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1. Introduction 

Back in 2007, when we started the research for the 
needs of this thesis, there was a limited number of 
implementations which could enable an effective and 
energy-efficient use of Graphics Processing Units 
(GPUs). There were many publications describing the 
new, fast implementations of algorithms on Central 
Processing Unit (CPU), but there was a gap and very 
high demand for improvements of current algorithms 
that were primarily designed for CPUs that time (even 
though there were also some solutions for specialized 
processors such as FPGA, DSP, etc.). Based on very 
high computational potential of G P U , we have decided 
to utilize it on behalf of general-purpose computing on 
graphics processing units (GPGPU) - focusing on 
computer vision and image processing algorithms. These 
pixel-based applications are very well suited to G P G P U 
technology. 

We have selected a set of existing and successfully 
implemented algorithms with good performance results 



and optimized them for G P G P U . The whole research 
was divided into three areas: 

• Speed-up of real-time object detection 
algorithms using C U D A ; 

• Optimizations of spectral image analysis 
algorithms; 

• Modifications of real-time line detection 
algorithm (Hough transform). 

G P G P U makes a significant impact affecting wide 
range of application domains, such as weather 
forecasting, fluid-flow, or molecular dynamics. 
Algorithms that we were focusing on, can find an 
application on the field of computer vision, physics, 
astronomy, medicine and many others. 

2. Real-Time Object Detection 

Object detection, having a wide range of 
applications, was in 2001 subject of research for Viola 
and Jones [1], who introduced very successful face 
detector which was combining boosting, Haar low-level 
feature calculated on integral image, and a focus-of-
attention cascade of classifiers. The detector provided a 
precision of detection high enough for practical 
applications. Success of Viola and Jones encouraged 
further research in similar approaches and resulted in a 
great number of modifications to this original detector. 

Real-time object detection and boosting its 
performance, is a very costly task from the 
computational resources point of view. M y inputs to this 
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research were two proposed C U D A implementations 
that were promising to be more efficient from various 
points of view such as portability, maintenance, speed-
ups, and time consumption during the development. It 
was then compared to, except others, shader solution 
(which was the closest solution to C U D A ) . This was 
shown to have complicated drawing of geometric 
primitives on the "screen" to control the object detection 
process. 

To be able to perform both implementations, the 
knowledge of weak classifiers was beneficial. 
Knowledge of weak classifier cascade enabled me to 
conform distribution of computation capacity between 
different parts of G P U , what is explained further in this 
section. 

The following paragraphs describes in detail 
particular functional blocks of algorithms that I was 
focusing on. Initially I have taken into account two facts: 

• the classifier was operating on one fixed-size 
window; and that 

• the execution of the classifier on different 
locations of the input image was parallel. 

2.1 Loading and Representing the Classifier Data 

I was experimenting with placement of the classifier 
data in shared, constant and texture memory; and tried to 
balance all access of whole algorithm into units of 
texture memory and constant memory. 

The placement into the shared memory required 
pre-loading it upon start of each block from another 
location, what made this solution the least efficient 
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solution. Two other options (texture memory or constant 
memory) seemed to be performing equally well, so 
storing the classifier in constant memory was preferred 
in order to offload the texturing units which were used 
for accessing the pyramidal image. 

Although the access would have been slightly 
simpler if the data was stored in texturing memory of 
C U D A environment; the experiments showed that the 
overall detection times are better when the classifier data 
is stored in the constant memory. This was mainly 
because the image was stored in texturing memory and 
was heavily accessed, so off-loading the access to 
classifier data to the constant memory relieved a system 
bottleneck. 

The constant memory (as well as texturing memory) 
was cached and the referencing to the classifier data 
exhibited a large locality of reference - all the threads 
were typically processing the same weak classifier. 

