
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering
and Communication

MASTER'S THESIS

Brno, 2018 Bc. David Hudec

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

IMPLEMENTATION OF M2M DATA GENERATOR
UTILIZING COMMUNICATION PROTOCOL WIRELESS M-
BUS IN SMART GRID INFRASTRUCTURE
GENERÁTOR M2M DAT BEZDRÁTOVÉHO PROTOKOLU WIRELESS M-BUS V SMARTGRID

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. David Hudec

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. Pavel Mašek, Ph.D.

BRNO 2018

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

Master's Thesis
Master's study field Communications and Informatics

Department of Telecommunications
Student: Bc. David Hudec ID: 165289
Year of
study: 2 Academic year: 2017/18

TITLE OF THESIS:

Implementation of M2M Data Generator Utilizing Communication Protocol
Wireless M-BUS in Smart Grid Infrastructure

INSTRUCTION:

The diploma thesis addresses the utilization of the communication protocol Wireless M-BUS as the
communication container for Machine-to-Machine (M2M) data communications within the Smart Grid networks.
The theoretical part of the thesis will consist of the thorough description of the WM-BUS communication protocol
i.e., security aspects, communication modes, data structure, etc. At the length of the practical part, the attention
will be focused on the design and implementation of the multi-platform M2M data generator utilizing the WM-BUS
protocol. The key output of the thesis will be the application (controlled via console and graphical user interface,
respectively) for generating WM-BUS data toward the data concentrator in Smart Grid infrastructure.

RECOMMENDED LITERATURE:

[1] BOSWARTHICK, David, Omar ELLOUMI a Olivier HERSENT. 2012. M2M communications: a systems
approach. Hoboken, N.J.: Wiley, xxiii, 308 p. ISBN 978-1-119-99475-6.

[2] HERSENT, Olivier., David. BOSWARTHICK a Omar. ELLOUMI, 2012. The internet of things: key applications
and protocols. Chichester, West Sussex: Wiley. ISBN 978-1119994350.

Date of project
specification: 5.2.2018 Deadline for submission: 21.5.2018

Leader: Ing. Pavel Mašek, Ph.D.
Consultant:

 prof. Ing. Jiří Mišurec, CSc.
Subject Council chairman

WARNING:
The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

ABSTRACT
Presented thesis describes the communication protocol of Wireless M-Bus, especially
its data contents, field structure, communication modes and other data-link layer and
application layer details. Based on this research, a Java application designed to serve
as a data generator for the protocol in question was created. Via both graphical user
interface and command line interface, this program allows the user to define Wireless M-
Bus telegrams in high detail and schedule them for periodic transmission via a supported
hardware device to the Wireless M-Bus network. Two complete appliances, using either
a standalone IQRF module or a complete UniPi Neuron control board, were developed,
described and tested.

KEYWORDS
Data generator, IQRF, Java, jSSC, M2M, M-Bus, serial port communication, UniPi,
UniPi Neuron, Wireless M-Bus

ABSTRAKT
V rámci této práce byl vytvořen popis bezdrátového komunikačního protokolu Wireless
M-Bus, zaměřující se zejména na datovou část tohoto protokolu, strukturu jeho infor-
mačních polí, režimy komunikace a další specifika linkové a aplikační vrstvy. Na základě
tohoto výzkumu byl vytvořen softwarový nástroj v jazyce Java, sloužící jako generátor
dat zmíněného protokolu. Pomocí grafického i textového uživatelského rozhraní program
umožňuje uživateli vytvořit Wireless M-Bus telegramy s velmi vysokou úrovní detailu a ty
následně s využitím některého z podporovaných hardwarových zařízení periodicky odesílat
do Wireless M-Bus sítě. Dále byla navržena dvě kompletní řešení, využívající buď samot-
ného bezdrátového IQRF modulu nebo jeho spojení s řídicí deskou UniPi Neuron. Oba
návrhy byly zrealizovány, otestovány a jsou v práci detailně popsány.

KLÍČOVÁ SLOVA
Generátor dat, IQRF, Java, jSSC, komunikace sériovým portem, M2M, M-Bus, UniPi,
UniPi Neuron, Wireless M-Bus

HUDEC, David. Implementation of M2M Data Generator Utilizing Communication Pro-
tocol Wireless M-BUS in Smart Grid Infrastructure . Brno, 2018, 78 p. Master’s Thesis.
Brno University of Technology, Faculty of Electrical Engineering and Communication,
Department of Telecommunications. Advised by Ing. Pavel Mašek, Ph.D.

DECLARATION

I declare that I have written the Master’s Thesis titled “Implementation of M2M Data
Generator Utilizing Communication Protocol Wireless M-BUS in Smart Grid Infrastruc-
ture ” independently, under the guidance of the advisor and using exclusively the tech-
nical references and other sources of information cited in the thesis and listed in the
comprehensive bibliography at the end of the thesis.

As the author I furthermore declare that, with respect to the creation of this Master’s
Thesis, I have not infringed any copyright or violated anyone’s personal and/or ownership
rights. In this context, I am fully aware of the consequences of breaking Regulation S 11
of the Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of
any breach of rights related to intellectual property or introduced within amendments to
relevant Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009
Coll., Section 2, Head VI, Part 4.

Brno .
author’s signature

ACKNOWLEDGEMENT

Research described in this Master’s Thesis has been implemented in the laboratories
supported by the SIX project; reg. no. CZ.1.05/2.1.00/03.0072, operational program
Výzkum a vývoj pro inovace.

Brno .
author’s signature

Faculty of Electrical Engineering
and Communication
Brno University of Technology
Purkynova 118, CZ-61200 Brno
Czech Republic

http://www.six.feec.vutbr.cz

http://www.six.feec.vutbr.cz

Tato práce vznikla jako součást klíčové aktivity KA6 - Individuální výuka a zapojení

studentů bakalářských a magisterských studijních programů do výzkumu v rámci

projektu OP VVV Vytvoření double-degree doktorského studijního programu

Elektronika a informační technologie a vytvoření doktorského studijního programu

Informační bezpečnost, reg. č. CZ.02.2.69/0.0/0.0/16_018/0002575.

Projekt je spolufinancován Evropskou unií.

ACKNOWLEDGEMENT

I would like to thank my supervisor, Ing. Pavel Mašek, Ph.D., for the professional leading,
consulting, patience and contributions he had for me and which helped me while writing
this thesis.

Brno .
author’s signature

CONTENTS

Introduction 13

1 Theoretical introduction 14
1.1 Industry 4.0 . 14
1.2 Internet of Things . 15
1.3 M2M communication . 15
1.4 M-Bus . 15
1.5 Cyclic redundancy check . 16
1.6 3 out of 6 encoding . 16
1.7 Manchester and NRZ . 17
1.8 Binary-coded Decimal . 17

2 Wireless M-Bus 18
2.1 Motivation . 18
2.2 Architecture . 18
2.3 Physical layer – working modes . 19
2.4 Data-link layer . 24

2.4.1 Information fields . 24
2.4.2 Frame formats . 26
2.4.3 Example . 28

2.5 Application layer . 29
2.5.1 Data header . 30
2.5.2 Data record header . 31
2.5.3 Data . 33

2.6 Structure summary . 34
2.7 Encryption . 35
2.8 Real data structure example . 36
2.9 The role of Wireless M-Bus in Industry 4.0 37

3 Generator 39
3.1 Application . 39

3.1.1 Frame base class . 39
3.1.2 Field interface . 40
3.1.3 DataField class . 40
3.1.4 Sender base class . 41
3.1.5 PeriodicTelegramBase base class 42
3.1.6 IqrfDeviceModel class . 42

3.1.7 ByteUtils class . 43
3.1.8 Enumerations . 43
3.1.9 Graphical user interface . 44
3.1.10 Command-line user interfaces 45

3.2 External libraries . 45
3.2.1 Commons CLI . 46
3.2.2 jSSC . 46

3.3 Logging . 46
3.4 Data fluctuation . 47
3.5 Documentation . 48
3.6 Unit tests . 49
3.7 Competition comparison . 49

4 Hardware 50
4.1 IQRF WM-Bus module . 50

4.1.1 IQRF debugger . 50
4.1.2 USB to UART bridge . 51
4.1.3 Limitations . 52

4.2 Amber wireless module . 52
4.3 UniPi control unit . 52
4.4 Module connection via the debugger 53
4.5 Module connection via UniPi . 54
4.6 Controlling the module . 55

4.6.1 Service commands . 55
4.6.2 Message transmission . 57

4.7 Module specific parameters . 58
4.8 Performance . 59

5 Results 61
5.1 Graphical user interface . 61

5.1.1 Layer 1 window . 61
5.1.2 Layer 2 window . 62
5.1.3 Layer 3 window . 63
5.1.4 Management dialog . 64
5.1.5 Graphical interface use-case illustration 64

5.2 Command line interface . 65
5.3 Running the generator . 66

6 Conclusion 68

Bibliography 69

List of acronyms 73

List of appendices 75

A Class diagrams 76

B Contents of the attached disc 78

LIST OF FIGURES
2.1 Schema of Wireless M-Bus Mode S, submodes S1, S1-m, S2 operation. 21
2.2 Schema of Wireless M-Bus Mode T, submodes T1, T2 operation. . . . 21
2.3 Schema of Wireless M-Bus Mode R operation. 22
2.4 Schema of Wireless M-Bus Mode N operation. 22
2.5 Schema of Wireless M-Bus Mode F, submodes F2, F2-m operation. . 23
2.6 Schema of Wireless M-Bus Modes P and Q operation. 23
3.1 Selected relationships of class DataField. 41
3.2 Generated data series with simulated fluctuation. 48
4.1 IQRF TR-72D-WMB Wireless M-Bus module. 51
4.2 Tools used to connect the IQRF module: debugger (a), bridge (b). . . 51
4.3 Details of Amber stick (a) and UniPi with shields (b). 53
4.4 Approaches of connecting the IQRF module: debugger (a), UniPi (b). 54
4.5 Pin scheme of the UART interconnection. 54
5.1 Generator’s GUI: Layer 1 window, list of defined telegrams. 61
5.2 Generator’s GUI: Layer 2 window, frame details. 62
5.3 Generator’s GUI: Layer 3 window, payload details. 63
5.4 Generator’s GUI: Management dialog. 64
5.5 Generator’s CLI: interactive mode (a section of output, logging omit-

ted). 65
5.6 Generator’s CLI: machine mode (a section of output, logging partially

omitted). 66
5.7 Generator’s CLI: help screen in machine mode (output reduced). . . . 67
5.8 Generator’s CLI: printing help. 67
A.1 UML-like diagram for the created application’s internals. 76
A.2 Detailed Class diagram of Field and its derivatives with all fields and

methods. 77

LIST OF TABLES
2.1 OSI layer mapping to M-Bus model. 19
2.2 Summary of Wireless M-Bus modes. 20
2.3 Wireless M-Bus: structure of Frame Format A. 26
2.4 Wireless M-Bus: structure of Frame Format A, block I. 27
2.5 Wireless M-Bus: structure of Frame Format A, block II. 27
2.6 Wireless M-Bus: structure of Frame Format A, aditional blocks. . . . 27
2.7 Wireless M-Bus: structure of Frame Format B. 27
2.8 Wireless M-Bus: structure of Frame Format B, block I. 28
2.9 Wireless M-Bus: structure of Frame Format B, block II. 28
2.10 Wireless M-Bus: structure of Frame Format B, optional block. 28
2.11 Wireless M-Bus: structure of application layer data. 29
2.12 Wireless M-Bus: structure of DH, short. 30
2.13 Wireless M-Bus: structure of DH, long. 31
2.14 Wireless M-Bus: structure of DRH. 31
2.15 Wireless M-Bus: structure of DIF. 32
2.16 Wireless M-Bus: structure of DIFE. 32
2.17 Wireless M-Bus: structure of VIF. 33
2.18 Wireless M-Bus: structure of VIFE. 33
2.19 Wireless M-Bus: defined data types. 34
2.20 Wireless M-Bus: Type F in detail. 35
2.21 Bonega telegram analysis. 38
4.1 IQRF TR-72D-WMB UART parameters [30]. 55
4.2 Average response time of IQRF module for various actions. 60

INTRODUCTION
The trends and techniques in information and communications technology are devel-
oping and expanding as much as any other fields of human knowledge and possibly
even more. Because of unique, recently unthought of demands, new ideas, particu-
larly Internet of Things, Industry 4.0 or SmartGrid have lately been coined and are
now well established in the technical speech [1]. Phrases and expressions such as
smart home, smart factory, metering automation or advanced energy consumption
reduction have all gained in popularity in the recent years and therefore have come
to the awareness of each of us. The advance-never-stopping industrial procedures
have brought the urge to measure and monitor numerous quantities, based on the
field of business, to the foreground. With that, advanced metering systems are being
more asked for than ever before.

These infrastructures are designed to communicate with metering devices, for in-
stance gas, electricity, water or heat meters, at a modifiable scheme. By implement-
ing a system of this manner, the customer generally gains many advantages ranging
from low maintenance costs and needs to easy meter readout [2]. It may come as
a surprise that these systems have already been developed and in many places, they
are soon to be deployed or even already running. Furthermore, a considerable part
of those devices that are already in duty uses a wireless communication protocol
of Wireless M-Bus to communicate with the outer world. What this thesis aims to
achieve is a software tool capable of testing these networks via simulating sensor-like
behaviour in uni-directional communication with the data collecting servers in test.
This tool would be helpful for public utility companies, which could use it for ini-
tial testing of concepts, desings and performance of their Wireless M-Bus networks
without the need of having any hardware sensors installed.

To accomplish this goal, a solution is presented in five chapters of this thesis.
The first chapter introduces terms and expressions, which are important for under-
standing later parts of the thesis or their purpose. In the second chapter, a broad
description of the Wireless M-Bus protocol is provided, focused on the structure
of a Wireless M-Bus message, its parts and possible formats, and the architecture
of fields it may contain. The next, third chapter, is dedicated to the application
created in order to generate Wireless M-Bus data. Fourth chapter describes details
of the hardware used in companion with the generator. Lastly, application usage
examples and instructions are placed in chapter number five.

