pattern !pattern-start

ret void, !diffkemp.pattern !pattern-end

void __pattern_old_free_user(struct kref *ref) {
cleanup_srcu_struct(&user->release_barrier);

}

void __pattern_new_free_user(struct kref *ref) {
cleanup_srcu_struct_quiesced(&user->release_barrier) ;

}

Figure 4.1: Example of an LLVM IR instruction pattern without an output mapping and
its encoding in C using the proposed form.

instructions in LLVM IR. This is not transparent to the user, and so even if we consider
ways of encoding metadata in C, such as pragmas (special compiler directives [7]), it is
not possible to interact directly with a specific LLVM IR instruction. However, because of
how the pattern start and pattern end are defined, we can add this metadata automatically
using static analysis after the patterns have been compiled into the LLVM IR encoding.
For value patterns, we can simply use pairs of functions that return the values that are
meant to be evaluated as equal, again analogous to the LLVM IR value patterns.

One more thing that needs to be noted is that it is necessary to be able to differen-
tiate between functions representing patterns and ordinary functions, as the former may
utilize calls to the latter and therefore they may appear in the same context. Furthermore,
mapping function must be clearly differentiable form either of those. It is also necessary to
be able to clearly determine the existing relationship between a function representing the
old body of a pattern and a function representing the new body of the same pattern. For
these reasons, a special naming schema must be used. The plan is to allow users to define

22



define i64 @diffkemp.old.SWP_QOFFSET_MASK(i64) {
%2 = and i64 %0, 144115188075855871
ret i64 %2

}

define i64 @diffkemp.new.SWP_OFFSET_MASK(i64) {
%2 = and i64 %0, 288230376151711743
ret i64 2

}

void __pattern_old_SWP_OFFSET_MASK (int i) {
__output_mapping(i & SWP_OFFSET_MASK_old);

}

void __pattern_new_SWP_OFFSET_MASK (int i) {
__output_mapping(i & SWP_OFFSET_MASK_new);

}

Figure 4.2: Example of an LLVM IR instruction pattern with output mapping and its
encoding in C using the proposed form. Macro definitions in C excluded for length.

these patterns in a simple standardized way through a macro-based interface, which will
ensure that the naming schema is followed. However, the specifics of these aspects depend
on implementation and are thus described in more detail in Chapter 5.

You can see examples of patterns written in C using the proposed form of encoding,
along with their counterparts encoded in LLVM, in Figure 4.1, Figure 4.2, and Figure 4.3.
The specific naming schema used in these examples is only for demonstration purposes.

4.2 Generating code change patterns from patterns encoded
in C in DiffKemp

It is necessary to be able to generate equivalent code change patterns encoded in LLVM IR
from those encoded in C in the proposed form from previous section. This section describes
the approach chosen to perform this generation.

DirrKEMP, as written in Section 2.3, consists of an internal SimpLL C++ library, that
is utilized by a Python module diffkemp providing interface between the library, its users,
and other external tools. As was mentioned previously, for the compilation to LLVM IR
itself, the Clang compiler can be used. It is a self contained tool that requires no further
development work. Clang is one of the external tools already used by the Python module,
and so naturally, from architecture perspective, compilation of patterns to LLVM IR can
also be handled by the Python module. Clang is currently used specifically for compilation
of the compared projects into snapshots. Clang offers various levels of optimization and
optimization passes, and since the instructions from patterns have to successfully map
onto the instructions of compared snapshots, the optimization level and passes used when
compiling patterns should be same as when compiling projects into snapshots.

23



define i64 @diffkemp.old.NR_PAGEFLAGS() {
ret i64 33554431
}

define i64 @diffkemp.new.NR_PAGEFLAGS() {
ret i64 67108863
}

unsigned long __old_pattern_NR_PAGEFLAGS() {
return (1UL << 25) - 1;
}

unsigned long __new_pattern_NR_PAGEFLAGS() {
return (1UL << 26) - 1;
}

Figure 4.3: Example of an LLVM IR value pattern and its enconding in C using the proposed
form.

Patterns compiled to LLVM IR still need to be processed into a correct form. First
of all, it is necessary to modify the function names from the naming scheme used in C
encoding to those used in LLVM IR encoding. That is because C does not allow the usage
of structured naming of functions or variables using “”, so following the naming scheme
used by the LLVM IR patterns is not possible. Therefore, the naming scheme used in C
must be different. Renaming itself can be done quite easily, as it consists of simply replacing
the chosen prefixes and names with different prefixes and names. Furthermore, the SimpLL
library contains additional passes for preprocessing compiled projects, and just like before,
these passes need to be used for patterns too, so that their instructions can successfully
map to the instructions of the compared snapshots. Finally, metadata signifying pattern
start and pattern end must be added. Pattern end can be determined quite simply, as
it is generally the last or next to last instruction, either return, or call to the mapping
function, if it is used. However, determining the start of the pattern is more complicated.
It is defined as the instruction of the first non-matching instruction pair, where the match
is determined by DiffKemp, specifically the SimpLL library comparison algorithm. Quite
naturally, using this library to compare the old and new code segments of the pattern will
yield the necessary information.

These actions require utilization of the LLVM API and the SimpLL library itself, so in
this work the additional processing of the patterns is designed to be performed by the C++
library itself. This processing is to happen after loading the LLVM IR pattern generated
from C, before proceeding with the comparison itself. Based on the specified requirements,
the pattern processing of LLVM IR patterns compiled from C consists of these specific
steps:

1. Determine all pattern pairs in the loaded pattern LLVM module. This can be done

simply by matching function names with based on the chosen C pattern naming
scheme.

24



DirrKEMP

Python C++
> module EmRREEEEEEEEEE —> library
diffkemp SimpLL
Compiled
Patterns LLVM
encoded in C module
4
Valid patterns
encoded in LLVM
pattern.c pattern.l |«

Figure 4.4: Diagram showing the architecture of DIFFKEMP and its behavior with the
proposed extension when compiling patterns in C. What is not explicitly shown is that
compilation and related processing passes are not directly performed by the Python module.
Instead, the module uses installed clang and opt tools.

2. Rename functions to proper naming used in the LLVM IR encoding. Analogous to
finding patterns, it consists simply of replacing pattern prefixes used in C with prefixes
used in LLVM IR, and renaming the mapping function to required name.

3. Adding metadata to pattern instructions. The end of the pattern can be determined
individually for each function. If we define pattern body of a function as every in-
struction except return and call to the mapping function, each instruction that is not
part of the pattern body, but follows an instruction that is, can be marked as pattern
end. This approach accounts for even more complicated cases of pattern control flow
graphs. Function starts need to be determined for the pattern pairs as a whole. For
each pattern pair, it is necessary to perform an entire comparison of the old and new
functions of the code change pattern. For any reasonable pattern, this comparison
should be resolved as unequal; otherwise, the pattern is useless. After the result is
evaluated to inequality, the pair of instructions that could not be matched and caused
the unequal result are the first differing instructions. These can be labeled as the pat-

25



tern start. Furthermore, as part of the comparison, multiple preprocessing passes that
are used for compared projects are automatically applied to these compared pattern
functions as well, and thus it is not necessary to run them manually beforehand.

This approach ensures that users will have the ability to utilize patterns seamlessly
encoded in C with DIFFKEMP, identically to how they can use patterns written in LLVM
IR. However, as mentioned previously, the compilation from C to LLVM IR is not entirely
predictable and controllable by the user. There are multiple ways in which a given C
construction may be represented using LLVM IR instructions. Sometimes, it is desirable for
the user to perform a minor manual modification to the generated LLVM IR pattern module.
In this way, a significant amount of work on the LLVM IR pattern is handled automatically
by the Clang compiler and processing pass, while giving the user the precision of writing
patterns that LLVM IR encoding provides. For this purpose, the design of the DIFFKEMP
extension also includes a proposal of a new top-level command. In addition to building and
comparing snapshots, compilation for non-LLVM IR patterns will be added. As considered
in this thesis, this includes only patterns written in C, but it may be extended for other
encodings in the future. Users will be able to directly compile and process patterns encoded
in C, generating a DIFFKEMP compatible LLVM IR pattern with equivalent semantics. The
way this fits within the current DIFFKEMP architecture can be seen in Figure 4.4.

