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A B S T R A C T

This thesis focuses on data structures for sparse block matrices and the associated

algorithms for performing linear algebra operations that I have developed. Sparse

block matrices occur naturally in many key problems, such as Nonlinear Least

Squares (NLS) on graphical models. NLS are used by e.g. Simultaneous Localiza-

tion and Mapping (SLAM) in robotics, Bundle Adjustment (BA) or Structure from

Motion (SfM) in computer vision. Sparse block matrices also occur when solving

Finite Element Methods (FEMs) or Partial Differential Equations (PDEs) in physics

simulations.

The majority of the existing state of the art sparse linear algebra implementations

use elementwise sparse matrices and only a small fraction of them support sparse

block matrices. This is perhaps due to the complexity of sparse block formats

which reduces computational efficiency, unless the blocks are very large. Some

of the more specialized solvers in robotics and computer vision use sparse block

matrices internally to reduce sparse matrix assembly costs, but finally end up con-

verting such representation to an elementwise sparse matrix for the linear solver.

Most of the existing sparse block matrix implementations focus only on a sin-

gle operation, such as the matrix-vector product. The solution proposed in this

thesis covers a broad range of functions: it includes efficient sparse block matrix

assembly, matrix-vector and matrix-matrix products as well as triangular solving

and Cholesky factorization. These operations can be used to construct both direct

and iterative solvers as well as to compute eigenvalues. Highly efficient algorithms

for both Central Processing Units (CPUs) and Graphics Processing Units (GPUs) are

provided.

The proposed solution is integrated in SLAM ++, a nonlinear least squares solver

focused on robotics and computer vision. It is evaluated on standard datasets

where it proves to significantly outperform other similar state of the art imple-

mentations, without sacrificing generality or accuracy in any way.

K E Y W O R D S

Nonlinear least squares; numerical methods; sparse block matrix; general purpose

computations on graphics processing units.
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A B S T R A K T

Tato práce se zaměřuje na datové struktury pro reprezentaci řídkých blokových

matic a s nimi spojených výpočetních algoritmů, jež jsem navrhl. Řídké blokové

matice se vyskytují při řešení mnoha dílčích problémů jako například při řešení

metody nejmenších čtverců. Nelineární metoda nejmenších čtverců (NLS) je často

aplikována v robotice pro řešení problému lokalizace robota (SLAM) nebo v

příbuzných úlohách 3D rekonstrukce v počítačovém vidění (BA), (SfM). Problémy

konečných elementů (FEM) a parciálních diferenciálních rovnic (PDE) v oboru

fyzikálních simulací můžou také mít blokovou strukturu.

Většina existujících implementací řídké lineární algebry používají řídké matice

s granularitou jednotlivých elementů a jen několik málo podporuje řídké blokové

matice. To může být způsobeno složitostí blokových formátů, jež snižuje rychlost

výpočtů, pokud bloky nejsou dost velké. Některé ze specializovaných NLS op-

timalizátorů v robotice a počítačovém vidění používají blokové matice jako in-

terní reprezentaci, aby snížily cenu sestavování řídkých matic, ale nakonec tuto

reprezentaci převedou na elementovou řídkou matici pro implementaci k řešení

systémů rovnic.

Existující implementace pro řídké blokové matice se většinou soustředí na jedi-

nou operaci, často násobení matice vektorem. Řešení navržené v této disertaci

pokrývá širší spektrum funkcí: implementovány jsou funkce pro efektivní ses-

tavení řídké blokové matice, násobení matice vektorem nebo jinou maticí a nechybí

ani řešení trojúhelníkových systémů nebo Choleského faktorizace. Tyto funkce mo-

hou být snadno použity ke řešení systémů lineárních rovnic pomocí analytických

nebo iterativních metod nebo k výpočtu vlastních čísel. Jsou zde popsány rychlé

algoritmy pro hlavní procesor (CPU) i pro grafické akcelerátory (GPU).

Navrhované algoritmy jsou integrovány v knihovně SLAM ++, jež řeší prob-

lém nelineárních nejmenších čtverců se zaměřením na problémy v robotice a

počítačovém vidění. Je provedeno vyhodnocení na standardních datasetech kde

navrhované metody dosahují výrazně lepších výsledků než dosavadní metody

popsané v literatuře – a to bez kompromisů v přesnosti či obecnosti řešení.

K L Í Č O VÁ S L O VA

Nelineární metoda nejmenších čtverců; numerické metody; řídké blokové matice;

obecné výpočty na jednotkách grafických akcelerátorů.
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1
I N T R O D U C T I O N

Many applications of numerical methods in many scientific disciplines can benefit

from efficient implementations of linear algebra kernels. There are many imple-

mentations that provide comparable functionality, often providing standard Basic

Linear Algebra Subprograms (BLAS) or Linear Algebra Package (LAPACK) interfaces

that helped a great deal for linear algebra package development using a simple set

of state-less C or Fortran functions. These functions are divided into several groups

(or levels) by their complexity; L1 contains the linear time functions on vectors, L2

contains quadratic time matrix-vector functions and L3 contains cubic time func-

tions on matrices.

With the advent of C++, modern object-based interfaces with focus on intuitive-

ness, ease of use and safety became available. But that is not the only thing the

object-based design has to offer: techniques such as expression templates can help

fuse the computation kernels and reduce unnecessary data movement. The proce-

dural and object-oriented approaches are not mutually exclusive: an efficient BLAS

implementation can be conveniently wrapped in an expression templates interface.

Parallel implementations of BLAS kernels are the obvious next step to increase

performance. Although the technologies are evolving constantly and Moore’s law

promises bigger Central Processing Units (CPUs) every year and a half, this no Bigger,

referring

to a higher

number

of transis-

tors – not

faster! That

would be

a common

misconcep-

tion about

Moore’s

law.

longer goes hand in hand with increasing clock frequencies. The era of constant

increases in frequency and of architectural improvements that made newer CPUs

faster “for free” is over. The performance is now obtained from parallelism, which

requires effort also on the side of the algorithms and data structures.

While consumer multicore processors have been available since the early 2000s,

the industry has not made major strides in the meantime – today’s chips still have

only up to 22 cores1 in a single package. However, other architectures are available.

One of those is the Graphics Processing Unit (GPU).

GPUs have been steadily gaining complexity for the past few years. Fueled by

the massive entertainment industry, they provide relatively cheap performance. At

first, they could only be utilized for computation by hacking the graphics pipeline.

Later, specialized interfaces for general purpose computation on Graphics Process-

ing Units (GPGPU) emerged that make it easier to leverage their performance for

nongraphics applications, including linear algebra. GPU is a streaming-oriented ar-

1 E.g. a 22 core Xeon E5-2696 v4 released in April 2016, priced at $4100.
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chitecture that focuses on raw processing power with thousands2 of relatively sim-

ple cores organized in three tier hierarchy, with only a very small amount of cache

available (hence streaming). The memory subsystem is also highly optimized as

the memory resides directly on the GPU and cannot be changed or upgraded the

way the CPU memory can.

Other architectures include e.g. Intel’s Many Integrated Cores (MIC) architecture

with hundreds3 of cores based on updated Pentium designs. Although the cores in

different architectures are hardly comparable, this gives some idea about the levels

of parallelism attainable on a modern workstation.

1.1 dense and sparse problems

Although seemingly very simple, the implementation of dense operations on mod-

ern hardware is not straightforward, if it needs to be done efficiently. This is due

to the complexity of the CPUs in use today, which have a rather complex memory

subsystem [48] with several levels of cache, support for paging and an autonomous

prefetcher. There are also very fast Single Instruction Multiple Data (SIMD) instruc-

tion sets for arithmetics, with their own complicated rules.

To illustrate this with an example, a simple matrix product of the form A ·B will

run several times faster if A is first transposed, even at the cost of copying and

reordering the data. To limit the amount of temporary storage and to otherwise

aid the memory subsystem, dense routines are often blocked, meaning that the op-

eration is not performed on the entire matrix at once but the matrix is divided into

several blocks that are processed individually. High-performance implementations

such as the Goto BLAS [69] focus on fine-tuning the sizes of blocks to match various

machine limits (in this case the size of the Translation Look-aside Buffer (TLB)).

For certain applications, the matrices have a substantial portion of zero entries.

Using dense matrix algorithms would be a waste of both memory and computa-

tion – that is where the sparse linear algebra comes in (and of course also sparse

BLAS). For sparse algorithms, the matrix is represented in such a way that only

the non-zero entries are stored and the computation can be performed efficiently

both in terms of storage and the ratio of the arithmetic operations to the rest of the

algorithm. Sparse algorithms are typically much more complicated compared with

the dense algorithms, due to the necessity of matching the non-zero entries that

interact in the given operation and at the same time forming the sparse structure

in case the result is a matrix. Efficient sparse algorithms are usually a fine mix of

numerical methods and graph theory. There is a certain threshold of useful sparsity

2 E.g. NVIDIA Titan X introduced in May 2015 has 3072 cores and sells for about $1500.

3 E.g. Xeon Phi 7120A released in April 2014 with 61 cores costs about $4000.
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beyond which it is better to just represent the matrix as a dense matrix, from the

performance point of view.

To illustrate the difficulty in implementing efficient sparse operations, e.g. sparse

matrix-vector multiplication algorithms often run at one tenth of the peak hard-

ware performance [173] and the situation can be even worse for the matrix-matrix

multiplication [16, 38]. This is due to irregularity of memory accesses and various

other overheads. At the same time, those algorithms are typically much harder to

adapt for hardware acceleration.

1.2 focus of the thesis

The general objective of this thesis is to identify a suitable class of problems and

to propose a computation acceleration scheme. However, the topic of application

of GPGPU to accelerate linear algebra is too wide to specify a clear research goal.

Rather than pursuing fast implementations of a few randomly chosen algorithms,

this thesis examines a particular class of applications that are commonly solved

using numerical sparse linear algebra.

Several estimation problems fall into this category. In general, an estimation

problem finds an optimal configuration of a set of variables given a vector of their

initial values and a set of relations between those variables. If represented using a

graph, the nodes in the graph are given by the variables to be estimated and the

edges are the relations between those variables.

It is common to use tools such as graphical models to capture the structure This thesis

will refer

to FG for

represent-

ing the

estimation

problems.

FG is a

bipartite

graph

where

both the

relations

and the

variables

in the

estimation

are vertices.

and dependencies of the estimation problems. Bayes Nets (BNs), Markov Random

Fields (MRFs) or Factor Graphs (FGs) are commonly used for this purpose. While

BNs are linked to the generative aspects and explicitly show the dependencies of

the variables in solving the problem, MRFs and FGs better capture the structure and

the connection with the underlying linear algebra, in particular the matrices.

A condition for the problem to be sparse is that each of the variables must only

relate to a small subset of the other variables. This translates into an underlying

graph with a low maximum degree.

Examples of such problems can be found in robotics and computer vision.

Simultaneous Localization and Mapping (SLAM) estimates the pose of a robot in

conjunction with the map of the environment from various sensor measurements.

Similarly, Bundle Adjustment (BA) or Structure from Motion (SfM) in computer vi-

sion estimate the camera parameters together with the 3D structure observed from

different locations of the same or different cameras.

These problems have been widely studied in the past decades, yet the compu-

tational complexity is still an open issue. A SLAM problem in general grows with
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(a) (b) (c)

Figure 1.1: Examples of approximately block matrices from the University of Florida

Sparse Matrix Collection [39], specifically in the DIMACS10 dataset [147], a) an

approximate block matrix with scattered nonzero elements, b) a block matrix

with unaligned blocks, and in the Oberwolfach dataset [110], c) an approximate

block matrix with overlapping blocks. Note that the block boundaries (in red)

are only suggested – not a part of the original matrices.

every step the robot takes, and for long runs (several days of robot operation) this

can become intractable using limited computational resources on board a robotic

platform. Similarly, reconstructing a large 3D environment using a BA algorithm

may involve millions of variables.

To handle the inherent sensor noise, those problems are formulated in a proba-

bilistic framework. Maximum Likelihood Estimation (MLE) is a way to incorporate

noise models into the estimation problem. In general, those models are nonlinear

(e.g. the motion model of a robot involves rotations, vision problems work with 3D

projective geometry). Under the assumption of Gaussian noise, MLE has an elegant

Nonlinear Least Squares (NLS) solution.

NLS problems are typically solved numerically, and that requires calculating

derivatives to linearize the problem locally and then solve the resulting system

of linear equations. In the above problems, each of the variables only has a lim-

ited number of relations to the others. In consequence, the Jacobian matrices ob-

tained by calculating derivatives of the functions relating the estimated variables

are sparse. Furthermore, those Jacobian matrices have a direct connection to the

incidence matrix of the underlying graph. Similarly, the adjacency matrix corre-

sponds to the Hessian matrices.

Another important characteristic of such problems is the fact that the variables

are often multivariate, e.g. a 3D robot pose may have six Degrees of Freedom

(DOFs) (three for position and three to represent the orientation), a landmark three

DOFs. This structure appears implicitly in the resulting system matrices, where the

elements corresponding to each variable can be conceptually grouped into blocks,

giving rise to sparse block matrices.
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Figure 1.2: An example of a randomly generated sparse block matrix composed of 31

blocks, 3× 3 elements each, used in testing operations on block matrices.

A block matrix is a matrix that is conceptually partitioned into blocks. A block

matrix can have either an exact block pattern or an approximate one where scat-

tered nonzero entries are allowed, as in Figure 1.1a. Another distinction is the

presence of unaligned or overlapping blocks – whether the conceptual edges of a

block could intersect those of another block, as in Figure 1.1c.

While approximate block patterns are sometimes employed to limit the required

communication bandwidth in parallel algorithms [140, 164], this work relates to

exact block patterns such as in the matrix in Figure 1.2. While one may object that

such matrices are rare, the opposite is true. In Figure 1.3, there is a plot of the

distribution of matrix nonzeros between elementwise and block matrices in the

University of Florida Sparse Matrix Collection [39]. To generate it, the algorithm

from [146] was employed to discover block structure in the matrices. The hori-

zontal axis of the plot is given by the percentage of nonzeros of each given matrix

residing in blocks of at least three elements. Although the number of block matrices

is somewhat lower than that of sparse matrices, this plot shows that the majority

of the data in this dataset is in fact in block matrices.

The focus of this thesis is to propose new algorithms and implementations to

accelerate linear algebra operations in NLS problems with a sparse, block structure.

A new data structure is proposed to benefit highly from the block structure and

incremental nature of those problems, when iteratively calculating the solution of

an NLS. Furthermore, the possibilities of GPU acceleration are explored. The thesis

shows that the proposed methods supersede all existing implementations in this

direction and generate state of the art algorithms for problems such as SLAM and

BA or SfM.

The proposed solutions can also benefit other fields. In addition to the estimation

problems described here, there are other problems with inherent block structure,



6 introduction

1E+0

1E+9

2E+9

3E+9

4E+9

5E+9

6E+9

0
%

5
%

1
0
%

1
5
%

2
0
%

2
5
%

3
0
%

3
5
%

4
0
%

4
5
%

5
0
%

5
5
%

6
0
%

6
5
%

7
0
%

7
5
%

8
0
%

8
5
%

9
0
%

9
5
%

1
0
0
%

M
at

ri
ce

s 
(w

e
ig

h
te

d
 b

y 
N

N
Z)

 

Percentage of Matrix NNZ in Blocks 

Figure 1.3: Distribution of data between elementwise and block sparse matrices in the Uni-

versity of Florida Sparse Matrix Collection [39].

such as Finite Element Methods (FEMs) or Partial Differential Equations (PDEs) in

physics simulations which also have an underlying graph and a block structure,

Lapped Orthogonal Transforms (LOTs) in image processing have a particular block

structure. In addition, a number of methods exist [50, 51, 140, 90, 173, 175] to

consolidate general sparse matrices into block matrices, making acceleration of

problems without inherent block structure also possible.

1.3 contributions

The main contributions of my work described in this thesis are the following:

novel data structure for sparse block matrices : In this dissertation,

an analysis of sparse matrix operations useful in NLS solving is presented.

Based on this analysis, a novel data structure for sparse block matrices was

designed. This also required implementation of efficient operations on those

new matrices.

a new approach to loop unrolling : The arithmetic operations on the pro-

posed sparse block matrices are optimized by loop unrolling (sometimes also

referred to as register blocking). This was done using novel C++ constructs,

based on BLAS kernel specialization using information about the input ma-

trices that is available at compile-time. This block matrix implementation is
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one of a very few implementations that support matrix factorizations also on

matrices with multiple block sizes.

fast nls solver based on block matrix schemes : The proposed block

matrix scheme was demonstrated in a realistic scenario of NLS solving. Even

without any algorithmic improvements on the solver part, the block matrix

operations already give a significant performance advantage over the state of

the art solvers while operating in batch mode. Batch refers

to solving

the entire

problem at

once, while

incremental

refers to

solving

only a

small

part of

the problem

initially

and then

adding

more vari-

ables and

constraints

and solving

again, in

incremental

fashion.

fast algorithms for incremental solving : Incremental solving was also

investigated, and although the proposed block scheme offers some advan-

tages, such as fast matrix modification when new constraints need to be

integrated into the system, a basic Gauss-Newton solver cannot compete

with the state of the art incremental solvers, despite being implemented effi-

ciently. Two new methods for incremental solving are proposed, an algebraic

method, which only takes advantage of elementwise sparse factorizations

and a method taking advantage of the block approach, based on a novel

algorithm called resumed Cholesky factorization and the corresponding algo-

rithm for incremental variable reordering which keeps the incremented factor

sparse.

new algorithms for schur complement : A novel variable ordering based

on cliques in the underlying graph was proposed, which yields some sort of

a supernodal Schur complement. It offers advantages when solving with a

dense linear solver (e.g. on a GPU). It can provide significant memory savings

by reducing the size of the dense part, as well as promoting parallelism and

cooperative CPU-GPU processing in inverting the block diagonal parts.

Incremental Schur complement equations were derived and benchmarked,

yielding notable speedups and at the same time requiring modest amounts

of memory.

fast method of covariance recovery : While estimating the mean of the

observed variables is the central role of MLE, estimating the covariances can be

equally important for some applications, yet it is often neglected by the state

of the art implementations. Blockwise formulation of covariance recovery

alone yields significant speedups compared with the state of the art.

A novel method for incremental covariance update was also proposed, yield-

ing up to two orders of magnitude speedups and thus offering covariances

at a cost comparable to that of a direct solver. The precision of incrementally

calculated covariances is on a par with batch methods. An elegant variant of
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update by downdate further reduces storage requirements in practical solver

implementations while not sacrificing any of the performance.

fast covariance recovery for schur-complemented systems :

Complexities of covariance recovery in Schur-complemented systems

are also investigated and efficient methods are proposed to recover the

covariances of both the variables in the diagonal part and in the complement,

observing up to an order of magnitude speedups when compared with the

blockwise recursive formula.

Finally, the selected operations were implemented to run on a GPU, which is

novel because block matrices were not widely attempted on GPUs. In the devel-

opment of these implementations, improved algorithms for parallel sorting and

sparse matrix-matrix multiplication on a GPU were developed.

All of the contributions (and more) form the basis of SLAM ++, a high-

performance NLS solver based on sparse block matrices, focused especially

on efficient incremental estimation (hence the ++, which means increment

in the family of C languages). SLAM ++ is freely available under the MIT

license and has been downloaded more than 3500 times from its website

http://sf.net/p/slam-plus-plus/ so far.

1.4 structure of the thesis

The next chapter serves a brief introduction into the NLS problems and their ap-

plications, along with their characteristics. The applications discussed have sparse

structure and Chapter 3 gives an overview of commonly used and also some rele-

vant but less used sparse matrix formats. Chapter 4 describes the state of the art

NLS solver packages while also focusing on the matrix representation and numeri-

cal algorithms.

In the following part of the thesis, Chapter 5 describes the proposed novel sparse

block matrix storage and the algorithms for performing allocation as well as nu-

merical operations with matrices in this format. Chapter 6 describes the use of

this new format in a batch NLS solver for SLAM problems. Real online problems in

robotics, among others, require incremental solving which is described in Chap-

ter 7. Some classes of problems, e.g. BA and SfM in computer vision, can be solved

more efficiently using Schur complement, which is the topic of Chapter 8. Chap-

ter 9 shows how covariance of the variables can be estimated, in addition to the

mean, and briefly summarizes what are the uses for such covariances.

In the final part which opens with Chapter 10, the sole focus is on the accel-

eration of the algorithms on the GPU. Specifically, Chapter 11 describes efficient

http://sf.net/p/slam-plus-plus/
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sorting algorithm for GPUs and Chapter 12 describes fast sparse matrix multiplica-

tion. Those two elementary kernels allow acceleration of the algorithms proposed

in the second part by removing their main bottlenecks and the results are summa-

rized in Chapter 13.

The thesis concludes with Chapter 14. The appendix contains some implemen-

tation details of the block format proposed in the second part.

1.5 math notations

This text makes use of various more or less standard mathematical notations. This

section briefly revises the used conventions. Vectors are denoted by small bold

letters, e.g. v is a scalar but v is a vector. Matrices are denoted by capital Latin or

Greek letters, e.g. A and Λ are matrices. Matrices (and as a special case also vectors)

which are logically partitioned to blocks are denoted by bold capital Latin or Greek

letters, e.g. Σ is a matrix but Σ is a matrix where the elements are matrices.

To assemble a (column) vector, one writes c = [1; 2; 3] while to assemble a row

vector, one writes r = [1, 2, 3]. By an extension, A = [1, 2; 3, 4] is the same as:

A =

 1 2

3 4

 .

Similarly, a block vector can be initialized as J =
[
∂r
∂θ , ∂r∂ι , ∂r∂κ

]
where the expres-

sions for the elements yield matrices (since r, θ, ι and κ are all vectors), or more

expressively as J = [A,B,C] (where A, B and C are clearly matrices).

In some cases, a need arises to access elements of the matrices and vectors. To

access an element of a vector, a subscript is used, e.g. vi is the ith element of this

vector. In some cases, this is similar to a scalar with a subscript in which case

the v would be typeset in regular. Cases of a vector with a subscript which is not

an index should be clear from the context (but the text mostly alerts the reader

when that occurs). To select a range of elements of a vector, Matlab notation is

used, so that vi:j refers to a vector formed by concatenating [vk | ∀k : i ¨ k ¨ j].

For convenience, vi:end refers to a vector formed by concatenating [vk | ∀k : i ¨ k].

Similarly, to get an element of a matrix, it is possible to use Ai,j which selects an

element at row i and column j (note the use of the comma separating i and j). To

select an entire row of a matrix, it is possible to use Ai,∗ where the asterisk reads

as “any column”. The same is also possible for columns, e.g. A∗,i. It is possible to

select ranges of elements, the same way as in vectors: Ai:j,k:l selects a rectangular

region of rows i through j and columns k to l. Similarly, Ai:end,k:end selects the

bottom right corner of the matrix. Combinations with asterisk are also permitted,

e.g. Ai:j,∗ selects a range of rows.
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In some cases, the matrices are partitioned to logical sections (but other than the

blocks referred to before), for example a matrix Λ can be seen as:

Λ =

 Λ11 Λ12

Λ21 Λ22

 ,

where the Λij refers to a logical section of the matrix. Note that there is no comma

separating the indices. At the same time Λk,l refers to an element at row i and

column j (or a block element if Λ were bold). For some Λk,l, it generally cannot

be determined whether the element is e.g. in Λ11 or any other section unless the

sizes of the sections are specified. This notation is used almost exclusively with

numbers for the indices (rather than variables). This notation is sometimes also

used for vectors where it is again aliasing with the element access but the meaning

is made clear in such instances.

As far as indices are concerned, the algorithms and listings use zero-based

indexing since that is more natural and usually leads to shorter index expres-

sions. On the other hand, most of the math formulas will use one-based index-

ing as that is the de-facto norm. Indexing operations take precedence before ma-

trix operations denoted by the superscript, such as transpose or inverse, so e.g.

Λ>21 = (Λ21)
> 6=

(
Λ>
)
21

.

In the description of the incremental solvers, there are instances of a variable

from the previous time frame and from the next time frame coexisting together.

This is denoted using the hat symbol, e.g. after an update, A becomes Â.

In the description of linear solving techniques, linear solving is denoted using

the backslash operator, e.g. for a linear system Λx = b with x being the unknown,

solving is denoted x = Λ \ b. This is especially applied to triangular systems

which can be solved by backsubstitution, but the operator is general and can be

applied to any system. The same operator is sometimes used in literature to denote

Schur complements – but not in this thesis, in order to avoid confusion.



Part I

B A C K G R O U N D

This part describes methods for nonlinear optimization and their appli-

cations, which in part serve as the motivation for proposing the accel-

erated data structures and algorithms in the latter parts of this thesis.





2
L E A S T S Q U A R E S M E T H O D S A N D T H E I R A P P L I C AT I O N S

The following chapters describe nonlinear least squares on graphical models and The term

“graphical

model”

refers to

a config-

uration

where the

estimated

variables

comprise

vertices of

a graph,

with the

constraints

being the

edges;

typically

such

graphs

are far from

being fully

connected.

approaches to finding their solutions efficiently. Practical problems which are usu-

ally solved using least squares are discussed and their particularities are pointed

out. As the graph structure is usually quite sparse, it is suitable to represent it us-

ing a sparse matrix. The commonly used sparse matrix representations are listed,

along with their advantages. Finally, state of the art least squares solvers are de-

scribed, along with their own novel solutions to matrix representations and solving.

This chapter comprises the foundation for the requirements from the linear algebra

point of view.

2.1 nonlinear least squares

Probabilistic methods have been extensively applied in robotics and computer vi-

sion to handle noisy perception of the environment and the inherent uncertainty

in the estimation. There is a variety of solutions to the estimation problems in to-

day’s literature. Filtering and Maximum Likelihood Estimation (MLE) are among

the most used in robotics. Since filtering easily becomes inconsistent when applied

to nonlinear processes [160], MLE gained a prime role among the estimation solu-

tions. In Simultaneous Localization and Mapping (SLAM) [45, 95, 106, 98] or other

mathematically equivalent problems such as Bundle Adjustment (BA) [4, 105] or

Structure from Motion (SfM) [14], the estimation problem is solved by finding the

MLE of a set of variables (e.g. camera/robot poses and 3D points in the environ-

ment) given a set of observations. Assuming Gaussian noises and processes, the

MLE has an elegant Nonlinear Least Squares (NLS) solution.

In practice, the initial problem is nonlinear and it is usually addressed by repeat-

edly solving a sequence of linear systems. The linear system can be solved either

by matrix factorization or gradient methods. The latter are more efficient from the

storage point of view, since they only require access to the gradient, but they can

suffer from poor convergence, slowing down the execution. Matrix factorization,

on the other hand, produces more accurate solutions and avoids convergence dif-

ficulties but typically requires a lot of storage.

In this context, the estimation problem is formulated as a maximum likeli-

hood estimation of a set of variables θ = [θ1 . . . θn] given a set of observations

13
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z = [z1 . . . zm]. Two basic modes of operation can be distinguished. The batch op-In here,

online

refers to

some degree

of real time

processing,

perhaps

even on

board a

robotic

platform.

eration consists of obtaining a bulk of initial values of the variables and a bulk

of measurements which specifies the task to be solved and solving it until conver-

gence. This is useful especially in the offline applications. On the other hand, the

estimation has to be done incrementally in an online application; at every step new

variables and the associated measurements are integrated into the system and a

new solution is calculated.

In this section, we briefly show how the MLE problem is formulated and solved

using NLS. The joint probability distribution can be written as:

P (θ, z) ∝ P (θ0)

n∏
z

P
(
zk | θik , θjk

)
, (2.1)

where P(θ0) is the prior and zk are the constraints between the variables θik andFor sim-

plicity of

the nota-

tion, the

constraints

in this

formulation

are binary.

Unary

or hyper-

constraints

are also

sometimes

needed.

θjk . The goal is to obtain the MLE of a set of variables in θ, given the available

observations in z:

θ∗ = argmax
θ

P(θ | z) = argmin
θ

(
− log(P(θ | z))

)
. (2.2)

For every measurement zk = hk
(
θik , θjk

)
− vk, the noise vk is assumed to be nor-

mally distributed, with zero mean and covariance Σk:

P
(
zk | θik , θjk

)
∝ exp

(
−
1

2

∥∥hk (θik , θjk
)
	 zk

∥∥2
Σk

)
, (2.3)

where hk
(
θik , θjk

)
is the nonlinear measurement function, zk are the measure-

ments, 	 is the vectorial inverse composition operator. Note that binary measure-

ments are assumed here but measurements of any degree can be combined at will.

Setting Σ = I yields ordinary nonlinear least squares, otherwise weighted NLS are

obtained. Finding the MLE from (2.2) is done by solving the following NLS problem:

θ∗ = argmin
θ

(
1

2

m∑
k=1

∥∥hk (θik , θjk
)
	 zk

∥∥2
Σk

)
. (2.4)

Gathering all residuals in r(θ) = [r1, . . . , rm]> where rk = hk
(
θik , θjk

)
	 zk

and gathering the measurement noise in Σ = diag
([
Σ1, . . . , Σm

])
, the sum in (2.4)

can be written in the vectorial form and expressed in terms of a L2-norm:∥∥r (θ) ∥∥2
Σ

= r> (θ) Σ-1r (θ) =
∥∥∥Σ->/2r (θ)

∥∥∥2 . (2.5)

Iterative methods, such as Gauss-Newton are often used to solve the NLS in (2.4).

This is usually addressed by repeatedly linearizing the problem, solving the ob-

tained linear system and updating the estimate. Linear approximations of the non-

linear residual functions around the current estimate θi are calculated as:

r̂
(
θi
)

= r
(
θi
)
+ J
(
θi
)(
θ	 θi

)
, (2.6)
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with J being the Jacobian matrix which gathers the derivatives of the components

of r(θ). With this, the NLS in (2.4) is approximated by a linear one and solved by

successive iterations:

δ∗ = argmin
δ

1

2
‖Aδ−b‖2 , (2.7)

where the matrix A and the vector b are defined [45] as:

A , Σ-1/2J (2.8)

b , −Σ-1/2r. (2.9)

The correction δ , θ	 θi towards the solution is obtained by solving the linear

system:

A>Aδ = A>b , (2.10)

where we define the information matrix Λ , A>A and the right hand side (r.h.s)

η , A>b. The linear system becomes:

Λδ = η , (2.11)

and is commonly referred to as the normal equation. The particular state of θi for

which the derivatives in J are computed is referred to as the linearization point. In

order to obtain the solution of this linear system, it is common to apply matrix

factorization, followed by back-substitution. The Cholesky factorization of the ma- Cholesky

factor-

ization

requires

the matrix

to be a

symmetric

positive

definite one,

which holds

for the LS

matrices.

trix Λ has the form R> R = Λ, where R is an upper triangular matrix with positive

diagonal entries. The forward and back-substitutions on R>d = η and R δ = d first

recover d and then the actual solution δ. Alternatives to the Cholesky factorization

in the form of RDR> or LU decomposition do not offer great advantages in solving

the normal equation while being slightly slower.

Alternatively, the normal equation in (2.11) can be skipped and QR factorization

can be applied directly to the matrix A in (2.7), yielding A = QR. The solution δ

can be directly obtained by back-substitution in Rδ = Q-1η where Q-1 = Q> as Q

is orthogonal. Note, that Q is not explicitly formed; it is commonly represented

using either the Householder reflections or the Givens rotations instead.

After computing δ, the new linearization point becomes θi+1 = θi ⊕ δ, with ⊕
being the vectorial composition operator. The nonlinear solver iterates until the

norm of the correction becomes smaller than a tolerance or the maximum number

of iterations is reached. This is essentially the Gauss-Newton algorithm.

The process of assembling and solving very large linear systems can become

very expensive as the size of the problem grows. The employed data structure has

to allow both, efficiently re-building the system every time a new linearization

point is available and high speed arithmetic operations.
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2.1.1 Avoiding Local Minima

The process of solving nonlinear least squares is not always guaranteed to reach theWhile the

methods

described

here are

attempting

to avoid

local

minima,

reaching

the global

minimum

is not

guaran-

teed – they

are just

more robust

against

getting

trapped

in a local

minimum.

global minimum and indeed the convergence depends on both the initialization of

the variables [28] and on the optimization method employed. Some domains such

as estimation on nonlinear manifolds contain plentiful local minima [157, 87] and

more robust methods should be used, e.g. Levenberg-Marquardt [125] or Dog-

leg [141] algorithms. The quality of the solution is directly proportional to the sum

of squared Mahalanobis norms of the residuals:

χ2 =
1

|z|− |θ|− 1

m∑
k=1

∥∥rk∥∥2Σk , (2.12)

where |z| is the dimension of the measurements and |θ| is the dimension of the

variables; this quantity indeed approaches chi-squared distribution.

The Levenberg-Marquardt [125] adds a damping factor λ to the least squares

formulation, so that (2.10) becomes:

(Λ+ λI)δ = η or (2.13)

(Λ+ λdiag(Λ))δ = η , (2.14)

where either an identity matrix I or the diagonal of Λ are used as an additive

damping. Setting λ = 0 yields Gauss-Newton solution. Conversely, setting λ→∞
yields a solution which approaches the steepest gradient descent direction while

the step size approaches zero. There are different strategies for choosing the damp-

ing factor which also depend on the choice of the damper. For equation (2.13),

λ may be chosen as a product of a carefully chosen constant (e.g. 10−5) and the

maximum absolute value of the diagonal elements in Λ [118].

The χ2 is calculated before and after the linearization point change and based

on its increase or decrease the damping is either increased to yield a smaller op-

timization step in order to avoid stepping into a local minimum or decreased in

order to speed up convergence, respectively.

The Dogleg algorithm which was first described by Powell [141] uses a slightly

different method to implement the same strategy. It is possible to calculate:

Λ δGN = η and δsd ≈ η , (2.15)

both the Gauss-Newton step and also the direction of the steepest descent step at

the same time. To get the exact value of the steepest descent step, one needs to

calculate the appropriate scaling factor:

δsd = αη , (2.16)

α =
‖η‖2

‖Jη‖2
. (2.17)
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At this point, the trust region radius ∆ is defined, which serves a similar purpose

as the damping parameter λ in the Levenberg-Marquardt algorithm. This radius

effectively sets the step size, and also affects the step direction, according to:

δdl =


δGN if ‖δGN‖ ¨ ∆

δsd
∆
‖δsd‖

if ‖δGN‖ © ∆

δsd +β(δGN − δsd) otherwise ,

(2.18)

where β is chosen so as to make the step size ‖δdl‖ equal to ∆. This gives rise

to a quadratic equation where the single root of interest can be recovered using a

simple analytic solution (while taking care to avoid a loss of precision):

c = δ>sd (δGN − δsd) (2.19)

β =


−c+

√
c2+‖δGN−δsd‖2(∆2−‖δsd‖2)

‖δGN−δsd‖2
if c ¨ 0

∆2−‖δsd‖2

c+
√
c2+‖δGN−δsd‖2(∆2−‖δsd‖2)

otherwise,
(2.20)

and thus the Dogleg step can be calculated and taken. Similarly as in Levenberg-

Marquardt, the trust region radius is modified based on the improvement of the

solution once the step has been taken.

The famous study of Lourakis et al. [115] shows that for vision problems, Dogleg

converges faster than Levenberg-Marquardt while giving solutions of the same

quality. In addition to that, Dogleg is appealing from the incremental solving point In incre-

mental

solving,

we will

attempt

to only

update the

variables

which are

changing.

Altering

the entire

diagonal of

the system

matrix

would

require re-

calculating

much more.

of view, as it does not require modification of the system matrix by damping which

would impede incremental factorization updates. Similarly, Dogleg is favorable if

not only the state mean but also state covariance is needed; then the factorization

can be inverted whereas in Levenberg Marquardt, a second factorization without

the damping needs to be formed first.

2.1.2 Dealing with Outlier Measurements

In some problems, perhaps especially in computer vision, a situation often arises

that some of the measurements introduced into the system are not affected by nor-

mal distributed noise, as assumed in (2.3) but rather a few of them have a signifi-

cantly larger error. It is possible to introduce additional variables to the optimized

system, which decide on the validity of the measurements [163]. Alternatively, it is

possible to calculate the weights directly, without any additional variables as in [1]

or by the use of standard robust estimators.
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Table 2.1: A few of the commonly used robust functions. Note that a, b and c are constant

parameters of the individual functions (i.e. not the same variable).

loss function ρ(u) score function ψ(u) = ∂ρ(u)
∂u

Ordinary LS 1
2u
2 u

Huber [88]


1
2u
2 if |u| ¨ a

1
2a(2|u|− a) otherwise


1 if |u| ¨ a

a sign(u) otherwise

Cauchy [83] a2

2 log
(
1+

(
u
a

)2) u

1+(ua)
2

Tukey [15]


a2

6

(
1−

(
1−

(
u
a

)2)3) if |u| ¨ a

a2

6 otherwise


u
(
1−

(
u
a

)2)2 if |u| ¨ a

0 otherwise

Hampel [78]



1
2u
2 if |u| < a

a|u|− 1
2a
2 if a ¨ |u| < b

a
c|u|− 1

2u
2

c−b − 7
6a
2 if b ¨ |u| < c

a(b+ c− a) otherwise



u if |u| < a

a sign(u) if a ¨ |u| < b

a
c sign(u)−u

c−b if b ¨ |u| < c

0 otherwise

The appealing property of robust estimators or M-estimators [88, 78, 162] (maxi-

mum likelihood type estimators) is their simple integration into the ordinary non-

linear least squares framework. In fact, NLS is a special case of an M-estimator:

θ∗ = argmin
θ

(
m∑
k=1

ρ
(
hk(θik , θjk)	 zk

))
, (2.21)

where the loss function ρ(·) happens to be the L2 norm or in case of (2.4), a squared

Mahalanobis norm. To construct a more robust estimator, rather than to minimize

the sum of squares which gets easily carried away by squares of outlier errors, it

would be better to minimize e.g. the L1 cost. Unfortunately, L1 in particular is not

differentiable and a slightly different approach needs to be taken: e.g. Huber [88]

uses L2 norm for small errors to avoid problems with calculating the derivatives

around zero but replaces its tails with that of appropriately scaled L1 norm so as

to avoid discontinuities. Many other cost functions were proposed in the literature,

some of them are listed in Table 2.1.