13

1 THEORETICAL INTRODUCTION
In this chapter, uncommon terms used throughout the thesis that a casual reader
could find unprecedented are explained.

Notation Throughout the text of this thesis, values of the hexadecimal numeral
system will be denoted with 0x and, similarly, binary numbers will have the prefix
of 0b, i.e., 0x0A and 0b1010 both deliver the decimal value of 10.

1.1 Industry 4.0
An industrial revolution is a phenomena, in which technological, mechanical or other
advances allow for a big leap in current manufacturing standards and improvements
in quality, efficiency and production rates that it is a change retrospectively seen big
enough for us to call it a revolution. In history, there have been three such major
progressions so far:

• the first industrial revolution took place with the transition from hand pro-
duction methods to machines and making use of steam power in the first half
of the 19th century, often called mechanisation,

• the second industrial revolution was started by immense utilization of electric-
ity, establishing assembly lines and thus giving birth to mass production at
the start of the 20th century, known as electrification,

• the third era of industry is connected to the proliferation of computers and
the digital age, beginnings of automation and replacement of human workers
at the assembly lines, recognized as digitalisation [3].

Nowadays, Industry 4.0 is the fashionable term possibly marking the fourth indus-
trial revolution, the technological leap forward and the paradigm shift which are all
expected to come (the name itself being a reminiscence to the conventional software
versioning scheme). The most important innovation here is the concept of smart
factories, which, after the manufactories and human- or machine-operated assembly
lines in the preceding eras, introduces a decentralized system of rather independent
digital devices, which operate and make decisions on their own while seamlessly
communicating and cooperating with each other and with the supervising humans
in real time via a wireless – not surprisingly also digital – network. This philosophy
is tightly bounded to the idea of Internet of Things (see Section 1.2). Building such
a factory adds the advantages of interoperability, flexibility, higher degrees of opti-
mization and automation, thus meaning a considerable boost to efficiency and overall
productivity, while bringing higher needs for data security, higher-than-present de-
gree of reliability and stability and, on the other hand, unanswered questions of

14

human jobs losses and capability of integrity maintenance. However, if executed
right, Industry 4.0 is expected to bring a boost to economical growth and revenue
of up to a third and further reduce operational costs [4].

1.2 Internet of Things
The vision of Internet of Things (IoT) is a world filled with subtle, unobtrusive
wireless computing devices serving as sensors, identifiers, messengers or any other
technical actors. Such a thing in Internet of Things can vary from a broadcasting
identifier in a dog leash or vehicle tire pressure sensor to human heart activity moni-
tor or undersea tsunami detector. Generally, it is a device embedded in an everyday
object, interconnected with others alike, sending and receiving data based on its
purpose. More often than not are these only battery powered, raising high efficiency
demands. Building upon recent advancements in microdevice and network technolo-
gies (the adoption of IPv6, hardware virtualization, software defined radio. . .), IoT
is an emerging and ubiquitous trend, which, according to estimates [5], about 20
billion devices will belong into by 2020.

1.3 M2M communication
In his book M2M Communications: A System Approach, David Boswarthick states:
"Many attempts have been made to propose a single definition of the M(s) of the
M2M acronym: Machine-to-Machine, Machine-to-Mobile (or vice versa), Machine-
to-Man, etc. Throughout this book, M2M is considered to be “Machine-to-Machine”.
This being decided, defining the complete “Machine-to-Machine” concept is not
a simple task either: the scope of M2M is, by nature, elastic, and the bound-
aries are not always clearly defined." [6]. Based upon this definition, Machine-to-
machine (M2M) is the communication of stand-alone devices (not peripheral devices
like mobile phones, as there is a human in charge) in order to exchange information
over a network. M2M communication is also what IoT should be and is using. The
key aspects, which distinguish M2M commucination from regular traffic, are M2M’s
immense plurality of endpoints, their diversity, decades worth of longevity and
battery dependency.

1.4 M-Bus
Aforementioned smart factories, IoT and M2M, but also home automation or smart
metering all need a network protocol to be able to communicate. This protocol

15

might then be responsible for data collection and distribution, error correction or
reporting and overall network management.

Meter Bus (commonly refered to as M-Bus) is a candidate for this. Developed
by professor Horst Ziegler in Germany and established by a set of European Norms
(found under number EN 13757 and titled Communication systems for meters), it
has become the European standard for remote reading of meter and service data
from water, gas, electricity and many other meters, but it can be applied to security
systems and utility control as well. M-Bus is designed as a hierarchical system,
consisting of master devices (servers, data collectors), many slaves (slave meaning
a subordinate device: sensors, data meters) and an interconnecting media (e.g.,
a two-wire cable). The slaves can be remotely power supplied by this network
provided interface [7].

1.5 Cyclic redundancy check
Cyclic redundancy check (CRC) is a method of checking for unexpected errors on
transmitted data. The algorithm is not able to correct the errors, it finds out whether
they are present or not (with a very high, yet not 100 % certainty). Before sending
a message, it is processed with a CRC calculator and the resulting code is appended
to the message. Upon receiving the message, the other participating party does the
very same calculation, allowing it to compare the codes. If the results match, the
message has most likely been transmitted and received error-free. If not, part of the
entire message was corrupted with a very slight chance that only the CRC part is
broken and the original message itself is not. In case an error is detected, sender
is usually notified in order to attempt a resend. CRC verifications are used widely
accross the digital communications area [8].

1.6 3 out of 6 encoding
A method of coding arbitrary sequences, standardized along with M-Bus. The pro-
cedure divides each byte of data into two halves (4bit nibbles), which are then
encoded as 6 bit symbols using a predefined lookup table [9]. This increases in-
formation robustness and lowers the error rate while decreasing the communication
speed.

16

1.7 Manchester and NRZ
Both Manchester and Non-Return to Zero (NRZ) are serial encoding mechanisms,
more conventional and used than the method of 3 out of 6.

Manchester is employed for its good synchronization recovery abilities and simple
processing. As a price for that, a single bit is encoded into a two chip symbol, thus
effectively halving the available bandwidth. A logical "1" at the input is represented
as "01" at the output and the ingress of "0" as egress "10".

NRZ simply encodes a logical "1" as high value and a logical "0" as low value (or
vice versa, alternatively), which provides 1:1 bit-to-chip ratio, but causes synchro-
nization issues with longer sequences of consecutive values [10].

1.8 Binary-coded Decimal
Binary-coded Decimal (BCD) is an information technology technique of encoding
a decimal number to binary representation, where a fixed number of bits is used
for each digit of the original number, usually four or eight (M-Bus uses 4 bits per
decimal digit).

As an example, decimal number 1 289 is with 4-bit BCD encoded as

0b(0001 0010 1000 1001)

in binary and would be as

0b(00001 00010 01000 01001)

with an unusual, yet entirely possible and justifiable 5-bit BCD.

17

2 WIRELESS M-BUS
What this thesis focuses on is not M-Bus itself, it is Wireless M-Bus, which is
the radio variant specified in its own file numbered EN 13757-4 (Wireless meter
readout). Nowadays, it is the more attractive part thanks to the ease of remote
readout it allows for.

The network model in use is the same as with wired M-Bus, only the specifi-
cations of the physical and link layers are replaced with the newer standard. The
application layer on top of these operates in an unchanged way for both [11], which
represents an advantage when a transition between wired and wireless networks is
needed.

2.1 Motivation
A typical example for this comparison is a regular water meter check performed for
a supplying company, which happens regularly in form of a human employee walking
door to door, accessing each household’s technical room or utility closet, visually
reading the desired value with their eyes from the dial and noting it down. This is
labour-intensive, error-prone, unreliable (nobody home) and time-consuming [7].

With a technology such as Wireless M-Bus, these readouts do still require a hu-
man worker travelling through the country to visit each client, however, this time
the data is collected wirelessly, directly into the storing device and without the need
of reaching for the meter inside the house. More than that, if the operational range
of the meter’s transmitter is large enough, the readouts can be performed from a car
driving by, for all the customers at the street at once [9].

2.2 Architecture
Since it was designed to be cost-effective, robust and reliable, the M-Bus "network"
structure indeed is a bus. Each subordinate device is connected to the shared line
and can be therefore plugged or unplugged without limiting the function of the
rest. The wireless communication behaves like a broadcast transmission, without
any collision avoidance mechanisms. The communication model is based on the
ISO/OSI scheme, but, as M-Bus is not a network, the unnecessary layers are not
used and are missing from the specification. The same approach was later used
when specifying Wireless M-Bus. In Table 2.1, the standard layers’ relations to the
reality used in wireless or wired M-Bus are shown.

18

OSI layer
Usage

EN standard [12]
equivalent part
Application data, values, reports 13757-3
Presentation

not used not definedSession
Transport
Network routing and relaying (requires de-

vice support), optional
13757-5

Data-link transfer parameters, frame for-
mat, addressing, data integrity 13757-2 (wired),

13757-4 (wireless)Physical bit representation, electrical or
radio parameters

Tab. 2.1: OSI layer mapping to M-Bus model.

Complementary to the table, the complete list of standards defining M-Bus (as
of 2017) is as follows [13]:

• EN 13757-1 Data exchange, which describes the protocol stack, data structures
and communication in general.

• EN 13757-2 Physical and link layer specifies the first two layers of wired M-
Bus, including the addressing, voltage levels and collision detection.

• EN 13757-3 Dedicated application layer (DAL), which presents the general
application layer, message types, encryption and much more. This DAL is
used with wired and wireless M-Bus without much of a difference.

• EN 13757-4 Wireless meter readout proposes the basis of Wireless M-Bus: its
modes of operation, radio parameters, encoding.

• EN 13757-5 Relaying, which portrays options of range extension between de-
vices.

• EN 13757-6 Local bus characterizes an M-Bus alternative, which does not
belong to the scope of this thesis.

• EN 13757-7 Transport and security services, which further defines encryption
capabilities, data protection and secure communication.

2.3 Physical layer – working modes
Generally, the lowest, physical layer defines how bits are represented as signals,
transmission of these signals and the specifics of this transmission. Wireless M-
Bus specifies a number of modes, which then the physical layer specification varies

19

between. As by the specification, these are Mode S, Mode T, Mode R, Mode N,
Mode F and Mode C defining meter-to-contentrator communication parameters, and
Mode P and Mode Q with a special purpose, all described below. Some parameters
differ while a few stay the same throughout the variants. These were all defined to
accommodate different needs when utilizing the protocol between various devices.
One important non-static characteristic is the order the bits are sent, which is either
most-significant bit (MSB) first, or least-significant bit (LSB) first. MSB is used
with modes S, T and R, the rest uses LSB (however, CRC sequences are always
transferred with MSB first). They were specified with one in common, though,
which is maximizing battery lifetime on the slave side (meters) [14]. A summary of
all WM-Bus modes, the usage they were designed for, the encoding and frequency
they use as well as the transfer rate they provide is listed in Table 2.2. More detailed
descriptions of the modes follow below.

Mode Encoding
Transfer rate

(bps)
Frequency

(MHz)
Usage

C1

NRZ

100 000 868
higher data rate
equivalent of TC2

F2
2 400 433

frequent bidirectional
F2-m transmissions
N1

2 400 or 4 800 169
narrow band, long

rangeN2
P Manchester

not applicable

868

router & relay
Q NRZ time sync
R2

Manchester

4 800 multi-freq readouts
S1

32 768
few transmissions

S1-m
per day

S2
T1

3 out of 6 100 000 several transmissions
T2 32 768 per day

Tab. 2.2: Summary of Wireless M-Bus modes.

a) Mode S

Represented by submode S1, which was designed for stationary usage. Unidirec-
tional communication is possible between the meter and a stationary positioned
receiver. In this mode, the meter sends data without checking whether there is a de-
vice to receive them – there is no answering. Manchester encoding and long header

20

(explained later) are used. This mode is suitable for only a few transmissions per
day. Associated submode S2 represents a bidirectional variant of the S1 mode with
only a minority of parameters altered – Manchester encoding with short header are
used. In addition, there is mode S1-m with short header only, thus requiring a con-
tinuously ready receiver [15]. A simple topology schema, showing possible wireless
connections of Mode S, is portrayed in Figure 2.1.

Fig. 2.1: Schema of Wireless M-Bus Mode S, submodes S1, S1-m, S2 operation.

b) Mode T

While in the frequent transmit mode, T1, the meter transmits a short telegram1 reg-
ularly and frequently. This behaviour enables for data readout while only walking or
driving by. This is a unidirectional communication. The intervals between activity
can range from only several seconds to a few minutes. 3 out of 6 encoding is used
along with short header. T1’s derivative, Mode T2 brings bidirectional communi-
cation option. After transmitting, the meter waits for a short period of time for an
acknowledgement telegram. Upon receiving one, bidirectional communication can
proceed. 3 out of 6 encoding and short header are used as well [16]. Transmission
options provided by Mode T are presented in Figure 2.2.

Fig. 2.2: Schema of Wireless M-Bus Mode T, submodes T1, T2 operation.

1Messages with content from at least data-link or application layers are referred to as telegrams
in M-Bus.

21

c) Mode R

Frequent receive mode R2 defines that meters be listening for a wake-up message
(usually every few seconds), which then triggers further cooperation. This mode
does not suppose spontaneous sending of data. Since there is no data exchange
unless bidirectional connection is established, there is no unidirectional R1 mode.
Manchester encoding and short size header are used [16]. A diagram of connection
in Mode R is portrayed in Figure 2.3.

Fig. 2.3: Schema of Wireless M-Bus Mode R operation.

d) Mode N

This introduces an option optimized for narrowband operation with an extended
range. It is made for long-distance uni- or bi-directional communication with sta-
tionary receiver. Non-return to zero encoding is required. Again, there are N1 and
N2 descendants [15], both displayed in Figure 2.4.

