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Abstrakt

Ćılem této diplomové práce je sjednotit a zobecnit známé výsledky z literatury, studovat
asymptotické chováńı kladných regulárně se měńıćıch řešeńı jisté tř́ıdy nelineárńıch
diferenciálńıch rovnic (tzv. skoro pololineárńıch diferenciálńıch rovnic) pomoćı
dostupných nástroj̊u. Tato práce zahrnuje popis teorie regulárńı variace, některé
informace o nelineárńıch diferenciálńıch rovnićıch r̊uzných typ̊u, detailńı odvozeńı
výsledk̊u týkaj́ıćıch se asymptotického chováńı řešeńı a př́ıklady aplikace źıskaných
výsledk̊u.

Abstract

The goal of the thesis is to unify and generalize known results from literature, to study
asymptotic behaviour of positive regularly varying solutions to the certain type of
non-linear differential equations (known as nearly-half-linear differential equations)
using available tools. This work includes description of theory of regular variation, some
information on non-linear differential equations of various types, detailed derivations of
results related to asymptotic behaviour of the solutions and examples of application of
obtained results.

Kĺıčová slova
nelineárńı diferenciálńı rovnice druhého řádu, regulárně se měńıćı funkce, asymptotické
chováńı
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https://www.vutbr.cz/studenti/zav-prace/detail/122390. Master’s Thesis. Vysoké učeńı
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Introduction

The concept of regular variation was first introduced in 1930 in the Jovan Karamata’s
paper [9]. Regular variation is factually a field in classical real variable theory, together
with its applications in integral transforms – complex analysis, probability theory, analytic
number theory and differential equations (see [2], [7], [8], [11], [17]). Among others, it
was applied in Tauberian theorems, giving in fact asymptotic behavior of integrals and
series, the Fourier ones in particular. The theory of regular variation has been shown as
a very useful tool in some fields of qualitative theory of differential equations of various
forms (see [11] and [14]). The most complete presentation of Karamata theory and its
generalizations as well as the majority of the applications are contained in [2].

In this work we study asymptotic behaviour of solutions to non-linear second order
differential equations of different types: half-linear, nearly-linear and in some sense
“combination” of them – nearly-half-linear. They have not been studied a lot yet, but
these types of equations are shown as an useful tool in applications, for example for
modelling of fluid mechanics problems. Exploration of behaviour of solutions is made by
means of regular variation and de Haan theory.

In the first chapter we introduce basic definitions from the Karamata theory. We
provide important theorems and show properties of regularly varying functions. We also
describe de Haan theory and present the definition and properties of a special class of
functions called Π-class.

In Chapter 2 we discuss some types of non-linear second order differential equations.
We introduce nearly-half-linear equations and explain how this type of equations is related
to half-linear and nearly-linear equations. We briefly present some known results and
applications of these equations from literature. Here we formulate our main goal: to
unify and generalize asymptotic formulae for slowly varying solutions of the nearly-half-
linear equations.

Chapter 3 deals with nearly-half-linear equations and we study behaviour of their
slowly varying solutions. We investigate existence of such solutions, discuss required
conditions for deducing the asymptotic formula for them using different approaches and
summarise obtained results. This chapter is divided to two sections where in first we
are interested in decreasing slowly varying solutions, and in the second we work with
increasing ones. We also prove other important results, such as statements related to
monotonicity of slowly varying solutions and asymptotic estimates of such solutions. Many
of those results are new or can be taken as an improvement or extension of existing results
for special cases.

Chapter 4 is devoted to presentation of a couple of examples of equations we discussed
earlier in Chapter 3. We show applications of the results obtained in the previous chapters
and other literature and discuss different modifications of such equations.

The last chapter describes possible directions of further exploration of asymptotic
behaviour of solutions to nearly-half-linear equations, specifically solutions which are not
slowly varying, asymptotic estimates for the general case of the equations and other
methods, which can be useful for resolving additional problems.
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1 Theory of Regular Variation

In this chapter we will provide main definitions, important properties and show some
examples of regularly varying functions. Further we will introduce important facts from
Karamata theory, which will play significant role in the latter chapters and will be used
for proving theorems. The main aim of this chapter is to prepare all needed information
for latter exploration of asymptotic behaviour of solutions of certain types of non-linear
differential equations.

1.1 Regular and slow variation

In its basic form the theory of regular variation studies relations such that

f(λt)

f(t)
→ g(λ) ∈ (0,∞) as t→∞ for every λ > 0.

We start with two fundamental definitions of regular variation and slow variation.

Definition 1.1. A measurable function f : [a,∞) → (0,∞) is called regularly varying
(at infinity) of index ϑ if

lim
t→∞

f(λt)

f(t)
= λϑ for every λ > 0; (1.1)

we write f ∈ RV(ϑ). The class of all regularly varying functions is denoted as

RV =
⋃
ϑ∈R

RV(ϑ).

Definition 1.2. A measurable function L : [a,∞) → (0,∞) is called slowly varying (at
infinity) if

lim
t→∞

L(λt)

L(t)
= 1; (1.2)

we write L ∈ SV .

The set of slowly varying functions is a proper subset of the set or regularly varying
functions and in fact, SV = RV(0). The condition in the definition of RV functions
mentioned above can be weakened. The limit in the Definition 1.1 is sufficient to hold
only for λ in a set of positive measure a then the regular variation follows. Moreover, if
the limit

lim
t→∞

f(λt)

f(t)
= g(λ) ∈ (0,∞)

exists for λ in a set of positive measure, then the function g is necessarily in the form
g(λ) = λϑ, where ϑ is a real number.

A slowly varying function is customarily denoted by L because of the first letter of the
French word “lentement” which means “slowly”. Using Definitions 1.1 and 1.2, it is easy
to show that f ∈ RV(ϑ), where ϑ ∈ R, if and only if it is possible to write the function
in the form

f(t) = tϑL(t), where L ∈ SV . (1.3)
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So for many purposes in the study of regular variation it is enough to explore the properties
of slowly varying functions. Let us give some examples of such functions:

L(t) =
n∏
i=1

(lni t)
µi , where lni t = ln lni−1 t and µi ∈ R,

L(t) = exp
( n∏
i=1

(lni t)
)νi
, where 0 < νi < 1,

L(t) = 2 + sin(ln2 t),

L(t) =
1

t

∫ t

a

1

ln s
ds,

L(t) = exp
(
(ln t)

1
3 cos(ln t)

1
3

)
.

Let us prove slow variation of selected functions. We start with the simplest one
L(t) = ln t, then applying l’Hospital’s rule we have:

lim
t→∞

ln(λt)

ln t
= lim

t→∞

(ln(λt))′

(ln t)′
=
λ/λt

1/t
=
t

t
= 1.

Let us add a power L(t) = (ln t)µ and we obtain again a slowly varying function by
Proposition 1.1 presented below, which says that if f ∈ RV(ϑ), then fa ∈ RV(αϑ) for
every α ∈ R. Let us consider another function L(t) = ln(ln t), then we have:

lim
t→∞

ln(ln(λt))

ln(ln t)
= lim

t→∞

(ln(ln(λt)))′

(ln(ln t))′
= lim

t→∞

t ln t

t ln(λt)
= 1.

Thus we get L(t) = ln(ln t) ∈ SV . If we take L(t) = (ln t)µ1(ln(ln t))µ2 , then using
Proposition 1.1, we can conclude that L(t) =

∏n
i=1(lni t)

µi ∈ SV .
Let us take a function L(t) = 2 + sin(ln2 t). To prove that this function is slowly

varying we will use again properties of regularly varying functions from Proposition 1.1.
We want to show that tg′(t)/g(t)→ ϑ, g ∈ C1, then g ∈ RV(ϑ) such that g(t) ∼ f(t) as
t → ∞ and so f ∈ RV(ϑ), ϑ 6= 0. If we deal with a slowly varying function, we assume
ϑ = 0. Let us prove that tL′(t)/L(t)→ 0 as t→∞. Compute

tL′(t)

L(t)
=

t cos(ln2 t)

t ln t(2 + sin(ln2 t))
→ 0

as t→∞, because a cosine/sine function is bounded and ln t→∞. Now we can conclude
that L(t) = 2 + sin(ln2 t) ∈ SV .

Let us prove slow variation of the function L(t) = 1
t

∫ t
a

1
ln s

ds. Recall that ln t ∈ SV
and use Karamata’s theorem 1.3, which will be introduced in the next section we prove
that

L(t) =
1

t

∫ t

a

1

ln s
ds ∼ t

t ln t
∈ SV .

The class RV includes a wide variety of functions. In particular, slowly varying
functions do not need to be monotone eventually. The exponential functions exp(t) or
exp(−t) are not regularly varying, but 1 + exp(−t) is slowly varying. The last example

L(t) = exp
(
(ln t)

1
3 cos(ln t)

1
3

)
provides a slowly varying function which exhibits “infinite

oscillation”, i.e. lim inft→∞ L(t) = 0, lim supt→∞ L(t) =∞.
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We have defined regular variation at infinity. Of course, this is not the only possibility.
A measurable function f : [a,∞)→ (0,∞) is called regularly varying at zero of index ϑ if

lim
t→0+

f(λt)
f(t)

= λϑ for every λ > 0 – we write f ∈ RV0(ϑ). Since regular variation of f(·) at

zero of index ϑ means in fact regular variation of f(1/t) at infinity of index −ϑ, properties
of RV0 functions can be easily deduced from theory of RV functions. Regular variation
can now be defined at any finite point by shifting the origin of the function to this point.
In the next remark we examine functions for which the limit in (1.1) attains the extreme
values.

Remark 1.1. A measurable function f : [a; 1)→ (0; 1) is called rapidly varying of index 1,
we write f ∈ RPV(1), if

lim
t→∞

f(λt)

f(t)
=

{
0 for 0 < λ < 1,

∞ for λ > 1.

and is called rapidly varying of index −∞, we write f ∈ RPV(−∞), if

lim
t→∞

f(λt)

f(t)
=

{
∞ for 0 < λ < 1,

0 for λ > 1.

The class of all rapidly varying solutions is denoted as RPV .

Let us introduce a couple of notations which will occur later in this thesis. For
eventually positive f and g we denote:

� f(t) ∼ g(t) if lim
t→∞

f(t)/g(t) = 1;

� f(t) = o(g(t)) if lim
t→∞

f(t)/g(t) = 0;

� f(t) = O(g(t)) if ∃c ∈ (0,∞) such that f(t) ≤ cg(t) for large t.

1.2 Karamata theory

In this section we will introduce basic information on Karamata theory, which will help
us during the analysis of behaviour of solutions to differential equations. The following
theorems are very important in the theory and properties obtained from them will be
useful for exploring RV functions and investigation of solutions to differential equations.
The first statement is the so-called Uniform Convergence Theorem.

Theorem 1.1. If f ∈ RV(ϑ), then the relation (1.1) (and so (1.2)) holds uniformly on
each compact λ-set in (0,∞).

The second fundamental result is the following Representation theorem. Its proof is
based on Theorem 1.1.

Theorem 1.2. (Representation theorem) A function L is slowly varying if and only if it
has the form.

L(t) = φ(t) exp
[ ∫ t

a

ψ(s)

s
ds
]
, (1.4)
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t ≥ a, for some a > 0, where φ, ψ are measurable with lim
t→∞

φ(t) = C ∈ (0,∞) and

lim
t→∞

ψ(t) = 0. A function f ∈ RV(ϑ) if and only if

f(t) = φ(t)tϑ exp
[ ∫ t

a

ψ(s)

s
ds
]
, (1.5)

t ≥ a, for some a > 0, where φ, ψ are measurable with lim
t→∞

φ(t) = C ∈ (0,∞) and

lim
t→∞

ψ(t) = 0.

Since L, φ, ψ may get changed on finite intervals, the value of a is unimportant: if
a = 0 one can take ψ ≡ 0 on a neighbourhood of 0 to avoid divergence of the integral at
the origin. The Karamata’s representation (1.4) is essentially non-unique: within limits,
one may always adjust one of φ(t), ψ(t) making a compensating adjustment to the other.
From some points of view slowly varying functions are of our interest only to within an
asymptotic equivalence. We would not lose anything by restricting attention to the case
φ(t) ≡ 0 in (1.4) or (1.5). The following definition is appropriate to this case.

Definition 1.3. The regularly varying function of index ϑ

f(t) = Ctϑ exp
[ ∫ t

a

ψ(s)

s
ds
]
, (1.6)

lim
t→∞

ψ(t) = 0, C ∈ (0,∞), is called normalized. We write f ∈ NRV(ϑ). The set of

normalized slowly varying functions, i.e., NRV(0), is denoted as NSV .

If f is a C1 function and lim
t→∞

tf ′(t)/f(t) = ϑ, then f ∈ NRV(ϑ). Conversely, if

f ∈ NRV(ϑ) ∩ C1, then lim
t→∞

tf ′(t)/f(t) = ϑ.

The following results will be useful in applications to the theory of differential
equations. This theorem is also called Karamata’s theorem and will be used for proving
formulae for asymptotic solutions of different types to differential equations. The proof
of the theorem is provided in [2].