In order to be able to meaningfully set the parameters of any particular robust

function, the relative efficiency of an estimator is defined as the ratio of variances:

e(T1, T2) =
E
(
(T2 −θ)

2
)

E
(
(T1 −θ)

2
) , (2.22)

where T1 and T2 are two estimators to be compared. Typically, an estimator T1
would be compared to a least squares estimator T2 as that is the most efficient one.
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If the efficiency is unity for all θ, the estimator is considered efficient. To set the

robust function parameters, one typically aims at 95% efficiency. E.g. for Huber’s

function this corresponds to setting a = 1.345, for Cauchy a = 2.385, for Hampel

(a,b, c) = (1.393, 2.787, 5.573) with c = 2a+ b and for Tukey it is a = 4.685.

Another problem in robust estimation is scale dependence; two problems with

variables of different magnitude will behave differently in (2.21) and this problem

is solved by adding a scale parameter:

θ∗ = argmin
θ

(
m∑
k=1

ρ

(
hk(θik , θjk)	 zk

s

))
. (2.23)

Now by setting an appropriate scale s, it is possible to obtain robust treatments for

problems of any scale. Otherwise, it would be possible for all the measurements to

be misclassified as inliers if the scale was very small, or conversely as outliers if it

was very large.

Therefore, the choice of s has large implications on the robustness of the estimate.

It can be determined a-priori from the knowledge of the sensor characteristics or E.g. for

vision

problems,

the outlier

threshold

can be

a fixed

amount in

pixels.

from the type of problem that is being solved. Alternatively, it is possible to use

one of generic algorithms for estimating the scale. A popular procedure is Median

Absolute Deviation (MAD) which is calculated as:

MAD =
m

median
k=1

( ∣∣hk(θik , θjk)	 zk
∣∣ ) =

m

median
k=1

(
|rk|
)

, (2.24)

and the scale is then set as:

s = 1.4826MAD , (2.25)

where the constant factor is intended to give unity scale for data with errors

following the N(0, 1) distribution. An alternative to MAD was proposed by Hu-

ber [161, 88].

Finally, once the scale is known, it is possible to solve the robust estimation

problem in (2.23) by collecting all weightswk =
ψ(uk)
uk

where uk = rk
s in a diagonal

matrix W = diag(w1, . . . , wm) and writing the linearized form of the problem:

A>WA δ = A>W b . (2.26)

Note that this is very similar to (2.11), with the exception of the introduction of

the weight matrix W, in addition to measurement weights in Σ. This leads to the

Iteratively Reweighted Least Squares (IRLS) algorithm where first the weights in W

are calculated, then the system in (2.26) is solved, the linearization point becomes

θi+1 = θi ⊕ δ and the process repeats until either the norm of δ approaches zero

or the maximum number of iterations is exceeded.
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2.2 simultaneous localization and mapping

SLAM is a central problem in robotics and relates to navigation of a robot which

at the same time builds the map that it uses to determine its location and to plan

further movement [144], both the location and the map being unknown initially.

There are many formulations of SLAM, to some degree dependent on the sensor

used, the representation of the map and the underlying method for dealing with

sensor noise. The most common sensor types include range finders (e.g. LIDAR,

RGBD or time of flight cameras or sonar) and monocular, stereo or spherical cam-

eras, GPS, IMU, as well as various combinations of those.

Kalman Filtering (KF) is an efficient method for dealing with noisy measure-

ments of a linear variable. However, problems in robotics and computer vision

are highly nonlinear due to projections and rotations and rather than baseline KF,

its extensions are commonly used. Extended Kalman Filter (EKF) is a nonlinear

version of KF which uses a linear approximation around the current linearization

point, and has been popular in SLAM literature [35, 54, 43, 109].

One disadvantage of EKF is lower precision or even divergence, if the underlying

model is highly nonlinear. For that, Unscented Kalman Filter (UKF) uses a sampling

approach [92] in order to calculate the mean and the distribution of the estimate

more accurately. Several SLAM approaches were formulated using UKF [119, 32, 84,

86], yielding a better run time and consistency than that of EKF-based approaches.

Information Filter (IF) is another variation where information matrix, the inverse

of the state covariance matrix, is being propagated. The advantage is in simple

integration of new observations as the information is additive, leading to more

accurate estimates and higher stability. One disadvantage of IFs is the need to invert

the information matrix often but despite that, IFs are relevant in SLAM [165, 166, 57].

Particle filtering is a popular method based on Monte Carlo sampling. It is very

simple to implement and can inherently handle multiple hypotheses. The posi-

tion of the robot (the estimated variable) is represented by a set of particles which

are uniformly distributed initially, as the robot position is unknown. At each step,

robot control commands are applied to all the particles which are then re-sampled

using the posterior distribution of particle positions conditioned by map observa-

tions. The particles typically quickly converge to one or more clouds (hypotheses)

where the robot could be located. FastSLAM and its variants [124, 145, 10, 100] are

archetypal representatives of particle filter implementations.

The major disadvantage of filtering approaches is that they discard the infor-

mation once it has been ingested by the filter and they fix the linearization point.

As such, they can become inconsistent over time. A process in which both the

poses and the map are retained and optimized jointly is sometimes referred to as
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Figure 2.1: Example of a) pose and b) landmark SLAM; θ1 . . .θ4 are the poses of the robot,

θ5 . . .θ8 are positions of the landmarks and zikjk are the observations.

smoothing (as opposed to filtering) or Smoothing and Mapping (SAM) [45]. It has

been observed that the SLAM forms a graph [9] where the optimized variables are

the nodes and the observations are edges. By optimizing this graph, one obtains

globally consistent maximum likelihood set of robot poses and also maximum like-

lihood map. Graph SLAM [167] is an unifying framework which solves the problem

by variable elimination, which effectively amounts to sparse matrix factorization

and standard NLS method can be used.

There are literally hundreds of extensions of this method, Pose Graph SLAM be- The poses

can be

represented

e.g. as

R4×4

matrices

and the

landmarks

can be e.g.

R3 vectors

calculated

from corner

points in

the images

or similar

corner-like

features in

the laser

scan (the

famous

Victoria

Park [133]

dataset

uses tree

trunks).

ing notable in that the result is only the trajectory of the robot and the map is either

represented implicitly or not recovered at all, see Figure 2.1a. Conversely, Land-

mark SLAM recovers the trajectory of the robot, along with positions of the land-

marks in the environment, a similar example is given in Figure 2.1b. Perhaps also

interesting from the point of view of this thesis are the ones that relate to explicit

distributed processing, such as Tectonic SLAM [131] or similar approaches [132, 99].

In this thesis, several novel highly efficient SLAM algorithms using the Graph

SLAM formulation will be described, which previously appeared in [PŠI+13b,

PŠI+13a, PIŠ+
13b, IPŠ+

15].

2.3 bundle adjustment and structure from motion

Bundle Adjustment (BA) and Structure from Motion (SfM) are computer vision

problems in which the 3D reconstruction of the scene is calculated. A typical sparse

3D reconstruction pipeline consists of several stages: first, visual features [116] are

extracted from the images which are then matched using approximate nearest

neighbor search [126] and subsequently pruned using Random Sample Consen-

sus (RANSAC) along with geometric estimation [134]. Depending on the scale of

the problem, the matching can be either done in all-to-all manner or hierarchi-
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(a) (b)

Figure 2.2: Graph of the Venice dataset a) edges connecting one of the cameras to the ob-

served landmarks, b) the matrix of the entire dataset, with all the camera ver-

tices ordered first. Note that each nonzero is inflated so as to be visible. There

is deliberately space left between the border and the matrix, to be able to better

see the fine arrow-like pattern.

cally using approximate clustering first and then fine grained matching within the

clusters [4]. The camera poses are given by relative transformations between theThe relative

pose of two

cameras

can be

calculated

either from

discrete

feature

points

e.g. by

solving the

perspective

three point

(P3P)

problem

[61], or

by mini-

mizing a

photogram-

metric error

directly on

the images.

matched images, the landmark positions are given by triangulation of the matched

feature points. Because of different sources of errors, the initial geometric estimate

tends to be rather noisy and simply concatenating the calculated pose transforma-

tions and triangulating the observed feature points as they come would quickly

diverge catastrophically. Therefore, one more crucial step is employed: the nonlin-

ear optimization.

Both BA and SfM deal with noise much like SLAM, to which these problems are

mathematically equivalent. Although the matters are perhaps more complicated,

we refer as BA to problems dealing with unstructured databases of images – often

from multiple different cameras with potentially unknown parameters and as SfM

to problems of reconstruction from an ordered sequence of images from a single

moving camera – possibly a video-sequence of smooth motion. This makes the

two different from the image track processing point of view but very alike from

the optimization point of view.

The distinguishing trait that sets BA apart from SLAM is the space where the error

is minimized: in SLAM, the space in which the measurements (and thus the error)

is defined is the same as that of the poses. On the other hand, in BA, the error of

the reprojection in 2D image space is minimized while the poses and landmarks

exist in 3D space.

Most of the 3D reconstruction implementations work incrementally: only one

or a few frames are integrated at a time, followed by a BA step. Bundle adjust-
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ment finds the MLE of the camera poses and the structure, given the observations

and is most commonly solved using nonlinear least squares optimization. To solve

the nonlinear least squares, Conjugate Gradient (CG) or a direct solver can be em-

ployed. While CG is often claimed as a linear cost algorithm [26, 57] it usually takes

more iterations of the nonlinear solver to converge, being effectively slower than

direct methods [169]. Other approaches [169] are possible. This also

depends on

the precon-

ditioning

of the

system, an

advanced

topic which

is not

discussed

here as

this thesis

relates

more to

direct

solvers.

The seminal paper [113, 114] describes design and implementation of an efficient

BA package called SBA with the basic traits shared by most of the other implemen-

tations. The problem is formulated as a Levenberg-Marquardt [125] nonlinear least

squares optimization. It makes use of the problem sparsity: not all of the points

are observed by all of the cameras and the system graph is usually far from being

fully connected. It also makes use of the characteristics of the BA problem which

typically contains a relatively large amount of landmarks that have no relations

among themselves (from the graphical point of view, they form a large indepen-

dent set, or – if there are no connections among the cameras either – the entire

graph is bipartite). As seen in Figure 2.2b, this gives rise to diagonal sub-matrices

that make the underlying linear problem easier to solve using the Schur comple-

ment [178] techniques, as opposed to applying a general linear solver directly to

the whole matrix.

Photo tourism [155] is an application of BA to building sparse reconstructions

from unstructured collections of photographs for the purpose of interactive nav-

igation in such collection. It makes use of the EXIF image tags to get the intrin-

sic camera parameters rather than solving an uncalibrated problem. The camera

poses are primarily used for photo placement in the user interface while the sparse

structure is rendered as textured points (rather than performing triangulation), op-

tionally in non-photo-realistic mode. Two techniques for view interpolation for

animated transitions are suggested.

Using unstructured photograph collections from the Internet allows for ex-

tremely large scale 3D reconstruction [4]. The problems that need to be tackled

exist both in the vision part of the reconstruction pipeline as well as in the BA opti-

mizer. In the vision part, the feature matching becomes the bottleneck, as it scales

withO(n2) in the number of images and hierarchical matching is proposed to solve

the problem both more efficiently and in parallel. Agarwal et al. [4] implement two

optimization strategies which are selected based on problem size. The first one is a The authors

actually do

not specify

which one

is used

for small

problems.

block diagonal preconditioned Conjugate Gradient (CG) solver. The second one is

rather similar to SBA, with the difference that unlike in SBA [113, 114] where the

Schur complement is solved using dense LDL> factorization, a sparse Cholesky

factorization is employed here to gain up to an order of magnitude speedup for

large systems where the Schur complement is quite sparse. Similar speedups were

reproduced by e.g. [105].
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To further accelerate the optimization part, it is possible to employ paralleliza-

tion. CG solvers are parallelized easily, as they basically only require parallel imple-

mentation of sparse matrix-vector multiplication routine [176]. For direct solvers,

distributed optimization techniques were proposed [130] where the problem is

split into several sub-problems with minimal graph separators that are solved inde-

pendently, followed by a separator optimization pass. Such methods can be easily

used for parallelization on clusters.

Parameterizations taking advantage of the incremental solving were proposed as

well. In [153], relative camera and pose formulation is employed, rather than using

a single global Euclidean coordinate frame. After adding a new camera pose and

the associated observations, it is possible to find the variables where this addition

induced a significant change and only a reduced system consisting of those vari-

ables and their neighbors is solved. The size of the system that needs to be solved

is only a fraction of the full system, making the optimization faster. A standard

Schur complement solver is employed.

Another approach is acceleration via graph sparsification. In [91], rather than

optimizing the entire problem only the camera poses are optimized, with the

observations taking form of three-view constraints related to the tri-focal tensor.

A similar generalized approach is proposed in [27] where the structure variables

would be represented implicitly by the corresponding triangulation functions and

therefore only the camera poses and optionally also their calibrations would be

optimized. In both cases, the structure points can be triangulated after-the-fact in

the least squares fashion from all the cameras that observe each given point. Since

these methods effectively solve a pose graph, it is possible to use the appropriate

incremental algorithms [95, 98], [PIŠ+
13b] as well.

2.4 finite element methods

FEM is a class of popular methods used in physics simulation. While less related to

SLAM or BA by the underlying principles of estimation, they also feature graphical

structure. This yields matrices with certain sparsity patterns with characteristics

not unlike those of SLAM or BA, and the basic matrix operations described in this

thesis are also useful in solving FEM problems.

Since the domain of the real world is continuous, it can be difficult to

parametrize and describe it numerically for the needs of physics simulation. FEM

sets out to solve this issue by discretizing the simulation domain into a large (but

finite) number of elements. Typically, those can be triangles, quadrilaterals or tetra-

hedra, which are connected in a mesh. Formally, FEM solves a linear system:

Ku = f , (2.27)
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(a) (b)

Figure 2.3: Example of a) 5× 5 uniform FEM mesh and b) the associated stiffness matrix.

where K is the stiffness matrix, f is the load vector and u holds the unknown

element states which we seek. The stiffness matrix is given by a sum of the stiffness

matrices of the elements, which are themselves derivatives of basis functions which

describe the elements, integrated over each element area. The choice of the basis

function is a trade-off between accuracy and computational complexity and there

are many functions used in practice [67, 158], some of which yield dense blocks.

An example of a stiffness matrix for a small triangular mesh is given in Figure 2.3b.

Note that each of the nonzeros could be a dense block, depending on the choice

of the basis functions. For example, assuming 2D triangular mesh and piecewise

linear basis functions, the element stiffness matrix is a 2× 2 dense matrix.

Furthermore, [158] describes a special case of the stiffness matrix which is appli-

cable to structured 2D grids. It relies on writing the system in the following block

tridiagonal form:
A −T

−T A −T

. . . . . .

−T A


·


u1

u2
...

uN


=


f1

f2
...

fN


. (2.28)

Assuming a few conditions are met (AT = TA and N = 2s+1 − 1 for some inte-

ger s), it is possible to solve such a system using the cyclic reduction method [158]

which requires s modifications of the system to arrive at a single block equation

which can be solved using e.g. Gaussian elimination and then one can work back

to recover the rest of the solution. It would be equally possible to employ sparse

block matrices to calculate the solution using a (more) direct method.





3
S PA R S E M AT R I X R E P R E S E N TAT I O N S

The problems described in the previous sections (among others) all have a graph

structure which can be represented as a sparse matrix and matrix operations are

used to find solutions to those problems. In the field of numerical techniques and

matrix computations, Basic Linear Algebra Subprograms (BLAS) is the de-facto stan-

dard for the implementation of matrix representations, as well as the interface for

the matrix operations. While the original BLAS proposal [108, 46, 47] was for dense

matrices, it was later adopted for sparse matrices as well [49]. The sparse BLAS pro-

posal specifies several sparse matrix storage formats, some of which will be briefly

revised below. Unless specified otherwise, the formats are elementwise.

3.1 coordinate format

The coordinate format, often abbreviated COO, is a very simple sparse matrix for-

mat; it stores each nonzero entry as a triplet of row, column and the associated

value, with no ordering imposed by a rule or at least a convention. It is suitable for

assembly of the sparse matrices and it is simple to erase or add more values at any

time. For the matrix in Figure 3.1a, the COO representation is in Listing 3.1.

To better illustrate the properties of this format, let us consider a simple matrix

vector product of the form y = Ax+y, listed in Algorithm 3.1. Looking at this pro-

cedure, two things quickly become apparent. In case there are several entries for

the same row and column, they will have the same effect as if those duplicate en-

tries were summed up into a single one. This is a convention commonly observed

6 4 
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9 4 

2 5 3 

2 1 

1 2 

(a)

6 5 

1 7 

9 4 

3 

(b)

Figure 3.1: Example sparse matrices.

27
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Algorithm 3.1: A basic matrix - vector multiplication algorithm.

1: function coo_gemv(A, x, y)

. calculates y = Ax+y where x, y are dense and A is sparse in COO format

2: for i = 0 to A.nnz− 1 do

3: r = A.row[i]

4: c = A.col[i]

5: y[r] = y[r] +A.val[i] · x[c]
6: end for

7: end function

for the COO format. A second issue is regarding the performance of the algorithm:

the elements of the x and y vectors are both indexed by the sparsity pattern of A,

the algorithm therefore both gathers and scatters elements in memory which can

lead to poor performance if the entries are ordered unfavorably. Since the matrix

vector product is a building stone of the CG solvers, more efficient formats were

proposed.

Listing 3.1: The matrix from Figure 3.1a stored in the COO format.

1: m = 6; n = 4; nnz = 12;

2: row = {0, 0, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5};

3: col = {0, 3, 0, 2, 3, 0, 1, 3, 0, 3, 1, 3};

4: val = {6, 4, 7, 9, 4, 2, 5, 3, 2, 1, 1, 2};

3.2 sparse diagonal

The diagonal format (DIA, not to be confused with a diagonal matrix) strives to

represent the sparse matrix in a more structured manner. It consists of the array of

several dense diagonals and an array of their offsets, as illustrated in Listing 3.2.Note

that the

matrix in

Figure 3.1b

has three

nonzero

diagonals

and thus

the diag

array in

Listing 3.2

has only

three rows,

not four.

The matrix vector product now degenerates to a sum of dense dot products which

are implemented efficiently on today’s machines.

Listing 3.2: The matrix from Figure 3.1b stored in the DIA format.

1: m = 4; n = 4; ndiag = 3;

2: diag = {6, 1, 9, 3, // The ? entries are outside of the matrix and their

3: 0, 7, 4, ?, // value does not matter (but they are stored).

4: 5, 0, ?, ?}; // Also note the filled-in zeros.

5: ioff = {0, 1, 2}; // Diagonals below the main would have negative offsets.

Matrices consisting of just a few diagonals arise in some applications and then

the diagonal format is suitable. Matrices with just a single diagonal are often repre-
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sented just as a dense vector with special semantics. Consider, however, storing the

matrix in Figure 3.1a: all the diagonals but one are occupied and the matrix would

in effect be stored almost as a dense matrix, with many zero entries represented

explicitly. For that reason, the diagonal format is often paired with a different for-

mat so that the almost empty diagonals can be represented more efficiently. This

is often referred to as a hybrid (HYB) format.

3.3 skyline

Triangular matrices can be represented using the skyline (SKY) format, symmetric

matrices can be similarly stored as a triangular matrix with symmetry semantics,

sometimes also referred to as the symmetric skyline (SSK) format. Assuming an

upper-triangular matrix, skyline stores rows of the matrix, starting with the di-

agonal element and ending with the last non-zero element in the given row. For

lower-triangular matrix, the range of elements would start with the first non-zero

and end with the diagonal instead.

An appealing quality of the skyline format is that operations such as Gaussian

elimination or Cholesky factorization do not change the structure of the matrix and

can be performed in-place. The obvious disadvantage is that it is only efficient for

matrices with all the non-zero elements situated close to the diagonal. An example

of an upper-triangular skyline matrix is shown in Listing 3.3.

Listing 3.3: The matrix from Figure 3.1b stored in the SKY format.

1: m = 4; n = 4;

2: val = {6, 0, 5, // Note the filled-in zero.

3: 1, 7,

4: 9, 4,

5: 3};

6: rptr = {0, 3, 5, 7, 8}; // Array of row beginning / end pointers.

3.4 ellpack-itpack

The Ellpack format (ELL) is conceptually similar to the diagonal format but is

geared towards general sparse matrices without a prominent diagonal structure.

It relies on the number of nonzero entries per row being relatively similar over the

whole matrix. The matrix is represented by a pair of a dense matrix containing the

values of each row with the zeros removed and a corresponding column permu-

tation matrix of the same size. The number of rows in these matrices matches the
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original matrix and the number of columns is given by the maximum number of

entries in a single row. An example of this is shown in Listing 3.4.

Listing 3.4: The matrix from Figure 3.1a stored in the ELL format.

1: m = 6; n = 4; ndiag = 3;

2: coef = {6, 7, 9, 2, 2, 1,

3: 4, 0, 4, 5, 1, 2,

4: 0, 0, 0, 3, 0, 0}; // Note the filled-in zeros in shorter rows.

5: col = {0, 0, 2, 0, 0, 1, // The ? entries do not correspond to any

6: 3, ?, 3, 1, 3, 3, // non-zero value and can point to arbitrary

7: ?, ?, ?, 3, ?, ?}; // column (e.g. the last one - 3).

The matrix-vector product is again implemented as a sum of dot products, with

the modification that for each dot product the right-hand side vector needs to be

gathered from memory based on the column indices. This was implemented as an

instruction in vector processors so that it could be implemented efficiently [146].

This operation can also be implemented on a GPU, with performance depending

on the characteristics of the data.

3.5 jagged diagonal

A basic disadvantage of the Ellpack format is the reliance on uniform row lengths.

For the matrix in Figure 3.1a, 33% of zeros are filled in because the third row is

longer than the others. The Jagged Diagonal (JAD) further improves upon Ellpack,

for matrices with uneven distribution of non-zeros and also keeps parallel process-

ing on vector processors in mind. First, the rows of the matrix are sorted by de-

scending number of non-zeros (Figure 3.2b) and the permutation for obtaining the

original matrix is recorded (Figure 3.2c). Then the rows are compacted similarly
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Figure 3.2: Converting a matrix to the jagged diagonal format: a) the original matrix, same

as in Figure 3.1a, b) sorted by row lengths, c) the associated permutation vector

and d) compacted rows are stored column-wise as three “diagonals”).
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as in the Ellpack format (Figure 3.2d) and the column indices are also recorded.

To avoid storing zero entries, the numbers of nonzero elements for each row are

recorded as well. The matrix stored in the JAD format is shown in Listing 3.5.

Listing 3.5: The matrix from Figure 3.1a stored in the JAD format.

1: m = 6; n = 4; ndiag = 3; nnz = 12;

2: val = {2, 6, 9, 2, 1, 7,

3: 5, 4, 4, 1, 2,

4: 3};

5: col = {0, 0, 2, 0, 1, 0,

6: 1, 3, 3, 3, 3,

7: 3};

8: ilg = {3, 2, 2, 2, 2, 1}; // row lengths

9: dlg = {6, 5, 1}; // diagonal lengths

10: perm = {3, 0, 2, 4, 5, 1}; // row permutation to yield the original matrix

The matrix vector multiplication for the JAD format would be implemented sim-

ilarly as in the case of Ellpack, via dense vector dot products with right hand side

gathering. In addition, the left hand side vector needs to be permuted at the begin-

ning and inversely permuted at the end – but that is a fast linear time operation.

On the other hand, there are no filled-in zeros and no computation is wasted. The

format was designed for highly efficient operations on vector processors.

3.6 compressed sparse column or row

Compressed sparse column (CSC) and its transpose, compressed sparse row (CSR), Compared

to the

triplet

format, the

compres-

sion ratios

achieved

on common

matrices

average

at about

1.45 : 1,

peaking at

slightly less

than 2 : 1,

which is

the upper

bound.

are formats aimed at storing general sparse matrices while being able to perform

operations efficiently. CSC stores the non-zeros of the matrix column by column and

ordered by row in terms of each individual column (although notable exceptions

exist [41]). Along with the non-zeros, an array of row indices is stored. So far,

the format is equivalent to the COO format. But rather than storing column indices

for each element, column pointers are stored instead (either in a single array of

pointers to the first element with the total number of elements appended at the

end, or in a pair of index arrays of the first elements of each column and of the last

elements of each column).

That makes it easy to access the columns of the matrix in any order while the

rows must be accessed sequentially. The algorithms that work with these formats

order their loops so that row lookup is avoided, for greater efficiency. The format

is geared more towards scalar processors; the matrix - vector product cannot be

formulated in terms of dense dot products as it requires both gather and scatter

operations. In contrast to the COO format, the memory accesses are predictable
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and fast algorithms exist [41]. An example of CSC representation is in Listing 3.6.

Modified formats based on CSC and either a dense diagonal vector or several dense

diagonals in the DIA format exist.

Listing 3.6: The matrix from Figure 3.1a stored in the CSC format.

1: m = 6; n = 4;

2: val = {6, 7, 2, 2, 5, 1, 9, 4, 4, 3, 1, 2};

3: row = {0, 1, 3, 4, 3, 5, 2, 0, 2, 3, 4, 5};

4: cptr = {0, 4, 6, 7, 12}; // column pointers, nnz

3.7 block compressed sparse row

Matrices which have sparse block structure appear in many applications, notably in

those described in Sections 2.2, 2.3 and 2.4. These matrices can be readily stored

using the general-purpose elementwise (sometimes also point) sparse formats but

there are some advantages in exploiting the block structure explicitly. Block com-Mean

compres-

sion ratios

compared

to the triplet

format are

2.69 : 1,

with upper

bound 3 : 1

(regardless

of block

size). This

is on ma-

trices with

no 1× 1
blocks.

pressed sparse row (BSR) and its less common transpose, block compressed sparse

column (BSC), are extensions of the corresponding elementwise sparse formats CSR

and CSC, respectively. Multiple other variants of these block formats exist, e.g. block

coordinate (BCO), block sparse diagonal (BDI) or block Ellpack (BEL). For symmetric

matrices, the convention is that the diagonal blocks store both the upper and the

lower half.

Elements become blocks, columns and rows become block columns and block rows,

respectively. These formats assume that all the blocks in the matrix are square and

have the same size. Each block is stored in either row-major or column-major (de-

pending on the implementation convention), including any zeros. Two examples

of block matrices are given in Figure 3.3, while 3.3a (two block columns and two

block rows, three nonzero blocks) will need to store some zeros. The other matrix
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Figure 3.3: Example sparse block matrices.
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in Figure 3.3b (four block columns, three block rows, six nonzero blocks) does not

have any zeros in its conceptual blocks, but they are not of the same size which

is not suitable for the BSR format – the block boundaries would have to be moved

in order for all the blocks to be the same size (e.g. 2× 2) and some additional ze-

ros would be stored again. An example of a matrix stored in the BSR format is in

Listing 3.7.

It is notable that compared to the representation of the same matrix using the

CSR format, the index arrays take up 50% less space and similarly the algorithms

will spend less time in the indexing and control logic parts and more in the com-

putational parts (CSR would need 5 row pointers and 7 column indices). Not all

matrices can benefit from block schemes though, e.g. the matrix from Figure 3.1a

would end up being completely dense if represented using 2× 2 blocks.

Listing 3.7: The matrix from Figure 3.3a stored in the BSR format.

1: m = 4; n = 4; // four rows and four columns

2: bm = 2; bn = 2; // two block rows and two block columns

3: nnz = 12; bnnz = 3; // twelve non-zeros, three non-zero blocks

4: lb = 2; // the blocks are 2 × 2

5: val = {6, 0, 0, 1, 5, 7, 0, 0, 9, 0, 4, 3}; // block data (column-major)

6: bindx = {0, 0, 1}; // per-block block column indices

7: bpntrb = {0, 2}; // the first block in each block row

8: bpntre = { 2, 3}; // one past the last block

3.8 variable block compressed sparse row

While the previous section introduced formats which assume all the blocks to be

the same size, many applications will require matrices with rectangular blocks or

mixtures of different block sizes. One approach, referred to as splitting in the liter-

ature, which is indeed sometimes used in solving FEM [168, 139, 65] is to represent

such matrix as a sum of several matrices, each containing blocks of one particular Mean com-

pression

ratio is

slightly

lower than

that of

BSR, about

2.35 : 1.

The upper

bound is

the same

(3 : 1).

size. That works well for operations with additive semantics, such as matrix vector

products, but it is not a viable alternative for e.g. Gaussian elimination or matrix

factorizations. Therefore, a variable block compressed sparse row (VBR) format was

introduced. It is an extension of the BSR format with additional information about

the sizes of the blocks and the layout of the block rows and block columns. An

example of such a matrix is in Listing 3.8.

It is notable that there are few implementations of the VBR scheme, perhaps due

to its complexity and algorithmic overheads (intuitively, there are more nested

loops required for the implementation of arithmetic operations which cannot be
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unrolled). This results in diminished performance unless the blocks are very large.

To our best knowledge, the only such implementation is NIST Sparse BLAS1 al-

though few other variants of the format exist and their implementations will be

discussed in the following chapter. There are more libraries that support the BSR

format, most notably Intel MKL [59] or PETsc [12].

Listing 3.8: The matrix from Figure 3.3b stored in the VBR format.

1: m = 6; n = 10; // six rows and ten columns

2: bm = 3; bn = 4; // three block rows and four block columns

3: nnz = 19; bnnz = 6; // nineteen non-zeros, six non-zero blocks

4: rpntr = {0, 2, 3, 6}; // rows of the block row origins

5: cpntr = {0, 2, 5, 6, 8}; // columns of the block column origins

6: val = {1, 4, 2, 5, 3, 6, 7, 8, 9, a, b, e, h, c, f, i, d, g, j};

7: // block data (column-major)

8: indx = {0, 4, 6, 9,10, 13, 19};

9: // indices of the first element of each block, nnz

10: bindx = {0, 2, 1, 2, 2, 3};

11: // per-block block column indices

12: bpntrb = {0, 2, 4}; // pointers to the first block in each block row

13: bpntre = {2, 4, 6}; // and to one past the last block in each block row

1 http://math.nist.gov/spblas/original.html

http://math.nist.gov/spblas/original.html
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A B R I E F R E V I E W O F E X I S T I N G N L S S O LV E R S

This chapter describes existing implementations of general Nonlinear Least

Squares (NLS) solvers which are used in robotics, with the focus on the algorithms

and data structures. The list is definitely not an exhaustive one, but an attempt was

made to have the most significant implementations present. There is a considerable

overlap with other scientific communities that solve computer vision, surveying,

photogrammetry or other similar problems, often using their own methods and

software tools.

4.1 toro

TORO [71] was inspired by the influential work of Olson et al. [136] on stochastic

gradient descent for map optimization in SLAM. Olson proposes an incremental

pose parameterization where the state of the optimized system is given by the

algebraic differences of the consecutive poses (rather than by their inverse com-

position). This yields simple sparse Jacobian but requires the consecutive poses

to have only small rotational differences, otherwise the poses are captured impre-

cisely. Another difficulty with the relative parameterizations when coupled with In case

of several

poses, each

represented

relative to

the previ-

ous one,

then to get

the absolute

coordinates

of the last

pose, all

the poses

are needed.

This is a

common

downside

of relative

parameteri-

zations.

stochastic gradient descent is that each constraint affects multiple variables, slow-

ing down the convergence since different constraints can affect the same variables

in antagonistic fashion, effectively undoing each other’s work.

TORO uses a similar parameterization, but rather than using relative representa-

tion between the consecutive poses, it constructs a spanning tree and represents the

poses as the algebraic difference of a pose and its parent. Therefore, a constraint

between two poses goes through the common ancestor and less poses need to be

updated, speeding up the convergence of the algorithm. Note that the spanning

tree does not replace the system graph - it merely affects the numerical represen-

tation of the optimized variables. The proposed algorithm also allows for node

reduction in case the robot navigates a previously visited area.

Written in C++, it only uses small fixed-size dense matrices since the structure of

the problem and the approximations applied do not necessitate the use of sparse

matrices. It can solve for 2D and with a later extension also 3D pose graphs. It is

self-contained in the sense that it does not depend on any libraries e.g. for linear

algebra or graph orderings.

35
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4.2 isam

In their work, Dellaert and Kaess [45] investigate the connection between the factor

graph formulation of the SLAM problem, its matrix representation and the corre-

spondence of the factorization of a such matrix to the variable elimination in the

corresponding graph. Initial matrix factorization performance results are reported,

with the goal to develop an efficient incremental NLS solver. The authors recognize

the importance of the need of a good variable ordering and argue for the use of the

QR factorization via Givens rotations because of the simplicity of its incremental

implementation compared to Cholesky factorization up/down-dates. Interestingly,Incremental

QR fac-

torization

is a well

researched

subject,

since it

allows for

out-of-core

techniques

which

allowed

tackling

even large

scale

problems

on comput-

ers with

small core

memory.

they report their implementation of sparse matrix product to be slower than the

subsequent factorization of its result.

Incremental Smoothing and Mapping (iSAM) [95] is an implementation which

focuses on incremental solving, using incremental QR factorization. Unlike TORO,

it uses exact derivatives (or automatically generated numerical ones) and so the Ja-

cobian does no longer consist of identity matrices and sparse matrix computations

are employed throughout. 3D rotations are expressed and optimized either in the

domain of Euler angles (yaw, pitch, roll) or as quaternions.

The solver maintains QR factorization incrementally, adding only entries for the

new observations while the changes in the rest of the Jacobian are ignored. Every

one hundred steps, the variables are reordered using the COLAMD algorithm to

avoid fill-in, the Jacobian is recomputed and the whole QR factorization is calcu-

lated from scratch. This approach, although no longer exact, proves quite efficient.

iSAM also provides calculation of covariances using the recursive formula [18, 68]

in conjunction with dynamic programming [93] or alternatively using a fast con-

servative approximation described in [57].

Initially implemented in OCaml, the currently available version is in C++ and

makes use of its own custom sparse matrix representation where each column of

a sparse matrix is represented using a sparse vector. This essentially corresponds

to the CSC format, except that the data is not stored in a single contiguous array

but is split into one array per column. This makes adding new values easier as less

data needs to be shifted around.

Despite using elementwise matrices, iSAM makes a limited use of the block

structure by calculating the fill-reducing ordering on variables (which corresponds

to block columns) and then expanding this ordering to the individual elements

(columns). It uses either CSparse [41] or Cholmod [42] internally for batch matrix

factorizations – the disadvantage is that it needs to convert from its own sparse

format to standard CSC before such libraries can be used, and then to convert the

result back.
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4.3 hog-man

HOG-Man [72] is hierarchical SLAM optimizer, working on manifolds. The mani-

fold representation is important, as representing the rotations using Euler angles

(e.g. such as iSAM) introduces singularities and gimbal locks and similarly using

over-parameterized representations such as quaternions easily leads to denormal-

ization. Instead, the authors define a manifold projection operator which converts

the rotation from its representation to the manifold where it is locally Euclidean

and can be optimized using classical methods, such as Gauss-Newton. HOG-Man

thus uses axis-angle representation to represent the rotations.

Another important feature is hierarchical graph optimization. A graph is repre-

sented at the highest level as well as on several lower levels of detail. The first level

of detail is obtained by dividing vertices of the original graph into subgraphs and

treating each subgraph as a vertex. For that, a representative vertex is selected from

each subgraph. There is an edge between representative vertices of two graphs in

case there were edges between any two vertices between those graphs. The mea-

surement and its associated covariance are calculated by solving for a problem

consisting of the union of the two graphs, with the representative vertex from the

first graph being in the origin and the representative vertex from the second graph

providing the mean as well as covariance. The hierarchical optimization starts at

the highest level (the smallest graph) and the significant changes are propagated

downwards via rigid body transformations. When needed, a lower level subgraph

can be refined using another optimization round, with the additional constraint on

the representative vertices. Covariances can be calculated for the data association.

Written in C++, HOG-Man uses the graph as its primary representation rather

than a matrix. It stores an associative array of vertices and an ordered set of

pointers to the edges. Such structure allows for simple graph modifications but

requires multiple indirections to access any element of the graph. It makes use of

CSparse [41] for Cholesky decomposition and solving, while the graph or its sub-

graphs are converted into sparse matrix form on the fly, rather than maintaining a

matrix and updating it incrementally. No advantage is taken of the block structure

of the matrices.

4.4 ssba

Sparse Sparse Bundle Adjustment [105] is a bundle adjustment optimizer, similar

to the one described by Lourakis and Argyros [113, 114]. It uses the Levenberg

Marquardt method described in Section 2.1.1, in conjunction with the standard

Schur complement trick, followed by sparse Cholesky factorization (rather than
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dense as in case of Lourakis), using Cholmod [42]. The feature that sets it apart is

that it uses its own hybrid sparse block matrix scheme where each block column

consists of an associative array that contains dense blocks, indexed by rows. The

diagonal blocks are stored in a separate linear array (structurally rank deficient

matrices are not permitted). The format only permits blocks of one size, R6×6.

However, this matrix is only maintained for convenience of formation of the

Schur complement. No matrix product operation is implemented on this block

matrix – the partial products are accumulated based on camera tracks. Sparse

block matrix-dense vector product is implemented for the CG solver. For the direct

solver, the Schur complement needs to be converted to elementwise sparse CSC for-

mat each time before solving. This conversion is split to two phases, the structure

allocation and value filling, in an attempt to save some time in nonlinear iterations

where the structure does not change.

4.5 spa

Similar to sSBA, Sparse Pose Adjustment [104] reuses a slightly modified imple-

mentation of Levenberg Marquardt optimizer to solve 2D pose-SLAM problems. It

forms the information matrix (rather than the Schur complement as in sSBA) us-

ing the same sparse block matrix structure. Another interesting feature is that the

whole solver is specialized for 2D pose graphs, which means that all the block

matrices are R3×3 and dynamic memory allocation can thus be saved, resulting

in better performance. Still, this solver also takes advantage of elementwise sparse

Cholesky factorization implemented in CSparse [41] and no computation is actu-

ally saved by using sparse block matrices.

4.6 g2o

A General Framework for Graph Optimization (g2o) [106] is the culmination of

the research done on sSBA and SPA and has quickly become a popular frame-

work for nonlinear optimization in robotics. It contains several optimizers, based

on Gauss-Newton, Levenberg-Marquardt or Dogleg methods. While designed to

be easily extensible, g2o can sole BA and SLAM problems out-of-the-box. It uses

Lie algebra [159] group SE(3) to correctly calculate derivatives involving spatial

rotations and optimizes such variables in the tangent space vectorial form se(3).

