
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

CONTINUOUS INTEGRATION SYSTEM FOR INTER
OPERABILITY OF TLS/SSL LIBRARIES
PRŮBĚŽNÉ TESTOVÁNÍ INTEROPERABILITY KNIHOVEN TLS/SSL

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR FRANTIŠEK ŠUMŠAL
AUTOR PRÁCE

SUPERVISOR Ing. ALEŠ SMRČKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2017

Zadání bakalářské práce/19513/2016/xsumsa01

Vysoké učení technické v Brně - Fakulta informačních technologií

Ústav inteligentních systémů Akademický rok 2 0 1 6 / 2 0 1 7

Zadání bakalářské práce
Řešitel: Šumšal František
Obor : Informační t e chno l og i e
Téma: Průběžné testování in teroperab i l i ty k n i h o v e n T L S / S S L

C o n t i n u o u s In tegra t ion S y s t e m for In te roperab i l i t y of T L S / S S L L ibrar ies
Ka t ego r i e : Analýza a testování so f twa ru

P o kyny :
1. S e z n a m t e se s p ro j ek t y O p e n S S L , N S S a G n u T L S implementující p ro toko l S S L / T L S .

Zaměřte se na testování i n t e rope rab i l i t y těchto projektů.
2. Navrhněte systém pro testování i n t e rope rab i l i t y a integrační testování programů a

kn i h oven implementující SS I /TLS p ro toko l y . Jedním z cílů systému j e p o s k y t o va t testování
navrhovaných změn daných projektů ještě před j e j i ch přijetím. Systém by měl podpo r ova t
t e s t y napsané s podpo rou p ro j ek tu Beake r L i b .

3. I m p l e m e n t u j t e systém pro testování i n te rope rab i l i t y a integračního testování. Impo r t u j t e
stávající testovací s ady do nově implementovaného systému.

4. Kva l i t u dosaženého řešení d e m o n s t r u j t e na příkladech s uměle vytvořenými c h y b a m i .

L i t e r a t u r a :
• C r i s p i n , L.; G r e g o r y , J . : Ag i l e t e s t i ng : A prac t i ca l gu i de for t e s t e r s and ag i le t e a m s .

Pea r son Edu ca t i o n , Inc . 2 0 0 9 . I S B N 9 7 8 - 0 - 3 2 1 - 5 3 4 4 6 - 0 .
Pro udělení zápočtu za první s e m e s t r j e požadováno:

• První dva body zadání

Podrobné závazné p o k y n y pro vypracování bakalářské práce na l e zne t e na ad r e s e
h t t p : / /www. f i t . vu t b r . c z / i n f o / s z z /

Technická zpráva bakalářské práce musí obsahovat formulaci cíle, charakteristiku současného stavu, teoretická a
odborná východiska řešených problémů a specifikaci etap (20 až 30% celkového rozsahu technické zprávy).

Student odevzdá v jednom výtisku technickou zprávu a v elektronické podobě zdrojový text technické zprávy,
úplnou programovou dokumentaci a zdrojové texty programů. Informace v elektronické podobě budou uloženy na
standardním nepřepisovatelném paměťovém médiu (CD-R, DVD-R, apod.), které bude vloženo do písemné zprávy tak,
aby nemohlo dojít k jeho ztrátě při běžné manipulaci.

Vedoucí: Smrčka Aleš, Ing . , Ph.D. , U ITS FIT V U T
D a t u m zadání: 1. l i s topadu 2016
D a t u m odevzdání: 17 . května 2 0 1 7

VYSOKÉ UČENÍ TECHNICKEJ
Fakulta Informtój
ÚstajUgírt^mnicrrSystémů

Brno, 8o:etáchova 2

doc . Dr. I ng . Pet r Hanáček
vedoucí ústavu

http://www.fit.vutbr.cz/info/szz/

Abstract
The goal of this thesis is to implement a continuous integration system, which allows pe
riodic and on-demand testing of provided Secure Socket Layer (SSL) / Transport Layer
Security (T L S) libraries on supported systems, and to show the functionality and potential
of such system by extending the existing interoperabili ty test suite. The ma in benefit of
this thesis is ensuring interoperabili ty between the most popular S S L / T L S libraries during
their development, and to discover potential issues i n the shortest possible t ime. Presented
results show found issues discovered by combining and using the implementat ion parts of
this thesis on real world scenarios.

Abstrakt
Cílem t é t o p r á c e je implementace s y s t é m u pro t e s tován í Secure Socket Layer (SSL) /
Transport Layer Security (T L S) knihoven na p o d p o r o v a n ý c h sy s t émech a jeho využ i t í
na rozš í řené s adě t e s t ů pro verifikaci jejich interoperability. Tento s y s t é m umožňu je jak
p r ů b ě ž n é t es tován í , tak t e s tován í na v y ž á d á n í pro specifickou verzi knihovny. H l a v n í m
p ř í n o s e m t é t o p ráce je za j i š tění inteoperabili ty ne jznámějš ích S S L / T L S knihoven již ve fázi
vývoje a detekce chyb v co n e j k r a t š í m čase . Výs ledky t é t o p r á c e ukazuj í na lezené p r o b l é m y
na sku t ečných p ř í p a d e c h využ i t í t ě c h t o knihoven a jejich dopad na sy s t ém, kde jsou použi ty .

Keywords
testing, interoperability, T L S , S S L , continuous integration, C I

Klíčová slova
t e s tován í , interoperabilita, T L S , S S L , p r ů b ě ž n á integrace, C l

Reference
Š U M Š A L , F ran t i šek . Continuous Integration System for Interoperability of TLS/SSL Li
braries. Brno , 2017. Bachelor's thesis. Brno Univers i ty of Technology, Facul ty of Informa
t ion Technology. Supervisor S m r č k a Aleš.

Continuous Integration System for Interoperabil
ity of T L S / S S L Libraries

Declaration
Hereby I declare that this bachelor's thesis was prepared as an original author's work under
the supervision of Ing. Aleš Smrčka , P h . D . The supplementary information was provided
by Stanislav Zidek and Hubert K a r i o . A l l the relevant information sources, which were used
during preparation of this thesis, are properly cited and included in the list of references.

F ran t i šek Š u m š a l
M a y 15, 2017

Acknowledgements
I would like to thank Ing. Aleš Smrčka , P h . D . for his guidance in formal parts, structure and
direction of this thesis, Stanislav Zidek and Huber t K a r i o for their patience and incredible
technical support dur ing the entire course of this thesis, and Jakub M a c h and K a m i l J e ř á b e k
for their moral and encouraging support when it was needed the most.

Contents

1 Introduction 3
1.1 Structure of the Document 3

2 Secure Sockets Layer / Transport Layer Security 4
2.1 Overview 4
2.2 T L S Protocols 5

2.2.1 T L S Record Pro toco l 5
2.2.2 T L S Handshake Pro toco l 6
2.2.3 T L S Change Cipher Spec Pro tocol 10
2.2.4 T L S Aler t Pro toco l 10
2.2.5 T L S App l i ca t ion D a t a Pro toco l 10

2.3 Cipher Spec and Cipher Suite 10
2.4 T L S Extensions 11

2.4.1 Session Tickets 11
2.4.2 Signature Algor i thms 11

2.5 Libraries 12
2.5.1 O p e n S S L 12
2.5.2 N S S 13
2.5.3 G n u T L S 13

3 Implementation Details 14
3.1 Tested Environments 14
3.2 Test Format 14

3.2.1 Test relevancy 15
3.3 Tested Features 17
3.4 Continuous Integration System 17

3.4.1 G i t H u b & Webhooks 17
3.4.2 Jenkins 18

3.5 The F i n a l C I Implementation wi th Travis C I 19
3.5.1 Operat ing System 19
3.5.2 Test Environments 19
3.5.3 Test Execut ion 20
3.5.4 Performance and L i m i t s 21
3.5.5 On-demand L ib ra ry Compi la t ion 21

3.6 Test Extension Details 22
3.6.1 G n u T L S 22
3.6.2 N S S 24
3.6.3 O p e n S S L 24

1

3.7 Outs tanding Issues 25

4 Testing Results 2 6

4.1 N S S 26
4.2 G n u T L S 28

4.3 BeakerLib 28

5 Conclusion 29

Bibl iography 30

Appendices 3 2

A C D Contents 3 3

B T L S Alerts 3 4

C Test P l a n 3 6

C . l Test P l a n Identifier 36
C.2 References 36
C.3 Introduction 36
C.4 Test Items 36

C.4.1 Components 36
C.4.2 Environments: Releases and Architectures 36

C.5 Software R i sk Issues 37
C.6 Features to be Tested 37
C .7 Features not to be Tested 37
C.8 Approach 37
C.9 Item P a s s / F a i l Cr i t e r ia 38
C I O Test Cases 38
C . l l Suspension Cr i te r ia and Resumpt ion Requirements 38
C.12 Test Deliverables 38
C.13 Remaining Test Tasks 39
C.14 Environmenta l Needs 39

C.14.1 Hardware 39
C.14.2 Software 39

C.15 Staffing and Training needs 39
C.16 Responsibili t ies 39
C.17 Schedule 4 0

C . 18 Approvals 4 0

D Test Cases Description 41
D . l G n u T L S 4 1

D.2 N S S 4 2

D.3 OpenSSL 4 2

2

Chapter 1

Introduction

S S L / T L S is the most widely used technology for securing today's Internet communica
tions. Every application, which transmits data over the Internet, should implement some
k ind of encryption and many of these applications use S S L / T L S . B u t , as the correct way
of implementing such encryption can be very tricky, and a simple mistake may have severe
consequences, several general-purpose implementations - libraries - were created. These
libraries allow the applicat ion to use S S L / T L S without having to create their own imple
mentation.

Even though these libraries follow certain standards, which should ensure their interop
erability (abili ty to communicate w i th any l ibrary which implements S S L / T L S according
to the standards), they may contain l i t t le deviations or issues which can cause unexpected
behavior or even some more serious problems (like denial of service). To avoid, or to at least
detect, such issues, we can implement tests, which w i l l test the interoperabili ty between
the S S L / T L S libraries. This is one of the main goals of this thesis.

Execut ing these tests manual ly for different environments would be ineffective, tedious
and not error-prone. Thus, using an automation, which would test various combinations
of different l ibrary versions on different versions of operating systems is necessary. Such
automation - in this case we cal l it continuous integration - is the second ma in topic of
this thesis.

