
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

PROTOTYPE OF INTRUSION SOLUTION
FOR MOBILE NETWORKS
PROTOTYP INTRUSIVNÍHO ŘEŠENÍ PRO BEZDRÁTOVÉ SÍTĚ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR TIMOTEJ KAMENSKÝ
AUTOR PRÁCE

SUPERVISOR Ing. VLADIMÍR VESELÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Information Systems (DIFS) Academic year 2021/2022

 Bachelor's Thesis Specification

Student: Kamenský Timotej
Programme: Information Technology
Title: Prototype of Intrusion Solution for Mobile Networks
Category: Networking
Assignment:

1. Learn about existing MitM proxy solutions (such as WiFi Pineapple, ESP32), IMSI catchers.
2. Study the currently applicable attacks on devices in wireless networks (e.g., Karma attack,

SSL/TLS split) and applications to implement them (e.g., aircrack-ng, nmap, Wireshark).
3. Perform an analysis of selected vulnerabilities for mobile devices (respecting the versions of

different operating systems or wireless network interface chips used).
4. Design a custom solution implementing the selected attacks with respect to its possible

portable deployment.
5. Implement the prototype as recommended by the supervisor.
6. Test the prototype under realistic conditions and discuss its functionalities.

Recommended literature:
Stehlík, R. "Útok na WiFi síť s využitím ESP32/8266." Diplomová práce. Vysoké učení
technické v Brně, Fakulta infromačních technologií. Vedoucí práce Ing. Jan Pluskal. Brno,
2021.
Dagelić, A., et al. "SSID oracle attack on undisclosed Wi-Fi preferred network lists." Wireless
Communications and Mobile Computing. 2018.

Requirements for the first semester:
Items 1 to 4 (included).

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Veselý Vladimír, Ing., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 11, 2022
Approval date: October 13, 2021

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/24557/2021/xkamen24 Page 1/1

Abstract
As the mobile networks rise, the importance of their security rises too. The vulnerabilities
of the mobile protocols on L1-L3 are easily misused. Using a small and relatively cheap
Software Defined Radio, it is possible to implement a variety of attacks aiming at mobile
networks. Goal of this work is to create an intrusion tool, implementing the available
attacks. These include jamming of the connection, service downgrade, Denial of Service,
Location tracking, IMSI catcher.

Abstrakt
Spolu s rozvojom mobilných sietí stúpa aj dôležitosť ich zabezpečenia. Zraniteľnosti jed-
notlivých mobilných protokolov na vrstve L1 - L3 je možné ľahko zneužiť. S použitím
malého a relatívne lacného Software Defined Radio je možné implementovať rôzne druhy
útokov cieliacich na mobilné siete. Cieľom tejto práce je vytvoriť intruzívny nástroj, im-
plementujúci dostupné útoky. Tie zahrňujú zarušenie spojenia, Zníženie kvality služieb,
Denial of Service, Sledovanie polohy, IMSI catcher.

Keywords
Mobile networks interception, GSM, LTE, SDR, miniaturisation, Denial of Service, Service
downgrade, radio signal jamming, location tracking, IMSI catcher

Klíčová slova
Intercepce mobilných sietí, GSM, LTE, SDR, miniaturizace, Denial of Service, Zníženie
kvality služieb, zarušenie rádiového signálu, sledovanie polohy, IMSI catcher

Reference
KAMENSKÝ, Timotej. Prototype of Intrusion Solution for Mobile Networks. Brno, 2022.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology. Su-
pervisor Ing. Vladimír Veselý, Ph.D.

Rozšířený abstrakt
Spolu s rozvojom mobilných sietí stúpa aj dôležitosť ich zabezpečenia. Zraniteľnosti

jednotlivých mobilných protokolov na vrstve L1 - L3 je možné ľahko zneužiť.
Na začiatku sme sa venovali prieskumu zraniteľností v rámci Wi-Fi a mobilných sietí

na týchto vrstvách. Popísali sme útoky na Wi-Fi, ako sú evil twin attack či known beacons
attack. Pri mobilných sieťach sme taktiež preskúmali existujúce a už popísané útoky v
oblasti. Skúmali sme tiež existujúce intruzívne nástroje, ako sú napr. Wi-Fi pineapple.

V posledných dvadsiatich rokoch došlo ku veľkému posunu v oblasti tzv. Software
Defined Radio (SDR). Toto rozhranie s rádiom nahrádza mnohé hardwarové súčiastky ich
softwérovou implementáciou. To umožnilo ich zmenšenie, zníženie energetickej náročnosti
a flexibilitu pri vývoji i prevádzke. S bežnou cenovkou okolo 1000 EUR sú aj relatívne
dostupné. Pre tento typ periférii existuje široká komunita ktorá ich používa ako svoje
hobby, či vo výskume. Jednou z najnzámejších implementácii pre SDR sú implementácie
mobilných stackov ako LTE (4G) či GSM. Pomocou nich je tak možné vytvoriť celú mobilnú
sieť. Tieto riešenia sme preskúmali a porovnali sme OpenAirInterface, OpenLTE a srsRAN
(srsLTE). Z týchto možností sme ako najlepšiu vyhodnotili srsRAN, s ktorej pomocou sme
neskôr pokračovali vo vývoji.

Táto práca sa pokúša zreprodukovať útoky na LTE skrze vrstvy L1-L3. Cieľom bolo
vytvoriť intruzívny nástroj, implementujúci dostupné útoky. Implementované útoky zahrňujú
zarušenie spojenia, Zníženie kvality služieb, Denial of Service, Sledovanie polohy, IMSI
catcher. Vedľajším cieľom bolo navrhnúť hardwarové riešenie, ktoré bude schopné poháňať
tieto útoky a SDR, no zároveň bolo čo najviac kompaktné, napájateľné batériou po dlhú
dobu, a zostavené z dostupných zariadení.

Prvým útokom je IMSI catcher, ktorý zistí International Mobile Subscriber Identity
pripájajúcich sa zariadení. Na základe toho je možné teoreticky sledovať pohyb telefónu.
Druhým je Denial of service. Ak sa nejaký telefón začne pripájať na našu vežu, dostane ako
odpoveď zákaz sa pripájať na akúkoľvek sieť. Posedným je Downgrade attack. Ak sa nejaký
telefón začne pripájať na našu vežu, dostane ako odpoveď zákaz používania tzv. EPS - čo
v praxi znamená nutné použitie GSM.

Implementácia útokov bola uskutočnená vytvorením napodobeniny Mobility Manage-
ment Entity (MME). Na tú sa potom pripája mobilná veža LTE (eNodeB). MME koná ako
mozog celej operácie, zatiaľ čo veža zabezpečuje rádiové spojenie a preposielanie údajov
MME. Ako eNodeB sme zvolili srsENB, ktoré je súčasťou srsRAN stacku. Implementované
útoky fungujú vďaka skutočnosti, že na ich prijatie mobilnými zariadeniami nie je potrebné
mať uskutočnenú výmenu kľúčov uložených na SIM karte. Ide o slabinu v protokole, ktorá
bola v 5G sieťach zaplátaná.

Vykonali sme prieskum existujúcich hardwarových riešení v oblasti malých počítačov i
SDR. Porovnali sme napríklad BladeRF, HackRF a USRP B210. Zistili sme tiež očakávanú
náročnosť na PC a pripravili si sériu možností na výber. Nakoniec bola ako hardwarová
platforma zvolená kombinácie počítača Raspberry Pi4B a SDR Blade-RF micro 2.0 ax9.
Táto kombinácia bola otestovaná a fungovala znamenite aj pri behu na batériu (5V 3A).
Táto kombinácia je tiež dostatočne kompaktná. Okrem práce na batériu sme tiež zistili,
že na stabilný výkon je Raspberry Pi plne vhodné, a na prevádzku tohoto nástroja na
Raspberry Pi OS stačí aj najnižšia verzia Raspberry s 2GB RAM.

Na komunikáciu medzi eNodeB a nami implementovaným MME sa používa SCTP pro-
tokol, na ktorom beží S1-Application Protocol (S1AP). S1AP tiež tuneluje správy medzi
mobliným telefónom (UE) a MME pomocou NAS protokolu. Na prácu so všetkými troma

protokolmi sme použili knižnice od P1Sec, a to konkrétne Pysctp a Pycrate. Implemen-
tačným jazykom je Python.

Výsledná práca bola testovaná pomocou unit testov a predpripravených scenárov, ktorými
zas simulujeme eNodeB. Po implementácii bola práca skúmaná pomocou záchytov skrze
Wireshark. Hoci v priložených záznamoch vidíme priebeh správ ako sú popisované pri
útokoch, mobilné telefóny na ne nedávajú ohľad. Teda hoci sme tieto útoky úspešne im-
plementovali, intruzívny nástroj sa nám teda vytvoriť nepodarilo. Z pôvodne plánovaných
útokov plne funguje len IMSI catcher. Zvolená architektúra útoku (mockovanie MME) nám
tiež neumožňuje uskutočniť ďalšie existujúce útoky na mobilnú sieť.

Prototype of Intrusion Solution for Mobile Net-
works

Declaration
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana Ing.
Vladimíra Veselého Ph.D..

Uvedl jsem všechny literární prameny, publikace a další zdroje, ze kterých jsem čerpal.

. .
Timotej Kamenský

May 11, 2022

Acknowledgements
I would really like to thank my supervisor, mr. Veselý. He accepted me and my ideas,

gave all the support I could have asked for, and led me in this research. Without him, I
probably would not have been able to write this project topic; certainly not with this level
of quality.

I would also like to present a recipe to my favourite food - pancakes. What is important
to understand is that pancakes lie on a bread - cake scale. On this scale, it has very high
degree of freedom to move around it. It is possible to make a mancake that is similar to
a matzo (passover bread) - only water and flour. It is also possible to make pancakes that
are filled with chocolate, multiple fruits and covered in whipped cream, with a topping of
ground nuts. This freedom to make something the same and so different is what I really
like about pancakes.

The pancakes I make most of the time are really simple. First, we mix together flour,
milk, salt and a single egg. Milk-to-flour ratio is roughly 2:1, but if the mix is too dense,
do not hesitate to add in a bit of water. Do NOT add sugar - this would ruin the dough.
Sunflower oil is optional. After that, cook the pancakes thinly, until they are of a golden
color. Serve with cut bananas, quark and nutella. Bon apetit!

Contents

1 Introduction 3

2 Wi-Fi interception 5
2.1 Wi-Fi Attacks . 5

2.1.1 Required Hardware for Wi-Fi Attacks 5
2.1.2 Evil Twin Attack . 5
2.1.3 KARMA Attack . 6
2.1.4 Known Beacons Attack . 6
2.1.5 4-Way Handshake Capture . 7
2.1.6 PMKID Attack . 8

2.2 Hardware Solutions . 8
2.2.1 Wi-Fi Pineapple . 8
2.2.2 ESP32 . 9

2.3 Software Tools . 9
2.3.1 ESP32 Wi-Fi Penetration Tool . 9

3 Software Defined Radio 12
3.1 Overview . 12
3.2 SDR Devices . 13

3.2.1 Required Hardware for Mobile Network Attacks 13
3.2.2 BladeRF . 14
3.2.3 USRP B2x0 . 14
3.2.4 Nooelec Nesdr . 15

3.3 Existing Software . 15
3.3.1 SoapySDR . 15
3.3.2 GNU Radio . 15
3.3.3 ASN.1 . 15
3.3.4 OpenBTS . 16
3.3.5 OpenAirInterface . 16
3.3.6 OpenLTE . 16
3.3.7 srsRAN . 16

3.4 Already Attempted Attacks . 17
3.4.1 Rogue Base Station . 17
3.4.2 Downgrading Attacks . 18
3.4.3 Single Device Attach Procedure DoS Attack 21
3.4.4 Overload Style DoS Attack . 22
3.4.5 Brute Force Jamming . 23
3.4.6 Spoof Jamming . 23

1

3.4.7 Insider Attacks . 24
3.4.8 IMSI Catcher . 24

4 Design 26
4.1 Faraday Cage . 26
4.2 Radio Equipment . 27
4.3 Computer Usage . 28

5 Implementation 30
5.1 Software Implementation Outline . 30
5.2 Used Libraries . 31

5.2.1 SCTP Connection . 31
5.2.2 S1AP . 31
5.2.3 NAS-PDU Messages . 32

5.3 Code Implementation . 32
5.3.1 State Machine . 32

5.4 Code Structure . 32
5.4.1 Division Into Files . 32
5.4.2 Class structure . 33
5.4.3 Arguments . 34

6 Testing 35
6.1 Isolated Tests . 35

6.1.1 Unit Tests . 35
6.1.2 Black-Box Tests . 35

6.2 Testing by Experiment . 36
6.2.1 Testing Overview . 36
6.2.2 Testing Different Phones . 36
6.2.3 Hardware Performance . 36
6.2.4 Power Requirements . 37

7 Summary 38

Bibliography 39

A Contents of the CD 43

B Installation of Dependencies 44

C Quick Start-Up 45

2

Chapter 1

Introduction

In the age of information, wireless technologies form a backbone of civilisation as we know
it. Mobile networks and Wi-Fi access points are ubiquitous in our everyday lives, and
people rely on them with almost absolute trust. It is not just the comfort and options
it brings; society relies on these networks even when lives and big money are at risk.
From emergency services, railroad signalling, and high-frequency trading up to power and
water utilities, internet and mobile services have become a critical infrastructure in and of
themselves [quote?].