In addition, it contains numerical differentiation functions to calculate derivatives

automatically if needed. It can also recover covariances of the estimate, using the

same recursive formula implementation as described in [93]. The support for ro-

bust solving is also implemented.
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Compared to sSBA, the sparse block matrix scheme is changed, the diagonal

element storage was removed and now all the matrices are represented as a vector

of block columns where each block column is row-indexed associative array of ma-

trix blocks. This is similar to sSBA, with the exception that in g2o the blocks can

take any size, including matrices with blocks of mixed size. The (incomplete, to

save space) C++ prototype of the matrix storage can be seen in Listing 4.1. Several

operations are implemented on this matrix format, including addition, matrix and

vector products, transpose and scalar multiplication. Diagonal matrix view is imple-

mented for faster access to the block diagonal (but it is not useful for representing

block diagonal matrices by itself). Linear solving is accomplished using one of

CSparse [41], Cholmod [42], Eigen [73] or CG. Conversion to elementwise sparse

matrix is again required (except for CG) every time linear solving takes place.

Listing 4.1: The g2o sparse block matrix format (C++; the code comments were redacted).

1: template <class MatrixType = Eigen::MatrixXd>

2: class SparseBlockMatrix {

3: public:

4: typedef MatrixType SparseMatrixBlock; // a single dense block

5: typedef std::map<int, SparseMatrixBlock*> IntBlockMap; // block column

6:

7: // [constructors and operations on block matrices]

8:

9: protected:

10: std::vector<int> _rowBlockIndices; // cumulative sum of block rows

11: std::vector<int> _colBlockIndices; // cumulative sum of block columns

12: std::vector<IntBlockMap> _blockCols; // block columns as assoc. arrays

13: };

Notably, g2o allows for optimization of problems with fixed-size blocks, with

the limitation that only a single block size is supported, or the block size can be

different for poses and for landmarks but then the landmarks are either handled

by the Schur complement or are not optimized at all. This allows for highly effi-

cient solving because then the inner loops in all the block matrix operations can

be unrolled and Streaming SIMD Extensions (SSE) vectorization can be applied.

Solvers for 2D SLAM (R3×3,R2×2), 3D SLAM or BA (R6×6,R3×3) and Sim(3) BA

(R7×7,R3×3) are instantiated by default.

4.7 isam2

The iSAM2 algorithm [98] implemented in the GTSAM library, is an improvement

over the iSAM solver. It uses a novel data structure called the Bayes Tree, which is



40 a brief review of existing nls solvers

a graphical representation of the square root matrix (the Cholesky factorization of

the information matrix). It allows for incremental variable reordering and selective

relinearization which was not previously implemented on matrices.

The solving process in iSAM2 is a three stage one, starting by eliminating the

factors from a factor graph to yield a Bayes net, then turning this Bayes net into

a Bayes tree and finally solving by backsubstitution. The step of turning a Bayes

net (a chordal graph) into a Bayes tree (a directed clique graph) is done in reverse

elimination order and thus the information in the tree is propagated towards the

root. When some variables are changed, the root of the tree and the descendants on

the path to the affected variables need to be recalculated, the unaffected children

are then re-attached.

The solving is thresholded by a small constant on backsubstitution (which can

skip cliques of the Bayes Tree where the change in the solution is to be low). Thanks

to that, the backsubstitution usually runs in better than linear time. Another sev-

eral orders of magnitude larger, threshold is on the increment of the variables to

be relinearized. The relinearization is only performed every ten steps of the al-

gorithm by default. Constrained column Approximate Minimum Degree (AMD)

(CCOLAMD) is employed for variable ordering, with the most recent variables or-

dered last in order to reduce the size of the incremental updates (since the new

observations are most likely to reference those variables). Unlike iSAM, more pre-

cise Lie-algebraic derivatives calculated using the exponential map paradigm are

employed throughout.

Written in C++ with heavy use of BOOST1, it has a limited implementation of

dense block matrices with no arithmetics support, except for operations on the

individual blocks and dense Cholesky factorization. It uses Eigen [73] for linear

algebra. The algorithm to calculate the marginal covariances of the variables has

changed since iSAM, to one using the Bayes Tree instead of the recursive formula.

It is only efficient in case a covariance of a single variable is sought after – there is

no efficient way of recovering covariances of multiple variables at once [IPŠ+
15].

4.8 ceres

Google’s Ceres solver [3] received much attention, as it is used in their 3D Maps

and Street View applications. It is mostly focused on batch solving, using a variety

of available algorithms (Gauss-Newton, Levenberg-Marquardt, Powell’s Dogleg,

subspace Dogleg [25], CG, BFGS and LBFGS). It relies on SuiteSparse [41] and

Eigen [73] for solving the linear systems via a set of sparse and dense solvers.

It supports automatic and numeric derivatives, as well as analytical ones. It also

1 http://www.boost.org/

http://www.boost.org/
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has a multitude of robust loss functions. Ceres can also recover covariances of the

solution, either using dense SVD or using sparse QR decomposition followed by

sparse right-hands-side backsubstitution.

Listing 4.2: The Ceres sparse block matrix format (C++; the constructors and member

functions omitted, the code comments were redacted).

1: struct Block {

2: int32_t size; // number of element rows [columns]

3: int position; // position along the row [column]

4: };

5:

6: struct Cell {

7: int block_id; // block column [block row] id

8: int position; // offset to the values_ array (see below)

9: };

10:

11: typedef struct CompressedList {

12: Block block; // offset and height [width], in elements

13: std::vector<Cell> cells; // a list of dense blocks

14: } CompressedRow, CompressedColumn;

15:

16: struct CompressedRowBlockStructure {

17: std::vector<Block> cols; // description of block columns

18: std::vector<CompressedRow> rows; // linear array of block rows

19: };

20:

21: class BlockSparseMatrix : public SparseMatrix {

22: private:

23: int num_rows_, num_cols_; // size of the matrix, in elements

24: int max_num_nonzeros_, num_nonzeros_; // capacity and size of values_

25: scoped_array<double> values_; // values of the elements of the matrix

26: scoped_ptr<CompressedRowBlockStructure> block_structure_; // \ldots

27: };

Notably, Ceres also has its own block matrix storage format. It is a bit more

similar to the classical sparse matrix formats (e.g. to VBR) in the sense that it has

an array for element values rather than storing block data in separate structures,

e.g. as in g2o. The layout itself is based on the CSR format, with each block row

consisting of a starting row, number of rows in the block and the list of blocks

in that row, each block being a pair of block column index and offset to the dense

block data. This structure can be seen in more detail in Listing 4.2. Basic operations

such as matrix-vector products, scalar products and conversion to triplet form are
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Table 4.1: Overview of the state-of the art NLS solver data structures. Note that the linear

solvers marked by dagger† require data conversion from the NLS solver internal

storage format.

NLS Solver Storage format Linear solver

TORO custom stochastic gradient descent

iSAM modified CSC sparse QR†

HOG-Man graphical structure sparse Cholesky†

sSBA hybrid sparse block sparse Cholesky†

SPA hybrid sparse block sparse Cholesky†

g2o custom sparse block sparse Cholesky† or CG

iSAM2 Bayes tree variable elimination

Ceres custom sparse block sparse Cholesky† or CG

available. Although Ceres contains interface for general block matrices (dense or

sparse), the sparse block matrix does not implement it.

4.9 part summary

Chapter 2 contains a brief introduction into nonlinear least squares methods and

their extensions, the problems those methods are applicable or have been tradi-

tionally applied to and some of the state of the art solvers. A strong focus is on

data structures: the problems discussed here are all sparse, with non-trivial spar-

sity patterns and the choice of the data representation affects the algorithms and

ultimately the efficiency of the solution. Chapter 3 discusses the standard formats

for storing and manipulating sparse matrices.

Sparse matrices are often used in the implementations described in this chapter,

as representing the problems by dense matrices would bring significant compu-

tational overhead and would quickly become impractical. Standard libraries for

elementwise sparse matrices are popular, with Tim Davis’ SuiteSparse being used

notably often (10 out of 24 projects in the OpenSLAM2 repository use it, Google’s

Ceres solver does as well).

This might well be due to the simplicity of its interface. E.g. rather than calling it

by its BLAS designation dcscgemm, the matrix-matrix multiplication routine is called

cs_multiply in CSparse. Also, rather than passing each parameter and array com-

prising a sparse matrix separately (e.g. such function in Intel MKL [59] requires 15

2 http://openslam.org – a platform for publishing SLAM implementations

http://openslam.org
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arguments), it wraps sparse matrices in an easy to use structure cs (and thus only

requires two arguments – the matrices to be multiplied).

Basic forms of sparse block matrices are used in the existing solvers, although

they are practically always eventually being converted to elementwise sparse ma-

trices for solving, see Table 4.1. Standard formats for sparse block matrices are

not being used and the authors of NLS solvers keep designing custom ones. NIST

Sparse BLAS contains implementations of the routines for VBR format, but to our

best knowledge, it is not being used in any of such solvers in robotics or computer

vision. Admittedly, there is no standard LAPACK library for the VBR format which

would provide matrix factorizations but iterative solvers would still be possible.

Intel MKL does support the BSR format but that is of limited use as it would only

allow solving problems where all the variables have the same dimension.

The common design goals in sparse block storage are:

dense blocks : the blocks are stored as dense matrices so that they can be easily

written by the Jacobian function rather than scattered into an elementwise

format. This removes the bottleneck of matrix assembly.

immutable addresses : in an incremental setting, the Jacobian matrix is aug-

mented with new blocks as new observations come in and it can double as a

cache if the addresses of the existing blocks do not change.

integral representation : the nonlinear solvers often employ direct meth-

ods and matrix factorizations which are not compatible with split matrix

schemes.

efficient arithmetics : the current solvers, much to their disadvantage, only

use sparse block matrices as a convenient platform for generation of element-

wise sparse matrices to be passed to the linear solver.

In the following chapters, a new sparse block matrix format meeting this criteria

will be introduced and compared to existing implementations. A suite of arith-

metic routines comparable to CSparse in its extent is also supplied. Even though

the proposed implementation is quite simple and not thoroughly tuned, it yields

considerable performance and a simple NLS solver using this format easily outper-

forms the other state of the art solvers.





Part II

S L A M + + T H E S PA R S E B L O C K M AT R I X S O LV E R

This part introduces a new sparse block matrix format proposed in this

thesis. An efficient implementation of arithmetic routines for this new

format is described as well. A simple nonlinear least squares solver, us-

ing this format at its core, is introduced and compared to the state of

the art solvers. More efficient and novel methods for incremental solv-

ing and covariance recovery based on the block matrices are proposed

as well.





5
S L A M + + B L O C K M AT R I X D E S I G N

Many applications ranging from physics, computer graphics, computer vision to

robotics rely on efficiently solving large nonlinear systems of equations, as illus-

trated in the previous chapter. In the case of using a Gauss-Newton-like algorithm,

the solution can be approximated by iteratively solving a series of linearized prob-

lems. In some applications, the size of the system can be considerably large. The

most computationally demanding part is to assemble and solve the linearized sys-

tem at each iteration. This chapter shows solutions that exploit both, the block

structure and the sparsity of the corresponding matrices and offers very efficient

methods to manipulate, assemble and perform arithmetic operations on them.

A block matrix is a matrix which is interpreted as partitioned into sections called

blocks that can be manipulated at once. A matrix is called sparse if many of its en-

tries are zero. Considering both, the block structure and the sparsity of the matrices

can bring important advantages in terms of storage and operations.

The block matrices can be more or less permissive as to the shape and place- E.g. the

BSR format

only allows

square,

aligned

and non-

overlapping

blocks

which must

all be the

same size.

ment of the dense blocks. From the algorithmic point of view, the blocks can be

overlapping or non-overlapping and at the same time aligned or unaligned. Note

that any of the first three combinations can be converted to the fourth – aligned,

non-overlapping – by fragmenting the blocks as needed and summing up the re-

maining fully overlapping blocks, as illustrated in Figure 5.1. The only downside is

that in some cases, the fragmentation can leave many 1× 1 blocks behind or even

yield an elementwise sparse matrix.

(a) (b) (c) (d)

Figure 5.1: Block placements in sparse block matrices: a) unaligned block matrix with four

blocks, two of which overlap, b) aligned block matrix – the unaligned blocks

were fragmented (now there are 8 blocks two of which still overlap), c) un-

aligned with the overlapping blocks fragmented and fused (total of 5 blocks)

and d) aligned non-overlapping block matrix (7 blocks).

47
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Figure 5.2: Relation of expressions on block and elementwise sparse matrices: a) aligned

non-overlapping block matrix and b) a structurally equivalent elementwise

sparse matrix.

An overlapping block matrix may be obtained e.g. by a procedure for find-

ing block structure in general sparse matrices which aims at covering all matrix

nonzeros by the minimum number of blocks possible, see e.g. Figure 1.1c or Fig-

ure 5.1a. Unaligned block matrices (Figure 1.1b or Figure 5.1c) arise naturally e.g.

in LOTs [30, 31] in image processing, where each two adjacent blocks overlap in

order to avoid discontinuities in the processed image.

Assuming aligned, non-overlapping matrices has its benefits. Each block of the

matrix can be treated as a (scalar) variable in an ordinary (elementwise) sparse

matrix and formulas applicable to the elements can be automatically extended

to blocks (see Figure 5.2), with the difference that scalar operations become opera-

tions on matrices: addition becomes elementwise addition of the blocks, multiplica-

tion becomes matrix multiplication, division becomes linear solving or backsubsti-

tution in case the blocks are triangular, square root becomes Cholesky factorization.

The only issue is that the blocks interacting in an arithmetic operation must have

compatible dimensions. Fortunately, for most of the matrix algorithms, only the

blocks in the same block row or block column are interacting and the dimensions

are therefore guaranteed to match.

Similarly, operations taking multiple matrices as input (e.g. matrix addition or

multiplication) can rely on the blocks of the two matrices to be aligned with each

other. This makes the implementation of the arithmetic operations simpler and

faster as only entire blocks interact (rather than the overlapping parts of the blocks

interacting in case the matrices weren’t aligned). In our implementation, it is re-

quired for the matrices to be aligned with each other, or in different words, to have

a compatible block layout.

Using dense blocks is a natural way to minimize cache misses, since the CPU

automatically prefetches the data as they are accessed. Nevertheless, taking care

of the layout of the individual blocks in memory is also very important in order

to avoid cache misses at block boundaries, especially if the blocks are very small.

Finally, the compressed format the blocks are to be stored in, needs to be chosen
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carefully – otherwise the handling of the blocks can easily outweigh the advantages

of cache efficiency.

As seen in Chapter 4, some of the existing state of the art NLS solvers rely

on sparse block structure schemes. In general, the block structure is maintained

until the point of solving the linear system. Here is where e.g. CSparse [41] or

Cholmod [42] libraries are used to perform the matrix factorization.

The advantage of elementwise sparse matrix schemes is that the arithmetic oper-

ations can be performed efficiently. Compressed sparse column (CSC) format [146]

used in CSparse is an efficient way to store the sparse data in memory. The dis-

advantage of this format is its inability or impracticality to change a matrix struc-

turally or numerically once it has been compressed. The block-wise schemes are

complementary, their advantages include both easy numeric and sometimes also

structural matrix modification, at the cost of slight memory overhead and reduced

arithmetic efficiency, speed-wise.

Matrix assembly is a notable bottleneck in many situations: the time needed for

putting the matrix together is comparable to the numerical operations which follow.

The elementwise CSC representation [146] can be as efficient as any block matrix

structure, in case of assembling a set of structurally-different matrices. The NLS

solvers, however, involve operating iteratively on matrices where large portions

of the matrix structure do not change between the iterations. In such case, block

matrix schemes can be very proficient, as they allow for modifying parts of the

block structure as well as efficiently modifying the numeric content.

In this chapter, a fast and cache efficient data structure for sparse block ma-

trix representation is proposed, which combines the advantages of elementwise

and block-wise schemes. It enables simple matrix modification, be it structural or

numerical, while also maintaining, and often even exceeding the speed of element-

wise operations schemes. Another important advantage of the proposed scheme is

the overall robustness of the structure, allowing for validation and error-checking.

5.1 related work

Many sparse linear algebra libraries are currently available. They range from

implementations of basic arithmetics routines to complete linear algebra solu-

tions [108, 46, 47, 8, 41, 73]. This chapter describes implementation and evaluation

of matrix operations and storage, and it is particularly focused on matrices having

a block structure. The operations we tackle are the building blocks for any least

squares solver, and the performance of their execution is crucial.

Standard interfaces for various linear algebra packages proved to be very useful

in the past. Perhaps the most used include the three levels of BLAS [108, 46, 47],
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containing simple operations on vectors and matrices, and LAPACK [8], containing

additional factorization functions and other more advanced functionality. These

interfaces were originally proposed for dense matrices only. In time, other imple-

mentations emerged, including implementations for sparse matrices. Few of the

available libraries support sparse block matrix operations, however.

CSparse [41], developed by Tim Davis is one of the most used sparse linear

algebra libraries in robotics and computer vision. It is written in pure C and its

functions are also available through MATLAB interface. It is highly optimized in

terms of run time and memory storage and it is also very easy to use. It implements

most of BLAS and some of LAPACK functionality, it was therefore used as a reference

for comparison with the algorithms proposed in this chapter. As mentioned above,

CSparse stores its matrices in compressed column format which is suitable for

operation on matrices, or in uncompressed coordinate format for simple matrix

specification. Functions to convert between the formats are provided.

NIST Sparse BLAS [29] is also written in C and its source codes are generated

from a set of kernel templates. Although very fast, it only implements a limited

subset of BLAS. Operations, such as product of two sparse matrices, are not imple-

mented. It implements two block matrix storage formats, constant block size (BSR)

and variable block size (VBR) compressed sparse row and also their column-major

alternatives (BSC and VBC). Unlike CSparse, it does not define any structure to store

the matrices nor does it implement functions for conversion between different stor-

age formats. As a result, it is rather difficult to use since the standard sparse block

storage scheme is quite complex. To our best knowledge, it is the only library with

BLAS interface to support the non-trivial VBR block matrices and one of a few to

support them at all.

Sparskit [146] is a sparse matrix package written in Fortran. It has many matrix

conversion routines, including conversions between CSR, BSR and VBR. It imple-

ments matrix-vector product for the VBR format and routines for finding block par-

titioning of a matrix. Interestingly, it does not implement routines for the simpler

BSR format.

Intel Math Kernel Library (MKL) [59] is a closed-source dense and sparse BLAS

and LAPACK implementation. It features C and Fortran interfaces and supports lev-

els 2 and 3 functions for single block size (BSR) matrices. It also has other features

such as Fast Fourier Transform, random number generation and data fitting.

PETsc [12] is library for scientific computation which includes support for sparse

block matrices. It supports matrices in the single block size BSR format. It contains

implementations of both direct and iterative solvers. It can use UMFPack [40] or

Cholmod as back-ends.

As such, the BSR-only libraries are of limited use to applications with only single

variable sizes. Sometimes it is possible to express a block matrix with different
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block sizes as a sum of matrices with a single block size (often referred to as

splitting [168, 139, 65]), e.g. for the CG solvers which only require matrix - vector

product. For direct solvers, one option is to append the blocks with identity matri-

ces in order for all the blocks to be of the same size but this naturally comes with

performance penalties.

Buluç et al. [23] introduces a novel orientation-agnostic block matrix format (it

is neither row- or column-major). It is called compressed sparse blocks (CSB) and

works by partitioning the matrix to single size square blocks. The data of each

block are represented in a coordinate format with reduced number of bits for row

and column indices (since the blocks are small) and the data of all the blocks are se-

rialized into three contiguous arrays. The blocks uniformly cover the entire matrix

and one more array of pointers to the first element of each block is required. The

blocks can therefore be accessed at random with the only disadvantage that com-

pletely zero blocks still have their pointer (although it points to an empty range of

elements) so choosing very small block size becomes inefficient. The best perfor-

mance was observed with block size of about 4096. Essentially while BSR stores a

sparse collection of dense blocks, CSB stores dense collection of sparse blocks. The

nonzero elements in each block should be ordered by Z-Morton ordering for bet-

ter performance. While the serial performance of CSB is comparable to CSR, it gains

higher performance rates in parallel processing, likely due to being more ordered

and requiring lower bandwidth for the element indices.

Vuduc and Moon [175] describe a different kind of a block matrix format based

on CSR. They call the new format unaligned block compressed sparse row (UBCSR).

This format relaxes the alignment requirements of the BSR with the aim to reduce

the zero fill-in caused by blocking. Additionally, they split the matrices with mul-

tiple block sizes. For conversion from CSR, the approximate block structure is first

found and the matrix is converted to a VBR format. This is then split to several

BSR matrices and finally the zero fill-in is reduced by un-aligning the blocks. This

reduces both runtime and storage. The authors implement sparse matrix - vector

multiply and gain about 2× speedups compared to CSR.

g2o [106] (also see Section 4.6) is a library for solving NLS problems on graph-

ical models. It contains an implementation of block matrix storage and supports

a limited set of operations on it, essentially the matrix-vector and matrix-matrix

products to be able to implement Schur and CG solvers. The block matrices in

g2o are stored in block column-major order with the blocks of each column in a

separate associative array (std::map in C++). This particular implementation of as-

sociative array guarantees immutable address of the blocks. g2o leverages this by

storing pointers to the blocks in the corresponding graph factor objects (those gen-

erate the block values), eliminating repeated lookup. At the same time, std::map

is implemented using a red-black tree, making the insertion of new blocks po-
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tentially expensive and requiring multiple non-consecutive memory indirections

upon lookup, increasing the likelihood of cache misses.

Ceres-solver [3] (also Section 4.8) is a library for solving NLS and regression

problems. It is very popular since it is used at Google to estimate the pose of Street

View cars, aircrafts, and satellites; to build 3D models for PhotoTours; to estimate

satellite image sensor characteristics, and more. Ceres-solver uses CSparse for most

of the linear algebra operations. It contains an internal implementation of block

matrix storage and supports a limited set of operations on it, essentially the matrix-

vector product. This block matrix functionality is not exported by the library, and

is not supposed to be employed by the users. The block matrices in Ceres are

stored in a way, similar to the scheme described here1, but their implementation

does not allow for matrix modification and every time the block matrix changes

structurally, it needs to be rebuilt. This is a major drawback for the iterative or

incremental nonlinear solvers as a significant amount of time is lost in rebuilding

the system matrix at every iteration. In one of the recent releases, Ceres adds

support for split block matrices with the aim to handle problems with two types

of variables, such as BA or SfM, where the block sizes can be chosen from a prepared

list of specializations2. Those are however generated by an external Python script,

making it somewhat difficult to use.

5.2 proposed implementation

When dealing with matrices with a block structure, operating on dense blocks is

a natural way to support vectorization and improve cache efficiency without any

additional effort. Note that this only holds for SIMD type processors, and likely

would not be practical for true vector processors, such as Cray machines, where

interleaved block storage would be more beneficial. On the other hand, the use

of dense blocks allows efficient data representation at their natural granularity,

making it simple to reference the data inside the matrix and change their value

when it is needed.

In the g2o block matrix implementation, the blocks are allocated on the heap,

and it can not be guaranteed that the blocks are allocated in close memory lo-

cations. If the blocks are allocated in distant memory locations, cache misses still

occur. In the Ceres implementation, the blocks are allocated in a linear array which

would necessitate reallocation and data copying when incrementally adding new

1 The representation described in here was developed independently, before Ceres was made public.

2 This is not listed in the release notes as this functionality is hidden from the end user. Although no

credit is given, this could well be an impact of one of our publications in this direction [PŠI+13b,

PIS13a, PIŠ+13b].
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Figure 5.3: Block row / column layout of a block matrix. a) An example of a sparse block

matrix and the actual values of the cumulative block sum (on top and left side).

Non-zero dense blocks are shown in violet. Yellow shows null rows/columns.

b) Dense block data in segregate storage. On the bottom, we show the block

column layout and the corresponding sorted list of pairs of type (iRL, pDB),

where iRL is the index of the row layout, and pDB is the pointer to the block

data in the memory.

blocks to the matrix. It also uses element offsets rather than pointers, perhaps to

avoid pointer arithmetics in reallocation but then pointer arithmetics is required

every time when referencing the blocks. Additionally, Ceres does not align the

memory, necessitating the use of slower unaligned SIMD instructions. To alleviate

those problems, the proposed implementation allocates block memory in pages,

which guarantees that the blocks are stored tightly next to each other while also

allowing more blocks to be added without requiring to copy or shift the data.

The arithmetic efficiency of block matrices is mostly reduced, compared to ele-

mentwise sparse matrices, which might come as a surprise. That is because two

or three extra inner loop counters for element rows and columns of the blocks are

needed. This reduces the ratio of the arithmetics to flow control instructions.

Fortunately, in the least square problems the size of the blocks corresponds to

the number of Degrees of Freedom of the variables. The possible block sizes of

a given problem are therefore known in advance, at compile time. It is possible

to use this information to hint the individual operations on matrices with lists of

possible block sizes occurring in the operands. The proposed implementation is

able to elegantly take advantage of this information using metaprogramming.

5.2.1 The Data Structure

In general, a vast majority of the existing block matrix schemes, including the pro-

posed one, involves the same data layout as CSC representation (or an equivalent
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one), but use more complex data structures to allow changes to the matrix struc-

ture which is useful especially in the context of incremental solving. For example,

in the existing implementations [3, 105, 106] described in the previous section, trees

or other higher abstract data types are used.

In the proposed block matrix implementation, block row and block column lay-

outs are described using the same cumulative sum structure, as seen in Figure 5.3a

on the top and left edge of the matrix. The columns structure additionally contains

the lists of non-zero matrix blocks, each comprising of a row index and a pointer

to matrix data.

Listing 5.1: The SLAM ++ sparse über block matrix format (C++; the constructors and

member functions omitted).

1: class CUberBlockMatrix {

2: public:

3: struct TRow { // a block row

4: size_t n_height; // height of the row. in elements

5: size_t n_cumulative_height_sum; // position of the block row

6: };

7:

8: struct TColumn { // a block column

9: typedef std::pair<size_t, double*> TBlockEntry; // one block entry

10:

11: size_t n_width; // width of the column. in elements

12: size_t n_cumulative_width_sum; // position of the block column

13: std::vector<TBlockEntry> block_list; // list of blocks

14: };

15:

16: typedef forward_allocated_pool<double, PAGE_SIZE,

17: MEM_ALIGNMENT> _TyPool; // data storage type

18:

19: // [constructors and operations on block matrices]

20:

21: protected:

22: size_t m_n_row_num; // number of matrix rows, in elements

23: size_t m_n_col_num; // number of matrix columns, in elements

24: std::vector<TRow> m_block_rows_list; // list of sizes of blocks rows

25: std::vector<TColumn> m_block_cols_list; // list of block columns

26:

27: _TyPool m_data_pool; // data storage for matrix elements

28: size_t m_n_ref_elem_num; // num. of referenced elements (shallow copy)

29: };

The elements themselves are stored in forward-allocated segregated storage (see

Figure 5.3b), a storage model similar to a pool but only permitting allocation and
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de-allocation of elements from the end of the storage, in the same manner stacks

do. This yields fast allocation and improves cache coherence. The C++ declaration

of the complete data structure can be seen in Listing 5.1.

The choice of a sorted list over e.g. a tree structure is given by the nature of

matrix usage. When iteratively solving an NLS problem, the block columns or block

rows are created once and used (referenced) many times. This reflects the nature

of a sorted list where insertion is costly (except for the insertion at, or near the end)

but lookup is fast. At the same time the flat structure is cache friendly, allowing for

fast iteration over the matrix data in arithmetics operations. Tree structures have

more balanced insertion and lookup costs, but since the nodes of a tree are typically

allocated on the heap, cache misses are potentially incurred at every lookup. Also,

traversal of all the nodes of the tree can be non-trivial.

To allow for the acceleration using vectorization by the SIMD instructions and

to make hardware implementations easier, the blocks should be memory-aligned.

E.g. for SSE, the addresses of the first element of each block need to be an integer

multiple of 64 bytes. Similarly, GPUs require so-called read coalescing which corre-

sponds to alignment to 128 byte boundaries. It is possible in the proposed format

to leave out unused entries so that each block is aligned (the pages are allocated

aligned so that the first block is always aligned). In some cases, small blocks need

not be aligned to save memory because vectorization would not be applied in such

case (e.g. 1× 1 blocks for SSE).

In order to enable the unusually fast O(1) block lookup in arithmetic operations

and also to facilitate error checking for incorrectly placed blocks, one important

restriction on block and column layouts must be applied. The whole area of the

matrix needs to be represented, which means that the layout of null block rows and

columns needs to be represented as well. Those are marked in yellow in Figure 5.3a

and their representation is shown in Figure 5.3b where the fifth and sixth fields in

the block column layout are empty and similarly the block row 5 is not referenced

by any of the blocks.

This contrasts with the usual sparse block matrix representations, which only

describe the layout of nonzero blocks without caring about the null elements in be-

tween. It comes at the cost of small increase in memory requirements, but only for

the layout itself, not for the data. If nb and mb are the number of block rows and

columns, respectively, up toO(mb+nb+2) additional cumulative sums are stored

in the worst case. These describe the layout of null block rows and columns. This

assumes no null space fragmentation which indeed does not occur in our imple-

mentation. The exact amount of required extra memory depends on the positions

of the nonzero blocks in the matrix. Please note that for the structurally full-rank

matrices in NLS problems there are no such null columns or rows, therefore, no

extra space requirements apply.
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5.2.2 Sparse Block Matrix Assembly

In order to write (scatter) a block into a matrix, the block column and block row

need to be resolved first. Adding a new block row or column inside the matrix

area, or alternatively reusing or subdividing an existing one is a logarithmic time

operation. However, incrementally appending the matrix with blocks to or after the

last block row or column is a constant time operation, as it only needs to determine

whether to create a new block row or column at the end, or to use an existing one.

This is a basic operation but frequently used in the context of incremental solvers

where the system matrix grows every step.

In order to look a block up by its position given by element coordinates of the

starting row and column, the block row and block column are resolved first in

O(lognb + logmb) time. Then the block needs to be found in the sorted list, taking

additional O(log fb) time (fb being the number of nonzero blocks (the fill) of a

given column; for most sparse matrices fb � mb). This operation can mostly be

avoided by storing a reference to the block after inserting it in the matrix. This is

very useful for updating the system matrices in (2.7) or (2.11) every time a new

linearization point is computed. In this case, the new values of the blocks can

be calculated directly inside the matrix, avoiding data copying or block lookup.

In addition, our implementation allows insertion of block using logical indexing,

where the block position is given by indices of block row and block column. That

avoids the block column and row resolution and only requires to find the block

in a sorted list, taking O(log fb) time. This feature is useful for applications that

insert many blocks in the same column, and for arithmetic operations which can

operate with logical indexing.

The proposed implementation also allows for making shallow copies of matrices,

where the block data is with the original matrix. That makes it possible to e.g. make

permutation of a matrix using a fill-reducing ordering for factorization without the

need to copy block data or to create triangular views. Any numerical modification

to the original matrix is reflected in its copies. This feature is also vital in the

context of nonlinear incremental solvers because it allows to reuse the permutation

even after the linearization point (and so also the unordered matrix) has changed.

5.2.3 Basic Arithmetic Operations

The arithmetic operations on block matrices are typically carried out in the same

manner as on elementwise sparse matrices, with the exception of handling ma-

trix blocks instead of scalar values. Most of the arithmetic operations require

block lookup at some point. In other existing block matrix implementations, the
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Algorithm 5.1: Naïve sparse block matrix multiplication.

1: function NaiveMult(A, B)

2: C = NewMatrix(Rows(A), Cols(B))

3: for each columnBblock in B do

4: colB = ColumnOf(columnBblock)

5: for each blockB in columnBblock do

6: rowB = RowOf(blockB)

7: columnAblock = FindColumn(rowB,A) . O(lognb)

8: for each blockA in columnAblock do

9: rowA = RowOf(blockA)

10: blockdest = FindBlock(rowA, colB,C) .O(lognb+logmb+log fb)

11: blockdest = blockdest + blockA · blockB

12: end for

13: end for

14: end for

15: return C

16: end function

O(lognb) lookup is used, and an example of the matrix multiplication is given

in Algorithm 5.1. At line 7, an O(lognb) lookup is required to find block column.

Then at line 10, another O(lognb + logmb + log fb) lookup is performed in order

to place a new block in the destination matrix. This algorithm is otherwise effi-

cient in the sense that each loop iteration calculates a single partial product and the

number of iterations thus matches the number of Floating Point Operations (FLOPs)

required by the matrix product at hand.

To improve performance, a function, mapping block rows of B to block columns

of A can be used. Consider Algorithm 5.2: first, note the use of logical indexing

of block rows and block columns by their id (lines 14 and 17), rather than by

their physical position in elements which was used in Algorithm 5.1 (lines 7 and

10). This mapping is calculated as a projection from block rows of the B matrix

to block columns of the A matrix using a modified ordered merge, as detailed

in Algorithm 5.3 (a similar mapping is used also for matrix addition where it is

calculated between row layouts and between column layouts of the matrices being

added). The cost of calculating the mapping function is O(mb +nb) in the number

of block rows or block columns. Note that the mapping function needs to be only

calculated once, before the arithmetic operation takes place. Note that the complex-

ity involved is negligible, compared to the complexity of the arithmetic operation

itself. This later allows to replace the logarithmic time lookup of columnAblock by

an O(1) lookup. It also enables checking whether the matrix product is defined on

the given block matrices.
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Algorithm 5.2: Fast sparse block matrix multiplication.

1: function FastMult(A, B)

2: C = NewMatrix(Rows(A), Cols(B))

3: fmap = BlockLayoutMapping(BlockCols(A), BlockRows(B))

4: colBid = 0

5: for each columnBblock in B do

6: for each blockB in columnBblock do

7: rowBid = RowIdOf(blockB)

8: columnAid = fmap(rowBid)

9: if columnAid = mismatch then

10: return . block layout mismatch, product not defined

11: else if columnAid = null then

12: continue . the column in A is mismatched but also empty

13: end if

14: columnAblock = BlockCols(A)[columnAid] . O(1)

15: for each blockA in columnAblock do

16: rowAid = RowIdOf(blockA)

17: blockdest = FindBlockLog(rowAid, colBid,C) . ¨ O(log fb)

18: blockdest = blockdest + blockA · blockB

19: end for

20: end for

21: colBid ++

22: end for

23: return C

24: end function

Furthermore, insertion of a block only requires insertion into a sorted list which

is up to O(log fb) but avoids the lookup of block row and block column. For some

types of operands (such as diagonal matrices or symmetric matrices), the order

of the inserted blocks can be anticipated and the O(log fb) time lookup can be

avoided. In our implementation, this is used to optimize matrix products in the

A>A form. In the elementwise sparse matrix multiplication routines [75, 41], a

helper dense vector is employed to accumulate the partial products and the nonze-

ros are then read out in linear time. This approach however produces matrices

where the nonzeros in each column are not ordered by row. Sorting them would

take O(fb log fb) time, which is equivalent to performing lookup fb times in up to

O(log fb) time. The proposed algorithm is therefore not much slower.

As mentioned above, the block sizes correspond to the DOF of the variables and,

in general, are known in advance. Using typelists [5] and templates, decision trees
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Algorithm 5.3: Algorithm for Calculating Block Layout Mapping Function.

1: function BlockLayoutMapping(a, b)

2: m = Size(a), n = Size(b)

3: mapa = Zeros(1,m), mapb = Zeros(1,n)

4: count = 0, cumlast = 0, lasta = 0, lastb = 0, i = 0, j = 0

5: while i < m∧ j < n do . merge the two layouts

6: cuma = BlockBase(a[i]) + BlockSise(a[i])

7: cumb = BlockBase(b[j]) + BlockSise(b[j])

8: cumnext = min(cuma, cumb)

9: if cuma = cumnext then

10: mapa[i] = (lasta = cumlast)? count : mismatch

11: lasta = cumnext

12: i++

13: end if

14: if cumb = cumnext then

15: mapb[j] = (lastb = cumlast)? count : mismatch

16: lastb = cumnext

17: j++

18: end if

19: cumlast = cumnext

20: count ++

21: end while

22: inva = Repmat(null, 1, count) . make a vector of count “null” symbols

23: for i = 0 to m− 1 do

24: if mapa[i] 6= mismatch then

25: inva[mapa[i]] = i . invert permutation mapa
26: end if

27: end for

28: fmap = Zeros(1,n)

29: for i = 0 to n− 1 do

30: fmap[i] = (mapb[i] 6= mismatch)? inva[mapb[i]] : mismatch

31: end for . compose permutations

32: return fmap

33: end function

are built at compile time that later at runtime enable the use of dense kernels

generated for a given block size. This allows for optimization using loop unrolling
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and vectorization at the block level, e.g. in Algorithm 5.2 at line 18. It can be easily

shown that if log2 of the number of possible block sizes is smaller than the average

block size, the resulting code will contain less branching and thus will run faster.

Note that in the proposed C++ implementation, this functionality is accessible

using simple and easy to read syntax where the list of block sizes is passed to each

individual matrix operation call in angled brackets. It would also be possible to

restrict certain types or instances of matrices to only contain blocks of specified

sizes, but such solution was seen as less versatile, and was not implemented. The

implementation details are described in Appendix A.

5.2.4 Sparse Block Matrix Factorizations

An indispensable tool for solving linear systems, most of the matrix factorizations

borrow from, is Gaussian elimination. Gaussian elimination modifies a matrix into

its upper-triangular form by performing linear combinations of rows and at the

same time modifies the right-hand side. The solution of a triangular system is

easily found by backsubstitution: the last variable does not depend on any other

and the solution is a simple ratio. The second last variable depends only on the

last but now that it is known, it can be substituted to get a simple linear equation.

The rest of the variables are solved for in similar manner, proceeding backwards,

from the right to the left – hence the name back-substitution.

