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Abstrakt 
Cílem této diplomové práce je sjednotit a zobecnit známé výsledky z literatury, studovat 
asymptotické chování kladných regulárně se měnících řešení jisté třídy nelineárních 
diferenciálních rovnic (tzv. skoro pololineárních diferenciálních rovnic) pomocí 
dostupných nástrojů. Tato práce zahrnuje popis teorie regulární variace, některé 
informace o nelineárních diferenciálních rovnicích různých typů, detailní odvození 
výsledků týkajících se asymptotického chování řešení a příklady aplikace získaných 
výsledků. 

Abstract 
The goal of the thesis is to unify and generalize known results from literature, to study 
asymptotic behaviour of positive regularly varying solutions to the certain type of 
non-linear differential equations (known as nearly-half-linear differential equations) 
using available tools. This work includes description of theory of regular variation, some 
information on non-linear differential equations of various types, detailed derivations of 
results related to asymptotic behaviour of the solutions and examples of application of 
obtained results. 
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nelineární diferenciální rovnice druhého řádu, regulárně se měnící funkce, asymptotické 
chování 
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Introduction 
The concept of regular variation was first introduced in 1930 in the Jovan Karamata's 
paper [9]. Regular variation is factually a field in classical real variable theory, together 
with its applications in integral transforms - complex analysis, probability theory, analytic 
number theory and differential equations (see [2], [7], [8], [11], [17]). Among others, it 
was applied in Tauberian theorems, giving in fact asymptotic behavior of integrals and 
series, the Fourier ones in particular. The theory of regular variation has been shown as 
a very useful tool in some fields of qualitative theory of differential equations of various 
forms (see [11] and [14]). The most complete presentation of Karamata theory and its 
generalizations as well as the majority of the applications are contained in [2]. 

In this work we study asymptotic behaviour of solutions to non-linear second order 
differential equations of different types: half-linear, nearly-linear and in some sense 
"combination" of them - nearly-half-linear. They have not been studied a lot yet, but 
these types of equations are shown as an useful tool in applications, for example for 
modelling of fluid mechanics problems. Exploration of behaviour of solutions is made by 
means of regular variation and de Haan theory. 

In the first chapter we introduce basic definitions from the Karamata theory. We 
provide important theorems and show properties of regularly varying functions. We also 
describe de Haan theory and present the definition and properties of a special class of 
functions called II-class. 

In Chapter 2 we discuss some types of non-linear second order differential equations. 
We introduce nearly-half-linear equations and explain how this type of equations is related 
to half-linear and nearly-linear equations. We briefly present some known results and 
applications of these equations from literature. Here we formulate our main goal: to 
unify and generalize asymptotic formulae for slowly varying solutions of the nearly-half-
linear equations. 

Chapter 3 deals with nearly-half-linear equations and we study behaviour of their 
slowly varying solutions. We investigate existence of such solutions, discuss required 
conditions for deducing the asymptotic formula for them using different approaches and 
summarise obtained results. This chapter is divided to two sections where in first we 
are interested in decreasing slowly varying solutions, and in the second we work with 
increasing ones. We also prove other important results, such as statements related to 
monotonicity of slowly varying solutions and asymptotic estimates of such solutions. Many 
of those results are new or can be taken as an improvement or extension of existing results 
for special cases. 

Chapter 4 is devoted to presentation of a couple of examples of equations we discussed 
earlier in Chapter 3. We show applications of the results obtained in the previous chapters 
and other literature and discuss different modifications of such equations. 

The last chapter describes possible directions of further exploration of asymptotic 
behaviour of solutions to nearly-half-linear equations, specifically solutions which are not 
slowly varying, asymptotic estimates for the general case of the equations and other 
methods, which can be useful for resolving additional problems. 
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1 Theory of Regular Variation 
In this chapter we will provide main definitions, important properties and show some 
examples of regularly varying functions. Further we will introduce important facts from 
Karamata theory, which will play significant role in the latter chapters and will be used 
for proving theorems. The main aim of this chapter is to prepare all needed information 
for latter exploration of asymptotic behaviour of solutions of certain types of non-linear 
differential equations. 

1.1 Regular and slow variation 

In its basic form the theory of regular variation studies relations such that 

^' . —> g(X) G (0, oo) as t —> oo for every A > 0. 

We start with two fundamental definitions of regular variation and slow variation. 
Definition 1.1. A measurable function / : [a, oo) —> (0, oo) is called regularly varying 
(at infinity) of index i? if 

lim 4 r v = ^ for every A > 0; (1.1) 
t^oo f{t) 

we write / G lZV(d). The class of all regularly varying functions is denoted as 

nv = (J KV(&). 

Definition 1.2. A measurable function L : [a, oo) —> (0, oo) is called slowly varying (at 
infinity) if 

Hm = 1; (1.2) 
i-s-oo L[t) 

we write L G SV. 

The set of slowly varying functions is a proper subset of the set or regularly varying 
functions and in fact, SV = 1ZV(0). The condition in the definition of 1ZV functions 
mentioned above can be weakened. The limit in the Definition 1.1 is sufficient to hold 
only for A in a set of positive measure a then the regular variation follows. Moreover, if 
the limit 

lim = G (° ' °°) 
t^oo f(t) 

exists for A in a set of positive measure, then the function g is necessarily in the form 
g(X) = \ & , where i? is a real number. 

A slowly varying function is customarily denoted by L because of the first letter of the 
French word "lentement" which means "slowly". Using Definitions 1.1 and 1.2, it is easy 
to show that / G 1ZV(i?), where # G M, if and only if it is possible to write the function 
in the form 

/(*) = t°L(t), where L G SV. (1.3) 
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So for many purposes in the study of regular variation it is enough to explore the properties 
of slowly varying functions. Let us give some examples of such functions: 

L(t) = J^(hijt)M i, where hijt = m l n ^ t and //, 
i=l 

n 

L(t) = exp ( J^(hijt)^ , where 0 < i/j < 1, 
i=l 

L{t) = 2 + sin(ln 2t), 
1 I4 1 L(t) = - / -—ds, 

L(t) = exp ((lnt)3 cos(lnt)3). 

Let us prove slow variation of selected functions. We start with the simplest one 
L(t) = lnt, then applying l'Hospital's rule we have: 

, ln(At) , (ln(At)V A/At t 
hm — = hm ——-— = —— = - = 1. 
t^oo hit t^oo (lnt)' l/t t 

Let us add a power L(t) = (lnt)M and we obtain again a slowly varying function by 
Proposition 1.1 presented below, which says that if / G 72.V(i?), then fa G TZV(a"d) for 
every a e l . Let us consider another function L(t) = ln(lnt), then we have: 

, ln(ln(At)) , (ln(ln(At))V , t i n t 
hm ——-—:— = hm ———-—-— = hm 1 

ln(lnt) t^oo (ln(lnt))' t^ootln(At) 

Thus we get L(t) = ln(lnt) e SV. If we take L(t) = (lnt) / i l (ln(lnt)) / i 2 , then using 
Proposition 1.1, we can conclude that L(t) = n r = i ( m ^ ) M i e 

Let us take a function L{t) = 2 + sin(ln 2t). To prove that this function is slowly 
varying we will use again properties of regularly varying functions from Proposition 1.1. 
We want to show that tg'{t)/g{t) -»• i?, g e C1, then g e TIV{$) such that g{t) ~ f{t) as 
t —> oo and so / G 72.V(t?),i? 7̂  0. If we deal with a slowly varying function, we assume 
•& — 0. Let us prove that tL'(t)/L(t) —> 0 as t —> 00. Compute 

tL'(t) _ tcos(ln 2t) ^ 
L(t) ~ tlnt(2 + sin(ln 2t)) 

as t —> 00, because a cosine/sine function is bounded and lnt —> 00. Now we can conclude 
that L(t) = 2 + sin(ln21) e 5 V . 

Let us prove slow variation of the function L(t) — 7 J* i^~ds. Recall that lnt G «SV 
and use Karamata's theorem 1.3, which will be introduced in the next section we prove 
that 

1 f* 1 t 
t Ja has tint 

The class 1ZV includes a wide variety of functions. In particular, slowly varying 
functions do not need to be monotone eventually. The exponential functions exp(t) or 
exp(—t) are not regularly varying, but 1 + exp(—t) is slowly varying. The last example 
L(t) = exp ((lnt)s cos(lnt)3^ provides a slowly varying function which exhibits "infinite 
oscillation", i.e. l i m i n f ^ ^ L ( t ) = 0, l i m s u p ^ ^ L(t) = 00. 
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We have defined regular variation at infinity. Of course, this is not the only possibility. 
A measurable function / : [a, oo) —> (0, oo) is called regularly varying at zero of index $ if 
^lim = \ ^ for every A > 0 - we write / G IZVoij)). Since regular variation of /(•) at 

zero of index d means in fact regular variation of at infinity of index —i?, properties 
of TZVo functions can be easily deduced from theory of 1ZV functions. Regular variation 
can now be defined at any finite point by shifting the origin of the function to this point. 
In the next remark we examine functions for which the limit in (1.1) attains the extreme 
values. 

Remark 1.1. A measurable function / : [a; 1) —> (0; 1) is called rapidly varying of index 1. 
we write / G KVV{1), if 

, /(At) fo f o r O < A < l . 
hm = < 
t^oo f[t) I oo for A > 1. 

and is called rapidly varying of index —oo, we write / G VSPV{—oo), if 

, /(At) foo f o r O < A < l . 
hm — . = < 
t^oo /(t) | 0 for A > 1. 

The class of all rapidly varying solutions is denoted as 1ZW. 

Let us introduce a couple of notations which will occur later in this thesis. For 
eventually positive / and g we denote: 

. f{t)~g{t) if hm f(t)/g(t) = 1; 

• f(t)=o(g(t)) if hm f(t)/g(t) = 0; 

• f{t) = 0(g(t)) if 3c G (0, oo) such that /(t) < cg(t) for large t. 

1.2 Karamata theory 
In this section we will introduce basic information on Karamata theory, which will help 
us during the analysis of behaviour of solutions to differential equations. The following 
theorems are very important in the theory and properties obtained from them will be 
useful for exploring 1ZV functions and investigation of solutions to differential equations. 
The first statement is the so-called Uniform Convergence Theorem. 

Theorem 1.1. If f G IZVi'd), then the relation (1.1) (and so (1.2)^ holds uniformly on 
each compact \-set in (0,oo). 

The second fundamental result is the following Representation theorem. Its proof is 
based on Theorem 1.1. 

Theorem 1.2. (Representation theorem) A function L is slowly varying if and only if it 
has the form. 

L(t) = 0(t) exp [ f ^ d s l , (1.4) 
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t > a, for some a > 0, where <f>, ip are measurable with lim (pit) — C G (0, oo) and 
lim ip(t) = 0. A function f G TZViJ)) if and only if 

t—>oo 

t—¥CO 

/(t) = 0(t)t%xp f ^ d s , (1.5) 

t > a, for some a > 0, where <f>, ip are measurable with lim (pit) — C G (0, oo) and 

lim ^(t) = 0. 
t—>oo 

Since L , 0, ^ may get changed on finite intervals, the value of a is unimportant: if 
a = 0 one can take ip = 0 on a neighbourhood of 0 to avoid divergence of the integral at 
the origin. The Karamata's representation (1.4) is essentially non-unique: within limits, 
one may always adjust one of <f>(t), ip(t) making a compensating adjustment to the other. 
From some points of view slowly varying functions are of our interest only to within an 
asymptotic equivalence. We would not lose anything by restricting attention to the case 
<p{t) = 0 in (1.4) or (1.5). The following definition is appropriate to this case. 

Definition 1.3. The regularly varying function of index •& 

f{t) = Ct* exp [ f ^ d s l , (1.6) 

lim ip(t) = 0, C G (0, oo), is called normalized. We write / G AfHV(i9). The set of 
normalized slowly varying functions, i.e., J\flZV(0), is denoted as AfSV. 