Theorem 1.3. (Karamata’s theorem) If L ∈ SV, then∫ ∞
t

sϑL(s)ds ∼ 1

−ϑ− 1
tϑ+1L(t) provided ϑ < −1, (1.7)∫ t

a

sϑL(s)ds ∼ 1

ϑ+ 1
tϑ+1L(t) provided ϑ > −1. (1.8)

at t → ∞. Moreover, if
∫∞
a
L(s)/sds converges, then L̃ =

∫∞
t
L(s)/sds is a SV

function; if
∫∞
a
L(s)/sds diverges, then L̃ =

∫ t
a
L(s)/sds is a SV function. In both cases

L(t)/L̃(t)→ 0 as t→∞.

Let us provide some properties of regularly varying functions. More details on these
proofs can be found in monographs [2], [7] and [17].

Proposition 1.1.

� If f ∈ RV(ϑ), then ln f(t)/ ln t → ϑ as t → ∞. It then implies that lim
t→∞

f(t) = 0

provided ϑ < 0 and lim
t→∞

f(t) =∞ provided ϑ > 0;

14



� If f ∈ RV(ϑ), then fa ∈ RV(αϑ) for every α ∈ R;

� If fi ∈ RV(ϑi), i = 1, 2, f2(t)→∞ as t→∞, then f1 ◦ f2 ∈ RV(ϑ1ϑ2);

� If fi ∈ RV(ϑi), i = 1, 2, then f1 + f2 ∈ RV(max{ϑ1, ϑ2});

� If fi ∈ RV(ϑi), i = 1, 2, then f1f2 ∈ RV(ϑ1 + ϑ2);

� If f1, . . . , fn ∈ RV , n ∈ N and R(x1, . . . , xn) is a rational function with non-
negative coefficients, then R(f1, . . . , fn) ∈ RV;

� If L ∈ SV and ϑ > 0, then tϑL(t)→∞, t−ϑL(t)→ 0 as t→∞;

� If f ∈ RV(ϑ), ϑ 6= 0, then there exists g ∈ C1 with g(t) ∼ f(t) as t → ∞ and
such that tg′(t)/g(t)→ ϑ, hence g ∈ NRV(ϑ). Moreover, g can be taken such that
|g′| ∈ NRV(ϑ− 1);

� If |f ′| ∈ RV(ϑ), ϑ 6= −1 with f ′ being eventually of one sign, then f ∈ NRV(ϑ+1);

� Let g ∈ RV0(ϑ) with ϑ > 0 be increasing in a right neighbourhood of zero. Then
g−1 ∈ RV0(1/ϑ), where g−1 stands for the inverse of g.

1.3 De Haan theory

De Haan theory can be understood as a refinement of Karamata theory. The theory was
studied by de Haan in his thesis of 1970 [8].

Definition 1.4. A measurable function f ∈ [a,∞)→ R is said to belong to the class Π
if there exists a function ω : (0,∞)→ (0,∞) such that for λ > 0

lim
t→∞

f(λt)− f(t)

ω(t)
= lnλ; (1.9)

we write f ∈ Π or f ∈ Π(ω). The function w is called an auxiliary function for f .

Let us give some examples of functions belonging to the class Π. The functions f
defined by

f(t) = ln t+ o(1),

f(t) = (ln t)α(ln2 t)
β + o((ln t)α−1), α > 0, β ∈ R,

f(t) = exp((ln t)γ) + o((ln t)γ−1) exp((ln t)γ), 0 < γ < 1,

are in Π. For example, the function f(t) = 2 ln t+ sin(ln t) is in SV but not in Π.
Now we will show selected properties of functions in the class Π. The proves of them

are presented in [7] and [2].

Proposition 1.2.

� If 0 < c < d <∞ relation (1.9) holds uniformly for λ ∈ [c, d];

� Auxiliary function is unique up to asymptotic equivalence;

15



� The statements f ∈ Π and there exists L ∈ SV such that

f(t) = L(t) +

∫ t

a

L(s)

s
ds (1.10)

are equivalent;

� If f satisfies (1.10), then f ∈ Π(L) and

L(t) ∼ f(t)− 1

t

∫ t

a

f(s)ds (1.11)

as t→∞. If f ∈ Π(L) is integrable on finite intervals of (0,∞), then (1.11) holds;

� If f ∈ Π, then lim
t→∞

f(t) =: f(∞) ≤ ∞ exists. If the limit is infinite, then f ∈ SV.

If the limit is finite, then f(∞)− f(t) ∈ SV.

Let us prove one more proposition, which is very useful and will be used in the next
chapters.

Proposition 1.3. If f ′ ∈ RV(−1), then f ∈ Π(tf ′(t)).

Proof. We have f ′ ∈ RV(−1). Let us check if (1.9) is satisfied for w(t) = tf ′(t).
Integrating by substitution u = st, for every λ > 0 and using Uniform Convergence
Theorem 1.1 we obtain

f(λt)− f(t)

tf ′(t)
=

∫ λt

t

f ′(u)

tf ′(t)
du =

∫ λ

1

f ′(st)

f ′(t)
ds→

∫ λ

1

1

s
ds = lnλ, (1.12)

as t→∞.

Let us prove that the functions presented above before are indeed in the class Π. The
proof that the first function f(t) = ln t+ o(1) belongs to the class Π is easy. Indeed, if we
take w(t) = tf ′(t) = t · 1/t, then

ln(λt)− ln t

t · 1/t
= ln(λt)− ln t = ln

(λt
t

)
→ lnλ

as t → ∞. We continue with a function f(t) = (ln t)2. Let us use Proposition 1.3 and
recall that ln t ∈ SV . Compute:

f ′(t) =
2 ln t

t
∈ RV(−1)

by Proposition 1.1, thus f(t) = (ln t)2 ∈ Π(2 ln t). In the next step we will prove that
f(t) = (ln t)(ln(ln t)) belongs to the class Π. Let us use again Proposition 1.3 and the
fact that f(t) = (ln t)(ln(ln t)) ∈ SV . Compute a derivative of f :

f ′(t) =
ln(ln t)

t
+

1

t
∈ RV(−1)

by Proposition 1.1, so due to the property we mentioned before we are able to conclude
that f ∈ Π(ln(ln t) + 1).
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Let us generalize this result for general powers. Take a function
f(t) = (ln t)α(ln(ln t))β. We will follow the same argumentation, so let us compute f ′:

f ′ =
β(ln(t))α−1(ln(ln t))β−1

t
+
α(ln(t))α−1(ln(ln t))β

t
∈ RV(−1),

and from this fact we conclude that

f ∈ Π(β(ln(t))α−1(ln(ln t))β−1 + β(ln(t))α−1(ln(ln t))β−1).

Remark 1.2. In [8] by de Haan was introduced and studied another class called Γ, which
can be understood as an “inverse” of the class Π. This class is also useful for solving
differential equations. A non-decreasing function f : R→ (0,∞) is said to belong to the
class Γ if there exists a function v : (0,∞)→ (0,∞) such that for all λ ∈ R

lim
t→∞

f(λt) + λv(t)

f(t)
= eλ;

we write f ∈ Γ or f ∈ Γ(v).
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2 Non-Linear Second Order Differential Equations

In the last decades a great attention has been paid to the differential equations with
p-Laplacian. Let us recall that the p-Laplacian is a partial differential operator of the
form:

∆pu := div (||∇u||p−2∇u),

where for u = u(x) = u(x1, . . . , xN)

∇u =
( ∂

∂x1

, . . . ,
∂

∂xN

)
is the Hamilton nabla operator and for v(x) = (v1(x), . . . , vN(x))

div v(x) =
N∑
i=1

∂v

∂xi
(x)

is the usual divergence operator. If u is a radially symmetric function, i.e. u(x) = y(t),
t = ||x||, || · || being the Euclidean norm in RN , the (partial) differential operator ∆p can
be reduced to the ordinary differential operator

∆pu(x) = t1−N
(
tN−1Φ(y′(t))

)′
, ′ =

d

dt
,

where Φ(u) := |u|p−1sgnu, p > 1. The p-Laplacian operator is useful for studying and
modelling of the flow of a liquid through a porous medium, that was one of the problems
which big cities were dealing with in the 18th century. It was found as a useful tool for
the the Darcy’s law for the turbulent flow, so the velocity of the flow is higher and/or the
aquifer is more coarse-grained. Also, p-Laplacian is useful for exploration of the de Prony’s
law for small velocities. More information to this topic can be found in [1]. One of the
important prototypes of equations with p-Laplacian is a quasilinear differential equation
in the form: (

r(t)Φα(u′)
)′

= p(t)Φλ(u), (2.1)

where Φγ(w) := |w|γ−1sgnw, γ > 1. If we take different α and λ, then this class of
equations contains also Emden-Fowler equations. Equations and systems of Emden-Fowler
type are investigated in the framework of regular variation e.g. in [5] and [10]. On the
other hand, if α = λ, then we get half-linear equations. Even though we are dealing
with non-linear equations, on the contrary to (2.1) with different indices α and λ, the
half-linear equations in lots of aspects are closer to the linear case and methods used for
solving them are different from ones used for (2.1), α 6= λ. In case of α = λ = 2, then
(2.1) reduces to the linear equation.

Non-linearity does not need to be purely in the form of power functions, but it can
have a perturbation in the form of a slowly varying function, which enables us to include a
wider set of equations. Half-linear equations can be naturally generalized by substituting
Φα(·) with continuous functions F (| · |) and G(| · |) such that F (u) = |u|α−1sgn(u)LF (|u|),
where LF ∈ SV or LF ∈ SV0 and similarly G such that G(u) = |u|α−1sgn(u)LG(|u|),
where LG ∈ SV or LG ∈ SV0. The we obtain a differential equation in the form:(

r(t)G(y′(t))
)′

= p(t)F (y(t)), (2.2)
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where p and r are positive continuous functions on [a,∞) and F (| · |) and G(| · |) are
continuous functions which are regularly varying (at infinity or at zero) of index α − 1,
where α > 1 and Φα(u) = |u|α−1sgn(u). To simplify our considerations we suppose that
F and G are increasing and odd functions. We use the convention that a slowly varying
component of f ∈ RV(ϑ) denoted as Lf ∈ RV is represented in the form Lf = t−ϑf(t).
Examples of functions F (u) and G(u) such that the equation is non-linear and can be

explored within the theory are Φα(u)| ln |u||, Φα(u)/| ln |u|| or Φα(u)√
1±u2 and many others.

For α = 2 the function u√
1+u2

is called the Euclidean mean curvature operator and arises
in the search for radial solutions of partial differential equations which model fluid
mechanics problems, in particular capillarity-type phenomena for compressible and
incompressible fluids. On the other hand, u√

1−u2 is called Minkowski mean curvature

operator (or relativity operator) and it is used for studying properties of the mean
curvature of hyper-surfaces in the relativity theory.

We call the equation (2.2) “nearly-half-linear”, because they can be understood as a
combination or unification of two other types of differential equations: half-linear
equation (2.3) and nearly-linear equation (2.6), which we will discuss later in the
chapter where we will recall important properties of such equations and will present
asymptotic formulae for positive solutions.

We define β = α
α−1

is a conjugate number of α. For function p we will be using index δ
so if p is regularly varying then we write p ∈ RV(δ). This index will play significant role
in the future analysis of solutions of nearly-half-linear equations, because this index will
influences character of slowly varying solutions of (2.2).

The space of solutions of (2.2) is neither homogeneous nor additive. Without loss of
generality, we work only with positive solutions, i.e. with the set

PS = {y : y(t) is a positive solution of (2.2) for large t}.

Because of the sign condition on the coefficients, all positive solution PS of (2.2) are
eventually monotone, therefore they belong to one of the following disjoint classes of
decreasing and increasing solutions:

IS = {y ∈ PS : y′(t) > 0 for large t};

DS = {y ∈ PS : y′(t) < 0 for large t}.
These classes can be further divided to the disjoint subclasses:

IS∞ = {y ∈ IS : lim
t→∞

y(t) =∞};

ISB = {y ∈ IS : lim
t→∞

y(t) = l ∈ R};

DSB = {y ∈ DS : lim
t→∞

y(t) = l > 0};

DS0 = {y ∈ DS : lim
t→∞

y(t) = 0}.

As far as we know nearly-half-linear equations have almost not been studied in the
literature. Our main goal is to obtain results, which will generalize known results and using
available tools to show similarities of the nearly-half-linear type of equations compared to
the half-linear and nearly-linear differential equations. Among others, we will generalize
and unify Theorem 2.1 and Theorem 2.2 presented below. Furthermore, we will prove
other types of results, which can also be shown as new: nearly-linear equation with
general r, increasing solutions in case of nearly-linear equations and other properties of
decreasing and increasing solutions of such equations.
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2.1 Half-linear differential equations

We consider the equation (
r(t)Φα(y′(t))

)′
= p(t)Φα(y(t)), (2.3)

where p and r are positive continuous functions on [a,∞) and Φα(u) = |u|α−1sgn(u) with
α > 1. This equation is non-oscillatory or in other words all its non-trivial solutions
are eventually of constant sign, what explained in [4]. The terminology ”half-linear”
differential equation reflects the fact that the solution space of (2.3) is homogeneous, but
not additive, what is the basic difference between linear and half-linear equations.