B y combining a l l these parts together, we get a powerful system for continuous SS
L / T L S l ibrary testing. Such system can be used for regression detection and ensuring, that
interoperabili ty between two given libraries works i n a specific environment w i th a specific
combination of settings.

1.1 Structure of the Document

A l l necessary components for such system are described i n the following chapters, starting
wi th a brief description of S S L / T L S protocols, their features, and existing implementations
in Chapter 2.

Chapter 3 describes the test suite extension and the testing process itself, the design
and implementat ion of the continuous integration system, and how the combination of these
two major parts ensures interoperabili ty of S S L / T L S libraries.

Dur ing the testing phase several issues were found. Some of them are „harmless" , others
can have a serious impact on the applicat ion, which uses given library. Summary of these
issues is detailed i n Chapter 4 following a thesis summary i n Chapter 5.

3

Chapter 2

Secure Sockets Layer / Transport
Layer Security

Secure Sockets Layer (SSL) and its successor Transport Layer Security (T L S) are crypto
graphic protocols designed to provide communications security over a computer network.
A s the latest version of the S S L protocol (version 3.0 [3]) was deprecated i n June 2015 [13]
it w i l l not be discussed further i n this thesis.

A l though there are currently three T L S versions - T L S 1.0 [17], T L S 1.1 [], and T L S
1.2 [19] - this thesis focuses only on the latest two as T L S 1.0 is basically S S L 3.0 w i t h a
few differences. Also , there were few cryptographic problems found in T L S 1.0 and later
resolved in T L S 1.1 (e.g. B E A S T [8]).

2.1 Overview

The pr imary goal of the T L S protocol is to provide privacy and data integrity between two
communicat ing applications. The structure of the protocol comprises two layers: the T L S
Record Pro toco l and the T L S Handshake Protocol .

The T L S Record Pro toco l lies at the lowest level, above some reliable transport protocol
(e.g., T C P 1) . Th is protocol provides security which has following properties:

• The connection is private. Symmetr ic cryptography is used for data encryption (e.g.,
A E S 2 , Camel l ia , 3 D E S 3 , etc.). The keys for the symmetric encryption are generated
uniquely for each connection and are based on a secret negotiated by another protocol
(such as the T L S Handshake Protocol) . The T L S Record Pro toco l can also be used
without encryption.

• The connection is reliable. Message transport includes a message integrity check
using a keyed M A C 4 . Secure hash functions (e.g., S H A - 1 5 , SHA-256 , etc.) are used
for M A C computations. The M A C is used to prevent undetected data loss or data
modification during transmission.

1 Transmission Control Protocol
2 Advanced Encryption Standard
3Triple DES (Data Encryption Standard)
4Message Authentication Code
5 Secure Hash Algorithm

4

The T L S Record Pro toco l is used for encapsulation of various higher-level protocols.
One such protocol is the T L S Handshake Pro tocol . This protocol allows client authentica
t ion and negotiation of necessary properties of the T L S connection, like encryption algo
r i thm or cryptographic keys, before the data transmission. The T L S Handshake Pro toco l
provides connection security which has following properties:

• The peer's identity can be authenticated using asymmetric, or public key, cryptog
raphy (e.g., R S A 6 , E C D S A 7 , etc.). Th is authentication is not mandatory, but it is
generally required for at least one of the peers.

• The negotiation of a shared secret is secure. Obta in ing of the shared secret is infea-
sible for any eavesdropper or attacker, who can place himself in the middle of the
authenticated connection.

• The negotiation is reliable. The negotiation communicat ion cannot be modified wi th
out being detected by the parties to the communicat ion. [19]

In addi t ion to the properties above, a carefully configured T L S connection can provide
another important privacy-related property: forward secrecy. This property ensures, that
any future disclosure or leakage of encryption keys cannot be used to decrypt any T L S
communications recorded or eavesdropped i n the past.

T L S supports various combinations of algorithms for key exchange, data encryption and
message integrity authentication, which is an important fact for this thesis and can cause
severe issues when these combinations are configured or implemented improperly. A l o n g
wi th these combinations, T L S supports many extensions further extending its capabilities
and possibilities, which w i l l be described further i n this thesis.

2.2 T L S Protocols

A s mentioned above, the T L S protocol consists of four protocols - the T L S Record Pro tocol ,
the T L S Handshake Protocol , the T L S Changer Cipher Spec Pro tocol , the T L S Aler t
Protocol , and the T L S App l i ca t i on D a t a Pro toco l . In this section we w i l l overview and
discuss these protocols in more detail .

2.2.1 T L S R e c o r d P r o t o c o l

In section 2.1 we briefly described the ma in function of the T L S Record Pro tocol , which
is encapsulation of protocol data from higher layers. Th is includes fragmentation, optional
compression, M A C applicat ion, encryption, and transmission of the data. O n the receiving
side the data is decrypted, verified, decompressed, reassembled, and then delivered to the
higher layers.

Through the data processing, following T L S data structures are used - TLSPlaintext,
TLSCompressed and TLSCiphertext. A t the end a T L S record is formed by appending an
T L S record header to the TLSCiphertext structure.

6Rivest-Shamir-Adleman cryptosystem
7Elliptic Curve Digital Signature Algorithm

5

2.2.2 T L S H a n d s h a k e P r o t o c o l

The T L S Handshake Pro toco l is the core protocol of T L S which operates on top of the T L S
Record Pro tocol . Its goal is the authentication of communicat ing peers and negotiation of
security parameters necessary for establishment or resumption of secure sessions.
The session establishment consists of following steps:

• P ro toco l version negotiation

• Cipher suite negotiation

• Server authentication and (optional) client authentication using digi ta l certificates

• Exchange of session key information

The actual session establishment using the T L S Handshake Pro toco l proceeds as follows
(see Figure 2.1):

1. The client sends a ClientHello message to the server, that includes the T L S version,
a list of cipher suites supported by the client (in the client's order of preference), and
the client's random value, which is used i n subsequent computations.

2. The server responds wi th a ServerHello message, including the protocol version, the
cipher suite chosen by the server, the session ID , and the server's random value.

3. If the server is to be authenticated, it sends its certificate i n a C e r t i f i c a t e message.

4. A ServerKeyExchange message may be sent i f the client needs some addi t ional infor
mation for the key exchange.

5. If the client authentication is required, the server sends a Certif icateRequest.

6. Final ly , the server sends a ServerHelloDone message, to indicate that the hello-
message phase of the handshake is complete.

7. If the server has sent the Certif icateRequest message, the client must send the
C e r t i f i c a t e message containing its certificate.

8. The client sends a ClientKeyExchange message. Its content depends on the chosen
key exchange algori thm.

9. If the client has sent its certificate to the server, it must also send a digitally-signed
Certif icateVerify message, which expl ic i t ly verifies possession of the private key
belonging to the client's certificate.

10. The client sends a ChangeCipherSpec message to the server, using the T L S Change
Cipher Spec Pro toco l (see section 2.2.3) and copies its pending write state into the
current write state, which makes the negotiated settings active.

11. The client sends a Finished message to the server under the new write state (with
the new algorithms, keys, and secrets).

12. In response, the server sends its own ChangeCipherSpec message, copies its pending
write state into the current write state and send the Finished message under the new
cipher spec.

(i

Client Server

ClientHello

ServerHello
C e r t i f i c a t e *

ServerKeyExchange*
CertificateRequest*

ServerHelloDone

C e r t i f i c a t e *
ClientKeyExchange
C e r t i f i c a t e V e r i f y *
[ChangeCipherSpec]

Finished

[ChangeCipherSpec]
Finished

<
Application Data

>

Figure 2.1: F u l l T L S handshake

Note: * marks messages which are sent only under specific conditions.

A t this point, the T L S handshake is complete, and the peers may begin to exchange
applicat ion layer data.

W h e n the client and the server decide to resume a previous session or duplicate an
existing one, the handshake can be simplified considerably (see Figure 2.2). The client
sends a ClientHello message including the I D of the session to be resumed. The server
then checks its session cache for a match. If a match is found, and the server is wi l l ing to re
establish the connection under the specified session state, it sends a ServerHello message
wi th the same Session I D value. The client and the server can then directly move to the
ChangeCipherSpec message followed by the Finished message. If a Session I D match is
not found in the session cache, the server generates a new session I D and the peers perform
a full T L S handshake. [19]

7

Client Server

ClientHello

ServerHello
[ChangeCipherSpec]

Finished

[ChangeCipherSpec]
Finished

(
Application Data

>

Figure 2.2: Simplified T L S handshake

Let 's have a closer look at the various messages that are exchanged during the T L S
handshake:

HelloRequest

This message may be sent by the server at any t ime and tells the client to begin a new session
negotiation. Client should respond to this message wi th a ClientHello. T h i s message is
not often used, but it can be useful in some cases, e.g. forcing a session renegotiation for a
T L S sessions which are active for a longer period of t ime.

ClientHello

The ClientHello message is usually the first message i n the T L S handshake, sent by the
client, which initiates the session negotiation. The message itself contains the latest T L S
version supported by the client, the client's random value, a session ID (which can be empty,
if the client wishes to negotiate a new session), a list of supported cipher suites, a list of
compression methods, and optional extensions.

ServerHello

The ServerHello is the server's response to the client's ClientHello message. The struc
ture of this message is quite similar to the ClientHello - instead of the lists of cipher suites
and compression methods, the server specifies a single cipher suite and a single compression
method. These values are chosen from the client's ClientHello message and w i l l be used
for the session. The complete message contains the T L S version chosen by the server, the
server's random value, the length of the session ID and the session ID , the cipher suite, the
compression method, and the optional extensions.

C e r t i f i c a t e

If the agreed-upon key exchange method uses certificates for authentication, the server
sends a C e r t i f i c a t e message containing a certificate chain. Th is certificate chain can be
then used by the client, to verify the server's identity. The same message is used when
a client authentication is required (as a response to a Certif icateRequest message, see

8

below). A l l exchanged certificates are of X.509 v3 type [5], i f not stated otherwise during
the negotiation.