If / is a C1 function and lim tf'(t)/f(t) = then / G NKV(ti). Conversely, if 

f G NnV{$) n C 1 , then lim tf'(t)/f(t) = 
t—^oo 

The following results will be useful in applications to the theory of differential 
equations. This theorem is also called Karamata's theorem and will be used for proving 
formulae for asymptotic solutions of different types to differential equations. The proof 
of the theorem is provided in [2]. 
Theorem 1.3. (Karamata's theorem) If L G SV, then 

"OO 1 
s^L(s)ds ~ -t*+lL(t) provided § < - 1 , (1.7) 

ff 1 
J s*L(s)ds ~ j^~^+1L{t) provided 0 > - 1 . (1.8) 

at t —> oo. Moreover, if f°° L(s)/sds converges, then L = f°° L(s)/sds is a SV 
function; if f°° L(s)/sds diverges, then L = f* L(s)/sds is a SV function. In both cases 
L{t)/L{t) -»• 0 as t -»• oo. 

Let us provide some properties of regularly varying functions. More details on these 
proofs can be found in monographs [2], [7] and [17]. 

Proposition 1.1. 

• If f e 1ZV{$), then l n / ( t ) / l n t ->• d as t ->• oo. It then implies that lim fit) = 0 
provided $ < 0 and lim /(£) = oo provided $ > 0; 
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If f e ftV(tf), then fa G 1lV(ad) for every a G R; 

If ft G KV(#i), i = 1,2, f2(t) oo as t oo, t/ien / i o / 2 G KV(#i#2); 

Iff- G KV(0i), 1 = 1,2, then A + / 2 G ̂ V ( m a x { ^ , ^ 2 } ) ; 

/ / / i G 72V(^), z = 1,2, taen / ! / 2 G ftV(#i + tf2); 

If fi,..., fn G 72.V, n G N and R(x\,..., i „ ) is a rational function with non-
negative coefficients, then R(fi, • • •, / n ) G 72V; 

IfLeSV and d > 0, t/ien t*L(t) -»• oo, r * L ( t ) -»• 0 as t -»• oo; 

If f E 72V(i?),i? 7̂  0, taen taere exists g E C1 with g(t) ~ / (£ ) as t —> oo and 
stica taat tg'(t)/g(t) —> i?, aence g G NlZVifi). Moreover, g can be taken such that 
\g'\ G J\fTZV('d — 1); 

/ / | / ' | G 72V(i?), 7̂  —1 wit/i / ' fremg eventually of one sign, then f G A/"72V(i?+1); 

Let g G 72.Vo(^) M i / i > 0 6e increasing in a right neighbourhood of zero. Then 
g - 1 G 72Vo(l/i?), where g - 1 stands for the inverse of g. 

1.3 De Haan theory 
De Haan theory can be understood as a refinement of Karamata theory. The theory was 
studied by de Haan in his thesis of 1970 [8]. 

Definition 1.4. A measurable function / G [a, oo) —> R is said to belong to the class n 
if there exists a function u : (0, oo) —> (0, oo) such that for A > 0 

U m / ( A * ) - / M = l n A ; ( 

we write / G n or / G n(a>). The function w is called an auxiliary function for / . 

Let us give some examples of functions belonging to the class n . The functions / 
defined by 

/ ( t ) = l n t + o(l), 

f(t) = ( ln t ) a ( ln 2 t ) / 3 + o(( lnt) a - 1 ) , a > 0, (3 G R, 
/(*) = exp((lnt) 7) + o((lnt) 7" 1) exp((lnt) 7), 0 < 7 < 1, 

are in n . For example, the function f(t) = 21nt + sin(lnt) is in SV but not in n . 
Now we will show selected properties of functions in the class n . The proves of them 

are presented in [7] and [2]. 

Proposition 1.2. 

• IfO<c<d<oo relation (1.9) holds uniformly for A G [c, d]; 

• Auxiliary function is unique up to asymptotic equivalence; 
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The statements f G IT and there exists L G <SV s«c/j */ja* 

/ ( t ) = L ( t ) + r ^ d s (1.10) 
Ja S 

are equivalent; 

If f satisfies (1.10), then f G II(L) and 

Lit) ^ f{t) ~ \ f f{S)dS (1.11) 

as * —> oo. / / / G II(L) is integrable on finite intervals of (0, oo), */ien (1.11) holds; 

• / / / e l l , */jen lim /(£) =: /(oo) < oo exists. If the limit is infinite, then f G SV. 
t—^oo 

If the limit is finite, then /(oo) — f(t) G SV. 

Let us prove one more proposition, which is very useful and will be used in the next 
chapters. 

Proposition 1.3. / / / ' G IZV(-l), then f G IT(*/'(*)). 

Proof. We have / ' G 1ZV(—1). Let us check if (1.9) is satisfied for w{t) = tf'{t). 
Integrating by substitution u = st, for every A > 0 and using Uniform Convergence 
Theorem 1.1 we obtain 

/ ( a * , - / ( « ) _ r r w d u = ^ / M d s ^ ^ i d s = l n A j 

(/'(*) J , '/'(*) i l /'(*) i l « 

as * —> oo. • 

Let us prove that the functions presented above before are indeed in the class II. The 
proof that the first function fit) = In* + o(l) belongs to the class IT is easy. Indeed, if we 
take w(t) = tf'(t) = * • 1/*, then 

l n ( A t ) - l n * 
ln(A*) - In* = In (—) -»• In A 

* - l / * v y V t 

as £ —> oo. We continue with a function /(*) = (In*)2. Let us use Proposition 1.3 and 
recall that In* G SV. Compute: 

/ ' (*) = ^ G nv(-i) 

by Proposition 1.1, thus f(t) = (In*)2 G 11(2In*). In the next step we will prove that 
f(t) = (In*)(In(In*)) belongs to the class IT. Let us use again Proposition 1.3 and the 
fact that /(*) = (In*)(In(In*)) G SV. Compute a derivative of / : 

by Proposition 1.1, so due to the property we mentioned before we are able to conclude 
that / G TI(m(ln*) + 1). 
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Let us generalize this result for general powers. Take a function 
f(t) = (lnt) a(ln(lnt)) / 3 . We will follow the same argumentation, so let us compute / ' : 

, = /J(ln(t))- 1 (ln(lnt))^- 1

 + a(ln(t))- 1 (ln(lnt))^ g ^ 

and from this fact we conclude that 

/ G n( /S(ln(t)) Q" 1(ln(lnO) / 3" 1 +/S(ln(t))Q" 1(ln(lnt)) / 3- 1). 

Remark 1.2. In [8] by de Haan was introduced and studied another class called T, which 
can be understood as an "inverse" of the class II. This class is also useful for solving 
differential equations. A non-decreasing function / : M —> (0, oo) is said to belong to the 
class T if there exists a function v : (0, oo) —> (0, oo) such that for all A G M 

/(At) + Xv(t) , 
lim — = e ; 
t^oo f(t) 

we write / G T or / G r(u). 
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2 Non-Linear Second Order Differential Equations 
In the last decades a great attention has been paid to the differential equations with 
p-Laplacian. Let us recall that the p-Laplacian is a partial differential operator of the 
form: 

Apu : = div (\\Vu\\p-2Vu), 

where for u = u(x) = u(xi,..., XN) 

d d 

.dx\' ' 8XN• 

is the Hamilton nabla operator and for v(x) = (vi(x),... ,VN(X)) 

div v(x) = TT-(X) 
r-^ oxi 
1=1 

is the usual divergence operator. If u is a radially symmetric function, i.e. u(x) = y(t), 
t — ||x||, 11 • 11 being the Euclidean norm in M.N, the (partial) differential operator Ap can 
be reduced to the ordinary differential operator 

Apu(*)=t1-N(tN-1<s>(y'(t)))', ' = ^, 

where := \u\p~1sgnu, p > 1. The p-Laplacian operator is useful for studying and 
modelling of the flow of a liquid through a porous medium, that was one of the problems 
which big cities were dealing with in the 18 t h century. It was found as a useful tool for 
the the Darcy's law for the turbulent flow, so the velocity of the flow is higher and/or the 
aquifer is more coarse-grained. Also, p-Laplacian is useful for exploration of the de Prony's 
law for small velocities. More information to this topic can be found in [1]. One of the 
important prototypes of equations with p-Laplacian is a quasilinear differential equation 
in the form: 

( r ( t ) $ a ( « ' ) ) ' = p{t)$x{u), (2.1) 

where 3>7(iu) := \w\1~1sgaw, 7 > 1. If we take different a and A, then this class of 
equations contains also Emden-Fowler equations. Equations and systems of Emden-Fowler 
type are investigated in the framework of regular variation e.g. in [5] and [10]. On the 
other hand, if a — A, then we get half-linear equations. Even though we are dealing 
with non-linear equations, on the contrary to (2.1) with different indices a and A, the 
half-linear equations in lots of aspects are closer to the linear case and methods used for 
solving them are different from ones used for (2.1), a 7̂  A. In case of a = A = 2, then 
(2.1) reduces to the linear equation. 

Non-linearity does not need to be purely in the form of power functions, but it can 
have a perturbation in the form of a slowly varying function, which enables us to include a 
wider set of equations. Half-linear equations can be naturally generalized by substituting 
$«(•) with continuous functions F(\ • |) and G(\ • |) such that F(u) = |it|a~1sgn('u).LF(|'u|), 
where Lp G SV or Lp G SVo and similarly G such that G{u) = |M| a _ 1sgn(M)LG(|w|), 
where LQ G SV or LQ G SVO. The we obtain a differential equation in the form: 

{r(t)G(y'(t)))' =p(t)F(y(t)), (2.2) 
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where p and r are positive continuous functions on [a, oo) and F(\ • |) and G(\ • |) are 
continuous functions which are regularly varying (at infinity or at zero) of index a — 1, 
where a > 1 and $a(u) = | i i | a _ 1 sgn(w). To simplify our considerations we suppose that 
F and G are increasing and odd functions. We use the convention that a slowly varying 
component of / G 7£V(i?) denoted as Lf G 7£V is represented in the form Lf = t~^f(t). 
Examples of functions F{u) and G(u) such that the equation is non-linear and can be 
explored within the theory are $ a ( i i ) | In \u\\, $ Q ( u ) / | In |«| | or and many others. 
For a = 2 the function is called the Euclidean mean curvature operator and arises 
in the search for radial solutions of partial differential equations which model fluid 
mechanics problems, in particular capillarity-type phenomena for compressible and 
incompressible fluids. On the other hand, ^3^2 is called Minkowski mean curvature 
operator (or relativity operator) and it is used for studying properties of the mean 
curvature of hyper-surfaces in the relativity theory. 

We call the equation (2.2) "nearly-half-linear", because they can be understood as a 
combination or unification of two other types of differential equations: half-linear 
equation (2.3) and nearly-linear equation (2.6), which we will discuss later in the 
chapter where we will recall important properties of such equations and will present 
asymptotic formulae for positive solutions. 

We define (3 = is a conjugate number of a. For function p we will be using index S 
so if p is regularly varying then we write p G 1ZV(5). This index will play significant role 
in the future analysis of solutions of nearly-half-linear equations, because this index will 
influences character of slowly varying solutions of (2.2). 

The space of solutions of (2.2) is neither homogeneous nor additive. Without loss of 
generality, we work only with positive solutions, i.e. with the set 

VS = {y : y(t) is a positive solution of (2.2) for large t}. 

Because of the sign condition on the coefficients, all positive solution VS of (2.2) are 
eventually monotone, therefore they belong to one of the following disjoint classes of 
decreasing and increasing solutions: 

IS = {y eVS : y'(t) > 0 for large £}; 

VS = {y G VS : y'(t) < 0 for large t}. 

