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Abstract 

Spike sorting is the clustering of different spikes according to which neuron they origi­

nated from. One of the most important steps in spike sorting is feature engineering. Within 

this thesis we focus on applying feature engineering techniques on simulated, continuous 

recordings of single neuronal cells in order to propose a feature set, which is a good basis 

for predicting the neurons of each spike. The steps to get to a proposed feature set included 

extracting single action potentials from the continuous dataset, extracting features based 

on the identified action potentials and applying feature selection methods to identify the 

most promising features. The applied feature selection methods included the investiga­

tion of the distribution of feature values between different cluster both visually and using 

ANOVA. Furthermore, random forest intrinsic feature importance and random forest per­

mutation feature importance were used for determining the best features. Considering the 

outcomes of these feature selection methods, we found that an ideal feature set consists of 

the geometric feature positive & negative amplitude as well as positive & negative action 

potential energy and the first four principal components. The different feature selection 

methods were not conclusive for the feature spike width. Therefore, we propose to test a 

feature set with and without that feature when running machine learning-based prediction 

tasks. The proposed feature set can be used as a basis to do spike sorting in applications 

such as invasive brain computer interfaces, which is an emerging topic in the past few 

years . Such applications have the potential to support people with various disabilities in 

their daily life. 
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1 Introduction 
Applications of neuronal spike sorting have the potential to change the world as we know 

it. Spike sorting helps researchers in understanding the processes of the human brain and fosters 

the discovery of treatments for neurological diseases such as Alzheimer's disease or epilepsy 

[6]. Neuronal spike sorting is also an essential component in brain-machine interfaces [6], 

Brain-machine interfaces open the possibility for communication between the brain and the 

external world, without having to rely on standard communication ways such as muscles or 

nerves ([16] in [8]). They hold the possibility to support people with various disabilities by 

providing speech synthesizers [1] and robotic limbs [12] [9], 

Spike sorting is essential to gain knowledge of extracellular recordings needed for the 

previously described applications. Extracellular recordings are recorded by placing electrodes 

in brain tissue between neurons in order to monitor the extracellular activity of neurons. [15]. 

The first step of spike sorting is identifying the actual action potentials, as electrodes also pick 

up other electrical activities apart from the desired neuronal action potentials. These other 

electrical activities can include physiological activities such as muscular activity or external 

activities such as cellphone signals [4]. The next step after the action potentials are identified is 

feature engineering. This can be used to extract relevant information from each action potential. 

Using these features, machine learning can then be applied to cluster spikes together originating 

from the same neurons. This is possible, as each neuron produces a certain spike shape different 

from other neurons [15]. 

The aim of this thesis is to focus on the step of feature extraction and selection and to give 

a proposal for a feature set, which is a good basis for predicting the neurons of each spike. The 

reason for focusing on this part of spike sorting is that it is one of the two major parts in typical 

approaches of spike sorting, besides the classification of the action potentials [2]. This also 

allows to give this thesis a good focus. 

Our research is based on simulated continuous recordings of single neuronal cells based 

on real action potentials recorded by Faraut et al. [5]. From this dataset we identified action 

potentials, as this is a necessary data pre-processing step to perform feature engineering. Fea­

tures which were extracted based on the dataset include geometric features based on the shape 
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of the spike, PCA for dimensionality reduction of the raw spike data and NEO coefficients 

which give an estimate of the energy content at specific points in the action potential. The 

extracted features were then evaluated using feature selection methods. Finally, we come up 

with a proposal for a feature set which can then be used for predicting the neurons for each 

spike. 
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2 Related Work 

2.1 Feature Engineering 
Feature engineering is an important part in most machine learning tasks. In general, fea­

ture engineering involves finding relations between two or more variables and transforming 

them into a new variable, a feature. It can also involve transformations of data, such as for ex­

ample taking the root of the variable. Furthermore, feature engineering can also contain taking 

averages, or applying other transformations such as fast Fourier transform or wavelet trans­

forms. It is known that feature engineering is a task very difficult to automate, as it requires 

exploratory data analysis as well as domain knowledge. [10] Therefore, for the application of 

spike sorting, it is vital to know more about the origin of neuronal spikes. 

2.2 Neuronal Spikes 
Neuronal spikes originate from neurons, which are, simply put, special cells in the human 

brain. A neuron consists of a cell body, which is very similar to any other cell. What is unique 

to neurons is the additional structure around the cell body. The cell body is surrounded by 

dendrites, which look like wires branching out of the cell body. Furthermore, the axon also 

originates out of the cell body. It can be described as the tentacle of the neuron which can be 

used to connect to other neurons. The point where an axon meets with a dendrite of another 

neuron is called synapse. This is where the neuron can send out action potentials to another 

neuron in the form of electric energy built up using ion channels at the synapse. [3] 

These action potentials can now be measured using electrodes being placed in the vicinity 

of these neurons. The shape of the measured action potential depends on the shape and structure 

of the dendrites of the spike. It also depends on how the ion channels are distributed at the 

synapse. Finally, the direction and distance of the electrode to the neuron also determine the 

spike shape. ([7] in [15]) 

2.3 Applications 
Making use of domain knowledge regarding neuronal spikes, feature engineering and the 

other steps involved in spike sorting, new and exciting applications can be developed. One 
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which gained quite a bit of attention in the media lately is the brain-machine interface developed 

by Neuralink. This startup founded by Elon Musk aims at creating a brain-machine interface 

which enables people with neurological disorders to regain motor and sensory functions. They 

developed a device which contains 3072 electrodes for recording neuronal action potentials. 