Fig. 2.4: Schema of Wireless M-Bus Mode N operation.

e) Mode F

Mode F is always bidirectional and stands for both frequent transmit and receive.
Two submodes exist, differing by the side that initiates the communication. If this
role is on the meter (F2-m), this mode resembles T2, if on the data collector (which
uses the wake-up frame to achieve this), then Mode F2 resembles Mode R2. It is
also suitable for long range communication [16]. Both communication types available
in Mode F, distinguished by the order of initialization messages, are portrayed in
Figure 2.5.

22

Fig. 2.5: Schema of Wireless M-Bus Mode F, submodes F2, F2-m operation.

f) Mode C

C (compact) mode uses more efficient encoding techniques to achieve higher data
rates with energy consumption similar to that of Mode T. Most of the attributes
were inherited from this mode (only NRZ encoding is used instead of Manchester).
Therefore, C1 and C2 represent modes similar to T1 and T2 [16] respectively and
provide higher throughput.

g) Mode P

P is a special mode, as it does not specify any communication between meters and
a concentrator. A device in P mode has a role similar to that of a router. It changes
addresses of transferring telegrams and routes them to their destination in a larger
M-Bus network [14]. Topology of a simple network with Mode P routers is outlined
in Figure 2.6.

h) Mode Q

Similarly to Mode P, Q mode defines a whole other function of a concentrator. If in
Q mode, device acts as a time information distributor throughout the network with
latency, sleep durations and other aspects taken into account [14]. The operation of
server, working in Mode Q, is portrayed in Figure 2.6.

Fig. 2.6: Schema of Wireless M-Bus Modes P and Q operation.

23

2.4 Data-link layer
The second lowest layer is the first to introduce a network model abstraction. It
provides services for the higher layers, while utilizing the services of the physical
layer. Thus, it transforms application data to the medium. Other responsibilities
include generation of the CRC code for outgoing telegrams, its verification for incom-
ing telegrams, correction in case of errors (when possible), structuring the frames
from data given by the application layer and tracking the acknowledgement frames.
There are several information fields defined in the standard, which can be classified
as Data-link layer payload. These are described in the following section.

2.4.1 Information fields

Fields are sections of the telegram, designated to contain specific parts of the whole
telegram information. These fields have then an exactly given spot and structure
within the unit. (Note: the fields below are not listed in the order of transmission.)

a) Preamble

A known sequence of bits transmitted at the beginning of every message with the
purpose of synchronization. The form and length differ from mode to mode and
may depend on the communication direction, too. It ranges from 3 to 72 bytes in
size: [14]

• 4 bytes for Mode N (non-4GFSK modulated),
• 6 bytes for Modes T and S (short),
• 8 bytes for Mode C and Mode N (4GFSK modulated),
• 12 bytes for Modes F and R,
• 72 bytes for Mode S (long).

As an example, the preamble for mode R2 (independent on the direction) would
look like this:

0b([01] 0100 0111 0110 1001 0110)

with the two bits in brackets repeated 38 times, making for the total length of 12
bytes.

b) A-field

Carries the device address, which is 6 bytes in length and unique for every device.
If this field is contained within a send or request frame, the address belongs to

24

the meter or receiver that sends the frame. If, on the other hand, it is a confirm
or response type of telegram, the address points to the device that originated the
exchange, which is the receiver, in these cases [17]. Information pieces contained in
this field are device serial number, device version and device type (warm meter, gas
meter. . .).

c) C-field

Determines what type of action or service is being demanded by sending this frame.
The options for this field are, amongst others, send, confirm, request and response,
each with own further division [17].

d) CI-field

CI – control information – holds the specifics of the application data type in the
application payload. It provides information for the superfluous layers, such as
COSEM [14]. Using the options in this field, the server can, for instance, change the
communication baud rate or force synchronization, and the sensor is able to report
alarms and errors.

e) CRC

Contains the 2-byte long verification checksum. In case of Wireless M-Bus, this
is always calculated using the following polynomial: 𝑥16 + 𝑥13 + 𝑥12 + 𝑥11 + 𝑥10 +
𝑥8 + 𝑥6 + 𝑥5 + 𝑥2 + 𝑥0 (also know as CRC-DNP polynomial [18] from Distributed
Network Protocol). The calculation starts with zero and deals with the MSB first.
The resulting 16 bits are also transferred with MSB first [17].

f) Data field

Section designated to hold application layer payload of unspecified length. It has
its own categorisation and numbering described later in Section 2.5 [14].

g) L-field

Indicates the length of the frame, excluding the length of the L-field itself and that
of the CRC field (thus this effectively represents the size of the link layer payload).
This information is calculated by the data-link layer upon transmission and used by
the counterpart at reception [14].

25

h) M-field

Field designated to manufacturer’s identification. Each manufacturer with the inten-
tion of providing M-Bus-enabled hardware is assigned a three-letter ASCII code (the
list can be found at the DLMS User Association website [19]). Using this code, the
binary representation is calculated by an algorithm specified in the M-Bus standard
[12]. In this procedure, the three letters from the code are processed consecutively
from left to right and the resulting hexadecimal (or binary) output is given by the
formula below:

MAN = [𝛼(1st letter) - 64] · 32 · 32 +
[𝛼(2nd letter) - 64] · 32 +
[𝛼(3rd letter) - 64],

where MAN is the final 2-byte code (which can later be used in the telegram) and
the function 𝛼(x) transforms letter x into its ASCII numeric code [17].

i) Postamble

Postamble (also trailer), similarly to preamble, is a sequence of bits specified in
advance and unchanged later, used to announce the end of the telegram. Only some
modes use this field. If it is present, though, it is a pair of alternating bits repeated
several times [14].

2.4.2 Frame formats

Two frame formats are specified in the respective EN-13757-4 document – Format
A and Format B. Their structure is similar, both are described below.

a) Format A

Format A is general and can be used in all modes, which were explained earlier. The
structure [16] of an A frame is shown in Table 2.3. It includes a preamble, whose
length is mode-dependent (see Section 2.4.1 a)) and which is required.

Frame A

Preamble Block I Block II additional blocks (optional) Postamble

Tab. 2.3: Wireless M-Bus: structure of Frame Format A.

26

After the preamble, Block I follows, with contents as seen in Table 2.4. These
are all the information fields with given length, finished with the CRC computed
from them (C-, M- and A- fields are treated only).

Block I

L-field C-Field M-Field A-field CRC
1 byte 1 byte 2 bytes 6 bytes 2 bytes

Tab. 2.4: Wireless M-Bus: structure of Frame Format A, block I.

Block II (structured as in Table 2.5) is the first to carry useful data, marked
with control information field and hashed in a CRC.

Block II

CI-field Data field CRC
1 byte 15 bytes maximum 2 bytes

Tab. 2.5: Wireless M-Bus: structure of Frame Format A, block II.

Maximum length of a single data field is 15 bytes. If more than that needs to be
transmitted in a single message (for administrative or power-saving purposes), an
arbitrary number of additional data blocks can follow (Table 2.6), unless the total
maximum frame length is exceeded. Frame of Format A is ended with a postamble.

Optional blocks

Data field CRC
16 bytes maximum for each 2 bytes

Tab. 2.6: Wireless M-Bus: structure of Frame Format A, aditional blocks.

b) Format B

Frames of Format B [9] are an option only for modes C and F. This format was
designed in order to reduce the unnecessary overhead and thus increase battery life
or space for goodput. As its origins are in Format A, these two are more similar
than not.

Frame B

Preamble Block I Block II additional block (one or none)

Tab. 2.7: Wireless M-Bus: structure of Frame Format B.

27

Frame of Format B starts with the same preamble as frame of Format A also
followed by Block I, which is – compared to frame Format A-like block I – missing
the final CRC field.

Block I

L-field C-Field M-Field A-field
1 byte 1 byte 2 bytes 6 bytess

Tab. 2.8: Wireless M-Bus: structure of Frame Format B, block I.

Block II also has the same form, but the length of data field, which is allowed to
be sent without being followed by a CRC, is significantly increased from 15 to 115
bytes (increased goodput to overhead ratio).

Block II

CI-field Data field CRC
1 byte 115 bytes maximum 2 bytes

Tab. 2.9: Wireless M-Bus: structure of Frame Format B, block II.

The tailing Block III is optional and meant to be used if the desired data to
be sent are longer than the allowed maximum in Block II. After that, there is no
postamble or additional data blocks.

Optional block

Data field CRC
126 bytes maximum 2 bytes

Tab. 2.10: Wireless M-Bus: structure of Frame Format B, optional block.

2.4.3 Example

Suppose a telegram of frame Format B, written in hexadecimal and stripped from
its preamble and postamble (these are known in advance and too long for this
illustration), which looks as follows:

17 44 01 6A 8A 39 02 00
01 06 72 8A 39 02 00 01
6A 01 06 AA 00 01 01 DA.

28

Bellow, there is the list of information that the receiving device can gain about
the telegram and the data it holds.

• 0x17 is the L-field, holding the total length of the rest of the link-layer payload
(C, M, A and CI fields and data). That is 23 bytes in this case.

• 0x44 is the C-field, indicating the function of the telegram: "SND-NR", send/no
reply.

• 0x(01 6A) is the M-field. Since it has more than one nibble, the endianness
begins to matter. This field should be ordered with LSB first, so the actual
value of this block is 0x(6A 01), which delivers the manufacturer ID of "ZPA".

• 0x(8A 39 02 00 01 06) are 6 bytes of the A-field. The first four of them
signal the identification (0x(00 02 39 8A)), the next one the version (version
0x01), and the last one is for the type of the meter (0x06 means warm meter).

• 0x72 is the CI-field, saying that data in this telegram have full header (12
bytes in length).

• 0x(8A 39 02 00 01 6A 01 06 AA 00 01 01) represents the 12 bytes of the
full header. This already belongs to the application layer. Here, the iden-
tification number, manufacturer code, version and device type are repeated,
followed with the access number (0xAA, serves as counter), status (0x00 – no
errors) and signature (0x(01 01) – this has meaning for encryption and data
privacy), also called configuration field.

• After these fields, the actual data would follow (substituted with 0xDA in this
example).

2.5 Application layer
For the application layer, CI-field is very important. Prepending the rest of the
payload, it indicates the formatting of the rest of the data and their purpose (Syn-
chronize action and Slave to master: report of alarms are examples of this). What
has so far been denoted simply as data field will now be broken into parts and
explained. Firstly, there is space designated for data header, which is followed by
a data record header and data themselves, as portrayed in Table 2.11.

Application layer data

Data header
Data record(s). . .

Data record header Data
0, 4, 12 byte variants unspecified length unspecified length

Tab. 2.11: Wireless M-Bus: structure of application layer data.

29

Each telegram has a data header. The two fields after it form a couple and there can
be more of these couples – each with data record header and data, all transferred
within one frame, as numerous as the total length maximum allows for. The limit
of a single telegram size is set to 255 bytes to ensure as much interoperability and
compatibility with other data-link and application layers as possible.

2.5.1 Data header

The application layer recognizes three types of data headers: none, short and long.
Data headers precede data records in the telegram structure.

a) Omitted data header

If the CI-field signals hexadecimal 0x78, there is no data header available in the
telegram. Based on that, no encryption is possible.

b) Short data header

Signalled with hexadecimal 0x7A, short data header takes 4 bytes of space and it is
usually used once a communication has been established and additional information
would be redundant. It consists of three fields:

• Access number (1 byte), holds an incrementing number, which supports lost
frame detection and repeated frame inclusion. Its starting value is chosen
randomly when communication begins.

• Status code (1 byte), whose purpose depends on the direction of the telegram
it is in. If the telegram was sent by a meter, this field indicates alarm and
error states. If the direction is opposite, it bears information about Received
signal strength indicator (RSSI) – basically indicates quality of reception – of
the last frame.

• Signature (2 bytes), also known as configuration field, which contains infor-
mation about desired encryption mode, specifics of this encryption and length
of the encrypted data.

Short data header

Access number Status code Signature
1 byte 1 byte 2 bytes

Tab. 2.12: Wireless M-Bus: structure of DH, short.

30

c) Long data header

Long header takes over the three fields from the short header and adds four more,
which have already been described as well, in the Section 2.4.1. In the order of
transmission, they are:

• identification number (4 bytes), which is also the first part of the A-field,
• manufacturer ID (2 bytes), reflects the M-field,
• version (1 byte), also fifth byte in the A-field,
• meter type (1 byte), also sixth byte in the A-field,
• access number (1 byte),
• status code (1 byte),
• configuration field (2 bytes), which have been described in the short header

paragraph above.

Long data header

Serial Man.
Version

Meter Access Status
Signature

number ID type number code
4 bytes 2 bytes 1 byte 1 byte 1 byte 1 byte 2 bytes

Tab. 2.13: Wireless M-Bus: structure of DH, long.

The CI-field code for long header is 0x72 and it is 12 bytes in length.

2.5.2 Data record header

Data record headers (DRHs) hold meta-information about the data. One DRH is
further divided into Data information block (DIB) and Value information Block
(VIB), as seen in Table 2.14.

Data record header
Data Information Block Value Information Block

DIF DIFE . . . VIF VIFE . . .
1 byte 1 byte each (up to 10 times) 1 byte 1 byte each (up to 10 times)

Tab. 2.14: Wireless M-Bus: structure of DRH.

a) Data Information Block

Each DIB contains exactly one Data information field (DIF) and can be optionally
extended by a maximum of ten Data information field extensions (DIFEs).

31

DIF In a DIF, 8 bits of information are stored, listed from the most significant
bit to the least one:

• extension bit, which indicates, whether there is or is not a DIFE after this
DIF,

• storage number bit, which transfers the LSB of the storage number,
• function field (2 bits), which expresses the type of value being transmitted

(options here are instantaneous, minimum, maximum and error value),
• data field (4 bits, not to be mistaken by name with the data-field in frame

from Section 2.4.1), carries information about the data length and coding.

Data information field

Extension Storage Function Data
bit num. LSB field field

1 bit 1 bit 2 bits 4 bits

Tab. 2.15: Wireless M-Bus: structure of DIF.

DIFE A DIFE also contains an extension bit, marking whether there is another
DIFE after this one, and it stores additional information about tariff and subunit
of the device, as well as more bits of the storage number.