An important problem in Gaussian elimination (and most of matrix factoriza-

tions in general), is stability: the elimination involves division by the diagonal

element (a pivot). If this division is by a small number, numerical issues ensue. A

simple example might be the following matrix: ε 1

1 0

 . (5.1)

Eliminating the 1 to get the matrix into the upper-triangular form requires division

by a small quantity εwhich will in turn amplify roundoff errors. A simple solution

is to swap the rows first (and equally swap the rows of the right hand side). This

process is called pivoting. The pivot can be chosen as the element of maximum

magnitude, either only from the current column (partial pivoting) or from the

lower-right submatrix that was not eliminated yet (full pivoting). Full pivoting is

understandably slower but typically leads to more numerically robust algorithms.

One disadvantage of Gaussian elimination becomes apparent in solving multi-

ple right-hand sides: although the right hand sides can be modified by the row

operations simultaneously, a problem appears if not all the right hand sides are

available at the same time. It is possible to gather the row operations in a matrix
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instead which can later be used to multiply each right hand side and apply those

operations to it. Enter matrix factorizations.

Cholesky factorization is a decomposition of a symmetric positive-definite ma-

trix Λ to a product3 R>R. Matrices involved in normal equations of NLS are positive-

definite and thus Cholesky factorization is a popular method. To solve a system

of linear equations in the form Λx = b, one first solves R>y = b and then Rx = y

by forward- and back-substitution. Blocking Cholesky factorization is popular in

dense linear algebra and is implemented e.g. in Eigen [73] but to our best knowl-

edge, our sparse block Cholesky implementation is the first of its kind.

Due to symmetry, Cholesky factorization can be row-wise or column-wise. Addi-

tionally, the order of elimination can produce a row (a column) at a time (gather),

or can modify the whole submatrix (scatter). These two cases are illustrated in

Algorithm 5.4, functions ColumnChol and SubmatrixChol (note that the rmod

function is a row-vise variant of cmod from line 7 and was omitted to save space),

respectively. Those modify the matrix and calculate the factorization in-place. An

appealing property of Cholesky factorization is that no pivoting is needed.

In the sparse case, the order of operation is typically given by the underlying

format. Since the proposed block format is derived from CSC, the Column-Chol

is taken as the starting point. Implementing cdiv is trivial, with the exception

that the loop is over nonzero blocks and the square root (line 2) becomes dense

Cholesky decomposition and the division (line 4) becomes back-substitution with

multiple right hand sides. Implementing cmod involves some more trickery: the

dot product of the two columns (line 9) becomes Λ>i,k · Λi,j and needs to be re-

solved efficiently. Due to the sparsity, not all the columns will have blocks at the

same positions so their contribution would be zero. Choosing the columns k that

modify the current column j can be done efficiently using the elimination tree

structure [41], a tree of variable dependences. To find the elements at the same row

in the two columns, it is possible to employ a dense vector for the jth column, in

the style of CSparse. For the block case, this could cost quite a lot of additional

storage therefore a different strategy using ordered merge (which runs in linear

time) is employed.

In sparse decompositions, a different notion of blocking is sometimes used. In

some cases, several consecutive columns in the factorization will have the same

3 Or alternatively as Λ = LL> where L , R>. In this work, upper-triangular matrices are preferred,

as most of the Cholesky factorization routines, including Cholmod, read only the upper-triangular

part of the matrix and there seems to be some integrity in also writing an upper-triangular out-

put. Additionally, for A>A = Λ and A = QR (where Q is orthogonal), it can be shown by writing

A>A = R>Q>QR = R>R that this R matrix is the same one as in the Cholesky factorization, up to the

sign of the rows (Cholesky will always have positive diagonal entries). This choice of R over L is not

motivated by any political or occult preferences.
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Algorithm 5.4: Two Dense Cholesky Factorization Algorithms.

Require: That Λ is a symmetric, positive-definite n×n matrix

1: function cdiv(k, Λ) . Column k divided by the square root of the pivot.

2: Λk,k =
√
Λk,k

3: for i = 0 to k− 1 do

4: Λi,k = Λi,k/Λk,k

5: end for

6: end function

7: function cmod(j, k, Λ) . Column j modified by a preceding column k (j > k).

8: for i = 0 to k− 1 do

9: Λk,j = Λk,j −Λi,k ·Λi,j . Gather (cmod for L would scatter).

10: end for

11: end function

12: function ColumnChol(Λ, n)

13: for j = 0 to n− 1 do

14: for k = 0 to j do . Left-looking, inclusive.

15: cmod(j,k,Λ) . Gather contributions of the preceding columns.

16: end for

17: cdiv(j,Λ) . Finalize the current column.

18: end for

19: end function

20: function SubmatrixChol(Λ, n)

21: for k = 0 to n− 1 do

22: cdiv(k,Λ)

23: for j = k+ 1 to n− 1 do . Right-looking, exclusive.

24: rmod(j,k,Λ,n) . Scatter contributions from the current row.

25: end for

26: end for

27: end function

sparsity pattern, forming a dense block around the diagonal. This is commonly

referred to as a supernode. While the proposed implementation and e.g. the one in

CSparse are simplical, Cholmod implements a supernodal factorization [33] which

identifies these supernodes and uses dense kernels to speed the computation up.

It would similarly be possible to identify block-supernodes in the block structure

of the factorized matrix but its implementation was not attempted.
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Another observation to be made about cmod is that it can introduce new non-

zero entries: for two columns j and k which have nonzero values in the same row

above the diagonal, Rk,j will be nonzero (ignoring possible numerical cancellation).

This is commonly referred to as fill-in. The speed of the sparse factorization can be

severely affected by the fill-in. A classical example is an arrow matrix:

Λ =


2 1 1 1

1 2 0 0

1 0 2 0

1 0 0 2


, P =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0


, P>ΛP =


2 0 0 1

0 2 0 1

0 0 2 1

1 1 1 2


(5.2)

The Cholesky factorization of such Λ will be a full matrix (all the columns share

nonzeros in the first row). However, an appropriate permutation P of the original

system of equations can be employed, yielding no fill-in at all in the factorization

of P>ΛP. This requires the right-hand side vector (and the solution vector) to be

permuted (inversely permuted) as well but that presents a negligible cost. Note

that the permutation is rarely represented as a matrix in practice, rather it is repre-

sented as a vector of variable number reassignments (in this case p = (3, 0, 1, 2)).

Finding the best fill-reducing permutation is an NP-complete problem [177],

however many approximate algorithms are available. Based on the observation that

the fill-in only occurs under the highest element of each column, initially the or-

derings strived to reduce the matrix profile or bandwidth, [66, 156, 58, 53], notably

Reverse Cuthill-McKee (RCM) [37]. Later, orderings based on the elimination graph

were proposed such as Exact Minimum Degree (EMD) and its modifications [112],

Approximate Minimum Degree (AMD) [7] or Nested Dissection [64].

The ordering can be done on the level of elements (customary in sparse lin-

ear algebra) or on the level of blocks. The proposed implementation depends on

the ordering of the block structure, otherwise the elementwise permutation could

scatter the block structure completely. On the other hand, the block structure is

represented by a much smaller matrix and the ordering heuristics thus run faster.

At the same time, the quality of such ordering is comparable to the conventional

one if not better [98].

5.2.5 Pivoting Sparse Block Matrix Factorizations

The major advantage of the Cholesky factorization is that it does not require piv-

oting – other factorizations are usually not numerically stable without one. This

presents a serious issue in the context of sparse matrices if the pivoting is oblivious

to the fill-in it causes, which in turn can present a significant explosion in space

and complexity, as well as additional source of numerical problems. A related issue
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in sparse block schemes is again the shattering of the block structure. This can be

solved using threshold pivoting [152, 40] – a different pivot than the one proposed

by the fill-reducing ordering is only used if it is of much larger magnitude, as de-

fined by the threshold. Choosing a small threshold leads to pivoting for numerical

stability while choosing a large threshold leads to pivoting for sparseness.

Threshold pivoting can still lead to large fill-in though. For instance, a Chol-

esky factorization of a 174, 515× 174, 515 symmetric positive-definite matrix with

9, 363, 966 nonzero entries (a 3D reconstruction problem4) takes about 74MB. How-

ever, LU factorization of the same matrix takes over 15 GB, due to less fortunate

pivoting choices. This problem appeared when analyzing eigenvalues of the said

matrix in R, using the rARPACK package5.

Applying the block structure to pivoting can lead to significant advantages,

however. The pivot can only be chosen within the current block given by the fill-

reducing ordering, which guarantees no changes in the sparsity pattern and thus

no unexpected fill-in would occur. Since this can still lead to sub-optimal pivots

in some rare cases, a different block can be chosen. Fortunately, to detect a sub-

optimal pivot, only the diagonal block needs to be factorized, without modifying

the off-diagonal entries, which presents a relatively small or even constant cost.

If the factorization of the diagonal block fails, another block is chosen as the piv-

otal one, and at that point fill-in may occur. This fill-in is comparable to the one

caused by the elementwise threshold pivoting algorithm. If no pivotal block is vi-

able, the factorization could choose to either fail or to shatter the block structure

and continue with elementwise pivoting.

5.3 performance analysis

In this section, the timing results for several matrix operations performed using the

proposed implementation are compared to similar state of the art implementations

such as CSparse, Ceres and NIST Sparse BLAS. NIST implementation can store

matrices in several formats. CSR is a compressed sparse row elementwise format,

similar to the one used in CSparse. BSR denotes constant block size compressed

block row format, and is a simple block matrix format where all the blocks have the

same size. Finally, VBR denotes variable block size compressed block row format,

which is an extension of BSR where the individual blocks can have arbitrary size.

This format is the most general, and is equivalent to the one used in Ceres and

by the proposed solution. The proposed implementation is denoted as UBlock (as

4 The Guildford Cathedral dataset from http://cvssp.org/impart/

5 http://cran.r-project.org/package=rARPACK

http://cvssp.org/impart/
http://cran.r-project.org/package=rARPACK
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Figure 5.4: Time for compression of the MCCA matrix (smaller is better).

per Listing 5.1), and the version with metaprogramming optimization is denoted

UBlock FBS (fixed block size) or “UB. FBS” for short.

All the tests were performed on a computer with Intel Core i5 CPU 661 running

at 3.33 GHz and 4 GB of RAM. This is a quad-core CPU without hyperthreading

and with full SSE instruction set support. During the tests, the computer was not

running any time-consuming processes in the background. Each test was run ten

times and the average time was calculated in order to avoid measurement errors,

especially on smaller matrices. The computer was running Ubuntu 11.10 (64 bit)

and all the tested libraries were compiled using g++ version 4.6.1.

The evaluation was performed on a subset of the The University of Florida

Sparse Matrix Collection [39]. This collection was chosen because it contains sparse

matrices corresponding to a diverse set of problems, and as such it is suitable for

testing of general purpose linear algebra implementations. Note that the goal of

this benchmark was to ascertain the performance scaling and for that reason, only

the structure of the matrices was used. In the tests, each nonzero element was

assumed to be a block of size given by each particular test configuration. As the

speed of blockwise operations depends on block size, the block size was varied

from 1× 1 to 30× 30 elements. Note that these benchmarks are synthetic, but still

highly relevant in the context of problems with naturally occurring block structure,

such as (but not limited to) NLS, FEM or PDE.

Several matrices were selected for comparison. In particular, the MCCA matrix

from the Harwell-Boeing [52] collection, a relatively small matrix of 180× 180 ele-

ments containing 2659 nonzero entries was used for the comparison with the NIST

implementation. This matrix was selected because the authors already performed
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Figure 5.5: Performance scaling of general matrix vector product on the MCCA matrix.

experimental evaluation [29] on it. Since the NIST BLAS is not widely used, this lim-

ited comparison should be sufficient. For the rest of the evaluations, 200 matrices

from The University of Florida Sparse Matrix Collection were chosen randomly.

A comparison of the time required to compress a sparse matrix using CSparse,

Ceres and our implementation is shown in Figure 5.4. The NIST implementation is

missing from the plot because their library does not provide compression routines.

Note that CSparse time is directly dependent on the number of matrix nonzero

elements. The block schemes become more efficient as the block size grows; our

implementation becomes the fastest for 6× 6 blocks (or larger).

Similarly, Figure 5.5 shows the time comparison for the general matrix vector

product operation. For 1× 1 blocks, CSparse is faster than every other implemen-

tation, except for the NIST elementwise implementation and the proposed fixed

block size implementation. Although the NIST elementwise implementation is

very fast and significantly outperforms CSparse, there is only small speedup with

their block matrix formats. For block size 1×1, the NIST elementwise sparse imple-

mentation is the fastest. Interestingly enough, the Ceres implementation is slower

than the NIST implementation, approaching NIST performance as the block size

grows. It becomes faster than CSparse for block size 5×5. Our general implementa-

tion becomes faster than CSparse for 4× 4 blocks and is the fastest for 8× 8 blocks

or larger. However, the proposed fixed block size implementation is always the

fastest, except that the NIST CSR is faster for 1× 1 blocks (but our implementation

is still slightly ahead of the CSparse library).

An additional benchmark is performed for the operation of addition of the ma-

trix and its transpose. This operation is not particularly important in the context of
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Figure 5.6: Performance scaling of linear combination of the MCCA matrix and its trans-

pose (note that it is a square, nonsymmetric matrix).

nonlinear solvers, but due to its arithmetic simplicity it is sensitive to efficient data

manipulation. Since the MCCA matrix is not structurally symmetric, the result of

this operation has a different nonzero pattern than the operands. That can be ex-

pected in most matrix addition situations, therefore it serves as a valid benchmark.

The results can be seen in Figure 5.6. Note that the time spikes of the proposed im-

plementation, especially on the fixed-block-size version, are caused by the compiler

being able to generate more optimized code for blocks of sizes that are multiples

of four, since the SSE registers store four values.

Multiplication benchmark in Figure 5.7 displays similar behavior. Note that the

gap between elementwise sparse and blockwise sparse implementation gets very

wide as the block size increases. On the other hand, most of the popular nonlinear

least squares problems will likely only use blocks up to no more than 10× 10. On

the other hand, problems from the field of the computational chemistry may use

even larger blocks. Still, it is fast enough to outperform even elementwise sparse

implementations running on GPU, as will be demonstrated later on.

We also performed cache profiling using the Cachegrind6 tool, with the default

settings (64 kB of L1 cache and 6 MB of L2 cache). The benchmark with the MCCA

matrix was run several times in order to identify outliers in Cachegrind results.

The test was run with block size 4× 4, and confirmed that the proposed storage is

indeed cache efficient. Matrix multiplication had 8.3% L1 cache misses and 16.3%

last level cache misses, compared to CSparse. Similarly, matrix vector multiplica-

tion reduced L1 cache misses down to 14.2% and last level cache misses to 9.45%.

6 A part of the Valgrind tool family, see http://www.valgrind.org/info/tools.html#cachegrind.

http://www.valgrind.org/info/tools.html#cachegrind
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Figure 5.7: Performance scaling of the product of the MCCA matrix and its transpose.

Additional benchmarks are shown in Table 5.1, which contains the average run

times on 200 randomly chosen matrices from The University of Florida Sparse

Matrix Collection [39]. The benchmarks involved matrix addition, matrix product,

optimized matrix product for symmetric matrices, matrix - vector product, matrix

compression from sparse values in triplet form, matrix transpose and the triangu-

lar solve operation. Note that some of the above operations could only be executed

on a subset of chosen matrices. It can be seen that for 1× 1 blocks, CSparse is the

fastest, except for the triangular solve operation. Otherwise the proposed imple-

mentation consistently yields better times, with the fixed block size optimization

being faster than the general optimization. The only exception is the compression

benchmark, where Ceres also gets good results. This is understandable as Ceres

does not provide any functionality to change the matrix once it has been com-

pressed, which makes the storage simpler. This is a disadvantage in the context of

incremental iterative solvers, since the system matrix adds a few new blocks at ev-

ery step and it is considerably more efficient to have an option to alter compressed

matrix than to recompress at every step. Also note that the proposed scheme only

accelerates problems with inherent block structure, and is not suitable for general

sparse matrix operations where CSparse is faster.

Cholesky factorization benchmarks are in Table 5.2, which contains the average

run times on 200 other randomly chosen “Cholesky candidate” matrices from The

University of Florida Sparse Matrix Collection [39]. In here, the elementwise and

blockwise factorizations used the same variable ordering (and therefore required

the same amounts of FLOPs). The block size was varied from 1× 1 to 6× 6 (each

block was initialized to the value of the original sparse matrix element and its
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Table 5.1: Timing results on a subset of University of Florida Sparse Matrix Collection [39];

the best times are in bold.

Block Size

1× 1 4× 4 5× 5 8× 8 10× 10 15× 15 16× 16

Operation Library Time [ms]

Matrix

Add

CSparse 0.1010.1010.101 1.497 2.574 7.232 12.081 26.877 31.890

UBlock 0.389 0.896 1.261 2.747 4.048 7.884 8.934

UB. FBS 0.198 0.5860.5860.586 0.9390.9390.939 2.5002.5002.500 3.7853.7853.785 7.4387.4387.438 8.5468.5468.546

Matrix

Product

CSparse 0.6720.6720.672 23.079 42.608 144.294 271.700 908.861 1096.108

UBlock 11.601 24.555 37.316 86.752 148.873 421.273 495.385

UB. FBS 3.330 8.4408.4408.440 20.50620.50620.506 31.89531.89531.895 55.36355.36355.363 261.459261.459261.459 242.498242.498242.498

A> ·A
Product

UBlock 4.821 12.256 18.360 49.159 85.476 257.207 310.401

UB. FBS 4.966 9.014 15.212 24.284 65.773 146.110 239.969

Matrix

Vector

Product

CSparse 0.0120.0120.012 0.204 0.357 1.018 1.550 3.237 3.643

Ceres 0.031 0.165 0.247 0.646 0.992 2.083 2.280

UBlock 0.028 0.148 0.238 0.625 0.962 1.890 2.153

UB. FBS 0.016 0.1070.1070.107 0.1850.1850.185 0.5560.5560.556 0.9310.9310.931 1.7061.7061.706 1.9991.9991.999

Compress

CSparse 0.0370.0370.037 0.851 1.490 4.266 6.916 15.001 18.480

Ceres 0.530 0.8150.8150.815 1.0491.0491.049 2.0622.0622.062 2.906 5.494 6.378

UBlock 1.167 1.380 1.487 2.211 2.8442.8442.844 5.1525.1525.152 5.7675.7675.767

Transpose
CSparse 0.0400.0400.040 0.787 1.348 4.223 7.080 18.625 24.474

UBlock 0.337 0.6390.6390.639 0.8540.8540.854 1.6291.6291.629 2.4972.4972.497 5.0545.0545.054 5.8175.8175.817

Triangular

Solve

CSparse 0.015 0.168 0.279 0.823 1.305 2.976 3.463

UBlock 0.024 0.126 0.190 0.500 0.752 1.661 1.877

UB. FBS 0.0140.0140.014 0.0890.0890.089 0.1550.1550.155 0.4550.4550.455 0.6610.6610.661 1.4721.4721.472 1.7631.7631.763

diagonal was multiplied by two to ensure the matrix stays positive definite rather

than becoming semi-definite). The fixed block size version of our implementation

is the fastest for 3× 3 (which corresponds to 2D problems in robotics) or larger.

The generic implementation requires larger blocks to be efficient and becomes

faster than CSparse for 6× 6 blocks.

In solving FEM problems and perhaps also in other methods which rely on highly

efficient matrix vector products, an approach called splitting [168, 139, 65] can be

employed. It refers to representing a matrix with blocks of multiple different sizes

as a sum of several matrices, each containing blocks of one particular size. Then,

each of those matrices can be represented using a simpler block matrix format and

loops can be unrolled similarly as in the proposed Fixed Block Size (FBS) approach.

To compare the performance of the splitting approach to the proposed decision tree
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Table 5.2: Timing results of sparse block Cholesky factorization benchmark on a subset of

University of Florida Sparse Matrix Collection [39]; the best times are in bold.

Block Size

1× 1 2× 2 3× 3 4× 4 5× 5 6× 6

Benchmark Library Mode Time [ms]

Cholesky

CSparse 1.2331.2331.233 1.8501.8501.850 0.765 2.065 3.034 1.166

UBlock
14.910 5.601 1.244 2.617 3.314 1.084

FBS 4.095 2.080 0.5690.5690.569 1.5421.5421.542 1.9111.9111.911 0.6550.6550.655

(a) (b)

Figure 5.8: The MCCA matrix a) with the elements inflated to blocks of four different sizes

and b) its split form.

approach, one more benchmark was performed. The MCCA matrix was used, and

again its elements were inflated to blocks. In contrast to the previous benchmarks

of performance scaling which used a single block size in the entire matrix, mixtures

of different block sizes were generated. The mean block size was 9× 9 for all cases,

so that the number of FLOPs would be the same for all the tests. An example for

four different block sizes is given in Figure 5.8. On the right, the matrix is reordered

so that it can be split to four independent matrices, each of which contains only

blocks of a single size. The matrix vector product is then performed separately for

each of the four sub-matrices and the results are summed up.

The results for this benchmark are in Figure 5.9. It can be seen that CSparse has

the same performance for all the tests, since it does not work with blocks at all.

Similarly, NIST BLAS VBR and the proposed scheme denoted UBlock achieve rela-

tively constant performance. Surprisingly, Ceres only achieves good performance

for matrices with a single block size and then drops to the performance of CSparse

and lower, even though it does not optimize for matrices with a single block size.
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Figure 5.9: Comparison of splitting and the variable block size approaches.

The split approach implemented using the BSR format of the NIST BLAS, denoted The BSR

format

actually

supports

matrices

with

square

blocks

only. An

extended

rBSR that

supports

rectangular

blocks

was imple-

mented in

the same

NIST style.

Split NIST BSR, achieves slightly higher performance than the VBR format up to 9

block sizes, then it becomes slower. The small yield is given by this implementation

not being able to unroll the loops. The version of the split approach implemented

using the proposed block matrix scheme with the loops unrolled, denoted Split

UBlock FBS, gains much higher performance and always stays ahead of the pro-

posed variable block scheme, although for more than 64 block sizes, it would drop

below. The decision tree approach using the non-split matrix denoted UBlock FBS

achieves better performance than the split one, with the performance decreasing

at lower rate with the growing number of block sizes. The performance hit of the

decision tree version is related to the base 2 logarithm of the number of block

sizes, while the performance hit of the splitting approach is related to the number

of block sizes directly. On top of that, splitting also increases the bandwidth of the

matrix, further increasing memory traffic. Note that for the splitting approaches,

the time needed to reorder and split the matrix is not included in this evaluation.

5.4 chapter summary

A new implementation for block matrix operations was proposed in this chapter. It

implements highly efficient kernels that are core for Nonlinear Least Squares (NLS)

solvers. We targeted problems that have a particular block structure, where the

size of the blocks corresponds to the number of Degrees of Freedom (DOFs) of the

variables.
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The proposed scheme combines the advantages of block schemes convenient in

both, numeric and structural matrix modification and elementwise, which are effi-

cient in arithmetic operations. It also allows to conveniently restrict possible block

sizes to a defined set (per every instance of matrix operation), at compile time.

This leads to further substantial speedup. The advantage of the new scheme was

demonstrated through comparisons with the existing implementations on a subset

of matrices from University of Florida Sparse Matrix Collection dataset.

Even though the proposed scheme proved to outperform the state of the art

implementations, several improvements from algorithmic point of view can be ap-

plied. Support for special matrix types, such as diagonal or band-diagonal and

symmetric matrices can be provided. Furthermore, some of the block matrix oper-

ations can be efficiently parallelized. The block layout was designed with hardware

acceleration in mind, especially on the GPU.



6
B AT C H S O LV I N G I N S L A M + +

In the previous chapter, a fast implementation of operations on sparse block matri-

ces was introduced and its performance was evaluated on more or less synthetic

dataset obtained by “inflating” elementwise sparse matrices into block matrices.

This chapter discusses design of an efficient nonlinear least squares solver based

on the block matrices and evaluates its performance on several well-known SLAM

problems. We refer to gathering all the constraints and variables and calculating

the solution at once as batch solving. In contrast, incremental solving would be first

solving a small part of the problem, then adding some variables and constraints,

solving this larger problem again, and so on. This scenario typically arises in online

robotic applications where a robot is traveling through the environment, gathering

data and at the same time requiring estimates of its position and of the map before

it can plan its next actions.

In robotics, Simultaneous Localization and Mapping (SLAM) is often formulated

as a nonlinear least squares problem. Similar problems such as Structure from

Motion (SfM) in computer vision [55] or elastodynamic simulations in computer

graphics [81] rely on solving large nonlinear systems. Efficient incremental online

algorithms for solving the underlying nonlinear least square problem are essential

in real-time applications. Solving the nonlinear system is usually addressed by iter-

atively solving a sequence of linear systems (as described in Section 2.1). The most

computationally demanding part is to assemble and solve the linearized system at

each iteration.

The linear system can be solved either using direct or iterative methods. Direct

methods, such as Cholesky or QR factorizations, are based on repeatedly factoriz-

ing a large matrix and backsubstitution to obtain the solution. Iterative methods,

such as Conjugate Gradient (CG), on the other hand, employ matrix-vector multi-

plications and iteratively approximate the solution of the linear system. Iterative

methods are more efficient from the storage (memory) point of view, since they

only require access to the gradient, but they can suffer from poor convergence. Di-

rect methods produce more accurate solutions and avoid convergence difficulties

but they typically require a lot of storage as well as efficient elimination orderings

to be found in order to maintain the sparsity of the resulting factors.

In robotics, approaching SLAM as a nonlinear optimization on graphs showed

to provide very efficient solutions to moderate scale and well-behaved SLAM ap-

plications [45, 71, 95, 97, 106]. Graphs allow more natural representation of non-

73
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linear least squares problems such as SLAM, where a set of variables such as the

robot poses and landmark positions are estimated, given a set of measurement

constraints between those variables. The goal is to find the optimal configura-

tion of the variables that maximally satisfy the set of nonlinear constraints. The

existing methods repeatedly solve a sequence of linear systems in an iterative

Gauss-Newton (GN) or Levenberg-Marquardt (LM) nonlinear solver. Real applica-

tions such as online mapping and localization of a robot in a large area and over

very long period of time require extremely fast methods for building, updating

and solving the sequence of linearized systems. It involves operating on matrices

having a block structure, where the size of the blocks corresponds to the number

of DOF of the variables.

Some of the existing implementations rely on sparse block-structure

schemes [105, 106]. The block structure is maintained until the point of solving

the linear system. Here is where CSparse [41] or Cholmod [42] libraries are used

to perform the matrix factorization. Those are state of the art elementwise imple-

mentation of operations on sparse matrices.

6.1 related work

This work focuses on the implementation of nonlinear least square solvers, involv-

ing direct methods. Several successful implementations of graph optimization tech-

niques for SLAM already exist and have been used in robotic applications. In gen-

eral, they are based on similar algorithmic framework, repeatedly applying Chol-

esky or QR factorizations in an iterative Gauss-Newton or Levenberg-Marquardt

nonlinear solver. g2o [106] is an easy to use, open-source implementation which

has been proven to be very fast in batch mode. It exploits the sparse connectivity

and operates on the block-structure of the underlying graph problem. A similar

scheme was initially implemented in SSBA [105] and SPA [104] and it is based

on block-oriented sparse matrix manipulation. Using blocks is a natural way to

minimize cache misses, since the CPU can automatically prefetch the data as they

are accessed. Nevertheless, taking care about the layout of the individual blocks in

the memory is very important, otherwise the overhead of handling the blocks can

easily outweigh the advantage of cache efficiency.

However, in SLAM the state changes every step when new observations need

to be integrated into the system. For very large problems, updating and solv-

ing every step can become very expensive. Incremental smoothing and mapping

(iSAM) allows efficiently solving a nonlinear graph optimization problem in every

step [95]. The implementation incrementally updates the R factor obtained from

the QR factorization and performs backsubstitution to find the solution. The spar-
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sity of the R factor is ensured by periodic reorderings. Recently, the Bayes tree

data-stucture [97, 98] was introduced to enable a better understanding of the link

between sparse matrix factorization and inference in graphical models. The Bayes

tree was applied to obtain iSAM2 [97, 98], which achieves high efficiency through

incremental variable re-ordering and fluid relinearization, eliminating the need for

periodic batch steps. When compared to the existing methods, iSAM2 performance

finds a good balance between efficiency and accuracy. But still the complexity of

maintaining the Bayes tree data structure can introduce several overheads.

The solutions proposed in this chapter aim to improve the above-mentioned im-

plementations, which spend most of the time performing sparse matrix manipula-

tion and arithmetic operations on sparse matrices. Our scheme is general, and can

be easily incorporated into advanced incremental algorithms such as iSAM. Even

iSAM2, which relies on a tree-like data structure, could benefit from the proposed

scheme for the management of the dense blocks in memory.

6.2 incremental slam

Online robotic applications require fast and accurate methods for the estimation of

the current position of the robot. In an online application, the state is incremented

with a new robot position and/or a new landmark every step and it is updated with

the corresponding measurements. This translates into changing (2.10) by adding

new block columns to the matrix A corresponding to each new variable (e.g. a pose

or a landmark) and new block rows corresponding to each measurement [45]:

Â =

 A

Au

 , b̂ =

 b1

b2 +bu

 , (6.1)

where for the case of a single new measurement, Au = J>kΣ
-1/2
k and bu = −Σ

-1/2
k rk,

with Jk being the block row of the Jacobian matrix, corresponding to the residual

rk of the measurement function hk
(
θik , θjk

)
:

Jk =

(
0 . . .

∂rk
∂θik

. . . 0 . . .
∂rk
∂θjk

)
. (6.2)

Note that the additions in (6.1) may require padding A with new zero columns

and b2 with new zero rows in case new variables are added. Extension to multiple

new measurements is trivial.

Similarly, for the Λmatrix in the normal equation (2.11), the increments translate

to adding new block rows and block columns (as Λ is symmetric) with the size of
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(a) Manhattan (b) 10k (c) 100k (d) City10k (e) CityTrees10k

Figure 6.1: The synthetic datasets used in the batch solver evaluations.

(a) Intel (b) Killian Court (c) Victoria Park

Figure 6.2: The real-world datasets used in the batch solver evaluations.

each new variable. Updates translate to (potentially) adding new nonzero entries.

Updating Λ and η is additive:

Λ̂ =

 Λ11 Λ12

Λ>12 Λ22 +Ω

 , η̂ =

 η1

η2 +ω

 , (6.3)

where like for the A matrix above, Ω is the bottom-right section of J>kΣ
-1
k Jk and

ω is the bottom part of −JkΣ
-1/2
k rk. Also, one can see that Λ̂ = Λ+A>uAu and

ω = Jkbu.

A batch computation of the solution of the new incremented and updated system

is then performed at every nth step. Ideally, the estimate is recalculated whenever

new constraints or variables are added, to obtain the most accurate model of the

environment that can be derived from all measurements gathered so far. For very

large problems, batch solving at every step can become very expensive. Kaess et.

al [95, 97, 98] proposed efficient algorithms to incrementally solve the linear sys-

tems. Those algorithmic improvements offer very good solutions to online SLAM

but they are out of scope of this chapter, which focuses on efficiently construct-

ing the system at each iteration and speeding-up the basic arithmetic operations

involved in batch solving.

6.3 implementation details

In order to efficiently cope with very large nonlinear systems, the process of assem-

bling and solving the sequence of linear systems must be as fast as possible. The
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data structure has to allow for both, efficiently re-computing the values of the ma-

trices A or Λ and the r.h.s. b or η every time a new linearization point is available

as well as efficiently updating the system when new measurements are available

in incremental mode. One important characteristic of those matrices is their sparse

block structure. For maintaining the Λ matrix, the individual Jacobian blocks Jk
are cached and the data flow of the product A>A is represented in such a way that

it can be incrementally updated as the linearization point is changed.

Operating on dense blocks is a natural way to support vectorization and improve

cache efficiency without any additional effort. Also, the division of the data in

blocks allows efficient data representation at their natural granularity, making it

simple to reference the data inside the matrix and change their value when needed.

6.4 experimental evaluation

In order to evaluate our new efficient block matrix scheme, two standard graph

SLAM algorithms were implemented; one that builds the linear system in (2.7),

which is denoted allBatch-A and another one that increments the information ma-

trix in (2.11), which is denoted allBatch-Λ. The timing results were compared to

similar state of the art implementations such as iSAM [95], g2o [106], and SPA [104]

(a 2D SLAM variant of sSBA [105]), which were described in further detail in Chap-

ter 4. For SPA the svn revision 39478 of ROS (http://www.ros.org/) was used;

for g2o, svn revision 29 from http://openslam.org/ was used and for iSAM we

used revision 7 from https://svn.csail.mit.edu/isam. Our implementation is

available as open source at http://sf.net/p/slam-plus-plus/.

The implementations were evaluated on five standard simulated datasets; Man-

hattan [137], 10k and 100k [71], City10k and CityTree10k [94] and on three real

datasets; Intel [85], Killian Court [21] and Victoria Park [133] (see Figure 6.1 and Fig-

ure 6.2). These are 2D SLAM datasets commonly used in evaluating graph-based

SLAM implementations.

All the tests were performed on a computer with Intel Core i5 CPU 661 running

at 3.33 GHz and 8 GB of RAM, the same machine as in the previous chapter. This is

a quad-core CPU without hyperthreading and with full SSE instruction set support.

Each test was run ten times and the average time was calculated in order to avoid

measurement errors, especially on smaller datasets.

6.4.1 Tested Implementations

All the implementations used for comparisons are based on relatively similar algo-

rithms, both in batch and incremental mode. Gauss-Newton non-linear solver was

http://www.ros.org/
http://openslam.org/
https://svn.csail.mit.edu/isam
http://sf.net/p/slam-plus-plus/
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Table 6.1: Time comparisons of the batch solvers (CM refers to Cholmod and CS refers to

CSparse); the best times are in bold.

CS CM CS CM CS CM

Dataset g2o iSAM allBatch-A allBatch-Λ χ2 (iter.)

Manhattan 0.0614 0.0607 1.3641 0.0573 0.0613 0.04190.04190.0419 0.0468 6112.18 (5)

10k 0.5539 0.5497 2.9518 0.6341 0.6977 0.48520.48520.4852 0.5798 171545.45 (6)

100k 10.8135 9.4181 24.9582 10.4795 12.0097 9.22139.22139.2213 11.0566 8685.07 (6)

City10k 0.4855 0.4491 1.4207 0.4635 0.5312 0.42030.42030.4203 0.4563 31931.41 (6)

CityTrees10k 0.1359 0.1391 0.6245 0.1390 0.1469 0.09160.09160.0916 0.1090 548.50 (5)

Intel 0.0066 0.0070 0.0356 0.0126 0.0083 0.00520.00520.0052 0.0060 559.05 (2)

Killian Court 0.0084 0.0086 0.0535 0.0090 0.0095 0.00700.00700.0070 0.0075 5 · 10−6(1)
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Figure 6.3: Comparisons of time per vertex in the batch solvers (CM refers to Cholmod and

CS refers to CSparse).

tested in all cases, with the exception of SPA which uses Levenberg-Marquardt

instead. iSAM has the possibility to perform incremental updates to solve at every

step and to perform expensive batch steps only when needed, but for compari-

son purposes we tested only the cases where batch, update and solve are all done

together.

g2o and SPA use their own sparse block matrix implementation. In g2o, it is

based on a dense vector of trees, where each tree contains blocks for one column.

This allows relatively fast random access to matrix elements, only O(log f) com-

pared to O(lognb + log f) in our implementation. However, our implementation

always avoids accessing blocks randomly, while in g2o this complexity is enforced

on block lookup in matrix operations, making them slower than both CSparse and
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our implementation. Overall, g2o is optimized for batch processing, but not for

incremental solving.

The good SPA timings come from the fact that their implementation is optimized

for the specific 2D pose adjustment problem (or bundle adjustment problem in case

on sSBA), thus SPA is unable to process datasets with landmarks. In contrast, our

implementation is general, allowing any combination of any block sizes.

The comparison with iSAM technically stands only for incremental every step.

For incremental every 10 or every 100 steps, the other solvers perform state con-

catenation only and possibly also Jacobian computations. While the solution is still

available at each step, the observation errors are only being reduced at every 10th

or every 100th step, respectively. iSAM, on the other hand, is able to reduce this

error in every step of the algorithm even between the 10th or 100th ones, using an

approximate Gauss-Newton step which reuses the factorization from the previous

linearization point (which is different from the current one – hence the approxi-

mation). But since the factorization takes most of the time in all the solvers, this

comparison is still relevant.

6.4.2 Discussion of the Results

Timing results for running batch and incremental SLAM are shown in Tables 6.1

and 6.2 and Figures 6.3 and 6.4, respectively. Note that the accompanying figures

show time per vertex, as it was hard to display the radically different times for

all the datasets in a single plot. The Victoria Park dataset is not included in the

batch tests since it does not converge if solved as batch. Similarly, the 100k dataset

is too large to be executed incrementally in reasonable time, and is not included

either. The last column of Table 6.1 reports values of the χ2 error and the number

of iterations. Those are both the same (or very close in the case of χ2) for all

the tested solvers. The number of iterations was dictated by SPA, which does not

allow setting the limit explicitly. In incremental mode, the tests were done using

the linear solver which was the fastest in batch mode (Cholmod in case of g2o and

CSparse in case of our implementation). The incremental results are split in three

parts; solution updated every time a vertex is added, every 10 vertices and every

100 vertices.

Our implementation outperforms all the existing implementations in both batch

and incremental mode. The comparison in batch mode shows a speed up of 10%

when compared to the fastest implementation. This is mainly due to the proposed

block matrix scheme, the algorithm being very similar and the differences in the im-

plementation style cannot cause such large speedups. Note that in this benchmark,

the block Cholesky factorization is not used yet and so the proposed implemen-
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Table 6.2: Time comparisons of the batch solvers running in the incremental mode (CM

refers to Cholmod and CS refers to CSparse); the best times are in bold.