These classes can be further divided to the disjoint subclasses: 

ZSoo = {y eXS : lim y[t) = oo}; 

XSB = {y eXS : lim y(t) = I G R}; 
t—^oo 

VSB = {y eVS : lim y(t) = I > 0}; 
t—¥00 

VS0 = {y eVS : lim y(t) = 0}. 
t—>oo 

As far as we know nearly-half-linear equations have almost not been studied in the 
literature. Our main goal is to obtain results, which will generalize known results and using 
available tools to show similarities of the nearly-half-linear type of equations compared to 
the half-linear and nearly-linear differential equations. Among others, we will generalize 
and unify Theorem 2.1 and Theorem 2.2 presented below. Furthermore, we will prove 
other types of results, which can also be shown as new: nearly-linear equation with 
general r , increasing solutions in case of nearly-linear equations and other properties of 
decreasing and increasing solutions of such equations. 
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2.1 Half-linear differential equations 
We consider the equation 

(r(t)$«(l/(*)))'=P(*)^«(l/(*)), (2.3) 

where p and r are positive continuous functions on [a, oo) and $ Q(n) = |n| a _ 1sgn(n) with 
a > 1. This equation is non-oscillatory or in other words all its non-trivial solutions 
are eventually of constant sign, what explained in [4]. The terminology "half-linear" 
differential equation reflects the fact that the solution space of (2.3) is homogeneous, but 
not additive, what is the basic difference between linear and half-linear equations. 

Further we will show one illustrative result on positive solutions of half-linear 
equations. The next theorem provides an asymptotic formula for decreasing solutions of 
a half-linear differential equation. 

Theorem 2.1. (Theorem 5 in [16]) Let p G KV(5) and r G 7ZV(S + a) with 5 < -1. 
Assume -»• 0 as t -»• oo, then VS C SV. If y G VS n 5 V , then y G U(-ty'(t)). 
Moreover, for every y G VS, 

s-^§j-)a-1 ds = oo, then there exists e(t) with e(t) —> 0 as t —> oo snc/i t/iat 

y (£ )= e x p { ^ / ( l + r(.s)) 

and w(t) —> 0 as t —>• oo; 

r(s) 

= /exp 

and —> / G (0, oo) as £ —> oc 

(<J + l)r(s) 
i 

a - l (2.4) 

if (^Is)-)01-1 ds < oo, then there exists e(t) with e(t) —> 0 as t —> oo snc/i t/iat 

sp(s) 
(<J + l)r(s) 

i 
ris (2.5) 

2.2 Nearly-linear differential equations 
We consider the equation 

(G(y'(t)y = p(t)F(y(t)), (2.6) 

where p is positive (at infinity or at zero) continuous functions on [a, oo) and F(\ • |) 
and G(| • |) are continuous functions on M. which are regularly varying (at infinity or at 
zero) of index one with uF{u) > 0 and uG{u) > 0 for u ^ 0. This condition justifies 
the terminology a nearly linear equation. If we make the trivial choice of the functions 
F = G = id, then (2.6) reduces to a linear equation. 

We know, that the solution space of (2.3) is neither homogeneous nor additive, but 
we still are allowed to use the same methods of exploration as for the linear case. In 
the following theorem we will show a general form of a decreasing solution of a nearly-
linear differential equation. The proof of the theorem and following remarks are in [14]. 
Conditions for existence of decreasing solutions and T>S C MSV are 

/•OO 
lim t / p(s)ds = 0, limsupLi?(n) < oo, liminf La(u) > 0. 
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Before we get to the asymptotic formula for solutions we have to introduce function F in 
the way: 

x > 0. 

The constant 1 in the integral can be replaced by any positive constant. Also we denote 
F _ 1 as the inverse function. 

Theorem 2.2. (Theorem 2 in [15]) Let p G TZV(—2) and l i m u ^ 0 + 1-̂ (̂ )1 — ° ° - Assume 
that LG{ug{u)) ~ LG(u) as u -»• 0+ for all g G «SV0- Ify G VSnSV, theny G U(-ty'(t)). 
Moreover, for every y G VS, 

* $ Ja°°(LG(I/S) ) ^ = °°> ^ e n ^ e r e exists £(t) with £(t) ^ 0 as t —> oo snc/i t/iat 

y W = ^ ' { - J T ( l + e W ) I g ^ * } (2.7) 

and y(t) —> 0 as t —>• oo; 

• / a ° ( L G ( I / S ) ) ^ < °°> ^ e n ^ e r e exists e(t) itrat/j e(t) —> 0 as t —> oo snc/i t/iat 

y(t) = F-l{F{y(oo)) + j T (l + <s))j^J^ds} (2'8) 

and y(t) —> y(oo) G (0, oo) as £ —>• oo. 
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3 Asymptotic Behaviour of Solutions to Nearly-Half-
Linear Equations 

In this chapter we will study asymptotic behaviour of positive solutions of nearly-half-
linear differential equations, in particular positive slowly varying solutions. First we will 
describe the relation between the indices of regular variation of functions p and r . We will 
divide the results to two groups depending on the indices of regular variation of functions 
p and r . As we mentioned in the previous chapter, asymptotic behaviour of solutions is 
affected by the index of regular variation of p, so we will work with these cases separately. 
We will show different approaches to proving an asymptotic formula for solutions to such 
equations. Some of these results are new even in the special cases and some of them 
generalize already known results. 

3.1 Decreasing slowly varying solutions 
In this section we will be dealing with a nearly-half-linear equation and assume that the 
function p(t) is regularly varying with index S < — 1. At the beginning we will explore 
existence of slowly varying solutions. Then we will provide an asymptotic formula for 
solutions to nearly-half-linear equations. Further we will show a couple of special cases 
for certain functions p, r and Lp or LQ. At the end of this subsection we will briefly 
discuss possibility of an asymptotic estimate of the solution and restrictions which are 
required for proving such statement. 

The following theorem proves non-emptiness of the set of positive decreasing solutions. 
Moreover, we will show that all of such solutions are normalized and slowly varying. 

Theorem 3.1. Consider the equation (2.2). Assume that 

roc 

/ p(s)ds<oo, (3.1) 
J a 

a-1 

lim t—— I pis)ds = 0, (3.2) 
t^oo r(t) 1 

lim sup Lp{u) < oo, (3.3) 

/

°° / M \ 

G~X\riJ)rS = °° f ° r s o m e M e ( 0 , o o ) (3.4) 

and liminf LG(u) > 0. (3.5) 

Then 0 ^ VS C MSV. 

Proof. Firstly, we rewrite the equation (2.2) as an equivalent system of two equations 

^ = u=-p(t)F(y), 
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where G _ 1 is the inverse of function G. For this system we apply the existence theorem 
from [3], which requires — G'~1(-u/r(£)) < 0 and —p(t)F(y) < 0 for y > 0 and u > 0. Both 
of the conditions are satisfied, so we can conclude that VS ^ 0. 

Take y G VS so y(t) > 0, y'(£) < 0 for large t, say t > a. Then from (2.2) r(t)G(y'(t)) 
is negative increasing for t > a. Then there exists the limit 

lim -r(t)G(-y'(t)) = -M G (-oo,0]. 
t—¥00 

If —M < 0, then -r(t)G(-y'(t)) < -M for large t because of the fact that -r(t)G(-y'(t)) 
is increasing. Thus 

G(y'(t)) < 
M 

Now use inverse function G 1 and we obtain 

y'(t) < -G-1 

Integrating the inequality from a to t we have 

M 

yit) < y(a) - J G-1 (^y)ds - o c 

as t —> oo due to (3.4), what contradicts with the fact that we are working with positive 
solutions. It means that we can conclude M = 0. 

Now integrate the equation (2.2) from t to oo and obtain 

/

oo 
p(s)F(y(s))ds. (3.6) 

Using the definition of functions G and F, recalling that we care only of positive solutions 
and from the fact that y G VS we get 

r(t)(-y'(t)r-1LG(\y'(t)\) = J p ( S ) (y ( S ) ) Q - 1 L F (y ( S ) )d , 
POD 

< (y(t)r~l / p(s)LF(y(s))ds. 

Divide this inequality by (y(t))a and multiply by ta . Thus, 

m)v-><f-'Mf)> r ( s ) d s < ^ , p ( s ) d s ( 3 . 7 ) 

»(«) ^ " M l v ' M I M * ) i . " K*) 

for large t, where K G (0, oo) is some constant reasoned by the conditions (3.3) and (3.5) 
such that K = P/N, where P > LF(y(t)) and l/N > 1 /LG(\y'(t)\) for large t. Since 
the right-hand side of the relation (3.7) tends to zero thanks to (3.2), we obtain that 

—> 0 as t —> oo. From this fact y G J\fSV follows. • 

For establishing asymptotic formula we will assume that both of the functions p and 
r are regularly varying. It would be natural for us to assume these functions with general 
indices p G 1ZV(5) and r G TZV('-/). In the next remark we will show that when we work 
with SV solutions it is in fact necessary to have certain relation between the indices of 
regular variation of these functions. 
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Remark 3.1. Assume that p G KV(6), r G KV(j) and y G VS0 n SV of (2.2). Then 
recalling the definition of F and with the help of properties from Proposition 1.1 we have 

(rit)G(y'(t)))' = p(t)F(y(t)) enV(5). 

Integrate (2.2) from t to oo and we get the relation (3.6). We know that y'(t) < 0 for 
t > a, then we can rewrite the functions F and G as 

/

oo 
P ( s ) ( 1 / ( s ) r - 1 L F ( l / ( s ) ) d s e ^ V ( r 5 + l ) , 

using properties of 1ZV from Proposition 1.1 and Karamata's theorem 1.3, and so we get 
(y'(t))a~1 G 1ZV(5 + 1 — 7), because r G TZV(j) and L G G SV, which implies that 
y'{t) G ^ V ( ^ ± r p ) . If ^ - 1 we can easily prove that G ^ V ( ^ = ^ + l) 
using the Karamata's theorem 1.3. Therefore, since y G SV, i.e. y G 7£V(0), we obtain 
< 5 ^j_~ 7 + l = 0 and it is a contradiction with the assumption 5^~^ 7̂  — 1. Thus ^ j _ ~ 7 = — 1, 
so we get 7 = 8 + a. 

In the following remark we will show how the conditions guaranteeing slow variation 
of any decreasing solution in Theorem 3.1 can be rewritten in the case when functions 
p G TIV{5) and r G TZV(S + a) with 5 < - 1 . 

Remark 3.2. Assume p G 1ZV(5) and r G TZV(S+a), where S < — 1. Then by Karamata's 
theorem 1.3 we get J a °°p(s)ds < 00. 

If G G 7?.Vo(a — 1), then G~x G ^ V O ( ^ T Y ) . Applying Proposition 1.1 we obtain 
G-l{l/r{s)) G ftV((-5 - a)(l/(a - 1))) = 7?V(((J + a ) ( l - (3)) and so we get 

/ G'H-r-)ds= / r^is) • h(s)ds. 
J a \r{s)J Ja 

where h G SV. In fact, JA°° r 1 _ / 3 (s)ds = 00, which follows from 

(1 - P)(5 + a) = (1 - P)(5 + 1 + a - 1) = (1 - P)(5 + 1) - 1 

with 5 < —1, so (1 — (3)(d~ + a) > — 1 and Karamata's theorem 1.3. 
Take the right-hand side of (3.7) and apply Karamata's theorem 1.3: 

t a - i K r°° ta~xK 1 s , , T . , L„(t) 1 

Thus, 

W)i p ( s ) d s ~ M l ) ' 

In the following proposition we will prove that the condition (3.2) is necessary for 
existing of MSV solutions. 

Proposition 3.1. Assume that r G lZV(5 + a) where 8 < —1, l i m i n f u ^ 0 + Lpiu) > 0 and 
l i m s u p u ^ 0 + LG{u) < 00. The condition (3.2) is necessary for existence of a decreasing 
normalized slowly varying solution. 
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Proof. In fact, we will prove that if there exists such y G VSnAfSV, then (3.2) is satisfied. 
Later we will show that SV solutions necessarily decrease. 