Further we will show one illustrative result on positive solutions of half-linear
equations. The next theorem provides an asymptotic formula for decreasing solutions of
a half-linear differential equation.

Theorem 2.1. (Theorem 5 in [16]) Let p ∈ RV(δ) and r ∈ RV(δ + α) with δ < −1.

Assume Lp(t)

Lr(t)
→ 0 as t → ∞, then DS ⊂ SV. If y ∈ DS ∩ SV, then y ∈ Π(−ty′(t)).

Moreover, for every y ∈ DS,

� if
∫∞
a

( sp(s)
r(s)

)
1

α−1 ds =∞, then there exists ε(t) with ε(t)→ 0 as t→∞ such that

y(t) = exp
{
−
∫ t

a

(
1 + ε(s)

)[
− sp(s)

(δ + 1)r(s)

] 1
α−1

ds
}

(2.4)

and y(t)→ 0 as t→∞;

� if
∫∞
a

( sp(s)
r(s)

)
1

α−1 ds <∞, then there exists ε(t) with ε(t)→ 0 as t→∞ such that

y(t) = l exp
{∫ ∞

t

(
1 + ε(s)

)[
− sp(s)

(δ + 1)r(s)

] 1
α−1

ds
}

(2.5)

and y(t)→ l ∈ (0,∞) as t→∞.

2.2 Nearly-linear differential equations

We consider the equation

(G(y′(t))′ = p(t)F (y(t)), (2.6)

where p is positive (at infinity or at zero) continuous functions on [a,∞) and F (| · |)
and G(| · |) are continuous functions on R which are regularly varying (at infinity or at
zero) of index one with uF (u) > 0 and uG(u) > 0 for u 6= 0. This condition justifies
the terminology a nearly linear equation. If we make the trivial choice of the functions
F = G = id, then (2.6) reduces to a linear equation.

We know, that the solution space of (2.3) is neither homogeneous nor additive, but
we still are allowed to use the same methods of exploration as for the linear case. In
the following theorem we will show a general form of a decreasing solution of a nearly-
linear differential equation. The proof of the theorem and following remarks are in [14].
Conditions for existence of decreasing solutions and DS ⊂ NSV are

lim
t→∞

t

∫ ∞
t

p(s)ds = 0, lim sup
u→0+

LF (u) <∞, lim inf
u→0+

LG(u) > 0.
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Before we get to the asymptotic formula for solutions we have to introduce function F̂ in
the way:

F̂ (x) =

∫ x

1

du

F (u)
, x > 0.

The constant 1 in the integral can be replaced by any positive constant. Also we denote
F̂−1 as the inverse function.

Theorem 2.2. (Theorem 2 in [15]) Let p ∈ RV(−2) and limu→0+ |F̂ (u)| = ∞. Assume
that LG(ug(u)) ∼ LG(u) as u→ 0+ for all g ∈ SV0. If y ∈ DS∩SV, then y ∈ Π(−ty′(t)).
Moreover, for every y ∈ DS,

� if
∫∞
a

( sp(s)
LG(1/s)

)ds =∞, then there exists ε(t) with ε(t)→ 0 as t→∞ such that

y(t) = F̂−1
{
−
∫ t

a

(
1 + ε(s)

) sp(s)

LG(1/s)
ds
}

(2.7)

and y(t)→ 0 as t→∞;

� if
∫∞
a

( sp(s)
LG(1/s)

)ds <∞, then there exists ε(t) with ε(t)→ 0 as t→∞ such that

y(t) = F̂−1
{
F̂
(
y(∞)

)
+

∫ ∞
t

(
1 + ε(s)

) sp(s)

LG(1/s)
ds
}

(2.8)

and y(t)→ y(∞) ∈ (0,∞) as t→∞.

21



3 Asymptotic Behaviour of Solutions to Nearly-Half-

Linear Equations

In this chapter we will study asymptotic behaviour of positive solutions of nearly-half-
linear differential equations, in particular positive slowly varying solutions. First we will
describe the relation between the indices of regular variation of functions p and r. We will
divide the results to two groups depending on the indices of regular variation of functions
p and r. As we mentioned in the previous chapter, asymptotic behaviour of solutions is
affected by the index of regular variation of p, so we will work with these cases separately.
We will show different approaches to proving an asymptotic formula for solutions to such
equations. Some of these results are new even in the special cases and some of them
generalize already known results.

3.1 Decreasing slowly varying solutions

In this section we will be dealing with a nearly-half-linear equation and assume that the
function p(t) is regularly varying with index δ < −1. At the beginning we will explore
existence of slowly varying solutions. Then we will provide an asymptotic formula for
solutions to nearly-half-linear equations. Further we will show a couple of special cases
for certain functions p, r and LF or LG. At the end of this subsection we will briefly
discuss possibility of an asymptotic estimate of the solution and restrictions which are
required for proving such statement.

The following theorem proves non-emptiness of the set of positive decreasing solutions.
Moreover, we will show that all of such solutions are normalized and slowly varying.

Theorem 3.1. Consider the equation (2.2). Assume that∫ ∞
a

p(s)ds <∞, (3.1)

lim
t→∞

tα−1

r(t)

∫ ∞
t

p(s)ds = 0, (3.2)

lim sup
u→0+

LF (u) <∞, (3.3)

∫ ∞
a

G−1
( M

r(s)

)
ds =∞ for some M ∈ (0,∞) (3.4)

and lim inf
u→0+

LG(u) > 0. (3.5)

Then ∅ 6= DS ⊂ NSV.

Proof. Firstly, we rewrite the equation (2.2) as an equivalent system of two equations

y′ = −G−1
( u

r(t)

)
, u′ = −p(t)F (y),
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where G−1 is the inverse of function G. For this system we apply the existence theorem
from [3], which requires −G−1(u/r(t)) ≤ 0 and −p(t)F (y) ≤ 0 for y > 0 and u > 0. Both
of the conditions are satisfied, so we can conclude that DS 6= ∅.

Take y ∈ DS so y(t) > 0, y′(t) < 0 for large t, say t ≥ a. Then from (2.2) r(t)G(y′(t))
is negative increasing for t ≥ a. Then there exists the limit

lim
t→∞
−r(t)G(−y′(t)) = −M ∈ (−∞, 0].

If−M < 0, then−r(t)G(−y′(t)) ≤ −M for large t because of the fact that−r(t)G(−y′(t))
is increasing. Thus

G(y′(t)) ≤ − M

r(t)
.

Now use inverse function G−1 and we obtain

y′(t) ≤ −G−1
( M
r(t)

)
.

Integrating the inequality from a to t we have

y(t) ≤ y(a)−
∫ t

a

G−1
( M

r(s)

)
ds→ −∞

as t→∞ due to (3.4), what contradicts with the fact that we are working with positive
solutions. It means that we can conclude M = 0.

Now integrate the equation (2.2) from t to ∞ and obtain

−r(t)G(y′(t)) =

∫ ∞
t

p(s)F (y(s))ds. (3.6)

Using the definition of functions G and F , recalling that we care only of positive solutions
and from the fact that y ∈ DS we get

r(t)(−y′(t))α−1LG(|y′(t)|) =

∫ ∞
t

p(s)(y(s))α−1LF (y(s))ds

≤ (y(t))α−1

∫ ∞
t

p(s)LF (y(s))ds.

Divide this inequality by (y(t))α−1 and multiply by tα−1. Thus,(
− ty′(t)

y(t)

)α−1

≤ tα−1LF (y(t))

LG(|y′(t)|)r(t)

∫ ∞
t

p(s)ds ≤ tα−1K

r(t)

∫ ∞
t

p(s)ds (3.7)

for large t, where K ∈ (0,∞) is some constant reasoned by the conditions (3.3) and (3.5)
such that K = P/N , where P ≥ LF (y(t)) and 1/N ≥ 1/LG(|y′(t)|) for large t. Since
the right-hand side of the relation (3.7) tends to zero thanks to (3.2), we obtain that
−ty′(t)
y(t)

→ 0 as t→∞. From this fact y ∈ NSV follows.

For establishing asymptotic formula we will assume that both of the functions p and
r are regularly varying. It would be natural for us to assume these functions with general
indices p ∈ RV(δ) and r ∈ RV(γ). In the next remark we will show that when we work
with SV solutions it is in fact necessary to have certain relation between the indices of
regular variation of these functions.
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Remark 3.1. Assume that p ∈ RV(δ), r ∈ RV(γ) and y ∈ DS0 ∩ SV of (2.2). Then
recalling the definition of F and with the help of properties from Proposition 1.1 we have(

r(t)G(y′(t))
)′

= p(t)F (y(t)) ∈ RV(δ).

Integrate (2.2) from t to ∞ and we get the relation (3.6). We know that y′(t) < 0 for
t ≥ a, then we can rewrite the functions F and G as

−r(t)(y′(t))α−1LG(|y′(t)|) =

∫ ∞
t

p(s)(y(s))α−1LF (y(s))ds ∈ RV(δ + 1),

using properties of RV from Proposition 1.1 and Karamata’s theorem 1.3, and so we get
(y′(t))α−1 ∈ RV(δ + 1 − γ), because r ∈ RV(γ) and LG ∈ SV , which implies that
y′(t) ∈ RV

(
δ+1−γ
α−1

)
. If δ+1−γ

α−1
6= −1 we can easily prove that y(t) ∈ RV

(
δ+1−γ
α−1

+ 1
)

using the Karamata’s theorem 1.3. Therefore, since y ∈ SV , i.e. y ∈ RV(0), we obtain
δ+1−γ
α−1

+1 = 0 and it is a contradiction with the assumption δ+1−γ
α−1

6= −1. Thus δ+1−γ
α−1

= −1,
so we get γ = δ + α.

In the following remark we will show how the conditions guaranteeing slow variation
of any decreasing solution in Theorem 3.1 can be rewritten in the case when functions
p ∈ RV(δ) and r ∈ RV(δ + α) with δ < −1.

Remark 3.2. Assume p ∈ RV(δ) and r ∈ RV(δ+α), where δ < −1. Then by Karamata’s
theorem 1.3 we get

∫∞
a
p(s)ds <∞.

If G ∈ RV0(α − 1), then G−1 ∈ RV0

(
1

α−1

)
. Applying Proposition 1.1 we obtain

G−1(1/r(s)) ∈ RV((−δ − α)(1/(α− 1))) = RV((δ + α)(1− β)) and so we get∫ ∞
a

G−1
( M

r(s)

)
ds =

∫ ∞
a

r1−β(s) · h(s)ds,

where h ∈ SV . In fact,
∫∞
a
r1−β(s)ds =∞, which follows from

(1− β)(δ + α) = (1− β)(δ + 1 + α− 1) = (1− β)(δ + 1)− 1

with δ < −1, so (1− β)(δ + α) > −1 and Karamata’s theorem 1.3.
Take the right-hand side of (3.7) and apply Karamata’s theorem 1.3:

tα−1K

r(t)

∫ ∞
t

p(s)ds ∼ tα−1K

tδ+αLr(t)
· 1

−δ − 1
tδ+1Lp(t) =

Lp(t)

Lr(t)
· 1

−δ − 1
. (3.8)

Thus,
tα−1

r(t)

∫ ∞
t

p(s)ds ∼ Lp(t)

Lr(t)
.

In the following proposition we will prove that the condition (3.2) is necessary for
existing of NSV solutions.

Proposition 3.1. Assume that r ∈ RV(δ+α) where δ < −1, lim infu→0+ LF (u) > 0 and
lim supu→0+ LG(u) < ∞. The condition (3.2) is necessary for existence of a decreasing
normalized slowly varying solution.

24



Proof. In fact, we will prove that if there exists such y ∈ DS∩NSV , then (3.2) is satisfied.
Later we will show that SV solutions necessarily decrease.

Let y ∈ PS. Consider

w(t) =
r(t)G(y′(t))

Φ(y(t))

and w(t) satisfies the generalized Riccati type equation in the form:

w′ − pF (y)

Φ(y)
+ (α− 1)|w|β

(
rLG(y′)

)1−β
= 0. (3.9)

The derivative of w:

w′ =
(rG(y′))′Φ(y)− rG(y′)(Φ(y))′

Φ2(y)
=

(rG(y′))′

Φ(y)
− (α− 1)rG(y′)|y|α−2y′

|y|2α−2(sgn(y))2

=
pF (y)

Φ(y)
− (α− 1)rβr1−β|y′|α(LG(|y′|))β(LG(|y′|))1−β

|y|α

= p
F (y)

Φ(y)
− (α− 1)|w|β

(
rLG(|y′|)

)1−β
.

Notice, that the Riccati equation (3.9) is dependent not only on the function w, but
also on the function y, because of the general form of non-linear functions LF and LG.
Remember that we work only with positive solutions y, so instead of working with the
function Φ(y) = |y|α−1sgn(y) we continue to work with the function yα−1. There exists a
constant N ∈ (0,∞) because of the boundedness condition on LG such that

0 < −t
α−1

r(t)
w(t) = −t

α−1G(y′(t))

(y(t))α−1
≤ −N

(ty′(t)
y(t)

)α−1

→ 0 (3.10)

as t→∞, because y ∈ NSV .
Integrate (3.9) from t to ∞ and multiply by tα−1

r(t)
, so we obtain:

−t
α−1

r(t)
w(t) =

tα−1

r(t)

∫ ∞
t

p(s)LF (y(s))ds− (α− 1)
tα−1

r(t)

∫ ∞
t

|w(s)|β
(
r(s)LG(|y′(s)|)

)1−β
ds.