26



Chapter 5

Implementation of Diff Kemp
extension for custom C patterns

This chapter provides information about the implementation of an extension for DIFFKEMP
that utilizes the generation of code change patterns from C to allow users to use patterns
with C encoding. The first section of the chapter covers the implementation of C header file,
providing everything necessary for defining patterns through a macro-based interface. The
following section contains information on a pass for processing patterns generated from C,
implemented as part of the SimpLL library. The last section describes how DIFFKEMP as
a whole was modified, utilizing everything from the previous sections, to natively support
the patterns encoded in C and their compilation to LLVM IR. The basic idea is to compile
the patterns to LLVM IR standardly using the Clang compiler, then these patterns can be
processed with the SimpLL C pattern pass.

An important aspect of DIFFKEMP is its backwards compatibility with the older versions
of the LLVM libraries that it uses. Specifically, at the moment, DIFFKEMP supports LLVM
versions from 9 to 16. Because different major versions may not be backwards compatible,
when developing DIFFKEMP, it is necessary to take care to explicitly ensure compatibility
is maintained. Some of the LLVM library functions that were used in this implementation
had been renamed, or the arguments they take have been changed, across the various LLVM
library versions. This was addressed using conditional compilation in the DIFFKEMP source
code, where chosen lines have multiple variants that get used based on the currently installed
LLVM version. An additional significant change that occurred between the major LLVM
versions was the change from explicitly typed pointers, where the type of the referred data
is part of the pointer type, to the so-called opaque pointers, where all pointers use the same
type ptr [22]. However, because C patterns are compiled into LLVM using Clang, which
generally uses the same installed LLVM version as DIFFKEMP, the compiled patterns use
the same kind of pointers as DIFFKEMP. In regards to this aspect, compatibility is thus
automatically ensured without requiring any further effort, which is another advantage of
writing patterns in C.

5.1 Header for pattern definition

To simplify and standardize the writing of patterns in C, the implementation includes
a header file diffkemp_patterns.h, containing information, macros, and definitions for
defining the patterns. The entire header can be seen in Appendix B.

27



void console_flush_on_panic();
void panic_print_sys_info();

#define PATTERN_NAME panic_first
#define PATTERN_ARGS

PATTERN_OLD {
console_flush_on_panic();

}

PATTERN NEW {
console_flush_on_panic(0);
panic_print_sys_info();

Figure 5.1: Example of a basic instruction pattern encoded in C using the implemented
header file. This pattern describes both a change in parameters used to call a function and
an addition of another function call. For more examples, see Chapter 6.

Internal definitions

First, the header file contains internal definitions that determine the naming schema used,
specifying the prefix for old and new pattern functions and the name of the mapping
function. The used prefixes are __diffkemp_old_ and __diffkemp_new_, the mapping
function is named __diffkemp_output_mapping. Additionally, it contains a declaration
of the mapping function and a definition of global variable __diffkemp_is_cpattern that
can be used to determine whether an LLVM module is a compiled, unprocessed C pattern.
Since the mapping function is expected to be called with various amounts and types of
arguments, depending on the specific pattern, it is declared with an empty parameter list,
which means that it can be called with any arguments [8]. In the new C23 standard, this
is not supported. However, it allows declaring functions with variadic arguments — using
“...” as the last argument to specify that arbitrary amounts and types of arguments may
be used — without having to specify at least one mandatory parameter before the variadic
parameters. In this use case, this serves an equivalent purpose [10], and so the declaration
used for the output mapping function is chosen at the compile time, depending on the
currently used C standard.

Interface for processing patterns

The next part of the header defines the interface for pattern processing, using a stringifi-
cation macro to define string versions of the naming prefixes, the mapping name, and the
name of the global indicator variable. This part of the interface is used by the SimpLL
library itself, specifically the parts that are responsible for processing the loaded patterns
originally written in C.

28



Interface for defining patterns

The final part of the header contains a macro-based user interface used directly to define
patterns. For standard instruction patterns, PATTERN_OLD and PATTERN_NEW are used, with
body of the pattern immediately following the macro. To allow the user to define the pattern
name and the argument list for both versions in a single place, this information must be
specified before defining the patterns by defining macro PATTERN_NAME and PATTERN_ARGS
to the desired value. The patterns defined this way are functions with void return type,
and the mapping is performed using MAPPING(...) macro call. An example of a basic
instruction pattern encoded in C using this header can be seen in Figure 5.1

Sometimes it is desirable to specify pattern up to the point of resolution of a branching
condition, but not include the branching itself. Defining an if statement while leaving the
branches empty will lead to compiler optimizing the statement away. Using mapping on a
logical statement would automatically resolve this statement as an integer, not a boolean
value, due to the so-called default argument promotions in C [9]. For this reason, the header
also specifies CONDITION_PATTERN_OLD and CONDITION_PATTERN_NEW macros, which work
analogously, but have return type _Bool (native C boolean type). In this macro, the user
can return the condition that is to be resolved, since returning a value is also a valid way
of defining output mapping in the LLVM IR encoding. This solves the aforementioned case
for patterns related to branching condition resolutions. Note that the promotion behavior
in the mapping function may cause problems in general. For instance, floats will always
be converted to doubles before being mapped, which may be undesired. Currently, the
only workaround is to modify the header file used for the particular pattern by defining the
mapping function with an explicit parameter list.

The header also contains a special macro for value patterns VALUE_PATTERN (name,
old_value, new_value). Internally, this defines a pattern function for both the old and
the new value, each simply returning the given value, the return type of the pattern function
being inferred from the type of the provided value using the compiler operator __typeof__.

Interface for defining pattern functions

In some cases, these macros are too restrictive. Additionally, if a function called from
the old and new code segments has the same name, but different type signature, it is
not possible to define such a function standard way. Both of these issues are addressed
by FUNCTION_OLD(name, ...) and FUNCTION_NEW(NAME, ...) macros. These macros
resolve to function name and list of arguments or parameters, with the name being modified
to fit the used naming scheme. In this way, the user can declare, define, or call such
a function while having the freedom to specify the return type or other details. If used
for a function definition, since their names comply with the required names for patterns,
they will be treated as patterns. Thanks to this, the user can for example define a pattern
with different names of arguments (but the types still have to match), which can be useful
in avoiding unnecessary renaming when copying code segment from the code, if the old
and new code segments use differently named variables. Additionally, using this macro to
declare and call functions solves the problem with different type signatures of identically
named functions in old and new code patterns, as the actual names of the functions will be
different. The macro has one more possible use case. With some patterns, it is desirable to
import a header for various functions, types, and macros, to avoid having to define them
manually. However, it may be undesirable for one of the included function definitions to
be inlined by the compiler, replacing the call to the function with its body. Here, one

29



©@__diffkemp_is_cpattern = global i32 1
void @__diffkemp_output_mapping|(...)
@__diffkemp_old_swp_offset|(i64) {
%2 = and i64 %0, 144115188075855871
call @__diffkemp_output_mapping|(%2)
ret void

}
@__diffkemp_new_swp_offset|(i64) {
%2 = and i64 %0, 288230376151711743
call @__diffkemp_output_mapping|(/2)
ret void

}

©@__diffkemp_is_cpattern = global i32 1
void @diffkemp.output_mapping|(...)
@diffkemp.old.swp_offset|(i64) {
%2 = and i64 %0, 144115188075855871
call @diffkemp.output_mapping|(%2)
ret void

}
@diffkemp.old.swp_offset|[(164) {
%2 = and i64 %0, 288230376151711743
call @diffkemp.output_mapping|(%2)
ret void

}

(a) C pattern compiled into LLVM IR using (b) Functions renamed to proper LLVM IR

Clang.

names.