Dataset g2o-CM iSAM SPA allBatch-A-CS allBatch-Λ-CS

Solve at each step

Manhattan 94.9096 64.5844 23.8834 10.8883 10.003810.003810.0038

10k 2134.3000 1768.8400 515.2880 377.7490 329.1840329.1840329.1840

City10k 1326.6600 693.7860 308.0680 235.7910 222.5930222.5930222.5930

CityTrees10k 659.1590 434.7500 N/A 25.2809 22.707022.707022.7070

Intel 5.0513 4.4647 1.4763 0.8829 0.84240.84240.8424

Killian Court 20.8899 19.7519 5.6260 2.4275 2.14852.14852.1485

Victoria Park 293.1010 209.1740 N/A 30.6333 28.019428.019428.0194

Solve at each 10 steps

Manhattan 9.5326 6.2510 2.5745 2.1462 1.95601.95601.9560

10k 211.2470 172.8720 62.6485 46.8314 42.061042.061042.0610

City10k 132.0070 68.5533 33.4328 28.8257 26.701926.701926.7019

CityTrees10k 65.0364 42.7519 N/A 13.2880 12.094012.094012.0940

Intel 0.5245 0.4541 0.1689 0.1336 0.12270.12270.1227

Killian Court 2.1518 1.9473 0.6392 0.3194 0.27940.27940.2794

Victoria Park 29.2946 20.7089 N/A 6.0668 5.54615.54615.5461

Solve at each 100 steps

Manhattan 0.9891 0.6142 0.4446 0.3059 0.28530.28530.2853

10k 21.0767 17.0565 17.4968 6.2372 5.42945.42945.4294

City10k 13.3781 6.6846 5.4739 3.4363 3.01753.01753.0175

CityTrees10k 6.4883 4.1876 N/A 1.8136 1.50281.50281.5028

Intel 0.0695 0.0459 0.0371 0.0339 0.02920.02920.0292

Killian Court 0.2443 0.1915 0.1426 0.0904 0.08450.08450.0845

Victoria Park 2.9323 2.0580 N/A 0.8963 0.75220.75220.7522

tation also needs to resort to converting the block matrix to elementwise one and

passing it to Cholmod or CSparse. The backsubstitution is then also performed

using the elementwise code.

However, observe that there is some imbalance between small speedup in batch

mode and large speedup in incremental mode. This stems from the simple fact that

in batch, the system is only constructed once and most of the time is spent in the
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(a) Solve at each step
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(b) Solve at each 10 steps
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(c) Solve at each 100 steps

Figure 6.4: Comparisons of time per vertex in the batch solvers running in incremental

mode (CM refers to Cholmod and CS refers to CSparse).

linear solver. In incremental mode, the block scheme starts paying off as more time

is spent in building and updating the system matrix, especially on large datasets.

Due to the efficient block matrix operations described in Section 5.2, the differ-

ence between allBatch-A and allBatch-Λ is not very large, as updating Λ as in (6.3)

with all the measurements is just an incremental version of the A>A product. Of

course, when adding new variables and observations into the system, the upper-

left submatrix of Λ doesn’t change and in allBatch-Λ, this computation is saved.

In allBatch-A, A>A must be calculated for the whole matrix, resulting in increased

number of floating-point operations and slightly worse run times.

6.4.3 Block Operations Tests

Beyond the SLAM evaluation, matrix operations benchmarks were also ran on A

and Λ matrices computed with the corresponding SLAM solution. Times for ele-
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Figure 6.5: Time comparison of sparse block matrix operations performance on SLAM

dataset matrices with 6× 6 blocks. For the comparison with 3× 3 blocks, please

see [PŠI+13b].

mentary sparse matrix operations, such as compression, transpose, addition and mul-

tiplication were measured. Performance of CSparse [41], g2o [106] and our imple-

mentation were compared. SPA [104] was not included because it’s block matrix

scheme is similar as in g2o. iSAM [95] was not included either, since it does not

use any block matrix scheme. The results are shown in Figure 6.5.

Observe that CSparse is very good with matrix compression, since it’s data struc-

ture is the least complicated. But the compression must be performed every time

the system is updated, making CSparse compression effectively slower after two it-

erations. In the other tests, our block matrix implementation outperforms CSparse.

The most of the speedup comes from the use of vectorization. Furthermore, the

block schemes prove to be more cache friendly than elementwise especially in the

case of matrix transposition. In case of g2o [106], matrix transposition and multi-

plication is slower because of the use of the slow O(log f) block lookup, but those

functions are not used in the optimization framework for SLAM (those would be

used for BA or SfM).

6.5 chapter summary

In Chapter 5, a new implementation of sparse block matrix format and opera-

tions for it were proposed and individually benchmarked on a partially synthetic

dataset. In this chapter, a basic implementation of a nonlinear least squares solver,

operating in batch mode and using this new format, was proposed and compared
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to other state of the art solvers. Simultaneous Localization and Mapping (SLAM)

was chosen as a suitable application, since SLAM has a particular block structure,

where the size of the blocks corresponds to the number of DOF of the variables.

At the same time, it is relatively sparse and tractable using the unextended Gauss-

Newton algorithm.

The proposed scheme combines the advantages of block-wise schemes convenient

in both, numeric and structural matrix modification and elementwise, which allows

efficient arithmetic operation. The advantage of the new scheme was demonstrated

through an exhaustive comparison with the existing implementations in SLAM, on

several publicly available datasets.

Even though the proposed scheme proved to significantly outperform the state

of the art implementations in incremental mode, several improvements from algo-

rithmic point of view can be applied. As already mentioned above, at this point it

is just a batch solver operating in incremental mode. Performing incremental up-

dates directly on the Cholesky factor, applying better ordering strategies (ordering

is important to reduce the fill-in), and changing only the blocks corresponding to

the affected variables should bring larger advantages.





7
I N C R E M E N TA L S O LV I N G I N S L A M + +

The previous chapter discussed efficient methods for batch solving and although

it touched the topic of incremental solving briefly, the implementation there did

not really perform any increments and merely resorted to doing many batch steps

of increasing size. While already quite fast, such approach is not very efficient as a

lot of the computation is repeated unnecessarily. That is where the real incremental

methods come in. Same as there, the focus of this chapter will be on solving SLAM

problems efficiently but also precisely.

The challenge appears in online applications, where the state changes every step.

In an online SLAM application, for example, every step the state is incremented with

a new robot pose and with positions of the newly observed landmarks and it is

updated with the corresponding measurements. For very large problems, updating

and solving the nonlinear system at every step can become very expensive. Ev-

ery iteration of the nonlinear solver involves building a new linear system using

the current linearization point, calculating its factorization and solving. In here,

calculating the factorization is typically the most expensive step.

This can be alleviated by changing the linearization point less frequently so that

the factorization is not needed at every step. New variables can be added to the

factorization e.g. using so called rank 1 updates [41, 33]. The solution to the lin-

earized system can then be calculated at any time, using back-substitution (which

runs at a fraction of time needed for the factorization). Although the Jacobian ma-

trix (and so the linearization point) does not correspond to the state, approximate

Gauss-Newton steps can still reduce the error, unless close to an abrupt change

in the derivatives (such as in the vicinity of a singularity). This is essentially the

iSAM algorithm [95], although it uses Q-less QR factorization rather than the Chol-

esky decomposition. It was later reimplemented in an experimental branch of g2o1

using Cholmod’s rank updates, with comparable results.

It would seem that the solution is to incrementally update the linear system in

the already factorized form and to perform backsubstitution to compute the solu-

tion. However, there is still one more problem – the fill-in. Merely updating the

factorization with new variables without ever applying a fill-reducing ordering

would quickly lead to a massive fill-in . . . and a correspondingly massive slow-

down. In the context of robotics, this happens notoriously with so called loop clo-

1 Can be found at https://github.com/RainerKuemmerle/g2o.
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sures which occur when the robot is returning to a place it has visited before and

begins establishing links between the latest pose and some of the much older ones.

In the matrix form, those links (measurements, observations) typically occupy far

off-diagonal entries under which fill-in occurs.

Conversely, odometric measurements (the other prominent type of measurement

in robotics; no matter whether measured using an odometry sensor, expected from

the control commands to the actuators or calculated e.g. by laser scan matching)

are between the consecutive poses only and can thus be handled relatively easily.

Unfortunately, there is no viable algorithm for performing matrix permutation

once it has been factorized as of yet, so the authors of iSAM [95] settled for periodic

reordering and batch re-factorization. On the other hand, different data structures

were developed later that allow variable reordering in the factorization [98], so

clearly it can be done also in matrices. This is typically done every 10 or every 100

steps in order to compromise between the fill-in rising uncontrollably and between

performing too many batch steps.

The new method introduced in this chapter has the advantage that it adapts to

the size of the updates and performs batch steps only when needed while still

keeping the option to set the frequency of the batch steps. It is based on several op-

timizations of the incremental algorithm. The proposed implementation a) selects

between three types of updates, depending on the size of the the update and the

error b) uses double-constrained ordering by blocks c) performs backsubstitution

by blocks and d) uses efficient block-matrix scheme for storage and arithmetic op-

erations. These optimizations allow for very fast online execution of the algorithm

and provide very accurate solutions at every step.

7.1 related work

Several successful implementations of nonlinear least squares optimization tech-

niques for SLAM already exist and have been used in robotic applications. In gen-

eral, they are based on similar algorithmic framework, repeatedly applying Chol-

esky or QR factorizations in an iterative Gauss-Newton or Levenberg-Marquardt

nonlinear solver. g2o [106] is an easy to use, open-source implementation which

has been proven to be very fast in batch mode. It exploits the sparse connectivity

and operates on the block-structure of the underlying graph problem.

A similar scheme was initially implemented in sSBA [105] and SPA [104] and it is

based on block-oriented sparse matrix manipulation. Using blocks is a natural way

to optimize the storage, nevertheless, taking care about the layout of the individual

blocks in the memory is very important, otherwise the overhead of handling the

blocks can easily outweigh the advantage of cache efficiency.
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However, in SLAM the state changes at every step since new observations need

to be integrated into the system. For very large problems, updating and solving ev-

ery step can become very expensive. Incremental smoothing and mapping (iSAM)

allows efficiently solving a nonlinear optimization problem in every step [95]. The

implementation incrementally updates the R factor obtained from the QR factor-

ization and performs backsubstitution to find the solution. To reduce the rank of

those updates, the linearization point is only changed every 100 steps. The sparsity

of the R factor is ensured by reordering upon relinearization.

Recently, the Bayes tree data-stucture [96, 97, 98] was introduced to enable a

better understanding of the link between sparse matrix factorization and inference

in graphical models. The Bayes tree was used to obtain iSAM2 [97, 98], which

achieves high efficiency through incremental variable reordering, eliminating the

need for periodic batch steps, and through fluid relinearization. It is achieved by

thresholding the update δ on a per-variable basis and updating only the signif-

icantly changing variables (the default threshold is 0.1). Similarly to iSAM, the

linearization points are only changed every 10 steps. When compared to the ex-

isting methods, iSAM2 performance finds a good balance between efficiency and

accuracy. But still the complexity of maintaining the Bayes tree data structure can

introduce several overheads.

7.2 incremental slam

The system in (2.7) can be incrementally built by appending the matrix Awith new

columns corresponding to each new variable (pose/landmark) and new rows cor-

responding to each measurement. We now shall focus more closely on the sparsity

patterns involved – for each new measurement, the new block row is sparse and

the only nonzero elements correspond to the Jacobians of the new residual.

For the normal equation in (2.11), the size of the matrix increments in number of

rows and columns with the size of each new variable and it is updated by adding

the new information to Λ and η. To match with the formulation in Section 2.1, and

building on Section 6.2, the update step is:

Λ̂ = Λ+

 0 0

0 Ω

 , η̂ = η+

 0

ω

 . (7.1)

Assuming that this update corresponds to adding a single new observation of

the form zk = hk
(
θik , θjk

)
− vk (regardless of whether it adds a new variable or

not and without the loss of generality – extending to multiple new observations

or measurements involving more than two variables is trivial), Ω = J̃>kΣ
-1
k J̃k and
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ω = −J̃kΣ
-1/2
k rk, where J̃k is the following block row of the Jacobian matrix, trun-

cated so as to contain no zeros on the left:

J̃k = Jkmin(ik ,jk):end
=

(
∂rk
∂θik

. . . 0 . . .
∂rk
∂θjk

)
. (7.2)

The derivatives of the residual function rk = hk(θik , θjk)	 zk with respect to its

state variables θik and θjk are referred to2 as Jkik and Jkjk below. The sparsity and

the size of the Ω matrix are important for the incremental updates of the system.

For the two affected variables, Ω will have four nonzero blocks:

Ω =



J>kikΣ
-1
k Jkik · · · 0 · · · J>kikΣ

-1
k Jkjk

...
...

0
. . . 0

...
...

J>kjkΣ
-1
k Jkik · · · 0 · · · J>kjkΣ

-1
k Jkjk


. (7.3)

Let us recall that the solution of the next Gauss-Newton step becomes Λ̂δ = η̂

which can be obtained by calculating Cholesky factorization R̂>R̂ = Λ̂ and solv-

ing R̂>d̂ = η̂ and R̂ δ = d̂ using back and forward substitution. For very large

problems, recalculating R̂ at every step becomes very expensive.

7.3 algebraic incremental updates of the cholesky factor

In this section, the update of the Cholesky factor R , chol(R>R) is discussed. This

update is referred to as an algebraic one because it is slightly different from the

rank update. It can be used in order to avoid unnecessary and expensive matrix

factorizations every step. Observe that in (7.1) only a part of the information matrix

and the information vector is changed in the update process and the same happens

with the upper triangular factor R. The updated R̂ factor and the corresponding

r.h.s. d̂ can be written as:

R̂ =

 R11 R12

0 R̂22

 , d̂ =

 d1

d̂2

 . (7.4)

From Λ̂ = R̂>R̂ and (7.1), the equation (7.4) becomes:

Λ̂22 = Λ22 +Ω = R>12R12 + R̂
>
22R̂22 , (7.5)

2 Note that here, Jkik and Jkjk are logical blocks of the matrix J at block row k and block columns ik
and jk, respectively, which correspond to the first and the |ik − jk|

th elements of the block vector J̃k.

The former notation is preferred, in order to avoid nested subscripts and notation clutter.
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Figure 7.1: Evaluation of several ordering heuristics in terms of nonzero elements, com-

pared to the actual number of non-zero elements in the Incremental R algo-

rithm, on the 10k dataset. Note that the results for orderings by block are prac-

tically identical.

and the part of the R̂ factor that changes after the update can be computed by

applying Cholesky decomposition to this matrix of the same size as Ω:

R̂>22R̂22 = Λ22 +Ω− R>12R12 , (7.6)

R̂22 = chol(Λ̂22 − R>12R12) (7.7)

= chol(R>22R22 +Ω) . (7.8)

Further in this chapter, (7.7) is referred to as lambda-update because it uses parts of

the Λ̂ to update R and similarly (7.8) is referred to as omega-update since it directly

uses Ω to update R.

The part of the r.h.s. vector affected by the new measurement can also be easily

updated. By expanding R̂>d̂ = η̂ and focusing on the lower part that is changing,

η̂2 = η2 +ω = R>12d1 + R̂
>
22d2 and so:

R̂>22d̂2 = η2 +ω− R>12d1 , (7.9)

d̂2 = R̂>22 \ (η̂2 − R
>
12d1) , (7.10)

where \ is linear solving operator; with R̂>22 being lower triangular, it can be re-

alized using backsubstitution. After obtaining both R̂ and d̂, forward substitution

can be performed to find the solution of the linear system R̂δ = d̂.
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Figure 7.2: The fill-in relative to the best heuristic in Figure 7.1, which is AMD by elements.

Please, note that the scale of this plot is about two orders of magnitude smaller

than the absolute values of the fill-in. Figures for the 10k dataset.

7.4 implementation details

Online applications such as SLAM, require extremely fast methods for building,

updating and solving the sequence of linearized systems. In this section, we intro-

duce several optimizations towards high performance SLAM based on incremental

updates of the factored representation.

7.4.1 Adaptive Updates

The proposed methodology adapts to the most favorable incremental update

scheme, depending on the size of the updates. It considers three ways to update

the system: 1) omega-updates, 2) lambda-updates and 3) updating the entire R,

and applies heuristics to select the best strategy. Omega-updates in (7.8) are fast

for small-size Ω because they involve the multiplication of small matrices R>22R22
which can however be relatively dense. Therefore, this is not suitable when Ω is

obtained from measurements that are far apart (e.g. loop-closures). In this case

lambda-updates in (7.7) are faster since they involve the multiplication of typically

very sparse matrices R>12R12.

Updating very large loops becomes expensive due to bookkeeping. When loop

length approaches the number of variables in the system, recalculating R by ap-

plying full Cholesky decomposition to the Λ matrix becomes more efficient. Full

factorization is also beneficial due to the fact that the ordering heuristics are ap-
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plied to the entire Λ, which considerably reduces the fill-in of the factor R and

speeds up the backsubstitution in the subsequent solving steps.

7.4.2 Efficient Ordering Strategies

The fill-in of the factor R directly affects the speed of the backsubstitution and the

updates. Its sparsity depends on the order of the rows and columns of the matrix

Λ, called variable ordering. Unfortunately, finding an ordering which minimizes

the fill-in of R is NP-complete. Therefore, heuristics have been proposed in the

literature [6] to reduce the fill-in of the result of the matrix factorization. In the

proposed implementation, the constrained AMD ordering is used, available as a

part of SuiteSparse family of libraries [41].

In an incremental SLAM process, the new variable – either the next observed

landmark or the next robot pose – is always linked to the current pose in the

representation. In order to be able to perform efficient incremental updates on the

Cholesky factor, the last pose is constrained to be ordered last. This especially helps

when updating using odometric constraints between the consecutive poses in Pose-

SLAM type problems. For landmark SLAM, one landmark is often observed from

several poses. Without an additional constraint, a recently observed landmark can

be ordered anywhere in the matrix, possibly causing large-size updates later on. To

alleviate this problem, the proposed implementation constraints recently observed

landmarks to immediately precede the last pose. Figures 7.1 and 7.2 show that the

used ordering restrictions barely affect the fill-in. Furthermore, due to the inherent

block structure, and in order to facilitate further incremental updates, the ordering

is done by blocks. Figure 7.2 shows that applying ordering by blocks instead of

elementwise has very small influence in the fill-in of the R factor. The small but

persistent difference between the elementwise and blockwise orderings is caused

mostly by the fact that the diagonal blocks in R are half empty, but still have to be

stored as full blocks.

7.4.3 Fast Update Factorization

In the increment formula (7.8), a need arises to factorize a sparse block matrix. Note

that this is slightly different from the batch solving where the aim was to solve a

linear system. On the other hand, here we are interested in the factorization itself.

In the proposed implementation, the Cholesky factorization is calculated using

CSparse [41] or Cholmod [42] and then converted back to a sparse block matrix.

This factorization is performed practically at every step and its speed affects the

speed of the incremental solver. Fortunately, (7.8) is usually rather small and dense.
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Algorithm 7.1: Incremental SLAM algorithm using the algebraic R updates.

1: function IncrementalR(θ, r, Σ, R, d, Λ, η, newLP, maxiters, tol)

2: (Ω,ω)← ComputeOmega((θik , θjk) , rk ,Σk)

3: if newLP then

4: (Λ̂, η̂) = LinearSystem(θ, r)

5: else

6: (Λ̂, η̂) = UpdateLinearSystem(Λ,η,Ω,ω)

7: end if

8: loopSize = Size(BlockCols(Ω))

9: if newLP or loopSize > bigLoopThresh then

10: R̂ = chol(Λ̂) . Calculate variable ordering using constrained AMD.

11: d̂ = R̂ \ η̂

12: else

13: if loopSize < smallLoopThresh then

14: R̂ =
(
R11,R12; 0, chol(Ω+ R>22R22)

)
15: else

16: R̂ =
(
R11,R12; 0, chol(Λ̂22 − R>12R12)

)
17: end if

18: d̂ =
(
d1; R̂>22 \ (η̂2 − R

>
12d1))

)
19: end if

20: newLP = false . Both Λ̂ and R̂ now contain the current linearization point.

21: if maxiters ¨ 0 or ¬hadLoop then

22: return

23: end if

24: GaussNewton(θ, r,Σ, R̂, d̂, Λ̂, η̂, newLP, maxiters, tol)

25: end function

Applying dense Cholesky is faster than sparse Cholesky, up to a certain limit

where the dense implementation gets beaten by the fact that it operates mostly on

zeroes when R is very sparse. Therefore, dense Cholesky is applied for matrices up

to 5× 5 blocks which occur relatively frequently in (7.8). This Cholesky is further

optimized by anticipating the possible combinations of the sizes of R22 from the

knowledge of the dimension of the variables. E.g. in 3D SLAM, the variables have

6 DOF and therefore the possible matrices can be 6× 6, 12× 12 and so on.

7.4.4 Incremental Algorithm

The proposed approach is described by pseudocode in Algorithm 7.1. It can be

understood as having three distinct parts. The first part (lines 3 to 7) is keeping
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Algorithm 7.2: Gauss-Newton algorithm using the R factorization.

1: function GaussNewton(θ, r, Σ, R̂, d̂, Λ̂, η̂, newLP, maxiters, tol)

Require: This function assumes that newLP is initially false (Λ̂ and R̂ are current).

2: for it = 1 to maxiters do

3: if it > 1 then

4: (Λ̂, η̂) = LinearSystem(θ, r)

5: R̂ = chol(Λ̂)

6: d̂ = R̂ \ η̂

7: newLP = false

8: end if

9: δ = R̂ \ d̂

10: if ‖δ‖ © tol then

11: θ = θ⊕ δ . The linearization point changes.

12: newLP = true

13: else

14: break

15: end if

16: end for

17: end function

the Λ matrix up to date. This can be done incrementally by adding Ω, unless the

linearization point changed. The change in the linearization point is stored in the

haveΛ flag.

The second part of the algorithm updates the R factor (lines 9 to 19). The algo-

rithm employs a simple heuristic to decide which update method is the fastest. In

case of large updates, invalidating a substantial portion of R, or if the lineariza-

tion point has changed, R̂ is recalculated from Λ̂. This step involves calculating

a suitable variable ordering using the constrained AMD algorithm. On the other

hand, if R was up to date, before the new observations were introduced into the

system, and the size of the update is relatively small, it is faster to update R̂ using

either (7.8), which is faster for smaller updates, or using (7.7). The r.h.s. vector d̂

is updated in a similar manner. Please, note that while the thresholds used in this

part of the algorithm affect the speed of the computation, they do not affect the

precision of the results in any way.

The final part of the algorithm is basically a simple Gauss-Newton nonlinear

solver, listed separately in Algorithm 7.2. An interesting point to note is that the

nonlinear solver only needs to run if the residual grew after the last update. This

is due to two assumptions; one is that the allowed number of iterations maxiters is

always sufficiently large to reach the local minima, and the other is that good initial
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Table 7.1: Evaluation of incremental solving times (solve at each step) of the NLS optimizers

on multiple datasets, in seconds (the best times of solutions which solve at each

step are in bold). Note that Inc-R is using the algebraic Cholesky updates.

Dataset Manhattan 10K CityTrees10k Intel Killian C. Victoria P.

SPA 23.8834 515.2880 N/A 1.4763 5.6260 N/A

g2o 94.9096 2134.3000 659.1590 5.0513 20.8899 293.1010

iSAM 64.5844 1768.8400 434.7500 4.4647 19.7519 209.1740

iSAM b10 9.9222 334.3650 60.2726 0.9442 3.6273 29.5268

iSAM b100 4.7142 289.7870 25.2429 1.3648 4.2522 12.6860

allBatch-Λ 10.0038 329.1840 22.707022.707022.7070 0.8424 2.14852.14852.1485 28.0194

Inc-R 5.02745.02745.0274 183.3850183.3850183.3850 25.5549 0.70320.70320.7032 2.5719 16.017316.017316.0173

Inc-R b10 5.0275 166.7970 25.3064 0.6861 2.4637 14.6821

priors are calculated. Without a loop closure, the norm of δ would be close to zero

and the system would not be updated anyway. This information is introduced to

the Algorithm 7.1 at line 21 (if such information is not available, it is safe to assume

that there always is a loop closure, at a cost of an extra backsubstitution). The first

iteration uses the updated R̂ factor, and the subsequent iterations rebuild both Λ̂

and R̂ so that R̂ would be available for the next steps in case the algorithm finishes

by reaching the solution.

7.5 experimental results

In order to evaluate the proposed incremental algorithm and its implementation

this section compares timing with similar state of the art implementations such as

iSAM [95], g2o [106], and SPA [104] (a 2D SLAM variant of sSBA). These implemen-

tations are easy to use on standard datasets. iSAM2 [97, 98], on the other hand,

is an incremental algorithm based on GTSAM library, and, at the time of running

the benchmarks, the source code for iSAM2 was not available among the examples

of the GTSAM library. The reported results from iSAM2 papers [97, 98] cannot be

used for comparisons since they were measured on a radically different platform.

The evaluation was performed on three standard simulated datasets, Manhat-

tan, [137], 10k and CityTrees10k, [94] and on three real datasets, Intel, [85], Killian

Court, [21] and Victoria Park [133] dataset. The solution for each dataset is shown

in Figures 6.1 and 6.2.
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Figure 7.3: Time comparison of multiple NLS optimizers.

Again, the same machine as in the previous chapter was used for the tests, an

Intel Core i5 CPU 661 with 8 GB of RAM running at 3.33 GHz. This is a quad-core

CPU without hyperthreading and with full SSE instruction set support. During the

tests, the computer was not running any time-consuming processes in the back-

ground. Each test was run ten times and the average time was calculated in order

to avoid measurement errors, especially on smaller datasets.

Table 7.1 and Figure 7.3 show the execution times of different implementations

evaluated on the above mentioned datasets. The b10 and b100 flags represent the

frequency of batch computations – once each 10 and once each 100 steps, respec-

tively. For the results without those flags, the nonlinear system was solved at every

step in order to obtain the current estimation or only when needed in the case

of the proposed Incremental-R algorithm. Unlike g2o and SPA, iSAM and our im-

plementation provide both the factorization and an error-minimizing solution at

every step, even when the batch solver runs only each 10 or each 100 steps. This

is an important characteristic for online applications. Therefore, and in order to

make the spread of the plotted values lower, Figure 7.3 shows timing results only

for iSAM and for the proposed implementation.

All the times below the double horizontal line in Table 7.1 are obtained using the

proposed implementation. The execution time of Algorithm 7.1 is denoted Inc-R.

The Inc-R b10 is obtained by forcing batch every 10, but observe that this is not

the natural way to execute our algorithm and has been introduced only for com-

parison purposes. allBatch-Λ is an implementation of the algorithm introduced in

Chapter 6 – it keeps and updates only the Λ matrix and performs matrix factoriza-

tion every time a new linearization point needs to be calculated. From the point
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Figure 7.4: Comparison of the χ2 errors, on the 10k dataset.

of view of estimation quality, recalculating the system every time the linearization

point changes, is the best the nonlinear solver can do but it can sometimes become

computationally expensive. Even though, our optimized implementation performs

very well also in the allBatch-Λ case.

Figure 7.4 compares the quality of the estimations measured by the sum of

squared errors, the χ2 errors. The test was performed for the 10k dataset. Ob-

serve that our new algorithm, Inc-R (in orange in Figure 7.4), nicely follows the

allBatch-Λ (in violet in Figure 7.4). Spikes appear when performing periodic batch

solve in iSAM b100, iSAM b10 and Inc-R b10 due to the fact that the error increases

between the batch steps and drops afterwards.

As an overall remark, the Inc-R has, in general, the best performance (which is

only rivaled by allBatch-Λ from the previous chapter) and provides very accurate

results every step. Compared to allBatch-Λ, it provides not only the solution but

also the factorization at every step. That amounts to doing slightly more work,

but allows doing one more Gauss-Newton step towards the solution, at virtually

no cost. It also becomes important if the covariances of the solution need to be

recovered as well. Therefore, it is the most suitable implementation for online ap-

plications which require efficient nonlinear least squares solving.

7.6 improved algorithm using block cholesky factorization

The incremental algorithm described so far made use of block matrix operations,

except for the block Cholesky factorization. It needed to convert the Λ matrix to ele-

mentwise sparse one, factorize it using CSparse and then convert the factor back



7.6 improved algorithm using block cholesky factorization 97

to blockwise representation. Although competitive, the incremental implementa-

tion is really taking the toll by performing this conversion at each step. Another

disadvantage is its inability to reorder the variables in the factorization, after e.g. a

loop closure occurs. It only relies on reordering when linearization point changes

take place (they usually happen at loop closures) and on cleverly constraining the

ordering in order to be able to efficiently update the factorization while going in

an open loop.

While the implementation described above was comparable with the others of

its time, Kaess et al. later introduced the Bayes tree data structure [98], which pro-

vides insights on the connection between graphical model inference and sparse

matrix factorization. This offered the possibility of eliminating the periodic batch

steps by allowing incremental variable re-ordering to reduce the fill-in and imple-

menting fluid relinearization to guarantee good linearization points [97]. In the

remaining part of this chapter, an improved incremental algorithm which takes ad-

vantage of the sparse block Cholesky factorization from Section 5.2.4 is described

and compared yet again to the state of the art solvers.

The work introduced in the paragraphs below combines the efficiency of operat-

ing directly on the matrix factorization with the insights gained from the Bayes tree

data structure to produce highly efficient incremental solutions. The incremental

solution proposed here is changing the linearization point every time if the error

increases. This guarantees high quality estimates. Furthermore, it is based on a

resumed3 Cholesky factorization which recalculates only the parts affected by the

new updates, together with an incremental reordering scheme which maintains

the factorization sparse without the need for periodic batch steps.

This form of incrementally updating the Cholesky factor is very similar to the in-

cremental updates proposed in [95], where the authors use Q-less QR factorization

to incrementally factorize R. In its form, this factorization is de-facto resumed: the

factor R is calculated by transforming rows of A by Givens rotations into R. After

new observations are made, these are added as new rows to yield Â. The factor-

ization is then resumed at the first of these new rows, adding them to R̂. Similar

row-oriented methods are used for out-of-core QR factorizations of large systems.

However, this type of QR factorization does not make it possible to reorder the

variables: A is ordered using column ordering. Therefore, reordering the columns

3 In the context of iterative numerical methods and subspace methods, the word restarted is sometimes

used, meaning that the algorithm can stop iterating at some point and then be restarted later, possibly

in different conditions. Our use of the word resumed refers to a direct method involving Cholesky

factorization. Our implementation of Cholesky is left-looking and produces one column of the factor

at a time. If the right part of the original matrix changes later, the factorization can be started in the

middle (resumed), at the first column that will change to recalculate only the corresponding right

portion of the factor while keeping the left part intact and saving computation.
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Figure 7.5: Incremental updates on Λ-system and R-system. The sections are color-coded

according to the way they are affected by the update. Green – not affected, red

– affected, pink – affected if the variables are also reordered.

potentially affects all the rows, making the tracking of changes in the factorization

in order to reuse the unaffected parts infeasible. The recently introduced data struc-

ture, the Bayes tree [98], offers the possibility to develop incremental algorithms

where variable reordering can be performed fluidly. Inspired by these recent ad-

vances, the resumed Cholesky factorization is an elegant and highly efficient solu-

tion which combines the efficiency of block matrix implementation and considers

the insights gained using the Bayes tree data structure.

Our implementation maximally exploits the sparse block structure of the prob-

lem. On one hand, the block matrix manipulation is highly optimized, facilitating

structural and numerical matrix changes while also performing arithmetic oper-

ations efficiently. On the other hand, the block structure is maintained in all the

operations including the matrix factorization, eliminating the cost of converting

between sparse elementwise and sparse blockwise. Our block Cholesky factoriza-

tion implementation proves to be significantly faster than the existing state of the

art elementwise implementations.

7.7 incremental updates of the factor using resumed cholesky

Similarly as in Section 7.3, the task at hand is updating the Cholesky factor after

new measurements have been added to the system (in case the added measure-

ments involve new variables, the Λ and R matrices are first augmented with zero

block rows and zero block columns, with their number and size corresponding to

the number and DOF of each new variable). It is still possible to use equations (7.7)

and (7.8) and a subsequent factorization to achieve that. It was already demon-

strated that these only yield changes in Λ22 but it was not shown how these affect

the factor. Figure 7.5 shows these changes in both Λ and also R; the parts corre-

sponding to entries not affected by the update are marked green and the affected
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Figure 7.6: Evaluation of several ordering heuristics in terms of nonzero elements com-

pared to the actual number of non-zero elements in the Incremental R algorithm.

This is on the Manhattan dataset.

parts are marked red. The associated cost depends on the size of the update (the

number of columns inΩ or equally in Λ̂22) but also – and often more importantly –

on the sparsity of the resulting factorization R̂22.

In SLAM, the size of the update is typically small since the new observations tend

to link variables recently added to the system, but in general, it can become very

large if the new observations link variables far apart (such as in loop closures). It is

impossible to guess which variables are going to be linked in the future and thus

the size of the update cannot be directly minimized. Ordering the recent variables

last as suggested e.g. in [95] helps, but it is not a universal remedy.

On the other hand, there are efficient heuristics for variable reordering which

minimize fill-in and increase sparsity in the subsequent factorization, e.g. Approx-

imate Minimum Degree (AMD) [6]. It is therefore possible to reorder the variables

involved in the update, so as to minimize the fill-in caused by observations that

link variables far apart. Once the variables involved in the update were reordered,

R21 also needs to be recalculated, in addition to R22. This is illustrated in Figure 7.5

using pink color. The following subsection describes how this reordering can be

calculated incrementally.

7.7.1 Incremental Ordering

Section 5.2.4 introduced some of the commonly used ordering heuristics which are

directly applicable to batch factorization. Additionally, Section 7.4.2 showed how
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and in Ô>Λ̂Ô are unchanged with respect to the previous step rather than with

respect to the unpermuted Λ̂.

constrained ordering can be applied to improve the locality of the new measure-

ments added to the system. In order to efficiently maintain incremental factoriza-

tion, incremental variable ordering is considered. Note that so far, the sparsity of

the updates in Λ were considered under the natural ordering (the order in which

the variables are observed and introduced into the system).

In this section, a permutation matrix O is introduced, which contains the fill-

reducing ordering. In the implementation, it is represented in its vectorial form

by the variable number reassignment vector o. This ordering is maintained in-

crementally, along with Λ and R. So far, the fill-reducing ordering was only im-

plied. For the remainder of this section, Λ and O>ΛO are written explicitly, with

R , chol(O>ΛO) and R̂ , chol(Ô>Λ̂Ô).

The proposed incremental ordering solution is to only calculate the new order-

ing for parts of R which are being affected by the update. In order to be able to

calculate the new ordering Ô incrementally, the updated Λ̂matrix is first permuted

with the ordering from the previous step, leading to M , O>Λ̂O (see Figure 7.7).

The ordering increment P is then calculated on this matrix, and composed with

the old ordering to yield Ô = O · P (here the multiplication denotes composition).

To delimit the area in M = O>Λ̂O affected by the update, two indices are intro-

duced. The first one, olo is given by the minimum variable index after the ordering
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Algorithm 7.3: Incremental Block Cholesky Factorization.

1: function UpdateR(ik, jk, Ω,ω, R, Λ̂, η̂, o, newLP)

2: if newLP or Cols(Ω) = Cols(Λ̂) then

3: ô = CAMD(Λ̂, last variable constraints)

4: R̂ = chol(Permute(Λ̂, ô)) . Permute(Λ̂, ô) produces Ô>Λ̂Ô.

5: d̂ = R̂ \ η̂ . Makes appropriate use of the ordering ô.

6: else

7: olo = min(oik ,ojk)

8: ohi = Size(BlockCols(Λ))

9: M = Permute(Λ̂,o) . Permute(Λ̂,o) produces O>Λ̂O.

10: ocut = minohi
i=olo

(WaveFront(M)i)

11: M22 =Mocut:ohi,ocut:ohi

12: p = CAMD(M22, constrain olo − ocut first elements)olo−ocut:end

13: ô =
[
o0:olo , Compose(oolo:ohi ,p)

]
14: if p 6= identity then

15: R∗,olo:ohi = Permute(Λ̂, ô)∗,olo:ohi . Splice right half of Ô>Λ̂Ô to R.

16: R̂ = ResumedChol(R,olo) . Cholesky of R, starting at column olo.

17: dolo:ohi = η̂olo:ohi
. Splice the bottom part of η̂ to d.

18: d̂ = ResumedUSolve(R̂>∗,olo:ohi
,d,olo) . Resumed backsubstitution.

19: else

20: R̂ =
[
R11,R12; 0, chol(Ω+ R>22R22

)
]

21: d̂ =
[
d1, R̂>22 \ (η̂2 − R̂

>
21d1)

]
. Makes appropriate use of ô.

22: end if

23: end if

24: return (R̂, d̂, ô)

25: end function

(line 7 of the Algorithm 7.3). The second one, ohi, is simply the size of the matrix.

Let Molo:ohi,olo:ohi be the lower right submatrix of M delimited by those indices. In

case the ordering is identity, this submatrix matches Λ̂22 – but generally O 6= I and

so those are two different matrices of different size.

Calculating the ordering update as AMD on Molo:ohi,olo:ohi is not sufficient and

also leads to massive fill-in. This is caused by the AMD algorithm not having any

information about the nonzero entries in M1:olo−1,olo:ohi =M
>
olo:ohi,1:olo−1

, which

are also affected by this ordering (depicted by the blue blocks in Figure 7.7).

A better ordering can be calculated as AMD of full M with constraints applied to

ensure that the order of the variables unaffected by the update stays the same. This

is however computationally expensive, since the update is typically much smaller

than M and thus a relatively large number of ordering constraints is needed.
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Fortunately, it is not necessary to calculate the ordering using the entire M. It

is possible to use a slightly expanded M22 ,Mocut:ohi,ocut:ohi (see Figure 7.7) that

satisfies the conditions of being square and not having any nonzero elements above

or left from it (so that M1:ocut−1,ocut:ohi =M
>
ocut:ohi,1:ocut−1

which correspond to the

right and bottom portions of M12 and M>12, respectively, are null). The ordering

calculated on this submatrix is then combined with the original ordering (lines

11 through 13 in Algorithm 7.3), yielding a similar result as constrained ordering

on full M in much smaller time. The minimal size of the expanded M22 can be

calculated in linear time O(ohi − ocut). First, a matrix wavefront is calculated. This is

a vector containing the block row indices of the first nonzero block per each block

column of M. Only a part of this vector is used, the one between olo and ohi, and

its minimum gives the index of the highest nonzero element, ocut. This is done in

Algorithm 7.3 on line 10, and in the Figure 7.7 top right it is depicted as the line,

keeping the blue nonzero blocks out of M12. Extending M22 makes AMD aware of

all the nonzero elements that would affect the fill-in, leading to a better ordering.

