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Abstract
Thesis focuses on wear leveling layer over flash memory as provided by the Espressif IoT
Development Framework with the goal of creating a tool for monitoring and managing
flash memory wear caused by erase operations. For the purposes of such tool an extended
version of wear leveling is implemented, addressing shortcomings of the Espressif’s version.
The enhancements include per sector erase count tracking and address randomization us-
ing a format-preserving cipher based on an unbalanced Feistel network for improved wear
evenness. Said address randomization is tested by simulating full memory lifetime in se-
lected erase stressing scenarios, with results showing up to a few percent improvement in
wear uniformity over original wear leveling. Finally, a monitoring tool, consisting of an
embedded back-end and a PC side graphical front-end, is created on top of the extended
version of wear leveling.

Abstrakt
Práce se zabývá mechanismem wear leveling nad pamětí typu flash, zejména implemen-
tací poskytovanou společností Espressif v rámci IoT Development Framework, a to s cílem
vytvořit nástroj pro sledování opotřebení flash paměti způsobené operacemi mazání. Pro
účely tohoto nástroje je vytvořena vylepšená verze mechanismu, řešící některé nedostatky
a rozšiřující původní wear leveling poskytovaný společností Espressif. Vylepšení zahrnuje
možnost sledovat opotřebení paměti s rozlišením jednotlivých sektorů a zavádí pseudonáhod-
nou složku do mapovacího algoritmu za pomocí šifry zachovávající formát založené na
nevyvážené Feistelově síti, vedoucí k rovnoměrnějšímu rozložení operací mazání po paměti.
Toto pseudonáhodné mapování je následně otestováno pomocí simulace životnosti paměti
ve vybraných zátěžových scénářích, s výsledky vykazujícími až pár procentní vylepšení
v rovnoměrnosti opotřebení oproti původnímu algoritmu. Závěrem je vytvořen nástroj pro
sledování opotřebení flash paměti, sestávající z vestavěné back-end části a PC front-end
GUI vizualizační části.
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Rozšířený abstrakt
Práce se zabývá pojmem wear leveling jakožto mechanismem využívaným při přístupu
k paměti typu flash, s cílem rovnoměrného rozložení opotřebení paměťových buněk přes celé
médium. Tohoto mechanismu je zapotřebí, jelikož každá buňka flash paměti má životnost
udávanou omezeným počtem cyklů přepsání. Při dosažení tohoto maxima, či jen přiblížení
se k němu, se snižuje spolehlivost buňky pro bezchybný zápis a čtení, až k možnému selhání
buňky.

Wear leveling je povětšinou zajišťován řadičem paměti a tvoří transparentní vrstvu mezi
logickými adresami při přístupu k paměti a konkrétními fyzickými adresami na médiu;
typicky u SSD či flash USB disků, kde použitá paměť typu NAND flash vyžaduje průběžné
dynamické změny mapování i kvůli vadným sektorům, které mohou vznikat během běžného
využívání paměti tohoto typu.

Oproti tomu je ve vestavěných zařízeních hojně využívána flash paměť typu NOR, která
běžně defacto netrpí vznikem vadných sektorů, v tomto ohledu je tedy spolehlivější. Za to,
kde běžná kapacita NAND flash je v řádu desítek, stovek či tisíců GB, bývá NOR flash
kapacitně o tři až čtyři řády menší. A to jednak z důvodu ceny na bit, která je u NOR
flash výrazně vyšší, tak také jelikož vestavěné systémy mnohokrát nevyžadují tak velkých
kapacit a spolehlivost NOR flash paměti je převažujícím faktorem. Dalším benefitem NOR
flash paměti může být její schopnost přímo spustitelného kódu (eXecute In Place – XIP)
bez typického mezikroku načtení instrukcí do operační paměti před jejich vykonáním.

Specifická pozornost je věnována vybrané cílové platformě ESP32. Moduly s čipy této
řady obsahují integrovanou flash paměť typu SPI NOR, kde typická životnost paměťové
buňky činí zhruba 100 000 přepsání. Sériové rozhraní SPI umožňuje těsnou integraci
paměti v rámci modulů či systému na čipu (System on a Chip – SoC). Zároveň firma
Espressif poskytuje modulární vývojový framework, ESP-IDF, jenž obsahuje implementaci
wear levelingu přímo pro danou platformu.

Tato implementace realizuje tzv. „statický” wear leveling na základě algebraického
mapování logických adres sektorů na fyzické sektory paměti. Statický je nazýván, jelikož se
i málo přepisovaná, statická, data přesunují při změnách mapování, a tedy veškeré sektory
mají časem vyrovnanou šanci na frekventované přepisování. Mapování logických sektorů
na fyzické pomocí algebraické funkce je výhodné pro vestavěná zařízení s omezenou pamětí,
poněvadž není nutné uchovávat častokrát rozsáhlé dynamické mapovací tabulky všech sek-
torů, navíc vyhledání a aktualizace informací v takové tabulce bývá časově nákladnější než
pouhý matematický výpočet adresy.

Ve zmiňované implementaci wear levelingu v ESP-IDF byly nalezeny kritické nedostatky
znemožňující dlouhodobé sledování opotřebení paměti. Z tohoto důvodu byla vytvořena
vlastní rozšiřující verze, umožňující vést a uchovávat dlouhodobé záznamy o přepisech sek-
torů a nadto též vylepšující vlastnosti mapovacího algoritmu pro dosažení lepšího rozložení
přepisů po paměti oproti algoritmu původnímu.

Implementovaná rozšiřující verze zajišťuje, byť s určitými odchylkami způsobenými
návrhem vyvažujícím přesnost monitoringu vůči využití zdrojů nebo případnými výpadky
napájení zařízení, vedení záznamů o počtech přepisů jednotlivých sektorů v dané části
paměti, která wear leveling využívá. Tyto záznamy poskytují informaci, zda se některá
oblast paměti, s rozlišením na jednotlivé sektorů, neblíží v počtech přepisů její živostnosti,
v kterémžto případě je nutno naplánovat výměnu ať již samotné paměti či přímo celého
vestavného zařízení, pokud je paměť integrována. Zde je výchozím předpokladem nasazení
aplikace s rozšířeným wear levelingem pro novou, neopotřebovanou paměť. V opačném pří-



padě odhad zbývající životnosti paměti musí být proveden externě a počty přepisů uchová-
vané rozšířenou verzí interpretovány v kontextu předchozího opotřebení paměti.

Dále také zmiňované vylepšení mapovacího algoritmu spočívá v přidání mezivrstvy,
která provádí aplikaci šifry zachovávající formát využívající nevyváženou Feistelovu síť na
adresu sektoru při každém přístupu do paměti. Takováto šifra poskytuje pseudonáhodné
mapování 1:1 a dosahuje lepšího rozložení přepisů po paměti zejména v tom případě, kdy
jsou často přepisovány pospolité bloky sektorů, které se nyní díky šifře budou mapovat po
jednotlivých sektorech na rozdílná místa v paměti.

Srovnání původního mapovacího algoritmu s výše popsaným proběhlo pomocí simulace
životnosti paměti zatížené opakovanými přepisy. Experimentálně bylo v určitých případech
zjištěno až několikaprocentní vylepšení oproti původnímu algoritmu znamenající dosažení
až 99% „normalizované živostnosti” (perfektní wear leveling – všechny sektory přepsány
stejněkrát – by měl 100%). Výpočetní režie přidané mezivrstvy s Feistelovou sítí je díky
využití bitových logických operací minimální.

Nad popisovanou rozšířenou verzí wear levelingu byl navržen a implementován nástroj,
rozdělen do dvou částí. První z nich – C++ back-end data-collector s názvem wlmon –
umožňuje rekonstrukci informací o wear leveling vrstvě společně se záznamy o přepisech
z flash paměti. Následně ze získaných informací sestaví hlášení a ve formátu JSON jej
předá, pomocí spojení sériovou linkou s PC, druhé části nástroje. Tato část – Python
front-end s názvem espwlmon – pomocí grafického uživatelského rozhraní zobrazí relevantní
vyčtené informace a interní struktury a vizualizuje počty přepisů jednotlivých sektorů.
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Chapter 1

Introduction

Since the 1990s, flash memory has become the go-to non-volatile rewritable random access
memory technology used in embedded systems. Power-independent long-term storage of
both code and data, together with reliability and the prospect of single package integration
with CPU, RAM, and peripherals fits the embedded world nicely. Moreover, the ability to
quickly re-program firmware even by Over-The-Air (OTA) updates and to split hardware
and software code design into parallel development branches makes flash memory flexible
and desirable even from the cost perspective. In addition to other factors, these are what
make flash memory dominant in the Micro Controller Unit (MCU) market [10].

But flash memory does have certain disadvantages and concerns that need to be ad-
dressed, mainly its durability in terms of repeated write and erase, which affect the lifespan
of its memory cells. More on this and flash memory in a more technical sense in Chapter 2.