In addition, Neuralink uses a precise robot to place the electrodes of the device in a brain. With 

this approach they are able to record neural activity spread across different areas of the brain 

and monitor the brain activity in the form of spikes in real-time. [6] [12] This is a technology 

trend not limited to Elon Musk's company, but is popular across several different companies. 

Some have even already achieved first test trials of similar technology in humans. [14] 
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3 Experimental Setup 

3.1 Data Set 
The basis for this experiment are simulated, continuous recordings of single neuronal 

cells. The continuous dataset was created based on actual recordings of action potentials by 

Faraut et al. [5]. They were then randomly distributed after each other in random time intervals 

and noise was added. To be able to experiment with different noise levels, we simulated added 

noise on four different levels, from level 1 with rather little noise to level 4 with much noise. 

Figure 1 shows a small subset of the data plotted over time. Apart from the continuous level 

of noise there are several spikes visible. 

ILL 1 1 r 
i i 

5k 10k 15k 20k 25k 30k 35k 

Time in 0.001 seconds 

Figure 1: The figure shows a sample of the dataset used for this experiment plotted over time. 

3.2 Methods 
3.2.1 Data Pre-Processing 

The very first step of spike sorting is actually extracting action potentials from the con­

tinuous data set. This is vital, as we cannot simply cluster single samples of the data set, we 

rather want to cluster the whole action potential which consists of several data points. 
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Identifying Action Potential Peaks In order to extract action potentials, the first step is to 

identify peaks of action potentials in order then to be able to use a specified range around these 

peaks, each of which are then defined as action potentials. A primitive approach would be to 

take all peaks found in the data set, i.e. all samples s at position p (sp) where < sp and 

Sp +i < sp. However, this is obviously not a very precise method, as high-amplitude noise will 

also be identified as peaks. 

Therefore, we used a different approach. As proposed in Quiroga et al. [13] we introduced 

a threshold which a peak has to at least surpass before being identified as an action potential 

peak. The formula for this threshold (Thr) as proposed in Quiroga et al. [13] is: 

Thr = zan (2) 

where x are the action potentials and an is an estimation of the standard deviation of 

the noise [13]. It would also be possible to directly take the standard deviation of the data 

a, however, as the dataset contains spikes which are very different to the rest of the data, the 

standard deviation is not very robust. However, using the median as in the proposed method is 

more robust to outliers. The variable z is a multiplier of an which then makes up the threshold. 

As proposed by Quiroga et al. [13] this multiplier could be set to 4. 

However, to optimize this parameter according to the noise level found in our data set, 

we fine tuned this multiplier. In order to achieve this, we tried out different values in the range 

from 0 to 6, more precisely all the following values: 

60 
£ « { 0 , 0 . 1 , 0.2, 0.3,.. .,5.8, 5.9, 6} (3) 

Next, we calculated the amount of spikes we would identify using each of the multipliers 

to set the threshold. Furthermore, we repeated this process for different noise levels 1-4, where 

"Noise level 1" has relatively the smallest noise level and "Noise level 4" relatively the highest 

noise level. These noise levels were artificially added to the data. Figure 2 shows the amount 

of spikes being identified for each of the different noise levels and for different thresholds using 
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the aforementioned values for the multiplier z. 

0 

0 1 2 3 4 5 6 

Mul t ip l ie r Z 

Figure 2: The figure shows the amount of identified spikes at different noise levels for different thresh­

olds each being calculated by using differing multipliers z. As the values for the different noise levels 

are similar, it becomes hard to distinguish the different noise levels. 

As one would expect, there is a clear trend in less peaks being identified as the threshold 

value increases. More notable is how fast the amount of peaks are decreasing: at the beginning 

the amount of spikes declines quite rapidly, but this decline levels out approximately at a z — 3. 

From this point on the decline seems to be more stable, however, with the scale of Figure 2 

there is not much more we can interpret from it. Therefore, we created another Figure (Figure 

3) which shows only a more relevant subset of different z values. 
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Noise level 1 
Noise level 2 
Noise level 3 
Noise level 4 

3 3.5 4 4.5 5 5.5 6 

Mul t ip l ie r Z 

Figure 3: The figure shows the amount of identified spikes at different noise levels for different thresh­

olds each being calculated by using differing multipliers z within a refined range after analysing Figure 

2. 