Not all wireless networks are used by the general public. The two mobile network
types widely used by the public are governed by GSM and LTE standards, and the Wi-Fi
network is governed by 802.11 standards respectively. While 802.11 (with applied WPA2/3
protocols) and LTE standards are widely considered safe for use (the attacker cannot read
the content of encrypted messages), the fact that these networks are wireless opens the
possibility for Man-in-the-Middle attacks (MitM attacks). Some methods choose passive
listening to the network traffic. Others favour creating a rogue access point/base station,
onto which they try to connect their victims. Nevertheless, the end goal is to secretly gain
data from and about the users; location, internet traffic, phone calls, and messages.

Wireless MitM attacks are distinct from other network attacks in that they need equip-
ment on the attack scene. The usual scenario involves the attacker personally coming to
the target’s proximity, with all the equipment required. This approach is not just highly
time-consuming. Depending on the circumstances, this can even be dangerous or not pos-
sible at all. However, modern chips (e.g. ESP32 by Espressif) offer very high capabilities
with comparably small size and low power needs. When we combine this with advances in
drone technology in the last decade, the miniaturised equipment could be brought to the
scene using a UAV, lowering the risk and requiring fewer person-hours from the attacking
personnel.

This work strives to create a prototype of a miniaturised intrusive device for Wi-Fi
and mobile networks. This device should be able to work independently for hours on
end, applying a range of attacks. Based on the analysis, the device might be required to
transmit results in real-time or store the data for further analysis. Moreover, the device
and its batteries should be light enough to be carried by a reasonably sized drone.

In Chapter 2, we describe the state-of-the-art of MitM wireless attack, off-the-shelf
solutions, usable hardware and practical software tools. We give special attention to an
ESP32 by Espressif, Wi-Fi pineapple MK. V, supposed capabilities of Stingray II/Agata.

3

In Chapter 3, we investigate possible types of MitM attacks. We gather their prerequi-
sites and capabilities and compare them to one another. Other than their pure functionality,
we keep our attention on the weight and size of the components.

In Chapter 4, we synthesise Chapters 2 and 3, pick the hardware platform and implement
the attacks. After that, we design a possible solution to the problem using the information
available.

In Chapter 5, we implement the designed solution from Chapter 4. We describe its
functionality and its components. Then,

In Chapter 6, we test our work, evaluate our results, work out the problems, and outline
possible improvements to the prototype.

And at last, in Chapter 7 we summarise the bachelor thesis.

4

Chapter 2

Wi-Fi interception

This chapter will summarise the already existing solutions for wireless intrusion. We will
go through the required hardware and types of attacks separately for Wi-Fi attacks and
Mobile networks.

2.1 Wi-Fi Attacks

2.1.1 Required Hardware for Wi-Fi Attacks

Luckily for us, the technical requirements for Wi-Fi attacks are very affordable. The attacks
that we encountered required a maximum of two adapters with a possibility of switching
to monitor mode. Including the Wi-Fi card in virtually all modern computers and the cost
of a secondary suitable Wi-Fi adapter at around 25€ (we used TP-Link Archer T3U Plus
for 26€ [5]), the barrier for entry is almost non-existent.

Alternatively, one can obtain a Wi-Fi pineapple. With a cost of around 100€, this device
has all the hardware required, with preprogrammed attacks that we can execute with just
a single click.

2.1.2 Evil Twin Attack

The 802.11 standard sets out control frames. Their goal is, for example, to control the
connection between Access Point and the client device. However, these control frames are
usually not encrypted by any means.

The goal of the evil twin attack is to establish a MitM position. The attack goes as
follows: the target client is already connected to a Wi-Fi network. The attacker creates
the evil twin AP, i.e. network with the same SSID. After that, using the vulnerability of
unencrypted control frames, the attacker forges deauthentication frames that look as if sent
from the original network. These frames disconnect all devices connected to the network
(if broadcast) or just a given device. Since the original network is de-facto jammed by the
deauthentication frames, the only possibility is for the target to connect to the evil twin.

We verified the possibility of the given attack using the open-source tool EAPhammer[35]
for the evil twin, combined with aireplay-ng for the deauthentication. Since EAPhammer
took over the whole Wi-Fi antenna, aireplay-ng had to use a second antenna. However, a
similar attack can also be replicated using Wi-Fi pineapple or other software and hardware
solutions.

5

Source Destination Info
Attacker - MAC of real AP Broadcast Deauthentication
Attacker - MAC of real AP Broadcast Deauthentication
Client Device real AP Probe request for SSID=xyz
Attacker - MAC of real AP Broadcast Deauthentication
Client Device Acknowledgement
real AP Client Device Probe response
Attacker - MAC of real AP Broadcast Deauthentication
Client Device Acknowledgement
10.0.0.1 255.255.255.255 DHCP NAK
10.0.0.1 10.0.0.116 DHCP Offer
10.0.0.1 10.0.0.116 DHCP Ack

Table 2.1: Picked packets from Evil twin attack. The deauthentication are transmitted
continuously throughout the attack.First, they disconnect the target from the original AP.
Even if the device tries to reconnect to the original network, receives the deauthentication
frame. That is interpreted as ”cannot connect now“ and is acknowledged. The last three
packets show started communication with evil twin AP.

2.1.3 KARMA Attack

When Access Point and client device want to connect, they can transmit different control
frames. Both the AP and the client tried to reach each other in the past. The access point
transmits Beacon frames. These are a way for AP to say, ”hey, Wi-Fi is here!“. On the
opposite side, the client device is actively used to probe for Wi-Fi. It transmitted Probe
requests, which are a way of saying, ”is there any Wi-Fi with this name?“. The probe
requests are targeting the Wi-Fi networks that it has saved as known ones. Such a search
of Wi-Fi by the client is called active search.

The 802.11 standard expected that only a Wi-Fi with that SSID would answer to probe
requests. However, the KARMA attack exploited this baseless trust. The attacker answered
every probe request while masquerading as the AP searched. After that, a connection
in the MitM position could be established. It was also relatively fast since the target
itself transmitted all the required information, and the attacker had just to collect it and
retransmit it.

This attack has, however, lost traction since its heyday. The attack is dependent on
the client devices actively transmitting probe requests. Instead, the manufacturers have
switched their products to passively listening for beacon frames.

2.1.4 Known Beacons Attack

In response to an industry-wide shift from active search to a passive one, George Chatzisofro-
niou developed an attack against passive AP search in 2018.

The attacker first has to create a list of AP SSIDs, that the target might have used in
the past and have it saved as a known network. These SSIDs can either be tailored for a
target (name of home network or workplace network) or consist of popular Wi-Fi networks,
usually in the services and transport. The fast-food chain, the national train carrier, or a
supermarket are used by tens of thousands.

6

After having a collection of usable Wi-Fi SSIDs, the attacker starts transmitting beacon
frames going through the list of SSIDs. If the target device has connected, the attack has
been successful.

This attack can also reconstruct a list of saved networks and use this information in con-
junction with any open Wi-Fi maps. In this way, we can pinpoint locations and institutions
frequented by the target.

However, the attack does not prevent the target from seeing the Wi-Fi SSID to which
it is connected. Depending on the circumstances, this can cause problems with the stealth
of the attack. If, for example, the target is connected to Fast food Wi-Fi in the middle of
a forest and notices it, every alarm bell should go off. Therefore, the attack is dependent
on careful execution.

We were able to reproduce the following attack, again using a freely available tool
EAPhammer [35]. The only extra parameters required were the SSIDs of the known bea-
cons. We picked some of our area’s most used Wi-Fi networks, but their choosing deserves
further research.

./eaphammer -i wlan0 --mana -e CD_wifi \
--known-beacons --captive-portal \
--known-ssids ZSSK_free_wifi eduroam McDonalds_Free

The actions of the tool can be followed by Wireshark. What the software did was imitate
the given Wi-Fi networks. The first three packets show the response of the EAPhammer
to the Probe request. It answered with probe responses for each of the given networks.
The last packet shows that Beacon Frames are sent for each of the known beacons. The
Beacon frames are more spaced in time, but they are transmitted for each network still.
The response of the attacked device was to connect to a known beacon.

Source Destination Info
Attacker Device attempting to connect Probe response SSID=ZSSK_free_wifi
Attacker Device attempting to connect Probe response SSID=eruroam
Attacker Device attempting to connect Probe response SSID=McDonalds_Free
Attacker Broadcast Beacon frame SSID=CD_wifi

Table 2.2: Wireshark recording showing the basic mechanic of known beacons attack. No-
tice that all the probe responses originated from the attacking device.

2.1.5 4-Way Handshake Capture

This attack is a classic. When there is a legitimate device connecting to the Wi-Fi network,
we can capture its 4-way handshake and deduce from it the network password.

The attacker has to be in the range of the network, with monitor mode, eavesdropping on
the network. If a device is connecting, the attacker saves the connection-establishing 4-way
handshake. From it, the attacker can deduce every used variable for the hash calculation,
except the password.

The whole thing works as follows: During the 4-way handshake, the client (supplicant)
and AP (authenticator) are trying to establish encryption keys for data exchange. Notice
that the protocol is built so that password is never transmitted over the air separately. It
is only a part of the Pairwise Transit Key.

PTK = PMK + Anonce + Snonce + MAC(authenticator) + MAC(supplicant)

7

PTK = Pairwise Transit Key - final encryption key for unicast traffic (i.e. between client
and AP)
PMK = Pairwise Master Key - key used for establishing PTK. When talking about WPA/WPA2
personal version, PMK is PSK (i.e. password)
Anonce = authenticator nonce, the single-use random key generated by authenticator
Snonce = supplicant nonce, the single-use random key generated by client

From the equation above, all of it is transmitted during the 4-way handshake except the
PMK. Knowing all the other parameters and the resulting PTK, the attacker can brute-
force the password after capturing this 4-way handshake.

Attack benefits from people using weak passwords, on which we can use dictionary
attacks that significantly accelerate the process. However, the attack relies on recording
the handshake of someone knowing the password. Waiting for someone to connect can take
a long time. To speed it up, the attacker can de-authenticate the already connected users
just so that they connect again. However, doing so can potentially expose the attack.