ServerKeyExchange

In some cases, the C e r t i f i c a t e message does not contain enough data to allow the client
to exchange a pre-master secret. In this si tuation, the server sends a ServerKeyExchange
message wi th necessary cryptographic information, which allows such exchange and allows
the client to complete the key exchange.

W h e n R S A (or Diffie-Hellman wi th fixed parameters) is used, the client can retrieve the
public key (or the server's Diffie-Hellman parameters) from the server certificate. In these
cases the C e r t i f i c a t e message is enough to complete a key exchange. Bu t , for example,
in case of ephemeral Diffie-Hellman, the client needs some addi t ional information — Diffie-
Hel lman parameters — which must be delivered in a ServerKeyExchange message.

CertificateRequest

W h e n the server wants to authenticate the client, it sends a Certif icateRequest message
to the client. Th is message tells the client which certificates are accepted by the server,
and also asks the client to send its certificate to the server. O n l y a non-anonymous server
can send a Certif icateRequest - that means a server, which authenticates itself using
the C e r t i f i c a t e message.

ServerHelloDone

This message is sent by the server and indicates the end of the section of messages ini t iated
by the ServerHello message. After sending this message, the server w i l l wait for a client
response.

ClientKeyExchange

The ClientKeyExchange message is sent by the client and it provides the server w i t h the
client-side keying material , which is used to generate the pre-master secret.

C e r t i f i c a t e V e r i f y

If the client provided a certificate that has a signing capability, it must prove that it holds
the corresponding private key for that certificate. In this case, the client sends a digi tal ly
signed Certif icateVerify message to the server. This allows the server to verify the client
certificate using the client's public key and authenticate the client.

Finished

The Finished message is always sent immediately after a ChangeCipherSpec message
(Section 2.2.3) to verify that the key exchange and authentication processes were successful.
A s the message follows the ChangeCipherSpec message, it is the first message protected by
the newly negotiated algorithms and keys.

9

2.2.3 T L S Change Cipher Spec Protocol

The T L S Change Cipher Spec Pro toco l is used to signal transitions in ciphering strategies.
The protocol itself consists of a single compressed and encrypted message - ChangeCipherSpec.
The encryption and compression methods correspond to the current (not the pending) c i
pher spec.

After receiving this message, the receiver instructs its record layer to immediately copy
the read pending state into the read current state. Similarly, immediately after sending
this message, the sender instructs its record layer to copy the write pending state into the
write current state. A l l subsequent messages sent by the sender are then protected under
the newly negotiated cipher spec.

2.2.4 T L S Alert Protocol

To exchange alert messages between peers, like warnings and errors, the T L S Aler t Pro toco l
is used. E a c h alert message has its severity (warning, fatal) and a description of the
alert. A l l messages wi th an alert level of fatal result i n the immediate terminat ion of the
connection.

The alert's description field contains an identificator of the alert. These descriptions
can be split into two categories - closure alerts and error alerts. The former one contains
only one alert - close_notify. Th is message can be send by either party and notifies the
recipient that the sender w i l l not send any more messages. A n y data received after this
message must be ignored. The knowledge of the fact, that the connection is ending, is
crucial to avoid t runcat ion attacks. The second category contains a number of error alerts
used for various purposed during the T L S session. A l l T L S alert messages are summarized
in Table B . l .

2.2.5 T L S Application Data Protocol

The T L S App l i ca t i on D a t a Pro toco l takes the arbi trary data from the applicat ion layer
and feeds it into the T L S Record Pro toco l for fragmentation, compression and encryption.
The resulting T L S records are then sent to the recipient.

2.3 Cipher Spec and Cipher Suite

In previous sections, terms cipher spec and cipher suite were mentioned. Let 's have a closer
look at their meanings.

A cipher spec refers to a pair of algorithms that are used to cryptographical ly protect
data. Such pair consists of a message authentication algori thm (MAC) and a data en
crypt ion algori thm. If we add a key exchange algori thm to a cipher spec, we get a cipher
suite.

For example, TLS_DHE_RSA_AES_256_CBC_SHA1 refers to a T L S cipher suite
which uses ephemeral Dime-Hel lman wi th R S A for a key exchange, 256-bit A E S i n C B C 8

mode for encryption, and S H A - 1 for message authentication.

8 Cipher Block Chaining

10

2.4 T L S Extensions

A s mentioned i n Section 2.2.2, the ClientHello and ServerHello messages contain an
optional field for extensions. These extensions can be used to add functionality to T L S .

W h e n a client wants to use an extension it sends its name i n the ClientHello mes
sage. If the extension is supported by the server, it w i l l be included i n the responding
ServerHello message. However, if the ServerHello message contains an extension, which
was not sent by the client, the connection must be aborted wi th an unsupported_extension
fatal alert (B . l) . [15] [16]

Describing a l l currently implemented extensions [6] is way beyond scope of this thesis.
Thus, in the following paragraphs we w i l l discuss only those extensions, which are currently
tested by the implementat ion part of this thesis. Nevertheless, support for other extensions
is highly probable i n the near future.

2.4.1 Session Tickets

If a client wanted to resume an existing session, it would have to send a session I D i n its
ClientHello message (field session_id) and the server would have to check its cache for
a match (see Section 2.2.2). Th is may cause problems on systems wi th a large amount of
requests from different users or on systems wi th l i t t le memory. For such cases there is a
SessionTicket T L S extension which uses client-side caching. [10]

In the in i t i a l handshake, where the client does not possess a ticket for an existing
session, it includes an empty SessionTicket T L S extension i n its ClientHello message.
The server responds wi th an empty SessionTicket extension to indicate that it w i l l send
a new session ticket using the NewSessionTicket message. This ticket contains the current
session state (such as cipher suite and master secret) and is cryptographical ly protected by
a key, which is known only to the server.

W h e n the client wishes to resume the session, it includes the cached ticket i n the
SessionTicket extension of its ClientHello message. The server then decrypts and veri
fies the contents of the ticket and resumes the session according to the decrypted parameters.
If the server cannot, or does not want to use the state from the ticket, it can init iate a full
handshake w i t h the client.

2.4.2 Signature Algorithms

T L S 1.2 defines ([19], section 7.4.1.4.1) an extension supported_signature_algorithms,
which allows the client to te l l the server which hash and signature a lgori thm combina
tions it supports. Even though internally the supported algorithms are split into two lists
(none, M D 5 , S H A - 1 , SHA-224 , SHA-256 , SHA-384 and SHA-512 for hash algorithms and
anonymous, R S A , D S A and E C D S A for signature algorithms), the algorithms sent i n the
extension are always listed in pairs, as not a l l combinations may be accepted by an imple
mentation.

The peers exchange this information through the ClientHello and ServerHello mes
sages including the supported_signature_algorithms extension. The client sends a list
of supported algorithms and the server responds wi th its choice, that is going to be used
for any subsequent signature generation and verification.

11

2.5 Libraries

To prevent each project implementing the S S L / T L S on its own and introducing (in many
situations) dangerous issues, several libraries were created and can be used by any project,
which needs a S S L / T L S support. The most popular ones are O p e n S S L 9 , N S S 1 0 and
G n u T L S 1 1 . A l though , there are other S S L / T L S libraries (e.g. L i b r e S S L 1 2 or B o r i n g S S L 1 3) ,
this thesis aims only on these three. However, a future expansion to support other libraries
is not impossible.

Even though these libraries are separate projects, an user of such l ibrary must be able
to communicate w i th every client, which supports the part icular protocol and cipher suite,
no matter which implementat ion they use. Testing of this functionality — interoperability
— is the main goal of this thesis.

For the testing itself we need at least two applications - a client and a server. One option
would be wr i t ing these applications from scratch, using the public A P I 1 4 of each library,
which is not error prone and would require a maintenance of such applications. Thankfully,
each of the tested libraries provides a set of uti l i t ies, among which we can find a simple
client and server applications w i th dozens of settings and options. These util i t ies are then
used in various scenarios to ensure, that given val id combination of settings works for both
client and server using different libraries.

2.5.1 OpenSSL

OpenSSL is an open source l ibrary maintained by The O p e n S S L Project, which provides
a toolki t for S S L and T L S protocols, along wi th other general-purpose cryptographic func
tions.

Th is l ibrary provides a single powerful u t i l i ty called openssl. This u t i l i ty has dozens of
sub-commands wi th various S S L / T L S related functionality, where the most important ones
are:

ciphers information about supported cipher suites

dsa, rsa, ec D S A / R S A / E C key management

s client a simple S S L / T L S client

s server a simple S S L / T L S server

x509 X.509 certificate data management

Thanks to its functionality-rich interface, O p e n S S L is used for certificate generation and
management for a l l libraries in the testing process.

9https://www.openssl.org/
10https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
nhttps://www.gnutls.org/
12https://www.libressl.org/
1 3https: //boringssl.googlesource.com/boringssl/
1 4Application Programming Interface

12

https://www.openssl.org/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://www.gnutls.org/
https://www.libressl.org/

2.5.2 NSS

Network Security Services (NSS) is a set of open source libraries providing support for
S S L and T L S protocols, S / M I M E 1 5 and other opt ional features, like server-side T L S / S S L
acceleration or client-side hardware smart cards support.

Compared to OpenSSL, which has a single u t i l i ty for everything, N S S does the exact
opposite - each feature or tool has its own uti l i ty. For our testing purposes, we w i l l need
the following ones:

certutil certificate and key management for N S S databases

listsuites information about supported cipher suites

selfserv a simple S S L / T L S server

strsclnt a simple S S L / T L S client for performance testing

tstclnt a simple S S L / T L S client

This l ibrary differs from the other two in the way how it handles server and client
certificates. These certificates cannot be passed directly as arguments to the uti l i ty, but
must be imported to a N S S database which is then passed as an argument to the uti l i ty.

2.5.3 G n u T L S

G n u T L S is a secure communications l ibrary which implements S S L , T L S and D T L S 1 6

protocols.
Like the the libraries above, G n u T L S includes several utili t ies for l ibrary testing -

G n u T L S client gnutls-cli and G n u T L S server gnutls-serv. B o t h utili t ies support a pa
rameter -1, which lists a l l necessary information about supported cipher suites.

Secure/Multipurpose Internet Mail Extensions
Datagram Transport Layer Security

13

Chapter 3

Implementation Details

Following sections describe in detail the most important part of this thesis - implementat ion
of the continuous integration system, test extension, and how these two parts work together
to ensure interoperabili ty of S S L / T L S libraries.