[e__diffkemp_is_cpattern = global i32 1]
void @diffkemp.output_mapping(...)
@diffkemp.old.swp_offset(i64) {

%2 = and i64 %0, 144115188075855871,

< [!diffkemp.pattern !0

call @diffkemp.output_mapping(%2),

< [!diffkemp.pattern !l

ret void

}
@diffkemp.old.swp_offset(i64) {
%2 = and i64 %0, 288230376151711743,
— [ldiffkemp.pattern !0
call @diffkemp.output_mapping(%2),
< ['diffkemp.pattern 'l

void @diffkemp.output_mapping(...)
@diffkemp.old.swp_offset(i64) {
%2 = and i64 %0, 144115188075855871,
— !diffkemp.pattern !0
call @diffkemp.output_mapping(%2),
— !diffkemp.pattern !1
ret void
}
@diffkemp.old.swp_offset(i64) {
%2 = and i64 %0, 288230376151711743,
— !diffkemp.pattern !0
call @diffkemp.output_mapping(%2),
— !diffkemp.pattern !1

ret void ret void
} }
10 = !'{!"pattern-start"} 10 = !'{!"pattern-start"}

11 = I{!"pattern-end"} 11 = I{!"pattern-end"}

(c) Pattern starts and ends tagged. (d) C pattern indicator removed.

Figure 5.2: The workflow of the C pattern pass. Green and red boxes mark changes.

can use the FUNCTION_OLD(name, ...) macro to declare the function without providing
the body. Then, if called from either pattern body using the macro, it cannot be inlined.
However, it will still be considered identical to the original function when mapping the
pattern instruction to the compared snapshot instructions based on its name, because in
the LLVM IR encoding, DIFFKEMP specific prefixes are ignored in comparisons.

5.2 Pass for LLVM IR patterns generated from C

This section is dedicated to the pass responsible for processing LLVM IR encoded patterns
generated from the C code. It is written in C+4 as part of the SimpLL library. It is
implemented as in the form of a class CPatternPass. The class contains one public function
— run(module) — which applies the pass on an LLVM IR module loaded in the C++ LLVM
API. Internally, the process has several parts, described later in this chapter. The diagram
showing the processing performed by the pass is visible in Figure 5.2.

30



Originally, the pass was intended to be defined as an LLVM module pass [20], using the
interface provided by the library. This would allow to include the compiled pass as a plugin
for the LLVM opt tool — standardly used for running LLVM passes — making it possible
to run the pass from the command line through the opt tool, directly from the Python
interface. However, because the pass utilizes the SimpLL library, and both the SimpLL
library and the opt tool use dynamically LLVM loaded libraries, but some of its functions
are overwritten in SimpLL, this led to a problematic behavior and did not work correctly.
That is why the described approach, where the pass is part of the SimpLL library, was
taken instead.

Pass initialization

The first part, initialization, finds all the patterns in the given module. This is done by
going through the list of functions, finding names that match the prefix used in C by old
pattern code segments, and checking if a function with same name, but with prefix for the
new code segment, exists in the module. If this is successful, the pattern pair is stored in
a pattern map, with the pattern name being a key. Functions with declarations, but no
definitions, are ignored, since these functions cannot be used as patterns and only serve as
standard functions called from the patterns.

Renaming functions

Next, the detected patterns and mapping function are renamed to the naming scheme used
by LLVM IR encoded patterns. Renaming is separated from the first pass through the list
of functions in the initialization step. Changing the names in the middle of the process
of finding patterns would make the process more difficult because the not yet renamed
functions would be using a different naming scheme than the renamed ones.

Tagging pattern starts

The most important and complicated part is the pattern tagging. Pattern starts are tagged
using the comparison functionality of the SimpLL library. First of all, it is not possible to
compare functions within a single module. Doing so leads to memory error. Because of
this, the tagged module is cloned using the LLVM IR API. Afterwards, each of the pattern
pairs can be processed. The comparison configuration gets initialized with the original
and cloned module and the names of the old and new pattern code segments. Then the
library function for comparison is called. For this to work, the SimpLL library, specifically
the result object provided, had to be modified. Previously, the pair of pointers to the
first differing instructions found was stored in a DifferentialFunctionComparator class
member, which is a class that performs the comparison itself. This class is not accessible to
the caller of the library comparison function, and thus neither is the information about the
first found differing instruction pair. After modification, the address of these instructions
is stored in an new field DifferingInstructions of the function comparison result object,
solving the problem.

It is important to note that tagging the differing instruction found would mean tagging
the cloned version of the new pattern segment because the address of the first differing
instruction found in this case belongs to the cloned module. It is possible to find a mapping
between the memory addresses of the original and cloned instructions by iterating over the
instructions of both simultaneously, since the modules are initially identical. This approach

31



solves the problem of tagging a cloned function instead of the original. However, there was
one more problem. The transformations performed by passes during the preprocessing
stage of the comparison are also applied only to the cloned version of the new pattern code
segment. Running passes manually on the unmodified function would be both inefficient
— such function essentially gets processed twice, once in the original module and once in
the cloned one — and functionally problematic. For example, when inline assembly code is
changed to an abstract function call, the function representing the assembly code is identical
in both compared modules, provided that the assembly code is also considered identical.
But that is not necessarily true when performing the passes individually within the same
module. The same issues occur when performing multiple comparisons — the original old
code segment with the cloned new segment and then vice versa — while being significantly
more inefficient.

The way this is solved is by simply tagging the cloned version of a found differing
instruction in the newer code change pattern and calling a newly added utility function
which can clone the function from the module back to the original module. Cloning body
of the function back can be done through LLVM library API, however, a mapping between
global variables and arguments of the function must be provided. The global variables of
the modules are mapped based on their names, as both modules are originally clones of
each other, and the only possible differences stem from modifications that occurred during
the mutual comparison of the modules. Arguments of the pattern function and its clone
match, so their mapping is determined very easily, by simultaneous sequential iteration.
For the tagging itself, an auxiliary function was written. For a given instruction, metadata
kind — here specifically diffkemp.pattern — and a chosen value — here specifically
pattern-start or pattern-end — the value is placed into the instruction metadata, under
the specified kind. Doing so normally with the LLVM library would overwrite the value
for the given kind in the given instruction, leading to incorrect behavior, for example if the
pattern start and end are in the same place. Thus, within the helper function, the existing
metadata values for the given kind are first copied into a buffer vector, then the new value
is appended, and the vector is used as the new value, creating a structured metadata node.

Tagging pattern ends

The ends of the patterns are determined for each pattern code segment individually, as
they do not depend on each other. However, they are determined using the concept of
pattern body. To verify whether an instruction is part of the pattern body, auxiliary function
isPatternBody was defined. The function returns true if the instruction is not a return,
nor a call to the mapping function. For the tagging algorithm itself, each instruction of the
pattern function is checked, and if the instruction is part of pattern body, has a successor,
and the successor is not part of the pattern body, the successor is tagged as the pattern
end. A special check is performed at the beginning — if even the first instruction is not
part of the pattern body, this instruction gets tagged with the pattern end metadata tag.

Marking pattern as processed

Finally, after all this, the processing pass is finished. One last thing that remains is deleting
the global variable indicator, which is used to signify that the module is an unprocessed
LLVM IR pattern file generated from a C pattern. Deleting the indicator means that the
pass will not have to be run next time this pattern is used.

32



5.3 Interface for patterns encoded in C

This section is dedicated to information about the implementation of modifications to the
Python and SimpLL interface to enable the support of patterns encoded in C in DIFFKEMP,
utilizing the implemented header for defining patterns and the C pattern pass.