To minimize the possibility that some memory cells wear out much more than others
(and impact the reliability of the memory as a whole), a mechanism for spreading or lev-
eling the wear is needed. Wear leveling is such a solution and has been approached and
implemented in many different ways and in various systems over the years. Chapter 3 gives
an overview of various approaches to wear leveling, including a look at Espressif’s imple-
mentation of wear leveling in their IoT Development Framework (ESP-IDF), which is the
main concern of this thesis.

Chapter 4 opens with an issue discovered in the ESP-IDF wear leveling implementation,
which makes it not possible to monitor memory wear long-term. To mitigate the issue and
make the to-be-created tool actually useful, an extended version of wear leveling is proposed
and implemented. Together with solving the main issue, an improved mapping algorithm is
implemented. It introduces address randomization using a format-preserving cipher based
on an unbalanced Feistel network, as proposed by relevant literature.

To evaluate the improved mapping algorithm, a simple memory erase simulator was also
implemented. Chapter 5 delves into experiments with simulated memory erase stress over
its lifetime in selected scenarios and configurations and analyzes the effects and improved
wear leveling efficiency of the introduced address randomization layer.

On top of the extended wear leveling, a tool for monitoring memory wear is designed
and implemented. Key features being reconstruction of wear leveling layer status and
visualization of memory wear, used for assessing the lifetime of flash memory in a given
application. More about the tool, including an overview of testing on an embedded device,
with examples of the tool functionality and output, is presented in Chapter 6.

Lastly, Chapter 7 offers a summary of the results achieved, as well as some closing
thoughts.
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Chapter 2

Need for wear leveling in flash
memory

Flash memory consists of a large number of individual memory cells – modified Metal Oxide
Semiconductor Field Effect Transistors (MOSFETs) with floating gate (FG) – each storing
a single or multiple bits. Thus, we differentiate SLC (Single Level Cell) and MLC (Multi
Level Cell) flash memories. Both operate on the same principle of trapping electric charge
to manipulate the threshold voltage (VT) of the transistor. This results in a measurable
current at a given reference voltage or a measurable voltage at a given reference current;
either way, the measurable value corresponds to the cell programmed state [12].

So, 2𝑛 distinct measurable values of a cell encode an 𝑛 bit information, up to penta-level
cells (PLCs) that store 5 bits. The higher the bit amount per cell, the narrower the gap
that separates neighboring levels, making the cell susceptible to read and write disturbances
and noise, which can corrupt stored information. Therefore, Error Correction Code (ECC)
technique employing parity bits is often used together with repeated read attempts to
recover data. In addition, reading the entire data value stored in an MLC cell requires
multiple reads at different VREAD voltages. The great bit density of MLC memories has
the disadvantage of introducing energy, time, and circuit overheads. SLC offers the highest
performance, but also at a high cost [12].

To program the cell, an electric charge has to be transferred to and from the floating gate.
This is generally achieved by Channel Hot Electron (CHE) injection and Fowler Nordheim
Tunneling (FNT) for programming and erasing, respectively [19]. An illustration of charge
transfer can be seen in Figure 2.1.

Control gate

Floating gate

FNT

Source
CHE

Drain

Figure 2.1: Schematic cross section of floating gate MOSFET with visualized Fowler Nord-
heim Tunneling and Channel Hot Electron charge transfer (based on [19])
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Now a practical issue of flash memory is the fact that rewrites cannot be done in place,
such as in typical magnetic media of Hard Disk Drives (HDDs). Clean flash memory will
have all bits set to logical one. The write operation can manipulate selected bits to logical
zero, thus forming the written data in flash. However, turning a 0-bit into a 1-bit cannot
be done individually. Instead, a whole block unit has to be erased, which sets all bits in
a given block back to one.

On top of that, the core problematic property of flash memory is its limited cell lifetime.
Repeated writing (programming) and erasing of a cell, also called program erase (PE)
cycling, degrades the current-voltage characteristics of the cell. The threshold voltage (VT)
is shifted, the leakage current increases, and the overall performance of the cell degrades.
Degradation is usually more or less uniform in effect, but with few anomalously strongly
affected cells that mainly suffer from data retention problems. These single cell failures are
what influences overall endurance, as they affect the reliability of the whole memory [3].

The reliability of a flash memory cell is generally comprised of its endurance (ability
to store data after program erase cycling) and retention (ability to store data long-term
without power) [17]. The focus of this thesis is on the program erase endurance aspect of
flash memory.

Then comes the question of how to prolong the lifetime of flash memory when simply
repeated rewriting (write–erase–write) wears out the cells. The main technique to deal with
this issue is called wear leveling and is usually managed by the memory controller (such as
in an SSD). The goal of wear leveling is to distribute erase operations in an even manner
across memory cells in order to minimize the potential for an earlier failure of some cells
compared to others. In other words, the objective is for all cells to deteriorate at the same
rate and reach their end of lifetime at the same time [14], [2]. More on wear leveling will
follow in Chapter 3.

2.1 NOR and NAND flash memory
There are two broad flash memory types, NOR and NAND. They differ in their on-die cell
array structure and, in effect, also in the way read/write/erase operations are performed
and at what scale. More focus will be given to NOR flash going forward, as it is the memory
type of main concern of this thesis.

2.1.1 NOR flash memory

NOR flash offers fast random access and can be efficiently reprogrammed since its cells
are individually connected and thus addressable, programmable, and erasable [12] – see
Figure 2.2 case a); each cell is individually connected to Wordline, Bitline and Sourceline.
The listed qualities make NOR flash suitable for code storage, even enabling eXecute In
Place (XIP), where the code is executed right from flash, sidestepping the usual load to
RAM as is typical on desktop computers. For this, NOR memory has to be designed with
read latency low enough to enable efficient execution directly from memory, so as not to
bottleneck the system.

At a lower density, when compared to NAND flash, it has a higher cost per bit. How-
ever, a capacity in the range of megabytes can suffice for most embedded applications.
Larger storage requirements might be satisfied by micro-SD card modules or various mem-
ory mediums other than NOR flash.
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Figure 2.2: Schematic diagrams of flash memory cell array. a) NOR flash memory, b)
NAND flash memory (taken from [12])

In the context of NOR flash memory, the size unit for read, write, and erase might be
the same for all operations and, as such, is typically referred to as a sector.

2.1.2 NAND flash memory

On the other hand, NAND flash memory cells are typically arranged in a serially connected
string-like structure – see Figure 2.2 case b); all cells in a string share Sourceline and Bitline.
This allows for a higher density because each cell does not need its own contacts (as is the
case for NOR). But it is inefficient in having to charge up the whole array and creates
disturbances between neighboring cells [12].

A block in NAND, which is the smallest erase unit, is typically further divided into
pages, which are the smallest read and write units. This disparity means that a page
cannot be erased by itself; the whole block in which it resides has to be erased for that.
Therefore, it is simpler to invalidate the old page, write a new one to an available area, and
provide a mapping for the page to its new location. Invariably, by doing this, the available
area will run out of places to write and will need to erase a block, ideally full of invalid
pages, to make some pages writable again. Few valid pages will almost certainly remain
in the block. Thus, it will require copying valid pages elsewhere to allow for block erase,
which will free up pages for writing. This process is called Garbage Collection (GC) and is
of immense importance for NAND flash to work optimally and efficiently.

This type of flash memory also suffers from occasional failed read and write operations
due to disturbances between cells. For this reason, each page (smallest read and write
unit) has an additional private capacity reserved for Error Correction Code (ECC) used to
mitigate raw bit errors [15].

6



2.2 Effect of wear leveling on flash memory lifetime
But as aforementioned, both types of flash memory cannot perform rewrites in-place, and
every write operation has to be preceded by an erase. This is the reason program erase
cycling occurs and why memory wear is the unavoidable consequence with wear leveling
only reducing the impact.

To demonstrate the tangible need for wear leveling and, in turn, the improved memory
lifetime it can achieve, examples of calculations, heavily based on [11], are presented below.

Assume NOR flash memory where each sector can be rewritten 100 000 times. A single
sector (e.g. containing a file) will be continuously rewritten nonstop with 50 updates every
hour. Without wear leveling, this will always target a single sector. As can be seen from
Equation (2.1), the expected lifetime of flash memory in this scenario is less than 84 days.

𝐿𝑒𝑥𝑝 =
100 000× 1 𝑠𝑒𝑐𝑡𝑜𝑟 𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑

1 𝑠𝑒𝑐𝑡𝑜𝑟 𝑟𝑒𝑤𝑟𝑖𝑡𝑡𝑒𝑛× 50 𝑢𝑝𝑑𝑎𝑡𝑒𝑠/ℎ𝑜𝑢𝑟 × 24 ℎ𝑜𝑢𝑟𝑠/𝑑𝑎𝑦
< 84 𝑑𝑎𝑦𝑠≪ 1 𝑦𝑒𝑎𝑟 (2.1)

Now assume that the full wear leveled memory is 1 MB in size, with sectors being 4096 B
(4 KB) each. This results in 256 sectors in total. In the case of perfect wear leveling, the
continuous rewriting of a single sector will over time target every sector in the memory the
same number of times. This greatly extends the lifetime of full memory since it is no longer
a single sector that bears all the erase-induced wear. According to Equation (2.2) this can
result, in the perfect case, in more than 50 years of rewrites, that memory can endure.