2.1.6 PMKID Attack

PMKID is one of the newest attacks on Wi-Fi networks. It uses roaming, a feature of
networks composed of multiple Access Points. In handover from one access point to another,
the 4-way handshake does not repeat. Instead, the handover uses cached values to simplify
and speed it up. This data is cached in PMKSA (PMK security association). The key
variable is PMK ID

PMKSA = PMKID + Lifetime of PMK + MAC addresses + other variables

PMKID = HMAC-SHA1-128(PMK, “PMK Name” + MAC (AP) + MAC(Supplicant))

The used weakness is that the attacker can ask for a PMKID. Similarly to a 4-way handshake
attack, from this value, we know all the unknown parameters except the PMK, which can
be brute-forced to get the original password. Unlike the 4-way handshake, we do not need
to wait for a legitimate client to connect to capture the data - this attack is ”client-less“.
[9]

2.2 Hardware Solutions

2.2.1 Wi-Fi Pineapple

Wi-Fi Pineapple is a purpose-built wireless auditing platform. The device comes as a pre-
made package of hardware and software, intending to make penetration testing as easy as
a button push. Pre-made attacks include deauth, MitM and WPS attacks, to name a few.
Since all attacks are pre-made and even include GUI, it does not require much technical
knowledge.[16]

However, there are some drawbacks. The main one is that new attacks are usually not
developed on this platform. Instead, developers opt for more usual and versatile devices,
such as Raspberry Pi. Therefore, it often takes time and work to make the attacks work
on Wi-Fi pineapple.[10] As such, it is not a leading-edge device but rather a well-defined,
easy to use and fast tool.

8

The device sells for 100-140 EUR, including three independent Wi-Fi antennas and the
software.[16] It seems like a fair price compared to other hardware solutions, mainly when
it includes the software and saves much time for penetration testers.

2.2.2 ESP32

ESP32 is a series of SoC1 chips developed and manufactured by Espressif Systems. It
offers low power consumption, integrated Wi-Fi @2.4GHz and dual-band Bluetooth, and
some versions include GPIO or other features; all that for a meagre cost. Espressif itself
promotes the device as ideal for Industrial applications, the Internet of Things, or as a
means for getting Wi-Fi/Bluetooth functionality to other devices. [12]

ESP32 can be broadly divided into three categories.
The first is the System-on-a-chip alone. However, that is not useful for small-scale

applications and is intended for other hardware manufacturers as a component. SoC alone
is not certified, and therefore the certifications must be obtained by the customer.

The second category is the ESP32 module. It adds some components to a chip. There-
fore, it is also certified and is a ready-made component that can be added to a product.

The third category is the ESP development kit. It usually has easy access to peripheral
connectors and a way to program the device.

Processor used is a dual-core Tensilica Xtensa LX6 that operates on a frequency of
160-240MHz and can perform at up to 600 DMIPS2. It also offers an ultra-low-power co-
processor, which can be used for rudimentary tasks while the main processor is in deep
sleep mode. [12]

Supported wired interfaces include GPIO, I2C, I2S, SPI and UART.
When it comes to wireless applications, ESP32 offers integrated Wi-Fi and Bluetooth.

Wi-Fi supports 802.11 b/g/n and therefore works only on 2.4GHz frequency. Bluetooth
interface supports v4.2 or v5, depending on the version. It also supports Bluetooth Low
Energy. It is certified for both Wi-Fi and Bluetooth. Wi-Fi and Bluetooth share a modem
and therefore cannot operate simultaneously. The antenna is integrated as a PCB trace or
a U.FL socket for an external antenna depending on the version. [12]

There are numerous real-world applications of this platform. For example, company
Norvi uses ESP32 as a part of their industrial IoT products for industrial controllers. It
includes added ports to connect to the machinery. One of their promoted applications is
using it as a sensor platform, which can be set up as a wireless device with a very long
battery life. [18]

2.3 Software Tools

2.3.1 ESP32 Wi-Fi Penetration Tool

Wi-Fi penetration tool for ESP32 was created by our fellow at Brno University of Tech-
nology in Czechia. It created a tool implementing some of the most used attacks on Wi-Fi
networks: Handshake Capture with the possibility of de-authenticating already connected
devices (to capture their handshake on demand); Denial-of-Service attack; and PMKID
attack. [39]

1SoC = System on a Chip - a computer building architecture where many major components are inside
of processor chip instead of on the motherboard

2DMIPS = Dhrystone MIPS (Million Instructions per Second) - a standard measurement of computing
power

9

We decided to check out this tool to see how we can use ESP32 in practical applications.
To Build and flash the program, we followed the most standard way on ESP32. The

prerequisite is just standard ESP-IDF. First, we built the program using the command
idf.py build
in the directory of the program, then we used the command
idf.py flash -p <COM_NUMBER> to flash it onto ESP. That is all.
To Start the program, we connected to the Wi-Fi network created by ESP32 and

went to a predefined web page. There, we were greeted by the selection menu.

Figure 2.1: menu inside of ESP32 Wi-Fi penetration tool. It allows for picking a target and
a mode of attack.

In this menu, we are greeted by the selection of attack method and selection of the
targeted network. We ran some of the attacks, all targeting a pre-configured network with
two client devices, to see the behaviour of these scripts.

When running the script deauth_combine_all, it did something rather interesting.
When sending the deauthentication frames, it transmitted both deauthentication targeting
broadcast (i.e., targeting all devices) and deauthentication of each individual connected
device.

When running the script deauth_rouge_ap, it first baited the devices into connecting,
and after that, it spammed them with disassociate and deauthenticate frames; and repeating
this cycle over and over again. Notably, it retransmitted the same packet tens of times in
just a few milliseconds, possibly to ensure that it was delivered.

When running the script handshake_deauth_broadcast, the attack tried to capture the
handshake of connecting devices. This exact script runs a deauth attack spaced out in time

10

to allow connecting of the devices to speed up the process. After the time had run out, the
script offered us to download the captured data in a text string, PCAP or HCCAPX file.
The spacing of transmitting of deauth frames was just right.

All in all, this work is still fully functional as of December 2021. In our humble opinion,
the repository [38] offers an excellent start for an ESP32 project.

11

Chapter 3

Software Defined Radio

3.1 Overview
When it comes to Wi-Fi, the hardware options are all over. There is almost certainly a
device that meets the criteria, and the scale brings the cost down to a reasonable level.
Mobile network radios lack both. Yes, everyone has a mobile phone in their pocket, but it
is not easy to access its functionality. First, we would need to know how to root the mobile
phone and then gain access to the modem. This process is different for every mobile phone,
is not a common practice, has zero virtually zero support from the community, and has no
software ready to work with this. It also voids the warranty on the phone.

Outside of mobile phones, hardware is mostly not made for DIY tinkerers. Instead,
the hardware is mainly created for mobile network operators. This fact implies that the
hardware is mainly made to create large-scale enterprise mobile networks. Because of it, the
unit costs are enormous, and the support is not available outside the enterprise environment.
As a result, such a system is hardly usable for research purposes.

The way around missing hardware options is to use Software Defined Radio. SDR is
a general-purpose radio peripheral where many components traditionally implemented by
hardware are replaced by software solutions. It is a relatively novel approach, first defined
in the early 1990s by Joseph Mitola. The ideal SDR should only consist of an antenna,
Analog-to-Digital Converter and Digital-to-Analog Converter.[24] It is still not achievable,
but modern SDRs indeed replace many components with software.

One of the first projects developing the technology was run by the US Navy. Projects
Speakeasy and speakeasy II tried to develop a universal radio for its wide range of ra-
dio frequencies used across different branches and departments of the armed forces. In
1996, Speakeasy phase II produced a prototype that allowed interoperability between HF,
SINCGARS, Civil Aviation, Have Quick II and UHF SATCOM radios. [22] [42]

The most popular SDRs for the public are re-purposed DVB-T receivers. With some
software modifications, very cheap USB dongles receive signals other than DVB-T, for
example, GSM. However, they are not universal. Their hardware design limits them to
lower frequencies, and they cannot receive all the mobile frequencies. They are also limited
in the bandwidth they can receive at a given frequency tuning.

If our goal is to use SDR in mobile network applications, it has to meet some criteria:

1. Depending on exact needs, the device might be required to be able of full-duplex 1,
1Full-duplex describes a device that can receive and transmit at the same time. It is in contrast to

half-duplex, which can only transmit or receive at a time; and with receive-only or transmit-only devices.

12

GSM - 2G LTE - 4G
800-1000 MHz 700-900 MHz
1700 - 1900 MHz 1700 - 1900 MHz
1900 - 2170 MHz 2

2500 - 2700 MHz
3400 - 3600 MHz3

3600 - 3800 MHz4

Table 3.1: Table of frequencies used for mobile services in Czechia, divided by protocols.

2. Device has to be able to operate on the frequencies of the given standard. The
broadcast licensing in Czechia is very roughly outlined in Table 3.1 [8]

3. The SDR should have a wide support base; An active community, receiving support
from manufacturers, drivers, and Testing for given applications.

If we consider these requirements, the hardware options are suddenly few and far be-
tween. In the next few chapters, we will describe these options a pick an optimal platform
for further use.

3.2 SDR Devices

Figure 3.1: Hardware options for an SDR. Clockwise from top left: USRP B210, HackRF
One, BladeRF mini, RTL-SDR

3.2.1 Required Hardware for Mobile Network Attacks

When it comes to mobile networks, it is way harder to obtain both software and hardware for
such an attack. First of all, there are no off-the-shelf solutions available to the public known

13

BladeRF 2.0
Micro XA9 HackRF USRP B210 RTL-SDR

Manufacturer Nuand Great Scott
Gadgets

National
Instruments RTL-SDR

Radio Spectrum 47 -
6000 MHz

1 MHz -
6000 MHz

70 Hz -
6000 MHz

0,5 -
2400 MHz

Max bandwidth 56 MHz 20 MHz 56 MHz in 1x1,
30.7 MHz in 2x2 2.4 MHz

Sample Size 12 bit 8 bit 12 bits 8 bit
Sample Rate 61.44 MHz 20 MHz 61.44 MHz 28.8 MHz
Interface USB 3.0 USB 3.0 USB 3.0 USB 2.0
FPGA Logic elements 300K – 147K –
Radio interface 2x2 MIMO 1x Half Duplex 2x2 MIMO 1x receive
Price 800 EUR 390 EUR 1600 EUR 30 EUR

Table 3.2: Specification comparison of popular SDR hardware solutions.

to us; instead, these are reserved for use by the state only. This means that replicating the
already known attacks is a lot harder.

In mobile networks, one must strongly differentiate between passive and active attacks.
If the attack is passive, we can use a receiver only. Those are generally way cheaper, and
some are widely available as re-purposed DVB-T dongles. However, if the attack is active,
one must use an expensive SDR transceiver. The cost can quickly rise to over 1000€, based
on features.

Nevertheless, the tradeoff is substantial. Active attacks can achieve vastly better results
than passive ones.

3.2.2 BladeRF

BladeRF is an SDR manufactured by company Nuand. The company strongly supports
starting hobbyists, emphasising documentation and tutorials.

Device supports frequencies between 300 and 3800MHz and is able of full-duplex 28MHz
channels, which is all we need. The device uses a USB3.0 interface. The device is also
relatively compact (13 × 9 × 2 cm), uses 5V power, and can run headless (without being
connected to a PC), making it reasonably mobile. The company also offers versions, that
are made to withstand temperaures below 0 °C.

BladeRF is also supported in OpenLTE for scanner Application and File recording[28].
It can even run srsLTE eNodeB [23].

Different versions of BladeRF (differences are in used FPGA, thermal modifications,
size etc.) go generally for 400-1,000 EUR [26].

3.2.3 USRP B2x0

USRP B200 and B210 are made by Ettus Research, as part of their wider networking
portfolio. Therefore, they are tooled more to be compatible with the existing Ettus research
solutions and less as a low-cost prototyping device.

Device supports frequencies from 70 - 6,000MHz with a bandwidth of 56 MHz. Again
the main peripheral is USB 3.0. It uses Spartan6 XC6SLX150 FPGA. To this day, it is the

14

only device supported by OpenLTE as eNodeB. [28] It is also be able to run eNodeB from
srsRAN. [23]

The device is sold for around 1,600 EUR. [13]

3.2.4 Nooelec Nesdr

NESDR RTL-SDR is a series of SDR receivers manufactured by the company Nooelec.
They are in a form factor of a USB dongle, offer connection to an external antenna, and
draw some resemblance to DVB-T tuners.