(3.11)

The left-hand side of the equation (3.11) tends to zero due to the observation in (3.10).
Let us work with the second term on the right side of the equation and find a limit using
l’Hospital’s rule:

lim
t→∞

tα−1

r(t)

∫ ∞
t

|w(s)|β
(
r(s)LG(|y′(s)|)

)1−β
ds = lim

t→∞

|w(t)|β
(
r(t)LG(|y′(t)|)

)1−β

r′(t)t1−α + (1− α)r(t)t−α

= lim
t→∞

(y′(t))αLG(|y′(t)|)
(y(t))α(r′(t)/r(t)t1−α + (1− α)t−α)

= lim
t→∞

tα(y′(t))αLG(|y′(t)|)
(y(t))α(tr′(t)/r(t) + (1− α))

=
0 ·M

−δ − α + α− 1
= 0,

25



where M ∈ (0,∞) is a constant, which follows from lim supu→u0 LG(u) <∞. From (3.11)
we get the limit

lim
t→∞

tα−1

r(t)

∫ ∞
t

p(s)LF (y(s))ds = 0,

and if we define K ∈ (0,∞) such that LF (y(t)) ≥ K for large t due to the assumptions
above, then we get the condition

lim
t→∞

tα−1

r(t)

∫ ∞
t

p(s)ds = 0.

If, in addition p ∈ RV(δ), then the necessary condition is Lp(t)/Lr(t)→ 0 as t→∞ as
we showed it earlier. A closer and more detailed examination of the proofs actually shows
that the condition r ∈ RV(δ+α) can also be relaxed to the existence of ri ∈ RV(δi +α),
i = 1, 2, with r1(t) ≤ r(t) ≤ r2(t) for large t, and δ1, δ2 < −1.

Further we will show that slowly varying solutions necessarily decrease. The proof is
made by contradiction.

Proposition 3.2. Assume p ∈ RV(δ), r ∈ RV(δ + α), with δ < −1 and y ∈ PS ∩ SV,
then y ∈ DS.

Proof. Take y ∈ IS ∩ SV . Since y is positive, then r(t)G(y′(t)) is positive increasing.
Hence, there exists some positive constant M such that r(t)(y′(t))α−1LG(y′(t)) ≥M for t
sufficient large. Dividing by r(t) and raising by 1

α−1
, it follows that

y′(t) ≥
( M

r(t)LG(y′(t))

) 1
α−1

,

which after integration both of the sides from a to t implies

y(t) ≥ y(a) +M
1

α−1

∫ t

a

( 1

r(s)LG(y′(s))

) 1
α−1

ds. (3.12)

Since r ∈ RV(δ + α) and LG ∈ SV , it holds( 1

r(t)LG(y′(t))

) 1
α−1 ∈ RV

(−δ − α
α− 1

)
.

From hypothesis δ < −1 we can conclude that −δ − α > 1− α, so −δ−α
α−1

> −1. Applying
Karamata’s theorem 1.3 and Proposition 1.1 we then obtain that∫ t

a

( 1

r(s)LG(y′(s))

) 1
α−1

ds ∈ RV
(−δ − α
α− 1

+ 1
)

= RV
(−δ − 1

α− 1

)
.

Since δ < −1, it follows that −δ−1
α−1

> 0, therefore (3.12) implies that y is greater than or

equal to a regular varying function with positive index
(
−δ−1
α−1

)
and therefore cannot be

slowly varying, what is a contradiction.
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Remark 3.3. In the previous proposition we proved that slowly varying solutions are
necessarily decreasing and in Theorem 3.1 we showed that any decreasing solution is
normalized slowly varying. Notice, that from these two facts it is clear that

PS ∩ NSV = DS.

Before we prove the following theorem we need to define a function F̂ such that

F̂ (x) =

∫ x

1

du

(F (u))
1

α−1

, x > 0. (3.13)

The constant 1 in the integral can be replaced by any positive constant. Denote the
inverse of F̂ (x) by F̂−1(x). We have |F̂ | ∈ SV0 and in general lim

u→0+
|F̂ (u)| can be finite

or infinite. Slow variation of |F̂ | follows from the fact that F ∈ RV0(α − 1), which

implies F
1

α−1 ∈ RV0(1) due to Proposition 1.1. Applying Karamata’s theorem 1.3 to

1/F
1

α−1 ∈ RV0(−1) we obtain ∣∣∣ ∫ x

a

1

(F (u))
1

α−1

du
∣∣∣ ∈ SV0

Now we are ready to derive an asymptotic formula for a solution of the nearly-half-
linear differential equation (2.2), what we will do in the following theorem. Assumption
of r ∈ RV(δ + α) thanks to Remark 3.1 is not restrictive, but natural.

Theorem 3.2. Let p ∈ RV(δ) and r ∈ RV(δ+α) with δ < −1. Assume lim
u→0+

|F̂ (u)| =∞
and LG(ug(u)) ∼ LG(u) as u → 0+ for all g ∈ SV0. If y ∈ DS ∩ NSV to (2.2), then
−y(t) ∈ Π(−ty′(t)). Moreover, for every y ∈ DS ∩NSV,

� if ∫ ∞
a

( sp(s)

r(s)LG(1/s)

) 1
α−1

ds =∞,

then there exists ε(t) with ε(t)→ 0 as t→∞ such that

y(t) = F̂−1
{
−
∫ t

a

(
1 + ε(s)

)[
− sp(s)

(δ + 1)r(s)LG(1/s)

] 1
α−1

ds
}

(3.14)

and y(t)→ 0 as t→∞;

� if ∫ ∞
a

( sp(s)

r(s)LG(1/s)

) 1
α−1

ds <∞,

then there exists ε(t) with ε(t)→ 0 as t→∞ such that

y(t) = F̂−1
{
F̂
(
y(∞)

)
+

∫ ∞
t

(
1 + ε(s)

)[
− sp(s)

(δ + 1)r(s)LG(1/s)

] 1
α−1

ds
}

(3.15)

and y(t)→ y(∞) ∈ (0,∞) as t→∞.
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Moreover, |y(∞)− y(t)| ∈ SV and

Lβ−1
p (t)Lβ−1

F (y(t))

Lβ−1
r (t)Lβ−1

G (1/t)(y(∞)− y(t))
= o(1) (3.16)

as t→∞.

Proof. Take y ∈ DS ∩NSV and let a be such that y(t) > 0 and y′(t) < 0 for t ≥ a. Then
we claim that (

r(t)G(y′(t))
)′

= p(t)F (y(t)) ∈ RV(δ), (3.17)

provided by y(t) → 0 as t → ∞ by Proposition 1.1. If y(t) → C ∈ (0,∞), then the
conclusion is the same since F (y(t)) → F (C) ∈ (0,∞) and so p(t)F (y(t)) ∈ RV(δ).
Thus,

r(t)G(−y′(t)) =

∫ ∞
t

(
r(s)G(−y′(s))

)′
ds ∈ RV(δ + 1), (3.18)

what follows from the property of regularly varying functions from Proposition 1.1 and
Karamata’s theorem 1.3. Since r ∈ RV(δ+α) we conclude that G(−y′(t)) ∈ RV0(1−α)
by Proposition 1.1. From the definition of the inverse function G−1 it is clear that we can
write −y′(t) = G−1

(
G(−y′(t))

)
, so we get −y′(t) ∈ RV0(−1). By Proposition 1.3 we are

able to conclude that −y(t) ∈ Π(−ty′(t)). Set the function

h(t) = −t−δ−1r(t)G(−y′(t))− (δ + 1)

∫ t

a

s−δ−2r(s)G(−y′(s))ds.

We will show that h ∈ Π(−ty′(t)) and also h ∈ Π(−(δ + 1)t−δ−1r(t)G(−y′(t))), what
will help us to get an asymptotic solution in the next few steps. Let us recall that
F (y(t)) ∈ SV , what follows from Proposition 1.1. Compute the derivative of h:

h′(t) = −(−δ − 1)t−δ−2r(t)G(−y′(t)) + t−δ−1p(t)F (y(t)) + (−δ − 1)t−δ−2r(t)G(−y′(t))
= t−δ−1p(t)F (y(t)) ∈ RV(−δ − 1 + δ + 0).

Thus h′(t) ∈ RV(−1) and using Proposition 1.3 we conclude that h ∈ Π(th′(t)). Moreover,
fix λ > 0 and let us prove that the function h belongs to the class Π using again the same
proposition, so we get

h(λt)− h(t)

−(δ + 1)t−δ−1r(t)G(−y′(t))
= − λ

−δ−1t−δ−1r(λt)G(−y′(λt))
−(δ + 1)t−δ−1r(t)G(−y′(t))

+
t−δ−1r(t)G(−y′(t))

−(δ + 1)t−δ−1r(t)G(−y′(t))
−

(δ + 1)
∫ λt
a
s−δ−2r(s)G(−y′(s))ds

−(δ + 1)t−δ−1r(t)G(−y′(t))

+
(δ + 1)

∫ t
a
s−δ−2r(s)G(−y′(s))ds

−(δ + 1)t−δ−1r(t)G(−y′(t))
= − λ

−δ−1t−δ−1r(λt)G(−y′(λt))
−(δ + 1)t−δ−1r(t)G(−y′(t))

+
t−δ−1r(t)G(−y′(t))

−(δ + 1)t−δ−1r(t)G(−y′(t))
−

(δ + 1)
∫ λt
t
s−δ−2r(s)G(−y′(s))ds

−(δ + 1)t−δ−1r(t)G(−y′(t))
.
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Substitute s = tu in the integral in the last term. Thus, ds = tdu and

h(λt)− h(t)

−(δ + 1)t−δ−1r(t)G(−y′(t))
=− λ−δ−1r(λt)G(−y′(λt))

−(δ + 1)r(t)G(−y′(t))
− 1

δ + 1

−
∫ λ

1

t−δ−2u−δ−2r(tu)G(−y′(tu))

−t−δ−1r(t)G(−y′(t))
tdu

= − λ
−δ−1r(λt)G(−y′(λt))
−(δ + 1)r(t)G(−y′(t))

− 1

δ + 1

−
∫ λ

1

u−δ−2r(tu)G(−y′(tu))

−r(t)G(−y′(t))
du.

Let us work with separate terms of the right-hand side of the relation showed above. We
start with the first fraction. Since r(t)G(−y′(t)) ∈ RV(δ + 1) and using Definition 1.1 of
regular variation we obtain

lim
t→∞
− λ

−δ−1r(λt)G(−y′(λt))
−(δ + 1)r(t)G(−y′(t))

=
λ−δ−1

δ + 1
λδ+1 =

1

δ + 1
.

Recall that r(t)G(−y′(t)) ∈ RV(δ + 1) and so the uniform convergence of

r(tu)G(−y′(tu))

r(t)G(−y′(t))
−→ uδ+1

implies

lim
t→∞

[
−
∫ λ

1

u−δ−2r(tu)G(−y′(tu))

−r(t)G(−y′(t))
du
]

=

∫ λ

1

u−δ−2uδ+1du = lnλ,

so we conclude h ∈ Π(−(δ + 1)t−δ−1r(t)G(−y′(t))). Because of the uniqueness of the
auxiliary function up to asymptotic equivalence we obtain the following relation

−(δ + 1)t−δ−1r(t)G(−y′(t)) ∼ th′(t) = t−δp(t)F (y(t)),

which implies
G(−y′(t))
F (y(t))

∼ − tp(t)

(δ + 1)r(t)

as t → ∞ and using the condition LG(ug(u)) ∼ LG(u) as u → 0+ for all g ∈ SV0,
rewrite it equivalently as LG(v(t)/t) ∼ LG(1/t) as t → ∞ for all v ∈ SV . Let us remind

again that −y′(t) ∈ RV0(−1), then we can rewrite it in the form y′(t) =
L|y′|(t)

t
, where

L|y′|(t) ∈ SV . Hence,

G(−y′(t)) = (−y′(t))α−1LG(L|y′|(t)/t) ∼ (−y′(t))α−1LG(1/t) (3.19)

as t→∞. Combining all these relations we obtain

(−y′(t))α−1

F (y(t))
∼ − tp(t)

(δ + 1)r(t)LG(1/t)
⇒ −y′(t)

(F (y(t)))
1

α−1

∼
[
− tp(t)

(δ + 1)r(t)LG(1/t)

] 1
α−1

.

Therefore, there exists a function ε(t) satisfying lim
t→∞

ε(t) = 0 such that

y′(t)(
F (y(t))

) 1
α−1

= −(1 + ε(t))
[
− tp(t)

(δ + 1)r(t)LG(1/t)

] 1
α−1

(3.20)
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as t→∞. Assume now that∫ ∞
a

( sp(s)

r(s)LG(1/s)

) 1
α−1

ds =∞.