𝐿𝑒𝑥𝑝 =
100 000× 256 𝑠𝑒𝑐𝑡𝑜𝑟𝑠 𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑

1 𝑠𝑒𝑐𝑡𝑜𝑟 𝑟𝑒𝑤𝑟𝑖𝑡𝑡𝑒𝑛× 50 𝑢𝑝𝑑𝑎𝑡𝑒𝑠/ℎ𝑜𝑢𝑟 × 24 ℎ𝑜𝑢𝑟𝑠/𝑑𝑎𝑦
≈ 21 000 𝑑𝑎𝑦𝑠 ≈ 58 𝑦𝑒𝑎𝑟𝑠

(2.2)
The substantial prolonging of expected memory lifetime in the above example calcu-

lations shows that wear leveling plays an important role in establishing reliable and long-
lasting embedded solutions. Without it, some write-heavy applications would turn embed-
ded devices into disposables with turnover in months or even less.

2.3 SPI NOR flash memory in ESP32
Moving towards specifics, this section outlines the hardware used during the creation of
this thesis, including a closer look at the flash memory used in ESP32 Systems On a Chip
(SoCs) and modules – or at least a flash memory chip model assumed to be of similar
attributes to the one integrated in ESP32.

2.3.1 Used and relevant hardware

The development and testing of both the extended version of wear leveling and the em-
bedded back-end part of the tool was done on ESP-WROVER-KIT V4.1 development board,
which uses the ESP32-WROVER-E generic Wi-Fi + Bluetooth + Bluetooth LE MCU module
with integrated Quad SPI flash memory and comes in multiple flash size variants, ranging
from 4 MB to 16 MB [6].

Real flash memory erase stress testing was performed on ESP32-C3-DevKitC-02 which
contains the ESP32-C3-WROOM-02 module, this time in 4 MB or 8 MB variants [5].
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All mentioned use cases for the boards (both graciously lent by Espressif) in possession
are further discussed in Chapter 4 and Section 6.2 for extended wear leveling and embedded
part of the tool, respectively, as well as Section 6.4 for erase_stress_example used for
testing the full implementation. The selection of specific boards was completely arbitrary,
as attention is drawn solely to the flash memory within.

2.3.2 SPI NOR flash memory

Flash memory is, in practice, external to CPU and other on-chip memory and takes the form
of an integrated component on the module. Creating, together with other components such
as external crystal oscillators, peripherals, and wireless connectivity modules, the complete
package. On-module integration of flash memory is achieved by using the Serial Peripheral
Interface (SPI). Due to the serial nature of the interface, it does not require many pins for
connection and can even outperform 8bit/16bit parallel flash memories in Dual or Quad SPI
modes, and is thus widely used in embedded systems as the go-to flash memory interface [21].

Detecting the actual flash memory size in a given board’s Espressif module can be done
by using esptool.py flash_id (the tool is included in ESP-IDF). The flash sizes reported
for both boards in possession were 4 MB.

The flash_id command also returns the manufacturer and device IDs of the flash
memory chip itself. These should be then looked up in a list of IDs maintained by Espressif.
But for the development boards at disposal, the reported values could not be matched to
any memory model or manufacturer in this way.

Using a list of IDs maintained by the Flashrom project [7] also did not single out
a specific chip. However, it narrowed the manufacturer down to presumably XMC, which
was later confirmed by Espressif. Yet, the specific device ID still could not be matched.

2.3.3 Exemplary flash memory model

Following the result of the previous Section 2.3.2, an assumption had to be made about
the exact flash memory model used. In that case, a flash memory device with an ID
numerically close to what esptool.py flash_id reported was chosen to represent the SPI
NOR flash integrated in the ESP32-WROVER-E and ESP32 C3 WROOM 02 modules. This being
the XM25QH32C flash chip [21].

A summary of the assumed target memory characteristics is as follows. SPI NOR flash
with 32Mbit capacity, from 108MHz standard SPI clock up to 432MHz in Quad I/O with
specialized instructions, more than 100 000 PE cycles and 20 years of data retention, allows
true eXecute In Place (XIP), typical sector erase time 50ms, page program typically 0.5ms,
uniform 4 KB sectors.

Presumably, the only attribute relevant to this thesis is the proclaimed 100 000 PE
cycles cell/sector lifetime. This is a well-known ballpark value and was already used in
this thesis; the data sheet then just supports this claim for further application of the value,
e.g. for simulation as described in Chapter 5.

Aside from that, the data sheet mentions a page unit (256 B each) being separate
from the sector unit (4 KB each), but from the point of view of wear leveling in ESP-
IDF, even though it does use two separate variables for page and sector sizes, there is no
distinction between them, and all read/write/erase operations are performed at the 4 KB
sector granularity.
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Chapter 3

Overview of approaches to wear
leveling

Wear leveling is commonly implemented as a mapping between logical addresses or sectors
and their physical counterparts. This mapping changes over time, resulting in various
locations in physical memory being accessed and manipulated when the same logical address
is used. For the higher software or firmware layer on top of the flash, this mapping is
transparent and provides an abstraction over the memory medium. If no wear leveling
layer was present, repeated program erase cycling could target a single memory location,
prematurely wearing out a select few cells in that area.

Thus, over time, the said mapping needs to provide as even a spread of erase stress
as possible while keeping in mind the constraints of the system such as memory usage,
algorithm complexity, and overall resource overhead.

What follows is an overview of typical approaches to wear leveling algorithms, their
benefits and shortcomings.

3.1 Dynamic and static wear leveling
In a general sense, there are two categories of wear leveling techniques, namely static wear
leveling and dynamic wear leveling. They differ in the extent to which they affect logical
to physical memory mapping.

First, dynamic wear leveling is focused solely on the so-called “hot spots” which form
due to the fact that data access is not uniform. Memory contents can be classified as
“cold data”, that is, static and unchanging in the long term, and “hot data”, meaning that
the data are accessed and rewritten regularly, thus forming “hot spots”. This approach
brings with itself few inherent issues, mainly the fact that a heavily written area will get
wear leveled, while rarely written areas will not participate as much or not at all, resulting
in the active memory used for wear leveling being a fraction of full available memory.
This reduces the potential memory lifetime. Dynamic wear leveling also requires efficient
identification of hot data, which might not be trivial. Despite all that, a potential benefit
of this approach is the lack of a requirement for all memory accesses performing logical
to physical mapping; static areas can be accessed directly without mapping or locating
overhead [11].

For static wear leveling, the objective is to also include static or infrequently updated
data in the wear leveling process and move them around to other locations so as to prevent
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any static data from staying at any location for a long period of time. This approach has
the potential to ensure good wear leveling across the whole memory, depending on the
specifics of the algorithm used. However, this approach also requires logical to physical
mapping for all memory accesses together with additional erases needed for moving static
data. Despite these overheads, good or close to ideal static wear leveling has the potential
to greatly extend memory lifetime, as previously shown in Section 2.2.

3.2 Embedded flash file systems
File systems with a design specific to flash memory can address wear leveling intrinsically
either as a by-product of a certain mechanism used or intentionally by implementing a victim
sector selection for garbage collection in a way that provides some form of wear evenness.

Journal Flash File System (JFFS) in version 1 is purely log-based. Nodes containing file
data and metadata are written to flash sequentially, maintaining a linear progression of new
nodes being written and old marked obsolete. These obsolete nodes create “dirty space”
which is garbage collected by copying possible valid nodes from the head of the log to its
tail and erasing full blocks freed by copying. This head and tail, shrink and grow, of
a circular log provides perfect wear leveling, where each block is erased exactly the same
number of times [20].

SPI Flash File System (SPIFFS) is specifically designed for SPI NOR flash memory
used in embedded devices. Inspired by another flash file system, YAFFS, it distinguishes
itself by no heap low RAM requirements, using flash write and erase in clever masking ways
and also by ensuring static wear leveling by once again being log structured. On the other
hand, it does not support directories, only a flat file structure, is poorly scalable (due to
fixed low RAM usage), and it does not detect or handle potential bad blocks [1].

Or in the case of HNFFS [16], a proposed file system with design specific to NOR
flash which improves upon both JFFS and SPIFFS, a specific active algorithm in the form
of Random Static Wear Leveling (RSWL) is used. As the file system tracks clean sectors,
containing only valid nodes, and dirty sectors, containing invalid nodes, together with sector
erase counts, garbage collection can select the victim sector for erasing from the dirty sectors
and also with a small chance also from the clean sectors, thus introducing a randomness
element to victim selection and, in turn, wear leveling.

Littlefs is another microcontroller-oriented file system, which combines small-scale log-
ging for atomic metadata updates and Copy On Write (COW) structure, which ensures
power loss resilience. Somewhat differently from others, it provides dynamic wear leveling
and detects and works around potential bad blocks in flash memory [9].