Most of these devices offer a maximum operable frequency of 1700MHz. However,
version ”XTR“ offers a maximum operable frequency of 2300MHz. It still cannot receive
all mobile network frequencies, but it can receive the most widely used ones. It is also
limited in received bandwidth compared to other SDRs.

Now, the elephant in the room: it is only a receiver, severely limiting its usability.
Nevertheless, it is very affordable. It also has OpenLTE support for scanning and recording.
Despite its shortcomings, it is an appealing choice for first-contact experiments.

3.3 Existing Software

3.3.1 SoapySDR

SoapySDR is a generalised open-source API and run-time library for interfacing with SDR
devices. It is supported by most SDR hardware platforms and offers bindings for frameworks
such as GNU radio (such as source/sink blocks).

Its philosophy is not to be a full hardware abstraction library, where the implementation
can be platform agnostic. Nevertheless, it is possible to use it as such. [33]

3.3.2 GNU Radio

GNU radio is a development toolkit that provides signal processing to implement software
radios. It is made to be used using hardware (such as SDR) or with mocked input in a
simulation-type environment.

The foundation of the GNU radio is a block. Block implements a single functionality
(low pass filter, Fast Fourier Transform, sink/source block from a file or a peripheral and
others). These blocks are then used together to create the desired output. This concept
reminds us of the ideal SDR described in Chapter 3. The ideal radio is only an ADC, and
all of the other hardware functions are replaced by software implementation. These blocks
can, in most cases, replace a given circuit one-to-one.

The GNU radio has broad support, being used in research and development, academia,
government and hobbyists alike. [14]

3.3.3 ASN.1

ASN.1 is a formal notation for data serialisation and deserialisation of transmitted data,
especially in telecommunications. It defines a formalism for the specification of abstract
data types. It sends any type of data, such as audio, video or data. It is very conservative
in bandwidth, which proves to be useful in the modern world.

15

The S1AP protocol, which mediates communication between eNodeB and MME, is
defined by ASN.1. The definition of the language is part of the technical specification of
S1AP. [1]

3.3.4 OpenBTS

OpenBTS is an open-source Unix application, first created in August 2008. It aimed to
implement the lower three layers of the GSM standard; use the then-modern USRP 5 as
radio equipment; and VoIP switching such as Asterisk. This combination meant that only
a single PC with a USRP was required for running a fully-fledged network. [7]

It was the first open-source implementation of GSM. It is claimed to have opened the
floodgates to much research in telecommunications, lowering the cost of entry from tens of
thousands of dollars and legal barriers to just a PC and SDR.

The original developers have since written a book, ”Getting Started with OpenBTS“
[19]. GSM is, therefore, a technology fully embraceable by an audience wider than just a
selected few.

However, the project is considered finished and is abandoned, with the last functional
updates to it done in 2016 [34].

3.3.5 OpenAirInterface

The industry has been fully aware of all the positive effects OpenBTS has brought. Follow-
ing its footsteps, a french non-profit, OpenAirInterface, has decided to create an open-source
implementation of 3GPP (LTE) as a successor to OpenBTS. The goal was to ”enable re-
search outside of vendor and operator R&D groups“ and allow for a low-cost open LTE
network, thus democratising LTE. [25]

After finishing and demonstrating the LTE platform, its focus has shifted towards 5G
networks. LTE systems are grouped in repositories with their 5G counterparts [27].

3.3.6 OpenLTE

OpenLTE is an open-source implementation of 3GPP (LTE) specifications. It has been
developed by a small group of programmers since 2012 and is yet to reach version 1.0 [43].

It also does not split the different parts of SDR, such as eNodeB and MME, which
complicates its use and goes against the principle of modularity.

Even though it seems to be working, we could not find a single application of this tool.

3.3.7 srsRAN

srsRAN (originally srsLTE) is an open-source platform implementing eNodeB (base sta-
tion). It is fully compliant with LTE protocol release 8. One of its main goals was to make
it a test-bed. Therefore, it allows for modularity and ease of changes inside the platform.
It greatly simplifies experimentation with the technology. [23]

Unlike OpenLTE, it splits the different implementations of the protocol (such as MME,
HSS, eNodeB ...) into separate pieces. The split of different parts is visualised in Figure 3.2.
This great modularity allows us to swap all parts for our implementation. Its conformity
to the standards also allows us to use the documentation as it was meant to be used.

5USRP = Universal Software Radio Peripheral (essentially the same thing as Software-defined radio)

16

On top of that, the platform offers limited support in the form of additional Testing to
a few selected SDR devices. These are USRP B2x0, BladeRF and HackRF. There is also
the possibility that it can work with other hardware using the SoapySDR library, but there
is no certainty. [23]

SrsRAN is supported by the company Software Radio Systems (SRS). The company
is situated in France and continues to implement open-source implementations of the 5G
protocol. When the company continued developing the product from 4G to 5G, the company
was renamed srsRAN (srs Radio Access Network). The shift toward the 5G got the 4G
protocol in the shadow, but it is kept updated, supported and up to spec.

Figure 3.2: A layout of the full LTE stack as implemented by srsRAN: UE connects to the
eNodeB through radio interface. eNodeB connects to EPC using S1 protocols. [23]

3.4 Already Attempted Attacks
In this section, we will summarise the already attempted attacks on mobile networks using
SDR. We will go through the used platforms, applied methods and taken precautions. If
possible, we will also pinpoint the most important or surprising information we got from
that paper.

3.4.1 Rogue Base Station

Rogue base station is a stand-alone device that mimics legitimate base stations in a mobile
network [41]. It is possibly the most often used baseline tool when attacking mobile net-
works. If implemented with proper care, phones have no way of distinguishing rogue and
actual base stations.

The attack uses open-source software implementing base stations. This software follows
the protocols for the type of network for which we masquerade. Some of these open source

17

tools are explained in Section 3.3. Tools in their original shape are legitimate software.
They might allow, for example, the creation of a DIY mobile network. However, they offer
a great head-start and can become an attack tool with just a few modifications. On top of
it, the base station is set up in such a way to get as many connections by UE 6 as possible.

Due to the architecture of the LTE protocol, it is not possible to establish a full MitM
attack. The attacker would need to be able to do a security key exchange. For that, he
needs to know the pair of IMSI and Ki: security key known to the operator and written
on the SIM card. This security key does never change. The complete connection in LTE
happens only after the key exchange, where IMSI and Ki are used to establish the trust
between the UE and eNodeB. That is not the case for the attacker; therefore, the MitM is
impossible. Furthermore, the encryption algorithm is a lot stronger than on GSM networks.
There are only a few protocol procedures accepted prior to the key exchange.

It is, however, possible to establish a full MitM attack with GSM protocol. Whether we
do a full MitM or just want to use the unprotected procedures in LTE, we want the mobile
phones to connect to our network and not to other networks. One might say that we want
to increase the attractiveness of the tower. This can be achieved in multiple ways.

The first and most apparent is setting the country code, operator code and cell identifier.
UE will try to avoid connecting to foreign operators or roaming.

The second is setting region code. If UE is detecting base stations all with the same
region code and one with a different region code, it will assume that it is going from region
to region; and connect to the tower with that different region code. Therefore, setting a
different region code in use around the place of attack increases the chances of receiving
connections.

The third way uses a protocol feature used to balance the load on different base stations
dynamically. The process is called Radio Resource Management (RRM). We can set RRM
parameters to look underused. With that, the UE will try to connect to this base station.

The fourth option is to use preferential frequencies. Absolute priority-based cell rese-
lection was introduced in LTE release eight specifications. Even if the phone has a good
enough connection with its current eNodeB, it will switch to another eNodeB if it uses
preferential frequency. This information is defined in SIB Type numbers four, five, six and
seven in the entire network. We can sniff this information and set up our rogue eNodeB
accordingly. [36]

It should be noted that broadcasting on an unlicensed spectrum is illegal per US and
EU law. Therefore, all experiments should be done in an isolated environment - a Faraday
cage.

3.4.2 Downgrading Attacks

Introduction

The basic principle of a downgrading attack is to force the target device to use older
standards than it may otherwise use (practically to downgrade from LTE to GSM). Since
the security of every subsequent generation is continually rising, forcing the use of an older
standard can be very effective. The methods used to achieve this are based on the standard
and executed using fabricated control messages. The user has no real defence against them.

6UE = User equipment. Usually, it means a mobile phone, but broadly speaking, it includes any user
device with a modem.

18

Figure 3.3: Downgrade attack sequence diagram, as executed by [45]

Furthermore, it may not even be possible without a change in protocol. The most frequent
and easiest to implement and misuse is downgrade the mobile phone to GSM service.

Broken Encryption

The security of the GSM standard is widely considered broken. The encryption in GSM
used is A5/1, A5/2 and A5/3, respectively. A5/1 and A5/2 are thoroughly broken, can be
decrypted almost real-time and are slowly being phased out in favour of A5/3. However,
mobile phone operators have been slow in adopting A5/3 encryption. Not only that, the
new encryption is not a silver bullet.

While implementing A5/3, developers moved from MISTY encryption to its sub-variant
KASUMI. At first, it was argued that it would be only a slight downgrade with a signifi-
cant benefit in reduced hardware requirements. However, this has resulted in much weaker
encryption than initially planned. Unlike A5/1 and A5/2, A5/3 is still not real-time de-
crypted. Nevertheless, it is not unbreakable. A single PC was able to decrypt it in two
hours [11].

It is still not a very practical attack, but moving forward, we can expect that A5/3 will
rapidly become obsolete as well.

The weakness of GSM is the reason for the efficiency of this attack: if we can force a
user to use old and broken protocol, it is a lot easier for us to create MitM or to eavesdrop
on the network. Nevertheless, even with the upgraded encryption, attacks downgrading to
GSM will still carry much potential and target even modern devices.

19

Functionality Description

The simplest method of achieving a service downgrade is to exploit TAU Reject and Attach
reject messages.

Using this, the rogue station can indicate to a target device that it is not allowed to
access 3G/LTE networks in the area. Therefore, the target device will not even attempt to
connect to these networks and only connect to GSM base stations. [32]

Per protocol, the behaviour is described as follows [3]:

The UE shall take the following actions depending on the EMM cause value
received in the ATTACH REJECT message: #7 (EPS services not allowed):
The UE shall set the EPS update status to EU3 ROAMING NOT ALLOWED
(and shall store it according to subclause 5.1.3.3) and shall delete any GUTI,
last visited registered TAI, TAI list and eKSI. The UE shall consider the USIM
as invalid for EPS services until switching off or the UICC containing the USIM
is removed or the timer T3245 expires as described in subclause 5.3.7a. Ad-
ditionally, the UE shall delete the list of equivalent PLMNs and enter state
EMM-DEREGISTERED. If the message has been successfully integrity checked
by the NAS and the UE maintains a counter for ”SIM/USIM considered invalid
for GPRS services“, then the UE shall set this counter to UE implementation-
specific maximum value.
If A/Gb mode or Iu mode is supported by the UE, the UE shall in addition
handle the GMM parameters GMM state, GPRS update status, P-TMSI, P-
TMSI signature, RAI and GPRS ciphering key sequence number as specified in
3GPP TS 24.008 [13] for the case when the normal attach procedure is rejected
with the GMM cause with the same value.
If the UE is operating in single-registration mode, the UE shall in addition
handle the 5GMM parameters as specified in 3GPP TS 24.501 [54] for the case
when the initial registration procedure is rejected with the 5GMM cause with
the same value.

Note: The attack lasts either until USIM is removed (i.e. restart of phone or SIM
reinsertion) or until T3245 expiration (that is random time in the range of 24-48 hours [2]).

After that, the attacker faces an option. Either they will just passively eavesdrop on
the GSM communication going to a legitimate GSM station (and breaks the antiquated
encryption), or they will establish a rogue GSM station of their own, as described in Sub-
section 3.4.1 (if A5/3 is used).