Figure 3 gives us a new perspective on the data we already saw in Figure 2. Now, there 

is a difference observable between the different noise levels and multipliers. There is still a 

noticeable decrease in amount of spikes identified between z — 3 and z — 4. However, for 

Noise level 1 the amount of spikes remained stable for all tested z values after z — 4. Yet, for 

other noise levels the amount of identified spikes still continued to drop even after z — 4, but 

there is a logical explantion for this observation: the higher the noise, the higher the standard 

deviation of the noise we calculate, the higher the threshold after being multiplied by z and 

also the fewer spikes being identified. 

When visually checking the actual data, we noticed that for higher noise levels thresholds 

with z values greater than 4 seem to cut off peaks which actually are action potentials. Figure 

4 shows the thresholds and peaks of z — 4, and to us this seems to produce reasonable results. 

Therefore, in the end we decided to use a z value of 4, as it was actually already recommended 

by [13]. Nevertheless, we believe this was a topic worth investigating as the threshold could 

differ for different data and a wrong value could potentially make us miss many action poten­

tials or classify noise as action potentials. This could then drastically influence the quality of 

features and also a possible classification of the action potentials later on: If we were to take 

the peaks of noise we would classify something as some action potential even if it is not, if we 
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l Li. „1 

Time in 0.001 seconds 

(a) Noise level 1 

i Hi. 11 i n i l i . i,11 I I I , J 
mum wfwwmwwmw 

i n r i n™ Tw T r i M 11 

(b) Noise level 2 

(c) Noise level 3 

(d) Noise level 4 

Figure 4: The figure shows a sample of data with differently simulated noise levels. For each noise 

level, the threshold was calculated and the peaks were identified according to the calculated threshold. 
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were to take too few action potentials, we would simply reduce our training data, and perhaps 

even miss clusters with lower peaks completely. This would significantly reduce the accuracy 

of any clustering efforts. 

Action Potential Extraction After the peaks are identified, we still need to extract the actual 

action potentials. The basic principle for this is rather simple, as it is just taking a window of 

some amount of samples before and after the peak. The size of this window directly depends 

on the sampling rate of the data. This is because the time duration of action potentials remains 

the same no matter in which sampling rate they are recorded, but the amount of samples in 

this same time frame changes with the sampling rate. In order to get the best window size, we 

checked the action potentials visually to identify the ideal size. 

Yet, there is still a special case to consider when extracting the action potentials. It is 

possible that one action potential actually has two peaks which are above the threshold. In this 

case we only want to extract this action potential once, rather than twice as if we were to do 

this naively. This can be generalized for a action potential to have n peaks, where we only want 

to use the highest peak as action potential peak and apply the window considering this peak. 

This issue was solved by recursively removing the smallest peak until only one remains 

per window. Figure 5 shows some action potentials extracted from the data, centered around 

their peak. 
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Cluster A 
Cluster B 
Cluster C 
Cluster D 

Cluster 
C luster J 

Time in 0.001 sec 

Figure 5: The figure shows a random sub-sample of identified action potentials, centered around the 

peak and with the respective areas left and right of the peak. Colors are assigned according to the cluster 

the action potential originates from. 

3.2.2 Feature Extraction 

The next task in spike sorting is extracting features. This is necessary, as directly using the 

extracted action potential data as input to a machine learning model can be to memory intensive, 

as there can be many data points for just one action potential. Also, feature extraction can be 

used to add new information to the existing data using domain knowledge. 

Geometric Features The first subset of features we extracted are geometric features. Geo­

metric features focus solely on the geometric shape of the action potential waveforms and are 

usually computationally inexpensive as they typically have a deterministic way of calculating 

them. 

Positive Amplitude The feature positive amplitude is the highest voltage found in the 

action potential waveform, meaning the voltage at the peak of the action potential. The formal 

definition of the feature /PA for the action potential X is defined in equation 4. Figure 6 

displays the calculation visually. As we have previously extracted the action potential with a 

defined window centered around its peak, the peak is always at the same time interval after the 

start of the action potential. 
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fPA = max(X) (4) 

Figure 6: The figure shows a visual explanation of the positive amplitude feature. 

Negative Amplitude The feature negative amplitude JNA is the lowest voltage value 

found in the action potential X. It is comparable to the positive amplitude as described in 

section 3.2.2. However, the negative amplitude is not always found at the same time interval 

as it is the case with the positive amplitude. This feature was calculated using equation 5, figure 

7 displays this as well. 

fNA = mm(X) (5) 
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Figure 7: The figure shows a visual explanation of the negative amplitude feature. 

Positive Action Potential Energy The feature positive action potential energy JPSE is 

the action potential energy of only the positive part of the action potential. As the data we are 

working with is discrete, equation 6 can be used to calculated the feature. Figure 8 displays the 

calculation in a more visual way. 

, x?, i f x > 0, 
IPSE = J 2 \ <6> 

»=i 0, otherwise. 
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Figure 8: The figure shows a visual explanation of the positive action potential energy. The positive 

action potential energy is the area shaded grey in this visualization. 

Negative Action Potential Energy The feature negative action potential energy /NSE 

is the energy of the negative parts of the action potential (contrary as described in section 3.2.2). 