A s the majority of the tests for this thesis were not developed from scratch, Section 3.6
contains a comprehensive review of things which were added throughout the implementat ion
of this thesis.

Detai led analysis of the test suite and its execution can be found in Append ix C , which
contains a test p lan of the interoperabili ty test suite, along wi th description of each test
case i n Append ix D .

3.1 Tested Environments

For the purposes of this thesis, an environment consists of an operating system name (e.g.
Cen tOS 1 , Fedora 2) and its version (e.g. 7, 25). E a c h of these environments must be tested
separately, as it contains a different set of l ibrary versions and policies, which affect the
S S L / T L S communicat ion.

This thesis covers S S L / T L S libraries on Cen tOS and Fedora, as the tests used and
extended by this thesis were originally created for R H E L 3 .

3.2 Test Format

Each test consists of two main files - runtest.sh and Makefile - and other opt ional auxi l iary
files. Makefile contains metadata of the part icular test, such as its name, author, version,
dependencies, information about relevancy, package(s) it tests, etc. It also contains several
make targets, so for example make run makes the runtest.sh executable and runs i t . The C I
makes use of this file and extracts some necessary information from it - namely dependencies
and relevancy - to ensure correct execution of the test itself.

The second file - runtest.sh - is the core of the test. It is a Bash 1 script using the
BeakerLib 5 testing framework containing a sequence of commands and asserts which are

1https://www.centos.org/
2https://getfedora.org/
3Red Hat Enterprise Linux - https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
4https: //www.gnu.org/software/bash/
5https://github.com/beakerlib/beakerlib

14

https://www.centos.org/
https://getfedora.org/
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
http://www.gnu.org/software/bash/
https://github.com/beakerlib/beakerlib

. / usr / share / b e a k e r l i b / b e a k e r l i b . sh | | e x i t 1

PACKAGE=" o p e n s s l "

r l J o u r n a l S t a r t
r l P h a s e S t a r t S e t u p

r l A s s e r t R p m SPACKAGE
r l R u n " T e s t D i r = \ $ (pwd) "
r l R u n " TmpDir=\$ (mktempi i—d) " 0 " C r e a t i n g , i tmp, d i r e c t o r y "
r l R u n "pushd, i$TmpDi r "

r l P h a s e E n d

r l P h a s e S t a r t T e s t
r l R u n " o p e n s s b e c p a r a m g e n k e y name p r i m e 2 5 6 v l o u t ec . key "
r l A s s e r t G r e p "BEGBNT, ,EC, PRIVATE, ,KEY" " e c . k e y "

r l P h a s e E n d

r l P h a s e S t a r t C l e a n u p
r l R u n "popd"
r l R u n "rm, | — r i i$TmpDi r " 0 " Removing, itmp,, d i r e c t o r y "

r l P h a s e E n d
r l J o u r n a l P r i n t T e x t
r l J o u r n a l E n d

Figure 3.1: Example runtest.sh file

executed and evaluated. E a c h command execution or an assert creates a record i n a log,
which is processed, stored and printed at the end of each test run.

Let 's have an example runtest.sh script, which s imply generates an ell ipt ic curve key and
checks i f it contains „ B E G I N E C P R I V A T E K E Y " (Figure 3.1). W h e n executed, BeakerLib
generates two logs - the first one is generated throughout the test execution and contains
outputs of a l l executed commands, whether the second one is generated at the end of the
test and contains a summary of the first log. A n execution log can be seen in Figure 3.2.

3.2.1 Test relevancy

To control i n which environments should be each test case executed, we have to implement
an algori thm, which would check i f a given test case is relevant for a given environment
before the execution itself. The information about relevant environments is stated i n the
Makefile of each test case and has a following format:

" R e l e a s e s : - R H E L 4 - R H E L C l i e n t 5 - R H E L S e r v e r 5 "

The test w i l l be excluded from a l l environments which have a - symbol before their
name. Environments not included in the list are impl ic i t ly added when the final check
is done. The same syntax can be used for architectures as well, but as the current C I is
l imi ted to the x86_64 architecture, it is not relevant for this thesis.

To apply this relevancy during the testing itself, a simple script was created, which parses
the Makefile and compares the parsed environments w i th the current one. If a match wi th
a non-excluded environment is found, the test is executed, otherwise it is s imply skipped.

15

[LOG] : : Setup

o p e n s s l —1.1.
[PASS
[22 :32 :45
[22 :32 :45
[B E G I N
[PASS
[B E G I N

the p resence of o p e n s s l rpm
0 c - 5 . f c 2 6 .x86_64

C h e c k i n g for
Package v e r s i o n s :

o p e n s s l - 1 . 1 . 0 c - 5 . fc26 . x86_64
Runn ing ' T e s t D i r = $ (pwd)
Command ' T e s t D i r = $ (pwd)
C r e a t i n g tmp d i r e c t o r y
'TmpDir=$ (mktemp —d) '

:: [PASS] : : C r e a t i n g tmp d i r e c t o r y (E x p e c t e d 0,
:: [B E G I N] : : Runn ing ' pushd / t m p / t m p . q H T x I V t y Y 2 '
/ tmp / tmp . q H T x I V t y Y 2 / tmp
: : [PASS] : : Command ' pushd / t m p / t m p . q H T x I V t y Y 2 '

(E x p e c t e d 0 , got 0)

(E x p e c t e d
a c t u a l l y

0, got 0)
r u n n i n g

got 0)

[LOG] : : Tes t

[B E G I N] : : Genera te an E C key : : a c t u a l l y r u n n i n g
' o p e n s s l ecparam —genkey —name p r i m e 2 5 6 v l

—out e c . k e y '
[PASS] : : Genera te an E C key (E x p e c t e d 0 , got 0)
[PASS] : : F i l e ' ec . key ' s h o u l d c o n t a i n ' B E G I N E C P R I V A T E K E Y '

[LOG] : : C leanup

:: [B E G I N] : : Runn ing ' p o p d '
/ tmp
: : [PASS] : : Command ' p o p d ' (E x p e c t e d 0 , got 0)
:: [B E G I N] : : Removing tmp d i r e c t o r y : : a c t u a l l y r u n n i n g

' rm - r / t m p / t m p . q H T x I V t y Y 2 '
:: [PASS] : : Removing tmp d i r e c t o r y (E x p e c t e d 0 , got 0)

Figure 3.2: Execut ion log of the runtest.sh from Figure 3.1

16

A s the Cen tOS and R H E L environments are basically the same, the relevancy script
is able to interchange between these two environments to avoid unnecessary duplicites in
the Makefile. Thus, a RHEL7 environment from the Makefile matches both Cen tOS 7 and
R H E L 7 environments.

3.3 Tested Features

Each l ibrary goes through several layers of testing:

• Basic interoperability - Simple communicat ion without any special settings

• Session resumption - Verify if session resumption works (Section 2.2.2); this test
is done twice - w i th Session IDs and wi th SessionTicket extension (Section 2.4.1)

• Session renegotiation - Verify i f session renegotiation works (Section 2.2.2)

• signature algorithms* - Verify if s ignature_algori thms extension works (Section 2.4.2)

• Th is test is (so far) not implemented for a l l supported libraries, as some of them lack
the necessary support on Cen tOS.

A l l mentioned tests are performed mult iple times - w i th and without client certificates,
w i th and without T L S v l . 2 enabled, and for each supported cipher suite.

Apar t from these tests, each tested combination has a Common Criteria test 6 which
tests the necessary subset of functionality which is required to work according to the l ibrary
specifications and standards.

3.4 Continuous Integration System

A s manual testing is often tedious and not error prone, an automated system had to be
implemented to test a developed component both periodical ly and on-demand, when de
veloper requests i t . Such system should be capable of running a l l relevant tests for given
component without (almost) any manual intervention and reporting results back to the
person, who requested i t . []

Dur ing the progress of this thesis, we tr ied several solutions before implementing and
accepting the final one.

3.4.1 G i t H u b & W e b h o o k s

Firs t of the proposed solutions was a simple P y t h o n script, which would make use of
G i t H u b ' s webhooks [9]. This script would listen for requests from G i t H u b and would
perform required tasks.

This solution, even though it was very flexible, would require re-implementation of many
things already implemented i n already existing solutions, which would consume unnecessary
amount of time, that could be ut i l ized for other, more important tasks.

6https://www.commoncriteriaportal.org/

17

https://www.commoncriteriaportal.org/

3.4.2 Jenkins

Dur ing the search for more robust and complete solution, we come across Jenkins. Jenkins
is an open-source automation server, which can be used for automation of various tasks [11].
After several proof-of-concept solutions we knew, that Jenkins is something we can bui ld
on.

Nevertheless, Jenkins itself lacks integration wi th G i t H u b . Thankfully, that could be
solved by using several open-source plugins. F i r s t of them is GitHub Plugin 7 , which
provides a basic integration wi th G i t H u b and functionality for other G i t H u b plugins. Th is
functionality is used and improved by GitHub pull request builder plugin 8 , which adds
support for pol l ing from G i t H u b webhooks, trigger hooks for specific comments i n pu l l
requests, customizable bu i ld status messages and others.

Combin ing a l l these things above together, we were able to create a working automation
system - CI - which reacted to changes in the test repository and reported bu i ld results
back to i t . The major disadvantage was in running a l l bu i ld tasks on the same machine as
the Jenkins itself. So the another necessary task was implementing some k ind of isolation
for the bu i ld tasks.

In our current infrastructure we use Beaker (Section 3.4.2) for machine provision, where
each tasks (or a set of tasks) has its own machine. Th is sounded like exactly what we needed,
but that would require obtaining machines for a machine pool and their maintenance, which
was far too excessive for a such smal l project.

Taking inspirat ion from another of our internal projects, we thought about using Open-
Stack (Section 3.4.2) for provision of v i r tua l machines. OpenStack could run on the same
machine as Jenkins, so we would not need another hardware. Also , the provision can be
done from pre-installed images, so it would be much faster than in case of Beaker. Unfor
tunately, after spending several hours by reading documentation and playing around wi th
OpenStack itself, we have concluded, that it would be too demanding to maintain.