2.2 Input Image Pre-Processing 

To be able to detect the object in different scales, 
the image must have been scanned in multiple 
resolutions. The common approach benefited from the 
ability of Haar wavelets calculated using the integral 
image to be evaluated in arbitrary scales in constant 
time. The L R F features could have been evaluated in a 
similar manner as well, but experiments showed that 
especially on the graphics card, it was notably more 
efficient to construct a multi-resolution pyramid from 
the input image, and scan it by the detector. See Figure 1 
for the illustration of how the pyramid was built. I used 
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constant colour filling to eliminate empty spaces by 
classifier itself. 

(a) Original image (b) Multi-res pyramid 

Figure 1: Multi-Resolution Pyramid Constructed from the Input Image. 

Also, I didn't need to pre-process image for various 
feature sizes, because I choose to rely on the 
combinations l x l , 1 x 2 , 2 x 1 and 2 x 2 of the 
sampling function, what allowed nice performance 
improvements. Thanks to built-in texture sampling with 
bilinear interpolation on the usable graphics cards, sums 
of 2 neighboring pixels in vertical or horizontal direction 
or sum of four neighboring pixels consumed the same 
amount of time as sampling just one source pixel. 

2.3 Object Detection 

M y main goal in this subtask was to divide whole 
work into small tasks for threads as efficiently as 
possible. Threads were consuming hardware resources: 
registers and shared memory what was limiting the 
number of threads that could have been efficiently 
executed in a block (both the maximal and minimal 
number of threads). 
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One thread could also perform the task of smaller 
granularity (e.g. one or more weak classifiers), but that 
would imply too much the inter-thread communication. 
Image pixels (or window locations, more precisely) were 
therefore divided into groups, which were calculated by 
the threads. The final solution divided image into 
rectangular tiles, which were solved by different thread 
blocks. Experiments showed that the suitable number of 
threads per block was around. 

However, executing blocks for only 128 pixels of 
the image would not have been efficient, so we chose 
that one thread wil l calculate more than one pixel - a 
whole line of pixels in the rectangular tile (Figure 2). 
One thread was computing one or more locations of the 
scanning window in the image. The tile could extend 
over the whole width of the image, or just a part of it. 
Total number of pixels processed by one thread block 
was limited proportionally to the size of the shared 
memory. 
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Figure 2: Remaining Candidates for Positive Response after 10 Weak 
Classifiers. 
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When object was recognized at window position, 
the coordinates were written to the global memory. To 
avoid collisions of concurrently running threads and 
blocks, atomic increment of one shared word in the 
global memory was used for synchronization. 

I have also studied the influence of C U D A block 
width size. The results shown that bigger block reduced 
the computation time, because it lowered the number of 
blocks necessary, and since the number of blocks is 
always integer and the blocks must share the same 
dimensions in C U D A , block widths that were equal or 
slightly higher than integer fractions of the image width 
were desired. For a particular application a proper block 
width must have been found in accordance with these 
rules. 

2.4 Thread Rearrangement 

In case of branching, the threads were split into 
groups in accordance to the variant of code they were 
executing, and the groups of identical execution paths 
were run separately from other groups. Threads were 
organized into warps and remained in a warp until their 
end. 

The weak classifier cascade thresholds were set as 
Wald proposed in the sequential probability ratio test, 
which he proved was the fastest possible classification 
strategy for a given target error rate. Due to desired 
focus-of-attention capability of WaldBoost, some 
threads terminated with negative decision earlier than 
others, but the warp continued to evaluate until the very 
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last thread terminated. This led to relatively low 
utilization of the hardware resources. 

To address this issue, I proposed thread 
rearrangement: at some stage of the classifier, all 
locations in the image that have not been classified as 
negative were written into a memory block shared 
between the threads, and another phase of the 
classification was started (that processed only these 
locations). This rearrangement could have been 
performed several times during the whole classification 
process. 

The intermediate positive (more accurately not-yet-
negative) samples were stored into the shared memory 
of the multiprocessor similarly as the final detections 
were written to the global memory, as described above. 
The exact count and locations of the rearrangement steps 
needed to be determined experimentally. 