Integrating (3.20) from a to t we obtain∫ t

a

y′(s)(
F (y(s))

) 1
α−1

ds = −
∫ t

a

(
1 + ε(s)

)[
− sp(s)

(δ + 1)r(s)LG(1/s)

] 1
α−1

ds.

Substituting u = y(s) in the integral on the left side of the relation, then we get
du = y′(s)ds, what brings us to the new interval of integration from y(a) to y(t)∫ t

a

y′(s)(
F (y(s))

) 1
α−1

ds =

∫ y(t)

y(a)

du(
F (u)

) 1
α−1

and using the definition (3.13) of the function F̂ we have

F̂ (y(t)) = F̂ (y(a))−
∫ t

a

(
1 + ε(s)

)[
− sp(s)

(δ + 1)r(s)LG(1/s)

] 1
α−1

ds. (3.21)

There exists ε̂(t)→ 0 such that

F̂ (y(a))−
∫ t

a

(
1 + ε(s)

)[
H(s)

] 1
α−1

ds = −
∫ t

a

(
1 + ε̂(s)

)[
H(s)

] 1
α−1

ds,

where H(s) = − sp(s)

(δ + 1)r(s)LG(1/s)
, which implies for

∫∞
a

( sp(s)

r(s)LG(1/s)

) 1
α−1

ds =∞

y(t) = F̂−1
{
−
∫ t

a

(
1 + ε(s)

)[
− sp(s)

(δ + 1)r(s)LG(1/s)

] 1
α−1

ds
}
.

Clearly y(t) → 0 as t → ∞, otherwise we get a contradiction with the divergence of the
integral (3.21). On the contrary, if∫ ∞

a

( sp(s)

r(s)LG(1/s)

) 1
α−1

ds <∞

we integrate (3.20) over the interval (t,∞) and repeating the same steps as we did above,
we obtain

y(t) = F̂−1
{
F̂
(
y(∞)

)
+

∫ ∞
t

(
1 + ε(s)

)[
− sp(s)

(δ + 1)r(s)LG(1/s)

] 1
α−1

ds
}
.

In this case y(t) must tend to a positive constant y(∞) as t → ∞, otherwise the left
side of the relation (3.21) becomes unbounded, which would contradict the assumption of
boundedness of the integral.

To prove the last statement we use (3.20) so we get the asymptotic equivalence

y′(t) ∼ y(∞)

t

( 1

δ + 1
· Lp(t)LF (y(t))

Lr(t)LG(1/t)

)β−1
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as t→∞. Integrate from t to ∞, so we obtain

y(∞)− y(t) ∼ y(∞)

(δ + 1)β−1

∫ ∞
t

1

s

(Lp(t)LF (y(s))

Lr(t)LG(1/t)

)β−1

ds

as t→∞. Apply Karamata’s theorem 1.3 we get to the conclusion that the integral is a
slowly varying function and then we obtain (3.16).

Remark 3.4. The proof represented above is based on the theory of the Π-class and uses
properties of functions from this class of functions. Next we show another approach using
Karamata’s theorem. First part of the proof remains the same. We take y ∈ DS ∩NSV .
Since p(t)F (y(t)) ∈ RV(δ) with δ < −1, from (3.18) and applying Karamata’s theorem
1.3 we obtain

r(t)G(−y′(t)) =

∫ t

a

p(s)F (y(s))ds ∼
∫ t

a

sδLp(s)F (y(s))ds

∼ 1

δ + 1
tδ+1Lp(t)F (y(t)) ∼ 1

δ + 1
tp(t)F (y(t)).

Thus, dividing by r(t)F (y(t)), we get

G(−y′(t))
F (y(t))

∼ tp(t)

(δ + 1)r(t)
,

which implies (3.19) and the rest of the proof remains the same.

Let us formulate the following corollary based on the results obtained in Theorem 3.1,
Remark 3.2 and Theorem 3.2.

Corollary 3.1. Consider the equation (2.2). Let p ∈ RV(δ) and r ∈ RV(δ + α) with

δ < −1. Assume Lp(t)

Lr(t)
→ 0 as t→∞, lim supu→0+ LF (u) <∞ and lim infu→0+ LG(u) > 0,

then there exists y ∈ DS ∩ NSV and −y(t) ∈ Π(−ty′(t)). Assume lim
u→0+

|F̂ (u)| =∞ and

LG(ug(u)) ∼ LG(u) as u→ 0+ for all g ∈ SV0, then for every y ∈ DS ∩NSV,

� if
∫∞
a

( sp(s)
r(s)LG(1/s)

)
1

α−1 ds = ∞, then there exists ε(t) with ε(t) → 0 as t → ∞ such

that (3.14) is an asymptotic formula and y(t)→ 0 as t→∞;

� if
∫∞
a

( sp(s)
r(s)LG(1/s)

)
1

α−1 ds < ∞, then there exists ε(t) with ε(t) → 0 as t → ∞ such

that (3.15) is an asymptotic formula and y(t)→ y(∞) ∈ (0,∞) as t→∞.

Moreover, |y(∞)− y(t)| ∈ SV and (3.16) is true as t→∞.

If we take LF = 1 and LG = 1, then the equation (2.2) reduces to the half-linear
equation (2.3) and notice, that the asymptotic formula of the solution is the same as one
presented in Theorem 2.1. In case of α = 2 and r = 1, the equation (2.2) reduces to
the nearly-linear equation (2.6) and the formula is equivalent to one shown in Theorem
2.2. The formula for the case of a generalized function r ∈ SV is new for nearly-linear
equations. Formula (3.16) is new even for the case α = 2 and r = 1.

Let us show a simple example of computing F̂−1. Assume F ∈ RV0(α − 1) with
LF = 1. Compute

F̂ (x) =

∫ x

1

du

(F (u))
1

α−1

=

∫ x

1

du

(uα−1)
1

α−1

= lnx.

31



Then we compute the inverse F̂−1(x) = ex.
Notice, that to prove the asymptotic formulae for decreasing slowly varying solutions

of the nearly-half-linear equation (2.2) we do not require (even one-side) boundedness
conditions on LF and LG such as in Theorem 3.1. As for condition LG(ug(u)) ∼ LG(u)
as u → 0+ for all g ∈ SV0 from Theorem 3.2 it is not too restrictive. Observe that,
in fact many functions satisfy it, for example, LG(u) → C ∈ (0,∞) as u → 0+ or
LG(u) = | ln |u||α1 | ln | ln |u|||α2 , α1, α2 ∈ R. Take a look at the function LG(u) = | ln |u||.
For simplicity let us choose a function g(u) = | ln |u||. Here it is clear that the condition
LG(ug(u)) ∼ LG(u) is satisfied:

lim
u→0+

| ln |u| ln |u||||
| ln |u||

= lim
u→0+

(| ln |u||+ 1)|u|
|u|| ln |u||

= lim
u→0+

( | ln |u||
| ln |u||

+
1

| ln |u||

)
= 1.

From the condition of Theorem 3.2
∫∞
a

( sp(s)
r(s)LG(1/s)

)
1

α−1 ds =∞, it does not follow that

y(t) ∼ F̂−1
{
−
∫ t

a

[
− sp(s)

(δ + 1)r(s)LG(1/s)

] 1
α−1

ds
}

as t → ∞ (see [6] for the linear case y′′(t) = p(t)y(t)). However, we are able to deduce
a lower estimate, but we will take stricter conditions. Due to technical reasons we will
assume that solutions under our investigation are positive and decreasing in the interval
[0,∞).

Theorem 3.3. Consider the equation (2.2), where p ∈ RV(−α) and r = 1 are positive
continuous functions. Take α ∈ (1, 2]. Let

lim inf
u→0+

LG(u) > 0 and lim
t→∞

t

∫ ∞
t

p(s)ds = 0

holds. Denote F̃ (t) =
∫ t

1
du
F (u)

, t > 0. Then y ∈ DS ∩ SV, such that −y′(0) ≤ 1, satisfies
the estimate

lim inf
t→∞

y(t)

F̃−1
{
F̃ (y(0))− 1

M

∫ t
0
sp(s)ds

} ≥ 1, (3.22)

where M is some positive constant. The constant M can be taken as

M = inf
u∈[0,|y′(0)|]

LG(u).

Proof. Take y(t) ∈ DS ∩ SV , t ≥ 0. Integrate equation (2.2) over the interval (λt, t),
where λ ∈ (0, 1), so we have

−G(y′(λt)) +G(y(t)) =

∫ t

λt

p(s)F (y(s))ds.

Let us multiple both sides by 1
F (y(λt))

and recalling that y ∈ DS and so we get

−G(y′(λt)) +G(y′(t))

F (y(λt))
=

1

F (y(λt))

∫ t

λt

p(s)F (y(s))ds ≤
∫ t

λt

p(s)ds (3.23)
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for t > 0. Thanks to the fact that lim infu→0+ LG(u) > 0, there exists M > 0 such that

M
(−y′(λt))α−1

F (y(λt))
− G(−y′(t))

F (y(λt))
≤ (−y′(λt))α−1LG(|y′(λt)|)

F (y(λt))
− G(−y′(t))

F (y(λt))
≤
∫ t

λt

p(s)ds,

(3.24)

t > 0, where the last estimate follows from (3.23). As we are assuming α ∈ (1, 2],
y′ < 0, y′ is increasing, −y′(0) ≤ 1, then |y′(t)| ≤ 1 for t ∈ [0,∞) and we conclude that
(−y′(λt))α−1 ≥ −y′(λt). Then rewrite (3.24) as

M
−y′(λt)
F (y(λt))

− G(−y′(t))
F (y(λt))

≤M
(−y′(λt))α−1

F (y(λt))
− G(−y′(t))

F (y(λt))
≤
∫ t

λt

p(s)ds. (3.25)

Integration over λ ∈ (0, 1) yields

−M
t

[F̃ (y(t))− F̃ (y(0))]− G(−y′(t))
t

∫ t

0

ds

F (y(s))
≤ 1

t

∫ t

0

sp(s)ds, (3.26)

where we substituted s = λt in the first fraction of the left side of (3.25), so we get∫ 1

0

y′(λt)

F (y(λt))
dλ =

1

t

∫ t

0

y′(s)

F (y(s))
ds

and further substituting u = y(s) we obtain∫ 1

0

y′(λt)

F (y(λt))
dλ =

1

t

∫ y(t)

y(0)

du

F (u)
=

1

t
[F̃ (y(t))− F̃ (y(0))].

In the second term we substitute similarly s = λt and we derive∫ 1

0

dλ

F (y(λt))
=

1

t

∫ t

0

ds

F (y(s))
.

On the right side of the inequality (3.25) we apply the Fubini theorem in∫ 1

0

∫ t

λt

p(s)dsdλ,

where we change the order of integration and the intervals: 0 ≤ s ≤ t and 0 ≤ λ ≤ s/t
and we have ∫ 1

0

∫ t

λt

p(s)dsdλ =

∫ t

0

p(s)

∫ s/t

0

dλds =
1

t

∫ t

0

sp(s)ds.

From the relation (3.26) applying the inverse function F̃−1 we get

y(t) ≥ F̃−1
[
F̃ (y(0))− G(−y′(t))

MN

∫ t

0

ds

F (y(s))
− 1

M

∫ t

0

sp(s)ds
]
. (3.27)

Since F (y) ∈ SV and so 1/F (y) ∈ SV and recalling that y is a decreasing solution, the
Karamata’s theorem 1.3 yields

0 < G(−y′(t))
∫ t

0

ds

F (y(s))
∼ tG(−y′(t))

F (y(t))
=

t

F (y(t))

∫ ∞
t

p(s)F (y(s))ds

≤ t

∫ ∞
t

p(s)ds→ 0
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as t→∞ due to the assumption. Hence,

G(−y′(t))
∫ t

0

ds

F (y(s))
= o(1)

as t→∞. Then from (3.27) it follows that

lim inf
t→∞

y(t)

F̃−1
{
F̃ (y(0))− 1

M

∫ t
0
sp(s)ds

} ≥ 1.

Notice, that for proving the previous theorem we did not use the fact that p ∈ RV(δ)
what is one of the differences with the approach used in the linear case (see [6]). It is
reasonable to require the conditions lim

u→0+
|F̃ | = ∞ and

∫∞
0
sp(s)ds = ∞ when we apply

Theorem 3.3. If we take the theorem above as an improvement of information related to
the solution we were dealing with in Theorem 3.2, even though with some restrictions, it
is reasonable to consider p ∈ RV(δ).

Further, let us deduce an asymptotic estimate for a generalized r satisfying∫ ∞
a

r1−β(s)ds =∞ and LG = 1.

Remark 3.5. Consider the equation(
r(t)Φ(y′(t))

)′
= p(t)F (y(t)), (3.28)

where lim
t→∞

t
∫∞
t
p(s)ds = 0 and

∫∞
a
r1−β(s)ds = ∞. We will use the following

transformation. Denote

R(t) =

∫ t

a

r1−β(s)ds

and R−1 is defined as the inverse function of R. We take new variable s = ϕ(t) and new
function x(s) = y(t), such that ϕ is a differentiable function with ϕ′(t) 6= 0. Then

ϕ(t) = s =⇒ ϕ′(t) =
ds

dt
=⇒ ϕ′(t)

d

ds
=

d

dt

and the equation (3.28) is transformed into the equation:

d

ds

[
r̃(s)Φ

(dx

ds

)]
= p̃(s)F (x), (3.29)

where

r̃(s) = (r ◦ ϕ−1)(s)Φ
(
(ϕ′ ◦ ϕ−1)(s)

)
and p̃ =

(p ◦ ϕ−1)(s)

(ϕ′ ◦ ϕ−1)(s)
.