Let y G VS. Consider 
_ r(t)G(y\t)) 

and w(t) satisfies the generalized Riccati type equation in the form: 

W ' ~ P W ) + { a ~ 1 ) H / > M y ' ) ) 1 ~ / 3 = a ^ 3- 9) 

The derivative of w: 

w , = (rG(yi)y$(y)-rG(yi)($(y)y = (rG(y'))' _ (a - l)rG(y')\y\a-2y' 
$ 2(y) \y\2a-2(sga(y))2 

_ PF(y) (a - l)r^^\y'nLG{\y'\)Y{LG{\y'\)f-^ 
$(y) 

= p f ^ - ( « - i ) H / J ( r M l y ' l ) ) 1 " / J -

Notice, that the Riccati equation (3.9) is dependent not only on the function w, but 
also on the function y, because of the general form of non-linear functions Lp and LQ. 
Remember that we work only with positive solutions y, so instead of working with the 
function $(y) = \y\a~1sgn(y) we continue to work with the function ya~x. There exists a 
constant TV G (0, oo) because of the boundedness condition on LQ such that 

ta~l , \ ta-lG(y'(t)) , r / V ( t h a _ 1 

0 < — r r w ( t ) = , , , 7 V < - i V ( - ^ Y ) ^ 0 3.10 
r(t) 1 ; (^(t))"-1 " V 7 1 j 

as t —> oo, because y G MSV. 
Integrate (3.9) from t to oo and multiply by so we obtain: 

+a—l j.a—1 roc j.a—1 roo 

-wit) = t— / p(s)LF(y(s))ds - ( a - if— / | « ; ( S ) | / J ( r ( S ) L 0 ( | y ' ( S ) | ) ) 1 - / J d S . 

(3.11) 

The left-hand side of the equation (3.11) tends to zero due to the observation in (3.10). 
Let us work with the second term on the right side of the equation and find a limit using 
l'Hospital's rule: 

1- r ' f i n i ^ U fl V ^ H r Ht)\P(r(t)LG(\y'(t)\)) 1-/3 

t^oo r'it^t1-* + (1 - a)r{t)t-a 

{y'(t)YLG{\y'(t)\) 
lim 
t^oo {y{t))a{r'{t)/r{t)tl-a + (1 - a)t 

l i m g W j ' 
t^oo (y(t))a(tr'(t)/r(t) + (1 - a)) 

0 • M 
—o — a + a — 1 
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where M G (0, oo) is a constant, which follows from l imsup u ^ U o LG(u) < oo. From (3.11) 
we get the limit 

£«—1 roc 

lim —— / p(s)LF(y(s))ds = 0, 
<̂ oo r(t) Jt 

and if we define K G (0, oo) such that LF(y(t)) > K for large £ due to the assumptions 
above, then we get the condition 

lim ——— / p(s)ds = 0. 

• 
If, in addition p G 72.V(5), then the necessary condition is Lp(t)/Lr(t) —> 0 as t —> oo as 

we showed it earlier. A closer and more detailed examination of the proofs actually shows 
that the condition r G 1ZV(5 + a) can also be relaxed to the existence of G 1ZV(5i + a), 
i — 1, 2, with ri(t) < r(t) < r^it) for large t, and r51; r52 < —1. 

Further we will show that slowly varying solutions necessarily decrease. The proof is 
made by contradiction. 

Proposition 3.2. Assume p G TZV(5), r G TZV(5 + a), with 5 < - 1 and y G VS n 5 V , 
£/ien y G D<S. 

Proof. Take y G X<S fl <SV. Since y is positive, then r(t)G(y'(t)) is positive increasing. 
Hence, there exists some positive constant M such that r(t)(y''(t))a~1LG(y'(t)) > M for t 
sufficient large. Dividing by r(t) and raising by — -̂j-, it follows that 

i 
a - l 

.r(t)LG(y'(t)). 

which after integration both of the sides from a to t implies 

Since r G 1ZV(5 + a) and LG G <SV, it holds 

1 ^ e n V ' - * - " 
r(t)LG(y'(t))J V a - l 

From hypothesis 5 < - 1 we can conclude that —5 — a > 1 — a, so " ^ J " > —1. Applying 
Karamata's theorem 1.3 and Proposition 1.1 we then obtain that 

f ( 7 ¥ 1 v J " d s e + 0 = K V ( " ' 
A \r(s)LG(y'(s))J \ a - l / V 

V a 

-5-1 Since r5 < —1, it follows that —^-j- > 0, therefore (3.12) implies that y is greater than or 

equal to a regular varying function with positive index ( ~ a ^ and therefore cannot be 
slowly varying, what is a contradiction. • 
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Remark 3.3. In the previous proposition we proved that slowly varying solutions are 
necessarily decreasing and in Theorem 3.1 we showed that any decreasing solution is 
normalized slowly varying. Notice, that from these two facts it is clear that 

vs n Afsv = vs. 

Before we prove the following theorem we need to define a function F such that 

r &u 
Fix) 

i ) 
| ct-l 

x > 0. (3.13) 

The constant 1 in the integral can be replaced by any positive constant. Denote the 
inverse of Fix) by F~1(x). We have \F\ G SVo and in general lim can be finite 

or infinite. Slow variation of \F\ follows from the fact that F G 1ZVo(a — 1), which 
implies F^1 G TZVQ{1) due to Proposition 1.1. Applying Karamata's theorem 1.3 to 

G TeVo(-l) we obtain 

a (F(u))" 
—du eSV, 

Now we are ready to derive an asymptotic formula for a solution of the nearly-half-
linear differential equation (2.2), what we will do in the following theorem. Assumption 
of r G 1ZV(5 + a) thanks to Remark 3.1 is not restrictive, but natural. 

Theorem 3.2. Letp G 1ZV(5) andr G lZV(5 + a) with S < — 1. Assume lim \F(u) \ = oo 

and LG{ug{u)) ~ LG(u) as u -»• 0+ for all g G SV0. If y G VS n MSV to (2.2), £/ten 
—y(t) G II(—ty'(t)). Moreover, for every y G DiS Hj\fSV, 

if 
sp(s) 1 

a - 1 

ds 
.r(s)LG(l/s) 

£/jen £/jere exists e(t) with e(t) —> 0 as £ —> oo stic/i £/ia£ 

sp(s) 

oo. 

and y(t) —> 0 as £ —>• oo; 

(<S + l ) r ( s ) L G ( l / s ) 
i 

ds (3.14) 

sp(s) i 
a - l . . . ds < oo. 

.r(s)LG(l/s)J 

then there exists e(t) with e(t) —> 0 as £ —> oo stic/i £aa£ 

sp(s) 
y(£) = F - 1 | F ( | / ( o o ) ) + y ( l + e(s)) 

and y(t) —> y(oo) G (0, oo) as £ —>• oo. 

(S + l)r(s)LG(l/s) 
ds (3.15) 
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Moreover, \y(oo) — y(t)\ G SV and 

tf-\t)l£\llt)(v(oo)-v(t)) 

as t —> oo. 

o(l) (3.16) 

Proof. Take y G VS Hj\fSV and let a be such that y(t) > 0 and y'(t) < 0 for t > a. Then 
we claim that 

(r(t)G(y'(t)))' = p(t)F(y(t)) G KV(5), (3.17) 

provided by y(t) —> 0 as £ —> oo by Proposition 1.1. If —> C G (0, oo), then the 
conclusion is the same since F(y(t)) —> F(C) G (0, oo) and so p(t)F(y(t)) G 1ZV(5). 
Thus, 

/

oo 
( r ( s ) G ( - y ' ( s ) ) ) W f t V ( < 5 + l ) , (3.18) 

what follows from the property of regularly varying functions from Proposition 1.1 and 
Karamata's theorem 1.3. Since r G 1ZV(5 + a) we conclude that G(—y'(t)) G TZVo(l — a) 
by Proposition 1.1. From the definition of the inverse function G _ 1 it is clear that we can 
write —y'(t) = G - 1 (G(—y'(t))), so we get —y'(t) G TZVo(-l). By Proposition 1.3 we are 
able to conclude that —y(t) G U(—ty'(t)). Set the function 

h{t) = -t-5-lr{t)G{-y'{t)) -(5+1) f S-s-2r(s)G(-y'(s))ds. 
J a 

We will show that h G I I ( -V(*)) a n d a l s o h e n ( - ( 5 + 1)*~*~ l r(*)G(-y'(*)))> w h a t 

will help us to get an asymptotic solution in the next few steps. Let us recall that 
F(y(tj) G SV, what follows from Proposition 1.1. Compute the derivative of h: 

h'(t) = -(-5- l)t-s-2r(t)G(-y'(t)) + t^p^F^t)) + (-5 - l)r5-2r{t)G{-y'{t)) 

= rs-1

P(t)F(y(t)) EKV(-5- 1 + 5 + 0). 

Thus h'(t) G 1ZV(—1) and using Proposition 1.3 we conclude that h G U(th'(t)). Moreover, 
fix A > 0 and let us prove that the function h belongs to the class II using again the same 
proposition, so we get 

h(Xt) - hit) A- < 5 - 1 t - < 5 - 1 r (At)G(- | / , (At)) 
-(5+ l)t-^r(t)G(-y'(t)) -(5 + l)t-^r(t)G(-y'(t)) 

t-s-\(t)G{-y>(t)) (5 + 1) Ja

Xt s-s-2r(s)G(-y'(s))ds 
-(5+ l)t-s-hit)G(-y'(t)) -(5+ l)t-s-hit)G(-y'(t)) 
(5+1) fa s-s-2r(s)G(-y'(s))ds A " 5 - 1 r 5 - 1 r ( A t ) G ( - y ' ( A 0 ) 

+ 

+ 

(5 + l)t-5-h-(t)G(-y>(t)) -(5 + l)t-s-W(t)G(-y'(t)) 

t-s-ir(t)G(-y'(t)) (5 + 1) Jt

Xt s-s-2r(s)G(-y'(s))ds 
•(5 + l)t-5-h-(t)G(-y>(t)) -(5+ l)t-s-W(t)G(-y'(t)) 
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Substitute s = tu in the integral in the last term. Thus, ds = tdu and 

h(Xt) - h(t) 
-(S+l)t-^r(t)G(-y'(t)) 

\-A-1r(\t)G(-y'(\t)) 1_ 

-(S + l)r(t)G(-y'(t)) 5 + 1 
u-s-2r(tu)G(-y'(tu)) A £ - < 5 - 2 „ , - < 5 - 2 „ 

- t -(5-1 r(t)G(-y'(t)) 
tdu 

\-A-1r(\t)G(-y'(\t)) 1_ 
'-(5 + l)r(t)G(-y'(t)) 5 + 1 

"x u-s-2r(tu)G(-y'(tu)) 
-r(t)G(-y'(t)) 

du. 

Let us work with separate terms of the right-hand side of the relation showed above. We 
start with the first fraction. Since r(t)G(—y'(t)) G 1ZV(5 + 1) and using Definition 1.1 of 
regular variation we obtain 

A- 5 - 1 r (At)G(- i / , (At) ) A " 5 " 1 

lim -Xs+1 1 
t^oo -(S + l)r(t)G(-y'(t)) 5 + 1" 5 + 1 

Recall that r(t)G(—y'(t)) G 1ZV(5 + 1) and so the uniform convergence of 

implies 

lim 
t—¥00 

r(tu)G(-y'(tu)) 
r(t)G(-y'(t)) 

x u-s-2r{tu)G{-y'{tu)) • 

u 5+1 

II - < 5 " V + 1 d M = lnA. 
-r(t)G(-y'(t)) 

so we conclude h G Il(-(6 + l)t-s-lr(t)G(-y'(t))). Because of the uniqueness of the 
auxiliary function up to asymptotic equivalence we obtain the following relation 

-(5 + l ) t - 5 - 1 r ( t )G(- l / ' ( t ) ) ~ th'(t) = t-sp(t)F(y(t)), 

which implies 
G(-y'(t)) tp{t) 
F(y(t)) (5 + l)r(t) 

as t —> oo and using the condition LG{ug{u)) ~ LG{u) as u —> 0 + for all g G <SVo, 
rewrite it equivalently as L/G(v(t)/t) ~ LG{l/t) as t —> oo for all i> G <SV. Let us remind 

again that —y'(t) G 7£Vo(—1), then we can rewrite it in the form y'(t) = ———, where 
L\y'\(t) G iSV. Hence, 

C(- | / / (t)) = (- | / ' ( t)r- 1 L G (L | ? / , | (t) / t)^ 

as t —> oo. Combining all these relations we obtain 

(-y'(t)r-1 tp(t) _ -y'(t) 

V ( t ) ) - 1 L G ( l / t ) (3.19) 

F(v(t)) (5 + l)r(t)LG(l/t) (F(y(t)))^ 
tp(t) 

(5+l)r(t)LG(l/t) 

Therefore, there exists a function e(t) satisfying lim e(t) = 0 such that 
t—too 

y'(t) 

{F(y(t)))-i (<S + l ) r ( t ) M V * ) 
(3.20) 
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as t —> oo. Assume now that 

sp(s) 
.r(s)LG(l/s) 

Integrating (3.20) from a to t we obtain 

y'(s 

i 

a - l ds = oo. 