Again, this can be calculated with the sum of the squares, as also defined in equation 7. Figure 9 

shows this feature. Note, that the positive action potential energy /PSE and the negative action 

potential energy /NSE sum up to be the total action potential energy of a action potential. 

(7) 
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Figure 9: The figure shows a visual explanation of the negative action potential energy. The negative 

action potential energy is the area shaded grey in this visualization. 

Left Spike Angle The feature left spike angle /LSA is calculated in a similar way as 

described in [2]. First, the point left of the spike with a value closest to 50 percent of the 

highest point p/50 was identified. For the case that there are several such points, the first point 

to the left of the spike peak was taken. Next, we approximated the tangent for this point. For 

this, one point further to the left pm-i and one point further to the right p/50+1 was taken. 

Equation 8 is used calculate the gradient m and equation 9 is used to calculate the y-intercept 

k. They are then combined using equation 10 to give the tangent line y of the point pi50. 

m = (8) 
P/50+lx - Pl5Q-lx 

k = -m* pi5Q-ix + Pi50-iy (9) 

y — m * x + k (10) 

Using the gradient m we are now able to calculate the left spike angle /LSA (which is also 
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the gradient angle of y). This calculation is done using equation 11 and a visual explanation of 

the whole calculation can be found in figure 10. 

ILSA 

0, i f m = 0, 

arctan(m), i f m > 0. 

arctan(m) + IT, m < 0. 

(11) 

Figure 10: The figure shows a visual explanation of the left spike angle. 

Right Spike Angle The feature right spike angle JRSA is calculated in a very similar 

way as the left spike angle from section 3.2.2. However, for the right spike angle, instead of 

point pi50 we use pr50 which is again the point closest to the 50 percent but right of the action 

potential peak. The further calculations are then the same as already described in the section 

3.2.2. Figure 11 is a diagram depicting the whole calculation of /RSA-
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Figure 11: The figure shows a visual explanation of the right spike angle. 

Spike Width The spike width fsw- is approximated using the gradient lines of the 

points P150 and pr5o, Hi and yr respectively. For these two lines the time of the x-intercept is 

calculated using equation 12. 

x-intercept = — 
m 

(12) 

The difference between the two x-intercepts per each gradient line gives the spike width 

as defined in equation 13 and visually explained in figure 12. 

fsw — x-interceptr — x-intercept; (13) 
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Figure 12: The figure shows a visual explanation of the spike width. 

Principal Components Next to the geometric feature, principal component analysis is used 

for dimensionality reduction and using the extracted principal components as features. PCA 

is performed for all discrete voltage values of a spike. In order to decide which principal 

components should be used as features, we looked into the amount of cumulative explained 

variance. As can be seen in figure 13, there is already a high level of cumulative explained 

variance reached with less than 10 principal components. 

18 
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Cumulative Explained Variance over all Pnncipal Components 

10 

D 50 100 150 200 250 
Number of Principal Components 

Figure 13: This figure shows the cumulative explained variance over all principal components. 

Therefore, we decided to magnify this section of the graph, as can be seen in figure 14. 

Using this figure, we decided to use 4 principal components, as already a high level of cumu­

lative explained variance is reached (0.91), and the increase per further principal component 

diminishes. 

Cumulative Explained Variance over the first 10 Pnncipal Components 

0 2 4 6 B 
Number of Principal Components 

Figure 14: This figure shows the cumulative explained variance for the first 10 principal components. 

NEO Coefficients The next two features are calculated using the NEO operator. Using equa­

tion 14 taken from [2] it is possible to calculate the NEO operator *(x[n]). This gives an es­

timate of the energy content at a discrete time step n for the action potential x[n] [2]. Similar 
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to Bestel et. al we calculated the NEO coefficient for the minimum. However, we added an 

additional feature by calculating the NEO coefficient also for the peak of the action potential. 

*(x[n]) = x2[n] — x[n — 1] • x[n + 1] (14) 

Feature Extraction Overview A l l in all, we use 9 calculated features and the first four 

principal components as features. A summary can be found in the table below. For repro­

ducibility, the code used for extracting the signals and calculating the features is made available 

publicly as a python package which can be retrieved via: https://github.com/arnold3003/ 

bachelor- thesis- public. git. 

Feature Group Feature Name 

Geometric Features 

Positive Amplitude 

Geometric Features 

Negative Amplitude 

Geometric Features 

Positive Action Potential Energy 

Geometric Features Negative Action Potential Energy Geometric Features 

Left Spike Angle 

Geometric Features 

Right Spike Angle 

Geometric Features 

Spike Width 

PCA First four principal components 

NEO Coefficient 
NEO Coefficient for Action Potential Minimum 

NEO Coefficient 
NEO coefficient for Action Potential Maximum 

Table 1: A collection of all features which were extracted with their corresponding feature group. 

The next step in feature engineering is to perform feature selection and evaluation to iden­

tify how well the features are suited to solve machine learning classification tasks, which will 

be done in the following section (section 3.2.3). 