Generally, the major influence of the 
rearrangements was during the beginning of the 
classifier, because the most of the locations were 
dropped out very early and only a small fraction of 
computational load remained to the further stages. 
Determining optimal thread rearrangement stages must 
have been done experimentally based on knowledge of 
classifier discrimination characteristic. Scanning 
window locations needed to be rearranged several times 
during the classifications to better use the hardware 
resources. In our environment, no more than three 
rearrangements were worth doing. M y experiments 
confirmed that the 1 s t rearrangement matters the most, 
because it rearranged a large number of threads. The 
optimal points for rearrangement were notably different 
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for classifiers trained with different parameters - the 
shown experiment therefore did not result into fixed 
rearrangement spots, but rather illustrated the process of 
optimization for a given classifier. 

There are many efficient image processing C U D A 
implementations that use the shared memory for storing 
the processed image. The shared memory is very fast 
and is dozens of kilobytes large - tiles of the processed 
image can be loaded into it, and processed by thread 
blocks. I have tried variants of this arrangement and 
experiments I have performed showed that using the 
texture memory was more efficient. The texturing units 
performed bilinear interpolation between neighbouring 
pixels, which could have been used for evaluation of 
LRP . Most importantly, when using the texturing 
memory, the execution was as fast as when using shared 
memory (apparently because the bottleneck was in the 
calculation, not memory access), and the shared memory 
remained spared for other helpful purposes, as was the 
thread rearrangement described above. 

I have also tried several arrangements, where the 
threads were assigned the work dynamically, so that 
when the evaluation at one location terminated, the 
thread "asked for" another location in the image and 
processed it. The idea was that the work unit would not 
be one location in the image, but one weak classifier. 
The control required by this arrangement, and especially 
the need to synchronize the threads seemed to be too 
complex and these attempts were much slower than the 
finally achieved solution with the thread rearrangement 
(although some threads were still idle). 
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3. Spectral Image Analysis 

M y research achievements boosting the spectral 
image analysis performance can be divided into two 
parts: 

• Principal component analysis 
• Non-negative tensor factorization 

3.1 Principal Component Analysis 

The topic of the problem has been revealed from the 
start-up project Optical sensor technology in medical 
applications of the University of Eastern Finland. 

Using modern computer technology, the P C A can 
be used on very large data sets where its utilization has 
previously been unthinkable, and it can also be used in 
real-time applications. 

This research was motivated by the need of using 
P C A on spectral images in the context of real-time 
medical imaging. 

Generally, in the case of spectral imaging, the 
dimensionality of the input data was not high 
(commonly 6-81 channels) but the number of samples 
(i.e. number of pixels in image or video) was large -
millions to billions. Existing solutions (e.g. [2] [3] [4] 
[5]) did not exactly suit this purpose and this unique 
situation must have been covered by a particular 
solution. 

M y research assumed that the dimensionality of the 
data was relatively low, so the computation of 
eigenvectors, addressed by the mentioned works, was 
relatively cheap. It was the computation of the co-
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variance matrix, which was costly for the considered 
data, and my goal was to accelerate the algorithms 
presented in this part of the research. 

In the presented approach I was considering spectral 
dimensionality from 6 to 81 channels. M y goal was to 
search for the best possible three-component vector 
space that could represent the spectral information in the 
image, and then visualize the obtained information in the 
R G B colour space. 

Result of my work was effective computation of the 
correlation matrix (Equation 1). 

R = - S S T 

m 
1 ^ "> ^ 

= — / A S ^ ) • • • Si(^n)} [Si(Xl) • • • Si(\n)] 
i 

m 
i 

Equation 1 

I had to consider minimal number of C U D A blocks and 
also the minimal number of C U D A threads for best 
usage of available G P U resources. The number of 
C U D A blocks and its usage was not such a problem to 
overcome, as the number of C U D A blocks should be the 
same as number of multiprocessors in G P U . Bigger 
problem was the arrangement of threads when spectral 
image didn't have so many recorded wavelengths and we 
needed at least -100 threads to run [6]. To overcome this 
problem I came with a solution where threads were 
divided into groups - chunks p (Figure 3) and each 
group processed another part of St (Equation 1). 
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Figure 3: Example of one CUDA block thread arrangement for PC A correlation 
matrix computation. 