Despite the options available, Espressif has opted for a more modular and flexible ap-
proach in the form of separating the wear leveling layer and an embedded flash file system
on top of it. Specifically fatfs which is a generic platform-independent FAT/exFAT file
system module for embedded systems with very small code footprint and memory usage [4].
When compared to previously summarized embedded file systems and also taking into ac-
count that it is based on FAT/exFAT and is completely separated from the disk I/O layer,
fatfs does suffer in the prospect of using the characteristics of NOR flash memory to its
advantage as other flash file systems might do.

Moreover, the fact that wear leveling layer is separate allows for modifications to its
logic and algorithms, which is happily used in this thesis by implementing an extended
wear leveling version, which of course has to respect the API of initialization and accessing
the flash memory. For more about this extended version, see Chapter 4.
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3.3 Wear leveling in ESP-IDF
Espressif IoT Development Framework (ESP-IDF) is a framework for developing applica-
tions targeting Systems on a Chip (SoCs) made by Espressif. It is supported on Windows,
Linux, and MacOS. The framework provides a modular build environment using CMake,
multiple Python tools, and a plethora of components, wear leveling being one of them,
which can be used in user-created projects. This implies that wear leveling in this im-
plementation is not provided by means of a memory controller unit; instead, it is just an
indirection layer of CPU executed code which is slotted between raw flash access and file
system routines. Optionally, wear leveling functions, such as partition mount and unmount,
are accessible directly, without an overarching file system. This raw access is, for example,
utilized in the erase_stress_example described in Section 6.4.

As of writing this thesis – and implementing the monitoring tool – version 5.0 of ESP-
IDF is the latest major release and, when not stated otherwise, is the version of concern.

What follows, aside from a quick detour to flash partitions, is a summary of the current
wear leveling approach in ESP-IDF, mainly the logic behind the mapping algorithm used.

3.3.1 Flash partitions

The flash memory address space for the ESP32-xx series chips is designed to be split into
partitions. Partition being a contiguous block of memory together with a name, its type,
and subtype. These descriptive attributes are stored in a “partition table”, a binary encoded
list of partitions residing at a fixed offset in the flash. Thus, reading and parsing the table at
a known offset provides the information about the present partitions and by type/subtype
their intended use.

The main two types of partitions are app, for an executable binary that the chip runs,
and data, for the storage that the application can use.

So, given a data partition (its size and start address are specified in the partition table),
a flash file system can be mounted on top of it, giving access to typical file manipulation
functions. At the time of writing this thesis, the main embedded file system used and
integrated into ESP-IDF is fatfs and is henceforth assumed to be the file system used in
any and all examples or mentions, if not stated otherwise.

As described in Section 2.3.1, available hardware offered a 4 MB flash chip. From that
capacity a 1 MB data partition was typically allocated for use by fatfs with the wear
leveling layer enabled and present between the file system and flash. This 1 MB wear
leveled partition case will be occasionally used in examples and also in Chapter 5 which
focuses on memory erase stress simulation.

3.3.2 Wear leveling component in ESP-IDF

The approach and algorithm used are in many factors similar to the Start-Gap Wear Level-
ing proposed by Qureshi et al. [18]. They differ in terminology and ESP-IDF wear leveling
leaves out address space randomization. The original algorithm by Qureshi was designed for
Phase Change Memory (PCM), but it is easily applicable to flash as well, also being a mem-
ory with limited write (erase) cell lifetime. A summary of the algorithm, with terminology
as used in ESP-IDF, follows.

The main idea is an algebraic mapping of N usable (e.g. for fatfs) sectors to N+1
physical flash sectors. The additional reserved sector is “dummy sector”, it does not con-
tain useful data and serves as a buffer for copying sectors. The position of the dummy
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sector is determined by a pos value, starting at 0. Every erase operation increments an
access_count counter. Once access_count reaches the updaterate threshold (Qureshi
labels it as 𝜓) – currently fixed at 16 – it triggers a dummy sector move.

A sector at pos+1 – next to the dummy sector – is copied to the dummy sector (which is
first erased) and pos is incremented. Also, access_count is reset to zero, which means that
it will take another updaterate erase operations to trigger another dummy sector move.

For every such dummy sector move and pos increment, a new so-called pos update
record gets written to flash. These are written in a tally mark like fashion one after each
other, meaning that the sector which contains them does not have to be erased every time
said new record is written. These records enable reconstruction of the up-to-date value of
pos when mounting the wear leveled partition.

Once the dummy sector travels to the end of address space of a given partition, it
loops back to the beginning of said partition and an overall mapping shift is introduced via
a move_count counter. As it also starts at 0, the first dummy sector partition go-through
does not really have shifted mapping, but subsequent loops do. As the dummy sector loops
and move_count is incremented, all existing pos update records are erased, making room
for a new round of tally marks.

Thus, there is move_count which dictates the shift performed when calculating the
physical sector address – 𝑃𝑠𝑒𝑐 – from the logical sector address – 𝐿𝑠𝑒𝑐 – as can be seen in
Equation (3.1).

𝑃𝑠𝑒𝑐 = (sector_count − move_count + 𝐿𝑠𝑒𝑐) 𝑚𝑜𝑑 sector_count (3.1)

𝑃𝑠𝑒𝑐 and 𝐿𝑠𝑒𝑐 denote sector addresses. For example a 1 MB partition contains 256
sectors each being 4 KB, so possible sector addresses are 0 to 255. This allows us to use
move_count and sector_count (256 for the example values mentioned) in the calculation.

On a side note, sector size of 512 B is also possible with existing alternative wear leveling
modes (so-called performance and safe), but this thesis assumes sectors to be the 4 KB
“default” size; this applies to implementation as well.

Before using 𝑃𝑠𝑒𝑐 to access the memory, the position of the dummy sector must also be
considered. Figure 3.1 shows the logic of shifting sectors that map to the dummy sector or
to the ”right“ of it by an offset of one.

Psec

Psec < pos 

Return Psec 

Psec = Psec + 1 YES

NO

Figure 3.1: Physical sector address mapping shift due to dummy sector position

To obtain the final physical address in bytes, simply multiply the final resulting physical
sector address by sector size as in Equation (3.2).

𝐴𝑝ℎ𝑦 = 𝑃𝑠𝑒𝑐 × 𝑠𝑒𝑐𝑡𝑜𝑟_𝑠𝑖𝑧𝑒 (3.2)
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A simple example of the mapping principle can be seen in Figure 3.2. The numbers
inside the squares are the addresses of logical sectors and D denotes the dummy sector.
Having 4 total sectors with the dummy occupying one, we are left with 3 usable sectors.

In case (a), only the shift described in Figure 3.1 occurs as move_count is 0.

D 0 1 2

D0 1 2

D0 1 2

D0 1 2

pos=0

pos=1

pos=2

pos=3

D 01 2

D 01 2

D 01 2

D01 2

0x0 0x1 0x2 0x3 0x0 0x1 0x2 0x3

move_count
0 => 1

(a) (b)

Psec Psec

pos=0

pos=1

pos=2

pos=3

Figure 3.2: Simple logical to physical sector address mapping example with 4 total sectors.
Case (a) with move_count=0, case (b) with move_count=1.

In case (b), move_count becomes 1. Now both the calculation in Equation (3.1) and the
shift in Figure 3.1 take place. For example, we want to access 𝐿𝑠𝑒𝑐 = 2 while the dummy
sector is at 𝑝𝑜𝑠 = 1. In that case 𝑃𝑠𝑒𝑐 = (4 − 1 + 2) 𝑚𝑜𝑑 4 = 1 and 1 < 1 (𝑃𝑠𝑒𝑐 < 𝑝𝑜𝑠) is
not true, thus 𝑃𝑠𝑒𝑐 = 𝑃𝑠𝑒𝑐+1 = 1+1 = 2 and that is the final physical sector address (also
highlighted by hatching in the figure).

Note that the last row with 𝑝𝑜𝑠 = 3 in case (a) and the first row with 𝑝𝑜𝑠 = 0 in case (b)
differ only in the first and last sectors (physical addresses 0x0 and 0x3) being swapped.
This exact behavior of the algorithm ensures that even with move_count incrementing and
introducing shifts, the mapping remains correct, consistent, and transparent for any higher
layer.

The last important detail about the implementation is the existence of reserved sectors
at the end of wear leveled partition. As they are allocated and written with offsets calculated
from the end, they are to be read “from right to left” as can be seen in Figure 3.3. These
contain a sector reserved only for a config structure (memory size, sector size, updaterate,
etc.) and state structure (move count, erase and pos thresholds, unique device id, etc.)
together with pos update records in two copies for redundancy. As the maximum number
of pos update records must accommodate for all possible pos values, dictated by the
sector count in the partition, it might be necessary to reserve multiple sectors for this (and
then again in two copies). The remaining sectors are, bar 1 acting as the dummy sector,
usable, e.g. for a file system to be mounted on top of the wear leveling layer.

usable sectors+1 dummy config~~~ state
pos 

update
records

~~~
state
copy

pos 
update
records
copy

~~~

r e s e r v e d

Figure 3.3: Schematic of sectors reserved by wear leveling at the end of a data partition
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Chapter 4

Improvements to wear leveling

In the process of studying the current implementation of the wear leveling component in
ESP-IDF, a fatal flaw was discovered that makes monitoring and determining long-term
flash memory wear impossible.