Data information field extension

Extension Device
Tariff

More storage
bit subunit number bits

1 bit 1 bit 2 bits 4 bits

Tab. 2.16: Wireless M-Bus: structure of DIFE.

b) Value Information Block

The structure of VIB is very similar to that of DIB’s. Within a DRH, VIB always
takes place after the DIF and all possible DIFEs. It also consists of precisely one
VIF and none up to ten VIFEs.

VIF VIF’s primary purpose is to deliver information about the metered unit (e.g.,
kilowatt hours) and its multiplier (e.g., 106 in case of mega kilowatt hours). Thus,
it only consists of:

• one extension bit,
• seven bits of unit and multiplier information.

32

Value information field
Extension bit Unit and multiplier code

1 bit 7 bits

Tab. 2.17: Wireless M-Bus: structure of VIF.

VIFE In VIFE, given that there is one extension bit as well, the whole 7 bits left
are all taken by one of special codes, defined in a table as part of the standard [20].

Value information field extension
Extension bit Special purpose code

1 bit 7 bits

Tab. 2.18: Wireless M-Bus: structure of VIFE.

2.5.3 Data

Introduced via the data record header, raw data follow. Albeit their structure
is outlined within the standard as a recommendation, many of the manufacturers
implement proprietary solutions for this. There are, however, many homogenized
value structures, which can be used to encode many of the common data sets. These
are called Types and the original WM-Bus standard EN 13757-3 [20] of 2004 defines
12 of them, labeled alphabetically as Type A through Type L. List of the types and
their purpose is outlined in Table 2.19. Types F and G are amongst the most utilized
and are implemented in the generator as well. Therefore, Type F is described in
more depth below. Type G, which only delivers a subset of the information found
in Type F (date and time compared to only time), is structurarily very similar.

Type F The construction provided by Type F is used for storing date and time
information with the precision of minutes (Type I further narrows this down to
seconds). Separate parts of the entire information are placed in the final 4 byte
structure as per Table 2.20, where roman numerals in the table substitute for:

• (i): bit reserved for future use,
• (ii): bit signifying values validity (0 for valid),
• (iii): bit for standard / summer time (0 for standard).

Since there is only 60 different possible values for the minute number and at the
same time, there has to be a space of whole-number of bytes, able to accomodate at
least 60 bits to store them (64), there are unused amounts (60, 61, 62 and 63 in this
case). These can be used to store special cases, such as every minute repetition with

33

Type Stored value
Length
[bits]

A Binary coded unsigned integer 8
B Binary coded integer 8
C Unsigned integer 8
D Boolean value 1
E Deprecated, unused
F Date and time (minute, hour, day, month, year) 32
G Date (day, month, year) 16
H Floating point number 32
I Date and time (second, minute, hour, day, month, year) 48
J Time of day (second, minute, hour) 24
K Instructions regarding daylight saving 32
L Precise mode scheduling (sleep, listening) 88

Tab. 2.19: Wireless M-Bus: defined data types.

the value of 63, which could not be achieved otherwise. Similar concept is applied
for hours, days, months and years.

As an example, the date of 4. July 2014 8:03 is processed as follows:
• minute (3) = 0b000011,
• hour (8) = 0b01000,
• day (4) = 0b00100,
• month, counted from zero (6) = 0b0110,
• year (14) = 0b0001110,
• centuries after the nineteenth (1) = 0b01.

and finaly coded into

0b(00010110 11000100 10101000 10000011),

where value bounderies are marked by underlined / overlined sections for easier
distinguishment.

2.6 Structure summary
The structuring of Wireless M-Bus telegrams, as it has just been explained, can be
a bit difficult to comprehend with its multi-tier structure and naming. To cover
that, a brief summary is given below.

34

Byte 1
Bit 8 7 6 5 4 3 2 1
Data (ii) (i) minute

Byte 2
Bit 16 15 14 13 12 11 10 9
Data (iii) century hour

Byte 3
Bit 24 23 22 21 20 19 18 17
Data year (1/2) day

Byte 4
Bit 32 31 30 29 28 27 26 25
Data year (2/2) month

Tab. 2.20: Wireless M-Bus: Type F in detail.

Two frame formats exist in Wireless M-Bus: more standard Format A and
a shortened Format B. In frame of Format A, there are (in order): preamble, L-
field, C-field, M-field, A-field and their cumulative CRC, CI-field, data and their
CRC, optionally more data with CRC, and a postamble. Compared to that, frame
of Format B misses on the first CRC and the postamble, thus having more space for
data.

The data part consists of Data header (DH), which is not mandatory and dis-
tinguishes short and long forms, Data record header (DRH) and data. DRH and
data together form a Data Record (DR). The DRH has two parts, Data information
block (DIB) and Value information block (VIB). In a DIB, there is always one Data
information field (DIF) and up to ten Data information field extensions (DIFEs),
similarly in a VIB, there is always just one Value information field (VIF) and also up
to ten Value information field extensions (VIFEs). The data themselves (payload)
follow. There can be more DRs in one telegram.

2.7 Encryption
Encryption is supported in WM-Bus, however, it only affects part of the application
layer data. The information about the encryption that has been used to encrypt the
telegram is stored in the signature field (2 bytes), which is the last word of the data
header (both short and long one). Data preceding this field are always unencrypted,
as well as the signature field itself. All data following the field may be partially
or fully encrypted, or they may not (in case no encryption was used). The length
of the encrypted data is stored in the lower byte of the signature word, while the
higher byte contains a code indicating the method used for encryption. In case no
encryption was used, both parts of the word contain a zero (0x00). When only
a part of the payload is to be encrypted, it comes right after the signature word,

35

followed by the unsecured part. This allows for encrypting only the private part of
the message and thus further saving power (e.g., timestamps might not need to be
protected).

Encryption techniques of Advanced Encryption Standard (AES) and Data En-
cryption Standard (DES)2 are supported. M-Bus mandates the use of Cipher Block
Chaining (CBC), which is available in both of the standards. Recognized encryption
modes are as following:

• mode 0: no encyption,
• mode 2: DES with CBC, zero initialization vector (IV),
• mode 3: DES with CBC, non-zero IV,
• mode 4: AES with CBC, zero IV,
• mode 5: AES with CBC, non-zero IV,
• modes 1, 6, 7: reserved for future use [21].

2.8 Real data structure example
To verify the outlined structure of Wireless M-Bus telegrams, a real-traffic capture
[22], containing a message from a WM-Bus warm meter, was parsed and analyzed.
Extracted message had been sent from a device manufactured by Bonega. From
the analysis results listed in Table 2.21 it is clear, that the manufacturer obeys the
standard data structure only partly. Fields L, C, M, A and CI all comply to the
WM-Bus definition by their order and contents, the CRC Fields are placed correctly
as well. So is the data header and access number, status byte and signature field in
it, however, the two data records are not. The data field conveys the information
of temperature measurement together with exact minute this action was taken, but
Value information fields (VIFs) are prepended to the data sections, which is not as
per the standard. The telegram in question had the full content as follows:

0x(20 44 EE 09 21 01 00 00 01 06 FC E2 7A 4F 00 10
05 1A B9 4C 4F Da 69 43 09 E3 47 E8 6F A4 37 79 0C)

and had been encrypted using AES and cipher block chaining (CBC) with the en-
cryption key of

0x(2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C)

2As later versions of the M-Bus norm acknowledge, DES is an obsolete and surpassed standard
and should not be used [16].

36

and initialization vector composed of specific parts of the telegram and a padding
with the value of

0x(EE 09 21 01 00 00 01 06 4F 4F 4F 4F 4F 4F 4F 4F).

Note that from the whole message, only a part of the application layer payload is
encrypted in Wireless M-Bus. In case of this telegram, the encrypted section starts
with the byte of 0x1A and spans to the end (last 16 bytes).

2.9 The role of Wireless M-Bus in Industry 4.0
M-Bus (wired) was developed in the early 1990s and extended with its wireless form
in 2005 (when the first draft of the EN 13757-4 was published, approved a year
later [12]), which is 5 years before the terms of IoT and Industry 4.0 started gain-
ing on popularity in 2011 and even longer before they got to attention of the mass
market in 2014 [23]. Despite that, Wireless M-Bus presents a solid competition to
protocols and networks tailored just for Industrial Internet of Things (IIoT, which
is a specific subset within regular IoT and represents more or less a synonym for
Industry 4.0), such as SigFox, LoRa or NB-IoT. Since it follows very similar goals
(sensor-independence, battery-longevity, meter-automation), but holds a few years
advantage, it is even better established, settled and stabilised than most of its com-
petitors [24].

For the reasons stated above, no drop in WM-Bus popularity is expected within
the Industry 4.0 era, moreover an important role is assumed for it, however con-
strained to metering applications it is.

37

Offset
Field

Hex value
Meaning

[B] [decrypted]
0 L 20 There are 32 bytes after this one
1 C 44 C code is "SND/NR" (Send/No reply)
2

M
EE Manufacturer’s ID is 0x(09 EE),

3 09 decoded as BON, short for Bonega
4

A

21
5 01 Device ID (serial number)
6 00 is 0x(00 00 01 21)
7 00
8 01 Device version is 0x01
9 06 Device type is 0x06 (warm meter)
10

CRC
FC

Checksum for fields L–A
11 E2
12 CI 7A CI code is "Short header" (4 bytes)
13

DH

4F Access number (sequential)
14 00 Status byte (no errors)
15 10 Signature: encrypted data length is 0x10,
16 05 (16 B), encryption type is 0x05 (AES with IV)
17 1A [2F]

AES filling
18 B9 [2F]
19 VIF I 4C [04] Value type: Type F (Date and time)
20 VIF II 4F [13] Value type: Flow temperature (10−2 ∘C)
21 DA [1A] Temperature value is 0x(22 1A),
22 Data 69 [22] this is 8 730 in decimal and with
23 I 43 [00] the multiplier (10−2) applied,
24 09 [00] the reading was 87.3 ∘C
25

CRC
E3 [04]

Checksum for fields CI–Data I
26 47 [6D]
27 E8 [03] Data encoded in Type F structure
28 Data 6F [28] (see Section 2.5.3 for details),
29 II A4 [C4] holding the time definition of
30 37 [16] 6 April 2014, 08:03
31

CRC
79 [2F]

Checksum for field Data II
32 0C [2E]

Tab. 2.21: Bonega telegram analysis.

38

3 GENERATOR
As the practical part of this thesis, an application with the purpose of generating
Wireless M-Bus data was created. It runs on Java 8 and uses JavaFX 8 to provide
graphical interface. Since Java is designed to be a multiplatform language, this
application can theoretically run everywhere where a Java virtual machine (JVM)
runs. The real aim in this case are Windows, Linux and Mac operating systems,
though, thus covering the vast majority of desktop workstations.

3.1 Application
The generator adapts the WM-Bus fields hierarchy and, partly, uses a similar struc-
ture to achieve as close and simplistic implementation as possible. In terms of that,
it operates with single fields and their parts when constructing the data (embodied
via Java objects), and with whole frames or telegrams when manipulating or sending
them. Full UML-like class diagram is attached in the Figure A.1 in appendix A.
Brief explanation on the key parts is provided below.

The basis of the program’s operation can be described followingly. Classes, which
manipulate the Graphical User Interface (GUI) or one of the Command-line User
Interfaces (CLIs) only have the purpose of allowing data input and controlling the
transmission actions. The core logic is located elsewhere. Thanks to this, bound-
aries for the interface-specific parts are small and more generic implementation can
be achieved. When a telegram is constructed using one of the user interfaces, it is
stored in memory as an instance of class derived from Frame, with all the details
accessible and manageable. These are attached in the form of objects implementing
the interface of Field. Structure enforcement, value transformation and validation
are delegated to specific Field instances. When a request for connection (to the
target communication output channel) is specified and raised, an object of class in-
herited from Sender is created. This instance is responsible for everything regarding
the periodical sending process, including the transmission scheduling and initializ-
ing, controlling and retaining the channel. By extending presented base structures
of Frame, Field, Sender and others, the implementation and functionality can be
expanded to meet new requirements

3.1.1 Frame base class

Frame is an abstract class, designed to provide similarities between both kinds of
frames (so far in WM-Bus these are Frame A and Frame B – both described in
Section 2.4.2). An instance of Frame holds a collection of Fields stored within

39

the frame and dictates several methods that its subclasses have to implement. It
also provides routines, which can be applied to both frames without a difference.
Amongst them, there are:

• construct() method, which collects all known parameters for the frame, places
them in the correct order and returns a list of fields within the frame corre-
sponding to that,

• getBytes() method, which builds the bytes of the entire constructed frame and
returns them in a list,

• format-independent generic getters (getter is a method for obtaining object
properties without actually accessing the implementation),

• format-independent generic setters (methods for changing object properties
without the access to other values and inner implementation).

Classes extending Frame (FrameA and FrameB) are responsible for constructing
frames based on demands and parameters (addressing, payload, length . . .) and
delivering their byte representations, but most importatnly, they hold the Fields
a provide them upon request.

3.1.2 Field interface

Field is a very simple interface. It serves a similar purpose as Frame, one imaginary
step deeper (a Frame holds Fields, not vice versa). There is not many similarities
between diferrent fields, which could be brought together in this interface, which is
why it only is an interface and not a class. However, it presents a so called marker
interface, enabling all fields to be treated as equal.

Classes, which implement Field (AField, MField, DataField, DataRecord, Pream-
ble and others) are then used to accept respective defining parameters (manufacturer
ID in case of MField, bytes to be encompassed in case of CRCField) and, while obey-
ing the WM-Bus standard, construct the bytes representing the parameters. CIField
can serve as a simple example: its constructor expects one of the CI-field codes and
transforms it into hexadecimal form, exactly as it is found in the telegram. Full
class diagram of all fields implementing Field can be found in Figure A.2 in the
appendix A.