Past Demonstrations

The concept is not new, and it is hard to track down the original demonstration. But to
give an example of combining downgrade by a rogue LTE station with forcing a connection
to a rogue GSM station, it was demonstrated by Shuhui Chen and collective in 2019, using
off-the-shelf hardware. [45] First, a rogue LTE base station was created using USRP B210.
This was used to trick a phone into connecting. If the phone decides to initialise the
connection, it sends a Tracking Area Update request.

After that, the attackers were able to transfer the device into connecting to a rogue
GSM station using the Tracking Area Update. But before forwarding to a GSM station,

20

the attackers send an Identity Request to gain more data. To achieve a full MitM attack,
the attackers use this data to create a connection to a real GSM station using an old phone
and spoofing the IMSI that was gathered before. [45]

The project has used about four PCs to run the networks and forwarding. In our humble
opinion, this prototype setup would beneficiate from at least some downsizing.

3.4.3 Single Device Attach Procedure DoS Attack

Denial of Service (DoS) and Distributed Denial of Service (DDoS) are more commonly
associated with wired rather than wireless connections. However, their potential should
not be underestimated. Denial of mobile network services at the premises of a market
competitor or a stock exchange can have serious repercussions and should be taken into
account. [31]

Figure 3.4: Simple targeted Denial of Service attack.

This attack is again very similar to a Downgrade attack or an active IMSI catcher. The
difference is that the EMM Attach reject cause is Cause #8: EPS and non-EPS Services
Not Allowed. This message is sent after acquiring the IMSI of a given phone. Therefore,
this DoS message can target a specific user.

Per protocol, the reaction to this Attach reject is described as [3]:

The UE shall take the following actions depending on the EMM cause value
received in the ATTACH REJECT message: #3 (Illegal UE); #6 (Illegal ME);
or #8 (EPS services and non-EPS services not allowed);
The UE shall set the EPS update status to EU3 ROAMING NOT ALLOWED
(and shall store it according to subclause 5.1.3.3) and shall delete any GUTI,
last visited registered TAI, TAI list and eKSI. The UE shall ETSI consider the

21

USIM as invalid for EPS services and non-EPS services until switching off or the
UICC containing the USIM is removed or the timer T3245 expires as described in
subclause 5.3.7a. Additionally, the UE shall delete the list of equivalent PLMNs
and enter state EMM-DEREGISTERED. If the message has been successfully
integrity checked by the NAS and the UE maintains a counter for ”SIM/USIM
considered invalid for GPRS services“, then the UE shall set this counter to UE
implementation-specific maximum value. If the message has been successfully
integrity checked by the NAS and the UE maintains a counter for ”SIM/USIM
considered invalid for non-GPRS services“, then the UE shall set this counter
to UE implementation-specific maximum value.
If A/Gb mode or Iu mode is supported by the UE, the UE shall in addition
handle the MM parameters update status, TMSI, LAI and ciphering key se-
quence number, and the GMM parameters GMM state, GPRS update status,
P-TMSI, P-TMSI signature, RAI and GPRS ciphering key sequence number as
specified in 3GPP TS 24.008 [13] for the case when the normal attach procedure
is rejected with the GMM cause with the same value.
If the UE is operating in single-registration mode, the UE shall in addition
handle the 5GMM parameters as specified in 3GPP TS 24.501 [54] for the case
when the initial registration procedure is rejected with the 5GMM cause with
the same value.
NOTE 2: The possibility to configure a UE so that the radio transceiver for a
specific RAT is not active, although it is implemented in the UE, is out of the
scope of the present specification.

Note: The time the attack is active is either until USIM is removed (i.e. restart of
phone or SIM reinsertion) or until T3245 expiration (that is random time in the range of
24-48 hours [2]).

Reaction of UE to this message seems not to be universal. Some sources claim that
this UE will not attempt to connect to a mobile network until restarted, SIM reinserted,
or timer T3245 expires (24-48 hours) [44, 2]. Others suggested that a UE will not connect
for a relatively small limited amount of time (like 10 minutes)[17]. Therefore, the attack’s
efficiency depends on the UE manufacturer’s implementation.

Every successive generation of mobile networks, from GSM to 5G, aimed to accommo-
date more data from more users than their predecessor. To allow this, operators began
using so-called picocells and femtocells - base stations with a very low effective range (fem-
tocells are up to 100 meters). Also, many more devices access this network, thanks to the
trend of IoT.

3.4.4 Overload Style DoS Attack

This DoS attack tries to overload the eNodeB resources and Evolved Packet Core resources.
After analysing the protocol, researchers selected a few methods that generated the most
work for the network. For example, a UMTS session setup and resource release require 27
signalling messages to occur. The LTE attack works similarly. LTE has a concept of Bearers.
These are responsible for carrying information in the network for a given connected UE. We
can differentiate payloads based on the type of traffic (based on the Traffic Flow Template
field), for example, FTP or HTTP. A single UE can establish up to 8 bearers. Bearer
activation procedure and deactivation procedure for a single bearer require 24 messages, 12

22

of which are processed by the eNodeB. Using this mechanic, we force the network entities to
attach and detach bearers, which can quickly eat all available resources on eNodeB. We can
amplify this by 1. timing the bearer activation, 2. inserting a small data transfer between
activation and deactivation, 3. using all available bearers, and 4. using more devices. [6]

In our opinion, this attack seems to be heavily temperate on used eNodeB hardware and
having multiple legit SIM cards attached. Such behaviour might be interpreted as against
the Terms of Service by the operator. Additionally, this attack will be less powerful as
we move towards the IoT trend of many devices. The network will have to be ready for
this influx, and some additional (although malicious) users do not add up to the weight
required. There is also the problem of load balancing in the network. It would be hard to
concentrate the attack on a single tower because all the towers will try to balance loads
on them. Moreover, the solution to the attack is as simple as dropping the demanding
users’ connections or blocking the SIM cards entirely for breaching the TOS. Again, in our
opinion, the feasibility is not there.

3.4.5 Brute Force Jamming

Radio jamming describes an act of transmitting radio signals, intending to disrupt legitimate
communication. Classical radio jamming transmits on a broad band of radio signals with
the goal of noise out the communication. From the principle, it is hard to direct.

The jammer was attempted by Van Rijsbergen at University of Amsterdam. They cre-
ated an experimental base station using Blade-RF (with some modifications) and initialised
a test phone call between the Blade-RF and a phone. Then, they tried to jam the phone
call using HackRF. This was done in a lab, using a Faraday cage to not interfere with
other people. Results were largely unsuccessful: it dropped calls consistently only in the
GSM900 range, and even then, the phone was able to begin a new test call and go around
the jamming. Frequencies of 1800 and 2100MHz were not affected at all. One of the possi-
ble explanations offered was the low signal strength of the jamming device, combined with
the ability of mobile networks to bypass interference. [40]

Some jammers specify the jammed band to just control channels. Since the attack is
much more concentrated, it requires smaller devices that consume less power. Also, it is
much more powerful since it does not block devices within a range of the radio jammer but
in range of the jammed base station - which is generally a lot wider. [31]

3.4.6 Spoof Jamming

To ”brute-force jam“ a normal base station, one needs a lot of transmitter power. The
station has a powerful signal, and the standard was built to work even during strong
interference. However, if we use our knowledge of the standard and abuse its properties,
we can gain a measurable advantage in jamming capability.

Instead of trying to noise out transmitted data, we add data of our own, which is harder
to filter out. Different channels are used in the LTE standard. Researchers have tried spoof
jamming different channels and signals and measured its effect. The most successful was
the jamming of the Control Format Indicator Channel (PCFICH). If they were to barrage
jam with the same efficiency, they would need a 27dB stronger broadcast. [21]

However, the best implementation time to efficiency ratio was gained by jamming the
synchronisation signals. The LTE protocol has two such channels - primary synchronisation
signal (PSS) and secondary synchronisation signal (SSS). It works by spoofing the synchro-
nisation frame and sending it sooner than expected. The devices then expect a Master

23

information block right after the signal. It will not be there since it got the synchronisation
signal ahead of time.

This information is interesting because it allows for very powerful jamming without
potent equipment.

3.4.7 Insider Attacks

The ever-increasing complexity of the network keeps opening new possible vectors for attack.
For example, it has been demonstrated that it is possible to gain root access to a femtocell
access point [15]. This fact breaks our assumption that access to the internal network is only
possible for actual base stations [31]. Gaining access to a base station could theoretically
open their use as a much stronger radio for illegal activity. These attacks are primarily
conceptual and out of this project’s scope.

3.4.8 IMSI Catcher

Figure 3.5: Active IMSI catcher sequence diagram.

This type of attack is one of the most primitive attacks on the mobile network. Even its
highest form does not require full implementation of a base station. Its goal is to capture
the IMSI of a given UE.

IMSI is a code used to identify UE on the mobile network.
There are two ways to execute an attack: passive and active.
In the passive attack, we try to sniff mobile communication and extrapolate IMSI. It is

generally more effective with 2G networks. Not only is it easier to sniff 2G networks. 2G
networks will use the IMSI (and not TMSI) more often than 4G networks.

24

In the active attack, we make something resembling a base station. When the UE starts
to connect to our base station, we usually cancel the connection. We receive an IMSI from
the UE during this process, per protocol. [3]

There are two mechanisms through which the UE will try to connect to our tower.
The first is Tracking Area Update Request (TAU Request). This is an effort by the UE

to switch between towers if it is already connected to one. Because of this, it will mainly
contain TMSI (GUTI) as an identifier (although IMSI is possible as well. We reject this
request using TAU request, where we choose a Cause #9 - UE Identity Cannot be derived
by the network. Our network has no record of the already assigned TMSI (GUTI).

The second mechanism is Attach request. The examples of causes are that the TAU
Request fails or TMSI is not assigned. Usually, the Attach request comes with the IMSI
identifier. If, however, it will come with TMSI or other identifiers, we can respond with
Identity request and demand IMSI. Identity response then shows us this IMSI, which
was our goal. After that, we can cancel the connection with any cause we want that is
accepted without security mode.

Since the attack is based on a protocol and UE just blindly follows the protocol, there
is no easy defence against this attack by the individual. However, there are some rather
unusual solutions. For example, one can gain root access to a mobile phone and modify its
software to ignore the messages.

There were also studies trying to detect IMSI catchers. [4] These methods include
methods such as fingerprinting the cells and focusing on Location Area codes.

25

Chapter 4

Design

In this chapter, we go over the final product’s design.
First, the Faraday cage has to isolate all the experiments. The existing solutions are

lacking for our application, so we will attempt to design own makeshift Faraday cage.
A significant focus has to be put on the hardware requirements. The used combination

of radio equipment and control computer needs to create an eNodeB and execute attacks
on it.

The used computers have to be able to take on the load of the radio equipment and
software. Our main focus is the required bandwidth and required computational power.
However, with the focus on miniaturisation, we want the smallest, the least power-hungry
computer to do the job.

4.1 Faraday Cage
In most countries around the globe, broadcasting on licensed frequencies without a licence
is illegal. Going the other way around, the licensed broadcast can interfere with our ex-
periments. Therefore, all research experiments must be executed in an isolated laboratory
environment. The easiest way of doing this is to buy or create a Faraday cage.

Our Faraday cage must be able of two things: keeping the radio broadcast of a public
cellular network out, and keeping our experimental radio broadcast in. The required signal
reduction is quite high: we might need to lower our signal by up to 100 dB [20]. It should
be big enough to hold all of the required equipment. This, at a minimum, includes a single
mobile phone and an SDR (therefore, the Faraday cage has to have a size of at least a
shoe-box). Based on the efficiency of the design, we might be able to run cables into the
Faraday cage. If not, the Faraday cage has to enclose not just the minimal equipment but
the controlling PC (most likely a Raspberry Pi or other USB 3.0 equivalent1), and a battery
for the computer as well as the SDR.

To verify our experiments, we simply put a mobile phone inside the proposed Fara-
day cage and tried to initiate a phone call. If the phone starts to ring, the insulation is
insufficient.