The mapping is determined by two previously mentioned counters; pos and move_count.
From their values, an estimate could be made for the total erase count of all sectors, which
could then be divided by the number of sectors in a partition to get a rough per sector
estimate. As the expected lifetime of NOR flash memory cell/sector is around 100 000
erases, the leeway for monitoring precision is generous. For example, a resolution of a few
thousands of program erase cycles can still provide useful information on the possibility of
the memory reaching its lifetime.

But these counters are periodically1 reset back to zero and written to flash. This means
that reaching the period, which can realistically occur, results in all information about
past erases being lost. Therefore, it is not possible to reconstruct long-term memory wear
statistics.

To make the to-be-created monitoring tool of any use, long-term erase count tracking
must be possible. Thus, an extended and improved version of wear leveling for ESP-IDF
has been implemented under the name WL_Advanced.

First, it fixes the counter resetting problem while also adding a more precise erase count
tracking. Additionally, address randomization using an unbalanced Feistel network is used
to improve erase distribution across the wear leveled partition.

This extended wear leveling diverges from the goal of a management tool, as specified by
the assignment of this thesis. However, as it is necessary for obtaining any long-term statis-
tics, this detour was prioritized over other – planned, possible or potential – functionality
of the tool.

4.1 Extending the current approach
The existing approach of the ESP-IDF wear leveling component, described in Section 3.3.2,
offers a simple, good and reliable static wear leveling algorithm. The counter resetting
problem can be trivially solved by adding another counter which increments when the
original counters are reset. This counter of “full cycles” (cycle_count) is never zeroed,

1circa 1M erase operations for 1MB partition, 4K sectors, dummy sector moves every 16 erases; for 250
usable sectors in such partition it is 4000 erases/sector which is ≪ 100 000
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making it possible to calculate all time overall erase count, with capacity way beyond
possible memory lifetime.

But even with the counter resetting solved, the implementation suffers in the possibility
of monitoring erase operations in a precise enough way. Using redundancy in the design of
some structures, an extension was thought of and implemented.

As already present in the implementation, writing to flash was done at minimum in
pos update records of 16 B, for that is required by flash encryption and its block size
and alignment2. But this 16 B record was “wasted” only on four Cyclic Redundancy Check
(CRC) values where a single one could achieve the same functionality of an “over-engineered
flag”. The minimum write size has to remain, but the usage is surely to be improved.

The capacity of the record can be used to store information about erase operations,
although still with a resolution set by updaterate (only every updaterateth erase is
recorded). This updaterate value is currently fixed at 16, so information only about
every 16th erase is saved. Every pos update record then now contains chiefly the physical
sector number whose erase triggered the writing of the record to flash (as well as pos for
future reconstruction as in the original algorithm, and additionally unique device_id and
a CRC of all previous fields).

The updaterate value of 16 is used in ESP-IDF and is also adopted in the extended
version implemented. It is believed to achieve a good balance between precise monitoring
potential and frequent record keeping, which also requires moving the dummy sector.

Once the pos update records are to be erased, as is done once the dummy sector gets
to the end of the partition and loops back to the start, and move_count is incremented,
erase count aggregation takes place.

Quickly aside, additional sectors are reserved at the end of the wear leveled partition to
contain per sector erase counts, again in two copies. On mounting the partition, an attempt
is made to read existing erase counts to a buffer.

Then the aggregation simply increments erase_count in the buffer for the given sector
that is found in a pos update record while traversing them. After such aggregation,
the buffer contains the up-to-date erase counts of all sectors, which inherently requires
large enough buffer especially for bigger partitions – each erase count is represented by
a uint16_t value. Finally, the updated per sector erase counts from the buffer are written
to their respective reserved sectors in flash, and pos update records are erased, finishing
the diversion from the original algorithm flow.

Due to the fixed updaterate erases resolution for writing one pos update record, the
erase_count kept and saved in flash is to be multiplied by said updaterate to obtain
the real and correct estimation of per sector erase count. This fact that stored –
in buffer and in flash – erase counts are noticeably smaller, by the factor of updaterate,
than real values allows for a more storage efficient representation. For this, uint16_t was
deemed sufficient; the maximum representable erase count is (216 − 1) · updaterate, and
when updaterate=16 this becomes over a million sector erases. It may be safely assumed
that no current NOR flash memory technology comes even close to being able to achieve
such cell/sector erase lifetime.

This addition of erase counts records and aggregation vastly improves the monitoring
accuracy achievable, as without per sector records only an overall erase count could be
calculated from pos, move_count and cycle_count and then divided by the number of
sectors in partition to give a rough estimate. With per-sector tracking, proper heat spots

2https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/flash-
encryption.html#writing-to-encrypted-flash
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can be localized and compared to expected behavior of the monitored long-term running
application.

But, as mentioned, only every Nth (updaterateth) erase gets a record written to flash.
Until that threshold is reached, access_count counter holds the number of erase operations
performed. Therefore, if the embedded device is restarted or suffers a power loss without
proper unmounting of the wear leveled partition, the information about access_count
erases that have not reached the threshold is lost.

Lowering updaterate would result in pos update records being written more often,
but at the price of also more frequent dummy sector moves and erases of reserved sectors,
which is just adding more wear leveling layer overhead with questionable improvement in
leveling efficiency. However, in an environment where the embedded device is expected to
restart or lose power before reaching the threshold most of the times, lower updaterate
would make sense. On the other hand, in a more stable and even performance-oriented
applications, a higher threshold would be beneficial, as it would lower the overhead by
reducing the frequency of dummy sector moves.

This aspect of manipulating updaterate has not been explored and could prove to be
a viable improvement to the wear leveling algorithm. If, for example, updaterate could
dynamically adjust to the erase behavior of a given application (if such thing is even possible
with the current way of record keeping logic).

4.2 Address randomization
Also proposed by Qureshi et al. [18], besides the algebraic mapping approach to static wear
leveling, is a solution for the fact that erase operations are likely to occur spatially close to
each other, which can result in a highly erased sector becoming mapped to another highly
erased one, as the mapping based on the dummy sector shifts by one sector at a time.

By adding a layer of randomization, even adjacent sectors can get mapped to vastly
different areas of memory. Thus, ensuring that locality of erases does not factor into
memory lifetime.

Because flash memory, in the context of embedded systems, is typically about three
orders of magnitude smaller in capacity compared to the PCM memory that Qureshi is
concerned with (16GB), the issue of erase locality is not critical for flash. Even repeated
erases of a single sector will cause the mapping to loop through the entire memory or
partition before the sector erase lifetime is reached. However, for “big” data partitions –
such as 16 MB of 4096 4 KB sectors – the fact that dummy sector has to move all the way to
the end of partition before move_count mapping shift is changed could prove problematic.
If a single sector is erased in that scenario, it can accumulate tens of thousands of erases
before the mapping is shifted. This is far from ideal, as it results in poor wear leveling,
and solving it would potentially require deeper changes to the wear leveling algorithm or
even the approach itself. However, this thesis focuses on extending the current ESP-IDF
approach with available hardware, and thus assumes partitions only in the range of few
megabytes at maximum, with a typical example of 1 MB of 256 4 KB sectors.

That aside, experiments of simulating memory erase wear over its lifetime in small par-
titions have shown that randomization does indeed improve the uniformity of distribution
of erases, even if only marginally. For said simulation, see Chapter 5.

Qureshi [18] proposes two approaches to address-space randomization, namely Feistel
Network Based Randomization and Random Invertible Binary Matrix. Both perform quite
well and are closely similar to each other in the analytical and experimental assessment
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of normalized memory lifetime for various workloads he presents. Where they primarily
differ is in the storage overhead of each method. For a B-bit address space, the RIB matrix
presents 𝐵2 bits of overhead, while the Feistel network only 1.5 ·𝐵 bits, as instead of having
to store a full matrix, only three short randomly generated keys are required.

Based on this storage overhead quality of Feistel network address randomization, this
approach has been selected and implemented, albeit with a minor modification in the form
of unbalanced nature of the network, where the randomized address can be split into two
parts of differing lengths.

4.2.1 Unbalanced Feistel network

The alluded to address randomization uses an integer format-preserving encryption (FPE)
based on a 3-stage unbalanced Feistel network with randomly generated keys, as seen in
Figure 4.1. It provides a 1-to-1 mapping between a logical sector address LA and an inter-
mediate address IA. In each stage, the address is divided into two parts – L and R, which are
msb and lsb bits long, respectively. If LA is 𝐵 bits long, then 𝑙𝑠𝑏 =

⌈︀
𝐵
2

⌉︀
and 𝑚𝑠𝑏 = 𝐵− 𝑙𝑠𝑏.