Threads in the same group iterated and accumulated 
results in one chunk of pixels (Algorithm 1, step: 6) for 
pre-computed [u,v] coordinates. These pre-computed 
coordinates also reflected symetricity of the output 
matrix. 

Require: block number b € {0,... ,B — 1}, input image pixels S j , Vi 6 {0,... ,m — 1} 
RPC 

Ensure : ^ S(bRPC+i) 
1=0 

l : a «- 0 
2: for each thread t € {0...., T — 1} determine: 

u, v - coordinates within the matrix s, 
p - index of matrix computed in parallel with others 

3: for r = 0 to R - 1 do 
4: read pixels S(bni>c+rPC+i)^i € {0,.... PC — 1} by T available threads 
5: _syncthreads() 

c 1 

6: for each thread a <- a + ̂  S((,fipc+rPC+pC+c)(A„)s(i,fipc +rPC+pC+c)(Aw) 
<=o 

7: __syncthreads() 
8: end for 

9: threads < £ {0,..., |n(n— 1) — 1} sum up P corresponding (by pair u,v) accumulators 

Algorithm 1: Correlation matrix contribution of each block. 

In the initialization phase of each repetition 
(Algorithm 1, step: 4), all threads loaded all chunks of 
pixels, which they wil l process, to shared memory. After 
initialization and synchronization, processing phase 
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began with thread arrangement mentioned above (each 
thread processed specified coordinates [u,v], threads 
were divided into groups, and all threads traversed over 
specified number of pixels C. 

Another problem was that we could not load enough 
pixels of Si into the shared memory and utilize each 
C U D A thread block as much as possible. To overcome 
this problem, I made algorithm to repeat with another set 
of pixels r (Figure 3). 

At the end of C U D A block algorithm, we needed to 
summarize all threads which have the same [u,v] 
coordinates, but different groups of pixels st. To resolve 
this problem, I used a tree summation. 

This approach helped us to utilize G P U to 
maximum and as we measured the results, we found that 
the biggest issue in this case was the speed of memory. 

3.2 Non-Negative Tensor Factorization 

NTF have various fields of usage, but the 
dimensionality of these problems is often so high that 
NTF computations takes hours, so the acceleration of 
this process was desirable. M y N T F research was 
focused on the efficient G P U implementation for general 
iterative NTF computation by gradient descent, based on 
Gauss-Seidel and Jacobi methods [7], using the C U D A 
programming environment. The aim was to decompose 
the problem into parts that can be calculated in parallel. 
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Require: the input G (size fix S x T), the method rank K, and the iteration count I 
Ensure: the output vectors u, v and w 

Init u, v and w 
M„ <- CMAT(u) 
M.„ <- CMAT(v) 
Mw <- CMAT(w) 
for i G { 0 , 1 } do 

u <- STEP t l (G, u, v, w, M„, M„) 
M„ <- CMAT(u) 
v <- S T E P v ( G , u , v , w , M „ , M U ) ) 
M„ <- CMAT(v) 
w <- STEP W (G, u, w, M„, M„) 
M u , <- CMAT(w) 

end for 
return u, v and w 

Algorithm 2: Structure of NTF algorithm 

As the baseline for my algorithm (Algorithm 2) I 
have used Hazan's et al. [7] iterative rules (Equation 2). 