3.2.3 Feature Evaluation and Selection 

Feature evaluation and selection is a very important step in every classification task. 

Among the many benefits it brings, one of them is that it can avoid overfitting by discard­

ing irrelevant features. Furthermore, less features usually mean a reduced runtime of training 

20 
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and predicting machine learning models and also an increase in machine learning performance 

can be observed when focusing on relevant features only. 

Distribution of Features across different Clusters We started the feature evaluation by 

investigating the distribution of the features across different clusters. For this we used two 

different methods: First, we visualized the distributions using parallel boxplots. Although a 

boxplot only shows the distribution using the quartiles, we decided to still use this approach for 

comparing the distribution across many clusters. We therefore produced such visualizations, 

with the cluster on the x-axis and the calculated feature values on the y-axis, per feature and 

compared how different the distributions are across clusters. Then we decided to use analysis 

of variance (ANOVA) as a more statistical approach to check i f the values of features are 

distributed differently across different clusters. To achieve this, we did an A N O V A per cluster 

and visualized the F- statistic and whether it is significant per cluster. We chose a significance 

level of 0.05. 

Nevertheless, there is one limitation when using both of these methods. It is impossible 

to identify possible interactions between different features. For example, two features could 

be individually distributed very similarly across different clusters. However, a combination 

of those two features could end up being different across different clusters and therefore the 

features could still be valuable to be kept. For this reason, we continued to explore further 

methods for feature selection as well within this section. 

Random Forest Feature Importance Next, we investigated the feature importance when 

training a random forest. For this, we first trained a random forest with 500 trees based on a 

training dataset of the dataset which is a sample of the original data set. The training dataset 

was obtained by using the first 70% of the dataset. Then, we calculated the feature importance 

of each feature for the random forest by using the intrinsic importance of each feature per tree 

and the averaging it over the entire forest. In more details, we calculated feature importance 

as also done by [11]: The total decrease in node impurity is weighted by the likelihood of 

reaching each node (which is approximated by the percentage of samples in the training data 

reaching that node). This is done per tree in the random forest. Next, we took the mean over 
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all trees, which now becomes the mean node impurity (MPI) used as the feature importance. 

These values were then compared across all features. 

However, also this method has drawbacks. It is commonly known that this method does 

not work well with high cardinality features, which could actually be the case with our data. 

Furthermore, as this method uses the intrinsic feature importance of one machine learning 

model (random forest), it might not perform as well for other machine learning models. For 

example, for a deep neural net simpler features might suffice as it can combine information 

from several variables well. On the other hand, a simple linear regression model might need 

other features to best be able to learn (e.g. apply non-linear transformation). Nevertheless, 

we still believe that this method is applicable for a variety of machine learning models, as the 

random forest has non-linear interactions and the features selected as important have informa­

tion necessary to predict the target. Anyhow, we also looked into one more method for feature 

importance, as described in the next paragraph. 

Random Forest Permutation Feature Importance Finally, we also looked into the per­

mutation feature importance when using a random forest machine learning model. Again, we 

trained a random forest with 500 trees based on the same training dataset as already described 

above. We then calculated a base accuracy based on the test dataset, which was the remaining 

30% of the data. Next, we permuted always one feature randomly and compared the accuracy 

when predicting based on the permuted dataset. 

Also this method has also a similar drawback as the previous method: It is again specific to 

this one machine learning model. Still, as also written previously, we believe that this method 

is in general valid also for other machine learning models. For this method the previously 

described drawback regarding high cardinality features does not apply for this method. 
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4 Results 
In this section, we examine the results of the various feature extraction and selection meth­

ods which were applied within this work. 

In order to find out the best feature set, we applied several feature selection techniques. 

Each technique is unique and the results can be interpreted individually. In the end we can 

the combine the outcomes of each method and give a combined recommendation for the best 

possible set. 

The first technique was visualizing the distribution of the values of each feature for the 

different clusters using boxplots. Figures 15 and 16 are just two of the visualizations we used, 

the complete set of visualizations for all features can be found in the appendix in section 7.1. 

We chose the two figures, because they can be seen representative for visualizations of other 

features. Figure 15 shows the distribution of the feature "Negative Action Potential Energy" 

of each cluster. What can be observed for this feature is that values are very differently spread 

for each cluster, therefore, making it possible to use the feature to predict the cluster based on 

the value of the feature. Still some of the clusters have similar and/ or overlapping ranges of 

values, but a lot of differentiating can already be done just by using this feature. 

Value Distribution per Cluster of the Feature "Negative Signal Energy" 
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Figure 15: This figure shows a parallel boxplot which displays the distribution of values for the feature 

"Negative Signal Energy" for each cluster in the dataset. 
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This is a different situation when looking at the distribution of the values of the feature 

"NEO Coefficient Max" for each cluster in figure 16. In this case, most values are overlapping 

and no cluster stands out as having a unique distribution of values. Therefore, we believe that 

this feature is not likely to perform well when being used as input for predicting the clusters. 