Final ly , we managed to isolate bu i ld tasks using Docker containers (Section 3.4.2).
B u t , after this step, where we managed to get r i d of dependency on other machines, and
basically on a dependency on the underlying operating system itself, we were t ry ing to
move everything to the cloud, so we would be free of the need of maintaining our own
infrastructure. A n d thankfully, after another t r ia l and error, we managed to accomplish
that goal using Travis.

Beaker

Beaker is an open-source software for managing and automating labs of test computers. [14]
It allows administrators and users to mainta in an automated inventory of a l l machines
present i n the machine pool w i th system details, running tasks on machines wi th specific
environments and reporting (and storing) results back.

OpenStack

OpenStack is an open-source cloud operating system for managing pools of compute, stor
age, and networking resources. [12] For easier administrat ion and usage, almost everything
can be managed through a web dashboard, which provides a l l necessary information. Open-

7https://wiki.jenkins-ci.org/display/JENKINS/GitHub+Plugin
8https: / / wiki.jenkins-ci.org/display/JENKINS / GitHub+pull+request+builder+plugin

18

https://wiki.jenkins-ci.org/display/JENKINS/GitHub+Plugin
http://wiki.jenkins-ci.org/

Stack itself consists of several components, which can be added or removed according to
the part icular needs.

Docker

Docker is an open-source project which automates deployment of applications inside con
tainers. [] Container is a small , executable image, which contains a l l necessary software
to run a desired applicat ion without any other external dependencies, i n an isolated envi
ronment. Th i s approach allows an user to run an applicat ion under a different operating
system - e.g. running an applicat ion in a Cen tOS 7 container even though the host oper
ating system is Ubun tu . This feature is crucial in the C I implemented by this thesis.

3.5 The Final C I Implementation with Travis CI

A s mentioned above, the chosen solution is Travis C I . Travis C I is a powerful, hosted,
distr ibuted continuous integration service, used exclusively to bu i ld and test projects hosted
at G i t H u b . [20] It has two variants - commercial , for private projects and free, for open-
source projects. A s a l l tests and scripts from this thesis are open-source, and we were
already using G i t H u b , we could use the free variant and throw away the need for our own
infrastructure.

After hooking a repository to Travis, it reacts to a l l commits, branches and pu l l requests,
for which a new bu i ld is created. Status of each bu i ld is reported back to G i t H u b i n two
ways - for commits it is an icon in their summary (yellow dot for a running bui ld , green
tick for a passed bu i ld and red cross for a failed bui ld) , and for pu l l requests it is located in
the information box of each pu l l request. B o t h ways contain a hyperl ink to the part icular
bu i ld w i th general overview and status wi th logs for each job (environment).

Nevertheless, even though Travis C I met our expectations, it was not exactly „out-of-
the-box" solution, as several obstacles had to be overcome.

3.5.1 Operating System

Firs t major issue was the O S used by Travis C I , which is Ubuntu , as our tests should run
on Cen tOS and Fedora. Thankfully, using and extending the already implemented solution
from the previous experience wi th Jenkins, we were able to workaround this issue using
Docker containers. B o t h Cen tOS 9 and Fedora 1 0 have official images for Docker, so we d id
not have to bother w i th making and maintaining our own Docker images.

Travis C I itself supports Docker, so we can s imply tel l Travis to enable Docker for
our bui ld , pu l l a correct docker image and then s imply run whatever we want inside the
container.

3.5.2 Test Environments

Even though Travis does know the concept of environments, and has a bui l t - in mechanism
for specifying a matr ix of environment variables, where each set specifying an environment
has its own job, it s t i l l needs some handler, which would correctly set up the environment
according to these settings.

9https://hub.docker.com/ /centos/
1 0https://hub. docker, com/ /fedora/

19

https://hub.docker.com/
https://hub

For this purpose, a short Bash script was wri t ten . Th is script takes four arguments
- O S type (centos, fedora), O S version (7, 25, . . .) , component (openssl, gnutls, nss) and a
glob pattern for further test case specification (see Section 3.5.4).

Before executing the tests itself, several preparation steps need to be made to instal l
and configure a l l necessary dependencies. F i rs t of them is l ibrary certgen 1 2 , wr i t ten by
Hubert K a r i o , for generating certificates, which are later used i n the testing process.

The second dependency, or to cal l it properly - the second workaround, is creating a
fake l ibrary for F I P S 1 3 configuration, as F I P S is not supported by Travis (yet). W h e n
this l ibrary is loaded properly, it configures system into a F I P S mode. Current solution
just returns zero (success) without any changes to the underlying system, which allows us
running tests even i n Travis without F I P S support.

The last thing, before the Docker execution itself, is checking each test for a
rlGetTestState command. This command must be present as the last th ing in each test,
as a l l BeakerLib tests return zero even i f they contain failed phases. Ensur ing, that each test
has this command at its end, gives us relevant results from each test, as rlGetTestState
returns a number of failed phases as the script 's exit code (or 255 i f the number of failed
phases is bigger than 255). [2]

After the preparations, a Docker container is executed wi th given environment settings
and the scripts/test-runner. sh script as the entry point. T h i s script w i l l be described
in detai l i n the following section.

3.5.3 Test Execution

A s the test suite contains several tests, where each one of them lies i n its own script file, it
does not have any entry point, which could be passed to Docker to run a l l tests. For this
case, a script 1 4 had to be created, which would coordinate test execution according to the
current environment.

This script has the same arguments as the test-setup. sh - O S type, O S version,
component and a test glob - which are used to determine a package manager (yum on
Cen tOS or dnf on Fedora), correct O S version (Docker images support a „ la tes t" tag,
which needs to be translated to the exact version), and whether to configure E P E L 1 5

repository, as BeakerLib is not i n the base repositories on Cen tOS.
A s these test were originally developed for R H E L (and s t i l l are), another workaround

had to be implemented to avoid complex branching i n the tests themselves. BeakerLib has
a function rllsRHEL [2], which allows certain phases to be run only on some version of
R H E L - e.g. condit ion i f rllsRHEL 6; then . . . would execute a code inside of the i f
statement only on R H E L 6. B u t this function does not work on Cen tOS . For Cen tOS, there
is a conveniently named function rllsCentOS, which does the same thing. To avoid having
to use both functions for each i f statement, the test-runner. sh creates a wrapper function
rllsRHEL which overloads the original function. The overloaded function then s imply calls
rllsCentOS, so the tests can use the R H E L function only.

Next step is a full system upgrade, as the Docker images are usually not up to date,
followed by instal lat ion of basic dependencies necessary for the test execution.

" s c r i p t s / t e s t - s e t u p . sh
12https://github.com/redhat-qe-security/certgen
1 3Federal Information Processing Standard - http://csrc.nist.gov/groups/STM/cmvp/standards.html
14scripts/test-runner.sh
1 5https: //fedoraproject.org/wiki/EPEL

20

https://github.com/redhat-qe-security/certgen
http://csrc.nist.gov/groups/STM/cmvp/standards.html

The core of the test runner scripts consist of a loop, which goes through a l l tests for
given component. If the test passes through a l l relevancy checks, it is executed, otherwise
it is skipped.

The first relevancy check is v ia the previously mentioned glob pattern, which uses ex
tended globbing feature of Bash . Th is glob pattern is then s imply matched wi th the test
case name - i f it matches, the test continues to the next relevancy check, otherwise it is
skipped.

The second check is a comparison of O S version and O S type wi th metadata from the
test's Makefile (see Section 3.2.1). For this purpose, we have a script scripts/relevancy .awk
writ ten, as the name suggests, in G N U A W K 1 6 . Th i s script, apart from the comparison
itself, performs necessary substitutions between R H E L and Cen tOS to give correct results.

If a test passes through a l l relevancy checks, its Makefile is parsed once again for de
pendencies (section Requires). These dependencies are installed and the test is executed.

The test runner keeps statistics of executed, skipped and failed tests, which are logged
along the test results and can be viewed i n the Travis web U I .

3.5.4 Performance and Limits

Dur ing the C I development, we found out about several l imi t ing factors in Travis, which
had to be solved. Some of them are related only to the free version of Travis C I (for
open-source projects), and some of them affecting a l l Travis versions.

Fi rs t one is a t ime l imi t per job, which is 50 minutes. A t the beginning of this thesis
this was not an issue, as there was a quite big reserve i n this matter. Nevertheless, as more
and more test combinations were added, this l imi t was hit several times.

Originally, each O S type and version had its own job, so there was one job for Cen tOS 6,
one for Cen tOS 7, and one for the latest Fedora. The first step of solving the aforementioned
issue was creating a separate job for each O S type, version and component combination.
This resulted in nine jobs (G n u T L S , N S S , and O p e n S S L times supported operating systems)
which were enough, at least for a while.

A s another batch of changes was added, the l imi t was hit again on Fedora along wi th
another, previously unknown l imi t - the size of the result log - which is 4 M i B . After
several proposed solutions we decided to add another variable to the environment definition
- test glob - which allows spl i t t ing each component test suite internally into smaller pieces,
depending on their name. This solution proved to be quite effective and should last for a
while (unti l we reach another milestone, where one test runs for more than 50 minutes).

3.5.5 On-demand Library Compilation

To be able to ca l l this system a „cont inuous integration system", there had to be a way how
to test a development version of a S S L / T L S library. This appeared to be a complicated
issue, as Travis itself does not support moni tor ing of external repositories, thus it is not
able to tel l whether a new change was commit ted to such repository. 1 7

A s stated i n previous sections, any dependency on an external infrastructure is unwanted
(e.g. an external watchdog). Thus, after several proposals, a semi-automated solution was
implemented, which consists of a smal l configuration file, containing a path to a repository,

1 6https: / / www.gnu.org/software/gawk/
1 7https: / / github.com / travis-ci / travis-ci / issues/631

21

http://www.gnu.org/
http://github.com

wi th target S S L / T L S library, a branch, which contains desired l ibrary version, and a l ibrary
identifier.

If such configuration file exists, the test-runner. sh script 3.5.3 tries to read it and i f
it is a val id configuration, it passes a l l parsed information to the scripts/lib-compile. sh
script. Th is script contains recipes for a l l supported libraries, as each l ibrary has a custom
way of compilat ion and instal lat ion. If the compilat ion fails, the job is immediately aborted
and a bu i ld log is printed to the resulting log to be analysed. Otherwise, the test runner
continues as usual w i t h execution of a l l relevant tests for given environment.