Python module interface

The Python command line interface was extended to include a new command — compi-
le-pattern. This command compiles and processes a non-LLLVM IR encoded pattern into
an LLVM IR encoded pattern. Currently, only C patterns are supported. It additionally
provides options for appending options to the Clang compiler used for pattern compilation
and for disabling processing (only performing the compilation step without running the
C pattern pass). Since kernel source code is one of the main targets for DIFFKEMP, and
because compiling code for kernels requires adding several include paths, included files, and
defined macros, an option to automatically perform all these things for a chosen kernel
source code path is also available. Finally, an option for disabling foreign function interface
of SimpLL dynamic library and using SimpLL binary instead is provided as well — more
information will be provided on this later. When not compiling patterns but standardly
comparing snapshots, the C patterns can be provided in the same way as the LLVM pat-
terns. Its compilation and processing are performed automatically. Additionally, the Clang
append option and the kernel pattern option are both included for this command as well.

SimpLL library interface

The SimpLL library can be interfaced with in two ways. Normally, it is compiled to
a dynamic library. This library can then be used from Python using the foreign func-
tion interface through cffi Python package, which provides the ability to call C and C++
functions from Python code [24]. SimpLL itself contains select functions that are made
available through this interface. The second alternative is to use a compiled SimpLL bi-
nary. The binary is controlled through command line options. The FFI interface was
extended with preprocessPattern(const char *PatternPath) function, that runs the
C pattern processing pass. This function is called when using the pattern compilation
command of DIFFKEMP. The main function of the binary was modified to include an ad-
ditional -preprocess-pattern-only pattern-path option that serves the same purpose,
when used instead of the foreign function interface.

Python module pattern handling

In the Python part of DIFFKEMP, the class responsible for handling custom patterns se-
lected by the user is CustomPatternConfig. Originally, it only supported patterns with
LLVM IR patterns with .11 extension or more complex pattern configuration in YAML [4]
format. However, the pattern configuration only specified the LLVM IR patterns to load,
making LLVM IR the only valid way to define patterns. The selected patterns were ana-
lyzed by the verification pass' through the LLVM opt tool, checking whether the format
of the LLVM IR pattern module is well formed with respect to standard LLVM IR rules
(however, it does not check whether it is a valid DIFFKEMP pattern). In this master’s
thesis, the class was extended to support patterns with .c extension. Such patterns are

"https://llvm.org/docs/Passes. html# verify-module-verifier

33


https://llvm.org/docs/Passes.html#verify-module-verifier

on_parse_failure: ERROR
patterns:
- tests/custom_patterns/c/rhel-81-82/__alloc_pages_nodemask.pattern.c
- tests/custom_patterns/c/rhel-81-82/__put_task_struct.pattern.c
- tests/custom_patterns/c/rhel-81-82/__stack_chk_fail.pattern.c
- tests/custom_patterns/c/rhel-81-82/blk_mq_end_request.pattern.c
- tests/custom_patterns/c/rhel-81-82/down_read.pattern.c
clang_append:
tests/custom_patterns/c/rhel-81-82/blk_mq_end_request.pattern.c:
- =00

Figure 5.3: Example of a YAML pattern configuration file, loading five C encoded patterns,
with one specific pattern being compiled with additional -00 Clang compiler option, to
compile it at optimization level 0 instead of the default level 1. Failure to parse pattern is
specified to lead to an error.

first compiled with the LLVM clang compiler, then processed with the opt tool using the
same passes as those used to build snapshots. Additional clang options passed by the user
and the options related to compiling kernel patterns are automatically appended to the
clang call if they are provided.

SimpLL pattern handling

In the C++ SimpLL library itself, custom user-defined patterns are handled by Custom-
PatternSet class. The modifications to this class within this implementation were small.
Since the patterns passed to the library are already compiled to LLVM IR, the only addi-
tional thing that is necessary is to check if the pattern is a compiled C pattern. This is
done by checking the presence of the aforementioned global indicator variable. If so, the C
pattern pass is used on the pattern module. Afterwards, the pattern is treated identically
to any other LLVM IR pattern.

As mentioned above, the patterns can also be loaded from a YAML pattern configu-
ration file. This file provides a list of patterns, all of which are loaded and subsequently
simultaneously used for comparison. The user may also specify whether the failure to parse
pattern should lead to an error or a warning. Each pattern file specified in the configura-
tion YAML is individually handled identically to a directly loaded pattern file, so no further
modifications to the process are required. However, because C patterns are compiled and
thus it is sometimes desirable to specify additional compiler options for a specific pattern(s),
the supported YAML format was modified. Now, in addition to patterns and behavior in
the case of a parsing failure, the user can specify a new clang-append field, in which it is
possible to define a list of additional clang options for each of the specified pattern files.
An example of a YAML configuration file that shows this new functionality can be seen in
Figure 5.3.

34



Chapter 6

Evaluation of patterns for
Diff Kemp written in C

This chapter is dedicated to experimentation, evaluation, and testing of the DIFFKEMP
extensions implemented in the previous chapter. Here, one can also see examples of C
patterns and how they look in practice. The first section concerns experiments with simple
handwritten test cases, to verify basic functionality of the extension. The following section
is dedicated to replicating pattern for RHEL kernel, which originally use LLVM IR encoded
patterns, to evaluate the usability of C pattern encoding on real-life examples. The descrip-
tions of tested patterns and the ways of testing them contained in this chapter also provide
information on how C encoded patterns are written and include various details about the
specifics of C patterns.

6.1 Basic C pattern tests

Handwritten test cases in this section represent basic C-code constructions and their modifi-
cations. Based on their results, it can be seen how the fundamentals of C-encoded patterns
work and what implications it has on their usage in general. These tests represent the
lowest-level benchmark for the usability of the extension.

Each test contains an old and a new modified source code example, plus a pattern that
is meant to address the modification, leading to semantic equality result. In total, this test
suite contains eleven individual tests.

The first group of tests concerns function calls. The patterns for adding or changing a
call were simple and worked as expected. When changing the function type, while keeping
the name, the FUNCTION_OLD and FUNCTION_NEW macros had to be used, but the test was
successful. A problem occurred when adding a call processing a certain value and returning
a value of the same type, while specifying a mapping between the original value and the value
returned by the function in the new code segment, as visible in Figure 6.1. The problem
was due to how the mapping currently works internally DIFFKEMP — the mapping is a
bijection, a one-to-one relationship, as seen in Section 2.3 and Algorithm 2.3.1. However,
the pattern would require mapping between both old x and new x, and between old x and
new_foo(x) value, which is not currently possible. This is a known issue with DIFFKEMP
and affects the functionality of the tool in other ways as well.

Testing on arithmetic expressions revealed some shortcomings. There are often many
ways of expressing the same arithmetic expression using LLVM IR instructions, and many

35



#define PATTERN _NAME new_call_wvalue
#define PATTERN_ARGS int x

int new_foo(int x);

PATTERN_OLD { MAPPING(x); }
PATTERN_NEW { MAPPING(new_foo(x)); }

Figure 6.1: Pattern adding a call. This specific pattern does not currently work properly,
because of how DIFFKEMP internally handles mapping of values between compared modules
and patterns.

valid orderings of these the instructions. Therefore, the generated code often varies based
on various details of the compiled source code, and the code of patterns does not always
match the code of the compared projects. However, simultaneously with this thesis, another
thesis is being written on extending DIFFKEMP with the ability to determine the semantic
equivalence of smaller groups of arithmetic and logic instructions based on the rules of
distributivity, associativity, and so on. After that extension is implemented, it may be
possible to use it for pattern mapping as well, solving the issue.