Once the new ordering is calculated, factorization can be performed. In case

that the ordering is identity, it is possible to only update R22 and d2 using (7.8)

and (7.10). Otherwise, the resumed Cholesky algorithm is employed (line 16 in Al-

gorithm 7.3). The column Cholesky (a sparse case of the one in Algorithm 5.4) is

capable of calculating one column of the factor at a time, while only reading the

values to the left from it. This algorithm can be modified to be able to “resume”

the factorization in the right part of R while only using the corresponding part of

(O>Λ̂O)∗,2 and R11 as inputs. The advantage of this algorithm is overall simplic-

ity of the incremental updates to the factor, while also saving substantial time by

avoiding the recalculation of R̂11, compared to the batch approach. Another advan-

tage is higher numerical stability, compared to rank up- and downdate where near

semidefinite matrices can occur and numerical errors can accumulate over time.

Note that at line 17 in Algorithm 7.3, resumed backsubstitution is employed. It

could easily be replaced by full backsubstitution to achieve the same result, but

similarly to the resumed Cholesky factorization, resuming solving can save some

computation as well since some of the entries do not change. This is vaguely similar

to the strategy of iSAM2 [97, 98] which thresholds the nodes of the Bayes tree when

solving, so that branches which only contribute small change in the solution of the

linearized system (i.e. ‖δ̂− δ‖ rather than δ) could be skipped.

7.7.2 Incremental SLAM Algorithm

The improved approach to incremental SLAM is described by the pseudocode in

Algorithm 7.4, which can be seen as having three distinct parts. The first part is
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Algorithm 7.4: Improved incremental SLAM algorithm using resumed Cholesky.

1: function FastIncrementalR(θ, r, Σ, R, d, Λ, η, o, newLP, maxiters, tol)

2: (Ω,ω)← ComputeOmega((θik , θjk) , rk ,Σk)

3: if newLP then

4: (Λ̂, η̂) = LinearSystem(θ, r)

5: else

6: (Λ̂, η̂) = UpdateLinearSystem(Λ,η,Ω,ω)

7: end if

8: (R̂, d̂, ô) = UpdateR(ik, jk,Ω,ω,R, Λ̂, η̂,o, newLP)

9: newLP = false

10: if maxiters ¨ 0 or ¬hadLoop then

11: return

12: end if

13: GaussNewton(θ, r,Σ, R̂, d̂, Λ̂, η̂, newLP, maxiters, tol) . Algorithm 7.2.

14: end function

keeping the Λ matrix up to date. This can be done incrementally by adding Ω, un-

less the linearization point changed. The change in the linearization point is stored

in the newLP flag. The second part of the algorithm updates the R factor along with

the associated ordering, as described in the previous section. The third part of the

algorithm is again a simple Gauss-Newton nonlinear solver. An important point

to note is that the nonlinear solver only needs to run if the residual grew after the

last update. This is due to two assumptions; one is that the allowed number of

iterations maxiters is always sufficiently large to reach the local minima, and the

other is that good initial priors are calculated. Without a loop closure, the norm of

δ would be close to zero and the system would not be updated. The first iteration

uses the incrementally updated R factor, and the subsequent iterations calculate R

as batch chol(Λ) since the linearization point has changed.

7.8 experimental evaluation

This section evaluates both, the implementation of the incremental algorithm and

of the incremental block Cholesky factorization by comparing timing and the qual-

ity of the result with similar state of the art implementations. The evaluation was

performed on five standard simulated datasets, Manhattan [137], 10k, City10k [94],

CityTrees10k [94] and Sphere [106] and four real datasets, Intel [85], Killian Court [21],

Victoria Park and Parking Garage [106]. Figure 7.8 shows the final solutions for all

the tested datasets. All the tests were performed on an Intel Core i5 CPU 661 with 8

GB of RAM and running at 3.33 GHz, much like the benchmarks in previous chap-



104 incremental solving in slam ++

(a) Manhattan (b) 10k (c) City10k (d) CityTrees10k (e) Sphere

(f) Intel (g) Killian Court (h) Victoria Park (i) Parking Garage

Figure 7.8: SLAM datasets used in the evaluations. The top row are synthetic datasets, real

datasets are in the bottom row. Sphere and Parking Garage datasets are 3D pose

graphs.

ters. This is a quad-core CPU without hyperthreading and with full SSE instruction

set support. During the tests, the computer was not running any time-consuming

processes in the background. Each test was run ten times and the average time was

calculated in order to avoid measurement errors.

7.8.1 Tested Implementations

We compared the proposed incremental algorithm and its implementation with

state of the art implementations such as g2o [106], iSAM [95] and the gtsam imple-

mentation of the iSAM2 algorithm [97, 98]. For SPA the SVN revision 39478 of ROS

(http://www.ros.org/) was used; for g2o, we tested the version 91A858D avail-

able at https://github.com/RainerKuemmerle/g2o1. For iSAM, version 1.6 from

https://svn.csail.mit.edu/isam was used and for GTSAM, version 2.3 from

https://collab.cc.gatech.edu/borg/gtsam was used.

SPA and g2o are both based on similar sparse block matrix scheme which is

maintained until the matrix factorization is performed. At this point, they switch

to CSC format to be able to use CSparse or Cholmod to perform the factorization.

This is a time consuming process which is avoided in our approach. While SPA

implementation is optimized for the specific 2D SLAM problem, g2o is general,

allowing any type of SLAM and BA. Additionally, note that the incremental version

of g2o is being used, which is much faster than the one in Tables 6.2 and 7.1.

1 We thank the authors for providing the link and support

http://www.ros.org/
https://github.com/RainerKuemmerle/g2o
https://svn.csail.mit.edu/isam
https://collab.cc.gatech.edu/borg/gtsam
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Table 7.2: Performance and accuracy tests on the simulated datasets. †Note that for 2D

landmark datasets, iSAM2 and Inc-R use different parameterization and the χ2

values are not comparable.

Dataset Manhattan 10K City10k CityTrees10k Sphere

SPA 24.161 518.339 309.562 N/A N/A

g2o 22.514 500.374 302.495 175.124 145.486

iSAM b100 4.829 279.926 77.572 22.926 36.220

iSAM2 4.932 91.738 60.978 32.687 31.274

allBatch-Λ-CS 8.603 287.702 202.839 19.531 216.487

allBatch-Λ-CM 10.725 236.276 181.139 24.478 71.487

allBatch-Λ-BC 7.209 242.209 188.849 17.56617.56617.566 78.375

Inc-R-BC 3.0463.0463.046 79.65179.65179.651 53.95153.95153.951 19.308 9.8659.8659.865

χ2 iSAM2 6205.92 171600.00 31951.60 794.87 775.28

χ2 Inc-R-BC 6119.83 171919.00 31931.40 12062.60† 727.72

iSAM and iSAM2 are based on completely different algorithms. The one used in

iSAM is very similar to our algorithm but it requires periodic batch steps to reduce

the fill-in. The algorithm used in iSAM2 is based on the Bayes tree data structure

and the factorization is done through elimination on factor graphs. One important

characteristic is that it allows incremental reordering and fluid relinearization. In

this direction, our algorithm allows similar incremental reordering but changes

the entire linearization point when needed. In order to test the iSAM2 we used

the incremental test example provided by its authors and extended it to work with

landmark-based and 3D SLAM datasets.

The proposed block Cholesky (BC) factorization is part of a new nonlinear least

squares open-source library called SLAM ++, which is available for download at

http://sf.net/p/slam-plus-plus/. The main characteristic of this new library

is its ability to manipulate block matrices and to produce efficient incremental

solutions. In this chapter we test the BC factorization on both, an algorithm that

operates only on the information matrix Λ performing batch updates every step

(denoted allBatch-Λ) and an incremental algorithm, which maintains the matrix

factorization R up to date (denoted Inc-R). The latter corresponds to Algorithm 7.4.

The new library offers the possibility to switch between the “native” block Chol-

esky (BC) factorization and the Cholesky factorization form CSparse (CS) and

Cholmod (CM). Those factorizations are compared on the allBatch-Λ algorithm

which is relatively efficient even with elementwise factorization.

http://sf.net/p/slam-plus-plus/
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Table 7.3: Performance and accuracy tests on the real-world datasets. †Note that for 2D

landmark datasets, iSAM2 and Inc-R use different parameterization and the χ2

values are not comparable.

Dataset Intel Killian Court Victoria Park Parking Garage

SPA 1.486 5.669 N/A N/A

g2o 1.298 5.019 81.194 20.372

iSAM b100 1.287 4.213 11.921 52.217

iSAM2 0.618 1.196 16.349 3.658

allBatch-Λ-CS 0.651 1.705 23.162 17.317

allBatch-Λ-CM 0.786 2.100 28.264 23.929

allBatch-Λ-BC 0.508 1.242 18.707 11.342

Inc-R-BC 0.3530.3530.353 1.0451.0451.045 11.20211.20211.202 3.4103.4103.410

χ2 iSAM2 559.07 8 · 10−5 370.14 1.26

χ2 Inc-R-BC 558.83 5 · 10−5 144.91† 1.31

7.8.2 Performance and Accuracy

Tables 7.2 and 7.3 show the execution times and accuracy of the above described

implementations evaluated on the simulated and real datasets in Figure 7.8, re-

spectively. For every test, both building the system and computing the solution

are part of the evaluation. The first one is necessary because changing the matrix

numerically and structurally is different for each implementation and this makes

significant difference in an incremental approach.

The proposed incremental algorithm is different from the one employed in SPA

and g2o or in our allBatch-Λ solver, where the batch solving is done once every

n new variables added to the system and no error reduction takes place in be-

tween. Therefore, the time comparison with these implementations is orientative.

The comparison holds only for n = 1, where the solution is available at every step.

iSAM, iSAM2 and Inc-R provide solution every step. The main difference is that

iSAM requires the periodic batch solves, the default setting of n = 100 is used in

the comparison. But keeping the same linearization point for too long deteriorates

the estimation. This can be seen by plotting the the sum of squared errors (χ2 in

Figure 7.9). Spikes appear when performing periodic batch solve due to the fact

that the error increases between the batch steps and drops afterwards. Observe

that Inc-R (in red in Figure 7.9) and iSAM2 nicely follow the allBatch-Λ (in green

in Figure 7.9), which represents the baseline, most accurate solution.
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Figure 7.9: Quality of the estimations measured on the 10k dataset.

The improved implementation reaches the best times for the best accuracy on

all evaluated datasets and this is shown in bold in Tables 7.2 and 7.3. Except for

the CityTrees10k dataset, the execution of the Inc-R outperforms all the implemen-

tations. This particular result is given by the dense structure of the problem. In

this case, reordering every step is slightly more advantageous than incremental or-

dering. The closest time to Inc-R is reached by the iSAM2. The difference between

iSAM2 and Inc-R is that iSAM2 changes only the affected blocks of the R factor

and relinearizes only affected variables at each 10th step, while Inc-R changes parts

of the R factor and relinearizes all the affected variables when needed (iSAM2 was

run with the default relinearization threshold 10). This leads to slightly worse ac-

curacy of the estimation compared to Inc-R (see the last two rows of Tables 7.2 and

7.3) but makes iSAM2 run faster than if it was relinearizing at each step.

The proposed sparse block Cholesky factorization algorithm was tested on full

system matrices of the same datasets used in the incremental algorithm evaluation.

The results are shown in Figure 7.10a. The proposed block Cholesky implemen-

tation is always faster than the CSparse (v3.0.2) and is highly competitive with

Cholmod (v2.1.2) which is only better on the 100k and Sphere datasets where it

takes advantage of large supernodes. Simplical Cholmod is always slower. Also

note that the speedup grows with the block size, for 6× 6 blocks it is more than

double. The quality of the factorization is also good, the worst norm of differ-

ence between block Cholesky and CSparse was 2.6016 · 10−13 and occurred on the

City10k dataset.

The speedups get slightly bigger in linear solving in Figure 7.10b. Here, back-

substitution is performed along with fill-reducing ordering, Cholesky factorization
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Figure 7.10: Cholesky factorization benchmark on the standard SLAM datasets, a) times of

factorization only and b) times of linear solving.

(and block to sparse matrix conversion for CSparse and Cholmod). This benchmark

is relevant because if demonstrates the real performance loss many state of the art

NLS solvers pay by not using blockwise representation all the way through.

7.9 chapter summary

A new incremental NLS algorithm with applications to robotics was proposed in

this chapter. We targeted problems such as SLAM, which have a particular block
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structure, where the size of the blocks corresponds to the number of Degree of Free-

dom of the variables. This enabled several optimizations which made the proposed

implementation faster than the state of the art implementations, while achieving

very good precision. This was demonstrated through the comparison with the ex-

isting implementations on several standard datasets. While many of the algorithms

from the iSAM family contain several thresholds and approximations. In contrast,

our algorithm only retains a single threshold on ‖δ‖ which yields very precise

solutions.

Recently, many efforts have been made to develop both, efficient incremental

algorithms and implementations. This chapter complements the recent advances

by introducing new incremental ordering scheme which allows to incrementally

update the factorized form of the linearized system while maintaining a reduced

fill-in. The incremental updates are done using a resumed block Cholesky factor-

ization only on the parts affected by the new information. The block Cholesky

factorization itself proved to be more efficient than the current implementations of

elementwise Cholesky factorizations while the precision is equally high.

There are several areas for possible improvements. In the algebraic update

method, the changed parts are treated as monolithic and there is little difference

between situations where only a single constraint is added or where many con-

straints are added, as long as Ω is the same size. Computation can be saved by

taking advantage of the sparsity of the updates and explicitly tracking the affected

variables.

Similarly, the resumed Cholesky assumes that all of the right part of the factoriza-

tion will change. But not all the columns of the factor may depend on the previous

ones and thus not all need to actually be recalculated. Tracking the column depen-

dences through the elimination tree could thus save computation in some cases

when the respective ordering of the dependent columns does not change.

Finally, conventional rank updates could be implemented using our block

scheme as well. This possibility was not explored as it would essentially lead to

reimplementation of the iSAM algorithm.
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S O LV I N G B U N D L E A D J U S T M E N T P R O B L E M S

While the efficient NLS solutions described earlier could readily be used to solve

Bundle Adjustment (BA) problems, advantage can be taken of the structure of such

problems. Applying Schur complement is one of the common optimizations, as

already mentioned in Section 2.3. This chapter reviews the implementation of the

Schur complement methods and their efficiency in solving BA – but also other

problems, by using appropriate variable orderings.

In our context, the estimation problem is formulated as a Maximum Likelihood

Estimation (MLE) of a set of variables θ = [θ1 . . . θn] given a set of observations

z = [z1 . . . zm], much like already described in Section 2.1. Without the loss of gen-

erality, it is possible to order the variables in such a way that θ1 . . . θp are the p

camera poses and θp+1 . . . θn=p+1+l are the l landmark positions and to assume

that each constraint is between a pose variable and a landmark variable. Situa-

tions with additional types of variables (e.g. the intrinsic camera parameters) are

possible. Situations with only a single type of variable (e.g. as in pose graph opti-

mization) are also possible, although the ordering for Schur complement is more

elaborate; one needs to compute the bipartite coloring if one exists or resort to

maximum independent set if it does not.

By taking advantage of the structure of the problem, rather than solving the

normal equation directly using a sparse factorization solver, it is possible to employ

the Schur complement trick. In case the poses are ordered first, followed by all the

landmarks, the normal equation (2.10) can be partitioned as:

 Λ11 Λ12

Λ>12 Λ22

 ·
 δ1

δ2

 =

 η1

η2

 or (8.1)

 A U

U> D

 ·
 x

y

 =

 a

b

 ,

where the D is supposed to be invertible and also block diagonal (since there are

no observations that would directly relate two landmark variables and therefore no

off-diagonal blocks are filled). See Figures 8.1b and 8.1e for examples of matrices

from Venice [106] and Guildford Cathedral1 datasets: the typical arrow shape shows

1 can be obtained at http://cvssp.org/impart/
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http://cvssp.org/impart/
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(a) Λ of Venice (b) Reordered Λ of Venice (c) Schur compl. of Venice, en-

larged 305×

(d) Λ of Guildford Cathedral (e) Reordered Λ of Guildford

Cathedral

(f) Schur compl. of Guildford

Cathedral, enlarged 316×

(g) Λ of Parking Garage (h) Λ of Intel (i) Λ of Killian Court

Figure 8.1: Sparsity patterns involved in common BA datasets (the first two rows) in con-

trast to SLAM (the bottom row) datasets. Note that each nonzero is inflated so as

to be visible. There is deliberately space left between the border and the matrix,

to be able to better see the fine arrow-like patterns in BA datasets.

that D is indeed diagonal (note that although A is only taking a single pixel in the

top-left corner, it also is diagonal). The Schur complement of A is:

Schur(A) , A−UD-1U> . (8.2)

This can be used to solve the original system as:

(
A−UD-1U>

)
x = a−UD-1b , (8.3)

y = D-1 (b−U>x
)

, (8.4)
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where the former is a smaller, more dense system that can be solved using a general

linear solver and the latter is merely a matrix vector product. The advantage of

this procedure is that inverting D amounts to inverting its individual diagonal

blocks which is an embarrassingly parallel operation. Additionally, in the BA type

problems, D contains the most of the rank of the system matrix so that a large part

of the system is solved quickly.

The smaller dense system (8.3) is often referred to as the reduced camera system

since it contains the camera poses. To solve it, several types of direct solvers have

been applied in the literature. It is possible to use dense Cholesky or dense LDL>

decompositions2. Densities of as high as 40% occur on e.g. the Venice dataset [106]

(see Figure 8.1c). Sparse Cholesky solvers have shown about an order of mag-

nitude speedups, especially on large systems and while using a good ordering.

The fill-reducing orderings used for sparse Cholesky in BA implementations in-

clude Multiple Minimum Degree (MMD) [112], AMD [7] or even Reverse Cuthill-

McKee (RCM) [37] (although most likely only in an attempt to point at the disad- The RCM

ordering is

not a fill-

reducing

ordering

but rather a

bandwidth

reducing

one. It was

developed

in the

70’s and

there are

much better

orderings

for direct

methods

today.

vantages of direct solvers). For perspective, dense Cholesky solver on GPU achieves

up to two orders of magnitude speedup (including the data transfers) but is limited

by the available memory.

While sparse LDL>, LU or even QR seem like viable options, it is necessary to

take the pivoting into the account: these factorizations are not implicitly numeri-

cally stable (unlike Cholesky) and may require row or column interchanges as the

factorization progresses. These interchanges are typically implemented to improve

the results numerically but ignore the fill-in they cause (as already discussed in

Section 5.2.5).

Surprisingly, while using the Schur complement leads to reduction in compu-

tation time, it does not lead to reduction in complexity. For the Venice dataset,

calculating the Cholesky factorization of Λ and solving for a single right hand

side requires 25.432 · 109 and 248.347 · 106 FLOPs, respectively3. On the other hand,

calculating the Schur complement and its Cholesky factorization takes 50.088 · 109

FLOPs and solving for a single r.h.s. takes 260.917 · 106 FLOPs. The situation is simi-

lar for the Guildford Cathedral and Fast & Furious 64 datasets, which observe 67.03%

and 31.49% increase in the operations count, respectively. On the other hand, us-

ing a serial implementation of Schur complement leads to speedups greater than

2 In here, the D is a generic diagonal matrix, other than that in (8.2).

3 These figures were calculated by defining a custom numeric type which counts operations per-

formed and making the CXSparse library use it, thus counting exact numbers of FLOPs in

sparse matrix operations. The implementation is available as a part of the SLAM ++ library, at

http://sf.net/p/slam-plus-plus.

4 Kindly provided by Double Negative, http://www.dneg.com.

http://sf.net/p/slam-plus-plus
http://www.dneg.com
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3.5× in all three datasets, compared to the direct solution of normal equations via

sparse block factorization.

This is because the operations used in Schur complement are simpler ones (for

the most part only multiplications and additions) compared to the Cholesky factor-

ization (which requires also a fair amount of divisions and square roots). However,

the differences of the cost of these operations is diminished by the use of SIMD in-

struction sets which can often execute any kind of instruction in a single clock. The

memory accesses are also more organized in Schur complement, making a better

use of CPU cache. Additionally, matrix multiplication, block diagonal inverse and

dense solving are all parallelizable, with much better scaling than sparse Cholesky

factorization.

8.1 finding good ordering

Linear solving using the Schur complement relies on D being diagonal, or rather

block diagonal in the context of problems with multi-dimensional variables. As

mentioned earlier, the graph theoretic algorithms useful for finding diagonal sec-

tions are the ones for finding bipartite graphs and for finding maximum indepen-

dent sets. In the case a bipartite graph is found, ordering the variables in such

a way that one set of independent variables resides in A and the other one in D

yields a block-diagonal A and D with all the off-diagonal entries collected in U

and U>. If the problem at hand does not correspond to a bipartite graph, finding

a maximum independent set and ordering the independent variables to reside in

D and the rest of the variables in A yields another configuration which can be

efficiently solved using Schur complement. There are efficient implementations of

both these algorithms, e.g. the igraph [36] library5 implements [56] for finding

maximal clique sets and [170] for finding maximal independent vertex sets. Here,

the word maximal means that for a given clique (or equally an independent vertex

set), no additional vertices can be added to it. However, maximum (or the greatest)

independent vertex set is the one set which has the most vertices of all the maxi-

mal independent vertex sets in the graph. This is what is referred to as Maximum

Independent Set (MIS).

In BA problems, an often used approach is ordering the 3D point variables to

reside in D since they are independent (there are no observations of a structure

point by another structure point) and the rest of the variables to reside in A. This

is referred to as the guided ordering. As a side note about the implementation, block

matrices can be elegantly taken advantage of – the blocks corresponding to the 3D

points have unique size of 3 × 3 (both cameras and intrinsic parameters would

5 Can be found at http://igraph.org/c/.

http://igraph.org/c/
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Algorithm 8.1: Finding Maximum Independent Clique Sets.

1: function MICS(w, e)

Require: w =
[
w1, . . . , wn

]
is the vector of vertex weights.

Require: e =
{
e1 . . . em

}
is a set of edges, where each edge ei is a pair (ji,ki).

2: C = FindCliques(e) . Use e.g. algorithm of Eppstein et al. [56].

3: P =
[
∅, . . . , ∅

]
. Pv is a set of cliques containing vertex v.

4: for each c in C do

5: w =

[
w;
∑
i

wci

]
. Clique weight is a sum of weights of its vertices.

6: for each v in c do

7: Pv = Pv ∪ c
8: end for

9: end for

10: for each c in C do

11: Vadj = c∪
{
v | ∃ei = (v,u) ∈ e∧ u ∈ c

}
. Vertices adjacent to clique c.

12: Cadj =
{
Pv | v ∈ Vadj

}
. Cliques adjacent to clique c.

13: e = e∪
{
(c, v) | v ∈ Vadj

}
∪
{
(c,d) | d ∈ Cadj

}
. Add new edges.

14: end for

15: Return MaxIndependentSet(e,w) . Use e.g. Tsukiyama et al. [170].

16: end function

have blocks of higher dimensions) and the BA matrices can therefore be ordered

based on the block structure only, rather than by passing variable type information

to the linear solver (which works on a different level of abstraction entirely).

For landmark SLAM, the guided ordering is often a poor fit, since the land-

marks often take up only a small fraction of the matrix rank. Consider the Victoria

Park [133] dataset (described earlier in Section 6.2, Figure 6.2c), a 2D landmark

SLAM dataset with 6969 poses and only 151 landmarks (1.44% of the rank, see the

part of the matrix marked by the red square in Figure 8.2a). Note that although

the top left part of the matrix appears diagonal, there are off-diagonal elements

corresponding to the odometry links which connect the consecutive poses. Those

make the matrix band diagonal and no longer easily invertible. A better result is

obtained by finding a Maximum Independent Set (MIS) weighted by variable di-

mension which yields D that amounts to about 47.83% of the rank, see Figure 8.2b.

Unfortunately, not all graphs are so sparse and the MIS ordering does not always

give such a good results (e.g. on the 10k dataset, the MIS ordering yields the di-

agonal section with less than 20% of the rank). For that reason, a new ordering

strategy was devised. The goal is to create a block diagonal section in D of the

highest rank possible. To achieve that, the block diagonal does not need to be of

the granularity of the individual variable blocks, but can contain greater blocks.
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Those correspond to the independent cliques in the original graph. The algorithmSince the

algorithms

are oper-

ating at

the level of

variables

(or blocks)

rather than

elements,

the weights

are neces-

sary to get

the inde-

pendent

set with

the largest

number of

elements.

for finding the maximum (weighted) independent clique set is not implemented

in the igraph library (or other library, to the best of our knowledge). The imple-

mentation is described concisely in Algorithm 8.1. In the first part of the algorithm,

the cliques are found. Then, the original graph is extended with the cliques and

the relations to other vertices and cliques are computed, see Figure 8.2c. In this

way, the cliques can be treated as ordinary vertices and the weighted maximum

independent set can be found using a standard algorithm.

While the performance of the maximal cliques algorithm is reasonable and typi-

cally takes only a few milliseconds, the maximal independent vertex sets algorithm

is not practical for even small graphs, e.g. on the Intel graph (943 vertices, 0.52%

nonzeros) it requires more than 120 GB of memory. Therefore, an approximate algo-

rithm was devised, based on a simple first-fit scheme followed by iterative refine-

ment. The Approximate Maximum Independent Clique Set (AMICS) ordering on

Victoria Park yields D which takes 50.61% of the rank, see Figure 8.2d.

8.2 incremental solving

Similarly to SLAM, the BA-type problems are also often solved incrementally. This

is needed to avoid divergence, especially due to poor prediction of camera parame-

ters, which can lead to bad initialization of point positions and consequent camera

poses quickly since the projection amplifies the error. Unlike SLAM where the up-

date usually consisted of a handful of new observations and a single new pose,

however, the rank of the updates is much bigger this time. For each new camera

pose, thousands of points can be observed, many of them for the first time.

The goal is to describe how changes in Λ translate to changes in the Schur

complement of A. Updates to D-1 are handled easily, as all the updated diagonal

blocks in D̂ can be inverted individually and the rest does not change. It can be

expected in practice that all four sections of Λ are going to change: Λ̂11 Λ̂12

Λ̂>12 Λ̂22

 =

 A U

U> D

+

 4A 4U

4U> 4D

 . (8.5)

Taking the difference 4(D-1) = D̂-1 −D-1 after the inverse, the update is:This dif-

ference is

nonzero

only in

the new or

changing

blocks, but

4(D-1) 6=
(4D)-1.

Schur(Â) = A+4A− (U+4U)(D-1 +4(D-1))(U> +4U>)

= A+4A− (U+4U)D-1(U> +4U>) − (U+4U)4(D-1)(U> +4U>)

= A+4A−UD-1U> −UD-14U> −4UD-1(U> +4U>) −

(U+4U)4(D-1)(U> +4U>)

= Schur(A) +4A−UD-14U> −4UD-1Û> − Û4(D-1)Û> (8.6)
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(a) Guided ordering of Λ (b) MIS ordering

(c) Clique extended Λ (d) AMICS ordering

Figure 8.2: Finding Schur ordering for landmark SLAM, on the Victoria Park dataset.

and by taking advantage of symmetry:

D-1 = D-> , (8.7)

(UD-14U>)> = (4U>)>D->U> = 4UD-1U> , (8.8)

it is possible to further simplify (8.6) to:

Schur(Â) = Schur(A) +4A− (4UD-1U>)> −4UD-1Û> − Û4(D-1)Û>

= Schur(A) +4A− (4UD-1Û> −4UD-14U>)> −4UD-1Û> −

Û4(D-1)Û>

= Schur(A) +4A− (E− F4U>)> − E− Û4(D-1)Û> , (8.9)

with E , FÛ> and F , 4UD-1 being common subexpressions. Note that this way, For the

Venice

dataset,

this saves

83% of

memory.

each of the product terms contains at least a single matrix of low rank (either 4U or

4(D-1)) which limits the amount of computation and also only Schur(A) and D-1

need to be stored from the previous step, limiting the required amount of memory

for the incremental solver.
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Due to the highly nonlinear nature of BA, the nonlinear solvers typically take

some form of countermeasure to avoid local minima (e.g. as described in Sec-

tion 2.1.1). By employing the Levenberg-Marquardt algorithm [125], a diagonal

damping term λ is introduced, yielding a modified normal equation (2.13). This

term does change during the solving, causing full-rank incremental updates. For

that reason, the Dogleg algorithm [141, 25] is preferred for incremental solving.

8.2.1 Fluid Relinearization

By adding the cameras and points incrementally, the estimated state is always

close to the optimal solution. This means that in the nonlinear steps, most of the

variables will not change significantly. This is also affected by an appropriate pa-

rameterization of the problem, e.g. by the choice of the representation of the points

and by the choice of global or local coordinate frames for representing the points

and cameras.

Several possible point representations include Euclidean (each point is rep-

resented by the [x,y, z] coordinates), inverse depth (each point is repre-

sented by
[
x
z , yz , 1z

]
) or inverse distance [117] (overparameterized (u, v,w,q)

where q = ‖[x,y, z]‖-1 is reciprocal Euclidean distance from the origin and

(u, v,w) = q(x,y, z) is a unit vector which points towards the point and is kept

constant throughout the optimization process).

With that in mind, the points can be in the global coordinate space (which only

really suits the Euclidean representation) or in the local coordinate frame of one

of the cameras (which suits any of the parameterizations). Note that keeping the

the points in a local coordinate frame changes the graph structure; the nonlinear

measurement function hk(·) for an observation by a camera θc of a point θp rep-

resented in local coordinate frame of a different camera θd now requires three

arguments rather than two in the former case of a camera observing a point in

the global coordinate frame. The cameras themselves can also be represented in a

local coordinate frames of each other, which leads to chaining of the transforma-

tions and measurement functions with variable number of arguments. The choice

of the camera relations becomes significant from the sparsity and computational

requirements point of view.

In any case, a suitable representation can significantly reduce the magnitude of

the steps of the nonlinear solver, while at the same time not increasing the densityThis is

commonly

referred

to as the

fluid relin-

earization.

of the system too much. It is then possible to apply threshold to the δ vector in

(2.7). This reduces the rank of the updates while reducing the convergence slightly.

In case a sufficient number of iterations is available, the nonlinear solver will not

diverge. This is intuitively illustrated on the Dogleg algorithm (Section 2.1.1) which
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(a) Victoria Park (3 levels) (b) Kitti sequence 00 (5 levels, the bottom-

most U, U> and D not shown)

Figure 8.3: Examples of nested Schur complements using the AMICS ordering.

chooses step inside the trust region, a sphere of radius ∆. In case some components

of this step are forced to zero by the threshold, the solution still stays inside the

trust region. Ultimately, there is a trade-off between the sparsity of the updates

which makes the updates faster, and the number of extra iterations taken which

makes the solver slower again. Thresholds of magnitude about 10−5 have proven

to provide a reasonable balance.

8.3 nested schur complement

Another interesting option of Schur complement is the possibility to create nested

Schur complements. In (8.3), the reduced camera system needs to be solved. It can

be readily solved using Cholesky factorization as described before, but in case it is

sparse enough, it can be solved using another Schur complement, yielding a nested

Schur complement method. Nesting the Schur complements is only beneficial in

case the reduced camera system needs to be solved using a dense solver (e.g. a

solver parallelized on a GPU) and still contains too many nonzero entries or is too

large to fit into the memory at once.

High sparsity is typically not a case of BA problems where the reconstructed

object is observed in its entirety by the majority of the cameras, but occurs in cases

when the camera moves forward in exploratory mode and only rarely re-observes

small parts of the scene. Size is a hard limit though; for a 4 GB memory budget, the

dense reduced camera system can hold only up to 3861 6D camera poses (assuming

the internal parameters are either known and not optimized, or identical for all the

frames – otherwise this figure would be even lower). This is often not sufficient,

e.g. Kitti sequence 00 [63] comprises over 4500 poses.
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(a) Fast & Furious 6 (b) Guildford Cathedral (c) Venice

(d) Karlsruhe sequence 20 (e) Kitti sequence 00

Figure 8.4: The Bundle Adjustment (BA) datasets used in the evaluations. The top row

are datasets focused on 3D reconstruction, the datasets on the bottom row are

visual odometry benchmarks.

8.4 experimental evaluation

The experimental evaluations were performed on several datasets which can be

seen in Figure 8.4. Fast & Furious 6 is a bundle adjustment dataset comprising

of 160 high-resolution DSLR stills of an open landscape and a highway bridge

in Gran Canaria6. The images were captured from a helicopter for production of

special effects in a chase sequence in the movie of the same name. The dataset

was kindly provided by Double Negative Visual Effects7. Guildford Cathedral is

another bundle adjustment sequence made up of 92 DSLR stills, scanning the

front facade of the Guildford Cathedral (Surrey, London) in approximately right

to left translational manner. The dataset is freely available (upon request) at

http://cvssp.org/impart/. Venice is a standard bundle adjustment dataset [106]

created from an internet collection of 871 photos of a courtyard adjacent to the San

Marco square in Venice, Italy.

Karlsruhe sequence 20 [62] is visual odometry benchmark, processed with a stereo

structure from motion pipeline. Although the observation model of the stereo BA

is slightly different from the monocular one, the variable representations and the

corresponding Jacobian matrices have exactly the same structure and dimensions.

The images were taken with a camera mounted on top of a car and this sequence

6 GPS coordinates of the approximate center of the dataset are 28.1396417N, 15.5973228W.

7 http://www.dneg.com/

http://cvssp.org/impart/
http://www.dneg.com/
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Table 8.1: Linear solving performance on the standard BA datasets, the best times in bold.

Dataset
Fast &

Furious 6

Guildford

Cathedral
Venice

Karlsruhe

seq. 20
Kitti seq. 00

direct-Λ-CS 2.243 2.583 66.309 11.983 4.995

direct-Λ-CM 1.992 1.726 38.272 4.943 4.583

direct-Λ-BC 2.250 1.954 47.382 4.456 3.469

Schur-BC 0.623 0.544 14.254 5.135 3.261

Schur-GPU K20m 0.612 0.536 6.472 1.610 2.363

Schur-GPU K40c 0.3610.3610.361 0.4460.4460.446 5.0575.0575.057 1.5161.5161.516 1.6521.6521.652

Ordering (levels) guided guided guided guided AMICS (5)

has 967 of them. A similar dataset, Kitti sequence 00 of the newer vision benchmark

suite by the same authors [63] is a representative of a large problem, with its 4541

camera poses.

Some of the tests were performed on an Intel Core i5 CPU 661 with 8 GB of RAM

and running at 3.33 GHz, equipped with the NVIDIA Tesla K40c GPU. Addition-

ally, some tests were performed on a machine with a pair of Intel Xeon E5-2470

CPUs running at 2.30 GHz and sharing 96 GB of RAM, equipped with a single

NVIDIA Tesla K20m GPU. During the tests, the computers were not running any

time-consuming processes in the background. Each test was run several times and

the average time was calculated in order to avoid measurement errors. Note that

the Xeon CPUs have a turbo boost feature that adjusts the clock frequency based on

the available thermal envelope. This function was disabled for the benchmarks, so Note that

all of the

processing

times

would be

lower with

turbo boost

enabled.

as to not make the results dependent on the variations in the temperature.

The GPUs were employed for dense solving using CULA8 and for block diag-

onal inverse, using Cholesky and LU decompositions, respectively. A serial CPU

implementation of the sparse block matrix multiplications was employed in (8.2)

or (8.3) as it proved to be faster than the off-the-shelf GPU routines. This further

demonstrates the efficiency of the block schemes.

The batch solving was evaluated using direct solution of the normal equation,

using CSparse, Cholmod and block Cholesky. These times serve as the baseline and

are compared to the Schur complement methods using block Cholesky on CPU and

the desnse Cholesky on GPU. The times are in Table 8.1. From the direct solvers,

CSparse is the slowest. Cholmod is the fastest on the first three datasets which are

more connected and the supernodal method is more advantageous. Block Chol-

8 A readily available GPU accelerated LAPACK implementation written in CUDA, can be obtained from

http://www.culatools.com/,

http://www.culatools.com/
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Figure 8.5: Evaluation of nested Schur orderings for up to 3-level nested Schur comple-

ments on standard SLAM and up to 4-level on the Schur complements of the

BA datasets (the bigger the percentage, the better – it means smaller, denser

reduced camera system). The number after the ordering acronym indicates the

nesting level.

esky is the fastest on the last two datasets which are much bigger and less con-

nected, yielding fewer supernodes. From the Schur solvers, the GPU solution on

Tesla K40 is the fastest. The Schur complement is always faster than the direct

factorization, even on the CPU, with the exception of Karlsruhe sequence 20 dataset

which is already very sparse (but still, the GPU accelerated solution gains a sub-

stantial speedup). Note that these times do not involve the tasks of the nonlinear

solver which would be the same for all of the approaches, such as assembling the

system matrix and calculating the derivatives.
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The ordering algorithms for Schur complement were also evaluated. In Fig-

ure 8.5, different ordering strategies are compared in terms of the size of the

diagonal section D relative to the size of the entire system (for nested Schur com-

plements, these sizes are summed up). In the top portion of the figure, ordering

performance on the SLAM datasets is compared. Since these datasets are typically

very sparse, the MIS ordering is able to improve by nesting. However, the AMICS

ordering yields much better results.

On the BA datasets in the lower portion of the figure, rather than evaluating on

the full matrix, the orderings are evaluated on the Schur complement obtained by

the guided ordering (which is coincidentally the same one as the MIS and also the

AMICS since the landmarks are the largest independent set and there are no cliques).

These Schur complements are about two orders of magnitude more dense than the

SLAM systems, which reflects poorly on the MIS orderings.

For the first three datasets, AMICS ordering splits the Schur complement in al-

most completely dense block-diagonal section and another completely dense Schur

complement. The difference between Fast & Furious 6 or Guildford Cathedral and

Venice is that in the former two the most of the rank ends up in the diagonal sec-

tion whereas in Venice, it ends up in the top-level Schur complement. For the last

two datasets which are more sparse, AMICS gradually improves with nesting. How-

ever, size is not everything, as reflected in Figure 8.6. Here, in the first two datasets Ultimately,

the per-

formance

depends on

the size of

the final

dense factor

which

AMICS

excels at

minimiz-

ing, but

also on

the cost of

forming

the nested

Schur com-

plement.