This solution has a few disadvantages - the l ibrary is compiled in each job, which is
unnecessary, and it requires a separate branch to be created manual ly by a developer, w i th
the custom configuration file. The first issue is par t icular ly hard to solve, as the jobs does
not have any shared space, and usually run i n parallel . The second issue it not easy to
solve as well, without incorporat ing some k ind of external system or watchdog. A s this
implementation is currently being discussed and tested by developers, it is possible it w i l l
be improved or replaced completely in the future.

3.6 Test Extension Details

A s this thesis started wi th an already existing interoperabili ty test suite (and its purpose
was to extend i t) , following paragraphs should make clear what was already implemented
and what is the result of this thesis.

3.6.1 G n u T L S

gnut Is / r enegot iat ion- wit h- N S S

New features:

• Use certgen l ibrary for generating certificates

• Test 20 cipher suites instead of only the default one

• Test renegotiation scenarios wi th client certificates

Overal l stats: 457 additions, 32 deletions

gnutls/renegotiat ion- with- O p e n S S L

New features:

• Use certgen l ibrary for generating certificates

• Test 20 cipher suites instead of only the default one

• Test renegotiation scenarios wi th client certificates

Overal l stats: 399 additions, 24 deletions

22

gnutls /resumption-with-NSS

New features:

• Create certificate P K I

• Test 20 cipher suites instead of only the default one

• Test resumption scenarios wi th client certificates and w i t h SessionTicket extension

Overal l stats: 469 additions, 35 deletions

gnut ls /resumption-with-OpenSSL

New features:

• Use certgen l ibrary for generating certificates

• Test 20 cipher suites instead of only the default one

• Test resumption scenarios wi th client certificates and w i t h SessionTicket extension

Overal l stats: 425 additions, 29 deletions

gnutls/signature algori thms-with-OpenSSL

New test; features:

• Generate P K I using certgen l ibrary

• Test signature_algori thms extension (see [], Section 7.4.1.4.1)

• Test if negotiation of a signatue algori thm for a client certificate verification works

Overal l stats: 411 additions, 0 deletions

g n u t l s / T L S v l -2 - w i t h - N S S

New features:

• E x p l i c i t l y enable R C 4 and D H E - D S S

• Temporar i ly ignore crypto-policies on Fedora

Overal l stats: 13 additions, 6 deletions

g n u t l s / T L S v l -2 - w i t h - O p e n S S L

New features:

• E x p l i c i t l y enable R C 4 and D H E - D S S

Overal l stats: 7 additions, 6 deletions

23

3.6.2 N S S

nss/CC-nss-with-gnutls

New features:

• E x p l i c i t l y enable R C 4 and D H E - D S S

Overal l stats: 10 additions, 3 deletions

nss/Interoperabi l i ty-with-OpenSSL

Future of this test is currently being discussed, as i n its actual state it does not work on any
supported system, but it contains important sections which are not covered by other tests
- namely generation and usage of certificates generated by N S S library. Several proposals
were made, but the implementat ion requires further investigation.

nss/renego-and-resumption-NSS-with-OpenSSL

New features:

• O p e n S S L - N S S - basic interoperabili ty

• O p e n S S L - N S S - basic interoperabili ty w i th client certificates

• N S S - O p e n S S L - fixed basic interoperabili ty

• N S S - O p e n S S L - fixed basic interoperabili ty w i th client certificates

• N S S - O p e n S S L - session renegotiation

• N S S - O p e n S S L - session renegotiation wi th client certificates

• N S S - O p e n S S L - session resumption

• N S S - O p e n S S L - session resumption wi th client certificates

• A d d missing expect scripts

Overal l stats: 343 additions, 61 deletions

3.6.3 O p e n S S L

openssl /CC-openssl-with-gnutls

New features:

• E x p l i c i t l y enable R C 4 and D H E - D S S

Overal l stats: 9 additions, 2 deletions

24

3.7 Outstanding Issues

Even though dozens of issues were found and resolved throughout the the implementat ion
process, several of them st i l l persist for various reasons - either the solution lies in parts
which couldn' t be influenced by this thesis, or there was not enough time or data to come
up wi th a proper fix.

Fi rs t of them is the aforementioned F I P S support, which is currently non-existent in
Travis. Thankfully, it is not a crucial part of the testing process, so it won't affect results
of this thesis.

Another issue lies i n expect scripts []. Thanks to expect, one can write scripts for
interactive applications, which can be then used in automation. These scripts are used
i n many places throughout the interoperabili ty test suite for interaction w i t h S S L / T L S
utili t ies. Unfortunately, as interactive applications were not meant to be scripted, these
scripts can be unreliable under specific conditions - e.g. delay in the expected input - which
may cause unexpected errors and fails dur ing the testing process. Some of these issues were
already resolved, but some of them are s t i l l present, as they happen sporadically and are
really hard to reproduce. Further investigation of such issues is being planned and discussed.

25

Chapter 4

Testing Results

Throughout the test extension process, several bugs and issues were found in the tested
libraries, as well as i n the auxi l iary util i t ies. These issues have various levels of security
impact and w i l l be described in detail in this chapter.

Described issues have following format:

Issue ID(s)

[severity, affected systems]
Issue summary

Issue description

<version>: <l ink to component's issue tracker>

Issue ID abbreviations:

C V E C o m m o n Vulnerabil i t ies and Exposures

B Z R e d Hat bug-tracking system 2

M B Z M o z i l l a bug-tracking system 3

4.1 NSS

CVE-2016-9574, BZ#1397482, BZ#1397410
[Urgent, R H E L / C e n t O S 6, R H E L / C e n t O S 7]
Segfault in selfserv during session handshake when using SessionTicket exten
sion and E C D H E - E C D S A cipher suites

selfserv u t i l i ty crashes during handshake when using SessionTicket extension for session
resumption. Th is issue although does not occur when using client certificates.

C V E : https: //access.redhat.com/security/cve/CVE-2016-9574
R H E L / C e n t O S 6: https : //bugzilla.redhat.com/show_bug.cgi?id=1397482
R H E L / C e n t O S 7: https : //bugzilla.redhat.com/show_bug.cgi?id=1397410

1https://eve.mitre.org/
2https://bugzilla.redhat.com/
3https://bugzilla.mozilla.org/

26

https://eve.mitre.org/
https://bugzilla.redhat.com/
https://bugzilla.mozilla.org/

BZ#1426182, MBZ#1320695
[Urgent, R H E L / C e n t O S 7, upstream]
Support ticket based session resumption using only E C D S A certificate

Using Session Ticket extension along wi th any E C D H E - E C D S A cipher suite renders self serv
server unusable.

R H E L / C e n t O S 7: h t t p s : / /bugz i l l a . redha t . com/show_bug .cg i? id=1426182
Upstream: h t t p s : / / b u g z i l l a . m o z i l l a . o r g / s h o w _ b u g . c g i ? i d=1320695

BZ#1436114, M B Z # 1 3 5 0 9 5 0
[Unspecified, R H E L / C e n t O S 7, upstream]
Sending of C E R T I F I C A T E R E Q U E S T messages does not correspond to manual

W h e n - r or - r r parameter is used wi th s e l f serv ut i l i ty, to request (and require) client cer
tificate on in i t i a l handshake, the C E R T I F I C A T E R E Q U E S T message is sent on both hand
shakes, whereas when - r r r or - r r r r parameter is used, the C E R T I F I C A T E R E Q U E S T
message is not sent at a l l . This does not correspond to the manual of the s e l f s e r v uti l i ty,
which states following:

—r f l a g i s i n t e r e p r e t e d as f o l l o w s :
1 —r means r e q u e s t , n o t r e q u i r e , c e r t on i n i t i a l h a n d s h a k e .
2 — r ' s mean r e q u e s t a n d r e q u i r e , c e r t on i n i t i a l h a n d s h a k e .
3 — r ' s mean r e q u e s t , n o t r e q u i r e , c e r t on s e c o n d h a n d s h a k e .
4 — r ' s mean r e q u e s t a n d r e q u i r e , c e r t on s e c o n d h a n d s h a k e .

R H E L / C e n t O S 7: h t t p s : / /bugz i l l a . redha t . com/show_bug .cg i? id=1436114
Upstream: h t t p s : / / b u g z i l l a . m o z i l l a . o r g / s h o w _ b u g . c g i ? i d=1350950

BZ#1397486, BZ#1397472, MBZ#1320708
[Low, R H E L / C e n t O S 6, R H E L / C e n t O S 7, upstream]
strsclnt gets stuck during session resumption when using client certificates

s t r s c l n t u t i l i ty gets stuck during session resumption (for both SessionTicket and Ses-
s ionlD) when using client certificates and when the server has enabled client certificate
verification.

R H E L / C e n t O S 6: h t t p s : / /bugz i l l a . redha t . com/show_bug .cg i? id=1397486
R H E L / C e n t O S 7: h t t p s : / /bugz i l l a . redha t . com/show_bug .cg i? id=1397472
Upstream: h t t p s : / / b u g z i l l a . m o z i l l a . o r g / s h o w _ b u g . c g i ? i d=1320708

BZ#1397478, BZ#1397365
[Low, R H E L / C e n t O S 6, R H E L / C e n t O S 7]
N S S session resumption using session I D does not work for D H E - D S S cipher-
suites

W h e n N S S acts as a server, session resumption using SessionID does not work for cipher
suites using D H E - D S S algori thm. Even though this behavior is expected for the ticket
based resumption, the Session ID resumption should work.

R H E L / C e n t O S 6: h t t p s : / /bugz i l l a . redha t . com/show_bug .cg i? id=1397478
R H E L / C e n t O S 7: h t t p s : / /bugz i l l a . redha t . com/show_bug .cg i? id=1397365

27

http://mozilla.org/
http://mozilla.org/
http://mozilla.org/

BZ#1426267
[Unspecified, Fedora 25]
Broken C r y p t o Policy handling of R C 4 cipher suites

O n F25 R C 4 ciphers i n N S S should be disabled by C r y p t o Pol icy, but in the current version
it works only par t ia l ly - when N S S acts as a client, the handshake fails, but when it acts
as a server, the handshake is completed successfully.