When buying a Faraday cage, one can easily see two categories of products.
The first is a consumer-targeted cage. They are usually unable to block relatively strong

transmission of an SDR. Additionally, most of them do not depict any measured reduction in
1Most of the SDRs on the market require an USB 3.0 connection for full bandwidth

26

signal on the package. Their effectiveness is therefore unknown until bought and measured
by ourselves.

The other category is licensed Faraday cages for laboratory and industrial uses. This
option is, however, too expensive. For this reason and the sake of the experiment, we
started with creating a Faraday cage of our own.

In the first iteration, we tried to use aluminium kitchen foil, as it is the most readily
available material. However, this has been proven ineffective for mobile network broadcasts.
The only way we could block the phone signal completely was when the phone was folded
in the tinfoil without an SDR and any wires attached. Even then, results depended on the
quality of the folding performed.

The re-usability is also minimal. When measuring the impact of aluminium, the usual
signal reduction was only around 40dB2.

In the second iteration, we tried a small metal box. While it brought a measurable
signal reduction, the signal was never blocked.

In the third iteration, we tried to use probably the most famous type of a Faraday cage
- a microwave. To our surprise, this has not brought the wanted results as well. While the
LTE signal was shielded a bit, the phone could still get the signal of a public GSM network
and receive a phone call.

The final solution combined second and third iterations - the mobile phone was put into
a metal box, which was put inside a microwave. This delivered the signal blocking quality
and the required consistency of results. This setup is also easily replicable and serves as a
possible guide to creating a dedicated Faraday cage for mobile network experimentation.

However, this setup does not allow for cables running into it. Therefore, the setup
necessitates that the PC and batteries be included in the cage.

4.2 Radio Equipment
When it comes to the radio equipment, the options are laid out in Section 3.2, with the
images of the solutions on Figure 3.1. In this section, we ignore the UE and focus on SDR.

We need a single device serving as a BTS/eNodeB. These are clearly outlined for each
software platform. This should be enough for some attacks, such as the IMSI catcher, DoS
and Downgrade.

For other attacks, such as jamming, We need at least two radio devices - one for the
BTS/eNodeB, the other for attacking it. It should be enough even for the downgrade
attack. The real-life scenario also expects a real tower, from which we have to capture the
target UE. However, the preceding work used just two radios (one for the GSM BTS, the
other for the LTE eNodeB [45]) and ignored the UE capture problem.

It should be possible to combine two different SDR devices. However, it has been rarely
done and brings extra work to make sure it works on two different devices. Therefore, the
SDR devices should be the same.

Since the cost of the SDR devices is not negligible, and we already have access to one
BladeRF, the setup will be most likely made of two BladeRFs. The implemented attacks
require only one SDR. The chosen BladeRF is displayed on Figure 4.1 and Figure 4.2,
respectively.

2Measured with the help of an Android app Gmon pro.

27

Figure 4.1: Our chosen hardware - Raspberry Pi 4B+ and BladeRF Micro 2.0 AX9. Both
in opened matching 3D printed case. 2 EUR coin included for size reference.

4.3 Computer Usage
Our first focus comes to the bandwidth required. All of the SDR devices require a USB
3.0 bandwidth. That limits our choices considerably. This first requirement blocks us from
using the lowest level microprocessors.

It also needs to be able to pull the software of eNodeB. Our MME is mostly negligible.
The first benchmark we have is a test done by the srsRAN team. They have run srsENB on
Raspberry Pi 4. The RAM utilisation was around 2 GB, and CPU utilisation sat at around
25%. There is also recommendation to not use more than 6 Physical Resource Blocks 3

with the newest version of srsENB, as it may cause problems. That is not a problem for
us, as we do not attempt to create a real-use tower to download high amounts of data. [37]

The computer should be able to be powered by battery. This limits us even further.
The best area of search for computer should be cheap SoC computers.

Last, if we do not want to recreate all the libraries and available tools foreshadowed in
Section 3.3, it would be optimal to have a computer running Linux. After some experiments,
the best option is Ubuntu since it offers the most comprehensive support for non-standard
repositories.

Therefore, our first choice is a Raspberry Pi 3 B or above. It offers USB 3.0, but it also
offers the standard Linux support and some considerable computational power. However,
there remains a question about its memory speed. Its power requirements are for a 5V/3A

3It is the smallest unit of resources, that can be allocated in LTE.

28

Figure 4.2: Our chosen hardware - Raspberry Pi 4B+ and BladeRF Micro 2.0 AX9. Both
enclosed in 3D printed Case.

charger, but the average power draw is said to be under 7W. That is a bit too high, but for
a prototype, it is good enough. It should be possible to power it using just any power bank
with fast charge. For Raspberry Pi also speaks that the SRS has tested running srsENB
on Raspberry Pi with a high degree of success. While the USB bandwidth does indeed
support the SDR, there is a small possibility that memory speed will be an insurmountable
bottleneck.

There are quite a few more powerful step-ups from the Raspberry Pi 4. All of them
have one in common: lower support, smaller community, higher performance and higher
power consumption.

The solution for higher performance is for example ROCKPro64. Its upside is that it
has an onboard MMC storage. It is also slightly more powerful than Raspberry Pi. Its first
downside is higher power requirements (requires as much as 12V/5A), which would require
a lot bigger battery than a standard power bank. The second is lower support from the
hobbyist community.

When choosing hardware platform, it should be noted that srsENB uses priority threads
and performance scaling CPU governor to keep latency low. It is therefore not advisable
to limit power consumption by software limitations.

But, to reiterate: in our expectation, Raspberry Pi should be good enough. The Rasp-
berry Pi 4 is displayed as a part of setup on Figure 4.1 and Figure 4.2.

29

Chapter 5

Implementation

This chapter goes into the details of our implementation. We first discuss real software
requirements on our code. We try to find the best libraries and services for these require-
ments. After that, we present the implementation proper: a class diagram and a state
machine.

5.1 Software Implementation Outline
We propose to implement these attacks: Attach-targeting denial of service, IMSI catcher
and Downgrade attack. All of these attacks work on a simple principle. The UE connects
to our fake eNodeB and sends an Attach request (usually also with a PDN connectivity
request). The eNodeB sends this Attach request using the S1AP protocol to the MME.
This is done using NAS transport message in the S1AP. After that, the MME similarly
responds to the eNodeB with what to do with the request. In our case, we might want
to send an Identity request first, and wait for the response with IMSI. But in the end, we
always send an Attach reject (and if we got a PDN connectivity request, we send PDN
connectivity reject as well). Based on attached reject Cause, the UE will behave as said by
the protocol.

When we analyse the way these attacks are implemented, one thing becomes apparent.
We do not need to touch the implementation of eNodeB at all. Instead, we just have to
replace the MME with our own mock. The MME has to be able to:

1. Communicate with the eNodeB using S1AP protocol;

2. Create connection with eNodeB;

3. Encode and decode Attach request, Attach reject, Identity request; and

4. Work with Attach request, Attach reject, Identity request;

Looking back on these requirements, we need to ensure that the chosen development
platform has dedicated eNodeB and MME. If that is not the case, it is not easy to replace
the MME.

Another feature is that the S1AP protocol is defined using ASN.1. There are ASN.1
parsers [30] that can take some burden off of our shoulders in this work. However, it is
noteworthy that the work with ASN.1 will probably result in many dynamic structures.
That would favour using a more freely typed language.

30

When picking the implementation language, we need to consider available tools, devel-
opment speed, and support on the target PC. As discussed in the previous paragraph, using
a more freely typed language might be advisable.

At first glance, there are two outlying programming languages for implementing the
software. The first is C/C++. The language has ever-present support and is fast during run-
time. The second is Python. The language has also strong support, has fast implementation
time and has more easily supports the dynamic structures that the ASN.1 parser will present
us with. Additionally, Python has to be installed on the PC anyway, so it does not add as
much burden to it as it might seem.

At last, we decided to use Python.

5.2 Used Libraries
As outlined in the Section 5.1, numerous tasks are probably already implemented using
libraries. We will divide the libraries by their function and describe them.

5.2.1 SCTP Connection

The S1AP protocol (used for communication between eNodeB and MME) is run over the
SCTP protocol. Stream Control Transmission Protocol is a transport layer protocol espe-
cially used in the telecommunications industry. In our case, we will create only a single
connection from the MME to the eNodeB.

As we decided to use the Python language, the best option is to use PySCTP by
P1Sec. It is an SCTP stack for Python. In concurrence to the usual socket functions like
send(), it also adds functions as sctp_send(). These functions provide the programmer
with additional content and options specific to the SCTP protocol. It also takes care of
establishing and confirming connections, and confirming the arrived packets. [29]

With these functions, we can also set the port number. This is important as the S1AP
protocol runs over a specific port number.

SCTP is not a widely used protocol. It is usually included in Linux kernel. We can
install SCTP libraries onto the PC, but these only interact with kernel implementation.
We, therefore, have to pick a kernel that implements SCTP. This can be checked either
by the presence of the SCTP module in kernel files or by checksctp() utility included in
SCTP libraries.

In our case, Ubuntu 22.04-Raspi inexplicably lacks kernel support for the SCTP. We
instead used Raspberry OS to solve this issue, which works just fine.

5.2.2 S1AP

As previously discussed, the S1AP is instrumental to the connection of eNodeB and MME.
This protocol is purpose-made for something that people often do not work with. That
means that the options are a bit limited. It is defined by ASN.1 language.

The best tool we could find is Pycrate by the company P1Sec [30]. It is a Python
library that acts as an encoder and decoder for the various ASN.1-written protocols. It was
developed with the focus of being used in the telecommunications industry. It has broad
compatibility (working on Python2 and 3 as well). It also supports the Cython engine,
which could increase the program’s speed. It has no run-time dependencies, but Python
module setup-tools is required for setup.

31

5.2.3 NAS-PDU Messages

Some messages, such as Attach requests or PDN connectivity requests, are not an elemen-
tary procedure within the S1AP protocol. Rather they are NAS messages encapsulated into
S1AP message of type Downlink NAS Transport and Uplink NAS Transport. We need
to work with these messages a bit separately.

This is also solved by the Pycrate by P1Sec [30]. It contains a pycrate_mobile subdi-
rectory, which implements most of the 3GPP NAS protocol. This includes EPS mobility
management messages.

5.3 Code Implementation
In this section, we will describe our implementation of the foreshadowed problems. We
will describe class structures, states of the program, options it provides and functions it
contains.

5.3.1 State Machine

Our MME implements only a few S1AP Elementary procedures, such as S1 Setup, Initial
UE message, Downlink NAS Transport and Uplink NAS Transport. The last two ele-
mentary procedures serve as a tunnel for NAS communication between UE and MME. This
makes it really easy to just create a simple state machine, where we expect a connection
from eNodeB. Then, we can react to the messages that come from it and send response
back.

Figure 5.1: Finite state machine of our implementation.

5.4 Code Structure

5.4.1 Division Into Files

The implementation is logically divided into multiple distinct files, visualised on the Fig-
ure 5.2.

32

Intrusive-LTE-MME/
|– MME.py
|– state_machine.py
|– EPC.py
|– parsing.py
|– install_script.sh
|– parsing_test.py
|– EPC_test.py

Figure 5.2: Visualised file structure of our implementation.

The first is the main file, called MME.py. It contains the main loop and calls for socket
initialisation, object creation, and argument parsing.

The next file is called state_machine.py contains only class EPCStateMachine, since it
is a standalone class independent on other code. This is included inside EPCServer.

Another file is EPC.py, that contains the class EPCServer.
The largest file is parsing.py. The file contains class parsing, used to dissect, encode

and decode messages. There are also some files containing tests and scenarios for testing.
Last but not least, there is a file called install_script.sh. It is a simple script trying to

simplify and streamline all of the dependencies and required software. The installed depen-
dencies are pysctp,pycrate, all of the bladeRF utilities (libbladeRF,bladeRF-cli), SoapySDR,
and srsRAN.

The script contains some duplicity since we install SoapySDR even though it is not
required. It is, however, very nice to have. It should be noted that it just stops when some-
thing fails - it contains no rollback. It also cannot monitor the results of srsRAN Testing or
kernel support for SCTP. Nevertheless, all of the found dependencies were accounted for,
and the script is better than searching for guides and libraries for each of the tools online.