This leads

to a tradeoff

problem.

all the orderings come out more or less the same. In Venice, the nested MIS is sur-

prisingly slightly faster while the AMICS are slightly slower. In Karlsruhe sequence 20,

AMICS yield poor performance compared to simpler orderings. This is because the

system is already sufficiently dense after the first level. On the other hand, on Kitti

sequence 00, the Schur complement is quite large and a few nestings are required

to fit the problem into the GPU memory. Here is where AMICS triumphs.

For the evaluation of the incremental solving, the BA datasets which are in graph

format were preprocessed by an external tool9. First, the variables were reordered

so that the cameras go in a sequence and the landmarks are introduced once ob-

served by at least two cameras (at that point they could have been triangulated).

Additionally, for the solver to determine the points where to optimize, frame

boundaries markers are inserted. Note that this preprocessing would be unnec-

essary if the solver was connected to a vision pipeline – it is only needed when

processing datasets where the variables were reordered and the frame boundaries

were lost or perhaps a linear camera sequence never existed in the first place. The

results are in Table 8.2 and involve the full solution of the nonlinear system. Note

that the Kitti sequence 00 was not included in this evaluation due to its size – the

9 This script can be found under scripts/incremental_BA in the SLAM ++ library, at

http://sf.net/p/slam-plus-plus/.

http://sf.net/p/slam-plus-plus/
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Figure 8.6: Comparison of the effects of ordering on the linear solving on the standard

BA datasets. All Schur complement times were obtained using the K20m GPU.

The missing times for the Kitti sequence 00 dataset were caused by insufficient

amount of available memory.

problem is in the ordering. Unlike guided ordering, the orderings based on Maxi-

mum Independent Set (MIS) are not stable in the sense that in one step, a variable

may be a part of MIS but in the next step, a different independent set containing

different variables may become the maximum one. This would require variable

migration between the diagonal section and the reduced camera system which

in itself is feasible, but the volume of the variables is practically unlimited. For

that reason, incremental Schur complement was only evaluated with the guided

ordering.

8.5 chapter summary

This chapter demonstrated solving Bundle Adjustment (BA) problems using the

Schur complement methods and also using dense GPU acceleration primitives. No-

tably, the BA problems are suitable for GPU acceleration, reaching good speedups

while only using off-the-shelf dense kernels. Unfortunately, there are some limita-

tions that require further attention. The matrix-matrix product on GPU is slower

than the SSE-accelerated serial sparse block matrix implementation described in

Section 5.2.4 and becomes the main bottleneck. More efficient algorithms are

needed. Also, the dense solving on the GPU scales very well, however it is severely

limited by the available memory. One option is using the Schur complement to

reduce the size of the dense system, another orthogonal approach would be imple-
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Table 8.2: Incremental nonlinear solving performance on the standard BA datasets, the best

times are in bold (CS is CSparse, CM is Cholmod, BC is block Cholesky and

K20m and K40c refer to GPU models).

Dataset
Fast &

Furious 6

Guildford

Cathedral
Venice

Karlsruhe

seq. 20

allBatch-Λ-CS 359.962 171.860 16179.340 3279.406

allBatch-Λ-CM 363.267 181.735 11296.632 2029.337

allBatch-Λ-BC 334.708 165.988 12949.737 1475.498

Schur-BC 220.304 103.874 4339.209 1094.002

Schur-GPU K20m 221.991 102.105 2897.663 605.795

Schur-GPU K40c 43.034 62.293 1797.362 402.582

incSchur-BC 198.335 90.103 2701.169 775.428

incSchur-GPU K20m 197.285 90.913 1249.735 314.500

incSchur-GPU K40c 31.86831.86831.868 56.25556.25556.255 945.488945.488945.488 177.476177.476177.476

menting either banded or jagged-diagonal Cholesky factorization on GPU which

would inherit some of the benefits of the dense algorithms but would permit larger

problems to be handled.

It was demonstrated how to use graph theoretic algorithms to calculate order-

ings and a novel Maximum Independent Clique Set (MICS) / AMICS orderings were

proposed and evaluated. The benefit of having larger diagonal section is having a

larger portion of the computation spent in diagonal inversion and matrix multipli-

cation and having a smaller denser Schur complement. Additionally, it enables the

use of a GPU even on very large datasets. There are, however, some improvements

that could be made – the ordering of the variables inside the cliques is now arbi-

trary. It would be possible to order the cliques in such a way that the number of

FLOPs is reduced or e.g. so that the off-diagonal blocks (U and U> in (8.2)) have

their bandwidth reduced in order to increase cache coherency in matrix-matrix

and matrix-vector products in (8.3) and (8.4).

Equations for incremental solving using Schur complement were also demon-

strated and evaluated, yielding promising results. There are some limitations, how-

ever. Since large portions of the Schur complement itself change in the incremen-

tal updates, it is not possible to employ nested Schur complement in incremental

solving (although it would still be possible to compute the bottom-most level incre-

mentally and the rest of the levels in batch mode). An unfortunate limitation is the

inability to use the AMICS ordering in the incremental setting due to independent

set instability, as explained before.
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C O VA R I A N C E R E C O V E RY

The existing incremental NLS solutions provide fast and accurate estimations of the

mean state vector, for example the mean position of the robot and of the features in

the environment. However, in real applications, the uncertainty of the estimation

plays an important role. This is given by the covariance matrix, which generalizes

the notion of variance to multiple dimensions. In particular, the marginal covari-

ances, which encode the uncertainties between a subset of variables, are required

in many applications.

Data association is the problem of associating current observations with previous

ones, and it is the key to reduce the uncertainty in SLAM. Finding those associations

becomes very expensive for large problems, nevertheless it can be simplified when

the uncertainties of the estimates are known. Joint-compatibility tests in the case of

landmark SLAM [129, 93] or estimation of possible relative displacement between

poses in pose SLAM [89] are all based on recovering the marginal covariances. Fig-

ure 9.1 shows how the data association problem can be restricted to only a small

set of sensor registration indicated by the gray links between the current pose of

the robot and close poses already visited.

Information theoretic measures, such as mutual information, are also computed

using the marginal covariances. This allows for principled ways to reduce the com-

plexity of the SLAM problem by selecting only the informative measurements [89]

or to plan reliable paths with the least probability of becoming lost [171]. In com-

puter vision, the mutual information is used in online systems to compute the

most appropriate actions for feature selection [43] or in active vision to guide ef-

ficient tracking and image processing. It is also used in reducing the uncertainty

in real-time monocular SLAM [172] and in active matching [79] of image feature. A

problem related to active vision is the next best view for 3D reconstruction where

the trace of the camera covariance matrix is used to select the images that will

reduce the uncertainty in the reconstruction [80].

3D reconstruction has a wide variety of applications in computer graphics,

robotics or digital cinema production, among others. Most of the existing 3D recon-

struction frameworks only recover the mean of the reconstructed geometry. How-

ever, variance is the natural choice of estimate quality indicator, see Figure 9.2 for

an example of such use.

Even though recovering the mean of the estimate in the BA problems is relatively

simple even at large scale, as documented by the previous chapter, recovering its

127
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Figure 9.1: Distance-based candidates for data association calculated using the marginal

covariances (95% confidence interval shown in green), on the Intel dataset.

Figure 9.2: Marginal covariances used as a quality estimate of 3D reconstruction of the

bridge sequence from the Fast & Furious 6 dataset, displayed in false colors (or-

ange means high confidence, blue – low confidence). Data courtesy of Double

Negative Visual Effects.

covariance is significantly more difficult. One of the problems is that while the

system matrix is sparse and can get very large, its inverse is completely dense and

the memory footprint of maintaining such a matrix would be prohibitive, easily

reaching hundreds of GB. Fortunately, for quality assurance and many other ap-

plications, only certain parts of the inverse are of interest – especially its block

diagonal. Still, the problem of the computational complexity remains, which is the

likely reason this problem was not widely addressed before.

9.1 related work

While the covariances are explicit in Kalman filters and can also be easily recovered

in information filters, which used to be commonplace in SLAM implementations,

filtering is not widely used in BA or the 3D reconstruction problems in general,
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since it is less efficient [160] and cannot take advantage of the various sparsity

optimizations described in the previous chapters. In addition, there is a strict limit

of the system size for which a dense matrix can be kept in RAM of todays systems,

which would only allow solving moderate size problems.

Recovering the covariances in the context of nonlinear least squares is more dif-

ficult than in filtering. Thrun [165] proposes the use of so-called Markov blankets

to approximate covariances of the poses of a robot. These are sub-blocks in an in-

verse of a smaller matrix that corresponds to the pose in question and the adjacent

landmarks. It has been shown that those estimates are over-confident.

In [57], visual mapping of the sunken RMS Titanic is discussed and both the es-

timate and its covariance is recovered. The covariance is maintained incrementally:

first, the covariances of the newly introduced variables is calculated by solving for

the corresponding columns of the inverse system matrix. This column matrix is

then fed to a bank of Kalman filters which update the covariances of the other

variables.

An exact method for sparse covariance recovery was proposed in [93]. It is based

on a recursive formula [18, 68], which calculates any covariance elements on de-

mand from other covariance elements and elements of the Cholesky factorization

of the system matrix. The downside of these methods when dealing with incremen-

tal online SLAM is the inability to take advantage of the incremental processing. The

downside when dealing with BA problems is the need to calculate Cholesky fac-

torization of the entire system, rather than to reuse the Schur complement and its

factorization.

The authors of [142] proposed a covariance factorization for calculating lin-

earized updates to the covariance matrix over arbitrary number of planning de-

cision steps in a partially observable Markov decision process (POMDP). The

method uses matrix inversion lemmas to efficiently calculate the updates. The

idea of using factorizations for calculating inversion update is not new, though.

A discussion of applications of the Sherman-Morrison and Woodbury formulas is

presented in [77]. Specifically, it states the usefulness of these formula for updat-

ing the matrix inversion after small-rank modifications, where the rank is kept low

enough to allow faster updates than actually calculating the inverse. In this chapter

we propose a new update strategy which confirms this conclusion, but it has more

practical application.

9.2 recovering covariance in general nls problems

When using MLE in real, online applications, the recovery of the uncertainty of the

estimate, the covariance, can become a computational bottleneck. The calculation of
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Figure 9.3: Recovering the diagonal of the covariance matrix using the recursive formula.

the covariance amounts to inverting the information matrix, Σ = Λ-1, where the

resulting block matrix Σ is no longer sparse. In here, each block Σi,j corresponds

to covariance between the individual variables θi and θj.

Operating on dense matrices is unwanted, especially in the case of large size

matrix such as Σ. Fortunately, most of the applications require only a few block

elements of the covariance matrix, eliminating the need of recovering the full Σ.

In general, the elements of interest are the block diagonal and the block column

corresponding to the last pose. Some other applications only require a few block

diagonal and off-diagonal block elements. In [93], it was shown how specific ele-

ments from the covariance matrix can be efficiently calculated from the R factor by

applying the recursive formula:

Σi,i =
1

Ri,i

 1

Ri,i
−

n∑
k=i+1,Ri,k 6=0

Ri,kΣk,i

 , (9.1)

Σi,j =
1

Ri,i

 j∑
k=i+1,Ri,k 6=0

Ri,kΣk,j −

n∑
k=j+1,Ri,k 6=0

Ri,kΣj,k

 . (9.2)

Note that above, the computations are carried out by blocks; the numerical result

is the same as if computed by elements but the calculation can be performed more

efficiently. In case that R is sparse, the formulas above can be used to compute

the blocks of Σ at the positions of nonzero blocks in R quickly [18]. To compute

multiple blocks of the covariance matrix, such as the whole block diagonal, these

formulas are efficient, provided all the intermediate results are stored. Figure 9.31

shows which elements need to be calculated for a specific block diagonal element.

9.2.1 Incremental Update of the Covariance Matrix

In Chapter 7, it was mentioned that most of the algorithmic speedups can be ap-

plied in case the linearization point is kept the same. Then, the contribution of

1 An insightful animation of the covariance recovery, along with explanatory comments, is available

online at http://slam-plus-plus.sf.net/cov/

http://slam-plus-plus.sf.net/cov/
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Figure 9.4: Sparsity patterns involved in covariance update calculation.

every new measurement can be easily integrated into the current system matrix Λ

by a simple addition (see (6.3)), but things get complicated when the covariance is

required:

Σ̂ =
(
A>A+A>uAu

)-1
= (Λ+Ω)-1 . (9.3)

By applying the Woodbury formula, the above inverse can be written in terms of

the previous covariance matrix:

Σ̂ = Λ-1 −Λ-1A>u
(
I+AuΛ

-1A>u
)-1
AuΛ

-1 ,

Σ̂ = Σ−ΣA>u
(
I+AuΣA

>
u

)-1
AuΣ . (9.4)

This shows that, in contrast to the information matrix which is additive, the covari-

ance is subtractive:

Σ̂ = Σ+4Σ , 4Σ = −ΣA>u
(
I+AuΣA

>
u

)-1
AuΣ . (9.5)

In SLAM, for example, this is easy to understand: a new measurement adds infor-

mation to the system and reduces the uncertainty. It is important to mention that the

size of the matrix to be inverted, S , I+Au ΣA>u, is very small compared to the

system size. More precisely2, the size of S,mu×mu withmu � m, corresponds to

the measurements involved in the update. For the simple case of a single measure-

ment of a given DOF, mu = DOF, regardless of the number of variables involved

or their respective DOFs. Furthermore, due to the fact that Au is very sparse, the

computation of S can be performed very efficiently. The complex update in (9.5)

becomes a simple block vector multiplication:

4Σ = −BS-1B> where B = ΣA>u is a block vector. (9.6)

Due to the sparsity of the Au, only few elements of the full Σmatrix are referenced,

in particular only the block rows corresponding to the variables involved in the

update. A simple example where the update involves two variables, is shown in

Figure 9.4. Furthermore, the size of B is n×mu, but the product in (9.6) is a full

matrix. Therefore the computation of the entire 4Σ is prohibitive. We mentioned

2 Assuming no new variables were added by the update, A is m× n, Au is mu × n and Λ is a n× n
matrix.
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above that only some elements of the covariance are needed in the applications.

For a single block, Σ̂i,j, the update can be easily calculated as:

4Σi,j = −BiS
-1B>j , (9.7)

where Bi and Bj are block rows of B of size of the update and the DOFs of the

variables i and j (DOFi×mu and mu×DOFj, respectively). A similar formulation

of the covariance update was used in [89] in the context of filtering SLAM. In there,

the marginal covariance of the variables were used to facilitate data association

and graph sparsification using information theory measures.

The storage of the dense matrix Σ must be avoided. Only the blocks required by

the application (for instance only the diagonal of Σ) are stored in a sparse block

matrix. However, in order to compute the update in (9.6) or in (9.7), other elements

of Σ are needed (the block columns, corresponding to the variables v, involved in

the update). Those are obtained by solving the system:

ΛΣ∗,v = I∗,v or RΣ∗,v = R->I∗,v , (9.8)

where I is an identity matrix of the same size as R and I∗,v is a sparse block

matrix containing only the block columns corresponding to the variables involved

in the update. The complexity of this calculation is directly proportional to the sum

of DOFs of the variables, involved in the update. For sparse R with nnz nonzero

elements, calculating a single (elementwise) column of Σ∗,v by forward and back

substitution amounts to O(2nnz).

9.2.2 Incremental Downdate of the Covariance Matrix

Although very attractive, updating Σ as shown above sometimes becomes imprac-

tical to implement. In general, the covariances are calculated periodically, after the

system was updated, which happens after one or several steps. In this case the Λ

or R are not available anymore, as they were replaced by Λ̂ and R̂, respectively.

Similarly to (9.3), one can downdate Λ̂ to obtain Σ:

Σ =
(
Λ̂−A>uAu

)-1 . (9.9)

Following the same scheme as in (9.4), 4Σ can be now written in terms of Σ̂:

4Σ = +Σ̂A>u
(
I−AuΣ̂A

>
u

)-1
AuΣ̂ , (9.10)

Defining U , I−AuΣ̂A>u, which is a small size matrix similar to S, (9.10) becomes:

4Σ = B̂U-1B̂> with B̂ = Σ̂A>u , (9.11)

while avoiding forming full Σ̂ and only calculating the columns referenced in

the above product, Σ̂∗,v. Those are easily obtained by solving Λ̂Σ̂
>
∗,v = I∗,v or

R̂Σ̂∗,v = R̂->I∗,v, much like in (9.8).
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This allows us to update the covariance at any step from the current Λ̂ or R̂ and

a small Au, instead of having to bookkeep the much larger Λ or R alongside the

updated Λ̂ or R̂. Also, it is not mandatory to update Σ at each step: to perform

update to Σ over several steps, Au will simply contain all the measurements since

Σ was calculated.

9.2.3 Alternative Update or Downdate Formulation

It is also possible to apply the Woodbury formula slightly differently than in the

previous subsections. Recall the Kailath variant of the Woodbury formula (see

e.g. [17], page 153):

(X± YZ)-1 = X-1 ∓X-1Y
(
I±ZX-1Y

)-1
ZX-1 . (9.12)

In (9.10), the substitution was X← Λ̂, Y ← A>u and Z← Au while it is also possible

to set Y ← I and Z← A>uAu = Ω. Note that an equivalent modification could have

been applied to (9.4) as well. An update using the Ω matrix can thus be obtained,

saving some computation (only a single product of Σ̂Ω is needed, compared to

two products AuΣ̂ and AuΣ̂A>u in (9.10)):

4Σ = +Σ̂Ω(I− Σ̂Ω)-1Σ̂ . (9.13)

It is also possible to take advantage of the sparsity of the update and write

V , I− Σ̂v,vΩv,v, with Ω being a block version of Ω. It is worth noting that both

Σ̂v,v and Ωv,v are full matrices and it is possible to use fast dense calculation. V

is a nu × nu matrix where nu is the sum of DOFs of variables in v. Although not

universally true, usually nu ≈ mu. This lets us transform (9.13) to:

4Σ = Σ̂∗,v ·C with C = Ωv,vV
-1Σ̂
>
∗,v , (9.14)

where C is a nu×n matrix. Any element of the updated covariance matrix can be

recovered as 4Σ̂i,j = Σ̂i,v ·C∗,j.

9.2.4 The Algorithm

In this chapter, an efficient algorithm for online recovery of the marginal covari-

ances is proposed. Based on whether or not the linearization point changed, the

algorithm has two branches: a) calculates sparse elements of the covariance ma-

trix using the recursive formula (9.1), (9.2) or b) updates sparse elements of the

covariance using the covariance downdate in (9.14). The decision is outlined in Al-

gorithm 9.1. Note that this algorithm involves a simple incremental Gauss-Newton

solver, but other nonlinear solvers (even batch solvers) are also suitable.
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Algorithm 9.1: Covariance recovery algorithm selection in an NLS solver

1: function IncrementalGNWithCovs(θ,Σ, v, r, zu,Σu, maxiters, tol)

Require: Σ is the covariance matrix from the last step

Require: v is a vector of ids of variable affected by the update

Require: zu is a new observation on the variables in v

Require: Σu is covariance of the observation zu (not to be confused with Σ, the

covariance of the variables)

2: (θ̂, r̂) = Update(θ, v, r, zu,Σu)

3: (Λ̂, η̂,Au) = LinearSystem(θ̂, r̂)

4: o = AMD(Λ̂)

5: R̂ = BlockChol(Λ̂,o) . Or use incremental factorization in Algorithm 7.4.

6: θ̂old = θ̂

7: newLP = false

8: GaussNewton(θ̂, r̂,Σ, R̂, d̂, Λ̂, η̂, newLP, maxiters, tol) . Algorithm 7.2.

9: if newLP then

10: R̂ = BlockChol(Λ̂,o) . Need an up-to-date R factor.

11: end if

12: if θ̂old 6= θ̂ then . See if the linearization point has changed.

13: Σ̂ = CalculateCovariance(R̂,o)

14: else

15: Σ̂ = UpdateCov(Σ, R̂,o,Au, v)

16: end if

17: end function

The two branches have different complexities. The first branch has complexity of

O(n2nzn) in nnz, the number of nonzeros of the R̂ factor and n, the sum of DOF of all

the vertices [18]. The second branch is dominated by the complexity of O(knnznu)

where nu is the sum of DOFs of vertices that are being updated. As a result, the

second branch is much faster if only a few vertices are changing. In case that most

of the vertices are being updated (e.g. after a linearization point change), the first

branch becomes faster.

9.2.4.1 Sparse Blockwise Covariance Calculation

The proposed implementation of the recursive formula is slightly different from

the other state of the art implementations iSAM [93] or g2o [106]. These use a hash

map or a similar structure for fast lookup of the elements of the covariance matrix

that were already calculated in the course of evaluating (9.1), (9.2). At the same

time, they are query-driven: to calculate a specific value of the covariance matrix,
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Algorithm 9.2: Blockwise covariance recovery.

1: function CalculateCovariance(R̂, o)

Require: R̂ is a block matrix with Cholesky of the current information matrix Λ̂

Require: o is fill-reducing ordering used in the factorization of R̂

2: Σ̂ = NewMatrix(Rows(R̂), Cols(R̂)) . note that Σ̂ is a sparse block matrix

3: for i = Size(BlockRows(R̂)) − 1 down to 0 do . block rows in reverse

4: for b = Size(BlockRows(R̂)[i]) − 1 down to 0 do . blocks in reverse

5: j = ColumnOf(BlockRows(R̂)[i][b]) . col. of bth block in ith row

6: Σ̂j,i = O . place a new zero block in Σ̂, the size of R̂j,i
7: for each R̂j,k in BlockRows(R̂)[j] do . loop blocks forward

8: if k > i then . read upper-triangular Σ̂ only

9: Σ̂j,i = Σ̂j,i + (Σ̂i,k · R̂j,k)>

10: else

11: Σ̂j,i = Σ̂j,i + R̂
>
j,k · Σ̂k,i

12: end if

13: end for

14: Σ̂j,i = FinalizeCovBlock(Σ̂j,i, R̂j,j, i, j)

15: end for

16: end for

17: return permute(Σ̂, o-1)

18: end function

19: function FinalizeCovBlock(Σ, R, i, j) . Σ and R are dense blocks in Σ̂ and R̂.

20: for k = Cols(Σ) − 1 down to 0 do

21: for l = (i 6= j ? Rows(Σ) − 1 : k) down to 0 do . ternary operator

22: rinv = 1/Rl,l

23: f = Σl,k + Σl:end,k · Rl:end,k

24: if i 6= j then

25: Σl,k = −rinvf . off-diagonal blocks of Σ̂

26: else if k 6= l then

27: Σk,l = Σl,k = −rinvf . off-diagonal elements in diag. blocks of Σ̂

28: else

29: Σk,k = rinv(rinv − f) . elements on the diagonal of Σ̂

30: end if

31: end for

32: end for

33: return Σ

34: end function
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Algorithm 9.3: Incremental covariance update.

1: function UpdateCov(Σ, R̂, o, Au, v)

Require: Σ is the covariance matrix to be updated

Require: R̂ is Cholesky of Λ̂ with fill-reducing ordering

Require: o is fill-reducing ordering used in R̂

Require: Au is matrix of measurements since Σ

Require: v is a vector of ids of variable affected by the update

2: Iv = Eye(size(R̂))∗,v. select block columns of I corresponding to vertices v

3: Ivo = Permute(Iv,o)

4: T = R̂ \ Ivo . calculate block columns of Σ̂v, similar to (9.8)

5: T = Permute(T ,o-1)

6: Q = Dense(Tv,∗) . select block rows, corresponding to v

7: M = Dense((Au)∗,v) . collect nonzero columns from Au

8: U = Eye(size(Q)) −MQM> . calculate dense U, as in (9.10)

9: B̂ = T0:blockRows(Σ),∗M
>

10: Σ̂ = Σ+ B̂U-1B̂> . the update, as in (9.14)

11: ov = BlockCols(Σ)

12: nv = BlockCols(Σ̂) − BlockCols(Σ) . number of the new vertices

13: Σ̂∗,ov:end = T∗,BlockCols(T)−nv:end . extend with cov. of the new vertices

14: return Σ̂

15: end function

they start at that value and recursively work their way down the dependence tree,

evaluating it in reverse order while backtracking.

In contrast, the proposed algorithm calculates the covariance matrix column by

column, right to left, calculating only the queried covariance elements and all the

elements at the same place as the nonzero elements of the R̂ factor. By the time the

algorithm evaluates a specific element, it is guaranteed that all the references were

already evaluated, eliminating the need for a hash map. A similar, but elementwise

approach is described in [68]. Note that in Algorithm 9.2, the R̂ matrix is accessed

by rows. The storage order is column-major though, so the implementation needs

to transpose the structure of R̂ first and then it is possible to use this algorithm

more efficiently. Note that the resulting covariance matrix is sparse: the algorithm

does not calculate more elements, than [93, 106].

Once finished, the proposed algorithm permutes the calculated covariance ma-

trix to the natural order, so that the block columns and block rows of Σ̂ correspond

to the variables of the optimized system. The covariance matrix is symmetric, and

only the upper-triangular part is stored.
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9.2.4.2 Covariance Update

Updating the covariance incrementally is significantly faster in the second branch

of the Algorithm 9.1. To calculate an update to the covariance matrix from the pre-

vious step, Algorithm 9.3 closely follows the calculation outlined in Section 9.2.2.

Note that reordering the system matrix (Λ̂ or R̂), e.g. as described in Section 7.7.1

does not impede the incremental update and that the algorithm is valid, but not

efficient when the linearization point changes.

The algorithm begins by evaluating T , the block columns of Σ̂ corresponding

to the v, the vertices which are being updated (lines 2 to 5). This is illustrated in

Figure 9.4, where T comprises the highlighted columns of Σ on the left (or rows on

the right, as Σ is symmetric). Note that the inverse fill-reducing ordering is applied

so that the block rows of T correspond to the variables of the optimized system.

To calculate the small matrix U by directly following (9.10) would involve several

sparse matrix products. In the proposed algorithm, dense calculations are used

instead: the small portion of Σ used in the product is copied to a small dense matrix

(Q at line 6, corresponding to the highlighted blocks of Σ in the center of Figure 9.4).

Similarly, nonzero columns of Au are copied to another dense matrix (M at line 7).

The calculation of U at line 8 is then performed using only small dense matrices,

enabling better cache coherency and acceleration using SIMD instructions. This is

equivalent to sparse evaluation of (9.10) and yields an identical result.

Finally, the additive update of Σ to Σ̂ is calculated at line 10. Note that it is not

needed to evaluate full dense B̂U-1B̂>. Instead, only the blocks of interest in Σ can

be updated by using 4Σi,j = B̂iU-1B̂>j , in analogy to (9.7). In our implementation,

this update is carried out in parallel. Some parts of Σ̂ do not need to be updated,

as they were already calculated using forward and backsubstitution (lines 2 to

5). These are the block columns, corresponding to the vertices being updated (v).

Algorithm 9.3 uses this to extend Σ̂ with covariances of the newly added vertices.

9.2.5 Experimental Evaluation

In this chapter, the focus was on testing the proposed algorithms on SLAM applica-

tions, but the applicability of the technique remains general. Many other applica-

tions from robotics such as active vision, planning in belief space etc. can benefit

from the solutions proposed here.

The computational efficiency and precision of the method and its implementa-

tion were tested and compared with similar state of the art implementations, in

particular, iSAM [95] and g2o [106]. For iSAM v1.7, revision 10 was used and for

g2o, svn revision 54 was used. Both, iSAM and g2o use fairly similar implementa-

tion of the recursive formula (9.1), (9.2) together with a cache of already calculated
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Table 9.1: Timing results (in seconds) of different state of the art covariance recovery im-

plementations on multiple SLAM datasets, the best times is in bold.

Dataset iSAM g2o SLAM ++ SLAM ++ total

Manhattan 206.58 180.42 4.374.374.37 13.88

10k 6712.03 5902.46 179.69179.69179.69 388.67

City10k 4585.15 3742.66 55.8755.8755.87 219.43

CityTrees10k 1009.91 938.97 30.9830.9830.98 60.41

Sphere 6051.73 5536.48 24.6424.6424.64 105.35

Intel 6.23 6.92 0.540.540.54 1.11

Killian Court 19.27 21.59 1.431.431.43 2.99

Victoria Park 310.57 293.09 13.8913.8913.89 37.11

Parking Garage 237.13 216.28 10.7710.7710.77 27.08

covariances, based on STL hash map containers. Although highly efficient, these

implementations do not handle incremental updates of the covariance and instead

recalculate it from scratch at every step. The proposed online covariance recov-

ery is available in the SLAM ++ library3. Other implementations can easily benefit

from the proposed scheme. The only requirement on the solver is to be able to

solve for dense columns of Σ and to have explicit Au or Ω.

The evaluation was performed on five simulated datasets; Manhattan [137],

10k [71], City10k and CityTrees10k [94], Sphere [106] and on four real datasets; In-

tel [85], Killian Court [21], Victoria Park [133] and Parking Garage [106] (see Table 9.1).

These are the datasets commonly used in evaluating NLS solutions to SLAM prob-

lems. The tests were performed on a computer with Intel Core i5 CPU 661 running

at 3.33 GHz and 8 GB of RAM. This is a quad-core CPU without hyperthreading

and with full SSE instruction set support. Each test was run ten times and the

average time was calculated in order to avoid measurement errors, especially on

smaller datasets.

9.2.5.1 Time evaluation

Table 9.1 shows the time performance of the incremental covariance recovery strat-

egy in Algorithm 9.1 tested on the above-mentioned datasets and compared with

g2o and iSAM implementations. The block-diagonal and the last block-column of the

covariance matrix are recovered at every step in all the cases. These are the only

elements of the covariance matrix required for taking active decisions based on

3 http://sf.net/p/slam-plus-plus/

http://sf.net/p/slam-plus-plus/
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Figure 9.5: Covariance recovery performance evaluation; a) logarithmic plot of time on

standard datasets and b) cumulative time on the Intel dataset.

the current estimation and efficient search for data association in an online SLAM

application [89]. In incremental mode, the covariance is calculated after each vari-

able added to the system (e.g. for the 10k dataset, it is calculated ten thousand

times). The total time spent in solving the SLAM problem with covariance recovery

is reported in the last column.

Figure 9.5a reports the covariance recovery time on logarithmic scale while Fig-

ure 9.5b shows the cumulative time of the incremental covariance computation on

the Intel dataset during the execution of the algorithm. An approximate time com-
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plexity was estimated from these readings using least squares. The time complexity

for SLAM ++ O(n1.77) is superior to the ones of g2o O(n2.31) or iSAM O(n2.36).

The performance of our incremental NLS solver in [PIŠ+
13b] was also compared

against GTSAM 2.3.1. However, the computation of the marginal covariances is

not optimized for recovering all the block-diagonal elements in the current version

of the GTSAM, therefore we excluded it from our comparisons. Nevertheless, we

tested the available function for recovering the covariance of a single variable, the

first variable (the most expensive one to calculate), against a similar function in

SLAM ++, and this produced on Manhattan, 26.270 s GTSAM vs. 2.125 s SLAM ++,

on 10k, 261.880 s vs. 50.550 s, and on Intel, 1.429 s vs. 0.148 s.

In conclusion, the proposed implementation significantly outperforms all the

existing implementations due to the proposed incremental covariance update algo-

rithm and the blockwise implementation of the recursive formula.

9.2.5.2 Memory Usage Evaluation

Memory consumption of the above-mentioned implementations was also evalu-

ated. The memory usage has been measured during two series of runs: with

and without the marginal covariances computations. Figure 9.6a shows the overall

memory usage from experiments performed on the Intel dataset and Figure 9.6b

shows the memory allocation of marginal covariances calculation only.

The overall memory usage plot shows that SLAM ++ uses the least memory,

which is achieved thanks to efficient implementation of matrix storage. The evalu-

ation of the memory used by marginal covariances computation algorithm is com-

parable to g2o and iSAM. SLAM ++ performs pooled memory allocation, which

can be seen as steps in the plot. This is advantageous, compared to the noisy allo-

cation patterns of g2o and iSAM, which probably lead to more system calls and

thus higher execution time.

9.2.5.3 Numerical Precision Evaluation

Since the proposed incremental update of the covariance is additive, it is likely

that arithmetic errors in calculating the update will accumulate over consecutive

steps, causing the solution to drift away from the correct values. Although no

proof of numerical stability is offered here, we consider it is very important to

show how the algorithm behaves in practice. A benchmark was performed on the

Intel dataset, where the covariances were calculated using recursive formula, using

the proposed method and using back and forward substitution to solve for a full

inverse. The Intel dataset was chosen specifically because it contains just a handful

of loop closures, causing the incremental covariance update to last for long periods,

exceeding hundreds of steps.
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Figure 9.6: Memory usage benchmark; a) overall memory usage with and without

marginal covariances computation, b) memory allocation of the covariances

algorithm only.

Although being the slowest, backsubstitution was shown to be numerically back-

ward stable. Therefore, the covariance calculated using back and forward substitu-

tion was used as a ground truth. The recursive formula in (9.1) and (9.2) is arguably

less precise, as it reuses already calculated values of the covariance, potentially

amplifying their error. The increment, ∆Σ, is calculated from backsubstitution so

it should be relatively precise, however the update is additive, allowing the error

to slowly creep in. Figure 9.7 plots the relative norm of error of covariances, calcu-
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Figure 9.7: Covariance precision on the Intel dataset.

lated using the recursive formula and using the incremental update. It can be seen

that the errors are quite correlated, incremental update having mostly lower error.

This is given by the fact that the covariance for incremental update is initialized

using the recursive formula after a linearization point change occurred. Generally,

it shows that the covariance was calculated with error at the 10th decimal place

and that using the incremental update slightly increased precision, rather than

decreasing it.

9.3 recovering covariance in schur complemented systems

In Section 9.2, it was described how the covariances of the variables in an NLS es-

timation may be recovered efficiently and how the incremental updates to the sys-

tem translate to the updates of the covariance matrix. However, as demonstrated

in Chapter 8, some of the problems can be solved more efficiently using Schur

complement rather than by directly factorizing the system matrix A or Λ. In those

cases, it is still possible to e.g. use the recursive formula (9.1) and (9.2) to obtain

the covariances, but it comes at the cost of calculating an extra factorization of the

entire system which would otherwise not be needed.

Thus, the goal is to solve ΛΣ = I directly on the Schur complemented system: A U

U> D

 ·
 Σp Σpl

Σ>pl Σl

 =

 Ip 0

0> Il

 . (9.15)

where both Σ and the identity matrix I are partitioned the same way as Λ is parti-

tioned in (8.2). Note that the subscripts here are only identifiers rather than element
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indices. By taking Cholesky decomposition S>S , Schur(A), the covariances of the

camera variables are:

S>SΣp = Ip −UD
-10> = Ip so Σp =

(
S>S

)-1 , (9.16)

and thus the recursive formula in (9.1) and (9.2) can be used efficiently.

The situation is more interesting in recovering the covariances of the landmarks.

It would be possible to make use of T>T , Schur(D) and (9.16) to write:

Σl =
(
D−U>A-1U

)-1
=
(
T>T

)-1 . (9.17)

The matrix inverted here is positive definite and the recursive formula could be

used again. However, the inverse A-1 is involved here: unless the underlying prob-

lem forms a bipartite graph which only really happens with vanilla forms of BA

and as soon as e.g. intrinsic camera parameters, GPS or odometry measurements

are introduced, A is no longer block diagonal and inverting it is much more diffi-

cult than inverting D in (8.2). Applying the Woodbury formula to (9.17) gives:

Σl = D-1 +D-1U>
(
A−UD-1U>

)-1
UD-1 , (9.18)

Σl = D-1 +D-1U>ΣpUD
-1 , (9.19)

Σl = D-1 +D-1U>S-1S->UD-1 . (9.20)

Evaluating all of (9.20) would yield a dense matrix with the size approaching

that of the full Σ which would be counterproductive. Instead, taking advantage

of symmetry of Λ (and thus also of D and Σ), it is possible to write B , S->UD-1

in order to get Σli,j = D
-1
i,j +B

>
i,∗ ·B∗,j where D is blockwise representation of D.

Note that UD-1 is a sparse matrix with the number of nonzero blocks in each

column equal to the number of cameras that observe the point corresponding to

that column; S-> can be efficiently calculated using sparse sparse back-substitution.

Finally, to get the cross-covariances between the camera and the landmark vari-

ables, it is possible to use (8.3) with covariance in place of a and identity on the

right:

Σpl =
(
S>S

)
\
(
0−UD-1Il

)
, (9.21)

Σpl = −ΣpUD
-1 . (9.22)

Again, computation can be saved by taking advantage of sparsity of the matrices

so that recovering the full Σp is not necessary.

9.3.1 Experimental Evaluation

The proposed method for recovering marginal covariances of points was tested on

two public datasets, the Guildford Cathedral4, Venice [106] and on the Fast & Furi-

4 can be obtained at http://cvssp.org/impart/

http://cvssp.org/impart/
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Table 9.2: Characteristics of the BA datasets used in covariance recovery evaluations.

Fast & Furious 6 Guildford Cathedral Venice

Cameras 160 92 871

Landmarks 136, 453 57, 957 530, 304

Visibility 3.42 obs. / lm. 7.28 obs. / lm. 5.35 obs. / lm.

Λ 167.70 MB 142.93 MB 980.33 MB

Schur(A) 1.14 MB 1.04 MB 45.06 MB

S 1.73 MB 1.04 MB 84.60 MB

ous 6 dataset which was kindly provided by Double Negative Visual Effects5. Two

additional methods were compared: recursive formula on Cholesky factor of the

system matrix, and recursive formula on Schur(D) as in (9.17). More details about

the datasets are listed in Table 9.2.

The experiments were performed on the Salomon supercomputer, part of the

IT4I Czech National Supercomputing Center. Each compute node is equipped with

a pair of 12-core Xeon E5-2680 v3 running at 2.50 GHz and 128 GB of RAM. Mem-

ory consumption tests were performed on SGI UV2000 node, equipped with 14 of

8-core Xeon E5-4627 v2 at 3.3 GHz and 3.25 TB (Terabyte) of RAM; timing of these

tests is denoted by the dagger† symbol. The turbo boost function of the Xeon CPUs

was disabled for the benchmarks, so as to not make the results dependent on the

variations in the temperature.

Sparse block schemes [PIS13a] were used throughout the whole implementation,

which previously proved about an order of magnitude speedups for batch recur-

sive formula [IPŠ+
15]. Block matrix products and decompositions were accelerated

by Tesla K20x GPU.

Times required to calculate the marginal covariances are reported in Table 9.3.