3.1.3 DataField class

Although Data field is just one of the fields M-Bus recognizes, the class DataField
is by far the most important Field implementation in this program. It holds a ref-
erence to one DataHeader object and a list of references to DataRecord objects.
Furthermore, DataRecord holds a DIF, a VIF and multiple DIFEs and VIFEs (just
as they are found in WM-Bus), which eases the manipulation. Because these have

40

a number of specifics in common (compared to other classes), a base class was cre-
ated for them. It is called DataRecordHeaderBase and only the classes DIF, VIF,
DIFE and VIFE extend it. A class diagram focused on DataField, its attributes
and their hierarchy is shown in Figure 3.1.

Fig. 3.1: Selected relationships of class DataField.

This class also handles encryption – note that only application layer payload
is encrpyted in Wireless M-Bus. For this reason, there is an extra class called
EncryptedDataRecord extending DataRecord, which is created when encryption is
used and only stores an array of encrypted bytes. An object of this class can then
be placed and used anywhere where an object of class DataRecord is expected and
thus, in the higher layers of the program, no distinguishing has to be made (although
the option is still present thanks to Java’s Run Time Type Identification (RTTI)
mechanism). In the holding class (DataField), there is a method called encrypt,
which reads bytes from the unencrypted DataRecord field object and substitutes it
with the encrypted one.

3.1.4 Sender base class

Sender is another abstract class. Its task is to manage periodic sending of telegrams,
for which it features methods such as schedule (registers given telegram for sending),

41

reschedule (changes the sending period of an already registered telegram) or shut-
down (terminates all periodic operations, closes opened connections and returns).
It does not specify, how or where should the telegrams be sent, it only manages the
registering and periodicity. The task of transmission execution is delegated to in-
herited classes. So far, there are two classes extending Sender : UDPSender, which
adds a simple implementation of sending the telegram bytes through IP network
from and to a specified UDP socket, and CommSender, which operates similarly on
serial ports. Since communicating with a device via a serial port is not a straight-
forward, nor simple procedure, there is an extra class of IqrfDeviceModel, which
manages this task for the rest of the program. Details of this class are described in
Section 3.1.6.

3.1.5 PeriodicTelegramBase base class

Instances of subclasses of abstract PeriodicTelegramBase are auxiliary models, which
are viewed from the GUI in place of "raw" Frames and are used by Sender objects
for the transmission. There are two classes inheriting from PeriodicTelegramBase,
one for GUI (GUIPeriodicTelegram) and the other one for both CLIs (CLIPerio-
dicTelegram). They represent a role similar to Frame instance, extended with the
information about its transmission period, transmission status, whether it should be
fluctuated before sending and whether it should be sent periodically at all. There
is also a unique identifier, used by the scheduling tools, and other interface-specific
details and logic. When a Frame is defined by the user, it is, at some point, encap-
sulated into a PeriodicTelegramBase object, which further specifies its transmission-
related properties. This relieves the Frame class from doing so, thus it can focus on
its designated task (which is managing collections of Fields).

3.1.6 IqrfDeviceModel class

This class creates an abstraction level above a specific hardware device – IQRF
module TR-72D-WMB. It has all the information needed to control the module,
read and change its configuration, send service commands and other instructions to
the chip. It is also responsible for establishing a communication link with the device
– if it is connected – and mediating all communication from the program to the
device and vice versa. For the serial port connection, transmission and reception
of data the model uses the open-source library of jSSC, described in more detail in
Section 3.2.2.

It provides many methods for setting specific parameters of the module, reading
it, sending well-defined commands or unstructured bytes, restarting it, putting to
sleep and so on. The inputs for this class are actions which other parts of the

42

program would like to perform on the device, and its outputs are performing these
actions within the device. Because of this, it behaves more like a library, delivering
the knowledge of controlling this specific hardware.

As various requests for reading of module configuration come from the appli-
cation or needs to do so arise for different reasons, an instance of IqrfDeviceModel
keeps the information it has gained about the state of the device and uses them
as a simple cache. Thus, when a reading request is made to a parameter that the
class knows has not changed since its last reading (because it would have been the
entity to change it), it simply does not perform the reading again, but uses the
cached value. This behavior saves nonnegligible amounts of time, as retrieving the
information from the module (from requesting it to actually obtaining it) is never
instant (various measurements have been performed and the results are presented
in Section 4.8).

3.1.7 ByteUtils class

ByteUtils is a utility class made to accommodate static methods which operate
various byte or bit related structures. These methods are static – do not depend
on an instance of the class and only operate with parameters, and public – can be
called from anywhere in the application (in fact, their accessibility goes beyond the
application). Amongst the tool methods included in this class are:

• String bytesToHex(Object bytes), which receives an array of primitive
bytes, an array of non-primitive Byte objects or a List of Byte objects and
converts their values into hexadecimal text (e.g., for showing device serial
number to the user),

• Byte[] hexToBytes(String s), which is the opposite of the previous one;
a version with desired length specification is included as well, so it pads the
output with zeros if the input is shorter than required (i.e. for accepting
hexadecimal input from the user),

• String byteToBits(Byte b) to convert a single Byte object into its binary
representation (for simpler binary arithmetics),

• String intToBitsWithFixedLength(int i, int length), which converts
given integer number into binary text and ensures it has given length (used
e.g., for coding Type F (see Section 2.5.3)).

3.1.8 Enumerations

A number of enumerations is declared in the scope: status codes (values such as
Application busy or Power low), data field codes (No data, 8 digit BCD) and value
types (Volume, External temperature) are only examples of that. They are mappings

43

of standardized Wireless M-Bus tables to programmatically used entities. Besides
the value name, more information is usually stored in an enumeration. In most
cases found in this application, it is at least the hexadecimal value for the code or
its bit representation, as per WM-Bus standard, and a so-called nice name, which
is a user-friendly version of the value description. An example can be picked from
the DataFieldCode enumeration, one of whose rows looks like this:

Integer24 ("0011", 24, "24 bit integer / binary"),

where the following applies:
• Integer24 is the internal name of this value within the source code,
• 0011 are bits that are used in the frame when this value is asked for,
• 24 bits is the length of data denoted with this value,
• 24 bit integer / binary is the description shown in the graphical interface. This

is the only detail which is available to the end user.
Because other enumerations employ a very similar pattern, there is a simple param-
eterized interface called EnumBase, which all the enumerations implement and thus
let the rest of the code operate upon their common nice names in the same way.
Also, there is usually a static parse method to them. This is to convert hexadecimal
or binary value representations back to strict enumeration values (e.g., "0011" to
Integer24).

3.1.9 Graphical user interface

For graphical interactions, the newest native Java GUI framework developed by
Oracle – JavaFX – is used in version 8. It provides desired logic-design separation,
which is why there are two files for each window defined within the program. FXML
files are XML-based markup definitions for graphical user interface descriptions –
they define the design. Coupled with each FXML is a Java file called controller,
which determines the behavior of respective graphical components. There are three
of these tuples:

• InitialWindowController.java and InitialWindow.fxml (later refered to
as Layer 1 window),

• FrameDialogController.java and FrameDialog.fxml (Layer 2 window here-
inafter),

• DataRecordDialogController.java and DataRecordDialog.fxml (Layer 3
window).

Additionally, third type of file – cascading style sheets – can be used to change the
look of the graphics easily, but is not utilized in this project, as the default JavaFX

44

version 8 theme of Modena was kept in use.
An extra class definition called ValidatedChangeListener was implemented and

is used in the GUI. This class implements the JavaFX’s ChangeListener interface
and extends it with the added functionality of custom input validation as well as
alert dialog presentation. Instances of this class can then be used in place of regular
ChangeListeners wherever user input needs to be validated and a dialog window
raised upon validation failure and thus avoid numerous code duplication.

3.1.10 Command-line user interfaces

There are two modes of text-based CLI operation. The first one, called interac-
tive, targets human users who do not have graphical output at their disposal (and
therefore cannot use the GUI). In this mode, the program asks the user for each
value that they would be able to fill in the GUI, one at a time. There are no func-
tional limitations to this mode and an outcome identical to the one from graphical
interface can be achieved. This is handled by own implementation of Read-evaluate-
print loop (REPL) in the REPL class. It provides an easy way of interaction and
guidance to the user and a simple enough implementation on the development side.

The second one, called machine or non-interactive, uses the much more common
switch pattern, where every value has a switch or flag word which denotes it. When
executing the program, all the flags and respective values are written successively
after the command. Because of that, using this approach becomes complicated and
hard to organize as the number of parameters grows. Therefore, it is not recom-
mended for human users and has only been included to allow the generator to be
operated by non-human users, i.e., scripts. The implementation uses a third party
library of Commons CLI, described in Section 3.2.1.

Many classes and even enumerations in the project override a method called
toString(). This is a method inherited all the way from Object (the root of class
hierarchy in Java) and is used whenever a text representation of any object is needed.
In this case, the default behaviour is not very useful as it only concatenates the
object type and address in the memory. Overriden toString() methods allow for
more related behavior (e.g., showing hexadecimal contents in case of M-Field).

3.2 External libraries
Two third-party open source libraries have been used in the generator project. It is
the Commons CLI [25] developed by Apache [26] Software Foundation and the Java
Simple Serial Connector [27] library developed by Alexey Sokolov. Both libraries

45

come in a single jar archive file, which allows them to be packaged into a standalone
project-wide collective archive and be executed multi-platformly.

3.2.1 Commons CLI

Apache Commons CLI [25] is a simple tool for building, managing and presenting
command-line parameters and parsing text input based upon these parameters. Its
abilities have been used to simplify the implementation of the non-interactive CLI
(described in Section 3.1.10) and specifically in the NonInteractiveCLI class. There,
it receives the parameter definitions and when the program is run in this mode, it
parses user (human or not) input into program values.

3.2.2 jSSC

Java Simple Serial Connector (jSSC) [27] is the third party open-source library
which was used for serial port communication. It allows for port discovery, data
writing and reading. Its features are used throughout the IqrfDeviceModel class. In
comparison with other serial communication libraries for Java, such as rxtx [28], it
does not need platform-dependent library files (dlls for Windows machines, shared
objects for Linux-based computers and so on) which would have to be unpacked
from the application archive, and can therefore be packaged into one single Java
application resource bundle (jar) along with this application.

3.3 Logging
All debugging and error-state information is logged by the generator. This is done
by Java’s standard logging package and printed to the application’s standard output
channel. In case of running the CLI, this is the same facility as the commanding
takes place at. In case of GUI, the logging is hidden unless the program was started
in graphical mode from a command line, then the logging is there to be expected as
well. The information being logged contains:

• records of periodically sent telegrams, including their content and timestamp
of the action,

• any communication taking place on the serial port,
• attempts to connect to a device and their results,
• errors.

A minimized sample of the log output captured while connecting to the device
(i), thus triggering configuration reading (ii), changing the configuration to reflect

46

the next telegram’s attributes (iii), sending the telegram (iv) and reading module’s
response (v) is shown below:

Mar 23, 2018 4:16:05 PM core. IqrfDeviceModel (i)
INFO: Connected to /dev/ ttyAMA0

--> 00 (ii)
--> 01?
<-- B05C214365870A02

--> 00 (iii)
--> 01: EE09214365870A02
<-- OK

--> FF0980447A0000035000E4 (iv)
Mar 23, 2018 4:17:00 PM core. IqrfDeviceModel
INFO: Sent FF0980447A0000035000E4 to /dev/ ttyAMA0

<-- 020002 (v)
Mar 23, 2018 4:17:00 PM core. IqrfDeviceModel
INFO: Received 0 bytes in response .

3.4 Data fluctuation
To further resemble real-sensor-like traffic, the generator features an option to fluc-
tuate the payload of WM-Bus telegrams during the operation and thus simulate
real-world non-fixed value measurements. Every time before such a telegram is
sent, Java’s built-in random number generator is used to produce a value which is
then added to or substracted from (decided randomly as well) the telegram’s pay-
load. If there is only one byte in the field, it is affected directly. If there are two
bytes of data, the latter one is fluctuated in full effect and the influence on the first
(more significant) byte is reduced. If there are more than two bytes, only the last
two are fluctuated nonetheless. The maximum change that a payload can experience
is fixed to 0.5 % of its value.

To demonstrate this behavior, a test was conducted. During this experiment, two
telegrams were scheduled for periodic sending by the generator. Telegram A with
starting payload value of 0x5100 (20 736) and transmission period of 10 seconds,
and Telegram B with the initial payload of 0x5200 (20 992) and sending period of
30 seconds. Both specifications had opted for data fluctuation. The data was then

47

being transmitted and received1 continually for 20 minutes. The values, as observed
by the receiving device, are plotted in Figure 3.2. Both Series A (payload values

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00
20600

20700

20800

20900

21000

21100

Series A (10 sec period) Series B (30 sec period)

Time elapsed [min : sec]

R
ec

ei
ve

d
va

lu
e

Fig. 3.2: Generated data series with simulated fluctuation.

of 120 messages produced from periodic transmiting of Telegram A) and Series B
(payload values of 40 messages in Telegram B) manifest random value movements.

Log files captured and extracted from the generator (sender’s perspective) and
from the Amber module (receiver’s perspective) can be found on the attached disc
(see attachment B) in the logs/ folder.

3.5 Documentation
Generator’s project documentation was created and is stored on the attached disc
(see attachment B for reference) in the javadoc/ folder. Since it complies to the
Java documentation standard called Javadoc [29], it can be browsed and viewed in
the form of web pages. The entries, comments and explanations are placed in the
source code files above respective methods or classes and describe the purpose of the
code directly beneath. In case of methods, produced Javadoc also holds explanation
on their parameters, return objects, exceptions that might be thrown (and why) and
can do a lot more, which was not required in case of this project.

1Hardware used during test: IQRF TR-72D-WMB in UniPi Neuron S103 with an external
antenna as transmitter, Amber AMB8465-M as receiver.