Ysm=l U T (ymi yk) ( U ' m 7 w k ) 

k Vi S r i ^ r t i t t U r W t 
Vi i K 

22m=l V T (um> uk) (wmi w k ) 

u Wi E r , s Gr)S^UrVs  

Wi i K 

Equation 2 

M y goal was to divide those rules/equations to 
smaller tasks, which could be parallelized. The first 
opportunity for parallelization were temporary matrices 
Mu , Mv, and Mw (Equation 3), created by inner product 
of vectors u , v and w . The second one was the 
numerator of Equation 2, which was the most significant 
time-consuming part of the whole NTF computation. 
The numerator calculation consisted mostly of repeated 
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summing of the large array, so it was more demanding 
for memory bandwidth than computationally intensive. 

M 
( u ( 2 ) ; u « ) 

( u W , u ( J ° ) \ 

( u < 2 \ u W ) 
u 

Equation 3 

After analysis of the iterative formulas, I came with 
an effective division of the numerator summing part for 
threads (Algorithm 3). Instead of calculating each value 
of vector u and v resp. w independently and after that 
traverse all K layers in the same manner, which wil l 
cause memory bandwidth problems, I calculated whole 
set of values for each layer in vector in one pass. High 
demand for memory bandwidth was solved by lowering 
the number of reads from G matrix. 
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Require: G , u, v, w, M u , M„ 
block index t, th read indices i, j 

Ensure: new i te ra t ion w' 
1: a[k,i,j] ^ 0 , V A ; e {0,...,K-1} 
2: for x E { 0 , . . . , § - 1}, y € { 0 , . . . , § - 1} do 
3: if i < K then 
4: Cu[i,j] + XN] 
5: Cv[i,j] <- v[i, j +yN] 
6: end if 
7: __sync th reads () 
8: e ̂  G[i + xNJ + yN] 
9: for k e { 0 , . . . , K - 1} do 

10: a[fc, i, j ] f- a[fc, + eCu[k, i]Cv[k,j] 
11: end for 
12: end for 
13: __sync th reads () 

JV-l iV-l 
14: a[fc,0,0] <- ̂ 2^2a[k,i,j],Vh e {0,... ,K - 1} 

i=0 j=0 
15: «— i + JjV 
16: if A; e { 0 , . . . , K - 1} then 

, r , i w[/,:,tlQ[fc,0,0l 
17: w ' M H ^ 

E ™ = J w[m, t]Mu[fc, m]M,[fe, m] 
18: end if 
Algorithm 3: Computation Done by One Thread Block. 

The algorithm depicted on Figure 4 starts with a 
straightforward solution, where each C U D A block 
computes one U[ (resp. v ? , w ? ) value from Equation 2 for 
whole set of layers K . Than the calculation was divided 
into independent tiles of G , so every tile was covered 
with AfxAf threads ( 5x5 or 16x16 for better tree 
summation), which calculated one summation per one 
vector layer k , and stored it in array of accumulators a . 
This traversed G only once, and reduced whole needed 
bandwidth. In the next step the whole set of threads 
moved to next tile, and accumulated new sums to a of 
each thread. 
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R 

Figure 4: NTF algorithm overview 

Parts of vector u and v resp. w, corresponding to the 
working tile, were cached in the shared memory. This 
gave us a big performance speed-up, because each 
element of these cached parts was accessed many times. 
The reason why tiling is performed is that it was not 
possible to fit whole vectors with all layers into fast 
shared memory. 

After traversing all tiles, tree summations were used 
for final result and then summed by tree summations [8] 
to form K values. After all tiles are processed by all 
C U D A blocks, the whole set of values for output vector 
is formed. 

With this design of algorithm, up to lOOxspeed-up 
was achieved. 

17 



4. Real-Time Line Detection 

Standard Hough transform was known to be too 
slow to be usable in real time. M y task within this part 
of the research was again the optimization and 
implementation of the proposed algorithm suitable for 
computer systems with a small but fast read-write 
memory, such as today's graphics processors. As we 
knew that currently available algorithm was working 
with large amount of data, what was hard (or almost 
impossible) to be processed in real-time in GPUs, we 
needed to design an algorithm that would suit these 
limited but fast resources. 