When applying this method to the remaining extracted features, we identified that the following 

features also had a high overlap across different clusters: left spike angle and NEO coefficient 

min. The features positive amplitude, right spike angle, spike width and PCA 4 only showed 

very overlapping values for some of the clusters, while the value distribution was divers for 

other clusters. The remaining features (negative amplitude, positive action potential energy, 

PCA 1, PCA 2 and PCA 3) showed very different distributions across clusters, meaning they 

are most likely to perform well when being used in a prediction task. 

Value Distribution per Cluster of the Feature "NEO Coefficient Max" 

ID n it oi 
UJ <*n 

Figure 16: This figure shows a parallel boxplot which displays the distribution of values for the feature 

"NEO Coefficient Max" for each cluster in the dataset. 

Furthermore, we performed an A N OVA analysis of all features each across the different 

clusters. Figure 17 shows the results of the A N OVA analysis. As can be seen, the F-statistic 

of each feature is significant and all are greater than 1 (some are even much greater than 1 -

they are cut off as Figure 17 only shows a maximum F-statistic of 10). If an F-statistic is close 

to 1, one could not that reject the null hypothesis that all clusters have the same mean. As 
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the F-statistics are greater than 1 and all are significant, we can reject the null hypothesis in 

this case. This would mean that all features have at least one cluster where the values have a 

different mean than another cluster, meaning that we can say the the distribution of the values 

are different. To summarize, from our A N O V A we deduce that all features are relevant and at 

least one cluster has a different distribution in values. 

ANOVA Results per Feature 

PCA4 

PCA 3 

PCA 2 

PCA 1 

NEO Coefficient Max 

NEO Coefficient Mm 
i* 
-JS Negative Signal Energy 
0) 

Posrtive Signal Energy 

Negative Amplitude 

Positive Amplitude 

Spike VYidtfi 

Right Spike Angle 

Left Spike Angle 
P-Value not significant 
Significant P-Value 

Figure 17: This figure shows a parallel boxplot which displays F-statistic for each feature in the dataset. 

The color is coded according to whether the p-value indicates significance or not (at a significance level 

of 0.05). The graph is cut off at a maximim F-statistic of 10. 

Of course, when applying those two methods it is important to keep mind its limitations. 

One important limitation is that we only looked at each feature individually. One the one hand, 

it would still be possible that a combination of different features holds valuable information, 

but not the features by themselves. On the other hand, it is not possible to identify i f several 

features have very redundant information and some of those features would not be necessary. 

Furthermore, using A N O V A we can only deduce that at least one cluster has a different mean 

value than another cluster. This means that in the extreme case all clusters could have the 

same mean value except for one cluster - making the feature still not very valuable. Therefore, 
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we didn't discard any feature just by using those methods, but rather combining the gained 

knowledge with the results of other methods. 

Another method applied for identifying and selecting the best features was random forest 

feature importance. Figure 18 shows the importance of each feature. As can be seen on this 

figure, according to the random forest feature importance positive action potential energy and 

negative action potential energy are the most important action potentials. The 4 PCA features 

and positive and negative amplitude also have a high importance. The remaining features 

spike width, right spike angle, left spike angle, NEO coefficient min and NEO coefficient max 

have rather low importance (and are ranked in this order). Spike width still has the highest 

importance of these features and as it contains to some extent similar information as the features 

right spike angle and left spike angle, this might be a good cut-off point to define a feature set 

to be used for machine learning. However, as also this method has some drawbacks, we looked 

at yet another method for finding the feature importance. 

Random Forest Feature Importances (MDI) per Feature 

0.000 0025 0050 0.075 0.100 0.125 0.150 0.175 
Random Forest Feature Importances (MDI) 

Figure 18: This figure shows the random forest feature importance of each calculated feature. 

The final method we looked into was permutation feature importance using a random 

forest. Figure 19 shows the permutation feature importance across all features. In general, this 
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method showed a similar result as the previous, as the 8 most important features stayed the same 

(though not in rank between each other). This means that also the 5 least important features 

stayed the same (also this time the rank in between these features changed). However, what 

becomes quite clear from this visualization is that the least 5 important features, starting from 

the feature spike width, play only a very minor part in getting the correct prediction. Therefore, 

this method might suggest to cut off the feature to be used right before the spike width. 

Permutation Feature Importance using a Random Forest 

NEO Coefficient Min 

NEO Coefficient Max 

Left Spike Angle 

Right Spike Angle 

000 0 02 0.04 0 06 0.08 010 
Mean Accuracy Decrease 

Figure 19: This figure shows the random forest permutation feature importance of each calculated fea­

ture. 

Table 2 shows an overview of the findings regarding feature selection of this thesis. Fea­

ture importance is displayed using two buckets, low for everything below the proposed cut off 

value and high for everything above the proposed cut off value. The distribution of values is 

described in a written form. The color of the cell of the table reflects whether a method would 

be in favor of selecting a feature (green=yes, yellow=maybe and red=no). As A N O V A had 

the same result for each of the features (at least one cluster is significantly different to another 

cluster) it was not included in the table. 