5.4.2 Class structure

Figure 5.3: Class diagram of our implementation.

In this part, we will describe the code structure of our implementation.
The main component is class EPCServer. This component is meant to represent our

entire server and encapsulate its behaviour. Inside it are placed other structures, such as
EPCStateMachine, saved connections and arguments.

33

5.4.3 Arguments

The program accepts arguments on startup from the console. All of the arguments are
optional and have their default value.

The first argument is a response to Attach request. The program accepts both strings
and Cause Numbers from the protocol. The default is Cause #8 - EPS services and non -
EPC services not allowed.

The second argument is a pair of target-omit IMSIs. The user can choose only to
target specific IMSIs with the chosen action. Alternatively, the user can choose to exclude
specific IMSIs from this action. If the device is targeted or not omitted, it receives the
cause specified by the first parameter. Otherwise, it receives Cause #111 - Protocol Error
- unspecified.

The last argument is the IP address to use for the srsENB connection. The protocol
specifies port; therefore, it is impossible to modify it.

34

Chapter 6

Testing

In this chapter, we discuss the validation and verification of our implementation. There are
different paths to test final product. First of all, we go over unit tests, mock eNodeB and test
for the correct answer. After this initial check, we test the implementation by experiment.
We also discuss practical problems, such as abilities while powered by a battery.

6.1 Isolated Tests

6.1.1 Unit Tests

We used the unittest library to test some of our functions in the implementation. These
tests are generally used to verify single functions or classes. The functions we focused on
were those that are not too self explicable, involved a lot of our coding instead of library
calls, and are used by other functions. Some problems were found and fixed.

We encountered a problem with testing the network functions. The unit tests kept
blocking each other from using the IP-port pair needed for the functionality. For example,
it is not very useful to test functions that serve only as an encapsulation for another library
call. Similarly, it does not make much sense to test library implementations of our code,
and many functions do just those.

For each of the functions selected for Unit Testing, we created a set of possible param-
eters and expected outcomes. Using the library unittest, we asserted that when running
these functions, the outcomes are the as expected. Tests are organised in the files called
*_test.py, where the first part of the filename is the same as the tested filename. The files
are therefore parsing_test.py, EPC_test.py. The main file has no functions or classes and
therefore is not tested.

6.1.2 Black-Box Tests

During the development, we also created a set of eNodeB mockups. With pre-crafted
messages, we can compare the answers from the MME to the expected result. These tests
present a few prepared scenarios, such as invalid data input or unexpected messages. These
tests are black-box in the sense that we do not watch the functionality inside, only the
outside appearance of it.

A lot of the mock messages come from the real communication recorded using Wire-
shark. The expected behaviour was gained using protocol analysis or the communication
as presented. Results of these scenarios were checked manually, again using wireshark.

35

To give an example to these scenarios, i would like to present a few of them.
The first scenario tries to verify that it is possible to create SCTP connection, and

establish an S1AP connection. Therefore, it initialises socket and sends S1 Setup request.
The expected behaviour is that the connection is established and MME answers with S1
Setup Response.

The second scenario establishes connection, and after that sends Initial UE Message
with Attach reject and Identity other than IMSI. It is expected to see Identity request, and
we send Identity response. The MME should answer with Attach reject.

6.2 Testing by Experiment

6.2.1 Testing Overview

Sadly, we could not test the application in public. The testing had to be confined into a
Faraday cage. This means that our experimentation is minimal - we do not have the option
to test things such as the attractiveness of our device to attach. It is also impossible to
research how our IMSI catcher behaves when there is legitimate eNodeB transmitting.

6.2.2 Testing Different Phones

First, we inserted different phones into the Faraday cage for the experiment. After that,
we started the programs and awaited the results. We also recorded the sessions between
MME and eNodeB, as well as communication on MAC layer in the eNodeB. After that, we
watched how the different phones reacted to this.

It should be noted that the MAC recordings were done by srsENB. The protocols do
not work by default. To make Wireshark able to read MAC recordings, we have to go to
Protocol Preferences -> DLT_USER and set DLT to 149 and payload to udp. [23]

The first tested phone was Google Pixel 4A. It was very reluctant to send TAU or Attach
request to our tower. But still, it did. If, during the development, it did not get answer to
the Attach request, it would not send more than two or three of them. The phone did try
to connect again.

The second was Honor 9X. It was a lot swifter in sending the Attach requests. It also
sent up to 5 Attach requests. This phone also did try to connect again after getting Attach
Reject #8.

The last tested phone was Xiaomi Redmi 4 Pro. The oldest phone was the fastest in
trying to connect. But it also tried to connect again after receiving the Attach Reject #8.

After testing these three phones, it was apparent that the attacks did not carry as great
of the weight as first expected when studying this material. Through the recordings of the
eNodeB - MME, we are able to see that the communication goes as expected. In the MAC
recording, we can clearly see that the Attach Reject is propagated to the mobile phones. It
is therefore not clear why these Denial of Service Attacks do not work.

The mentioned recordings are added to the work.

6.2.3 Hardware Performance

We ran the srsENB with 6 Primary Resource Blocks, the lowest setting we can set. With
this setting, we got the average CPU load at around 60%, and memory utilisation (including
Raspberry Pi OS) at around 1GB. Therefore, we have found that we can use Raspberry Pi
4 with the smallest, 2GB RAM.

36

6.2.4 Power Requirements

Figure 6.1: Running the setup on the battery. We were able to run BladeRF without second
power bank.

The power requirements are key to making this intrusive device work. It must be
therefore tested if and how it can be done.

First things first, the Raspberry Pi 4 has an official wall plug charger with nominal
characteristics of 5V/3A. The power supply is done over a USB-C port. However, the
Raspberry Pi does not exceed 7W (5V/1.4A) while under load. Therefore, it is an exerted
rule of thumb that the power supply must be able to provide twice the maximum average
power draw so that it can cover the peaks.

Our experiments aligned with these expectations. First, we experimented with running
the software on Raspberry Pi OS.

We also tried scaling down the power bank to just a 5V 2A source. However, the
Raspberry did not even boot correctly with this power source.

When connected to a 5V/3A power bank, the OS kept popping us with a low voltage
warning. Nevertheless, this has stayed the same. On desktop, the draw was at around
1A. However, when running our software, the draw was right under 1.4A. So raising the
transmit gain from 30 to 80 increased the draw to 1.6A. This setup is on Figure 6.1.

Considering the official battery capacity on the figure to be 20Ah, we expect our setup
to run for around 12 hours.

37

Chapter 7

Summary

This work has been focused on finding ways to break Wi-Fi and mobile networks using
radio, especially Software-Defined Radio. We compared the existing tools in the field, such
as tools to create a base station using an SDR. We summarised available hardware in the
sphere of SDR. We have also identified past research in the field. We proposed a hardware
setup to execute the selected attacks with as small equipment as possible.

We also proposed and developed a software solution that creates a mock of MME.
This MME is then used to launch attacks in cooperation with an open-source eNodeB
from srsLTE. This mock was tested using unit tests and successfully experimented within
the laboratory environment. We tested our solutions using different methods, such as
experiment, unit tests and prepared scenarios. We tested the solution while powered on
battery, measured its power draw. Thus, we have demonstrated, that making these attacks
is possible with the miniaturised hardware, and that it is possible to run it on a battery.

We also tested its effectiveness on different mobile devices. While we were able to
execute the attacks as described in earlier work, the attacks were not effective on any of the
tested devices. From what we were able to observe, are unable to say, why the attacks were
not successful. What also characterises the past attacks and was omitted from the work is
trying to trigger TAU. Since we decided to mock MME, it is out of scope of this work.

38

Bibliography

[1] 3GPP. LTE; Evolved Universal Terrestrial Radio Access Network (E-UTRAN); S1
Application Protocol (S1AP). Technical Specification (TS). 3rd Generation
Partnership Project (3GPP), September 2018 [cit. 2022-05-08]. Version 15.3.0.
Available at: https://www.etsi.org/deliver/etsi_ts/136400_136499/136413/
15.03.00_60/ts_136413v150300p.pdf.

[2] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource
Control (RRC); Protocol specification. Technical Specification (TS). 3rd Generation
Partnership Project (3GPP), October 2020 [cit. 2022-05-08]. Version 15.9.0.
Available at: https://www.etsi.org/deliver/etsi_ts/124000_124099/124008/
15.09.00_60/ts_124008v150900p.pdf.

[3] 3GPP. Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage
3. Technical Specification (TS). 3rd Generation Partnership Project (3GPP),
January 2020 [cit. 2022-05-08]. Version 15.8.0. Available at: https://www.etsi.org/
deliver/etsi_ts/124300_124399/124301/15.08.00_60/ts_124301v150800p.pdf.

[4] Alrashede, H. and Shaikh, R. A. IMSI Catcher Detection Method for Cellular
Networks. In: 2019 2nd International Conference on Computer Applications
Information Security (ICCAIS). 2019, p. 1–6. DOI: 10.1109/CAIS.2019.8769507.

[5] Alza.sk. TP-Link Archer T3U Plus - WiFi USB adaptér. Alza.sk. 2020 [cit.
2021-09-30]. Available at:
https://www.alza.sk/tp-link-archer-t3u-plus-d5816401.htm.

[6] Bassil, R., Elhajj, I. H., Chehab, A. and Kayssi, A. Effects of Signaling Attacks
on LTE Networks. In: 2013 27th International Conference on Advanced Information
Networking and Applications Workshops. 2013, p. 499–504 [cit. 2022-05-08]. DOI:
10.1109/WAINA.2013.136.

[7] Burgess, D. A., Samra, H. S. et al. The openbts project. Report available at
http://openbts. sourceforge. net, http://openBTS. org. August 2008, [cit. 2021-12-02].

[8] Bílý, V. Frekvenční příděl GSM,DCS,UMTS a LTE v České republice. Gsmweb.cz
[online]. 2021 [cit. 2021-10-24]. Available at: https://www.gsmweb.cz/clanky/freq2.htm.

[9] Chandel, R. Wireless Penetration Testing: PMKID Attack. Hackingarticles.in, 24.
June 2021 [cit. 2021-12-28]. Available at:
https://www.hackingarticles.in/wireless-penetration-testing-pmkid-attack/.

[10] Cilleruelo, C. Why you should not buy the new WiFi Pineapple Mark VII.
Infosecwriteups.com. September 2020 [cit. 2021-10-23]. Available at:

39

https://www.etsi.org/deliver/etsi_ts/136400_136499/136413/15.03.00_60/ts_136413v150300p.pdf
https://www.etsi.org/deliver/etsi_ts/136400_136499/136413/15.03.00_60/ts_136413v150300p.pdf
https://www.etsi.org/deliver/etsi_ts/124000_124099/124008/15.09.00_60/ts_124008v150900p.pdf
https://www.etsi.org/deliver/etsi_ts/124000_124099/124008/15.09.00_60/ts_124008v150900p.pdf
https://www.etsi.org/deliver/etsi_ts/124300_124399/124301/15.08.00_60/ts_124301v150800p.pdf
https://www.etsi.org/deliver/etsi_ts/124300_124399/124301/15.08.00_60/ts_124301v150800p.pdf
https://www.alza.sk/tp-link-archer-t3u-plus-d5816401.htm
https://www.gsmweb.cz/clanky/freq2.htm
https://www.hackingarticles.in/wireless-penetration-testing-pmkid-attack/

https://infosecwriteups.com/why-you-should-not-buy-the-new-wifi-pineapple-
mark-vii-f388544528c9.

[11] Dunkelman, O., Keller, N. and Shamir, A. A Practical-Time Attack on the A5/3
Cryptosystem Used in Third Generation GSM Telephony. IACR Cryptol. ePrint
Arch. N/Ath ed. 2010, N/A, p. 13, [cit. 2021-10-25]. Available at:
http://eprint.iacr.org/2010/013.