To achieve real-time performance, the memory 
requirements must have been limited to the shared 
memory of a multiprocessor. Following sections are 
concluding my main achievements within the area of 
C U D A boosting. 

C U D A version proposed by me was several times 
faster (Figure 5, Figure 6) than the commonly used 
OpenCV implementation (parallelized to utilize the 8 
cores of the processor) and achieved real-time or nearly 
real-time speeds. The real-life image test showed that 
the proposed algorithm implemented on commodity 
graphics hardware could detect lines at interactive frame 
rates. 
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Figure 5: Performance Evaluation on Synthetic Binary Images. 
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Figure 6: Performance evaluation on real-world images. 
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4.1 Small Read-Write Memory of Accumulators 

The first part of my idea was storing just a small 
part of Hough space. M y goal was to fit Hough space 
into small shared memory of a multiprocessor. I have 
observed that just a small part of Hough space would be 
enough for maxima detection performed in next steps. 

The new algorithm stored only HQX n accumulators 
(see Figure 7), where n was the neighborhood size 
required for the maxima detection. The memory 
necessary for containing the n lines was all the memory 
required by the algorithm and even for high resolutions 
of the Hough space, the buffer of n lines fitted easily in 
the shared memory of the G P U multiprocessors. Whole 
scheme worked on principle of shifts by one or more 
rows, where the new row/rows were accumulated. Thus 
only the buffer of n lines was being reused. The memory 
shift was implemented using a circular buffer of lines to 
avoid data copying (Algorithm 4). 

Processed 

Maxima detection 

Next line for processing 

Hi* n 

Delete old line 
and replace 
with new line 

e 

Going to process 

i l l l l l l l l l l l l l l l l l 

Figure 7: Small Read-Write Memory of Accumulators. 
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Require: Input image I w i t h dimensions Iw,Ih, Hough space dimensions Hg,Hg, 
neighborhood size n 

Ensure: Detected lines L = {(#1, Qi),...} 
1: P <r- {(x, y)\x E { 1 , . . . , Iw} A y E { 1 , . . . , Ih} A I(x, y) is an edge} 
2: H(g,i) ^Oyge {l,...,Hp},Vi E { I n] 
3: for a l l i E {1, • • •, n} do 
4: for a l l (x, y) E P do 
5: increment H(g(i:x7y),i) 
6: end for 
7: end for 
8: L ^ { } 
9: for 9 = [ f 1 to 7/fl - LfJ do 

10: L < - L U S {1, . . . /f e } A (£, [ f ]) is a high local max. in H} 
11: for ?' = 1 to n — 1 do 
12: < - f f ( e , i + i ) , V e e { i , . . . , / / _ 0 } 
13: end for 
14: / f(^,n) <- 0,\/g E {1 , . . .,He} 
15: for a l l (a:, y) E P do 
16: increment H{g{9 + \^],x,y),n) 
17: end for 
18: end for 

Algorithm 4: HT accumulation strategy using a small read-write memory. 

In the case, when the runtime system had faster 
random-access read-write memory, this memory could 
be fully used, and instead of accumulating one line of 
the Hough space, several lines were accumulated and 
then scanned for maxima. This led to further speed-up 
by reducing the number of steps carried out by the loop 
over 6. 

4.2 Harnessing the Edge Orientation 

The second part of my idea was special edge 
orientation harnessing. Instead of accumulating all 
points from set P, only those points which fell into the 
interval with radius w around currently processed 6 were 
processed and accumulated into the buffer of n lines. 

21 



The edge extraction phase sorted the detected edges 
by their gradient inclination 0, so that loops did not visit 
all edges, but only edges potentially accumulated, based 
on the current 6. This basically increased the efficiency 
of point look-up. 