27 



Arnold Ackerlauer 

Feature Name 
Distribution of values 

per cluster 

RF Feature 

Importance 

Permutation 

Feature Importance 

Positive 

Amplitude 

Wide spread between some 

clusters, others very similar 
High High 

Negative 

Amplitude 

Wide spread between 

different clusters 
High High 

Positive Action 

Potential Energy 

Wide spread between 

different clusters 
High High 

Negative Action 

Potential Energy 

Wide spread between 

different clusters 
High High 

Left 

Spike Angle 

Very similar distribution 

between clusters 
Low Low 

Right 

Spike Angle 

Wide spread between some 

clusters, others very similar 
Low Low 

Spike 

Width 

Wide spread between some 

clusters, others very similar 
High Low 

P C A -

component 1 

Wide spread between 

different clusters 
High High 

P C A -

component 2 

Wide spread between 

different clusters 
High High 

P C A -

component 3 

Wide spread between 

different clusters 
High High 

P C A -

component 4 

Wide spread between some 

clusters, others very similar 
High High 

NEO coefficient 

for spike minimum 

Very similar distribution 

between clusters 
Low Low 

NEO coefficient 

for spike maximum 

Very similar distribution 

between clusters 
Low Low 

Table 2: This table shows the results of three of the applied feature selection methods per each feature. 
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5 Discussion 
Within this thesis we aimed to give a proposal of a feature set which can be used for spike 

sorting. We set a focus onto the feature engineering aspect of spike sorting. For this, we wanted 

to extract useful features, some based on domain knowledge, and verify the quality of these 

features using feature selection methods. Finally, combining this information, we wanted to 

give a proposal for a feature set which can be used to predict which neurons fired given spikes. 

After identifying and extracting the action potentials from the dataset, we identified 13 

potential features. These features included 7 geometric features (positive amplitude, negative 

amplitude, positive action potential energy, negative action potential energy, left spike angle, 

right spike angle and spike width). Furthermore, we also used the first four principal compo­

nents as features as well as the value of the NEO coefficient at the spike minimum and at the 

spike maximum. 

We then evaluated these 13 features using four different feature evaluation methods. When 

comparing the results of the different feature selection methods, it becomes clear that there is 

a trend towards similar features being selected using different methods. Overall, based on our 

research and analysis we would suggest the following feature set to be used for predicting from 

which spike a specific neuron originates from: 

• Positive amplitude 

• Negative amplitude 

• Positive action potential energy 

• Negative action potential energy 

• PCA components 1-4 

• Spike width (maybe) 

The feature spike width is the only questionable feature in this set, as the analysis wasn't fully 

conclusive when it comes to this feature (different methods would suggest opposing outcomes). 

Therefore, we would propose to test a feature set with and without that feature when running 

a machine learning-based prediction task. 
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Within this thesis, we were able to come up with a concrete proposal for a feature set to 

be used for spike sorting of neuronal spikes. This makes it possible to continue the process of 

spike sorting by fitting a machine learning model on a dataset transformed using these features. 

In other words, this enables future researchers to continue the process of spike sorting without 

or with only little domain knowledge, as the part where extensive domain knowledge is needed, 

feature engineering, is already completed. 

We believe that one of the limitations of this thesis is at the same time also one of the 

main strengths of this thesis: the sharp focus on the feature engineering part of spike sorting. 

With such a sharp focus, we were able to go into depth and properly explore different aspects 

of this topic. However, we are aware that feature engineering in itself has rather little value and 

only becomes valuable when the features are being using in a machine learning application. 

Therefore, feature engineering can usually not be seen as a completely independent topic as the 

effects on the machine learning performance should be considered when optimizing the feature 

set. Nevertheless, we are convinced that a deeper investigation of the feature engineering 

aspects of spike sorting brings value, as it can easily be combined with the classification aspects 

of spike sorting. Furthermore, we want to mention that we were not completely blind to the 

classification aspects of spike sorting. One of our feature selection methods, random forest 

permutation feature importance, even involves training a machine learning model (random 

forest) based on test data and then evaluating the performance based on different feature sets. 

To summarize, we were able to produce a proposal for a feature set to be used for neuronal 

spike sorting and recommend this to be used for future applications. 
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6 Conclusion 
The aim of this thesis was to give a proposal for a features set which can be used for 

fitting a machine learning model to predict the originating neuron of each action potential. We 

were able to achieve this by first extracting action potentials from a dataset with continuous 

recordings of single neuronal cell responses. Next, we extracted several features for each action 

potential and evaluated these features using several feature selection methods. By combining 

the results of all of these methods, we came up with the proposed feature set. 

This proposed feature sets gives the basis for spike sorting to be performed on the dataset. 

The knowledge gained in spike sorting can then at some point be used for the previously dis­

cussed applications in section 2.3. There are still many additional major parts needed for ap­

plications such as brain-machine interfaces. These would include all the hardware of actually 

recording the spikes as well as the hardware for performing the desired task (such as a robotic 

arm). Also, there needs to be further research done in order to have meaningful predictions 

and to be able to translate them into actionable information for machines. Yet, we believe that 

a focused research into one component of spike sorting is still valuable as a wider research aim 

would have undoubtedly meant less focus on details, considering the limited time with which 

we performed this research. 