[12] Espressif Systems. ESP32 Wi-Fi and Bluetooth MCU. Espressif.com. 2021 [cit.
2021-10-23]. Available at: https://www.espressif.com/en/products/socs/esp32.

[13] Ettus Research. USRP B210 USB Software Defined Radio (SDR). Ettus.com.
2021 [cit. 2021-10-24]. Available at: https://www.ettus.com/all-products/ub210-kit/.

[14] GNU Radio. About GNU Radio. GNU Radio [online]. 2022 [cit. 2022-05-05].
Available at: https://www.gnuradio.org/.

[15] Golde, N., Redon, K. and Borgaonkar, R. Weaponizing Femtocells: The Effect
of Rogue Devices on Mobile Telecommunications. 2012 [cit. 2021-10-25].

[16] Hak5. Wifi Pineapple. Shop.hak5.org. 2021 [cit. 2021-10-23]. Available at:
https://shop.hak5.org/products/wifi-pineapple.

[17] Huber, M. Breaking LTO on Layer 1, 2, and 3 [Youtube]. ShellCon, November 2018
[cit. 2022-01-16]. Available at: https://www.youtube.com/watch?v=PiO__nr63Lo.

[18] Iconic Devices. Applications of NORVI industrial IoT Devices - NORVI Industrial
Arduino. Norvi.lk. May 2021 [cit. 2021-10-23]. Available at:
https://norvi.lk/applications-of-norvi-industrial-iot-devices/.

[19] Iedema, M. Getting started with OpenBTS: build open source mobile networks.
N/Ath ed. ” O’Reilly Media, Inc.“, 2014 [cit. 2021-12-02]. ISBN 9781491910658.

[20] Joki, A. and Lux, J. Do faraday cages block cell signal? Quora.com. 2019 [cit.
2022-01-16]. Available at:
https://www.quora.com/Do-Faraday-cages-block-cell-signal.

[21] Lichtman, M., Jover, R. P., Labib, M., Rao, R., Marojevic, V. et al.
LTE/LTE-A jamming, spoofing, and sniffing: threat assessment and mitigation.
IEEE Communications Magazine. N/Ath ed. 2016, vol. 54, no. 4, p. 54–61, [cit.
2021-10-25]. DOI: 10.1109/MCOM.2016.7452266.

[22] Machado Fernandez, J. Software Defined Radio: Basic Principles and
Applications. Revista Facultad de IngenierÃa. N/Ath ed. scieloco. January 2015,
vol. 24, N/A, p. 79 – 96, [cit. 2021-10-23]. ISSN 0121-1129. Available at:
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=
S0121-11292015000100007&nrm=iso.

[23] Miguelez et al. SrsLTE: An Open-Source Platform for LTE Evolution and
Experimentation. February 2016, [cit. 2022-01-01].

[24] Mitola, J. Software radios: Survey, critical evaluation and future directions. IEEE
Aerospace and Electronic Systems Magazine. N/Ath ed. 1993, vol. 8, no. 4, p. 25–36,
[cit. 2021-10-23]. DOI: 10.1109/62.210638.

40

https://infosecwriteups.com/why-you-should-not-buy-the-new-wifi-pineapple-mark-vii-f388544528c9
https://infosecwriteups.com/why-you-should-not-buy-the-new-wifi-pineapple-mark-vii-f388544528c9
http://eprint.iacr.org/2010/013
https://www.espressif.com/en/products/socs/esp32
https://www.ettus.com/all-products/ub210-kit/
https://www.gnuradio.org/
https://shop.hak5.org/products/wifi-pineapple
https://www.youtube.com/watch?v=PiO__nr63Lo
https://norvi.lk/applications-of-norvi-industrial-iot-devices/
https://www.quora.com/Do-Faraday-cages-block-cell-signal
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-11292015000100007&nrm=iso
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-11292015000100007&nrm=iso

[25] Nikaein, N., Marina, M. K., Manickam, S., Dawson, A., Knopp, R. et al.
OpenAirInterface: A Flexible Platform for 5G Research. SIGCOMM Comput.
Commun. Rev. N/Ath ed. New York, NY, USA: Association for Computing
Machinery. October 2014, vol. 44, no. 5, p. 33–38, [cit. 2021-12-02]. DOI:
10.1145/2677046.2677053. ISSN 0146-4833. Available at:
https://doi.org/10.1145/2677046.2677053.

[26] Nuand. Products Archive. Eshop Nuand. 2021 [cit. 2021-10-24]. Available at:
https://www.nuand.com/shop/.

[27] OpenAirInterface. Open Air Interface source code. OAI Code. [2014] 2021.
Available at: https://openairinterface.org/oai-code/.

[28] OpenLTE. OpenLTE Readme File. Github Code Repository. 2021 [cit. 2021-10-24].
Available at: https://github.com/warmchang/openLTE.

[29] P1Sec. P1Sec/pysctp. Github Code Repository [online]. November 2021 [cit.
2022-05-05]. Available at: https://github.com/P1sec/pysctp.

[30] P1Sec. P1Sec/pycrate. Github Code Repository [online]. May 2022 [cit. 2022-05-05].
Available at: https://github.com/P1sec/pycrate/wiki.

[31] Piqueras Jover, R. Security attacks against the availability of LTE mobility
networks: Overview and research directions. In: IEEE, ed. 2013 16th International
Symposium on Wireless Personal Multimedia Communications (WPMC). 2013,
p. 1–9 [cit. 2021-10-25]. ISBN 9781479904631.

[32] Piqueras Jover, R. LTE security, protocol exploits and location tracking
experimentation with low-cost software radio. July 2016 [cit. 2021-10-25].

[33] Pothosware. SoapySDR wiki. Github Code Repository [online]. 2022 [cit.
2022-05-05]. Available at: https://github.com/pothosware/SoapySDR/wiki.

[34] Range networks. Github Code Repository, 21. March 2014 [cit. 2021-12-02].
Available at: https://github.com/RangeNetworks/dev/commits/master.

[35] Ryan, G. s0lst1c3/eaphammer. Github Code Repository. July 2020 [cit. 2021-10-25].
Available at: https://github.com/s0lst1c3/eaphammer.

[36] Shaik, A., Borgaonkar, R., Asokan, N., Niemi, V. and Seifert, J. Practical
attacks against privacy and availability in 4G/LTE mobile communication systems.
CoRR. 2015, abs/1510.07563.

[37] Software Radio Systems. srsRAN documentation. Srsran.com [online]. 2019.
2022 [cit. 2022-05-08]. Available at: https://docs.srsran.com.

[38] Stehlík, R. ESP32 Wi-Fi Penetration Tool. Github Code Repository. 2021 [cit.
2021-12-02]. Available at:
https://github.com/risinek/esp32-wifi-penetration-tool/.

[39] Stehlík, R. and Pluskal, J. Útok na Wi-Fi Sítě s Využitím ESP32/8266.
Bozetechova 2, Brno - Kralovo Pole, Czech Republic, 2021. [cit. 2021-12-02].
Bachelor’s Thesis. Brno University of Technology.

41

https://doi.org/10.1145/2677046.2677053
https://www.nuand.com/shop/
https://openairinterface.org/oai-code/
https://github.com/warmchang/openLTE
https://github.com/P1sec/pysctp
https://github.com/P1sec/pycrate/wiki
https://github.com/pothosware/SoapySDR/wiki
https://github.com/RangeNetworks/dev/commits/master
https://github.com/s0lst1c3/eaphammer
https://docs.srsran.com
https://github.com/risinek/esp32-wifi-penetration-tool/

[40] Van Rijsbergen, K. The effectiveness of a homemade IMSI catcher build with
YateBTS and a BladeRF. University of Amsterdam. 1st ed. rp.os3.nl. 2016, vol. 28,
no. 1, [cit. 2021-10-25].

[41] Venkata, M. Rogue Base Station Detection Techniques. Technical Disclosure
Commons, January 2021 [cit. 2021-12-31]. Available at:
https://www.tdcommons.org/dpubs_series/4001.

[42] Vidano, R. SPEAKeasy II-an IPT approach to software programmable radio
development. In: Vidano, R., ed. MILCOM 97 MILCOM 97 Proceedings. IEEE,
1997, vol. 3, p. 1212–1215 vol.3 [cit. 2021-10-23]. DOI:
10.1109/MILCOM.1997.644961. ISBN 0-7803-4249-6.

[43] Wojtowicz, B., Murphy, A., He, Z., Bereski, P. and Senyonjo, D. M.
OpenLTE download. Sourceforge.net Software Platform. [2012] 2021 [cit. 2021-12-02].
Available at: https://sourceforge.net/projects/openlte/.

[44] Yu, C. and Chen, S. On Effects of Mobility Management Signalling Based DoS
Attacks Against LTE Terminals. In: 2019 IEEE 38th International Performance
Computing and Communications Conference (IPCCC). 2019, p. 1–8 [cit. 2022-05-08].
DOI: 10.1109/IPCCC47392.2019.8958725.

[45] Yu, C., Chen, S. and Cai, Z. Lte phone number catcher: A practical attack against
mobile privacy. Security and Communication Networks. 1st ed. Hindawi. 2019,
vol. 2019, no. 1, [cit. 2021-10-25].

42

https://www.tdcommons.org/dpubs_series/4001
https://sourceforge.net/projects/openlte/

Appendix A

Contents of the CD

The following directories and files are present on the CD:
bachelor_thesis.pdf
enb.conf
EPC.py
EPC_tests.py
install_script.sh
latex.zip
MME.py
parsing.py
parsing_test.py
scenarios.py
state_machine.py
pcaps
|—honor_enb.pcap
|—honor_enb_s1ap.pcap
|—honor.pcap
|—pixel_enb.pcap
|—pixel_enb_s1ap.pcap
|—pixel.pcap
|—xiaomi_enb.pcap
|—xiaomi_enb_s1ap.pcap
|—xiaomi.pcap

43

Appendix B

Installation of Dependencies

The dependencies for this program are pysctp, pycrate bladeRF libraries, and srsRAN stack.
We created a simple script to install all of the dependencies required. This file is called
install_script.sh. To use it, launch bash install_script.sh, in the directory where will all of
the dependencies will be cloned.

44

Appendix C

Quick Start-Up

For launching the program, you need launch two things. The first is MME.py. To launch
this, use command python3 MME.py <opts> The second is eNodeB. To launch this, use
command srsenb /path/to/enb.conf. Usually, enb.conf is installed with the stack in
/.config/srsran directory. But since it is the only config file acceseed in eNodeB, for good
measure, we include one copy in the project folder as well.

45

	Introduction
	Wi-Fi interception
	Wi-Fi Attacks
	Required Hardware for Wi-Fi Attacks
	Evil Twin Attack
	KARMA Attack
	Known Beacons Attack
	4-Way Handshake Capture
	PMKID Attack

	Hardware Solutions
	Wi-Fi Pineapple
	ESP32

	Software Tools
	ESP32 Wi-Fi Penetration Tool

	Software Defined Radio
	Overview
	SDR Devices
	Required Hardware for Mobile Network Attacks
	BladeRF
	USRP B2x0
	Nooelec Nesdr

	Existing Software
	SoapySDR
	GNU Radio
	ASN.1
	OpenBTS
	OpenAirInterface
	OpenLTE
	srsRAN

	Already Attempted Attacks
	Rogue Base Station
	Downgrading Attacks
	Single Device Attach Procedure DoS Attack
	Overload Style DoS Attack
	Brute Force Jamming
	Spoof Jamming
	Insider Attacks
	IMSI Catcher

	Design
	Faraday Cage
	Radio Equipment
	Computer Usage

	Implementation
	Software Implementation Outline
	Used Libraries
	SCTP Connection
	S1AP
	NAS-PDU Messages

	Code Implementation
	State Machine

	Code Structure
	Division Into Files
	Class structure
	Arguments

	Testing
	Isolated Tests
	Unit Tests
	Black-Box Tests

	Testing by Experiment
	Testing Overview
	Testing Different Phones
	Hardware Performance
	Power Requirements

	Summary
	Bibliography
	Contents of the CD
	Installation of Dependencies
	Quick Start-Up