Testing a value pattern test defined with VALUE_PATTERN showed correct behavior. So
did a condition-change pattern defined using the CONDITION_PATTERN_OLD and CONDITION-
_PATTERN_NEW macros. A problem occurred with a specific pattern that contains an entire if
branch. In this particular example, the compared basic blocks of the control flow graphs did
not map correctly, similarly to the aforementioned mapping issue when adding a function
call. However, in other examples of patterns that contain branches, the tests were successful,
and thus there is not a fundamental problem with defining complex branching patterns.

A small amount of tests were written to cover the refactorizations described in the be-
ginning of Chapter 3, specifically some of those that DIFFKEMP does not handle natively,
nor can it without significant changes, as stated in [18]. Specifically, the tested refactoriza-
tions were global variable into parameter and group a set of variables into a new structure.
The former was successful, while the latter was unsuccessful due to the previously described
issue with mapping values in DIFFKEMP. In addition, two tests were written that replicate
the functionality of built-in patterns from Section 3.1 — Inverse Branch Conditions and
Changes in Structure Data Types. The tests were performed by disabling the specified built-
in patterns and using the replacement custom patterns instead. Both were successful. The
tests described in this paragraph show the wide usability of C-encoded patterns. However,
note that the patterns for these situations have to be written on a case-by-case basis and
cannot be written universally.

6.2 Replicating existing custom LLVM IR pattern tests with
C-encoded patterns

As part of the thesis [28] that implements the original extension supporting user-defined
custom patterns in LLVM IR, there were defined multiple tests for the functionality of these
patterns. These tests were added to DIFFKEMP’s set of regression test suite. Regression
tests are tests that are run after code modifications, to verify that no new errors have been
introduced [16]. In total, there are 3 groups of tests, one for each pair of Red Hat Enterprise

36



RHEL Pattern file name Pattern name Type
ipmi_set_gets_events free_user I
scnprintf NR_PAGEFLAGS A%

task I

8.0-8.1 set_user_nice enqueus_tas
dequeue_task I
viree __vunmap I
zap_vma_ptes swp_offset I
__alloc_pages_nodemask zone_allows_reclaim V
__put_task_struct __put_task_struct I
ic_first I

8.1-8.2 __stack_chk_fail pan}c_ il
panic_second 1
blk_mq_end_request arch_atomic_dec I
down_read __down_read I
__put_page __update_lru_size I
bio endio percpu_ref_put_many_first 1
- percpu_ref_put_many_second I

8.2-8.3 -

blk_execute_rq blk_execute_rq_nowait I
kthread_create_on_node __kthread_create_on_node I
sigprocmask jobctl_stop_pending A%

Table 6.1: Table overview of all tests written for various versions of Red Hat Enterprise
Linux. Pattern name suffix .pattern.c not shown to conserve space. In the pattern type
column, I stands for the instruction pattern type and V for the value pattern type.

Linux versions from 8.0 to 8.3. Each group contains 5 patterns that are to be tested. The
overview of these tests can be seen in Table 6.1.

For each test group, the test is specified using a YAML test specification file. The
specification contains functions and symbols that are to be compared and the pattern file
to use. The pattern file is always specified as a YAML pattern configuration file for the
specific compared Red Hat Enterprise Linux version pair, loading all of the 5 patterns
written for the pair. The test specification also describes what kind of results are expected
from the comparisons after applying the patterns. In some cases, it is equality; in others,
it is inequality, along with the specific semantic difference that is expected to be found.

Since tests are written for multiple versions of LLVM, there are multiple versions of each
tested pattern. Older LLVM versions do not support the so-called opaque pointers [22], that
is, pointers without a specified type of data to which they point. They use explicitly typed
pointers. Therefore, each pattern has a version with opaque pointers and a version with
explicit pointers, and which one is used depends on the version of LLVM used.

New patterns encoded in C and new pattern configuration files that utilize them were
written for the purpose of this thesis. These files were based on the original LLVM IR
patterns and configurations, addressing the same cases of detected semantic inequality. All
three test specifications for groups testing specific Red Hat Enterprise Linux version pairs
were duplicated from the LLVM IR test specification. The only modification to these new
files was changing the path to the pattern configuration file, this time to the new pattern
configuration files that load the newly written patterns written in C. With C-encoded
patterns, it is not necessary to define two versions of each pattern. Each pattern that
gets compiled and translated into LLVM IR using Clang utilizes the same installed LLVM

37



#include <linuxz/mm_types.h>
#include <linuz/swap.h>
#include <linuz/swapops.h>

#define RADIX_TREE EXCEPTIONAL_SHIFT 2

#define SWP_TYPE SHIFT 80 \
((sizeof (unsigned long) * 8) \
- (MAX_SWAPFILES SHIFT + RADIX TREE EXCEPTIONAL_SHIFT))

#define SWP_OFFSET MASK 80 (1UL << SWP_TYPE SHIFT 80) - 1

#define PATTERN_NAME swp_offset
#define PATTERN_ARGS unsigned long %

PATTERN_OLD { MAPPING(i & SWP_OFFSET_MASK_80); }

PATTERN_NEW { MAPPING(i & SWP_OFFSET_MASK); }

Figure 6.2: User-defined pattern written in C specifying semantic equivalence between two
versions of used kernel masking macro.

version that DIFFKEMP does, so their compatibility is ensured. This showcases yet another
benefit of writing patterns in C.

To ensure that tests written for kernel patterns that include kernel headers function
properly, the testing script was modified to add the option —c-pattern-kernel-path path
to the used DIFFKEMP configuration. The provided kernel path is always the newer version
of the compared kernel versions. That means that in cases where a used symbol or a called
function was redefined between versions, it is necessary to additionally define the older
version manually, as it is not possible to include it from the header. If the used version
were the older one, a similar but opposite problem would occur in such situations.

Tests for Red Hat Enterprise Linux versions 8.0 and 8.1

The first set of tests, comparing Red Hat Enterprise Linux versions 8.0 and 8.1, contains one
value pattern and four instruction pattern files. The value pattern is very simple, defined
for two specific constants, and in C consists of only a single line:

VALUE_PATTERN (NR_PAGEFLAGS, (1UL << 25) - 1, (1UL << 26) - 1)

Three of the pattern files contain simple additions or modifications of a function call.
One of these actually contains two separate patterns used for two related tested functions.
The last instruction pattern concerns a masking operation, where the macro mask has been
modified. The older version of the macro definition had to be copied into the pattern file
manually. The pattern utilizes the mapping function. The resulting pattern file can be seen
in Figure 6.2.

38



Tests for Red Hat Enterprise Linux versions 8.1 and 8.2

The second set of tests is written for Red Hat Enterprise Linux versions 8.1 and 8.2. This
set also contains a single value pattern and four instruction pattern files. This time, the
change in the value pattern concerns replacing a constant with a global variable. The
pattern looks like this:

extern int node_reclaim_distance;
VALUE_PATTERN(zone allows_reclaim, 30, &node_reclaim distance);

Note that the equivalence must be defined between the constant and the pointer to
the global variable, not the global variable itself. This is specified in the instructions for
writing C patterns located in the header file to define the patterns. This is because of how
external global variables are handled in LLVM IR, where a global value is defined through
a pointer from which the value must be loaded before it is used. The problem with using
the global variable itself is that it generates two instructions, one to load the value from
the pointer, and the second using the actual value, here specifically the return. That means
that the pattern is no longer a value pattern and does not behave as expected. Specifying
equivalence with the pointer avoids this issue, while still matching correctly, because of how
DirFKEMP the matching.

In terms of the instruction pattern files, once again, one file contains two patterns. It
is once again a simple pattern that adds new calls or assignments. A second instruction
pattern handles a single call to a function that has been modified to have additional pa-
rameters. In this case, the functionality of the C pattern header file is utilized to define
two variants of the same function. Beyond that, it is a simple call change pattern. Another
pattern contains a change to the inlined assembly code. This test is one of the reasons why
it is necessary to copy the compared pattern body from the cloned module to the original
module, as stated in Section 5.2, and why the other mentioned approaches are not valid.
It is necessary for the two inlined assembly code segments to be abstracted by the same
global variable so that they are compared semantically equivalently, which happens only
with the chosen approach. For demonstration purposes, this pattern can be seen in Figure
6.3.