48

3.6 Unit tests
In the Java project, unit tests based on JUnit 4 are included. They reside in a stand-
alone tests package. Methods, which it made sense with, are tested here, including
most of the static utility methods and the IqrfDeviceModel library, where all reading
and writing commands’ functionality as well as device responsivity are verified2. Two
basic types of tests can be found here: standard JUnit 4 tests (where class definitions
start with @RunWith(JUnit4.class)) and special parameterized tests (annotated
with @RunWith(Parameterized.class)), which also run on the JUnit framework.
Regular test classes process each test method declared within and evaluate the
assertions defined in them. Parameterized test classes run each test method multiple
times, changing the input variables and expected outcomes. These properties are
defined as parameters of the test class and are stored in a two-dimensional Object
array. Taking advantage of this JUnit feature, it is easier to create and run test
scenarios which rely on many different inputs at once, test the application behaviour
under many circumstances and thus have a better and more reliable test background.

3.7 Competition comparison
Based on performed research, there are no tools, software or hardware, which could
resemble the functionality of this generator. Some of similarly focused applications
can control proprietary Wireless M-Bus hardware, alter its configuration and com-
mand it to send telegrams, however, none of them allows for multiple telegram peri-
odic transmission, nor provides this large room for message configuration. Amongst
them are software utilities developed by Amber to support their Wireless M-Bus ra-
dio adapters: Amber Config Center (ACC) and Amber Commander (ACM). ACC
allows for simple device configuration and management, while ACM is used for WM-
Bus traffic sniffing and transmitting raw data. Although these two, when combined,
provide a utility able to read from / write to the hardware configuration and send
bytes to the network and even offer the additional functionality for receiving and
partially parsing WM-Bus traffic, they were not focused on the type of task that
is achieved by the generator: powerful yet simple to use network testing tool with
multiple sensor simulation using affordable hardware.

2In order for these tests to pass, the IQRF device has to be connected to the computer.

49

4 HARDWARE
This chapter details the hardware used during development of the generator and
devices which the application is built to run with, most important of which is the
IQRF Wireless M-Bus module described in Section 4.1 below. Options for con-
necting it to computers and other platforms are explained as well in Figures 4.4
and 4.5 respectively. Controlling and managing this hardware from the generator’s
perspective is what Section 4.6 focuses on.

4.1 IQRF WM-Bus module
This board, which has the size of a mini SIM card (commonly referred to as just
SIM card), is a crucial piece of hardware, which the development was conducted
on and the final product targets to. The full name is IQRF TR-72D-WMB, as
found on the manufacturer’s website [30]. It is an IQRF1 transceiver, manufactured
specifically for Wireless M-Bus. On the board, there are pins to allow for UART
(wired) communication, 32 kB of non-volatile EEPROM memory and an embedded
antenna for transmitting and receiving WM-Bus telegrams. Thanks to low power
demands, this device is predetermined to being battery powered. Additionally, an
external antenna with better transmit capabilities can be connected.

The UART interface is meant to provide configuration and management, and is
also needed for programming and debugging purposes. It can be connected to a USB
port of a computer using two other hardware devices: IQRF debugger (detailed in
Section 4.1.1), and an USB to UART converter (Section 4.1.2).

The module can be operated in one of three modes, which can be cycled through
freely and which differ by their usage:

• meter – acts as a subordinate device in the WM-Bus network, sends collected
data,

• MUC (Multi Utility Controller), having the role of a data collector,
• sniffer – wireless traffic is monitored (observed) and can be captured (saved),

but none is being created by the device itself.
For the generator’s purpose, metering mode is employed.

4.1.1 IQRF debugger

An interconnecting hardware, used to convert and pass UART communication to
the IQRF module. The product name is IQRF CK-USB-04A [32], detailed in Fig-

1IQRF is a technology for wireless packet-oriented communication via radio frequency (RF) in
sub-GHz ISM bands [31] – according to Wikipedia.org.

50

Fig. 4.1: IQRF TR-72D-WMB Wireless M-Bus module.

ure 4.2a. Scheme of UART pins on the board and the connections necessary to
enable the communication can be seen in Figure 4.5.

4.1.2 USB to UART bridge

This is the final part of the IQRF module connection link – CP2102 Classic USB
Bridge [33] manufactured by Silicon Labs. In the computer, which this converter
is attached to via USB, it creates a virtual COM port interface. Any data sent
from the computer to the interface are translated and transferred to the UART link.
There are two LEDs, indicating ongoing data transmission (PC to UART) or data
reception (UART to PC) respectively. A picture of the device is in Figure 4.2b.

(a) IQRF module debugger, CK-USB-04A. (b) USB to UART bridge, Silicon Labs
CP2102.

Fig. 4.2: Tools used to connect the IQRF module: debugger (a), bridge (b).

51

4.1.3 Limitations

Several constrains come from using this IQRF module and have to be taken into
account or worked around.

Firstly, the device does not transmit WM-Bus telegrams simply upon sending
a command with contents of the message to it. It only expects to receive part of
the application layer payload in the instruction and the rest of the whole telegram
(addressing, errors and many other attributes) is substituted from the module’s
memory. This problem was managed, solved and described in Section 4.7.

Secondly, only the encryption mode of AES with CBC and non-zero initialization
vector (coded as 0x05 in WM-Bus) is supported. Because of the first outlined issue
affecting the message transmission process simultaneously, this problem can not be
resolved and thus other encryption modes cannot be used unless respective support
is provided for the module.

Lastly, from all the Wireless M-Bus modes (described in Section 2.3) and the
selection of modes the device supports, only the intersection represented by Modes
S1 and S2 can be used for the generator’s purpose.

4.2 Amber wireless module
AMB8425 is a Wireless M-Bus module [34], which possesses capabilities similar to
those of the IQRF module. Antenna, control chip, converters and USB port are
all fitted within one casing, which seems to make it a more suitable device for the
cause. However, this hardware cannot be reconfigurated or managed via third party
programs and the provided software utilities only have limited capabilities.

There are two such tools: Amber Config Center (ACC) and Amber Commander
(ACM), both feature a graphical user interface and both only run under Microsoft
Windows OS. ACC lets the user change many of the module’s parameters (current
WM-Bus mode, link address, synchronization etc.), upgrade the firmware and more.
ACM allows for telegram transmision and reception.

AMB8425, mostly along with ACM, was used in the development mainly for
verification – it complies to Wireless M-Bus standards, which makes it a good testing
receiver for telegrams sent from the generator.

4.3 UniPi control unit
UniPi Neuron S103 is the target platform for the generator, it represents an alterna-
tive to the aforementioned IQRF module – debugger – UART converter combination.

52

(a) Amber Wireless
AMB8425.

(b) Raspbery Pi 3 (left) and IO shields (right) in UniPi
Neuron S103.

Fig. 4.3: Details of Amber stick (a) and UniPi with shields (b).

It is based on the Raspberry Pi 3 single board computer, extended with a propri-
etary I/O shield called UniPi and another interconnecting shield to provide more
ports / options. There are multiple USB adapters, audio/video outputs as well as
network card interface and it is primarily sold as a ready-to-use appliance for smart
building systems, their management, regulation and monitoring [35].

This scenario requires the IQRF module (from Section 4.1) as well, it is inserted
into a slot inside the UniPi boxing similar to the slot in the IQRF debugger. How-
ever, UniPi does not only serve as a more compact way of connecting the module to
a computer, since it is a computer itself. The Raspberry Pi inside Neuron is pow-
ered by Raspbian – a Debian-based Linux operating system. As this is a full-fledged
system, it can run Java environment, hence it can run the developed generator, too.

4.4 Module connection via the debugger
A simple communication link with the module can be established using the given
devices. IQRF debugger (IQRF CK-USB-04A) keeps the module within its slot and
mediates the connection transformation from the SIM slot to UART, which is then
conducted to the UART to USB bridge (Silicon Labs CP2102). It is this device,
which emulates a virtual serial port for the computer to communicate with, and
thus handles most of the connection workload.

A picture of these devices interconnected is shown in Figure 4.4a and a scheme of
pins connected on both sides of the UART channel is presented in Figure 4.5. In this
scenario, the generator program is supposed to be run on the computer connected
to the bridge.

53

(a) IQRF module in the debugger, connected
via UART to the USB bridge.

(b) IQRF module (red) in UniPi Neuron
S103.

Fig. 4.4: Approaches of connecting the IQRF module: debugger (a), UniPi (b).

Fig. 4.5: Pin scheme of the UART interconnection.

4.5 Module connection via UniPi
To utilize the IQRF module with the UniPi control unit, the module should be
inserted into respective slot, as seen in Figure 4.4b. Since this is not a standard use-
case for the UniPi, there are a few configuration changes that need to be made to
the Raspberry Pi board in it. Specifically, the UART interface is disabled by default
and has to be activated in order to connect to the module, and, as a consequence
of the previous action, serial port connected to the integrated Bluetooth antenna
needs to be replaced with the serial port for the UART interface.

To perform this adjustment, following actions on configuration files of the Rasp-
bian operating system need to be taken:

54

• In the file /boot/config.txt:
– add (or change if present) the instruction of ENABLE_UART=1 to enable

the UART bus,
– add the entry of dtoverlay=pi3-miniuart-bt to disable Bluetooth at

the UART interface.
• In the file /boot/cmdline.txt, remove the entry of console=ttyAMA0,115200

or similar to disable outputting debugging information to the IQRF module
during system boot.

• Reboot the UniPi device.
This should ensure correct detection of the IQRF module and allow UniPi to com-
municate with it. Exact instructions may vary based on software versions, device
types and other factors.

4.6 Controlling the module
Once a physical connection with the module has been established, whether managed
through the debugger cascade or simply inserted into the UniPi slot, communication
can take place. In both cases, the operating system perceives the module as a virtual
serial port device with the ability of exchanging information via UART. In case of
IQRF TR-72D-WMB, the interface parameteres, which are necessery to abide, are
listed in Table 4.1 below. While these connection specifics are obeyed, any serial
connection utility (Tera Term, HyperTerminal on Windows; screen or Minicom on
Linux) should be capable of sending to and receiving from the device.

Baud rate 19200 Bd Parity none
Data bits 8 Stop bits 1
Flow control none

Tab. 4.1: IQRF TR-72D-WMB UART parameters [30].

Controlling the device can be logically devided into two parts. These are service
commands (writing or reading parameters) and message transmissions (asking the
device to send a WM-Bus telegram).

4.6.1 Service commands

Using service commands is necessary for performing communication targetted to the
module’s microchip itself, i.e., switching operation modes, changing transmission

55

parameters (output power, frequency), altering communication attributes (such as
device’s Wireless M-Bus address). The desired outcome in this case are changes
to module configuration or reading from it. Several rules apply for this type of
communication:

• Any service message sent to the device has to be preceded with a specific
wakeup command (0x00) and a 2ms pause.

• Any service message sent to the device has to start with the character of “>”
(0x3E).

• Messages received from the device always start with “<” (0x3C).
• Every message on the link, regardless of its direction, has to be terminated

with carriage return character (0x0D).
• Commands for writing information use “:” (0x3A).
• Commands for reading information use “?” (0x3F).

This is the general format of service commands sent to the module:

> (0x00) (2 ms pause) [cc] [: or ?] [data] (0x0D)

where parts in paratheses are fixed and not to be altered, while parts in brackets
are expected to differ based on their purpose. Specifically, cc stands for command
code (which serves as target information identifier) and data represent the bytes to
write (if any), finished with carriage return.

Below is the format of device’s responses:

< [data] (0x0D)

with data being the answer or a specific return code, again finalized with the carriage
return character. The return codes are of three types:

• OK as a positive acknowledgement,
• ERR1 to signal a syntax error and
• ERR2 for an invalid input value.

Listed below is an example of reading the device’s link address. The command
code of 0x01 is used, as it corresponds with the information being asked for. The
rest of the codes can be found in the official documentation [30].

>00 (wake up)
>01? (what is your link address ?)
<0 EE0403020102010 (here is my link address)

56

and an example of changing it:

>00 (wake up)
>01: B1257302F0849A30 (here is your new link address)
<OK (understood)

4.6.2 Message transmission

This type of communication is applied, when attempting to send a Wireless M-Bus
message. Similarly to service commands, the destination of this is the module, but
the action to achieve is transmitting a message wirelessly. This is done in a single
– longer – command, which contains the instructions, data to be sent, their length
and checksum. The message format is slightly different and relies on a different
scheme, as outlined below. Also, no carriage return or direction pointing characters
(< or >) are used.

(0 xFF) [length] (0 x80) [data] [checksum]

with these rules:
• The byte of 0xFF is mandatory and has to prepend the rest of the instruction.
• Length is the combined length of the message (in bytes) after the length byte,

including the checksum.
• The byte of 0x80 is mandatory as well, it is the command code for sending

a message.
• Data contain these WM-Bus components: C-Field, CI-Field, signature and

payload itself the way they are meant for sending.
• Checksum is a simple one-byte exclusive OR (bitwise operation) of all bytes

following the 0xFF one and prioring the checksum.

Importantly, checksum in this message is not the standard CRC-Field which
will be sent in the WM-Bus message. It only serves as a verification there were no
errors on the UART link. Similarly, length does not correspond with the L-Field,
but delivers the information about the instruction length to the module. The actual
WM-Bus fields are calculated by the device and placed to respective positions before
transmission.

The attributes of a standard WM-Bus message, which are missing in the scheme
(status byte, M-Field, all components of A-Field and many others), are properties of
the module itself and as such, they have to be set to the device via service commands

57

before requesting the transimission with a transmission command (this is covered
in Section 4.7).

The module sends standard responses for these instructions, too. If there was an
ansnwer expected to the message and this answer was recieved, it would be returned
in the response. Other options are positive and negative acknowledgements, the
latter including one of predefined error codes. General format of response messages
is as follows:

[length] [result code] [data] [checksum]

where length is the sum of the lengths of following fields (in bytes), result code
delivers the result of the preceding transmission, data are the response received
from other, targeted Wireless M-Bus device (if any, in case of no response, this field
is omitted) and an exclusive OR byte, calculated from all preceding fields.

Example of an instruction which requires the module to send a message and its
response is given:

FF 08 80 44 7A 00 00 03 AB 1E (instruction)
02 00 02 (response)

This command asks for sending a WM-Bus message with C-field code of 0x44, CI-
field code of 0x7A, signature of 0x(00 00) and payload 0x(03 AB). Upon receiving
this, the module checks the data for invalid values and errors, constructs the full
telegram using values stored inside its memory, calculates the length and CRC,
performs encryption, if applicable, wraps preamble and postamble around and sends
it using selected WM-Bus mode.