By suitable choice of ϕ(t) we can transform (3.28) into (3.29) with r̃ = 1. Indeed,
set ϕ(t) = R(t), then compute the derivative ϕ′(t) = R′(t) = r1−β(t). Notice that
ϕ−1(s) = ϕ−1(ϕ(t)) = t. Then rewrite

r̃(s) = r(t)Φ(ϕ′(t)) = r(t)Φ(r1−β(t)) = r(t) · r(1−β)(α−1)(t) = r(t) · r−1(t) = 1.
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Similarly rewrite

p̃(s) =
(p ◦ ϕ−1)(s)

(ϕ′ ◦ ϕ−1)(s)
=

p(t)

(ϕ′ ◦ ϕ−1)(s)
= ((prβ−1) ◦R−1)(s).

Now assume that p̃ ∈ RV(α). Since r̃ ∈ SV and p̃ ∈ RV(−α), we can apply Theorem 3.3,
so we obtain

lim inf
s→∞

x(s)

F̃−1
{
F̃ (x(0))−

∫ s
0
up̃(u)du

} ≥ 1. (3.30)

From the definition we know s = ϕ(t), then x(R−1(s)) = y(t). Take the substitution
τ = R−1(u) in the integrand, then u = R(τ). We obtain du = r1−βdτ . Rewrite (3.30) as

lim inf
t→∞

y(t)

F̃−1
{
F̃ (y(0))−

∫ t
0
R(τ)p(τ)dτ

}
= lim inf

t→∞

y(t)

F̃−1
{
F̃ (y(0))−

∫ t
0
R(τ)p(τ)rβ−1(τ)r1−β(τ)dτ

} ≥ 1,

where F̃ (t) =
∫ t

1
du
F (u)

, t > 0.

3.2 Increasing slowly varying solutions

In this subsection we will be working with the same equation, but for the index of regular
variation of the function p we require δ > −1. Again we will study slowly varying solutions.
As we will see later, we have to look for such solutions in the set IS. The structure of the
subsection is similar to the structure of one where we were dealing with the case δ < −1.
A lot of the following results are new (and even in special cases): asymptotic formula for
the increasing solution of a nearly-linear equation with r = 1 and with generalized r.

The following theorem proves that if an increasing solution exists, then it is a
normalized slowly varying function.

Theorem 3.4. Assume that ∫ ∞
a

p(s)ds =∞, (3.31)

lim
t→∞

tα−1

r(t)

∫ t

a

p(s)ds = 0, (3.32)

lim sup
u→∞

LF (u) <∞ (3.33)

and lim inf
u→∞

LG(u) > 0. (3.34)

Then IS ⊂ NSV.
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Proof. Take y ∈ IS so y(t) > 0, y′(t) > 0 for t ≥ a. Integrate equation (2.2) from a to t
and recalling that y is increasing and so is F (y), then

r(t)G(y′(t)) = r(a)G(y′(a)) +

∫ t

a

p(s)F (y(s))ds ≥ r(a)G(y′(a)) + F (y(a))

∫ t

a

p(s)ds

tends to ∞ as t → ∞. As we mentioned earlier y′(t) > 0 for t ≥ a, and because of the
fact that r(t)G(y′(t)) tends to infinity, it is possible to find some positive constant K

r(t)G(y′(t)) ≤ K

∫ t

a

p(s)F (y(s))ds (3.35)

for large t. Divide the inequality (3.35) by r(t)(y(t))α−1LG(y′(t)) and multiply it by tα−1.
Again use the fact that F (y) is increasing. Thus,

0 <
(ty′(t)
y(t)

)α−1

≤ tα−1KLF (y(t))

LG(y′(t))r(t)

∫ t

a

p(s)ds ≤ tα−1M

r(t)

∫ t

a

p(s)ds (3.36)

for large t, where M ∈ (0,∞) is some constant, which follows from conditions (3.33) and

(3.34). Since the right-hand side of (3.36) tends to zero due to (3.32), we obtain ty′(t)
y(t)
→ 0

as t→∞ and from this fact y ∈ NSV follows.

Here, similarly as in the previous subsection, we want to justify the choice of p ∈ RV(δ)
and r ∈ RV(δ + α) with δ > −1.

Remark 3.6. Assume that p ∈ RV(δ) and r ∈ RV(γ) with δ > −1. Take y ∈ NSV∩IS∞
of (2.2). Then recalling the definition of F we have(

r(t)G(y′(t))
)′

= p(t)F (y(t)) ∈ RV(δ).

We work with the case δ > −1, so integrate (2.2) from a to t:

r(t)G(y′(t))− r(a)G(y′(a)) =

∫ t

a

p(s)F (y(s))ds→∞

as t→∞ by Karamata’s theorem 1.3. As we took y ∈ SV ∩ IS, then we can rewrite the
functions F and G in the form:

r(t)(y′(t))α−1LG(y′(t))− r(a)(y′(a))α−1LG(y′(a)) =

∫ t

a

p(s)(y(s))α−1LF (y(s))ds

∈ RV(δ + 1),

using properties of RV from Proposition 1.1 and Karamata’s theorem 1.3, and so we
have (y′(t))α−1 ∈ RV(δ + 1 − γ), because r ∈ RV(γ) and LG ∈ SV , which brings us
to y′(t) ∈ RV

(
δ+1−γ
α−1

)
due to Proposition 1.1. From Remark 3.1, notice, that δ < −1 is

equivalent to γ < α − 1, so if we assume δ > −1 or equivalently γ > α − 1, then the
following steps are similar to ones in Remark 3.1, so we obtain γ = δ + α.

Remark 3.7. Assume that p ∈ RV(δ) and r ∈ RV(δ + α) with δ > −1, then by
Karamata’s theorem 1.3:

∫∞
a
p(s)ds =∞.

Earlier in Remark 3.2 we showed∫ ∞
a

G−1
( M

r(s)

)
ds =

∫ ∞
a

r1−β(s) · h(s)ds,
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where h ∈ SV . We know r1−β ∈ RV((1− β)(δ + α)). Further

(1− β)(δ + α) = (1− β)(δ + 1)− 1

and with the fact that δ > −1 we get (1 − β)(δ + α) < −1, and because r is positive

we conclude that
∫∞
a
r1−β(s)ds < ∞. It means that integral

∫∞
a
G−1

(
M
r(s)

)
ds is also

convergent for some M ∈ (0,∞).
Applying Karamata’s theorem 1.3 for the case δ > −1 to the condition (3.32) we

obtain:

tα−1

r(t)

∫ t

a

p(s)ds ∼ tα−1

tδ+αLr(t)
· 1

δ + 1
tδ+1Lp(t) =

Lp(t)

Lr(t)
· 1

δ + 1
. (3.37)

In this case, the condition (3.32) leads to Lp(t)/Lr(t)→ 0 as t→∞.

In the following remark we want to prove that the condition guaranteeing normalized
slow variation of an increasing solution (3.32) is necessary for the existence of an increasing
slowly varying solution of the equation. The proof is similar to one in the section dealing
with the case δ < −1. Let us show the main steps skipping similar computations.

Proposition 3.3. Assume that r ∈ RV(γ) with δ > −1. Take lim infu→∞ LF (u) > 0 and
lim supu→∞ LG(u) <∞. The condition (3.32) is necessary for existence of an increasing
slowly varying solution.

Proof. We want prove that if there exists y ∈ IS ∩ NSV , then (3.32) is satisfied. Now
we integrate the Riccati equation (3.11) from a to t and multiply it by tα−1/r(t):

tα−1

r(t)
w(t)− tα−1

r(t)
w(a) =

tα−1

r(t)

∫ t

a

p(s)LF (y(s))ds

− (α− 1)
tα−1

r(t)

∫ t

a

|w(s)|β
(
r(s)LG(y′(s))

)1−β
ds,

where tα−1

r(t)
w(a) → 0 and tα−1

r(t)
w(t) → 0 as t → ∞, which follows from the fact that

r ∈ RV(δ + α), so tα−1

r(t)
∈ RV(α− 1− δ − α) = RV(−1− δ) with δ > −1, thus tα−1

r(t)
→ 0.

Similarly as in Proposition 3.1 for the case δ < −1 we can show that

lim
t→∞

tα−1

r(t)

∫ t

a

p(s)ds = 0.

A closer examination of the proof shows that the condition r ∈ RV(δ + α) can be
relaxed to the existence of ri ∈ RV(δi + α), i = 1, 2, with r1(t) ≤ r(t) ≤ r2(t) for large t,
and δ1, δ2 > −1.

Further we will show that slowly varying solutions necessarily increase. We will prove
this statement by contradiction.

Proposition 3.4. Assume p ∈ RV(δ), r ∈ RV(δ + α), with δ > −1. If y ∈ PS ∩ SV,
then y ∈ IS.
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Proof. Take y ∈ DS ∩ SV . Then G(y′) = −(y′)α−1LG(|y′|) and F (y) = yα−1LF (y).
Integrate (2.2) from a to t and get

r(t)G(y′(t)) = r(a)G(y′(a)) +

∫ t

a

p(s)F (y(s))ds. (3.38)

Since y is positive decreasing and r is a positive function, then r(t)G(y′(t)) is negative
increasing, hence there exists a negative constant M such that

lim
t→∞

r(t)G(y′(t)) = M ∈ (−∞, 0] .

Suppose that y ∈ SV and recall that LF ∈ SV , then p(t)F (y(t)) ∈ RV(δ), thus∫ t
a
p(s)F (y(s))ds→∞, because of δ > −1, what is a contradiction with (3.38).

Remark 3.8. In the proposition above we proved that slowly varying solutions necessarily
increase and in Theorem 3.4 we got to the conclusion that any increasing solution is
normalized slowly varying. Combining these two observations we get

PS ∩ NSV = IS.

We have proved that we should look for slowly varying solutions in the set IS, so
our next goal is to deduce an asymptotic formula for solutions of the nearly-half-linear
equation (2.2). We define F̂ in the same way as in the previous section for the case
δ < −1, but now we have |F̂ | ∈ SV .

Theorem 3.5. Let p ∈ RV(δ) and r ∈ RV(δ+α) with δ > −1. Assume lim
u→∞
|F̂ (u)| =∞

and LG(ug(u)) ∼ LG(u) as u→ 0+ for all g ∈ SV0. If y ∈ IS∩NSV, then y ∈ Π(ty′(t)).
Moreover, for every y ∈ IS ∩ NSV,

� if ∫ ∞
a

( sp(s)

r(s)LG(1/s)

) 1
α−1

ds =∞,

then there exists ε(t) with ε(t)→ 0 as t→∞ such that

y(t) = F̂−1
{∫ t

a

(
1 + ε(s)

)[ sp(s)

(δ + 1)r(s)LG(1/s)

] 1
α−1

ds
}

(3.39)

and y(t)→∞ as t→∞;

� if ∫ ∞
a

( sp(s)

r(s)LG(1/s)

) 1
α−1

ds <∞,

then there exists ε(t) with ε(t)→ 0 as t→∞ such that

y(t) = F̂−1
{
F̂
(
y(∞)

)
−
∫ ∞
t

(
1 + ε(s)

)[ sp(s)

(δ + 1)r(s)LG(1/s)

] 1
α−1

ds
}

(3.40)

and y(t)→ y(∞) ∈ (0,∞) as t→∞.
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Moreover, |y(∞)− y(t)| ∈ SV and

Lβ−1
p (t)Lβ−1

F (y(t))

Lβ−1
r (t)Lβ−1

G (1/t)(y(∞)− y(t))
= o(1) (3.41)

as t→∞.

Proof. Take y ∈ IS ∩ SV and let a be such that y(t) > 0, y′(t) > 0 for t ≥ a. Then(
r(t)G(y′(t))

)′
= p(t)F (y(t)) ∈ RV(δ),

provided y(t)→∞ as t→∞. If y(t)→ C ∈ (0,∞), then the conclusion is the same since
F (y(t))→ F (C) ∈ (0,∞) and so p(t)F (y(t)) ∈ RV(δ). Thus, by Karamata’s theorem 1.3:

r(t)G(y′(t))− r(a)G(y′(a)) =

∫ t

a

(
r(s)G(y′(s))

)′
ds ∈ RV(δ + 1).

Since r ∈ RV(δ + α) we obtain G(y′(t)) ∈ RV(1− α) due to Proposition 1.1. In view of
y′(t) = G−1(G(y′(t))), we get y′(t) ∈ RV(−1) and following Proposition 1.3 we conclude
that y(t) ∈ Π(ty′(t)). Set

h(t) = t−δ−1r(t)G(y′(t)) + (δ + 1)

∫ t

a

s−δ−2r(s)G(y′(s))ds.