The last instruction pattern in this set of tests is a complex if statement. Because
the code segment contains multiple function calls that are declared and defined only in
the implementation part of Linux source code and cannot be included, these functions
have to be declared manually. However, because of how the patterns are compiled, it is
only necessary to declare the function type and name, with empty parameter list, it is
not necessary to determine the types and amount of the parameters of the called function
manually, saving work for the developer. This generally applies for any pattern, except for
the cases where it may lead to unwanted default argument promotion [9], where parameters
have to be defined explicitly.

Tests for Red Hat Enterprise Linux versions 8.2 and 8.3

The third and final set is for versions 8.2 and 8.3. Once again, the set contains a single
value pattern and four instruction pattern files. The value pattern specifies the equivalence
between old and updated versions of a masked value as shown in Figure 6.4.

Once again, it was necessary to manually add an older version of the relevant macro,
which is a slight imperfection of the user-defined C patterns system, as it is currently

39



#include <asm/alternative.h>

#define PATTERN_NAME arch_atomic_dec
#define PATTERN_ARGS atomic_t *v

PATTERN_OLD { asm volatile(LOCK_PREFIX "decl %0" : "+m"(v->counter)); }

PATTERN_NEW {
asm volatile(LOCK_PREFIX "decl %0" : "+m"(v->counter)::'"memory");

3

Figure 6.3: User-defined pattern written in C specifying semantic equivalence between two
versions of inlined assembly code.

#include <linuz/sched/jobctl.h>

#define JOBCTL_PENDING MASK_82 (JOBCTL_STOP_PENDING |
< JOBCTL_TRAP_MASK)

VALUE_PATTERN (jobctl_stop_pending,
JOBCTL_PENDING_MASK_82 | JOBCTL_TRAP_FREEZE,
JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE) ;

Figure 6.4: User-defined pattern written in C for a value, where an older version of used
macro mask had to manually defined as it is not possible to include both the original and
updated version.

implemented. Three of the four instruction pattern files once again contain very simple
patterns, for example, modifying a single call, with one of the files containing two such
patterns. The fourth pattern file was slightly more complex, additionally specifying a
mapping for one output variable.

In sum, it was possible to successfully replicate all 16 original LLVM IR custom pattern
tests with patterns encoded in C. This shows that despite the fact that encoding in C
provides less direct control over the pattern, because of the used abstraction, it is still
usable in wide variety of practical cases.

40



Chapter 7

Conclusion

This master’s thesis concerns DIFFKEMP, an open-source tool used to check for semantic
equivalence between pairs of functions written in the language C, using static analysis. The
goal was to research this tool, with particular focus on its pattern system, preparing the
ground for further work. Chapter 2 is dedicated to the tool itself. It contains a basic in-
troduction to static analysis, comparison with other tools with similar purpose, description
of the code representation used by DIFFKEMP internally, and information about the tool’s
architecture. The following chapter, number 3, focuses specifically on code change patterns,
starting with an introduction to various kinds of refactorizations, followed by a description
of DIFFKEMP’s explicit built-in support to account for chosen types of semantics-preserving
code changes that are not handled by the DIFFKEMP’s main algorithm alone. The final
part of the chapter concerns the existing system for custom user-defined patterns, including
how these patterns are formally defined, represented, and algorithmically processed. The
subsequent chapter — number 4 — proposes a way of encoding user-defined patterns in
C. Then it provides a design for a special processing pass that can be used on C patterns
compiled into LLVM IR, so the result is a valid LLVM IR DirFKEMP pattern. The design
of an extension to the tool to add an interface and support for these patterns is also de-
scribed. The design chapter is followed by Chapter 5 with a similar structure that focuses
on the implementation of the extension. It addresses concrete details of the implementation,
which is part of DIFFKEMP’s C++ library SimpLL and Python module diffkemp. The last
chapter, 6, describes the process of testing and evaluating the C pattern encoding and the
related DIFFKEMP extension. The testing is divided into two categories — synthetic tests
testing the basic functionality of the C patterns and replication of existing non-C pattern
tests with C patterns.

The result of this thesis is a fully designed and implemented DIFFKEMP extension,
which allows users to define custom code-change patterns that define semantic equivalence
for provided code segments, using the C language. The implementation is a contribution
to an open-source project and is currently a pull request in the process of being reviewed
in the official GitHub repository. The results of the testing show that the encoding used
along with the implementation is usable in a wide variety of practical cases, comparable
to the previously existing LLVM IR pattern encoding. The patterns in C are significantly
easier to define, as C is a more user-friendly language compared to LLVM IR, which is
mainly intended as an internal representation for machine analysis and transformations.
This significantly simplifies the effort and expertise required from DIFFKEMP’s users.

In the future, there are multiple ways to follow up on this thesis. DIFFKEMP currently
includes an interactive result viewer. It may be possible to extend this viewer with the

41



ability to select specific differences found in the code to automatically create a C pattern
for the selected code differences. Furthermore, the extensions to the DIFFKEMP’s interface
and workflow were done in a way that is general enough to make it possible to support
new pattern encodings in the future. Finally, improving the pattern matching algorithm
by incorporating another extension for DIFFKEMP, developed in parallel with this, which
improves the matching algorithm for complicated arithmetic and logical instruction se-
quences into the pattern matching algorithm, can increase the expressiveness and usability
of C-encoded patterns even more.

42



Bibliography

1]

AHO, A. V.; LaM, M. S.; SETHI, R. and ULLMAN, J. D. Compilers: Principles,
Techniques, and Tools (2nd Edition). USA: Addison-Wesley Longman Publishing
Co., Tnc., 2006. 369-370 p. ISBN 0321486811.

ALLEN, F. E. Control flow analysis. In: Proceedings of a Symposium on Compiler
Optimization. New York, NY, USA: Association for Computing Machinery, 1970,
p. 1-19. ISBN 9781450373869.

BARNETT, M.; CHANG, B.-Y. E.; DELINE, R.; JACOBS, B. and LEINO, K. R. M.
Boogie: A Modular Reusable Verifier for Object-Oriented Programs. In: BOER, F. S.
de; BONSANGUE, M. M.; GRAF, S. and ROEVER, W.-P. de, ed. Formal Methods for
Components and Objects. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,

p. 364-387. ISBN 978-3-540-36750-5.

BEN KikI, O.; Evans, C. and INGERSON, B. Yaml ain’t markup language (yaml™)
version 1.1. Working Draft 2008, 2009, vol. 5, no. 11.

FELSING, D.; GREBING, S.; KLEBANOV, V.; RUMMER, P. and ULBRICH, M.
Automating regression verification. In: Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering. New York, NY, USA:
Association for Computing Machinery, 2014, p. 349-360. ASE ’'14. ISBN
9781450330138.

GARRIDO, A. Software Refactoring Applied to C Programming Language. 2000.
Dissertation. University of Illinois, Urbana-Champaign.

GRIFFITH, A. GCC: The Complete Reference. McGraw Hill LLC, 2002. 56-57 p.
ISBN 9780072228168.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. Programming languages
— C. ISO/IEC 9899:2011. December 2011. 133-136 p.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. Programming languages
— C. ISO/IEC 9899:2011. December 2011. 81-82 p.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. Programming languages
— C. ISO/IEC 9899:2023. April 2023. 128-130 p.

KIRCHNER, K. and ROSENTHALER, S. Bin2llvm: Analysis of Binary Programs Using
LLVM Intermediate Representation. In: Proceedings of the 12th International
Conference on Awvailability, Reliability and Security. New York, NY, USA:
Association for Computing Machinery, 2017. ARES ’17. ISBN 9781450352574.