So, for an odd bit-long logical sector address, the two parts are of different lengths; thus,
the unbalanced nature of this particular design of Feistel network.
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Figure 4.1: Unbalanced 3-stage Feistel network schematic performing translation between
Logical Address (LA) and Intermediate Address (IA)

Once the address is split for the stage, a function F is performed on L and a key specific
to that stage. All keys are randomly generated at the creation of reserved flash sectors and
written to flash together with state structures, which means that for the lifetime of the
memory or the wear leveling structures in flash, the keys are fixed and provide consistent
mapping results. F is same for all stages and is simply a squaring of XOR of its inputs,
just as used by Qureshi for ease of implementation. On the output of F another XOR is
performed, this time with the second part of the address, and then the parts are swapped;
L becomes R for the next stage and vice versa. It also goes with ensuring the correct bit
lengths to match lsb and msb for the next stage.

After three stages, which suffice to create a pseudorandom result, the intermediate
address IA is assembled. This address is then treated as a new logical address to be used in
the calculation of the physical sector address based on move_count and pos as described in
Section 3.3.2 and shown in Equation (3.1) and Figure 3.1. From these, the physical sector
address is obtained, which is the final result of the mapping.
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4.2.2 Cycle walking

One issue with the presented randomization based on Feistel network is the fact that the
domains of possible sector addresses using B bits (addresses between 0 and 2𝐵 − 1) and
valid sector addresses differ, as some sectors are reserved and thus invalid for access. Feistel
network can then output a sector address that targets one of the reserved sectors, practically
falling outside the valid domain. This can be resolved by what is called cycle walking [13].

When IA is outside the valid sector addresses, another round of randomization is per-
formed. The invalid sector address is supplied to the input of the network as LA and new
IA is then obtained. This must be repeated until the network produces a valid IA. Cycle
walking does introduce a performance penalty, as it will be performed every time such an
address is mapped from logical to physical. No caching or any other form of advantageously
using previous translations is implemented. Mainly because these would introduce addi-
tional storage overhead in the limited embedded device RAM, which is already used, when
compared to original wear leveling, for allocating a buffer for per sector erase counts.

In the case presented in this thesis, only a handful of sectors are reserved in the wear-
leveled partition, with the vast majority being usable and thus valid. The probability of
the necessity of cycle walking is low enough to not pose a significant overhead. More details
will be discussed based on the simulation results in Section 5.3.1.

4.3 Implementation and integration with ESP-IDF
WL_Advanced has been implemented as a C++ class of the same name and its file is put into
a copy of components/wear_levelling directory from ESP-IDF. This full copy of the com-
ponent’s sources will require updating to reflect changes made to the component in ESP-IDF
upstream, if supporting future versions of the framework will be desired. WL_Advanced.cpp
is then included in the wear leveling component’s CMakeLists.txt to involve it in the
build process. Configuration option is added to the Kconfig file – allowing turning on
WL_ADVANCED_MODE in idf.py menuconfig. Finally instantiating of WL_Advanced, based
on configuration, is added to the wear_leveling.cpp file.

One implementation caveat introduced is that saving the sector number in pos update
records meant adding the sector as an argument to the updateWL() method, now becoming
updateWL(size_t sector). This method implements logic surrounding pos, move_count
and cycle_count. And crucially, it is called on every erase, as well as “flushing” of wear
leveling – by calling flush() which is done on unmounting of the partition. But such an
operation is not a sector erase, so we are missing a sector number to pass to updateWL().
A solution is presented by passing the current value of pos to updateWL(), since for every
dummy sector move, a direct sector erase is performed, which is not recorded by any means.
By creating this “fake” record on unmounting, at least some sectors will obtain records
reflecting the untracked erases caused by the overhead of moving the dummy sector.

In any case, all projects or applications that previously used the wear leveling com-
ponent can now turn on WL_Advanced and take advantage of its improved leveling and
erase count record keeping abilities. However, this comes with a few precautions to take
into careful consideration. Additional reserved sectors are needed for record keeping, and
address randomization will break any current memory accesses, including fatfs. For this
reason no migration or “upgrade to WL_Advanced” process is offered. Currently the recom-
mended approach is to erase the flash contents, for example using idf.py erase-flash,
prior to utilizing WL_Advanced.
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Chapter 5

Simulation of erase stressed
memory lifetime

For the purpose of testing address randomization described in Section 4.2, a rudimentary
memory erase stress simulator wl-sim was created. The following sections summarize the
simulation logic, the variables at both the input and output of the simulation, a few details
about its implementation, and, most crucially, the results comparing the original wear
leveling mapping algorithm efficiency to the extended version using randomized mapping
as implemented in this thesis.

5.1 Simulation logic and parameters
One simulation run proceeds as follows.

1. Initialize counters and thresholds, and generate keys for Feistel network.

2. Simulate erasing a block of B sectors starting from address A = FA(Amax).

3. If any sector reaches the threshold of PEmax erases, declare that the memory has
reached its lifetime and proceed to step 4. Otherwise, go back to step 2.

4. Report the values of mapping counters and statistics on wear leveling efficiency of
this run.

Now, Amax is a fixed value, derived from simulated wear leveled partition size, which was
chosen to be 1 MB. PEmax denotes the maximum number of program erase cycles a sector
can endure and is set to 100 000, as was previously stated to be the erase lifetime of a NOR
flash memory cell. The erase block size B can vary and was arbitrarily selected to be in the
range of 1 to 50 sectors; see the following Section 5.3.

Each call to the address function FA outputs an address from the range of valid addresses
(up to Amax). The output address can either be a constant (e.g. fixed at Amax/2) or randomly
selected according to a probability distribution. Based on [22], the discrete Zipf distribution
was chosen to represent the memory erase access pattern. For the shape of the distribution,
see Figure 5.1 (taken from [8]).

C++ implementation of the Zipf distribution was provided by [8] which falls under
the MIT license. The skew factor of the distribution was set to 0.99 to properly show
the improvement made by address randomization, since the less skewed the distribution,
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Figure 5.1: Zipfian distribution plots for various skew factors (taken from [8])

the more uniform it becomes, and the uniformity in memory accesses achieves some wear
leveling by itself, up to a fully uniform distribution of accesses that does not require wear
leveling, as it targets all sectors with the same probability.

Measuring wear leveling efficiency in simulation is done in the same way as in [18], the
figure of merit being “Normalized Endurance” (NE), see Equation (5.1).

𝑁𝐸 =
Total Sector Erases Before Lifetime Reached

PEmax × Num Sectors In Partition
× 100% (5.1)

The theoretically perfect case is such that every sector (of which there are Num Sectors
In Partition) gets erased as much as all the other sectors. This means that a perfectly
wear leveled partition can withstand up to PEmax × Num Sectors In Partition erases.

Attaining perfect wear leveling is not realistic in practice, as the algorithm itself may
not be perfect, or the device could suffer power losses and resets, straying from the ideal
run-time behavior. So some sectors will inherently get erased more than others, and the
challenge is to keep the difference as small as possible between the least erased and most
erased sectors. Once the most erased sector reaches PEmax, it is declared that the lifetime
of the memory is reached. Other sectors will have lower erase counts than PEmax.

Then the sum of all erase counts of all sectors becomes Total Sector Erases Before
Lifetime Reached. In perfect wear leveling, the numerator will be the same value as the
denominator and the normalized endurance will be 100%. This is the reference value.

In practice, the numerator value will not reach its possible maximum and NE will fall
below 100%. Thus, signaling how close to the ideal the algorithm tested and/or run-time
configuration is.

5.2 wl-sim implementation
The simulator is implemented as an ESP-IDF project for the ease of compiling using the
established build environment with idf.py, even though it is to be run only on PC – not
on an embedded target – and is split into multiple C++ files (with associated header files
of the same names); namely the following.

WLsim_Flash.cpp implements mocked behavior of WL_Advanced with the same algo-
rithm for mapping between logical and physical sector addresses using unbalanced Feistel
network and it also tracks precise erase counts, allowing for analysis of wear leveling effi-
ciency. Most importantly, it contains the erase_range() function which simulates erasing
the given range of sectors, specified by start_address and size in bytes as in the real
implementation. However, here in simulation both of these values are converted, for the
purposes of mapping algorithm and the Feistel network, to sector address representations.
Included are also functions for printing the statistics at the end of each simulation run,
namely calculated Normalized Endurance and, in the case of employing Feistel network for
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randomized mapping, the number of cycle walks as well as total calls of the the Feistel
mapping function.

wl_sim_random.cpp contains the implementations of constant() and zipf() address
functions. constant() simply outputs an address equal to half of the maximum address
supplied as its argument. The zipf() address function uses the previously mentioned
Zipf discrete distribution implementation from [8], in the form of a single header file class
contained in dirty_zipfian_int_distribution.h.

Lastly, main.cpp contains argument parsing logic allowing for parameterizing the simu-
lation run (chiefly selecting a mapping algorithm, address function and block size) and the
erase stressing logic itself. Some parameters are left unused in the final measurements, these
being variable block sizes and a probability for a simulated restart of the device after every
erase. Aside from that, a so-called feistel_test() is also implemented, which checks that
the randomized mapping for all sectors in a given simulated partition is 1:1 and valid. In
other words, no two sectors obtained as a result of the unbalanced Feistel network map to
the same sector, and, in turn, every sector is the result of said mapping exactly once.