Let us show that h ∈ Π(ty′(t)) and h ∈ Π((δ + 1)t−δ−1r(t)G(y′(t))). Indeed,

h′(t) = (−δ − 1)t−δ−2r(t)G(y′(t))− t−δ−1p(t)F (y(t))− (−δ − 1)t−δ−2r(t)G(y′(t))

= t−δ−1p(t)F (y(t)) ∈ RV(−δ − 1 + δ + 0).

Thus h′(t) ∈ RV(−1) and applying results from Proposition 1.3 we can conclude that
h ∈ Π(th′(t)). Moreover, fix λ > 0 and then integrate by substitution, so we get

h(λt)− h(t)

(δ + 1)t−δ−1r(t)G(y′(t))
=
λ−δ−1t−δ−1r(λt)G(y′(λt))

(δ + 1)t−δ−1r(t)G(y′(t))
− t−δ−1r(t)G(y′(t))

(δ + 1)t−δ−1r(t)G(y′(t))

+
(δ + 1)

∫ λt
t
s−δ−2r(s)G(y′(s))ds

(δ + 1)t−δ−1r(t)G(y′(t))

=
λ−δ−1r(λt)G(y′(λt))

(δ + 1)r(t)G(y′(t))
+

1

δ + 1
+

∫ λ

1

u−δ−2r(tu)G(y′(tu))

r(t)G(y′(t))
du.

These calculations are similar to the previous case when we had δ < −1. The most
significant difference is a sign. Since r(t)G(y′(t)) ∈ RV(δ + 1) we obtain

lim
t→∞
−λ

−δ−1r(λt)G(y′(λt))

(δ + 1)r(t)G(y′(t))
=
λ−δ−1

δ + 1
λδ+1 =

1

δ + 1

and the uniform convergence of r(tu)G(y′(tu))
r(t)G(y′(t))

to uδ+1 implies

lim
t→∞

[ ∫ λ

1

u−δ−2r(tu)G(y′(tu))

r(t)G(y′(t))
du
]

=

∫ λ

1

u−δ−2uδ+1du = lnλ,
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so h ∈ Π((δ + 1)t−δ−1r(t)G(y′(t))). Because of the uniqueness of the auxiliary function
up to asymptotic equivalence we obtain

(δ + 1)t−δ−1r(t)G(y′(t)) ∼ th′(t) = t−δp(t)F (y(t)),

which implies
G(y′(t))

F (y(t))
∼ tp(t)

(δ + 1)r(t)
,

and using the condition LG(ug(u)) ∼ LG(u) as u → 0+ for all g ∈ SV0, rewrite it
equivalently as LG(v(t)/t) ∼ LG(1/t) as t → ∞ for all v ∈ SV0. Recall y′(t) ∈ RV(−1).
Hence,

G(y′(t)) = (y′(t))α−1LG(Ly′(t)/t) ∼ (y′(t))α−1LG(1/t) (3.42)

as t→∞, where Ly′ ∈ SV . Putting all of these relations together we get

(y′(t))α−1

F (y(t))
∼ tp(t)

(δ + 1)r(t)LG(1/t)
⇒ y′(t)(

F (y(t))
) 1
α−1

∼
[ tp(t)

(δ + 1)r(t)LG(1/t)

] 1
α−1

as t→∞. Therefore, there exists a function ε(t) satisfying lim
t→∞

ε(t) = 0, such that

y′(t)(
F (y(t))

) 1
α−1

= (1 + ε(t))
[ tp(t)

(δ + 1)r(t)LG(1/t)

] 1
α−1

. (3.43)

Repeating the same procedures and justifying the steps in the same way as in the case
δ < −1, for ∫ ∞

a

( sp(s)

(δ + 1)r(s)LG(1/s)

) 1
α−1

ds =∞

we get

y(t) = F̂−1
{∫ t

a

(
1 + ε(s)

)[ sp(s)

(δ + 1)r(s)LG(1/s)

] 1
α−1

ds
}
.

In this case y(t)→∞ as t→∞. On the other hand, for∫ ∞
a

( sp(s)

(δ + 1)r(s)LG(1/s)

) 1
α−1

ds <∞

we obtain

y(t) = F̂−1
{
F̂
(
y(∞)

)
−
∫ ∞
t

(
1 + ε(s)

)[ sp(s)

(δ + 1)r(s)LG(1/s)

] 1
α−1

ds
}

and so y(t) tends to a positive constant as t→∞.
Last part of the proof is essentially the same as for the case δ < −1, we use (3.43), so

we can conclude that

y′(t) ∼ y(∞)

t

( 1

δ + 1
· Lp(t)LF (y(t))

Lr(t)LG(1/t)

)β−1

as t→∞. Integrate it over the interval from t to ∞ and apply Karamata’s theorem 1.3
and so we obtain (3.41).
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As well as in Theorem 3.2 we can prove Theorem 3.5 with help of Karamata theorem.
Let us formulate the following corollary based on the results obtained in Theorem 3.4,
Remark 3.7 and Theorem 3.5.

Corollary 3.2. Consider the equation (2.2). Let p ∈ RV(δ), r ∈ RV(δ+α) where δ > −1.

Assume Lp(t)

Lr(t)
→ 0 as t → ∞, lim supu→∞ LF (u) < ∞ and lim infu→∞ LG(u) > 0, so if

there exists y ∈ IS, then y ∈ IS ∩NSV and −y(t) ∈ Π(ty′(t)). Assume lim
u→∞
|F̂ (u)| =∞

and LG(ug(u)) ∼ LG(u) as u→ 0+ for all g ∈ SV0, then for every y ∈ IS ∩ NSV,

� if
∫∞
a

( sp(s)
r(s)LG(1/s)

)
1

α−1 ds = ∞, then there exists ε(t) with ε(t) → 0 as t → ∞ such

that (3.39) is an asymptotic formula and y(t)→∞ as t→∞;

� if
∫∞
a

( sp(s)
r(s)LG(1/s)

)
1

α−1 ds < ∞, then there exists ε(t) with ε(t) → 0 as t → ∞ such

that (3.40) is an asymptotic formula and y(t)→ y(∞) ∈ (0,∞) as t→∞.

Moreover, |y(∞)− y(t)| ∈ SV and (3.41) as t→∞.

If we take LF = 1 and LG = 1, then the equation (2.2) reduces to the half-linear
equation (2.3) the asymptotic formula for the solution is in the same form as it is shown
in [16]. In case of α = 2 and r = 1, the equation (2.2) reduces to the nearly-linear
equation (2.6) and the analysis of the solutions as well as the asymptotic formula presented
above are new. Moreover, here we have shown the case with generalized r. Formula (3.41)
is also new even for the simpler case α = 2 and r = 1.
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4 Examples

In this chapter we will present applications of results obtained in the previous chapters
to non-linear differential equations. We will start with an example of a half-linear linear
equation.

Example 4.1. Consider the equation(
tδ+αLr(t)Φ(y′(t))

)′
= tδLp(t)Φ(y(t)), (4.1)

where Lr = (ln t)γ2 + h1(t) and Lp = (ln t)γ1 + h2(t) with |hi(t)| = o((ln t)γi) for i = 1, 2
for some γ1 < γ2. Examples of such functions hi are hi(t) = cos t or hi(t) = ln(ln t). For
every λ > 0 we get:

lim
t→∞

(lnλt)γi + hi(λt)

(ln t)γi + hi(t)
= lim

t→∞

( lnλt
ln t

)γi + hi(λt)
(ln t)γi

1 + hi(t)
(ln t)γi

= lim
t→∞

( lnλt
ln t

)γi + hi(λt)
(ln(λt))γi

( lnλt
ln t

)γi

1 + hi(t)
(ln t)γi

= 1,

so we can conclude that Lp, Lr ∈ SV . We have

lim
t→∞

Lp(t)

Lr(t)
= lim

t→∞

(ln t)γ1 + h1(t)

(ln t)γ2 + h2(t)
= lim

t→∞

1 + h1(t)
(ln t)γ1

(ln t)γ2−γ1 + h2(t)
(ln t)γ1

(4.2)

= lim
t→∞

1 + h1(t)
(ln t)γ1

(ln t)γ2−γ1 [1 + h2(t)
(ln t)γ2

]
= 0,

because we set γ2 > γ1. Indeed the condition from Corollary 3.1 is satisfied. From (4.2)
we get(tp(t)
r(t)

) 1
α−1

=
( tδ+1Lp(t)

tδ+αLr(t)

) 1
α−1

=
1

t

[ 1 + h1(t)
(ln t)γ1

(ln t)γ2−γ1 [1 + h2(t)
(ln t)γ2

]

] 1
α−1 ∼ 1

t

( 1

δ + 1

) 1
α−1

(ln t)
γ1−γ2
α−1

as t→∞. Since
∫ t
a

1
s
(ln s)λds <∞ if and only if λ < −1, we have∫ t

a

(sp(s)
r(s)

) 1
α−1

ds <∞

if and only if γ1−γ2
α−1

< −1. Notice that if η 6= 1, then∫
1

s
(ln s)ηds =

(ln t)η+1

η + 1
+ const.

On the other hand, if η = 1, then∫
1

s ln s
ds = ln(ln t) + const.

Using results showed in Corollary 3.1 for δ < −1 and Corollary 3.2 for δ > −1 in the
previous chapter for γ1−γ2

α−1
< −1 we have that every slowly varying solution has a finite

non-zero limit l and

y(t) = l exp
{

sgn(δ + 1)
(
1 + o(1)

)
(ln t)

γ1−γ2
α−1

+1 1− α
γ1 − γ2 + α− 1

· 1

|δ + 1|
1

α−1

}
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as t→∞. On the other hand, if γ1−γ2
α−1

> −1, then in the case δ > −1 increasing solutions
are unbounded and for the case δ < −1 decreasing solutions have zero limit and we have

y(t) = exp
{

sgn(δ + 1)
(
1 + o(1)

)
(ln t)

γ1−γ2
α−1

+1 α− 1

γ1 − γ2 + α− 1
· 1

|δ + 1|
1

α−1

}
as t→∞. Also, we can make a conclusion for the case γ1−γ2

α−1
= −1, so we have

y(t) = (ln t)sgn(δ+1)(1+o(1))|δ+1|−
1

α−1

as t→∞.

In the next example we will work with a nearly-linear differential equation, which we
will later modify to a nearly-half linear one.

Example 4.2. Consider the equation(
y′LG(|y′|)

)′
=

Lp(t)y

t2| ln |y||
, (4.3)

where LG ∈ SV0 and Lp ∈ SV . Then

F̂ (u) = −(ln(u))2

2
, u ∈ (0, 1)

so F̂ (u)→ −∞ as u→ 0+. Now we compute the inverse to this function

F̂−1(u) = exp(−
√
−2u), u < 0.

We deal only with positive solutions such that y(t) < 1 for t ≥ a. It is a required
condition because we need F (u) to be increasing at least in a certain neighbourhood of
zero (here it is (0, 1)). A slight modification of F as F (u) = u

| ln |u/k|| , k ∈ (0,∞), ensures

the required monotonicity of F on the (possibly bigger) interval (0, k). Notice, that in
our case δ = −2 < −1.

Let us take the function G(u) = u| ln |u|| and Lp(t) = 1
ln t+h(t)

, where h is continuous

function on [a,∞) with |h(t)| = o(ln t) as t → ∞, and such that ln t + h(t) > 0 for
t ∈ [a,∞). Some examples of such functions are provided in the previous example. All
of the conditions required in Corollary 3.1 are satisfied, so we can apply it and find an
asymptotic formula for decreasing slowly varying solutions. Now, we analyse

tp(t)

LG(1/t)
=

1

t(ln t+ h(t))| ln(1/t)|
=

1

t(ln t+ h(t)) ln t
∼ 1

t(ln t)2

as t→∞. Thus,∫ ∞ sp(s)

LG(1/s)
ds <∞ and we have

∫ ∞
t

sp(s)

LG(1/s)
ds ∼ 1

ln t

as t→∞. Due to the results presented earlier we are able to conclude that the decreasing
slowly varying solution is in the form:

y(t) = exp
[
−
√

(ln y(∞))2 − 2(1 + o(1))

ln t

]
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as t→∞.
On the other hand if we take the function G(u) = u√

1±u2 , then, similarly as in the
previous case

tp(t)

LG(1/t)
=

√
1± 1

t2

t(ln t+ h(t))
∼ 1

t ln t

as t→∞. Note that (ln(ln t))′ = 1
t ln t

, and so∫ ∞ sp(s)

LG(1/s)
ds =∞.

In this case we get the result

y(t) = exp
[√(

− (1 + o(1)) ln(ln t)
)]

as t→∞ and y tends to zero. This kind of operators G we discussed earlier in Chapter 2
and it is called mean curvature operator and it is used in study of partial differential
equations which model fluid mechanics problems.