43



[12]

KRENA, B. and VOIJNAR, T. Automated formal analysis and verification: an

overview. International Journal of General Systems. Taylor & Francis, 2013, vol. 42,
no. 4, p. 335-365.

LaHIRI, S. K.; HAWBLITZEL, C.; KAwWAGUCHI, M. and REBELO, H. SYMDIFF: A
Language-Agnostic Semantic Diff Tool for Imperative Programs. In: MADHUSUDAN,
P. and SESHIA, S. A., ed. Computer Aided Verification. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, p. 712-717. ISBN 978-3-642-31424-7.

Lawm, S. K.; PiTrOU, A. and SEIBERT, S. Numba: a LLVM-based Python JIT
compiler. In: Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC. New York, NY, USA: Association for Computing Machinery,
2015. LLVM ’15. ISBN 9781450340052.

LATTNER, C. and ADVE, V. LLVM: a compilation framework for lifelong program
analysis & transformation. In: International Symposium on Code Generation and

Optimization, 2004. CGO 2004. 2004, p. 75-86.

LEUNG, H. and WHITE, L. Insights into regression testing (software testing).
In: Proceedings. Conference on Software Maintenance - 1989. 1989, p. 60-69.

MALIK, V.; SILLING, P. and VOJNAR, T. Applying Custom Patterns in Semantic
Equality Analysis. In: KOuLALI, M.-A. and MEZINI, M., ed. Networked Systems.
Cham: Springer International Publishing, 2022, p. 265-282. ISBN 978-3-031-17436-0.

MALIK, V. and VOJNAR, T. Automatically Checking Semantic Equivalence between
Versions of Large-Scale C Projects. In: 2021 14th IEEE Conference on Software
Testing, Verification and Validation (ICST). 2021, p. 329-339.

MouRA, L. de and BJORNER, N. Z3: An Efficient SMT Solver. In: RAMAKRISHNAN,
C. R. and REHOF, J., ed. Tools and Algorithms for the Construction and Analysis of
Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, p. 337-340. ISBN
978-3-540-78800-3.

NACKE, K. Learn LLVM 12: A beginner’s guide to learning LLVM compiler tools and
core libraries with C++. Packt Publishing, 2021. 202-226 p. ISBN 9781839210037.

NAcCkKE, K. and KwWAN, A. Learn LLVM 17: A beginner’s guide to learning LLVM
compiler tools and core libraries with C++. Packt Publishing, 2024. ISBN
9781837634675.

NACKE, K. and KwAN, A. Learn LLVM 17: A beginner’s guide to learning LLVM
compiler tools and core libraries with C++. Packt Publishing, 2024. 40 p. ISBN
9781837634675.

RED HAT. What is Kernel Application Binary Interface (kABI)? June 2023.
Available at: https://access.redhat.com/solutions/444773. Retrieved on 22th
January 2024.

REITZ, K. and SCHLUSSER, T. The Hitchhiker’s Guide to Python: Best Practices for
Development. O’Reilly Media, 2016. 222-223 p. ISBN 9781491933220.

44


https://access.redhat.com/solutions/444773

[25]

[26]

[27]

SARDA, S. and PANDEY, M. LLVM FEssentials. Packt Publishing, 2015. 115-125 p.
ISBN 9781783558629.

SMYTH, N. Red Hat Enterprise Linux 8 Essentials: Learn to Install, Administer and
Deploy RHEL 8 Systems. Payload Media, 2019. ISBN 9781951442040.

THE APACHE SOFTWARE FOUNDATION. Apache License, Version 2.0. January 2004.
Available at:
https://raw.githubusercontent.com/1lvm/llvm-project/main/11vm/LICENSE.TXT.
Retrieved on 23th January 2024.

SILLING, P. Applying Code Change Patterns during Analysis of Program Equivalence.
Brno, CZ, 2021. Bachelor’s thesis. Brno University of Technology, Faculty of
Information Technology. Available at: https://www.fit.vut.cz/study/thesis/24037/.

45


https://raw.githubusercontent.com/llvm/llvm-project/main/llvm/LICENSE.TXT
https://www.fit.vut.cz/study/thesis/24037/

Appendix A

Contents of the included storage
media

The included storage media has the following structure:

REAMDE.md — basic information about the contents of the included storage media.
thesis.pdf — PDF version of the thesis text.
thesis_print.pdf — PDF version of the thesis text, variant for printing.

doc — folder containing the source files necessary to generate the thesis text, specif-
ically the thesis.pdf and thesis_print.pdf files.

diffkemp — git repository of the DIFFKEMP project, set to the cpatterns branch,
used to develop this thesis project. The work that was done on this thesis consists
of the commits added to this branch compared to the master branch (try using git
diff master cpatterns in the project folder to see the changes). Alternatively, the
modifications can be seen at GitHub pull request for this extension' (note that the
contents of the pull request are subject to change).

Thttps://github.com/diffkemp/diffkemp/pull/328

46


https://github.com/diffkemp/diffkemp/pull/328

Appendix B

Header file for defining custom
patterns

This chapter contains the entire contents of the implemented header file diffkemp_patterns.h
providing macro-based interface for defining patterns in C (also available at project’s Git-
Hub repository!):

/=== diffkemp_patterns.h - interface for defining C patterns -—------ ===//
/7
// SimpLL - Program simplifier for analysis of semantic difference //
/7

// This file 4s published under Apache 2.0 license. See LICENSE for details.

// Author: Tomas Kucma, tomaskucma2@gmail.com
i ===//
V4

/77 \file

/// This file contains macros and functions used to define custom C patterns.

V4

Thts header must be included and DIFFKEMP_CPATTERN macro must be defined when
defining patterns. Both of these are done automatically by the pattern
compiler.

*
*

*

*

*

*

* To define a standard instruction pattern, first define PATTERN_NAME macro to
* the name of the pattern and PATTERN_ARGS to the list of arguments (without

* brackets). Then use PATTERN_OLD and PATTERN_NEW macros to define the old and
* new vartants of the pattern. To define mapping between the old and the new
* output variables, use MAPPING macro. Variables are mapped in the order they
* are passed to the MAPPING macro.

*
*
*
*
*
*
*

Ezample:

#define PATTERN_NAME sub
#define PATTERN_ARGS int z, int y, int z
PATTERN_OLD {

int f =z -y,

Thttps://github.com/diffkemp/diffkemp/blob/c4f8fd468642f09e¢39a12eb2f693c8c2585b8bf4 /diffkemp /-
simpll/diffkemp__patterns.h

47


https://github.com/diffkemp/diffkemp/blob/c4f8fd468642f09e39a12eb2f693c8c2585b8bf4/diffkemp/simpll/diffkemp_patterns.h
https://github.com/diffkemp/diffkemp/blob/c4f8fd468642f09e39a12eb2f693c8c2585b8bf4/diffkemp/simpll/diffkemp_patterns.h

¥ %X %X X X X X X X X X ¥ X X ¥ X ¥ ¥ X ¥ ¥ X ¥ ¥ X X ¥ X ¥ ¥ X ¥ ¥ X ¥ ¥ X ¥ ¥ X ¥ ¥ ¥ ¥ ¥ %X ¥ ¥ ¥ %X ¥ ¥ %X % ¥ %X * % *x

MAPPING (f);

}

PATTERN_NEW {
wint f =x - z;
MAPPING (f);

}

For more exzamples, see the tests/regression/custom_patterns/c/ folder.

Called function can be defined in a standard way. However, if the old and new
functions have identical names, but different signatures, use FUNCTION_OLD
and FUNCTION_NEW macros to declare and call them, to avoid mame colisions.
First macro argument is the function name, rest of the macro arguments are
the function arguments.