—ds 
sp(s) 

(<S + l ) r ( s ) L G ( l / s ) 

i 

a - l ds. 

Substituting u = y(s) in the integral on the left side of the relation, then we get 
du = y'(s)ds, what brings us to the new interval of integration from y(a) to y(t) 

y { t ) du 
—ds = 

« ( F ( y ( s ) ) ) ^ J via) ( F ( M ) ) ^ 1 

and using the definition (3.13) of the function F we have 

"' - sp(s) 
(S+l)r(s)LG(l/s) 

i 

a - l F(y(t)) = F(y(a)) - / (l + e(s)) 
J a 

There exists e(t) —> 0 such that 

F(y(a)) - f (1 + e{s)) \h{S)] ^ds = - f ( l + e{s)) \h(S 
J a J a 

ds. (3.21) 

ds. 

where H(s) 
(5 + l)r(s)LG(l/s) 

which implies for Jc 

r(s)LG(l/s) 

i 

a - l 
ds = oc 

yit) = F~l 
sp(s) 

((J + l ) r ( s ) L G ( l / s ) 

i 

a - l d s k 

Clearly y(t) —> 0 as £ —> oo, otherwise we get a contradiction with the divergence of the 
integral (3.21). On the contrary, if 

sp(s) 
r(s)LG(l/s) 

i 

a - l ds < oc 

we integrate (3.20) over the interval (t, oo) and repeating the same steps as we did above, 
we obtain 

y(t) = F-1\F(y(oo))+ / ( l + e(s)) 
sp(s) 

(5+l)r(s)LG(l/s) 
i 

a-l d s k 

In this case y(t) must tend to a positive constant y(oo) as t —> oo, otherwise the left 
side of the relation (3.21) becomes unbounded, which would contradict the assumption of 
boundedness of the integral. 

To prove the last statement we use (3.20) so we get the asymptotic equivalence 

At) 
y(oo) ( 1 . Lp{t)LF{y{t))\P-i 

t \5+l Lr{t)LG{l/t) J 
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as t —> oo. Integrate from t to oo, so we obtain 

as t —> oo. Apply Karamata's theorem 1.3 we get to the conclusion that the integral is a 
slowly varying function and then we obtain (3.16). • 

Remark 3.4. The proof represented above is based on the theory of the H-class and uses 
properties of functions from this class of functions. Next we show another approach using 
Karamata's theorem. First part of the proof remains the same. We take y G DS ilAfSV. 
Since p(t)F(y(t)) G 1ZV(5) with 8 < —1, from (3.18) and applying Karamata's theorem 
1.3 we obtain 

r(t)G(-y'(t))= f p{s)F{y{s))ds ~ f ssLp(s)F(y(s))ds 
J a J a 

~ j^-/+1LP(t)F(y(t)) ~ j^tp(t)F(y(t)). 

Thus, dividing by r(t)F(y(t)), we get 

G(-y'(t)) tpjt) 
F(y(t)) ~(<5 + l ) r ( t ) ' 

which implies (3.19) and the rest of the proof remains the same. 

Let us formulate the following corollary based on the results obtained in Theorem 3.1, 
Remark 3.2 and Theorem 3.2. 

Corollary 3.1. Consider the equation (2.2). Let p G 1ZV(5) and r G 1ZV(5 + a) with 

5 < — 1. Assume —>• 0 as £ —>• oo, l i m s u p u ^ 0 + Lp{u) < oo and l i m i n f u ^ 0 + LQ{U) > 0, 

then there exists y G DS DAfSV and —y(t) G II(—ty'Ct)). Assume lim = oo and 

Lo(ug(u)) ~ LG(U) as u —> 0 + for all g G <SVo; then for every y G DS fl J\fSV, 

* $ IT(r(s)Lo(i/s)) " ~ T — ° ° ; then there exists e(t) with e(t) —> 0 as t —> oo suc/i 
£/ia£ (3.14) is an asymptotic formula and y[t) —> 0 as t —> oo; 

• Ja°°(r(s)La(i/s)) d g < 0 0 ' ^ e n ^ e r e exists e(£) wita e(£) —> 0 as t —> oo suc/i 
£aa£ (3.15) is an asymptotic formula and y(t) —> y(oo) G (0, oo) as £ —>• oo. 

Moreover, \y(oo) — y(t)\ G SV and (3.16) is true as t —> oo. 

If we take Lp = 1 and L G = 1, then the equation (2.2) reduces to the half-linear 
equation (2.3) and notice, that the asymptotic formula of the solution is the same as one 
presented in Theorem 2.1. In case of a = 2 and r — 1, the equation (2.2) reduces to 
the nearly-linear equation (2.6) and the formula is equivalent to one shown in Theorem 
2.2. The formula for the case of a generalized function r G SV is new for nearly-linear 
equations. Formula (3.16) is new even for the case a = 2 and r — 1. 

Let us show a simple example of computing Assume F G TZVo(a — 1) with 
LF — 1. Compute 

du fx du 
— / = In x. 

(F(U))S=T Jl ( M 0 " 1 ) ^ ! 
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Then we compute the inverse F~x(x) = ex. 
Notice, that to prove the asymptotic formulae for decreasing slowly varying solutions 

of the nearly-half-linear equation (2.2) we do not require (even one-side) boundedness 
conditions on L F and LQ such as in Theorem 3.1. As for condition La{ug(u)) ~ LQ{U) 
as u —y 0_|_ for all g G SVo from Theorem 3.2 it is not too restrictive. Observe that, 
in fact many functions satisfy it, for example, LG{u) —> C G (0, oo) as u —> 0 + or 
LG(U) — I l n \ u \ \ a i \ l n I l n M i l " 2 ; aii A2 G M.. Take a look at the function LG{u) = | In 
For simplicity let us choose a function g(u) = \ ha\u\\. Here it is clear that the condition 
Lo(ug(u)) ~ LG(U) is satisfied: 

I ln \u\ ln |u| | | | , (I ln lull + , / l l n l d l 1 \ 
hm J ' , ' "" = hm V l , ' '' , .,' ' = hm ' + , , ,, = 1. 

u^o+ \m\u\\ u^o+ \u\\m\u\\ u^-o+ \ I ln \u\\ \m\u\\J 

From the condition of Theorem 3.2 f 0°( -, ^4, > )*-[ds = oo, it does not follow that 
Ja ^r(s)La{l/s) > 

as t —> oo (see [6] for the linear case y"{t) = p(t)y(t)). However, we are able to deduce 
a lower estimate, but we will take stricter conditions. Due to technical reasons we will 
assume that solutions under our investigation are positive and decreasing in the interval 
[0,oo). 

Theorem 3.3. Consider the equation (2.2), where p G IZV(-a) and r = 1 are positive 
continuous functions. Take a G (1 ,2 ] . Let 

/•OO 

liminf LG(u) > 0 and lim t / p(s)ds = 0 

holds. Denote F(t) = /* j f e , * > 0. Then y G VS fi 5 V , snc/i that -y'(0) < 1, satisfies 
the estimate 

liminf p ^ r -> 1, (3.22) 
F - i { F ( y ( 0 ) ) - £ £ a p ( S ) c f e 

where M is some positive constant. The constant M can be taken as 

M = inf LG(u). 
«e[o,|?/(o)|] 

Proof. Take y(t) G D<S fl SV, t > 0. Integrate equation (2.2) over the interval (\t,t), 
where A G ( 0 , 1 ) , so we have 

-G(y'(Xt)) + G(y(t)) = f p(s)F(y(s))ds. 

Let us multiple both sides by a n d recalling that y G VS and so we get 

-G(y'(Xt)) + G(y'(t)) 1 
F(y(Xt)) F(y(Xt)) Jxt 

f p{s)F{y{s))ds < f p{s)ds (3.23) 
Jxt Jxt 
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for t > 0. Thanks to the fact that l i m i n f u ^ 0 + Lc{u) > 0, there exists M > 0 such that 

W H ^ A * ) ) " - 1 _ g(-y /(*)) < ( - y / ( A t ) ) - 1 L G ( | ^ ( A t ) | ) _ g H / g ) ) /< 
F( y (At)) W O ) - W O ) W O ) " A * ' 

(3.24) 

t > 0, where the last estimate follows from (3.23). As we are assuming a G (1,2], 
y' < 0, y' is increasing, — y'(0) < 1, then \y'(t)\ < 1 for t G [0, oo) and we conclude that 
( -^ (At ) ) "" 1 > -y'{Xt). Then rewrite (3.24) as 

M -v'^i _ g ( - y ' W ) < _ g ( - y ' W ) < / " „ W d s ( 3 2 5 ) 

M F t e ( A * ) ) F(j,(A*)) " F(y(Xt)) F(y(Xt)) A , " ' ( 3 ' 2 5 ' 
Integration over A G (0,1) yields 

where we substituted s = At in the first fraction of the left side of (3.25), so we get 

1

 fcifiidl 

and further substituting u = y(s) we obtain 

- 1 v'(xt) , A _ 1 fy(t) d u _ i r & , 
4(o) 

In the second term we substitute similarly s = At and we derive 

dA 1 r* ds 

7 0 F(y(At)) t L ( 0 ) F(«) t L m " m , n 

/ 0 W 0 ) t y 0 F(y(s))-

On the right side of the inequality (3.25) we apply the Fubini theorem in 

1 rt 
/ p(s)dsdA, 

o Jxt 

where we change the order of integration and the intervals: 0 < s < t and 0 < A < s/t 
and we have 

rl rt rt rs/t ^ rt 
/ / p(s)dsdA = / p(s) / dAds — - sp(s)ds. 

Jo Jxt Jo Jo t Jo 
From the relation (3.26) applying the inverse function F~x we get 

y(t) > F-1 \P(y(0)) - G ^ J ) ] f -=^-rr - ^ T sp{s)ds]. (3.27) 
y y > ~ L K"K " MN J0 F(y(s)) M Jo J 1 ; 

Since F(y) G SV and so 1/F(y) G «SV and recalling that y is a decreasing solution, the 
Karamata's theorem 1.3 yields 

^ // \\ [* ds tG(-y'(t)) t f°° , , n / , U l 

p(s)ds -»• 0 
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as t —> oo due to the assumption. Hence, 

as t —> oo. Then from (3.27) it follows that 

hminf p ^ > 1. 
^ F-i{F(y(0))-±f*sp(s)d± 

• 
Notice, that for proving the previous theorem we did not use the fact that p G 1ZV(5) 

what is one of the differences with the approach used in the linear case (see [6]). It is 
reasonable to require the conditions lim | F | = oo and /0°° sp(s)ds = oo when we apply 

Theorem 3.3. If we take the theorem above as an improvement of information related to 
the solution we were dealing with in Theorem 3.2, even though with some restrictions, it 
is reasonable to consider p G 1ZV(5). 