Further, if we consider the equation(
tδ+αLr(t)(y

′)α−1LG(|y′|)
)′

=
tδLp(t)y

α−1

| ln |y||
, (4.4)

which is similar to (4.3), but we take F ∈ RV(α−1) and generalized r ∈ RV(δ+α), then
the analysis is similar too. Notice that in this case we work with the nearly-half-linear
equation. The previous example is a particular case of the generalized equation (4.4).
Compute

F̂ (u) = −α− 1

α
| lnu|

α
α−1 or F̂ (u) = −| lnu|

β

β
,

u ∈ (0, 1) satisfies the condition F̂ (u)→ −∞ as u→ 0+. The inverse of F̂ is

F̂−1(u) = exp
[
− (−βu)1/β

]
.

Again, similarly we can choose different forms of functionG such that all needed conditions
from Corollary 3.1 for δ < −1 and from Corollary 3.2 for δ > −1 are satisfied, so then
repeating all steps as before we can deduce an asymptotic formula for increasing slowly
varying solutions. Notice, that we assume Lr = (ln t)γ2 + h1(t) and Lp = (ln t)γ1 + h2(t)
with |hi(t)| = o((ln t)γi) for i = 1, 2 for some γ1 < γ2.

Take δ < −1, then similarly as in Example 4.1, we get two cases. For γ1−γ2
α−1

< −1 we
have ∫ t

a

( sp(s)

(δ + 1)r(s)LG(1/s)

) 1
α−1

ds <∞.

Using Corollary 3.1 we get decreasing SV-solutions in the form (3.15) and they have a
non-zero limit. For the case γ1−γ2

α−1
> −1 we have∫ t

a

( sp(s)

(δ + 1)r(s)LG(1/s)

) 1
α−1

ds =∞

and applying the same corollary, the asymptotic formula for decreasing SV-solutions is
in the form (3.14) and they have zero limit.
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On the other hand, if we take δ > −1, then the condition F̂ (u) → −∞ as u → ∞ is
also satisfied. Using Corollary 3.2 if there exist increasing solutions, then for γ1−γ2

α−1
< −1

we get increasing SV-solutions in the form (3.40) and they have a non-zero limit. For the
case γ1−γ2

α−1
> −1 we apply the same corollary and the asymptotic formula for increasing

SV-solutions is in the form (3.39) and they are unbounded.

Now, we will move to another example of nearly-half-linear equations.

Example 4.3. Consider the equation(
tδ+αLr(t)(y

′)α−1LG(|y′|)
)′

= tδLp(t)y
α−1, (4.5)

where Lr ∈ SV , LG ∈ SV , Lp ∈ SV and LF (u) = 1. We have F (u) = uα−1, then

F̂ (u) = lnu,

so |F̂ (u)| → ∞ as u→ 0+ and

F̂−1(u) = eu, u > 0.

Assume that G(u) = uα−1| ln |u||, where LG(u) = | ln |u||, which satisfies condition
LG(ug(u)) ∼ LG(u) as u → ∞ for all g ∈ SV . First take δ < −1, so we will work with
decreasing slowly varying solutions. Conditions for existence of the solution from
Corollary 3.1 hold, so any decreasing solution is slowly varying and we are still able to
find the asymptotic formula for the slowly varying solution.

Take Lp(t) = 1
(ln t)γ+h(t)

, where h is a continuous function on [a,∞) with

|h(t)| = o(ln t) as t → ∞ and such that (ln t)γ + h(t) > 0 for t ∈ [a,∞) and
Lr(t) = 1

(ln t)µ+g(t)
, where g is a continuous function on [a,∞) with |g(t)| = o(ln t) as

t → ∞ and such that (ln t)µ + g(t) > 0 for t ∈ [a,∞) and µ < γ. Examples of such
functions are h(t) = cos t or h(t) = ln(ln t). Note that the required monotonicity of G is
ensured in a small neighbourhood of zero. Compute( tp(t)

(δ + 1)r(t)LG(1/t)

) 1
α−1

=
( tδ+1Lp(t)

(δ + 1)tδ+αLr(t)| ln(1/t)|

) 1
α−1

=
( ((ln t)µ + g(t))

(δ + 1)tα−1((ln t)γ + h(t)) ln t

) 1
α−1 ∼ 1

t

( 1

δ + 1

) 1
α−1

(ln t)
µ−γ−1
α−1

as t→∞. Notice, that ∫ ∞
a

1

s
(ln s)

µ−γ−1
α−1 ds

converges if and only is µ−γ−1
α−1

< −1. Then for µ−γ−1
α−1

< −1 we have∫ ∞
a

( sp(s)

(δ + 1)r(s)LG(1/s)

) 1
α−1

ds <∞.

From Corollary 3.1 y ∈ NSV ∩ DS tends to y(∞) > 0 and satisfies the formula

y(t) = exp
[

ln(y(∞)) + (1 + o(1))
α− 1

µ− γ + α− 2
(ln t)(µ−γ−1

α−1
+1)
( 1

|δ + 1|

) 1
α−1
]
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as t→∞. Let us assume µ−γ−1
α−1

> −1, then∫ ∞
t

( sp(s)

(δ + 1)r(s)LG(1/s)

) 1
α−1

ds =∞

and applying results from Corollary 3.1, a decreasing slowly varying solution has zero
limit and so we obtain:

y(t) = exp
[
− (1 + o(1))

α− 1

µ− γ + α− 2
(ln t)(µ−γ−1

α−1
+1)
( 1

|δ + 1|

) 1
α−1
]

as t→∞.
Furthermore, if we choose δ > −1, then we are investigating increasing slowly varying

solutions. Similarly as in (4.2) we obtain

lim
t→∞

Lp(t)

Lr(t)
= 0,

because γ > µ. All of the required conditions from Corollary 3.1 are satisfied. Now we
know that if there exists an increasing solution then it is also slowly varying and the
asymptotic formula can be written. In the case µ−γ−1

α−1
< −1 the integral∫ ∞

a

( sp(s)

(δ + 1)r(s)LG(1/s)

) 1
α−1

ds <∞

converges, then any increasing solution is in the form:

y(t) = exp
[

ln(y(∞))− (1 + o(1))
α− 1

µ− γ + α− 2
(ln t)(µ−γ−1

α−1
+1)
( 1

δ + 1

) 1
α−1
]

as t→∞. And finally, if we have µ−γ−1
α−1

> −1, then∫ ∞
t

( sp(s)

(δ + 1)r(s)LG(1/s)

) 1
α−1

ds =∞.

In this case an increasing slowly varying solution tends to infinity and we have it in the
form:

y(t) = exp
[
(1 + o(1))

α− 1

µ− γ + α− 2
(ln t)(µ−γ−1

α−1
+1)
( 1

δ + 1

) 1
α−1
]

as t→∞.

46



5 Remarks

In this chapter we will briefly discuss some open problems and we will indicate possible
directions of resolve for these problems.

Non-SV solutions. In the previous chapters we were discussing only decreasing
solutions of (2.2) for δ < −1 and increasing solutions in the case of δ > −1. As we
showed in Theorem 3.1 decreasing solutions are slowly varying functions and any slowly
varying solution cannot increase. However increasing solutions exist and in some cases
we are able to show that they belong to the class of regularly varying functions with
non-zero index. First, take a look at the half-linear equation (2.3). For establishing an
asymptotic formula we can use as one of the possible approaches the reciprocity
principle, which is based on the following relation. If y is a solution of (2.3), then u is
defined u = CrΦ(y′), where C ∈ R, is a solution of the reciprocal equation:(

r̂(t)(Φ̂(u′)
)′

= p̂(t)Φ̂(u), (5.1)

where r̂ = p1−β, p̂ = r1−β and Φ̂(u) = |u|α̂−1 sgn u with α̂ = β, Φ̂ = Φ−1. Then assuming

p ∈ RV(δ) and r ∈ RV(δ + α) and lim
t→∞

Lp(t)

Lr(t)
= 0, if δ < −1, then IS ⊂ NSV(ρ), if

δ > −1, then DS ⊂ NSV(ρ), where

ρ =
δ + 1

1− α
.

And we can deduce an asymptotic formula for non-SV solutions (Theorem 5.1. in [13]).
On the other hand, if we consider a nearly-half-linear equation (2.2), recalling that

functions G−1 and F−1 are inverse functions of G and F and defining u such that

u(t) = r(t)G(y′(t))⇒ y′(t) = G−1
( 1

r(t)
u(t)

)
,

the derivative u′:

u′(t) = p(t)F (y(t))⇒ y(t) = F−1
( 1

p(t)
u′(t)

)
,

so we can the following equation:(
F−1

( 1

p(t)
u′(t)

))′
= G−1

( 1

r(t)
u(t)

)
.

Notice, that this equation is of similar form as (2.2) and therefore it can be treated as
a nearly-half-linear equation. Unfortunately, there are no asymptotic results for such
equations non-linear components LG and LF at our disposal.

Non-emptiness of the set of eventually positive increasing solutions in the
case δ > −1. In Theorem 3.4 we proved that IS ⊂ NSV , so we got that any increasing
solution is slowly varying. For the case δ < −1 in Theorem 3.1 we proved in addition
existence of decreasing solutions and all of them are slowly varying, i.e. ∅ 6= DS ⊂ NSV .
Moreover, we showed that PS ∩ NSV = DS for δ < −1 and PS ∩ NSV = IS for
δ > −1. So the natural question would be whether the set of increasing solutions in the
case δ > −1 is non-empty. In Theorem 3.1 we applied the existence theorem from [3], but
it is applicable only for decreasing solutions, so we could not prove a similar statement in
Theorem 3.4.
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Borderline case δ = −1. We have explored behaviour of solutions of nearly-half-linear
equations for two cases of the index δ, but we did not say anything about the borderline
case δ = −1. This case is the most complicated one for working with solutions of equations
and we cannot apply Karamata’s theorem 1.3 directly. In this particular case we have
p ∈ RV(−1) and so we are not able to conclude whether

∫∞
a
p(s)ds converges or diverges.

Moreover, analysis of this case gets more difficult because of the bigger effect of non-linear
components LG and LF of functions G and F .

Asymptotic estimate. In Theorem 3.3 we have discussed the problem that

y(t) ∼ F̂−1
{
−
∫ t

a

[
− sp(s)

(δ + 1)r(s)LG(1/s)

] 1
α−1

ds
}

as t → ∞ does not follow from the condition
∫∞
a

( sp(s)
r(s)LG(1/s)

)
1

α−1 ds = ∞. We added a
restriction on r = 1 and we also work with α on the shorter interval from 1 to 2. We also
showed in Remark 3.5 that we could choose suitable transformation such that we obtain
an asymptotic estimate for the equation with generalized r and LG = 1. There are things
which can be improved, for example, assuming α ∈ (2,∞) and r in general form. In the
case δ > −1, we cannot take r(t) = 1 as we showed it in the end of Chapter 3. If we try
to take a generalized r ∈ RV(δ+α), then it brings us to the fact that r is a function of λ.
Moreover, we are not allowed to apply the method used in Remark 3.5.

Other methods. There is a number of methods which could be very useful for
investigation half-linear and nearly-half-linear differential equations.

� Transformation of independent variable was used in Remark 3.5 and might be useful
for exploring the borderline case δ = −1. This method allows us by using suitable
transformation to obtain an equation what we are able to work with.

� A modified Riccati technique is an asymptotic linearisation by means of suitable
transformation of generalized Riccati equation into a Riccati equation for linear
differential equations, so then we are able to explore the behaviour of positive
solutions of the linearised problem.

These methods are presented in details for some cases in [12] and we conjecture that their
modification could be useful also for nearly-half-linear equations.
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Conclusion

In the beginning we presented important statements from theory of regular variation,
specifically the Karamata theory and de Haan theory and properties useful in particular for
an asymptotic analysis. In Chapter 2 we introduced some types of non-linear differential
equations, which are the objects of our interest, and we showed some results from literature
related to asymptotic behaviour of solutions to such equations.

In Chapter 3 we have presented results of study of asymptotic behaviour of slowly
varying solutions to some types of non-linear differential equations in the framework of
theory of regular variation. We have discussed positive decreasing and increasing
solutions. If the nearly-half-linear equation satisfies certain conditions, then for slowly
varying solutions which decrease we proved that the set of such solutions is non-empty
and all of them are normalized slowly varying. Moreover, we showed that the set of
normalized slowly varying solutions is eventually equal to the set of positive decreasing
solutions. Similarly, we proved that positive increasing solutions are normalized slowly
varying. Again we concluded that the set of positive normalized slowly varying solutions
is eventually equal to the set of decreasing solutions. Sequentially we presented
asymptotic formulae for nearly-half-linear equations for both cases. We proved them for
the general case where we assumed that p and r are positive regularly varying functions.
This can be understood as an improvement of results already obtained for half-linear
and nearly-linear equations. Moreover, the case of study of asymptotic formulae for
increasing slowly varying solutions is new for the nearly-linear case. Further, we showed
some additional results related to such solutions: we discussed necessary conditions for
existence of normalized slowly varying solutions and we found an asymptotic estimate
for decreasing slowly varying solutions.

In the last part we illustrated some equations as examples for application of obtained
results. We discussed different types of non-linear differential equations, existence of their
slowly varying solutions and using theorems we proved in this work we deduced asymptotic
formulae for their slowly varying solutions. In Chapter 5 we mentioned more methods
for analysis of asymptotic behaviour of solutions to non-linear differential equations and
indicated possible directions for improvement of results we got in this thesis.
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