Ezample of a function declaration:
void FUNCTION_OLD(sub, int z, int y, int 2);

If used for a definition of a function with wvoid return type, it can be also
be used to define patterns, which is specifically useful if one wants to use
differently named arguments in each version of the pattern. However, it is
still necessary that the signatures match.

To define a pattern that ends with a resolution of a condition, use
CONDITION_PATTERN_OLD and CONDITION_PATTERN_NEW macros. The pattern should
return a boolean value, used as the condition. It is mot necessary to declare
output mapping for the condition vartable. See “condition_only.c  pattern in
the aforementioned example folder.

To define a value pattern, defining a semantic equivalence between two
values, use VALUE_PATTERN macro. First macro argument is the function
name, the second and the third are the old and the new wvalue, respectively.
When using extern global wariables, use pointer to the value instead.

Ezamples of a value pattern:
VALUE_PATTERN (value, Ob110UL << 8, Ob101UL << 7);
VALUE_PATTERN(global_value, 30, &extern_var);

Patterns defined in this way can then be used by the diffkemp tool using
standard -p flag, in the same way as the LLVM patterns. The compiled .11
pattern file will be located in the same location as the .c pattern file from
which it was compiled. It is also possible to purely compile the .c pattern
file to .11 file without performing comparison, by using the compile-pattern
sub—command.

When writting patterns for kernel, it is also necessary to provide following
definitions and includes at the very beginning of the file, before including
other kernel headers:

#define __KERNEL__

#define __BPF_TRACING _

#define __HAVE_BUILTIN_BSWAP16__

#define __HAVE_BUILTIN_BSWAP32__

#define __HAVE_BUILTIN_BSWAP6__

#include <linuz/kconfig.h>

Then, following include paths in the following order must be provided to the
compiler:

~I{linuz}t/arch/c86/include/

~I{linuz}t/arch/c86/include/generated/

~I{linuz}/include/

48



* =I{linuz}/arch/c86/include/uapt

* -I{linuz}/arch/c86/include/generated/uaps

*  ~I{linuz}/include/uapi

* =I{linuz}/include/generated/uaps

* This can be done automatically by the pattern compiler by providing the path
* to the kernel source files using --c-pattern—-kernel-path option.

*

* Patterns written in C can also be loaded from YAML file, in the same way as
* the LLVM patterns. The YAML file must contain field “patterns’ with the list
* of pattern files. Additionally, it is possible to provide extra clang options
* for each individual pattern, using field ‘clang_append”, by providing a map
* of pattern names to lists of clang options to append to them. For exzamples,
* see the tests/regression/custom_patterns/c/

*/

#ifndef DIFFKEMP_SIMPLL_DIFFKEMP_PATTERNS_H
#define DIFFKEMP_SIMPLL_DIFFKEMP_PATTERNS_H

// Internal definitions

#define __DIFFKEMP_STRINGIFY_IMPL (macro) #macro

#define __DIFFKEMP_STRINGIFY(macro) __DIFFKEMP_ STRINGIFY_IMPL (macro)
#define __DIFFKEMP_CONCAT IMPL(argl, arg2) argl##arg2

#define __DIFFKEMP_CONCAT (argl, arg2) __DIFFKEMP_CONCAT_ IMPL(argl, argZ2)

#define __DIFFKEMP_PREFIX_OLD __diffkemp_old_

#define __DIFFKEMP_PREFIX_NEW __diffkemp_new_

#define __DIFFKEMP_MAPPING_NAME __diffkemp_output_mapping

#define __DIFFKEMP CPATTERN_ INDICATOR_NAME __d<ffkemp_is_cpattern

#define __DIFFKEMP_FUNCTION (verstion, name, ...) \
__DIFFKEMP_CONCAT(__DIFFKEMP_PREFIX_ ##version, name)(__VA_ARGS__)

#1fdef DIFFKEMP_CPATTERN

int __DIFFKEMP_CPATTERN_INDICATOR_NAME = 1;

#if __STDC_VERSION__ >= 202000L

// In the C2z standard, functions declared with empty argument list nmo longer
// take any arguments, however, it %is possible to use wvariadic arguments without
// type instead.

void __DIFFKEMP_MAPPING_NAME(...);

#else

void __DIFFKEMP_MAPPING_NAMEQ) ;

#endif // __STDC_VERSION >= 202000L

#endif // DIFFKEMP_CPATTERN

// Public interface for handling patterns

/// Stringified name of a global variable, the presence of which is used to

/// detect whether a given .ll module is unpreprocessed custom C pattern.

#define CPATTERN_INDICATOR \
__DIFFKEMP_STRINGIFY(__DIFFKEMP_CPATTERN_INDICATOR_NAME)

/// String versions of naming schemes.

#define CPATTERN_OLD_PREFIX __DIFFKEMP_STRINGIFY(__DIFFKEMP_PREFIX_OLD)

#define CPATTERN_NEW_PREFIX __DIFFKEMP_STRINGIFY(__DIFFKEMP_PREFIX_NEW)

#define CPATTERN_OUTPUT_MAPPING NAME \
__DIFFKEMP_STRINGIFY(__DIFFKEMP_MAPPING_NAME)

// Public interface for defining patterns

49



#ifdef DIFFKEMP_CPATTERN

/// Used to define old/new variants of a function with tdentical name, but

/// different signature, to avoid conflicting definitions. Can be also used to
/// define patterns, if provided definition, for ezample to use different names
/// for arguments.

#define FUNCTION_OLD(name, ...) __DIFFKEMP_FUNCTION(OLD, name,
#define FUNCTION_NEW(name, ...) __DIFFKEMP_FUNCTION(NEW, name,

VA_ARGS__)
VA_ARGS__)

/// Used to define standard instruction patterns. To use, first define

/// PATTERN_NAME macro to the mame of the pattern and PATTERN_ARGS to the list
/// of arguments (without parentheses).

#define PATTERN_OLD wvo%d FUNCTION_OLD(PATTERN_NAME, PATTERN_ARGS)

#define PATTERN_NEW void FUNCTION_NEW(PATTERN_NAME, PATTERN_ARGS)

/// Used to define condition pattern. Use identically as standard pattern, only
/// the pattern should return a boolean wvalue, used as the condition.

#define CONDITION_PATTERN_OLD _Bool FUNCTION_OLD(PATTERN_NAME, PATTERN_ARGS)
#define CONDITION_PATTERN_NEW _Bool FUNCTION_NEW(PATTERN_NAME, PATTERN_ARGS)

/// Used to define value patterns. To use, simply provide the old and the new
/// value.
#define VALUE_PATTERN(name, old_value, new_value)
__typeof__(old_value) FUNCTION_OLD(name, ) { return old_value; }
__typeof__ (new_value) FUNCTION_NEW(name, ) { return new_value; }
#define MAPPING(...) __DIFFKEMP_MAPPING NAME(_ _VA_ARGS__)
#endif // DIFFKEMP_CPATTERN

#endif // DIFFKEMP_SIMPLL_DIFFKEMP_ PATTERNS_H

50



	Introduction
	Semantic Equivalence Analysis with DiffKemp
	Semantic Equivalence Analysis State of the Art
	LLVM Internal Representation
	DiffKemp Architecture

	Code Change Patterns
	Built-in Code Change Patterns
	Custom Code Change Patterns

	Design of DiffKemp extension for code change pattern encoded in C
	Proposed form of code change patterns encoded in C
	Generating code change patterns from patterns encoded in C in DiffKemp

	Implementation of DiffKemp extension for custom C patterns
	Header for pattern definition
	Pass for LLVM IR patterns generated from C
	Interface for patterns encoded in C

	Evaluation of patterns for DiffKemp written in C
	Basic C pattern tests
	Replicating existing custom LLVM IR pattern tests with C-encoded patterns

	Conclusion
	Bibliography
	Contents of the included storage media
	Header file for defining custom patterns