Nevertheless, we still faced some limitations even when only considering the narrow field 

of feature engineering for spike sorting. One of the main limitations was the lack of action po­

tentials with labels of their corresponding neurons. This is why we had to fallback to simulated 

data. Although the action potentials of this data are based on real action potentials, we still sus­

pect that real data might behave differently and an ideal feature set might look differently. Still, 

in this case our publicly made available code can be used to reproduce the signal and feature 

extraction steps based on a different data set. 

For future research regarding feature engineering for spike sorting, we would recommend 

to use a feature set based on real data actually recorded in a human brain and then labelled by 

experts. Furthermore, we believe that exploring further possible features apart from the ones 

mentioned within this thesis would be another potential to improve the feature set. 

To conclude, within this thesis we were able to come up with a proposed feature set which 
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can be used for fitting a machine learning model to predict the originating neuron of each action 

potential. Although we are aware that there are still certain limitation to this work, we believe 

that the outcome is valuable and can be used for further research into this topic. 
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7 Appendix 

7.1 Distribution of Feature Value 

Value Distribution per Cluster of the Feature "Positive Amplitude" 

E < 

. t M t f l t i t* tt * i i t t t i t? W i ! * « I t ' * i t i t ) t* * 

«' I-0.8 

0.6 

0 .4 
' ' " C M 

0.2 

f B O f D f I l f D f D f D f D f D f D ^ f C O f D ( T l f t l O r D ( T l f t i r a r D ( T l f D r a r D f I l f D f D 

- ' W U l M l D - ' W U l M l D - ' Ü J W ^ e - ' l Ü U I s l l C - ' W l n ^ l f l - ' l U j I ^ a - ' 

Cluster 

Figure 20: This figure shows a parallel boxplot which displays the distribution of values for the feature 

"Positive Amplitude" for each cluster in the dataset. 

38 



Arnold Ackerlauer 

Value Distribution per Cluster of the Feature "Negative Amplitude" 
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Figure 21: This figure shows a parallel boxplot which displays the distribution of values for the feature 

"Negative Amplitude" for each cluster in the dataset. 

Value Distribution per Cluster of the Feature "Positive Signal Energy" 

25 

TO 1 5 ' 

1 " * * V \ • . 
+ t* + 

in 
§ * + 
£ 1 0 * • • • * 

£ t 

• * 
5 • • • • * • 

• * * * 
• * * • 

0 
Q O Q Q Q Q Q Q Q Q Q Q Q O Q Q Q Q Q Q Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q 

—' UJ ^ U - 1 U> l/l i£) —> UJ U l Nl W - ' U Ul U - 1 U> LTl ID —1 LO l/l vi) —1 

Cluster 

Figure 22: This figure shows a parallel boxplot which displays the distribution of values for the feature 

"Positive Signal Energy" for each cluster in the dataset. 
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Value Distribution per Cluster of the Feature "Left Spike Angle" 
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Figure 23: This figure shows a parallel boxplot which displays the distribution of values for the feature 

"Left Spike Angle" for each cluster in the dataset. 

Value Distribution per Cluster of the Feature "Right Spike Angle" 
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Figure 24: This figure shows a parallel boxplot which displays the distribution of values for the feature 

"Right Spike Angle" for each cluster in the dataset. 
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Value Distribution per Cluster of the Feature "Spike Width" 

n n o n n n n n n o n Q Q n n n Q Q Q n n n n o n n n Q Q n n n n Q n n 
c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c 

J ^ J L J 1 ^ j l c - * U J U i ^ l i i J - ' U i U i ^ J i O - * U > U n - - J i O - * l > J i / i - - J v o - * i > J L n x j i o - 1 

Cluster 

Figure 25: This figure shows a parallel boxplot which displays the distribution of values for the feature 

"Spike Width" for each cluster in the dataset. 

Value Distribution per Cluster of the Feature "NEO Coefficient Min" 
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Figure 26: This figure shows a parallel boxplot which displays the distribution of values for the feature 

"NEO Coefficient Min" for each cluster in the dataset. 
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Value Distribution per Cluster of the Feature "PCA 1" 
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Figure 27: This figure shows a parallel boxplot which displays the distribution of values for the feature 

"PCA 1" for each cluster in the dataset. 

Value Distribution per Cluster of the Feature "PCA 2" 
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Figure 28: This figure shows a parallel boxplot which displays the distribution of values for the feature 

"PCA 2'' for each cluster in the dataset. 
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Value Distribution per Cluster of the Feature "PCA 3" 
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Figure 29: This figure shows a parallel boxplot which displays the distribution of values for the feature 

"PCA 3" for each cluster in the dataset. 

Value Distribution per Cluster of the Feature "PCA 4" 
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Figure 30: This figure shows a parallel boxplot which displays the distribution of values for the feature 

"PCA 4" for each cluster in the dataset. 

43 