For running the simulation multiple times, up to the 100 averaged runs used for results in
the next Section 5.3, a simple Bash script – run.sh – was created. It passes the simulation
arguments to the simulator binary built by idf.py and logs the output of each run to
a created log file. Interest is taken in Normalized Endurance and cycle walks out of total
erases performed. Upon finishing the final run, it averages the results of all logs recorded by
previous runs with the same configuration of simulation parameters. From there, the results
were manually copied to plot.py which graphs the results (plotting based on Matplotlib
documentation example for grouped bar charts1).

5.3 Simulation results
Each graph discussed below in this section summarizes a comparison between base wear
leveling mapping algorithm (the original from ESP-IDF) and advanced which uses the
address randomization explained in Section 4.2.

Each comparison is parameterized by erase block size in sectors, for which few values
have been mostly arbitrarily chosen, and by address function (FA) which can either be
constant or Zipfian – the address of every erase is obtained from discrete Zipf distribution.

Each configuration (block size × address function) has been run 100 times and the
reported values are the averages.

As can be seen in Figure 5.2, the advanced mapping algorithm employing address ran-
domization does indeed improve wear evenness up to around 3% in this case of erasing
blocks of varying sizes at constant address offset. For erase block of a single sector, no
improvement is made over the base wear leveling mapping algorithm. Against that, larger
block sizes attain greater improvement. Both outcomes are to be expected, as the address
randomization targets blocks of sectors which go from physically consecutive mapping –
bad leveling – to being randomly spread – good leveling – by the randomized mapping al-
gorithm. For block sizes of 20 sectors and above, advanced achieves over 99% of normalized
endurance, which theoretically translates to more than 700 000 total additional erase oper-
ations the memory could sustain over base mapping (the typical total erase lifetime of the
simulated memory is just under 25M erases across all sectors and Normalized Endurance
improving by up to 3% in good cases).

1https://matplotlib.org/stable/gallery/lines_bars_and_markers/barchart.html
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Figure 5.2: Simulation results showing Normalized Endurance comparison between base
and advanced wear leveling algorithms with erase operations at a constant address

Figure 5.3 shows another comparison, this time using Zipfian address function. Being
not a constant, the distribution results in better leveling by itself. However, also being
heavily skewed, there is an improvement to be made with advanced address randomization,
that is, up to 1.4%. Larger block sizes once again reach 99% NE and notably see a lesser
improvement over the base mapping, when compared to previous results in Figure 5.2.
This may be attributed to the shape of the distribution, as blocks of sector erasures get
spread over the memory in come capacity even without randomized mapping.
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Figure 5.3: Simulation results showing Normalized Endurance comparison between base
and advanced wear leveling algorithms with erase operations at addresses supplied by
Zipfian distribution (skew factor 0.99)
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Additionally, erase block of a single sector in Figure 5.3 does show an improvement
over base mapping, where for constant address, in Figure 5.2, no such improvement was
measured. Once again, the shape of the Zipfian distribution is heavily skewed towards the
start of address space yet with a variance, resulting in accesses in a “fuzzy block” even for
a single sector. And from that, advanced performs address randomization, which spreads
the erases across the full memory.

The presented results clearly show an improvement in wear uniformity caused by the
implemented address randomization. Even for a small partition size, where the original
mapping already shows good results in the range of 96% NE and above. Curiously, and
maybe also due to such a small wear leveled memory size, the advanced results surpass
those reported by Qureshi. The comparison is not entirely objective, as the workloads
are different, yet both implementations utilize a Feistel network in the same way. Where
Qureshi averages 97% NE, the results presented in this thesis average almost at 99% NE.
Therefore, the addition of address randomization to the mapping algorithm is considered
a worthwhile undertaking and a success.

5.3.1 Overheads of randomized mapping

After taking a look at the improvements and benefits of randomized mapping, the draw-
backs must also be addressed. Mainly the fact that now every memory access requires an
additional translation step on top of the already present calculations based on pos and
move_count as outlined previously. This overhead, in the computational context, consists
mainly of logical bitwise operations, so even for three iterations that are necessary for
a 3-stage Feistel network, it is deemed negligible.

What may be of greater importance is the necessity of cycle walking, as described in
Section 4.2.2. Depending on the number of sectors in wear leveled partition, a varying
number of sectors will have to be reserved for storing internal structures and records about
erase counts. Say, we have 256 total sectors in a partition with 6 being reserved, leaving
us with 250 usable sectors. The chance of cycle walking for any address translation – that
is Feistel network “hitting” one of the reserved sectors with its output address – is in such
a case 6

256 or in other words 2.34375%. Now, depending on the memory access pattern
and the values of generated keys for Feistel network, it might happen that cycle walking
is a rare occurrence, as only few sector addresses result in cycle walks. Or, if unlucky
and a frequently accessed location contains a cycle walkable sector, this will present an
unavoidable overhead.

For the example of 250 usable sectors out of 256 total sectors, Figure 5.4 shows the –
average from 100 simulation runs – probabilities of cycle walking per every erase operation
at various sector erase block sizes. Up to blocks of 40 sectors, the chance for cycle walking
is less than 1%, at least for this simulation and its chosen parameters. The variance in cycle
walking performance based on the generated Feistel network keys is included in the results,
as each of the 100 averaged simulated runs created a new set of keys. Based on the results,
it can be stated that cycle walking does not, on average, present significant overhead either.
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Figure 5.4: Simulation results showing the chance of cycle walking during randomized
mapping of every erase operation at address supplied by Zipfian distribution (skew factor
0.99). Values presented are for 250 usable sectors out of 256 total sectors in a simulated
partition.
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Chapter 6

Design, implementation and
testing of monitoring tool

As required by the thesis assignment, the tool has been developed and published on GitHub
under the Apache-2.0 license and is available at https://github.com/omnitex/espwlmon.
As the conception of the tool is based on Espressif’s internal assignment, the entire process
of design and implementation was primarily discussed with Ing. Martin Vychodil from
Espressif’s Brno office, who also did code review on the final form and functionality of the
tool. This ensured at least some compatibility between the ideas of what the tool should
be capable of and its potential internal use by Espressif.

The following sections outline the tool design, implementation of both its parts, and
testing performed on a real embedded device.

6.1 Tool design and functionality
Due to unforeseen circumstances of developing WL_Advanced, see Chapter 4, and in turn
testing and simulating the address randomization, see Chapter 5, the goal for the tool some-
what degraded from a “flash memory management” standpoint to simply “flash memory
monitoring”.

The key focus of the tool is then on assessing flash memory lifetime in any given appli-
cation and on accessing internal structures and values for debug purposes.

The final tool consists of, as specified by the thesis assignment, two parts – an em-
bedded C++ so-called wlmon data collector back-end and a Python PC side front-end for
presentation and visualization of the obtained wear leveling status, named espwlmon.

For passing data between the two parts of the tool, the JSON format has been selected
for its universality, readability, and ease of use — namely parsing in Python.

The usage flow of the tool is as follows; an application that is to be monitored is recom-
piled with WL_Advanced enabled and uploaded (“flashed”) to an ESP32 embedded device.
Now the device and application is used and runs as normal, all the while WL_Advanced
creates records about the performed erase operations in flash. After some time or when an
update on the memory wear status is desired, a special application wlmon is flashed to the
embedded device replacing only the existing application. Then Python espwlmon is to be
launched; it attaches to wlmon running on the device via a serial connection and displays
a Graphical User Interface (GUI) with a listing of structures used by wear leveling and
a heatmap visualizing per sector erase counts in the partition.
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6.2 wlmon embedded back-end
The embedded wlmon is implemented as a C++ ESP-IDF project and its sources are located
in data-collector/wear_levelling/wlmon in the published GitHub repository (or its
copy on the included storage media). Similarly to WL_Advanced, it is put into a copy of
the wear leveling component directory from ESP-IDF. This allows access to private header
files, namely Partition.h, which is used for instantiating a class of the same name, acting
as a flash driver and providing access to read, write, and erase functions. A short summary
of the logic and workings of wlmon is as follows.

WLmon_Flash.cpp contains a class of the same name, inheriting from WL_Advanced,
which implements multiple methods centered around reconstructing internal wear leveling
structures from flash as well as the per sector erase counts recorded by WL_Advanced. It
includes a twofold detection of original vs. extended wear leveling. First by recovered pos
value – as the contents of pos update records are utilized differently, see Section 4.1,
each recoverPos() implementation will return zero for the “other” version it cannot read.
And second by checking the presence of a saved set of keys for the Feistel network in flash,
as these are missing in the original algorithm and the reserved – but not used – space in
the state structure is initialized with zeros.

wlmon.cpp serves as a wrapper around WLmon_Flash.cpp. Via a single convenience
function entry point of wlmon_get_status(), an instance of WLmon_Flash is created and
used for attaching to wear leveling structures in flash and further reconstruction of wear
leveling status together with per sector erase counts. All mentioned information is then
formatted as JSON and written to a buffer. This buffer is dynamically reallocated to fit the
JSON based on the number of sectors in the wear leveled partition, as each can potentially
have an erase count to be reported, and the partition attributes are unknown beforehand.