Further, let us deduce an asymptotic estimate for a generalized r satisfying 

COO /•OO 

/ r 1 _ / 3 (s)ds = oo and LG = 1. 
J a 

Remark 3.5. Consider the equation 

(r(t)<S>(y'(t)))' = p(t)F(y(t)), (3.28) 

where lim t p(s)ds = 0 and fa°° r 1 _ / 3 (s)ds = oo. We will use the following 
transformation. Denote 

R{t) = f r 1" / 3(s)ds 
J a 

and is defined as the inverse function of R. We take new variable s = tp(t) and new 
function x(s) = y(t), such that ip is a differentiable function with (p'(t) ^ 0. Then 

, s s ds ,, . d d 

and the equation (3.28) is transformed into the equation: 

d f r ~ ( s K S ) ds 

where 

r(s) = (r o o and p 

p(s)F(x), (3.29) 

(po^" 1 ) ( s ) 
(if'oip 1)(S)" 

By suitable choice of <̂ (t) we can transform (3.28) into (3.29) with f = 1. Indeed, 
set ip(t) = R(t), then compute the derivative (p'(t) = R'(t) = r 1 _ / 3 ( t ) . Notice that 
V? _ 1 ( s ) = <^_1(<^(£)) = t. Then rewrite 

f(s) = r(t)Q(<p'(t)) = ritWr^it)) = r(t) • r U-fl(°- i ) ( t ) = r (£) . r " 1 ^ ) = 1. 
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Similarly rewrite 

Now assume that p G 7£V(a). Since f G «SV and p G 7£V(—a), we can apply Theorem 3.3. 
so we obtain 

l i m i n f - r T ^ T>1. (3.30) 
s—¥00 F _ 1 | F ( X ( 0 ) ) - /0

SMp(M)dw} 

From the definition we know s = (fit), then x(i? 1(s)) = y(t). Take the substitution 
r = i? - 1(-u) in the integrand, then u = R{r). We obtain dii = r 1 _ / 3 d r . Rewrite (3.30) as 

liminf * 
F - i { % ( 0 ) ) - j J i 2 ( r ) p ( r ) d T 

liminf ; ^ ^ > 1. 
F - M F ( y ( 0 ) ) - ^R{T)p{T)rP-\T)r^{j)&r 

where = £ ^ , £ > 0. 

3.2 Increasing slowly varying solutions 
In this subsection we will be working with the same equation, but for the index of regular 
variation of the function p we require 8 > — 1. Again we will study slowly varying solutions. 
As we will see later, we have to look for such solutions in the set IS. The structure of the 
subsection is similar to the structure of one where we were dealing with the case 8 < — 1. 
A lot of the following results are new (and even in special cases): asymptotic formula for 
the increasing solution of a nearly-linear equation with r = 1 and with generalized r. 

The following theorem proves that if an increasing solution exists, then it is a 
normalized slowly varying function. 

Theorem 3.4. Assume that 
fOO 

p(s)ds = oo, (3.31) 

lim — - / p(s)ds = 0, (3.32) 
^ r(t) J a 

lim sup L^(-u) < oo (3.33) 

and liminf LG(u) > 0. (3.34) 

Then IS C HSV. 

35 



Proof. Take y G XS so y(t) > 0, y'(t) > 0 for t > a. Integrate equation (2.2) from a to t 
and recalling that y is increasing and so is F(y), then 

r(t)G(y'(t))=r(a)G(y'(a))+ f p(s)F(y(s))ds > r(a)G(y'(a)) + F(y(a)) f p(s)ds 
J a J a 

tends to oo as t —> oo. As we mentioned earlier y'(t) > 0 for t > a, and because of the 
fact that r(t)G(y'(t)) tends to infinity, it is possible to find some positive constant K 

r(t)G(y'(t)) <K f p(s)F(y(s))ds (3.35) 
J a 

for large t. Divide the inequality (3.35) by r(t)(y(t))a~1 La(y' (t)) a n d multiply it by 
Again use the fact that F(y) is increasing. Thus, 

V t/(t) J - LB(y'(t))r(t) }a - r(t) ja " ' 

for large t, where M G (0, oo) is some constant, which follows from conditions (3.33) and 
(3.34). Since the right-hand side of (3.36) tends to zero due to (3.32), we obtain —> 0 
as t —> oo and from this fact y G AfSV follows. • 

Here, similarly as in the previous subsection, we want to justify the choice of p G 1ZV(5) 
and r G TZV(5 + a) with 5 > - 1 . 

Remark 3.6. Assume that p G 7£V(5) and r G 7^V(T) with 5 > - 1 . Take y G A/">SVnXlS00 

of (2.2). Then recalling the definition of F we have 

(rit)G(y'(t)))' = p(t)F(y(t)) enV(5). 

We work with the case 8 > — 1, so integrate (2.2) from a to t: 

r(t)G(j/(t)) - r(a)G(y'(a)) = f p(s)F(y(s))ds oc 

as t —> oo by Karamata's theorem 1.3. As we took y G SV DXS, then we can rewrite the 
functions F and G in the form: 

r C O C y ' C t ) ) 0 - 1 ^ ^ ^ ) ) - r (a)(y ' (a)) Q - 1 L G (y ' (a)) = / p ( S ) ( 1 / ( S ) ) « - 1 L F ( l / ( S ) ) d S 

J a 

G ^ V ( r 5 + l ) , 

using properties of 7£V from Proposition 1.1 and Karamata's theorem 1.3, and so we 
have (y ' ( t ) ) a _ 1 G 72.V(5 + 1 — 7), because r G 72V(7) and L G G 5 V , which brings us 
to y'(t) G 72V(<5^j_^7) due to Proposition 1.1. From Remark 3.1, notice, that 8 < — 1 is 
equivalent to 7 < a — 1, so if we assume 8 > — 1 or equivalently 7 > a — 1, then the 
following steps are similar to ones in Remark 3.1, so we obtain 7 = 0" + « . 

Remark 3.7. Assume that p G 1ZV(8) and r G 1ZV{5 + a) with r5 > —1, then by 
Karamata's theorem 1.3: J a°°p(s)ds = 00. 

Earlier in Remark 3.2 we showed 

r°° / M \ r°° 
/ G - M — )ds= / r ^ f s ) • fc(s)ds. A \r(s)J Ja 
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where h G SV. We know r 1 _ / 3 G 71V((1 - /3)(<J + a)) . Further 

(l-/3)(<J + a) = (l-/3)(<J + l ) - l 

and with the fact that 5 > — 1 we get (1 — + a) < —1, and because r is positive 

we conclude that fa°° r 1 _ / 3 (s)ds < oo. It means that integral Ja°° C _ 1 j d s is also 

convergent for some M G (0, oo). 
Applying Karamata's theorem 1.3 for the case 5 > — 1 to the condition (3.32) we 

obtain: 

a - l ft 4-a-l i T i 

Pi^s ~ J - r ^ • T^t^Lp(t) = m - ^ ~ . (3.37) r(t) Ja t5+aLr{t) 5 + 1 p w Lr(t) 5 + 1 

In this case, the condition (3.32) leads to Lp(t)/Lr(t) —> 0 as t —> oo. 

In the following remark we want to prove that the condition guaranteeing normalized 
slow variation of an increasing solution (3.32) is necessary for the existence of an increasing 
slowly varying solution of the equation. The proof is similar to one in the section dealing 
with the case 5 < — 1. Let us show the main steps skipping similar computations. 

Proposition 3.3. Assume that r G TZV(j) with 5 > —1. Take l i m i n f ^ o o Lpiu) > 0 and 
l i m s u p ^ ^ LG(U) < oo. The condition (3.32) is necessary for existence of an increasing 
slowly varying solution. 

Proof. We want prove that if there exists y G IS fl J\fSV, then (3.32) is satisfied. Now 
we integrate the Riccati equation (3.11) from a to t and multiply it by ta~1/r(t): 

ta~^ ta~^ 

W) W i t ) ~ W ) W [ a ) = W)Ja P i S ) L F i y { S ) ) d S 

~ (« - 1 ) ^ [\w{s)\V(r{s)LG{y>{s)))l-^s, 

where ^j-w(a) —> 0 and ^r^-w(t) —> 0 as t —> oo, which follows from the fact that 

r G 7ZV(5 + a), so ^ G ftV(a - 1 - 5 - a) = KV(-1 - 5) with 5 > - 1 , thus ^ -»• 0. 
Similarly as in Proposition 3.1 for the case 5 < — 1 we can show that 

lim —— / p(s)ds = 0. 

• 
A closer examination of the proof shows that the condition r G 1ZV(5 + a) can be 

relaxed to the existence of r\ G 1ZV(5i + a), % — 1, 2, with r\[t) < r(t) < r2(t) for large t, 
and Si, 52 > —1. 

Further we will show that slowly varying solutions necessarily increase. We will prove 
this statement by contradiction. 

Proposition 3.4. Assume p G TZV(5), r G TZV(5 + a), with 5 > - 1 . IfyeVSnSV, 
then y G IS. 

37 



Proof. Take y G T>S fl SV. Then G(y') = - ( y ' ) a _ 1 ^ G ? ( | y ' | ) and F{y) = y^L^y). 
Integrate (2.2) from a to t and get 

r(t)G(y'(t)) = r(a)G(y'(a)) + / p(s)F(y(s))ds. (3.38) 

Since y is positive decreasing and r is a positive function, then r(t)G(y'(t)) is negative 
increasing, hence there exists a negative constant M such that 

lim r(t)G(y'(t)) = M G (-oo, 0] . 

Suppose that y G «SV and recall that LF G <SV, then p(t)F(y(t)) G 7£V(5), thus 
f p(s)F(y(s))ds —> oo, because of 5 > —1, what is a contradiction with (3.38). • 

Remark 3.8. In the proposition above we proved that slowly varying solutions necessarily 
increase and in Theorem 3.4 we got to the conclusion that any increasing solution is 
normalized slowly varying. Combining these two observations we get 

vs n Afsv = is. 

We have proved that we should look for slowly varying solutions in the set XS, so 
our next goal is to deduce an asymptotic formula for solutions of the nearly-half-linear 
equation (2.2). We define F in the same way as in the previous section for the case 
5 < —1, but now we have | F | G SV. 

Theorem 3.5. Let p G 1ZV(5) and r G lZV(5 + a) with S > —1. Assume lim \F(u) \ = oc 

and LG(ug(u)) ~ LG(u) as u -»• 0+ for all g G SV0. If y G ISnNSV, then y G U(ty'(t)). 
Moreover, for every y G IS fl J\fSV, 

if 
sp(s) 

1 
a-1 

.r{s)LG[l/s)J 

then there exists e{t) with e{t) —> 0 as t —> oo such that 

sp(s) 
yit) = F~ 

and y(t) —> oo as t —> oo; 

if 

(S + l)r(s)LG(l/s) 

i 

ds (3.39) 

sp(s) i 

.r{s)LG(l/s)J 

then there exists e(t) with e(t) —> 0 as t —> oo s«c/i t/iat 

sp(s) 
y(t) = F - 1 ( F ( l / ( o o ) ) - Jf ( l + e(S)) 

and y(t) —> y(oo) G (0, oo) as t —>• oo. 

(<S + l ) r ( s ) L G ( l / s ) 

i 
a - l ds (3.40) 
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Moreover, \y(oo) — y(t)\ G SV and 

tf-\t)Lp

F-\y{t)) 
JG 

as t —> oo. 

, — = o(l) (3.41) 

Proof. Take y G I«S fl «SV and let a be such that y(£) > 0, y'(t) > 0 for t > a. Then 

(r(t)G(y'(t))) ' = p ( t ) F ( y ( t ) ) G ^ V ( r 5 ) , 

provided y(t) —> oo as £ —>• oo. If y(£) —> C G (0, oo), then the conclusion is the same since 
F(y(t)) -»• F ( C ) G (0, oo) and so p(t)F(y(t)) G 7£V(<$). Thus, by Karamata's theorem 1.3: 

r(t)G(y'(t)) - r(a)G(y'(a)) = f (r(s)G(y'(s)))'ds G TZV(5 + 1). 

Since r G 7£V(5 + a) we obtain G(y'(t)) G 7£V(1 — a) due to Proposition 1.1. In view of 
y'(t) = G~1(G(y'(t))), we get y'(t) G 1ZV(—1) and following Proposition 1.3 we conclude 
that y(t) G U(ty'(t)). Set 

/i(t) = r^r^Giy'it)) + (5+1) f S-s-2r(s)G(y''(s))ds. 
J a 

Let us show that h G U(ty'(t)) and h G II((<J + l ^ - V ^ G ^ t ) ) ) . Indeed, 

h'(t) = (-5 - l)t-s-2

r(t)G(y'(t)) - r5"1^) W ) ) - (-5 - l )r 5 " 2 r ( W(t)) 

= t-s-1p(t)F(y(t)) G TZV{-5- 1 + 5 + 0). 