First of all I have detected the edges and their 
orientation. Consequently I have had to sort the edges 
and for each group of them, count the number of edges 
that fell into that particular group. Groups were set to be 
split into specified width. Width of each group was 
based on our Hough space 6 resolution. 

For rough sorting of the edges on G P U , an efficient 
prefix sum was used [9]. Based on these prefix sums I 
have allocated the buffer, and this buffer was then filled 
with edges in accordance with their orientation (Figure 
8). When the buffer was prepared, it was used for filling 
Hoxn accumulators. Finally, the rest of the algorithm 
was left in the original manner. 

0°-10° 10°-20° 20°-30° 30°-... 

I I I I I I I I I I I I I I I I I I I I I I I I I I I " I 

0 64 145 220 

Figure 8: Example of Sorted Edge Buffer. 

5. Conclusion 

Research performed on C U D A architecture gave us 
lot of chances for algorithm improvements. Evaluations 
done within research assignments presented in this thesis 
showed us the real performance benefits. 
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Gained speed-up was not as high as could have been 
expected from the rough computational power of the 
G P U in comparison with C P U , but this was mainly due 
to nature of the algorithms, which did not match the 
requirements of C U D A and G P U environment in 
general. 

As demonstrated by the measurements carried out 
within the research, a computer equipped with one or 
more graphics boards with powerful GPUs, can process 
a multiple video signals in high resolution in real-time. 
Using the G P U technology would therefore find its 
application in surveillance and other real-world 
industrial tasks. 

Eight articles in total - evaluating performance of 
L R D , LRP, P C A , NTF, Hough transform and parallel 
coordinates algorithms - have been produced during the 
research, together with four products in form of 
dynamically linked library and M A T L A B plug-ins. 
Those have been developed by the group of my 
colleagues participating on this research. 

The experimental implementation of the Local Rank 
Functions (namely LRD) image feature using C U D A 
G P G P U environment [10] [11] [12] [13], leaded to the 
conclusion that the L R D is a vital low-level image 
feature set, which outperforms the commonly used Haar 
wavelets (especially in case of higher resolutions) in 
several important measures, and that fast 
implementations of object detectors and other image 
classifiers, should consider the L R D as an important 
alternative. Hardware-accelerated implementations 
speeded-up the baseline L R D implementations more 
than by order of magnitude. Measurements have also 
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shown that the performance on the GPUs was equal for 
C U D A and G L S L programming. 

Two optimized algorithms of PC A computation [14] 
achieved speed-ups that allow processing of high-
resolution images with several color channels (both 
common R G B and spectral images) in real-time. 

Research of optimized implementation of an 
efficient N T F algorithm for G P G P U computation 
achieved around 60x - lOOx speed-up compared to a C 
implementation compiled by an optimizing compiler 
running on a state-of-the-art computer. These results 
were considered to be outstanding, when taking into 
account that Zhang et al. [15] reported their speed-up by 
adding further nodes was capped at about 7x. 

Other positive results were achieved in study of 
modified algorithm for line detection using the Hough 
transform based on 6 - Q parameterization [16]. The 
experiments showed that on commodity graphics 
hardware, the algorithm can operate at interactive frame 
rates even on high-resolution real-life images, while 
accumulating to a high-resolution Hough space to 
achieve accurate line detections. While the algorithm 
was designed for G P U processing, it outperformed the 
standard HT implementation even on the C P U , thanks to 
better cache usage of the new accumulation scheme. 

Finally, the last, but not least significant 
improvement was achieved in study of an algorithm 
based on the PClines parameterization [17], which 
allowed real-time computation of the "full" Hough 
transform on high-resolution images. Measurement 
showed that the GPU-accelerated algorithm achieved 
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interactive (or faster) detection times even for images of 
really high resolutions. 

Considering the fact that C U D A is much more 
intuitive and compatible to standard C language 
programming, C U D A was a good selection for 
exploiting graphics hardware for non-rendering tasks, 
such as object detection, spectral image analysis or line 
detection. 
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