Fedora 25: https://bugzilla.redhat.com/show_bug.cgi?id=1426267

4.2 G n u T L S

BZ#1401564
[Unspecified, R H E L / C e n t O S 7]
Duplicate P K signature algorithms in gnutls-cli output

Output of g n u t l s - c l i -1 command contains duplicate public key signature algorithms -
namely SIGN-RSA-SHA1 and SIGN-RSA-MD5.

R H E L / C e n t O S 7: https : //bugzilla.redhat.com/show_bug.cgi?id=1401564

BZ#1434091, BZ#1434420
[Unspecified, R H E L / C e n t O S 7]
Session renegotiation fails with client certificates

G n u T L S sends a client certificate in renegotiation, even i f it was not requested by the server,
causing the handshake to fail.

R H E L / C e n t O S 7: https : //bugzilla.redhat.com/show_bug.cgi?id=1434091
Fedora 25: https ://bugzilla.redhat.com/show_bug.cgi?id=1434420

4.3 BeakerLib

BZ#1416014
[High, upstream]
rlWaitForSocket —close now waits for incorrect socket

A patch in the latest testing version of BeakerLib causes that rlWaitForSocket -close
can cause a deadlock/unwanted delay, because of grepping an incorrect socket.

Upstream: https://bugzilla.redhat.com/show_bug.cgi?id=1416014

28

https://bugzilla.redhat.com/show_bug.cgi?id=1426267
https://bugzilla.redhat.com/show_bug.cgi?id=1416014

Chapter 5

Conclusion

This thesis stared w i t h an existing interoperabili ty test suite, which was significantly ex
tended under a thorough supervision, which ensured that a l l new parts test the exact
functionality which they are supposed to test. Also , a continuous integration system was
implemented from scratch, to find issues as soon as possible, mainly during the S S L / T L S
l ibrary development. The usefulness and importance of such system was demonstrated
by integrating the extended test suite into the system, which resulted i n several issues of
various severity being found and reported to the responsible parties.

A s the results of this thesis are meant to be public, to help as many people as possible,
the current version of a l l tests and auxi l iary scripts can be found on G i t H u b 1 . A l so , the
continuous integration system is located on Travis C I website 2 , which contains results from
al l past, current, and future test runs.

Even though this thesis brought a significant improvement into the interoperabili ty
testing of T L S / S S L libraries, there remains a future work i n several areas. One of them
is the test suite itself, as it is s t i l l far from being complete, due to many T L S extensions,
which are s t i l l not covered - either due to lack of time, or lack of support in the libraries
themselves. After several discussions wi th developers and testers of mentioned libraries, I
w i l l continue working on these issues even after the end of this thesis.

1https://github.com/redhat-qe-security/interoperability
2https: //travis-ci.org/redhat-qe-security/interoperability

29

https://github.com/redhat-qe-security/interoperability

Bibliography

[1] expect(l) Linux User's Manual. December 1994.

[2] beakerlib(l) Linux User's Manual. January 2017.

[3] A . Freier, P . K a r l t o n , P . Kocher: The Secure Sockets Layer (SSL) Pro toco l Version
3.0. R F C 6101. R F C Edi to r . August 2011.
Retrieved from: h t t p s : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 6 1 0 1 . t x t

[4] A m a z o n Web Services, Inc.: W h a t is Continuous Integration? 2017.
Retrieved from: h t t p s : / / a w s . a m a z o n . c o m / d e v o p s / c o n t i n u o u s - i n t e g r a t i o n /

[5] D . Cooper, S. Santesson, S. Farrel l , S. Boeyen, R . Housley, W . Polk : Internet X.509
Pub l i c K e y Infrastructure Certificate and Certificate Revocat ion Lis t (C R L) Profile.
R F C 5280. R F C Edi to r . M a y 2008.
Retrieved from: h t t p s : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 5 2 8 0 . t x t

[6] D . Eastlake: Transport Layer Security (T L S) Extensions: Extens ion Definitions.
R F C 6066. R F C Edi to r . January 2011.
Retrieved from: h t t p s : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 6 0 6 6 . t x t

[7] Docker Inc.: Docker Documentat ion. 2017.
Retrieved from: h t t p s : / / d o c s . d o c k e r . c o m /

[8] Duong, T. ; R izzo , J . : Here Come The X O R Ninjas. 2011.

[9] G i t H u b Inc.: Webhooks. 2017.
Retrieved from: h t t p s : / / d e v e l o p e r . g i t h u b . c o m / w e b h o o k s /

[10] J . Salowey, H . Zhou, P . Eronen, H . Tschofenig: Transport Layer Security (T L S)
Session Resumpt ion without Server-Side State. R F C 5077. R F C Edi to r . January
2008.
Retrieved from: h t t p s : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 5 0 7 7 . t x t

[11] Jenkins Infra: Jenkins Documentat ion. 2017.
Retrieved from: h t t p s : / / j e n k i n s . i o / d o c /

[12] OpenStack: OpenStack Docs. 2017.
Retrieved from: h t t p s : / / d o c s . o p e n s t a c k . o r g /

[13] R . Barnes, M . Thomson, A . P i ron t i , A . Langley: Deprecating Secure Sockets Layer
Version 3.0. R F C 7568. R F C Edi to r . June 2015.
Retrieved from: h t t p s : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 7 5 6 8 . t x t

30

https://www.rfc-editor.org/rfc/rfc6101.txt
http://aws.amazon.com/
https://www.rfc-editor.org/rfc/rfc5280.txt
https://www.rfc-editor.org/rfc/rfc6066.txt
https://docs.docker.com/
https://developer.github.com/webhooks/
https://www.rfc-editor.org/rfc/rfc5077.txt
https://jenkins.io/doc/
https://docs.openstack.org/
https://www.rfc-editor.org/rfc/rfc7568.txt

[14] R e d Hat , Inc.: Admin is t ra t ion Guide . 2017.
Retrieved from: h t t p s : / / b e a k e r - p r o j e c t . o r g / d o c s / a d m i n - g u i d e /

[15] S. B lake-Wi lson , M . Nys t rom, D . Hopwood, J . Mikkelsen, T . Wright : Transport
Layer Security (T L S) Extensions. R F C 3546. R F C Edi to r . June 2003.
Retrieved from: h t t p s : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 3 5 4 6 . t x t

[16] S. B lake-Wi lson , M . Nys t rom, D . Hopwood, J . Mikkelsen, T . Wright : Transport
Layer Security (T L S) Extensions. R F C 4366. R F C Edi to r . A p r i l 2006.
Retrieved from: h t t p s : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 4 3 6 6 . t x t

[17] T . Dierks, C . A l l e n : The T L S Pro toco l Version 1.0. R F C 2246. R F C Edi to r . January
1999.
Retrieved from: h t t p s : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 2 4 6 . t x t

[18] T . Dierks, E . Rescorla: The Transport Layer Security (T L S) Pro toco l Version 1.1.
R F C 4643. R F C Edi to r . A p r i l 2006.
Retrieved from: h t t p s : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 4 3 4 6 . t x t

[19] T . Dierks, E . Rescorla: The Transport Layer Security (T L S) Pro toco l Version 1.2.
R F C 5246. R F C Edi to r . August 2008.
Retrieved from: h t t p s : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 5 2 4 6 . t x t

[20] Travis C I , G m b H : Travis C I User Documentat ion. 2017.
Retrieved from: h t t p s : / / d o c s . t r a v i s - c i . c o m /

31

https://beaker-project.org/docs/admin-guide/
https://www.rfc-editor.org/rfc/rfc3546.txt
https://www.rfc-editor.org/rfc/rfc4366.txt
https://www.rfc-editor.org/rfc/rfc2246.txt
https://www.rfc-editor.org/rfc/rfc4346.txt
https://www.rfc-editor.org/rfc/rfc5246.txt
https://docs.travis-ci.com/

Appendices

32

Appendix A

C D Contents

The attached C D contains the source code of a l l components implemented by this thesis -
the S S L / T L S test suite, the auxi l iary scripts of the continuous integration system, and the
text part of the thesis itself.

33

Appendix B

TLS Alerts

Table B . l : T L S Aler ts

Alert I D Description

close_notify 0 The sender notifies the recipient that it w i l l not
send any more messages on this connection.

unexpected_message 10 A n inappropriate message was received. Th is
alert is always fatal.

bad_record_mac 20 The sender received a record wi th an incorrect
M A C . Th is alert is always fatal.

decryption_f ailed_RESERVED 21 Used i n some earlier versions of T L S , must not
be sent by compliant implementations.

record_overf low 22 A TLSCiphertext record was received that had
a length more than 2 1 4 + 2048 bytes or a record
decrypted to a TLSCompressed record wi th more
than 2 1 4 + 1024 bytes. Th is alert is always fatal.

decompression_failure 30 The decompression function received improper
input. This alert is always fatal.

handshake_failure 40 The sender was unable to negotiate an accept
able set of security parameters given the options
available. Th is alert is always fatal.

no_certificate_RESERVED 41 This alert was used i n S S L v 3 but it no longer
used in any T L S version.

bad_certificate 42 The sender notifies the recipient that the pro
vided certificate is corrupt.

unsupported_certificate 43 The sender notifies the recipient that the pro
vided certificate is of an unsupported type.

c e r t i f icate_revoked 44 The sender notifies the recipient that the pro
vided certificate was revoked by the issuing au
thority.

c e r t i f icate_expired 45 The sender notifies the recipient that the pro
vided certificate has expired or is no longer val id.

c e r t i f icate_unknown 46 The sender notifies the recipient that some un
specified issue occured dur ing the certificate pro
cessing, rendering it unacceptable.

34

Table B . l : T L S Aler ts

Alert ID Description

illegal_parameter 47

unknown_ca 48

access_denied 49

decode_error 50

decrypt_error 51

export_restriction_RESERVED 60

protocol_version 70

i n s u f f i c i e n t _ s e c u r i t y 71

internal_error 80

user_canceled 90

no_renegotiation 100

unsupported_extension 110

A field i n the handshake was out of range or in
consistent w i th other fields. Th is alert is always
fatal.
The received certificate could not be validated,
because the C A certificate could not be located
or could not be matched wi th a known, trusted
C A . Th is alert is always fatal.
A val id certificate was received, but when access
control was applied, the sender decided not to
proceed w i t h negotiation. This alert is always
fatal.
The received message could not be decoded be
cause some field was out of the specified range or
length of the message was incorrect. Th is alert
is always fatal.
A handshake cryptographic operation failed.
This alert is always fatal.
Used i n some earlier versions of T L S , must not
be sent by compliant implementations.
The protocol version the client has at tempted to
negotiate is recognized but not supported. Th is
alert is always fatal.
The server requires more secure ciphers than
those supported by the client. Th is alert is al
ways fatal.
A n internal error occured, unrelated to the peer
or corectness of the protocol. Th is alert is always
fatal.
Th is handshake is being canceled for some reason
unrelated to a protocol failure. This alert should
be followed by a close_notify.
The peer should respond wi th this alert when
renegotiation is not appropriate regarding the
current connection state. Th is alert is always
a warning.
Sent by the client when the received
ServerHello message contains an exten
sion not sent by the client i n its ClientHello
message. This alert is always fatal.