Thus h'(t) G 72.V(—1) and applying results from Proposition 1.3 we can conclude that 
h G U(th'(t)). Moreover, fix A > 0 and then integrate by substitution, so we get 

h(Xt) - h(t) A-' 5- 1r < 5- 1r(At)G(y ,(At)) r ^V^My 'W) 
(6 + l)t-*-1r(t)G(y,(t)) {5 + l)t-*-1r(t)G(y,(t)) {5 + l)t-*-1r(t)G(y,(t)) 

(5 + 1) Jt

Xt s-s-2r(s)G(y'(s))ds 
(5 + l)t-s-hit)G(y'(t)) 

A- < 5- 1r(At)G(y'(At)) , 1 fx u~s~2r(tu)G(y'(tu)) 

+ 

(5+l)r(t)G(y'(t)) 5+1 J, r(t)G(y'(t)) 

These calculations are similar to the previous case when we had 5 < — 1. The most 
significant difference is a sign. Since r(t)G(y'(tj) G 1ZV(5 + 1) we obtain 

X-s-lr(Xt)G(y'(Xt)) _ X~s~l ^ 5 + l 1 
/™ (5 + l)r(t)G(y'(t)) 5+1" 5+1 

and the uniform convergence of r^(t)&^'tt))'' ^° u & + 1 i m p l i e s 

lim 
x u-s-2r(tu)G(y'(tu)) 

du 
r(t)G(y'(t)) 
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so h G n((<5 + l)t s 1r(t)G(y'(t))). Because of the uniqueness of the auxiliary function 
up to asymptotic equivalence we obtain 

which implies 

(5 + l ) r * - V ( t ) G V W ) ~ th\t) = rsp(t)F(y(t)), 

G(y'(t)) tp(t) 
F(y(t)) (S + l)r(tY 

and using the condition LG(ug(u)) ~ LG(u) as u —> 0 + for all g G <SVo, rewrite it 
equivalently as LG(v(t)/t) ~ LG{l/t) as t -»• oo for all w G <SV0- Recall G TZV(-l). 
Hence, 

= ( y ' W r ' M M O / O ~ ( y ' ( t ) ) « - 1 L G ( l / t ) (3.42) 

as t —> oo, where L y / G 5 V . Putting all of these relations together we get 

(y'(t)) tP{t) y'(t) tP{t) 

F(y(t)) (5 + l)r(t)LG(l/t) (F(y(t)))^ l(S + l)r{t)La{l/t). 

as t —> oo. Therefore, there exists a function e(t) satisfying lim e(t) = 0, such that 
t—¥CO 

y'(t) 

invit)))-1 

[l + e{t)) 
tp(t) 

(S + l)r(t)LG(l/t) 
(3.43) 

Repeating the same procedures and justifying the steps in the same way as in the case 
5 < - 1 , for 

sp(s) 
{5 + l)r{s)LG{l/s) 

ds — oo 

we get 

y(t)=F-n / (l + e(s)) 
sp(s) 

.(S + l)r(s)LG(l/s) 

In this case y(t) —> oo as t —> oo. On the other hand, for 

sp(s) 

dsy 

•a \(5+l)r(s)LG(l/s) 

we obtain 

y(t) = F-1\F{y(oo))- / (l + e(s)) 

ds < oo 

sp(s) 

(S + l)r(s)LG(l/s) 
ds 

and so y(t) tends to a positive constant as t —> oo. 
Last part of the proof is essentially the same as for the case S < — 1, we use (3.43), so 

we can conclude that 

At) 
y(oo) ( 1 . Lp{t)LF{y{t))\P-i 

t \5+l Lr{t)LG{l/t) J 

as t —> oo. Integrate it over the interval from t to oo and apply Karamata's theorem 1.3 
and so we obtain (3.41). • 
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As well as in Theorem 3.2 we can prove Theorem 3.5 with help of Karamata theorem. 
Let us formulate the following corollary based on the results obtained in Theorem 3.4, 
Remark 3.7 and Theorem 3.5. 

Corollary 3.2. Consider the equation (2.2). Letp G 1ZV{5), r G 1ZV(5+a) where 5 > — 1. 
Assume —> 0 as t —> oo, l i m s u p ^ ^ LF{u) < oo and l i m i n f ^ o o LG{u) > 0, so if 

there exists y G IS, then y G ISilAfSV and —y(t) G U(ty'(t)). Assume lim = oc 

and LG{ug{u)) ~ LG{u) as u —> 0 + /or a// g G <SVo, t/ien /or every y G I«S fl J\fSV, 

* $ Ja°°(r(s]Lo(i/s)) "~ T <^ , s = °°> ^ e n ^ e r e e^sfe £(£) wi£/i e(t) —> 0 as t —> oo suc/i 
£/ta£ (3.39) is an asymptotic formula and y(t) —> oo as £ —> oo; 

* /a"" (r(s)Lo(l/s) ) <^'S < 0 0 ' ^ e r e ea;2S£s e(t) wit/i e(t) —> 0 OS t —> OO Slic/l 
£/ta£ (3.40) is an asymptotic formula and y(t) —> y(oo) G (0, oo) as £ —>• oo. 

Moreover, |y(oo) — y(t)\ G <SV and (3.41) as t —> oo. 

If we take Lp — 1 and L G = 1, then the equation (2.2) reduces to the half-linear 
equation (2.3) the asymptotic formula for the solution is in the same form as it is shown 
in [16]. In case of a = 2 and r — 1, the equation (2.2) reduces to the nearly-linear 
equation (2.6) and the analysis of the solutions as well as the asymptotic formula presented 
above are new. Moreover, here we have shown the case with generalized r. Formula (3.41) 
is also new even for the simpler case a = 2 and r — 1. 
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4 Examples 
In this chapter we will present applications of results obtained in the previous chapters 
to non-linear differential equations. We will start with an example of a half-linear linear 
equation. 

Example 4.1. Consider the equation 

(ts+aLr(tMy'(t)))' = tsLp(t)<S>(y(t)), (4.1) 

where Lr = (hit) 7 2 + hi(t) and Lp = (hit) 7 1 + h2(t) with \fn(t)\ = o((lnt) 7 i) for % = 1,2 
for some 71 < 72. Examples of such functions hi are hi(t) = cost or hi(t) = ln(lnt). For 
every A > 0 we get: 

j . (In At) 7 ' + foj(At) _ I j n t ^ + ( lnt ) -T i _ j . I l n t j +
 ( I n ( A f ) p i I l n f J _ j 

t^oo ( lnt) 7 i + /i,(t) ~ <^oo 1 I ~ i ^ o o 1 _| MIL ~~ 

so we can conclude that Lp, Lr e «SV. We have 

U m ^ ( t ) = U m ( l n t ) * + M * ) = U m 1 + ^ 
t ^ o o L r ( t ) t ^ o o ( lnt) 7 2 + h2(t) t ^ o o ( l n t ) 7 2 - 7 i + 

1 + fei(f) 

l i m ( l n < ) 7 1 r ffl = 0, 
^ 0 0 ( l n f ) 7 2 - 7 l [ 1 + _ ^ L ] 

because we set 72 > 7i - Indeed the condition from Corollary 3.1 is satisfied. From (4.2) 
we get 

ftp(t)\^i = n5+1Lp{t)\7^l = 1 f l + ]t^ 1 ^ 1 1/ 1 \ ^ T N . 2 L 
v t ^ L r ( t ) ; t ^ i n ^ - ^ f i + ^ J ~ * U + J 1 1 1 j Q 

as t —> 00. Since f* ^(lns)Ads < 00 if and only if A < —1, we have 

-9^ ds < 00 
V r(s) / 

if and only if 7 1 ~ 7 2 < — 1. Notice that if rj 7̂  1, then 

r 1 flntN)' ? + 1 

/ -(lns)"ds = + const. 
J s 77 + I 

On the other hand, if 77 = 1, then 

/
——ds = ln(lnt) + const, 
sms 

Using results showed in Corollary 3.1 for 5 < — 1 and Corollary 3.2 for S > — 1 in the 
previous chapter for 11

c^f < — 1 we have that every slowly varying solution has a finite 
non-zero limit I and 

y(t) = /exp {sgn(o- + l ) ( l + o(l)) ( l n t ) ^ + 1 ^ • ^ } 
L 7 l - 7 2 + a - l | 5 + 1 | ^ T J 

71-72 
-1 
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as t —> oo. On the other hand, if 7 1 7 2 > — 1, then in the case 5 > — 1 increasing solutions 
' a—l ° 

are unbounded and for the case 5 < — 1 decreasing solutions have zero limit and we have 

y(t) = exp {sgn(o- + l ) ( l + o ( l ) ) ( l n t ) ^ + 1 ^ • ^ 
1 ' 7 1 - 7 2 + a - l |<J + l | 5 = 

as t —> oo. Also, we can make a conclusion for the case 7 1 - 7 2 = —1, so we have 
' a—l 

y(t) = ( l n t ) s s n ( < 5 + 1 ) ( 1 + o ( 1 ) ) l < 5 + 1 | ~ ^ 

as t —> oo. 

In the next example we will work with a nearly-linear differential equation, which we 
will later modify to a nearly-half linear one. 

Example 4.2. Consider the equation 

LP(t)y 

where LG G <SVo and L p G «SV. Then 

^ i G ( b ' W ' = F f b M - ( 4 3 ) 

# („) = _ M 0 ) ! , „ 6 ( o , i ) 

so F(u) —> —oo as ti —>• 0 + . Now we compute the inverse to this function 

= exp( -V / = 2w) , u < 0. 

We deal only with positive solutions such that y(t) < 1 for t > a. It is a required 
condition because we need F(u) to be increasing at least in a certain neighbourhood of 
zero (here it is (0,1)). A slight modification of F as F(u) = ,ln,fc,,, k G (0, oo), ensures 
the required monotonicity of F on the (possibly bigger) interval (0,k). Notice, that in 
our case 8 = — 2 < —1. 

Let us take the function G(u) = u\ In and Lp(t) = lnt+h^, where h is continuous 
function on [a, oo) with \h(t)\ = o(lnt) as t —> oo, and such that hit + h(t) > 0 for 
t G [a, oo). Some examples of such functions are provided in the previous example. A l l 
of the conditions required in Corollary 3.1 are satisfied, so we can apply it and find an 
asymptotic formula for decreasing slowly varying solutions. Now, we analyse 

tp(t) 1 1 1 
LG(l/t) t(\nt + h(t))\\n(l/t)\ t(\nt + h{t)) hit t(lnt) 2 

as t —> oo. Thus, 

-as < oo and we have / - — , : as -
LG(l/s) " Jt LG(l/s) hit 

as t —> oo. Due to the results presented earlier we are able to conclude that the decreasing 
slowly varying solution is in the form: 

, , x x , 2(1 +o(l)) y{t) = exp - \l (lnj/(oo))2 - 1 ^ >> 
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as t —> oo. 
On the other hand if we take the function G(u) = r / j^p , then, similarly as in the 

previous case 

tpit) \l1 ± 7 2 

LG(l/t) t(\nt + h(t)) tint 

as t —> oo. Note that (ln(lnt))' = 7 ^ 7 , and so 

sp(s) 

LG(1/S) 
ds = 00. 

In this case we get the result 

y(t) = exp [ ^ ( - ( l + o(l))ln(lnt))] 

as t —> 00 and y tends to zero. This kind of operators G we discussed earlier in Chapter 2 
and it is called mean curvature operator and it is used in study of partial differential 
equations which model fluid mechanics problems. 

Further, if we consider the equation 

{t^Lr{t){yr-lLG{\y>\))' = (4-4) 

which is similar to (4.3), but we take F G 1ZV(a — 1) and generalized r G TZV(S + a), then 
the analysis is similar too. Notice that in this case we work with the nearly-half-linear 
equation. The previous example is a particular case of the generalized equation (4.4). 
Compute 

b \u) = ImMl^- 1 or t \u) = —. 
a p 

u G (0,1) satisfies the condition F(u) —> —00 as u —> 0 + . The inverse of F is 

F-^u) =exp[-(-/3u)1/^]. 