Given by the use of unidirectional communication mode, no answer from another
device was expected. Thus, only a response code was provided in the reaction, which
does not conway much information: 0x02 for length, 0x00 for response (meaning
the message was successfully transmitted) and 0x02 as the checksum.

4.7 Module specific parameters
Of the numerous parameters there are to Wireless M-Bus telegrams, only a few are
subjects of message sending instructions as they were explained in Section 4.6.2.
These can differ message to message and are therefore easy and quick to change.
Specifically for the used IQRF module, this is the list of per-message parameters:

• C-Field,

58

• CI-Field,
• Data field, including Data header, Data record header and payload.

When asking the module to send a message, whose parameters other than these are
unchaged to the last one or match current device configuration, no other action is
needed. Most of the rest are not treated the same way. They are module-specific
and are used in every message the device sends without being explicitly specified in
the instruction. These parameters are:

• M-Field,
• A-Field (version, device type, serial number),
• Wireless M-Bus mode,
• information stored in Data header:

– access number,
– status code,
– signature,

• information related to encryption:
– encryption type to use,
– encryption key,
– encryption initialization vector.

Anytime a telegram is supposed to be sent and these parameters configured in the
module do not match those in the telegram, the ones saved in the device have
to be overwritten so that the message, when sent, corresponds with the request.
In the generator, the class of IqrfDeviceModule is responsible for handling these
adjustments.

Lastly, L-Fields and CRC-Fields are nor module-specific or included in every
instruction. The module calculates them itself, before sending every message.

4.8 Performance
Albeit high performance is not a concern nor a goal for a generator of this sort,
a few evaluations have been conducted in order to determine the capabilities of the
application in this part of the image. Various operations were performed on the
device 10 times in a row and a final average for each was recorded2. Following
average durations, presented in Table 4.2, were observed:

2Configuration used: PC running Debian 9, generator running on Oracle JRE 8, USB 3.0 port,
UART bridge Silabs CP2102, debugger IQRF CK-USB-04A, module IQRF TR-72D-WMB.

59

Operation
Average response

duration [ms]
Initial connecting 95
Setting a single parameter 12
Writing a single parameter 8
Sending a telegram (payload 2 B) 62
Sending a telegram (payload 20 B) 71
Setting 5 parameters and

118
sending a telegram (payload 10 B)

Tab. 4.2: Average response time of IQRF module for various actions.

As per the table, sending an average sized telegram and having to change 5
parameters of the device beforehand takes about 118 milliseconds. In a hypothet-
ical yet not unrealistic scenario, where test telegrams are this long on average and
where there is a need to alter approximately 5 device-specific attributes between
every telegram, this generator-hardware combination would be able to send about
8.47 telegrams every second, or 30 508 telegrams per hour. Given the target usage,
this is a satisfactory result, since real sensors typically only send data every few
minutes at most.

60

5 RESULTS
Besides the broad description of the Wireless M-Bus protocol, provided in the Chap-
ter 2, the outcome of this thesis is the Java application, developed for generating
WM-Bus data in the form and structure as demanded by the user. Description of
its internals was given in Chapter 3, hardware it works with in Chapter 4. A short
user-side explanation follows here.

5.1 Graphical user interface
The first window presented to the user upon starting the program in the graphical
mode is portrayed in the figure 5.1 below. For this reason, it will be referred to as
Layer 1 window.

5.1.1 Layer 1 window

This window shows a table of all frames that the user has defined and for each of them
the interval that the frame is set to be sent in, a toggle for turning the fluctuation, an
on/off switch to control whether the respective frame is scheduled to be periodically
sent at the given interval or not, and a status indicator (showing whether the last
frame transmission succeeded or failed). These controls are provided on a per-frame
basis. For the purpose of this table, frames are presented by their link-layer content

Fig. 5.1: Generator’s GUI: Layer 1 window, list of defined telegrams.

61

only, thus excluding preamble, postamble and any CRC fields between, and all is
displayed as hexadecimal.

On the right side, global options, regarding the transmission of all frames, are
placed. This is the option to switch between sending through a serial port to a sup-
ported hardware WM-Bus transceiver, or through a UDP socket (e.g., for testing).
Based on this selection, more controls are presented, either to specify the serial port
name or IP and UDP parameters (source and destination IP addresses and ports).

New frame definition can be added, an existing one can be edited or removed.
If any type of transmission has been chosen and locked, frames in the table can be
scheduled for periodic sending.

5.1.2 Layer 2 window

Upon clicking the Add frame definition button in Layer 1 window, a Layer 2 window
is shown, as presented in the Figure 5.2 below.

Fig. 5.2: Generator’s GUI: Layer 2 window, frame details.

62

The purpose of this window is to allow for definition of a new frame. All the
parameters that are specific to one frame are listed here, including the manufacturer
ID, C-field code, CI-field code and others alike. A list of Data Records, defined
within this Frame, is presented as well. Similarly to the table in the previous window,
Data Records can be added, changed and removed. Before submitting the frame,
the user can generate the full byte sequence with no parts omitted, for revision.

5.1.3 Layer 3 window

Lastly, when the Add DR button in the Layer 2 window is clicked, a Layer 3 window
is shown. An example of that is shown in Figure 5.3. Here, a new Data Record for
the frame being specified in the underlying Layer 2 window can be defined. This
includes building a DIF, a VIF, up to ten DIFEs and VIFEs and the payload.

Fig. 5.3: Generator’s GUI: Layer 3 window, payload details.

63

This structure follows the WM-Bus hierarchy, where one frame holds one or
more Data Records and each of the Data Records holds one DIF, one VIF and
optionally multiple VIFEs and DIFEs, while frame itself is the only stand-alone
unit. In addition, all the windows behave as modal, which means that before a lower-
layer window is closed, the underlying higher-layer window cannot be acted with –
for instance, a Frame definition window cannot be closed to proceed to the initial
window or have its values modified until its Data Record specification windows are
closed.

5.1.4 Management dialog

In the case that an IQRF module is attached to the machine and recognized by the
application, the option to view a simple management window becomes available.
Its appearance is portrayed in Figure 5.4. It allows for basic configuration changes
in the hardware – altering the transmission power and synchronicity, restarting the
device (which terminates all scheduled periodic operations and closes the connection)
and views the reported battery status along with hardware and firmware version
numbers.

Fig. 5.4: Generator’s GUI: Management dialog.

5.1.5 Graphical interface use-case illustration

An example of the application’s use case is as following: the user starts the program.
Layer 1 window is shown with no frames in the table. The user adds a frame,
customizes its properties in the Layer 2 window, adds a Data Record with two DIFEs
and two VIFEs and another Data Record without any extensions within the Layer 3
window, closes the two upper windows and is back to the Layer 1 window with the
frame, which they have just specified, in the table. Before sending, it is neccessary to

64

connect to an output channel. Thus, an IQRF WM-Bus transceiver is attached via
USB, the user proceeds through the connection process and the generator recognizes
the hardware. The user now changes the interval to "30 seconds", opts for data
fluctuation and ticks the checkbox in the column for enabling it. The frame is sent
via a serial port to the transceiver, processed and wirelessly transmitted. Status tick
now appears at the end of the row, signalling successful transmission. From now on,
the frame will be sent out to the Wireless M-Bus network every 30 seconds 1 and
more frames can be added at any time.

5.2 Command line interface
A command-line interface is included as well. It supports two modes: interactive
mode targets human users, machine mode is for scripts or more advanced users.
Operation of the interactive mode is portrayed in Figure 5.5.

Fig. 5.5: Generator’s CLI: interactive mode (a section of output, logging omitted).

It operates by asking the user a series of questions about necessary variables, fol-
lowing a similar path the user would take in the GUI. All options that the generator
offers are included, as well as the definition of multiple DIFEs and VIFEs. Since
the question loop does not proceed until a valid answer is provided, this is a simple
way of using the CLI.

1Changing the interval of an enabled Frame will cause it to be sent immediately again, then
further obey the new interval.

65

The machine mode works as standard single switch-based command. An ex-
ample of this is provided in Figure 5.6. This mode provides only limited options of
frame specification. Multiple Data Records per Frame are not supported, as it is
usually very difficult to input variable numbers of arguments, in this case in many
instances, to a terminal. For the same reason, no DIFEs or VIFEs are allowed.
To address that, a help screen is deployed, accessible either by using --help or -h
switches, or by running the application in this mode with no arguments. Part of
the help output is shown in Figure 5.7. Those arguments, where a strict number of
options is present (Wireless M-Bus mode, CI-field code . . .) are specified via the
order number of the option. Complete list of these values with their numbering is
printed when --values switch is used.

Fig. 5.6: Generator’s CLI: machine mode (a section of output, logging partially
omitted).

5.3 Running the generator
The application can be started in graphical mode simply by double-clicking the
provided jar file in a graphics-enabled environment. JRE 1.8 or newer has to be
installed on the target machine, including the JavaFX 8 subpackage (this usually
comes together with the main JRE). If, however, command-line mode is desired, it
has to be started from the terminal itself. To use the CLI, execute the following
command:

java -jar <path to jar file > <operation mode >

and substitute with the Java .jar file location and the desired operation mode. These
modes and respective option names are:

• --gui, starts the application with GUI, if that is achievable,

66

• --interactive, runs the program with human-user interactive CLI (described
in Section 3.1.10),

• --machine, starts the generator with machine CLI (detailed in Section 3.1.10),
• --help, prints this list of options.

When no other option is specified, the default --gui switch is applied.

Fig. 5.7: Generator’s CLI: help screen in machine mode (output reduced).

When running the generator in the machine CLI mode, this mode’s specific
switches and parameters have to be appended to the existing command, instead of
replacing it. Furthermore, log output is visible only when the application was started
from a command line (nevertheless, it will be visible when started from a command
line in GUI mode). An example of running the generator from a terminal is given
in Figure 5.8 below.

Fig. 5.8: Generator’s CLI: printing help.

67

6 CONCLUSION
Presented thesis pursues two main goals, both of them closely related to the commu-
nication protocol of Wireless M-Bus: to provide a broad description of the protocol,
its network model, information field structure and usage areas, and to implement
a multiplatform data generator utilizing the protocol to emulate the traffic from
multiple sensor units. There are also two logic parts to this thesis – theoretical and
practical halves.

In the theoretical part, which comprises of introductory explanations in Chap-
ter 1 – Theoretical Introduction and Chapter 2 – Wireless M-Bus, the targeted pro-
tocol of Wireless M-Bus is researched and described in detail, focusing on data-link
and application layers. The motivation to deploy Wireless M-Bus, its communi-
cation modes, data structure, information fields, their extensions and options for
encryption are the most important topics here. A vision of the protocol’s usage in
the years to come and an analysis of a captured real-world protocol message are
given as well.

The following practical part starts with describing the application (Chapter
3 – Generator), which was created as the primary goal of the thesis. It is a Java
– hence multiplatform – program, which can generate Wireless M-Bus data from
both graphical and command-line interfaces. It allows for precise protocol data unit
specification and is able to send these message definitions in the form of telegrams
to the Wireless M-Bus network using a supported hardware transceiver. Internal
description of the software part is provided, including explanations on crucial classes,
functionality, auxiliary elements and comparison with similar existing software.

Following, the hardware used along with the software part is depicted in Chap-
ter 4 – Hardware. Two device variations supported by the application are a stan-
dalone Wireless M-Bus module of IQRF TR-72D-WMB and more complex solution
using the UniPi Neuron S103 board. Both options are described, including available
choices for connection and run scenarios. Control and management of the hardware
part is also explained very closely. Albeit the issue of performance is not crucial for
this solution, it has been dealt with as well.

Lastly, Chapter 5 – Results details the created software from user’s perspec-
tive, showing the interaction interfaces and possibilities. Methods of running the
application together with execution examples are provided in this chapter.

Given description of the Wireless M-Bus communication protocol, based on per-
formed research, laid the basis for the following parts. The software-hardware combi-
nation, created as a ready-to-use generator solution in the practical part of the thesis
represents a powerful option in the area of testing Wireless M-Bus networks. Thus,
the goals of this thesis, as presented in the assignment specification, have been met.

68

BIBLIOGRAPHY
[1] CRAHMALIUC, Radu. Freight Monitoring, Industry 4.0 and

Smart Grids: Main Drivers for EMEA-s IoT Spending until
2020. In: CloudMania [online]. 16 January 2017 [cit. 2018-05-
09]. Available from: https://cloudmania2013.com/2017/01/16/
freight-monitoring-industry-4-0-and-smart-grids-main-drivers
-for-emeas-iot-spending-until-2020/

[2] ALMADA-LOBO, Francisco. Six benefits of Industrie 4.0
for businesses. In: Control Engineering [online]. [cit. 2018-
05-09]. Available from: https://www.controleng.com/
single-article/six-benefits-of-industrie-40-for-businesses/
5c57cc3925c0ff323553da64108d5c0c

[3] BOUCHERAT, Xavier. Industry 4.0 and the rise of smart manufacturing [on-
line]. 2016 [cit. 2017-10-17]. Available from: https://www.automotiveworld.
com/analysis/industry-4-0-rise-smart-manufacturing/

[4] Industry 4.0: The Future of Productivity and Growth in Manufacturing
Industries [online]. In: GERBERT, Philipp, Markus LORENZ a Michael RÜß-
MANN. 2015 [cit. 2017-10-15]. Available from: https://www.bcg.com/en-cz/
publications/2015/engineered_products_project_business_industry_
4_future_productivity_growth_manufacturing_industries.aspx

[5] VAN DER MEULEN, Rob. Gartner Says 8.4 Billion Connected "Things" Will
Be in Use in 2017, Up 31 Percent From 2016 [online]. 2017 [cit. 2017-10-15].
Available from: https://www.gartner.com/newsroom/id/3598917

[6] BOSWARTHICK, David. M2M communications: a systems approach. 1. Chich-
ester, West Sussex, U.K.: Wiley, 2012, p. 19. ISBN 978-1-119-99475-6.