Finally, main.cpp obtains the reconstructed so-called wear leveling status and prints
it repeatedly to ensure reliable transmission over serial connection to PC and, in turn, to
espwlmon. In the event that an error occurs throughout the wear leveling status recon-
struction or JSON assembly process, an error message stating the ESP-IDF specific error
code is printed – also in JSON format – instead of the report.

An example of assembled JSON with values from internal use structures and recon-
structed per sector erase counts, with an ellipsis for brevity, can be seen in Listing 6.1.

1 {
2 "wl_mode":"advanced",
3 "config": {
4 "start_addr":"0x0", "full_mem_size":"0x100000", "page_size":"0x1000",
5 "sector_size":"0x1000", "updaterate":"0x10", "wr_size":"0x10",
6 "version":"0x2", "temp_buff_size":"0x20", "crc":"0x4fb562e0"},
7 "state":{
8 "pos":"0x8","max_pos":"0xf9","move_count":"0x11","access_count":"0x0",
9 "max_count":"0x10","block_size":"0x1000","version":"0x2",

10 "device_id":"0xf6d5487f","cycle_count":"0x0",
11 "feistel_keys":["0xa2","0x35","0x77"],"crc":"0x2c3c5c49"},
12 "erase_counts":{"0":"5","1":"3","2":"9","3":"5", ...},
13 }

Listing 6.1: An example of a JSON formatted listing of internal wear leveling structures
and per sector erase counts – the output of wlmon
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6.3 espwlmon PC side front-end
Before launching the GUI, the single file espwlmon.py takes an argument specifying the
serial port of the embedded device – with wlmon running on it – connected to the PC. Upon
establishing serial connection, done trivially by using the serial Python module, the script
waits for two consecutive received JSONs to match each other. This is done as a way of
validating the reception, after which the JSON is parsed – once again trivially by the json
Python module – and with that the gui() function gets passed a Python dictionary of the
obtained wear leveling status, ready for visualization.

PySimpleGUI1 was chosen as the Python graphical user interface wrapper for underlying
Tkinter, mainly for its simplicity and ease of use, allowing rapid prototyping. As the GUI
is not the main focus of this thesis, some corners were cut, making it possibly not up to
par with proper graphical front ends. The final look of the GUI can be seen in Figure 6.1.

A static heatmap of per sector erase counts for display in the launched GUI was gener-
ated using Matplotlib, using helper functions from its documentation2. Such static heatmap
is meant for on glance memory wear status report. The presented GUI window in Figure 6.1
shows a heatmap for 1 MB partition of 4 KB sectors. Scaling this static heatmap to prop-
erly show larger partitions (2 MB and above) proved to be an implementation challenge
and, at the time of submission, is not fully resolved. For such partitions, it is advised to
toggle off the erase count numbers shown in the heatmap using the button on the right side
of the window or take advantage of the exporting described below.

Figure 6.1: espwlmon GUI window. On the left: detected mode (base v. advanced) and
internal structures listing. In the center: static heatmap of per sector erase counts. On the
right: additional information together with buttons for 1) toggling the visibility of erase
count numbers in the heatmap, and 2) exporting the heatmap using Plotly

1https://www.pysimplegui.org/en/latest/
2https://matplotlib.org/stable/gallery/images_contours_and_fields/

image_annotated_heatmap.html
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For a more informative and exportable report on erase counts, Plotly Express3 was
used for on-command generation of a heatmap in html format with embedded JavaScript,
allowing scalable and hoverable visualization. An example of such heatmap can be seen in
Figure 6.2. This example also follows the 1 MB of 4 KB sectors configuration in a real em-
bedded device, meaning that some sectors are reserved for internal structures and records.
For both heatmaps in Figures 6.1 and 6.2, note the -1 values in the lower right-hand corner;
these mark sectors serving as padding (some of them being reserved), making the heatmap
either a full square or a rectangle. Otherwise, the numbers denote the erase counts of each
sector as reconstructed from records kept by WL_Advanced.

The right column of the GUI window in Figure 6.1 also lists an “Overall erase count”. If
a precise number is shown, the overall erase count has been successfully reconstructed from
first, the pos, move_count and cycle_count counters and second, from per sector erase
counts kept by WL_Advanced and both values are equal; confirming the reconstruction to
be valid. Otherwise, if either calculated overall erase count mismatches the other one, an
error is shown to draw attention to this fact.

6.4 Real embedded device testing
For the purpose of testing the per sector erase count tracking of WL_Advanced in a reason-
able time, an example ESP-IDF project for performing memory erase stressing on a real
embedded device, under the name of erase_stress_example, was implemented (based on
an existing wear leveling example4).

All erase stressing logic is contained in the erase_stress_example.c file. The pre-
scribed definition of partition table, which is to be created in the flash memory of the embed-
ded device, is left untouched from the original example in the partitions_example.csv file.
For one more time it is mentioned that the wear leveled data partition, labeled as storage,
is set to be 1 MB in size. Lastly, sdkconfig.defaults file sets the WL_ADVANCED_MODE to
be enabled, as the file name suggests, by default when building the project with idf.py.

When run on an embedded device, erase_stress_example simply repeatedly erases
a sector in the middle of the wear leveled data partition address space. The erase stressing
is organized into runs, each consisting of erase iterations. At various iteration milestones,
a random chance to directly unmount and mount the wear leveled partition or skip the rest
of the current run is introduced to mildly “shake up” the access pattern. In between these
erase stress runs, a fatfs file read and write test is performed to check the validity of the
randomized mapping in terms of file system consistency.

An example of an erase pattern created by a few tens of runs of erase_stress_example
on ESP32-C3-DevKitC-02 can be seen in the previously mentioned heatmaps in Figure 6.1
or preferably Figure 6.2. Note that only a single sector is repeatedly erased, yet the erase
counts are more spread out, showing the workings of wear leveling. However, the memory
access pattern of erase_stress_example is created artificially to achieve dynamically look-
ing output in a relatively short time. Any real application over WL_Advanced will access the
memory in numerous different patterns over time, and erase counts in the heatmap might
look less leveled. Yet from the viewpoint of full memory lifetime, at least according to the
simulation results of Section 5.3, good wear leveling will be achieved in due time.

3https://plotly.com/python/heatmaps/
4https://github.com/espressif/esp-idf/tree/master/examples/storage/wear_levelling
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The purpose of the implemented example project is then twofold; a showcase application
that hastens creating records about erase operations in flash, allowing for visualization, and
a testing ground for checking the correctness of randomized mapping. Both showed good
and expected behavior, and thus the functionality, of all WL_Advanced, wlmon and espwlmon,
is proclaimed compliant and tested.

Figure 6.2: An example of Plotly Express heatmap of per sector erase counts exported from
espwlmon GUI part of the created monitoring tool (image edited due to dimensions)
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Chapter 7

Conclusion

The aim of this Bachelor’s thesis was to design and implement a software tool for managing
and monitoring flash memory wear leveling in an embedded device, namely the ESP32.

The need for wear leveling, stemming from technological details of flash memory, as
well as various approaches that satisfy the need, in varying degrees, have been surveyed.
The specific implementation of wear leveling and an embedded flash file system, as found
in the Espressif IoT Development Framework (ESP-IDF), has been studied in great depth
and throughout compared with other relevant existing solutions and literature. Consid-
erable issues not permitting long-term memory wear monitoring were discovered in said
implementation of wear leveling.

Therefore, an extended version of wear leveling was proposed and implemented. It allows
long-term tracking of per sector erase counts. On top of that, it improves the mapping
algorithm by introducing address randomization based on format-preserving cipher using
an unbalanced Feistel network. Said address randomization was tested, and its efficiency
was measured using simulated lifetime of memory stressed with erase operations. The
simulation results show an improvement of up to 3% in wear uniformity over the original
algorithm.

The monitoring tool, consisting of C++ embedded back-end and Python PC side GUI
front-end, was designed, implemented, and tested. This includes an example project for
erase stressing the memory in a real embedded device and testing the consistency of ran-
domized mapping via an embedded flash file system. Combined with the above-described
extended wear leveling, the created tool offers a view at internal structures and a visual-
ization of memory erase wear.

The tool, as well as the extended wear leveling version, has been published on GitHub
under the Apache-2.0 license and is available at https://github.com/omnitex/espwlmon
(the IBT branch is archiving the submitted version).

The presented work could be expanded in terms of usage flexibility of the tool. To
name a few proposals; Some form of snapshot creation, allowing for building a browsable
and visual history of memory wear in a given application, potentially with remaining life-
time prediction. Ability to analyze a memory dump, not just a live embedded device.
Investigating the possibility of hooking into a running application and performing real-time
monitoring. Regarding the extended wear leveling, it lacks integration with non 4 KB sec-
tor modes. All in all, the room for expansion based on desired or required functionality of
the tool in a given use case is plentiful.
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Appendix A

Contents of the included storage
media

/
espwlmon – copy of the GitHub repository at the time of submission
esp-idf-v5.0.zip – archive of used ESP-IDF v5.0
thesis

thesis.pdf – thesis version for electronic viewing
thesis_print.pdf – thesis version for print
src – sources of the thesis as exported from Overleaf
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