Again, similarly we can choose different forms of function G such that all needed conditions 
from Corollary 3.1 for 5 < — 1 and from Corollary 3.2 for 5 > — 1 are satisfied, so then 
repeating all steps as before we can deduce an asymptotic formula for increasing slowly 
varying solutions. Notice, that we assume Lr = (hit) 7 2 + h\{t) and Lp = (hi t) 7 1 + h2(t) 
with \hi(t)\ = o((lnt) 7 i) for % — 1,2 for some 71 < 7 2 . 

Take 8 < — 1, then similarly as in Example 4.1, we get two cases. For 7 ^~ 7 2 < — 1 we 
have 

Sp(s) \ , 
1 r TT~TT7 7TT~\ ds < OO. 

Using Corollary 3.1 we get decreasing iSV-solutions in the form (3.15) and they have a 
non-zero limit. For the case 7 1 - 7 2 > — 1 we have 

a—l 

sp(s) 
(5 + l)r(s)LG(l/s) 

^ « = 00 

and applying the same corollary, the asymptotic formula for decreasing iSV-solutions is 
in the form (3.14) and they have zero limit. 
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On the other hand, if we take S > —1, then the condition F(u) —> —oo as u —> oo is 
also satisfied. Using Corollary 3.2 if there exist increasing solutions, then for 7^~^ 2 < — 1 
we get increasing iSV-solutions in the form (3.40) and they have a non-zero limit. For the 
case 7 ^~ 7 2 > — 1 we apply the same corollary and the asymptotic formula for increasing 
(SV-solutions is in the form (3.39) and they are unbounded. 

Now, we will move to another example of nearly-half-linear equations. 

Example 4.3. Consider the equation 

(ts+aLr(t)(yr-lLG(\y'\))' = tsLp(t)ya-\ (4.5) 

where Lr G SV, LG G SV, Lp G SV and LF{u) = 1. We have F(u) = ua~x, then 

F(u) = liau, 

so \F(u)\ y oo as u y 0_i_ and 

F - V M ) = e u, u > 0. 

Assume that G(u) = - u a _ 1 | In |it||, where La(u) = | ln |u | | , which satisfies condition 
Lciugiu)) ~ LG(U) as M ̂  OO for all g G <SV. First take S < —1, so we will work with 
decreasing slowly varying solutions. Conditions for existence of the solution from 
Corollary 3.1 hold, so any decreasing solution is slowly varying and we are still able to 
find the asymptotic formula for the slowly varying solution. 

Take Lp(t) = (\ntp+h(t)' where h is a continuous function on [a, oo) with 
\h(t)\ = o(lnt) as t —> oo and such that (hit) 7 + h(t) > 0 for t G [a, oo) and 
Lr(t) = ( i n f ) M + g ( f ) ) where g is a continuous function on [a, oo) with \g(t)\ = o(lnt) as 
t —> oo and such that (lnt)M + #(£) > 0 for t G [a, oo) and /x < 7. Examples of such 
functions are / t ( £ ) = cost or h(t) = ln(lnt). Note that the required monotonicity of G is 
ensured in a small neighbourhood of zero. Compute 

tp(t) \t*=i / ts+1Lp{t) 
(5 + l)r(t)LG(l/t)J \(6 + l)ts+°Lr(t)\ln(l/*)| 

((lnt)"+ </(*)) x ^ r I f 1 ^ ^ 
(hit) ( 5 + l ) t « " 1 ( ( l n t ) ^ + /i(t))lnt/ *\<J + 1 

as t —> 00. Notice, that 
f l , ,H=2=1, 
/ -(Ins) « - 1 ds 

converges if and only is M 7 1 < — 1. Then for M 7 1 < — 1 we have 

sp(s) a-l 

as < 00. .(S + l)r(s)LG(l/s) 

From Corollary 3.1 y G MSV fl P S tends to y(oo) > 0 and satisfies the formula 

y(t) = exp [ln(y(oo)) + (1 + o(l)) 9 ( l n t ) ( ^ + 1 ) ( , . , .. 
L /x — 7 + a — 2 \\d + 1\ 
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as t —> oo. Let us assume M 7 , 1 > —1, then 

sp(s) 

(<S + l ) r ( s ) L G ( l / s ) 

i 
a-l 

ds = oc 

and applying results from Corollary 3.1, a decreasing slowly varying solution has zero 
limit and so we obtain: 

a — 1 1 i 
a-l 

m = exp L - ( i + o ( i ) ) M _ ; + ; _ 2 ( h f ) ' ^ v | 4 + M 

as t —> oo. 
Furthermore, if we choose 5 > — 1, then we are investigating increasing slowly varying 

solutions. Similarly as in (4.2) we obtain 

lim - ^ T = 0, 
i-s-oo Lr(t) 

because 7 > \x. A l l of the required conditions from Corollary 3.1 are satisfied. Now we 
know that if there exists an increasing solution then it is also slowly varying and the 
asymptotic formula can be written. In the case < — 1 the integral 

sp(s) 
1 

a - l 

(5 + l)r(s)LG(l/s)-

converges, then any increasing solution is in the form: 

r a - l 
y(t) = exp ln(y(oo)) - (1 + o(l)) fi — 7 + a — 2 

ds < oc 

( l n t ) ^ + 1 ) 
5+1 

as t —> 00. And finally, if we have M „ 7 - , 1 > — 1, then 
a-l 

sp(s) 

(5 + l)r(s)LG(l/s) 

1 

a - l 
ds = 00. 

In this case an increasing slowly varying solution tends to infinity and we have it in the 
form: 

n _ 1 - ( l n O ( ^ + 1 ) ( V - 'X^T" ?/(£)= exp ( l + o(l)) 
H — 7 + a — 2 \5 + l 

as t —>• 00. 
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5 Remarks 
In this chapter we will briefly discuss some open problems and we will indicate possible 
directions of resolve for these problems. 

Non-iSV solutions. In the previous chapters we were discussing only decreasing 
solutions of (2.2) for 5 < — 1 and increasing solutions in the case of 5 > —1. As we 
showed in Theorem 3.1 decreasing solutions are slowly varying functions and any slowly 
varying solution cannot increase. However increasing solutions exist and in some cases 
we are able to show that they belong to the class of regularly varying functions with 
non-zero index. First, take a look at the half-linear equation (2.3). For establishing an 
asymptotic formula we can use as one of the possible approaches the reciprocity 
principle, which is based on the following relation. If y is a solution of (2.3), then u is 
defined u = Cr$(y'), where C 6 R, is a solution of the reciprocal equation: 

(r(t)(Hu'))' = p(t)Hu), (5.1) 

where f = p = r 1 _ / 3 and $(«) = |-u | a _ 1 sgn u with a — (3, <£> = Then assuming 
p G TZV{5) and r e TZV(5 + a) and lim gjg = 0, if 5 < - 1 , then IS C jVSV(p), if 
5 > - 1 , then VS C AfSV(p), where 

5 + 1 

And we can deduce an asymptotic formula for non-iSV solutions (Theorem 5.1. in [13]). 
On the other hand, if we consider a nearly-half-linear equation (2.2), recalling that 

functions G _ 1 and F~x are inverse functions of G and F and defining u such that 

u[t) = r(t)G(y'(t)) => y'[t) = G " 1 ( - ^ « ( * ) ) , 

the derivative u'\ 

u\t) = p(t)F(y(t)) => y(t) = F " 1 , 

so we can the following equation: 

( F ~' (^ u ' ( 4 0) '= G ^ u ( 4 ) ) ' 
Notice, that this equation is of similar form as (2.2) and therefore it can be treated as 
a nearly-half-linear equation. Unfortunately, there are no asymptotic results for such 
equations non-linear components LG and LF at our disposal. 

Non-emptiness of the set of eventually positive increasing solutions in the 
case 5 > — 1. In Theorem 3.4 we proved that IS C AfSV, so we got that any increasing 
solution is slowly varying. For the case 5 < — 1 in Theorem 3.1 we proved in addition 
existence of decreasing solutions and all of them are slowly varying, i.e. 0 ̂  VS C J\fSV. 
Moreover, we showed that VS n jVSV = VS for 5 < - 1 and VS n jVSV = IS for 
5 > — 1. So the natural question would be whether the set of increasing solutions in the 
case 5 > — 1 is non-empty. In Theorem 3.1 we applied the existence theorem from [3], but 
it is applicable only for decreasing solutions, so we could not prove a similar statement in 
Theorem 3.4. 
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Borderline case 5 = — 1. We have explored behaviour of solutions of nearly-half-linear 
equations for two cases of the index 8, but we did not say anything about the borderline 
case S = — 1. This case is the most complicated one for working with solutions of equations 
and we cannot apply Karamata's theorem 1.3 directly. In this particular case we have 
p G 1ZV(—1) and so we are not able to conclude whether fa°°p(s)ds converges or diverges. 
Moreover, analysis of this case gets more difficult because of the bigger effect of non-linear 
components LG and LF of functions G and F. 

Asymptotic estimate. In Theorem 3.3 we have discussed the problem that 

"' - sp(s) 
yit) F~ < -

(5 + l)r(s)LG(l/s) 

spjs) 

ds 

-ids as t —> oo does not follow from the condition f°"( , , , )"- 1ds = oo. We added a 
restriction on r = 1 and we also work with a on the shorter interval from 1 to 2. We also 
showed in Remark 3.5 that we could choose suitable transformation such that we obtain 
an asymptotic estimate for the equation with generalized r and LG = 1. There are things 
which can be improved, for example, assuming a G (2, oo) and r in general form. In the 
case 5 > —1, we cannot take r(t) = 1 as we showed it in the end of Chapter 3. If we try 
to take a generalized r G lZV(5 + a), then it brings us to the fact that r is a function of A. 
Moreover, we are not allowed to apply the method used in Remark 3.5. 

Other methods. There is a number of methods which could be very useful for 
investigation half-linear and nearly-half-linear differential equations. 

• Transformation of independent variable was used in Remark 3.5 and might be useful 
for exploring the borderline case 5 = — 1. This method allows us by using suitable 
transformation to obtain an equation what we are able to work with. 

• A modified Riccati technique is an asymptotic linearisation by means of suitable 
transformation of generalized Riccati equation into a Riccati equation for linear 
differential equations, so then we are able to explore the behaviour of positive 
solutions of the linearised problem. 

These methods are presented in details for some cases in [12] and we conjecture that their 
modification could be useful also for nearly-half-linear equations. 
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Conclusion 
In the beginning we presented important statements from theory of regular variation, 
specifically the Karamata theory and de Haan theory and properties useful in particular for 
an asymptotic analysis. In Chapter 2 we introduced some types of non-linear differential 
equations, which are the objects of our interest, and we showed some results from literature 
related to asymptotic behaviour of solutions to such equations. 

In Chapter 3 we have presented results of study of asymptotic behaviour of slowly 
varying solutions to some types of non-linear differential equations in the framework of 
theory of regular variation. We have discussed positive decreasing and increasing 
solutions. If the nearly-half-linear equation satisfies certain conditions, then for slowly 
varying solutions which decrease we proved that the set of such solutions is non-empty 
and all of them are normalized slowly varying. Moreover, we showed that the set of 
normalized slowly varying solutions is eventually equal to the set of positive decreasing 
solutions. Similarly, we proved that positive increasing solutions are normalized slowly 
varying. Again we concluded that the set of positive normalized slowly varying solutions 
is eventually equal to the set of decreasing solutions. Sequentially we presented 
asymptotic formulae for nearly-half-linear equations for both cases. We proved them for 
the general case where we assumed that p and r are positive regularly varying functions. 
This can be understood as an improvement of results already obtained for half-linear 
and nearly-linear equations. Moreover, the case of study of asymptotic formulae for 
increasing slowly varying solutions is new for the nearly-linear case. Further, we showed 
some additional results related to such solutions: we discussed necessary conditions for 
existence of normalized slowly varying solutions and we found an asymptotic estimate 
for decreasing slowly varying solutions. 

In the last part we illustrated some equations as examples for application of obtained 
results. We discussed different types of non-linear differential equations, existence of their 
slowly varying solutions and using theorems we proved in this work we deduced asymptotic 
formulae for their slowly varying solutions. In Chapter 5 we mentioned more methods 
for analysis of asymptotic behaviour of solutions to non-linear differential equations and 
indicated possible directions for improvement of results we got in this thesis. 
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