[7] VOJÁČEK, Antonín. M-BUS (Meter-Bus): základní popis komunikačního pro-
tokolu [online]. 2014 [cit. 2017-10-17]. Available from: http://automatizace.
hw.cz/mbus-meterbus-zakladni-popis-komunikacniho-modelu

[8] RITTER, Terry. The Great CRC Mystery. In: Ciphers by Ritter [online].
[cit. 2018-05-09]. Available from: http://www.ciphersbyritter.com/ARTS/
CRCMYST.HTM

[9] DONEV, Dimo. Wireless M-Bus based eXtremely Low Power protocol for wire-
less communication with water meters. Aalborg, 2012. Aalborg Universitet.
Thesis supervisor: Neeli Prasad.

69

https://cloudmania2013.com/2017/01/16/freight-monitoring-industry-4-0-and-smart-grids-main-drivers
https://cloudmania2013.com/2017/01/16/freight-monitoring-industry-4-0-and-smart-grids-main-drivers
-for-emeas-iot-spending-until-2020/
https://www.controleng.com/single-article/six-benefits-of-industrie-40-for-businesses/5c57cc3925c0ff323553da64108d5c0c
https://www.controleng.com/single-article/six-benefits-of-industrie-40-for-businesses/5c57cc3925c0ff323553da64108d5c0c
https://www.controleng.com/single-article/six-benefits-of-industrie-40-for-businesses/5c57cc3925c0ff323553da64108d5c0c
https://www.automotiveworld.com/analysis/industry-4-0-rise-smart-manufacturing/
https://www.automotiveworld.com/analysis/industry-4-0-rise-smart-manufacturing/
https://www.bcg.com/en-cz/publications/2015/engineered_products_project_business_industry_4_future_productivity_growth_manufacturing_industries.aspx
https://www.bcg.com/en-cz/publications/2015/engineered_products_project_business_industry_4_future_productivity_growth_manufacturing_industries.aspx
https://www.bcg.com/en-cz/publications/2015/engineered_products_project_business_industry_4_future_productivity_growth_manufacturing_industries.aspx
https://www.gartner.com/newsroom/id/3598917
http://automatizace.hw.cz/mbus-meterbus-zakladni-popis-komunikacniho-modelu
http://automatizace.hw.cz/mbus-meterbus-zakladni-popis-komunikacniho-modelu
http://www.ciphersbyritter.com/ARTS/CRCMYST.HTM
http://www.ciphersbyritter.com/ARTS/CRCMYST.HTM

[10] NRZ Coding. In: Vector [online]. [cit. 2018-05-09]. Available from:
https://elearning.vector.com/index.php?&wbt_ls_seite_id=522832&
root=378422&seite=vl_can_introduction_en

[11] The internet of things: key applications and protocols. HERSENT, Olivier,
David BOSWARTHICK a Omar ELLOUMI. 2012. ISBN 978-1119994350.

[12] EN 13757. Communication systems for meters. 2014.

[13] Wireless M-Bus based eXtremely Low Power protocol for wireless commu-
nication with water meters [online]. In: DONEV, Dimo. 2012, s. 13 [cit.
2017-10-17]. Available from: http://projekter.aau.dk/projekter/files/
63476956/WaterMeterWSN.pdf

[14] EN 13757-4. Communication systems for meters and remote reading of meters:
Part 4: Wireless meter readout (Radio meter reading for operation in SRD
bands). 2013.

[15] KALOUDIOTIS, Evangelos. A 169 MHz a 868 Mhz Wireless M-Bus Based
Water and Electricity Metering System. Uppsala, 2015. Uppsala Universitet.

[16] BRUNSCHWILER, Cyrill. Wireless M-Bus Security Whitepaper Black Hat
USA 2013 June 30th, 2013 [online]. In: . 2013 [cit. 2017-10-24].

[17] Silicon Laboratories Inc. Wireless M-Bus software implementation [online]. [cit.
2017-10-17]. Available from: https://www.silabs.com/documents/public/
application-notes/AN451.pdf

[18] Cyclic redundancy check. In: Wikipedia: the free encyclopedia [online]. San
Francisco (CA): Wikimedia Foundation, 2001- [cit. 2017-10-30]. Available from:
https://en.wikipedia.org/wiki/Cyclic_redundancy_check

[19] Flag manufacturers ID. DLMS User Association [online]. [cit. 2017-10-21].
Available from: http://dlms.com/organization/flagmanufacturesids/

[20] EN 13757-3. Communication systems for meters and remote reading of meters:
Part 3: Dedicated application layer. 2013.

[21] ZIEGLER, Horst. Dedicated Application Layer (M-Bus) [online]. In: . [cit. 2017-
10-28]. Available from: http://www.m-bus.com/files/w4b21021.pdf

[22] ZEMAN, Kryštof Implementace komunikačního protokolu Wireless M-BUS v
simulačním prostředí NS-3 : diploma thesis. Brno: Brno University of Tech-
nology, Faculty of Electrical Engineering and Communications, Departmen of
Telecommunications, 2015. 68 p. Supervised by Ing. Pavel Mašek

70

https://elearning.vector.com/index.php?&wbt_ls_seite_id=522832&root=378422&seite=vl_can_introduction_en
https://elearning.vector.com/index.php?&wbt_ls_seite_id=522832&root=378422&seite=vl_can_introduction_en
http://projekter.aau.dk/projekter/files/63476956/WaterMeterWSN.pdf
http://projekter.aau.dk/projekter/files/63476956/WaterMeterWSN.pdf
https://www.silabs.com/documents/public/application-notes/AN451.pdf
https://www.silabs.com/documents/public/application-notes/AN451.pdf
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://dlms.com/organization/flagmanufacturesids/
http://www.m-bus.com/files/w4b21021.pdf

[23] LASSE LUETH, Knud. Why the Internet of Things is called Internet of Things:
Definition, history, disambiguation [online]. 2014 [cit. 2017-10-29]. Available
from: https://iot-analytics.com/internet-of-things-definition/

[24] EVJEN, Peder. Wireless M-Bus breaking new ground in me-
tering and industrial applications [online]. [cit. 2017-12-
10]. Available from: https://www.metering.com/features/
wireless-m-bus-breaking-new-ground-metering-industrial
-applications/

[25] Commons CLI [online]. [cit. 2017-11-19]. Available from: https://commons.
apache.org/proper/commons-cli/

[26] Apache Commons [online]. [cit. 2017-11-19]. Available from: https://commons.
apache.org/

[27] Official jSSC (Java Simple Serial Connector) repository. GitHub [on-
line]. [cit. 2018-03-18]. Available from: https://github.com/scream3r/
java-simple-serial-connector

[28] rxtx - a Java cross platform wrapper library for the serial port. GitHub [online].
[cit. 2018-03-18]. Available from: https://github.com/rxtx/rxtx

[29] Oracle - Javadoc tool. www.oracle.com [online]. [cit. 2018-04-08]. Avail-
able from: http://www.oracle.com/technetwork/java/javase/tech/
index-jsp-135444.html

[30] IQRF TR-72D-WMB series, Transceiver for Wireless M-Bus [online].
[cit. 2018-03-03]. Available from: https://www.iqrf.org/products/
transceivers/archive/tr-72d-wmb

[31] IQRF. In: Wikipedia: the free encyclopedia [online]. San Francisco (CA):
Wikimedia Foundation, 2001- [cit. 2018-03-03]. Available from: https://en.
wikipedia.org/wiki/IQRF

[32] IQRF IQRF programmer and debugger [online]. [cit. 2018-03-03]. Available
from: https://www.iqrf.org/products/ck-usb-04a

[33] Silicon Labs CP2102 Classic USB Bridge [online]. [cit. 2018-03-03]. Avail-
able from: https://www.silabs.com/products/interface/usb-bridges/
classic-usb-bridges/device.cp2102

[34] Amber Wireless Wireless M-Bus USB Adapter 868 MHz [online]. [cit. 2018-03-
03]. Available from: https://www.amber-wireless.com/en/amb8465-m.html

71

https://iot-analytics.com/internet-of-things-definition/
https://www.metering.com/features/wireless-m-bus-breaking-new-ground-metering-industrial
https://www.metering.com/features/wireless-m-bus-breaking-new-ground-metering-industrial
-applications/
https://commons.apache.org/proper/commons-cli/
https://commons.apache.org/proper/commons-cli/
https://commons.apache.org/
https://commons.apache.org/
https://github.com/scream3r/java-simple-serial-connector
https://github.com/scream3r/java-simple-serial-connector
https://github.com/rxtx/rxtx
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-135444.html
https://www.iqrf.org/products/transceivers/archive/tr-72d-wmb
https://www.iqrf.org/products/transceivers/archive/tr-72d-wmb
https://en.wikipedia.org/wiki/IQRF
https://en.wikipedia.org/wiki/IQRF
https://www.iqrf.org/products/ck-usb-04a
https://www.silabs.com/products/interface/usb-bridges/classic-usb-bridges/device.cp2102
https://www.silabs.com/products/interface/usb-bridges/classic-usb-bridges/device.cp2102
https://www.amber-wireless.com/en/amb8465-m.html

[35] UniPi Technology UniPi Neuron S103 [online]. [cit. 2018-03-03]. Available from:
https://www.unipi.technology/unipi-neuron-s103-p93

72

https://www.unipi.technology/unipi-neuron-s103-p93

LIST OF ACRONYMS
ACC Amber Config Center
ACM Amber Commander
AES Advanced Encryption Standard
ASCII American Standard Code for Information Interchange
BCD Binary-coded Decimal
CBC Cipher Block Chaining
CLI Command Line Interface
COSEM Companion Specification for Energy Metering
CRC Cyclic Redundancy Check
DAL Dedicated Application Layer
DES Data Encryption Standard
DH Data Header
DIB Data Information Block
DIF Data Information Field
DIFE Data Information Field Extension
DLMS Device Language Message Specification
DRH Data Record Header
EEPROM Electrically Erasable Programmable Read-Only Memory
EN European Norm
FK Foreign key
GFSK Gaussian Frequency Shift Keying
GUI Graphical User Interface
HDLC High-level Data-Link Control
IIoT Industrial Internet of Things
IoT Internet of Things
ISM Industrial, Scientific and Medical
ISO International Organization for Standardization
IV Initialization Vector
JDBC Java Database Connectivity
JDK Java Development Kit
JRE Java Runtime Environment
jSSC Java Simple Serial Connector
JVM Java Virtual Machine
LSB Least-significant Bit
M2M Machine-to-machine
MSB Most-significant Bit
MUC Multi Utility Controller

73

M-Bus Meter Bus
NB-IoT Narrow Band Internet of Things
NRZ Non-Return to Zero
OSI Open Systems Interconnection
RDBMS Relational Database Management System
REPL Read-evaluate-print loop
RSSI Received Signal Strength Indicator
RTTI Run Time Type Identification
SQL Structured Query Language
TCP/IP Transmission Control Protocol / Internet Protocol
UART Universal Asynchronous Receiver Transmitter
UML Unified Modeling Language
VIB Value Information Block
VIF Value Information Field
VIFE Value Information Field Extension
WM-Bus Wireless Meter Bus
XML Extensible Markup Language

74

LIST OF APPENDICES

A Class diagrams 76

B Contents of the attached disc 78

75

A CLASS DIAGRAMS

Fig. A.1: UML-like diagram for the created application’s internals.

76

Fi
g.

A
.2

:
D

et
ai

le
d

C
la

ss
di

ag
ra

m
of

Fi
el

d
an

d
its

de
riv

at
iv

es
w

ith
al

lfi
el

ds
an

d
m

et
ho

ds
.

77

B CONTENTS OF THE ATTACHED DISC

text/..sources for thesis PDF
grafy/..chart sources
loga/ ... faculty logos
obrazky/...used figures
pdf/...prepared intro pages
text/...LATEXsources

thesis/...generator project
lib/ .. external libraries

commons-cli-1.4.jar
jssc.jar

out/ ... project artifacts
thesis.jar...............................runnable Java archive

src/..generator sources
core/...core functionality
enumerations/ enumerated types
fields/.........................WM-Bus fields implementations
icon.png
senders/......................... telegram sending functionality
ui/..sources for GUI, CLI

test/..sources for JUnit tests
logs/.. log files

fluctuated_series_received.log........data described in Section 3.4
fluctuated_series_sent.log............data described in Section 3.4

javadoc/ Javadoc project documentation
index.html..................starting page for the documentation pages

thesis.pdf...the thesis in PDF
classdiagram.png full project class diagram (generated)

78

	Introduction
	Theoretical introduction
	Industry 4.0
	Internet of Things
	M2M communication
	M-Bus
	Cyclic redundancy check
	3 out of 6 encoding
	Manchester and NRZ
	Binary-coded Decimal

	Wireless M-Bus
	Motivation
	Architecture
	Physical layer – working modes
	Data-link layer
	Information fields
	Frame formats
	Example

	Application layer
	Data header
	Data record header
	Data

	Structure summary
	Encryption
	Real data structure example
	The role of Wireless M-Bus in Industry 4.0

	Generator
	Application
	Frame base class
	Field interface
	DataField class
	Sender base class
	PeriodicTelegramBase base class
	IqrfDeviceModel class
	ByteUtils class
	Enumerations
	Graphical user interface
	Command-line user interfaces

	External libraries
	Commons CLI
	jSSC

	Logging
	Data fluctuation
	Documentation
	Unit tests
	Competition comparison

	Hardware
	IQRF WM-Bus module
	IQRF debugger
	USB to UART bridge
	Limitations

	Amber wireless module
	UniPi control unit
	Module connection via the debugger
	Module connection via UniPi
	Controlling the module
	Service commands
	Message transmission

	Module specific parameters
	Performance

	Results
	Graphical user interface
	Layer 1 window
	Layer 2 window
	Layer 3 window
	Management dialog
	Graphical interface use-case illustration

	Command line interface
	Running the generator

	Conclusion
	Bibliography
	List of acronyms
	List of appendices
	Class diagrams
	Contents of the attached disc