35

Appendix C

Test Plan

C . l Test P lan Identifier

T L S / S S L Interoperability Test P l a n v O . l

C.2 References

• I E E E 829-2008 Standard for Software Test Documentat ion 1

• C o m m o n Cr i te r ia access.redhat.com 2

C.3 Introduction

The ma in goal of this test p lan is to ensure interoperabili ty of supported S S L / T L S libraries
on C e n t O S / R H E L and Fedora systems. The testing itself involves verification of abi l i ty
to comunicate between two libraries using various combination of cipher suites, connection
settings and extensions.

C.4 Test Items

C.4.1 Components

• OpenSSL

• N S S

• G n u T L S

C.4.2 Environments: Releases and Architectures

Due to l imitat ions of the current C I a l l tests are run on x86_64 architeture only. Neverthe
less, they should work on a l l architectures supported by the underlying operating system.

• Cen tOS 6 and 7 (latest releases)

• Fedora (latest release)
1http://standards.ieee.org/findstds/standard/829-2008.html
2https://access.redhat.com/blogs/766093/posts/1976523

36

http://access.redhat.com
http://standards.ieee.org/findstds/standard/829-2008.html
https://access.redhat.com/blogs/766093/posts/1976523

C.5 Software Risk Issues

• Package rebases can cause unexpected behavior and /or regressions - thorough test
results analysis is necessary

C.6 Features to be Tested

A l l features are tested using T L S v l . l and T L S v l . 2 protocols w i t h a l l supported cipher
suites by the involved parties.

• Basic interoperabili ty

• Inteoperability w i t h client certificates

• Session renegotiation

• Session renegotiation wi th client certificates

• Session resumption using Session I D

• Session resumption using Session I D wi th client certificates

• Session resumption using T L S Session Ticket Extension

• Session resumption using T L S Session Ticket Extension wi th client certificates

• SignatureAlgori thms T L S Extension

C.7 Features not to be Tested

• Sanity of the available options

• Regressions

• Security of the implementat ion

C.8 Approach

A l l testing is done by Bash scripts using Beakerl ib 3 testing framework. This framework
manages log collection and results reporting and automatizes the entire testing process.

Each l ibrary has a set of utilites, which are used for the interoperabili ty testing itself:

• O p e n S S L - openssl u t i l i ty (package openssl)

• N S S - utili t ies se l f serv, t s t c ln t , s trsc lnt , etc. (package nss-tools)

• G n u T L S - utili t ies g n u t l s - c l i and gnutls-serv (package gnutls-utils)

A l l libraries are tested i n pairs in a client-server fashion, where each phase tests a specific
combination of parameters (specific cipher suite, protocol, extension, etc.).

Each failure is investigated and i f it is a l ibrary issue, it is reported to the upstream
and/or to a respective downstream bug tracker.

3https://github.com/beakerlib/beakerlib

37

https://github.com/beakerlib/beakerlib

C.9 Item Pass/Fail Cri teria

A handshake is completed successfully i n a l l cases w i t h a l l requested settings set, i.e.:

• Expected cipher suite is used

• Expected protocol is used

• A specific extension requested i n Cl ient /Server Hel lo is used

• Session is correctly resumed when session resumption is requested

• Session renegotiation is successful

C.10 Test Cases

Table C . l : Test case mat r ix

Test case C e n t O S 6 C e n t O S 7 Fedora

gnutls / renegotiation-with-NSS X X

gnutls / renegotiat ion-with-OpenSSL X X

gnutls / resumption-with-NSS X X

gnutls / resumption-with-OpenSSL X X

gnutls / s ignature_algor i thms-with-OpenSSL X X

gnutls / softhsm-integration X X

g n u t l s / T L S v l - 2 - w i t h - N S S X X X

g n u t l s / T L S v l - 2 - w i t h - O p e n S S L X X X

nss / CC-nss-with-gnutls X X

nss / CC-nss-with-openssl X X

nss/Interoperabi l i ty-with-OpenSSL X X X

nss / renego-and-resumption-NSS-with-OpenSSL X X X

openssl / CC-openssl-with-gnutls X X

Brief description of a l l test cases can be found in Append ix D .

C . l l Suspension Criteria and Resumption Requirements

Testing w i l l be suspended i f any of the following cri teria are met:

• Under ly ing operating system is not installable

• Ex i s t i ng issues may prevent execution of the test suite

Testing w i l l be resumed when a l l mentioned issues are resolved.

C . l 2 Test Deliverables

The test results generated by Beakerl ib w i l l be stored i n the C I and a l l failures w i l l be
analysed. The analysis itself can yie ld following results:

38

• Failure caused by the tested component - a new bug w i l l be reported

• Failure caused by the test - the test case w i l l be fixed

• Failure caused by an error i n the infrastructure/environment - the test case w i l l be
run again

C.13 Remaining Test Tasks

Extend test coverage to other T L S extensions:

• extended_master_secret extension

• enc ryp t_ then_mac extension

• etc.

Implementation of tests for these extension is currently blocked on the l imi ted support
of these extensions by the util i t ies of S S L / T L S libraries.

Testing of some recent algorithms for T L S should be considered as well (e.g. ChaCha20-
Polyl305 4) . T h i s w i l l have to wait un t i l the S S L / T L S libraries provide support for these
algorithms.

C.14 Environmental Needs

C.14.1 Hardware

Testing w i l l be performed on x86_64 architecture as it is the only architecture supported
by the current C I . Par t icular hardware configuration is not important for the testing itself.

C.14.2 Software

No special configuration of the operating system is needed. A l l packages necessary for the
testing w i l l be installed by the C I system.

C.15 Staffing and Training needs

N / A

C.16 Responsibilities

• F ran t i šek S u m š a l

• Stanislav Židek

• Hubert K a r i o
4https: / / www.rfc-editor.org/rfc/rfc7905.txt

39

http://www.rfc-editor.org/

C. 17 Schedule

Current ly a l l tests are being executed when a new P R or commit is pushed to the test
repository, periodical ly every week on the latest versions of supported systems, and on-
demand on a user-specified l ibrary repository.

Long term plans include delivering a l l test cases to bo th downstream and upstream, so
possible failures can be detected before the l ibrary itself is released.

C.18 Approvals

• Stanislav Zidek

40

Appendix D

Test Cases Description

Note: the term „various cipher suites" used in following sections describes cipher suites
using different key exchange algorithms (R S A , D H E , E C D H E) , authentication algorithms
(R S A , D S A , E C D S A) , block cipher algorithms (3DES, A E S) and message authentication
algorithms (S H A) . Ment ioned algorithms may also differ in modes (A E S - G C M , A E S - C B C ,
. . .) and sizes (AES-128, AES-256 , S H A - 1 , SHA-256 , . . .) .

D . l G n u T L S

renegotiation-with-NSS
Test session renegotiation between G n u T L S and N S S libraries using various cipher
suites, T L S v l . l and T L S v l . 2 protocols, and client certificates.

renegotiation-with-OpenSSL
Test session renegotiation between G n u T L S and O p e n S S L libraries using various c i
pher suites, T L S v l . l and T L S v l . 2 protocols, and client certificates.

resumption-with-NSS
Test session resumption between G n u T L S and N S S libraries using various cipher
suites, T L S v l . l and T L S v l . 2 protocols, and client certificates. The resumption itself
is tested using both Session IDs and SessionTicket extension.

resumption-wit h - O p e n S S L
Test session resumption between G n u T L S and O p e n S S L libraries using various cipher
suites, T L S v l . l and T L S v l . 2 protocols, and client certificates. The resumption itself
is tested using both Session IDs and SessionTicket extension.

signature algorithms-wit h - O p e n S S L
Test signature_algori thms extension in communicat ion between G n u T L S and O p e n S S L
libraries w i th and without client certificates. Th is extension is present only in T L S v l . 2
and higher. A s this extension has to be expl ic i t ly enabled, it is currently tested only
in this combination of libraries, due to lack of support i n testing util i t ies provided by
the libraries.

T L S v l -2-w i t h - N S S
Verify interoperabili ty of G n u T L S w i t h N S S using T L S v l . 2 protocol w i t h various
cipher suites.

41

T L S v l -2 - w i t h - O p e n S S L
Verify interoperabili ty of G n u T L S wi th O p e n S S L using T L S v l . 2 protocol w i th various
cipher suites.

D.2 NSS

C C - nss- wit h- gnut Is
Test interoperabili ty of cipher suites relevant for C o m m o n Cr i te r ia certification be
tween N S S and G n u T L S libraries w i t h and without client certificates.

CC-nss-with-openssl
Test interoperabili ty of cipher suites relevant for C o m m o n Cr i te r ia certification be
tween N S S and O p e n S S L libraries w i th and without client certificates.

Interoperability-wit h - O p e n S S L
Test interoperabili ty between N S S and O p e n S S L libraries using certificates generated
by N S S (all other tests use certificates generated by O p e n S S L) . T h i s test is currently
under heavy refactoring as it was originally developed for R H E L 6.

renego-and-resumption-NSS-with-OpenSSL
Test session renegotiaton and session resumption between N S S and O p e n S S L libraries.
B o t h methods are tested using various cipher suites, T L S v l . l and T L S v l . 2 protocols,
and client certificates. Moreover, session resumption is testes using both Session IDs
and SessionTicket extension.

D.3 OpenSSL

CC-openssl-with-gnutls
Test interoperabili ty of cipher suites relevant for C o m m o n Cr i te r ia certification be
tween O p e n S S L and G n u T L S libraries w i th and without client certificates.

42