The computation of the covariances of landmarks directly from Schur complement

is the fastest for all tested datasets, followed by the use of recursive formula. The

proposed method provides more than an order of magnitude speedup. The use

of Schur(D) and recursive formula is prohibitive by both time and considerable

memory requirements.

5 http://www.dneg.com/

http://www.dneg.com/
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Table 9.3: Timing results and the associated space requirements of the evaluated covariance

recovery methods (best times in bold).

Dataset Fast & Furious 6 Guildford Cathedral Venice

Landmarks, using (9.20) 0.2930.2930.293 s 0.1650.1650.165 s 7.0607.0607.060 s

Size of sparse S−T 2.97 MB 1.24 MB 109.79 MB

Chol(Λ) 0.951 s 1.251 s 16.856 s

Rec. formula all 3.493 s 3.308 s 82.689 s

Size of Chol(Λ) 93.33 MB 74.05 MB 572.52 MB

Schur(D) 149.999 s 160.662 s 4457.539† s

Chol(Schur(D)) 139† hours 73† hours N/A

Rec. formula lm. 5† hours 4459.647† s N/A

Size of Schur(D) 46.95 GB 37.87 GB 398.01 GB

Size of Chol(T) 493.43 GB 106.70 GB ∼ 7.37 TB

Cameras, using (9.16) 0.045 s 0.028 s 38.809 s

The magnitudes of the calculated landmark covariances are displayed as false

color, see Figure 9.2 or Table 9.2. From the colored view, it is apparent which parts

of the reconstruction are more precise and which are not. The user can use this type

of images to re-capture poorly reconstructed areas and obtain a high accuracy 3D

reconstruction.

9.4 chapter summary

In Section 9.2, a novel method for incrementally updating the covariance in NLS

problems was introduced, which significantly speeds up the computation of the co-

variance matrices useful in a broad range of robotic applications. Problems which

have a particular block structure were targeted, where the size of the blocks cor-

responds to the number of Degrees of Freedom of the variables. The advantage

of the new scheme was demonstrated through an exhaustive comparison with the

existing implementations on several available datasets. The tests show that the

proposed scheme is not only about an order of magnitude faster, but also numeri-

cally stable. Error of the covariance calculated using the incremental update is, on

average, lower than the error of the commonly used recursive formula.

In [IPŠS17], the usefulness of the incremental covariances calculation is demon-

strated in the context of data association, where the number of expensive sensor

registrations can be reduced by applying distance tests [89].
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Methods for efficiently finding covariances in NLS problems which are solved

using Schur complement, such as BA, were also proposed. The implementation

of the formulas described in this chapter significantly outperformed the existing

methods, by a factor of 20× for Guildford Cathedral, 12× for Venice and 12× for Fast

& Furious 6. At the same time, the memory consumption for calculating the inverse

of square root of the Schur complement is comparable to the storage of the square

root itself (which is required by the nonlinear solver), and is much smaller than the

storage needed for square rooting the full system for recursive formula. Using the

Schur complement of the landmarks is prohibitive as it requires tens to hundreds

of GB of storage, not to mention its square root, which would require hundreds to

thousands.

The calculated covariances can then be interactively displayed using false color

rendering and used for quality assessment of the 3D reconstruction. The proposed

methods are fast enough to be run on-set so that additional data capture can take

place if the reconstruction quality is not good enough. For more details about the

applications of efficiently recovering the covariances in digital cinema production,

please refer to [BEK+
15] or [PKP+

15].



Part III

A C C E L E R AT I N G T H E C H O S E N A L G O R I T H M S O N G P U

This final part builds on the results and especially limitations of the

previous one and proposes efficient GPU accelerated linear algebra so-

lutions which can be used to accelerate the algorithms described so far.
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A C C E L E R AT I N G T H E C H O S E N A L G O R I T H M S O N G P U

The previous parts proposed an efficient implementation of a Nonlinear Least

Squares (NLS) solver library. It proved to outperform similar state of the art im-

plementations, on high level due to algorithmic improvements and on low level

due to sparse block matrix storage and operations design. Apart from Chapter 8

which employed simple GPU acceleration using existing libraries for dense opera-

tions, all the experiments were running on CPU only. However, several bottlenecks

were identified:

sparse matrix multiplication : used heavily in Schur complement, incre-

mental Schur complement and covariance recovery.

sparse matrix transpose : used in Schur complement, incremental Schur

complement and covariance recovery. Although not directly a bottleneck, not

having sparse transpose on GPU would necessitate copying the data back and

forth, as well as CPU-GPU synchronization. The underlying operation is paral-

lel sorting (the column-ordered entries of a sparse matrix are sorted by row,

yielding a transpose matrix).

sparse matrix factorization : general sparse factorization kernel will prob-

ably not yield a large speedup for SLAM applications as the matrices are very

sparse [174]. On the other hand, a jagged diagonal or band-diagonal ma-

trix factorization would be useful in Schur complement implementation and

would reduce the memory and computation requirements compared to a full

dense factorization.

block diagonal matrix inverse : used in Schur complement, generally not

a bottleneck (except if using AMICS ordering where the diagonal blocks can

get large) but is easily parallelizable.

10.1 a brief history of gpu computing

The complexity of computer generated imagery has been steadily increasing for the

past few decades, hand in hand with the plausibility of its results. From the first

computer animated movies which took days and weeks to render on large main-

frames to today’s video games which admittedly look much more realistic and

render at steady 60 frames per second on consumer hardware. On one hand, this

149
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was made possible through the research and advances of algorithms and render-

ing methods. In the more recent years, special hardware for graphics computation

acceleration appeared – the GPU.

At first, the GPUs could only draw z-buffered polygons with color and textureThis is a

simplified

and not

entirely

accurate

view;

chips for

accelerating

graphics far

predate the

term GPU

and some

of them

could only

draw spans

rather than

polygons,

not to

mention

texturing.

and much of the initial development was focused on increasing the raw numbers

of vertices (or polygons) that could be sent to the rendering pipeline and on the

number of pixels that could be filled each frame. While the GPUs were good at the

latter task, working with vertex transforms and lighting computations was done

in software rather than in hardware – especially because the applications used a

variety of different tricks and approximations which would be hard to map to

circuitry. It was also believed that a fast CPU would be able to keep the pace.

But nevertheless along came the hardware transform and lighting pipeline

which could be configured for a few different kinds of lighting effects or e.g. fog

computations, although performing e.g. skeletal character animation was difficult

if not impossible. Still, an undisputed benefit is that it had freed the CPU for other

tasks. This was later followed by register combiners which had more flexibility,

and eventually by shaders which were short C-like programs.

Since the price to performance ratio of the GPUs sky-rocketed thanks to the

digital entertainment industry and mass production, it is no surprise that they

were popular also for non-graphics computations. Early applications of the

non-programmable graphics pipeline included e.g. fast collision detection using

z-buffering and stencil operations [127] or matrix multiplication using multi-

texturing and blending functions [107]. Addition of programmable shaders al-

lowed implementation of more complex algorithms, e.g. sparse matrix solvers [20].

The long tradition of abusing the graphics pipeline for purposes other than

graphics was finally ended by the introduction of Application Programming In-

terfaces (APIs) for general purpose computations. Compute Device Unified Archi-

tecture (CUDA) was introduced by NVIDIA in 2008 and was intended as an exten-

sion of the C++ language for NVIDIA GPUs. In 2009, it was followed by a more

general Open Compute Library (OpenCL) which targets many different kinds of

parallel platforms, including GPUs. Both CUDA and OpenCL expose functionality

hidden from the graphics APIs, such as random memory access (scatter in addition

to gather), inter-thread communication using shared memory, atomics or double-

precision instructions. This compelled most of the authors to abandon writing new

implementations in shaders. Note that some of those features were later introduced

to the graphics APIs in form of the compute shaders.

Rather than describing the inner workings of a GPU, such as the thread or mem-

ory hierarchy. Please, kindly refer to one of the GPU programming guides, e.g. [135],

or other plentiful material available on this topic.
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Efficient parallel sorting is an important building stone of many algorithms. Al-

though parallel sorting algorithms have been researched extensively in the past,

implementing the same algorithms on GPU presents a significant challenge, due to

the necessary amount of communication and synchronization, not to mention high

irregularity of memory accesses. In this chapter, a highly efficient implementation

of radix sort is discussed. The ultimate goal is to support sparse linear algebra

calculations, where sorting is often employed as a preprocessing step of matrix

compression [38] in order to improve load balancing and to increase utilization of

parallel processors [16] or e.g. in sparse matrix transpose. In Figure 11.1, there is a

breakdown of the execution time of the current sparse matrix multiplication algo-

rithms, running on GPU. In there, it is clearly visible that sorting takes a substantial

portion of the time.

Sparse matrix multiplication is characteristic by scattering the elementwise prod-

ucts in not easily predicted pattern. In order to be efficient, it must calculate prod-

ucts in the order in which the matrices are stored (such as compressed sparse

column [41]). When implemented in parallel, this scattering would cause a lot of

conflicts where different threads would require access to the same element of the

output matrix. To resolve this, the current implementations calculate the product

as a set of destination coordinates and associated values, which are then sorted

and compacted.

This puts the problem in a different perspective: the data to be sorted is pro-

duced by the GPU (e.g. by a matrix multiplication routine), and the sorted results

are consumed by the GPU. Therefore, we are not burdened by having to transfer

the data between CPU and GPU, much to the contrary: the conventional approach

would be to only use GPU for large enough problems and to process small prob-

lems on the CPU. In our perspective, such processing would involve the prohibitive

cost of data transfers and CPU-GPU synchronization. On the other hand, there is

some prior knowledge about the range and distribution of the sorted data. The

radix sort algorithm is able to use such knowledge to significantly accelerate the

sorting, but still remains general.

When comparing the state of the art GPU accelerated libraries that provide sort-

ing functionality, there is a significant performance gap: implementations based

on CUDA achieve about twice the sorting rates of the OpenCL-based ones. The

proposed implementation is intended to show that efficient sorting can be imple-
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Figure 11.1: Relative amount of time spent in different phases of sparse matrix multiplica-

tion on GPU, measured on the CUSP library [128] and on matrices of standard

SLAM (10k, Sphere) and BA (Venice) datasets.

mented even without advanced features exposed by CUDA, such as dynamic paral-

lelism or thread voting. The proposed approach outperforms all of the compared

implementations.

11.1 related work

Some of the first attempts on efficient sorting on GPU [143, 102, 101] were im-

plemented using the programmable shading pipeline, and were based on sorting

network [13] approach. Govindaraju et al. [70] extended the idea to fully utilize the

vector pipeline of the shading units and implemented a large-scale out-of-core sort-

ing. The obvious disadvantage is a considerable overhead of using a graphics API,

but general-purpose computing APIs did not exist yet. Sorting networks further-

more require relatively large number of passes, which grows with the size of the

sorted sequence. These passes required communication through global (texture)

memory, and the upper bound of performance was therefore relatively low.

One of the first influential sorting implementations in CUDA, Satish et al. [149]

proposed to use the radix sort algorithm. Their method processed data in four

passes that included local block sorting using 1-bit split operations [19], local his-

togram calculation, global prefix sum over histograms and finally reordering the

data. Although this method is similar to the Algorithm 11.1 from this chapter, it

is not optimal. The first local block sorting step was intended in order to improve

memory access patterns in the last scattering step, which can have detrimental

effects on performance if not properly handled. However, it is not work-efficient.



11.2 proposed implementation 153

Sintorn and Assarsson [154] were able to develop a method based on a combina-

tion of merge sort and bucket sort. The bucket sort is used to improve parallelism

at the later stages of sorting, where the number of lists to be merged becomes lower

than the number of parallel processors. Their implementation, although based on

comparison sorting algorithms, outperformed the work of Satish et al. [149] for

arrays of 8 M elements, or more. One disadvantage of this method is the use of

atomic counters to perform the bucket sort, and as such it depended on the distri-

bution of the sorted data, as atomic operations on the same counter are subject to

serialization in many parallel architecture, including GPUs.

The efficiency of radix sorting was improved by Ha et al. [76] by focusing on the

arithmetic intensity of the sorting. To reduce the number of arithmetic operations

in sorting, several optimizations such as the accumulation of three 10-bit histogram

bins in a single 32-bit integer or the use of mixed-data structure are applied. It is

based on the observation that bigger value types suffer less from irregular memory

access patterns at the scatter phase. Therefore, array of key-value structures is

preferred for this step, rather than the commonly used structure of arrays. As a

result, about 30% greater sorting rate is achieved, compared to the Satish et al.

[149] implementation.

Currently the fastest state of the art implementation is that of Merrill and

Grimshaw [122] and [121], which was greatly influential also to the proposed

method. They build on the work of Satish et al. [149] and also use the idea of

accumulating four 8-bit histogram bins in a single 32-bit integer. Several novel

ideas are introduced in these works, one of the most important ones being the re-

duction of the number of steps per radix to three, as in Algorithm 11.1 where lines

3, 4 and 5 – 7 can run each as one step that only requires global communication at

the beginning or at the end. This reduction in global memory traffic increases the

upper bound on sorting throughput. It is achieved by performing local sorting at

the end of the scattering step, where it can be done in work-efficient manner.

11.2 proposed implementation

The next subsection contains a brief description and performance analysis of the

radix sort algorithm, followed by a detailed description of our implementation and

the methods used for optimizing it. The proposed algorithm consists of the same

three steps as [121], but they are executed on GPU in just two steps, for reasons

described below. Although the proposed implementation is written in OpenCL, the

design considerations are with respect to NVIDIA hardware, and when referring

to some particular hardware specifics, it is that of the NVIDIA platform, unless

specified otherwise.
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Algorithm 11.1: Segmented parallel radix sort.

1: function RadixSort(input)

2: for each digitplace in {LSB, . . . , MSB} do

3: Calculate segment histogram of digits at digitplace

4: Inplace global scan of all the histograms

5: Segment scan of counts of digits at digitplace

6: Add histogram scan to get global offsets

7: Scattter temp← input

8: Swap input↔ temp

9: end for

10: return input

11: end function

In the proposed algorithm design, the emphasis is on low arithmetic density, tak-

ing advantage of OpenCL just-in-time compilation model for flexible scheduling,

and parallel programming with minimal synchronization using warp-synchronous

programming where possible.

11.2.1 The Radix Sort Algorithm

Radix sort [103] is a stable sorting algorithm, suitable for sorting keys that map to

integral values, such as integers or to certain extent the floating-point values. Note

that this is converse to the widely used sorting paradigm that uses a comparison

predicate and is implemented in e.g. C++ Standard Template Library. It works

by grouping the given integer keys by their corresponding digits. This is done in

successive fashion, starting with the least significant digits. Once grouped, the keys

are then read out, starting with the group corresponding to the lowest value and

maintaining the relative order of the keys in the same group. After going through

all of the digits, the sequence is sorted. The parallel version of this algorithm, called

split radix sort [19], relies on parallel prefix sum primitive extensively, to facilitate

grouping of the sorted elements. Parallel prefix sum, or scan, can be implemented

efficiently on GPU [150]. In order to extend radix sort algorithm to run efficiently

on multi-processor machines such as GPUs, a notion of segments [19] is introduced.

The sort can be broken down to local operations on the individual segments of the

input sequence, which can be performed with reduced amount of communication

between processors, working on different segments. The final sorting algorithm is

described in Algorithm 11.1. A similar algorithm was used in [121].
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Table 11.1: Memory complexities of Algorithm 11.1, the segmented radix sort.

Line of algorithm Memory reads Memory writes

3 n 2dm

4 2dm 2dm

5 – 7 n+ 2dm n

In the first step inside the loop, counts of digit values in each segment of the in-

put sequence are calculated. Prefix sum of those counts gives the global position of

the first occurrence of each digit in the output sequence, for each segment. Finally,

the last step will calculate prefix sums of each digit, determining output position

of each key in terms of the segment and by using the histogram prefix sum also the

global output position. The output sequence of one loop iteration becomes input

to the next one, output of the last iteration is the sorted sequence. In order to sort

k-bit numbers, one needs to perform k/d iterations of the loop above, where d is

size of a digit, in bits. Each segment histogram will therefore contain 2d bins. An

example of a single step of the loop is depicted on Figure 11.2.

Since sorting is certainly a bandwidth-limited operation, let us analyze the cost

in terms of memory accesses. Given that the length of input sequence is n, and

the hardware architecture dictates us to use m segments (where each segment

corresponds to an individual parallel processor), the required bandwidth can be

found in Table 11.1.

Since m is quite limited by the hardware (up to tens on GPUs, or hundreds

on Intel MIC), and d is limited by register pressure, the memory complexity is

roughly 3nk/d. This can give us an idea about the upper bound of the sorting rates

achievable on the current hardware. For example, NVIDIA GeForce GTX 780 has

maximum bandwidth of 288.4 GB/sec, which can yield peak sorting rates up to 3.0

GKeys/sec for the common case of k = 32, d = 4. The proposed implementation is

efficient, in the sense of achieving performance, comparable to this upper bound.

Note that in the following text, the convention of binary units is used, where 1 M

equals 10242, 1 G equals 10243, and so on.

11.2.2 Segmented histogram calculation

Histogram calculation is a fairly straightforward algorithm if implemented on a

serial processor. On a parallel processor, two common approaches prevail. Sintorn

and Assarsson [154] used atomic operations for incrementing the histogram bin

counters, but despite recent architectural improvements, atomic operations still

serialize if working on the same variable (the same histogram bin). The efficiency
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Algorithm 11.2: Naïve histogram calculation.

1: function Histogram(input)

2: histogram[16] = {0, 0, . . ., 0}

3: for each i in input do

4: histogram[i] = histogram[i] + 1

5: end for

6: return histogram

7: end function

of histogram accumulation is then heavily dependent on the data, and is reduced

up to 32× on NVIDIA platforms in the worst case (since threads execute in groups

of 32, called warps), or even slower on AMD platforms (similarly, threads execute

in waveforms of 32 or 64 threads, depending on the specific GPU model).

The other solution, which the proposed implementation uses, is to trade time

for space, having each thread accumulate in its private histogram, and have the

threads reduce the histograms at the end. Segmented histogram is highly advan-

tageous for GPU implementation, as there is no communication between the seg-

ments, and the reduction can take place entirely in the fast shared memory. The

size of the segments is of a great importance, as it directly affects the performance.

If the segments are too small, the costs of each thread initializing its private his-

togram with zeros and of the final reduction will easily outweigh the time, spent

in the actual accumulation of the values, rendering the calculation inefficient. If,

on the other hand, the segments are too large, there may not be enough segments

to occupy all the streaming multiprocessors of the GPU. Many of the previous

implementations restrict the size of the segment to a constant, for example im-

plementation of Satish et al. [149] uses tiles of 1024 items. Instead, the proposed

implementation, similarly to [121], uses variable length segments. The number of

segments is chosen as a minimum that can keep the GPU fully utilized.

A distinguishing feature of the proposed algorithm is the choice of memory

space for thread histogram storage. On GPU, there are several memory spaces with

varying suitability. Global memory is mostly unsuitable for histogram accumula-

tion, due to its latency. Shared memory is roughly two orders of magnitude faster,

but it is accessed through a small amount of banks (16, or 32 on NVIDIA Fermi

GPU and newer). If bank conflicts occur, the reads and writes are serialized. There-

fore, even though not using atomic instructions, the accumulation would still be

dependent on the data. Local memory [111] (not to be confused with local memory

in OpenCL) is a memory space, specific to GPUs. It is a memory space, which is

private to each thread. The values written to the local memory space are stored in

L1 cache, but can be evicted to L2 and eventually to global memory (highly likely
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Algorithm 11.3: Registered histogram accumulation.

1: function ThreadPrivateHistogram(input)

2: (ha, hb, . . ., hp) = (0, 0, . . . , 0)

3: for each (i, j) in input do . process a pair of values at a time

4: bin = 1 << i

5: bin = bin∪ (1 << j)
6: multiplicitylog2

= (i = j)? 1 : 0

7: ha = ha + ((bin >> 0)∩ 1) << multiplicitylog2

8: hb = hb + ((bin >> 1)∩ 1) << multiplicitylog2
...

9: hp = hp + ((bin >> 15)∩ 1) << multiplicitylog2

10: end for

11: return (ha, hb, . . ., hp)

12: end function

for bandwidth-intensive applications). This memory space is used only for register

spills and addressable arrays. This is due to the absence of register addressing. That In vertex

program

specifica-

tion, there

is the ARL

instruction,

but its use

is limited.

means that code like in Algorithm 11.2 will actually store values in global memory

(in the worst case – but it occurs with high probability), and will be dependent on

the data.

Instead, the proposed histogram algorithm accumulates the histogram in regis-

ters. Due to the nature of the GPU execution model, to use branching to decide

which histogram bin should be incremented would result in thread divergence,

serialization and again dependence of execution speed on the data. On GPU, it is

better to compare the data at the input to all histogram bins, and use the results

of the comparison to increment all the histogram bins, for every item of the data.

This approach, however, yields high arithmetic intensity and is only efficient if

there are enough threads running to cover up the latency. Instead, bit masking op-

erations are employed to calculate the comparison. That enables accumulation of

several different values at once by simply or-ing their masks together. Special care

needs to be taken for accumulating duplicate values. The final accumulation part

is summarized in Algorithm 11.3.

Note that the >> and << operators represent bitwise shift to the left and to the

right, respectively, while ∪ and ∩ represents logical or and logical and. Also, the

algorithm accumulates two symbols at once, and for the sake of simplicity does

not handle the situation of odd-sized input. The code can be further optimized

by sacrificing several bits of accumulator precision, and instead of performing 2b

shifts of bin (16 in Algorithm 11.3), only one shift (by 0 and by 8 bits) is used

and the (constant) binary masks are shifted instead. That reduces the work to 26
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Figure 11.2: An example of segmented radix split operation for b = 1.

simple instructions per accumulated value. The accumulators need to be shifted at

the end but that is a small, constant overhead. Note that the maximum size of the

input is not reduced, thanks to parallelism.

After thread private histograms have been calculated, the values need to be re-

duced. The first part of the reduction is done in warp-synchronous manner, where

each warp cooperatively reduces all its thread private histograms to a single his-

togram in shared memory. In order to completely avoid synchronization, each

thread rotates its histogram bins by its id modulo 2b. Afterwards, standard tree-

based reduction is applied in shared memory. As a result, to reduce 512 histograms

of 16 bins each, only four barrier synchronizations are required.

11.2.3 Fast Scan & Scatter

After accumulating the segment histograms, their prefix sum is calculated much

like in [149], which will be used as a global destination offset for the sorted ele-

ments. Since the number of segments required to occupy the GPU is small, this step

is not large enough to be efficiently issued as a separate kernel, and is fused with

the last scattering step. Note that although this saves kernel execution, it does not

save significant amount of communication and Table 11.1 still applies.

In order to perform scattering of the sorted sequence, global indices need to be

calculated for each of the elements. Segmented prefix sum of histogram bin affilia-

tion flags yields local ranks of the sorted elements. By adding value of histogram

prefix sum for the corresponding segment and histogram bin, global position in

the output sequence is obtained, as illustrated on Figure 11.2. This requires us

to calculate 2b prefix sums, each of the size of the segment, or alternately more

shorter prefix sums with carry.

Several interesting observations can be made. The prefix sums are of binary

flags, and sum up to segment length. This gives us knowledge of how many bits
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are needed for the accumulators and it is possible to employ data-level parallelism.

Ha et al. [76] perform accumulation of three 10-bit accumulators, similarly Merrill

and Grimshaw [121] accumulate four 8-bit numbers in a single 32-bit variable.

It is possible to perform dynamic scheduling of accumulator precision in case

of prior knowledge of the final sums, such as the histograms calculated in the

first step of the algorithm. For example, a tile of 1024 element flags summed in

16 bins requires up to 128 bits, in 8 bins up to 64 bits. It is therefore possible to

scan 1024× 16 flags in two 64-bit numbers (always 8 in each), and if the distribu-

tion is favorable, a single 64-bit number suffices. This can be verified by solving

the unordered partition problem for (1024, 16). This however relies on calculating

segment histograms for relatively small segments which reduces performance on

the current GPUs, and we choose to use Merrill’s method. This technique is, how-

ever, relevant to the future GPUs that would have more multiprocessors or more

registers.

In the proposed implementation, each thread calculates local scan of two flags.

Warp-synchronous prefix sums with carry are used to calculate segment scan.

Threads working on a single segment exchange sorted elements in shared memory

as in [121] and write them out to the temporary array.

11.2.4 Register usage optimization

One of the disadvantages of register histogram accumulation described in Sec-

tion 11.2.2 is the number of registers it uses (34 in our case). That directly affects

possible number of workgroups, running on a single multiprocessor, and affects

the capability to hide computational latency. In order to reduce the number of

registers, a simple novel technique called volatile stripping is proposed. It is based

on an observation that the OpenCL compiler allocates registers in a manner that

will yield high processing speed, while the programmer has very little control over

it. Declaring variables as register has no effect, and the compiler (NVIDIA 331.82)

seems to ignore the ’-cl-nv-maxrregcount’ option.

In the histogram kernel, accumulation of the bins can be done in-place, but the

compiler does not do that, possibly to improve pipelining. In our implementation,

the histogram bin variables are declared as volatile. That makes the compiler gener-

ate code for storing the value of the variables in local memory. A post-processing

step is applied to the generated assembly code, which uniquely identifies each

variable based on its address in local memory, strips all the volatile load and store

instructions, and instead assigns a single register where the variable is stored. Us-

ing this technique, we were able to reduce register use from 34 down to 27, signifi-

cantly improving occupancy.
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Since this technique is rather low-level, and while general, currently only imple-

mented for NVIDIA PTX assembly format thus creating platform dependence, it

was disabled in the performance evaluation in order to make fair comparison to

the other OpenCL implementations, which are platform independent. Although

volatile stripping possibly damages software pipelining, increased occupancy re-

sults in roughly 10% speedup for inputs of sufficient size to saturate the GPU mem-

ory subsystem.

Note that there is an initiative to make the OpenCL implementations use the

same intermediate program representations derived from the one, used by the

LLVM compiler. This initiative is called SPIR1 and its most recent version SPIR-V

is supposed to be adopted by OpenCL, OpenGL and Vulkan APIs. No tests using

this intermediate representation were performed as the NVIDIA platforms do not

seem to support it yet. Due to NVIDIAs commitment to support Vulkan, it is

reasonable to expect that it will be supported in the future, however.

11.3 performance analysis

In this section we compare the timing results of radix sorting performed using the

proposed implementation with similar state of the art implementations such as

CUDPP 2.1, Thrust 1.6.0, CLOGS 1.2.0, CLpp v1 beta 3 and libCL 1.2.1. All of those

libraries use the radix sort algorithm. Some of them also implement predicate-

based sorting, but it is slower than radix sorting, and therefore of no interest in

our application. The evaluation was performed by sorting vectors of random num-

bers of varying lengths (the same sequences were used for all the implementations).

We also performed evaluation on sequences, produced by multiplying sparse ma-

trices from The University of Florida Sparse Matrix Collection [39]. This collection

was chosen because it contains sparse matrices corresponding to a diverse set of

problems, and as such it is suitable for testing of general purpose linear algebra

implementations.

CUDA Data Parallel Primitives Library (CUDPP) is feature rich library with func-

tions like parallel reduction, prefix sum, radix sorting, sparse matrix operations,

random number generation and hashing. It supports comparison sorting, sorting

optimized for strings, and radix sorting.

Back 40 computing (B40C) is another reusable parallel primitive library, devel-

oped in CUDA. It contains fast scalable radix sorting routines, designed around the

allocation paradigm [123]. The B40C is now deprecated, the radix sorting code was

reused in CUB and Thrust [82] libraries. We will focus on Thrust in our evaluation,

as it is included in CUDA releases and is widely used. Thrust provides many func-

1 See https://www.khronos.org/registry/spir/.

https://www.khronos.org/registry/spir/
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Table 11.2: Saturated GPU sorting performance in MKeys/sec.

GPU Type

GTX 680 GTX 780

Library Key Key-value Key Key-value

CUDPP 689.752 538.849 804.798 590.816

Thrust 696.706 540.675 792.496 621.417

CLOGS 451.049 276.837 503.756 366.238

CLpp 134.716 94.245 154.076 122.487

libCL N/A 85.106 N/A 98.655

proposed 805.605805.605805.605 641.969641.969641.969 1119.4221119.4221119.422 892.055892.055892.055

tions, including predicate-based and radix sorting, with interface similar to the one

of C++ Standard Template Libary.

CLOGS is a mature OpenCL implementation, providing scan and sort primitives.

Sorting of any combination of scalar or vector key and value type is supported,

as well as sorting only keys. The implementation is “loosely based” on Merrill’s

Back40Computing [121] radix sort implementation. CLOGS feature auto-tuning

ability, which chooses the best parameters for target platform by exhaustively try-

ing possible launch options, which are cached.

CLpp implements several sorting algorithms. Simple implementation of Radix

Sort, as described by Blelloch [19], as described by Satish et al. [149], and a generic

version due to the authors of the library. It offers functions for sorting keys or

key-value pairs. The size of the value can be configured, the keys are expected to

be 32-bit unsigned integers. The default sort implementation, which is used in the

benchmarks is based on the paper of Satish.

libCL only offers limited sorting capability: it can only sort key-value pairs, and

only up to 4 M− 1 of them. Also, both key and value must be 32-bit types, and the

key is compared as 32-bit unsigned integer, reducing usability for sorting floating-

point numbers. There is no support for sorted type specification.

It is apparent that the CUDA implementations are of better quality, and are influ-

ential to the mostly inferior OpenCL implementations. This is in part given by the

supported hardware features: CUDA naturally supports advanced NVIDIA hard-

ware functions, such as dynamic parallelism or warp voting functions, which are

unavailable in OpenCL. These features are used in the CUDA implementations, giv-

ing them a certain advantage. The one disadvantage of CUDA is that it is compiled

for certain hardware profiles, and when a new platform emerges, the binary must

be updated. This is not the case with OpenCL, where the programs are compiled at
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Figure 11.3: Sorting rates on 32-bit keys (higher is better).
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Figure 11.4: Sorting rates on 32-bit key-value pairs (higher is better).

run-time and can therefore adapt to new hardware immediately. This adaptation is

only limited to number of registers, size of memory and similar device parameters.

All the tests were performed on a computer with NVIDIA GeForce GTX 680

and GTX 780, a pair of AMD Opteron 2360 SE CPUs running at 2.5 GHz and 16

GB of RAM. GPU drivers version 331.82 were used. CUDA implementations were

linked against CUDA 5.5 SDK libraries. During the tests, the computer was not

running any time-consuming processes in the background. Each test was run at

least ten times until cumulative time of at least 5 seconds was reached, and the

average time was calculated in order to avoid measurement errors, especially on

smaller sequences. Explicit CPU-GPU synchronization was always performed, using

cuCtxSynchronize() or clFinish(), respectively. Recorded times do not include

any data transfers. The computer was running Windows 7 (64 bit) and all the

tested libraries were compiled using Visual Studio 2008 SP1.
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Figure 11.5: Sorting rates on 32-bit key-value pairs, keys were generated in sparse matrix

multiplication (higher is better).

Summative results can be found in Table 11.2. These were measured on random

unsigned 32-bit numbers (care was taken so that the random numbers are not

banded, but indeed span the whole 32 bits) and optionally 32-bit values. More

detailed benchmarks are seen at Figures 11.3 (keys only) and 11.4 (key-value pairs).

Since different implementations might react differently on the distribution of

the sorted numbers, we also performed benchmarks by sorting element indices,

obtained by performing sparse matrix multiplication, and recording destination

row and column indices of results of every scalar product (see [38] for more details).

Row and column indices are combined to a single key by multiplying column

index by the number of rows and adding row index. Average runtime results on

data generated by multiplying 160 of randomly chosen matrices from University

of Florida Sparse Matrix Collection with their respective transposes are plotted in

Figure 11.5. Note that the proposed implementation consistently gains the fastest

saturated sorting rates, only outperformed by CUDPP for very short sequences.

Also note that the authors of Thrust and CUDPP report greater sorting rates

than measured, comparable with the proposed implementation. This is most likely

due to the behavior on the particular GPU models, where our implementation is

better optimized.

11.4 chapter summary

In this chapter, a simple portable radix sort implementation suitable for GPUs was

proposed. Although the achieved sorting rates are not much higher than the ones

of the CUDA implementations, it improves over the fastest state of the art OpenCL

implementations by nearly 50%. We achieved it by implementing fast histogram
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accumulation in registers, using warp-synchronous synchronization-free operation.

We proposed a novel technique of volatile stripping. Another proposed technique of

dynamic allocation of accumulator precision is currently less efficient than state of

the art, but will be applicable on bigger future GPUs.



12
FA S T S PA R S E M AT R I X M U LT I P L I C AT I O N O N G P U

This chapter presents a novel and highly efficient parallel algorithm for sparse ma-

trix multiplication. Sparse matrix-matrix multiplication is an important algorithm,

useful in a wide variety of scientific tasks, including among others computational

chemistry and physics, graph contraction, breadth-first search from multiple ver-

tices, algebraic multigrid methods, finite element methods or solving (non)linear

systems using Schur complement [178].

The sparse matrix algorithms are usually tightly coupled to the sparse matrix

storage formats they use. Two of the popular formats are compressed sparse col-

umn (CSC) [41] and compressed sparse row (CSR). Those are closely related; ma-

trices stored in one are transposes of the matrices stored in the other. CSC stores

matrices as a vector of prefix sums of numbers of nonzero elements in each column

and two vectors storing element values and their respective rows. It is common for

the elements in each column to be ordered by their row number. The use of the

CSC format is assumed in the rest of this chapter, unless specified otherwise.

Let us recall that in matrix multiplication C = A ·B, each element of the product

Ci,j is a sum of products of the corresponding elements in the ith row of A and

the jth column of B. The number of columns of A must match the number of rows

of B. In CSC, it is straightforward to look up elements by column (O(1)) but not to

look up elements by row (O(n) in the number of nonzero elements), which would

be needed to calculate the elements of C in ordered fashion (gather).

The original algorithm for sequential sparse matrix multiplication [75] is imple-

mented e.g. in the popular CSparse package [41] (used by Google’s Ceres solver

and Street View), and is work-efficient in terms of its complexity being propor-

tional to the number of Floating Point Operations (FLOPs). It is worth mentioning

that this level of efficiency is only reached for the price of calculating a partially

unordered representation of the product, which is still useful in practice, but it is

not the canonical form.

The algorithm [75] is efficient by traversing the elements of B column by column

(assuming the CSC storage is used; for CSR all the terms are transposed), where

each element Bi,j multiplies all the elements of A in the ith column (the one cor-

responding to the row of the particular element Bi,j). Many of the other sparse

matrix multiplication algorithms use this strategy. It produces partially ordered

partial products (scatter), which need to be summed up. Gustavson [75] came up

with an elegant way of quickly merging these partially ordered sequences.

165
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Figure 12.1: Time of different stages of the proposed algorithm.

Parallel sparse matrix multiplication algorithms (PSpGEMM in BLAS terminology),

however, generally decompose the matrices to band or block submatrices and dis-

tribute the computation of the partial products to different processors. Similarly

like in the previous case, the results need to be merged to form the final product,

using sparse matrix addition in this case. This approach is further referred as a

coarse-grain work subdivision, since the submatrices are typically relatively large.

Packages [11, 59] use this approach.

12.1 related work

Unlike dense matrix multiplication [2, 44, 34, 74, 60] which is very well re-

searched and widely understood, sparse matrix multiplication [24, 22, 148] is

much more challenging - and even more so in the hardware. Many papers titled

“sparse matrix multiplication” actually refer to sparse matrix-dense matrix multi-

plication [120, 151], which is an extension of sparse matrix-vector multiplication

(PSpGEMV or PCSRMM), an equally useful but nonetheless different algorithm.

The work of Buluç and Gilbert [24] discusses the challenges of designing and im-

plementing scalable sparse matrix multiplication in distributed memory systems.

Coarse-grain 1D decomposition of the work is considered, and two novel 2D algo-

rithms are presented. The identified challenges are the load imbalance, the amount

of work for partial result reduction and the communication overheads.

Matam et al. [120] explore several variations of the coarse-grain work division in

a hybrid CPU-GPU algorithm: row-column, column-row and row-row. A heuristic is



12.2 algorithm design 167

proposed for the fastest row-row case that efficiently balances computational load

between the CPU and the GPU. The load balancing is further extended for a special

case of banded matrices. The work contains highly efficient implementations of

both multiplication of two sparse matrices and a sparse with a dense matrix.

The work of Bell et al. [16] is strongly influential in the context of the later devel-

opments of GPU algorithms. It proposes the Expansion Sorting Compression (ESC)

algorithm. The expansion stage is based on the producing a triplet form matrix of

partial products, using the same operation ordering as used in [75]. To convert to

CSC, the partial products need to be sorted and the entries contributing to the same

element of the product need to be reduced (summed up) in the compression stage.

The parallel primitives considered here are amenable to fine-grain work distribu-

tion. The method proposed in this chapter is based on the ESC algorithm.

Dalton et al. [38] further refined the work of Bell. Their implementation is public

as the CUSP library [128] and it was used for comparisons with the algorithm

proposed in this chapter. It focuses more intensively on the GPU platform-specific

optimizations, such as avoiding passing data through global memory in favor of

local memory and registers, especially in the sorting stage. The CSR storage is used,

which is reflected in the three following paragraphs.

A permutation matrix is introduced, which orders the left operand by the work

required to process a single row, facilitating load balancing. The product is later

reordered, but the cost of doing so is reportedly relatively low.

The memory traffic of the expansion phase is further optimized for more regular

coalesced accesses by casting the expansion process as a depth-first search on a

layered bipartite graph of the nonzero elements of both factors.

The sorting phase is also optimized, by realizing that the produced expansion

is partially ordered, only intra-row sorting is required. This is implemented as

sorting many rows in the local memory at once. Very long rows which would not

fit in the local memory are sorted using a global sort. Further reduction in sorting

is achieved by a priori knowledge of the distribution of the bits of the sorted keys,

and by copying lower bits of column indices to unused upper bits of row indices,

effectively avoiding to have to sort simultaneously or sequentially by two keys.

Well known parallel algorithms, such as parallel sum (reduction), prefix sum

(scan) [19, 150] or sorting [149, 121, 122] are used by the proposed technique. In

this chapter, it is assumed that the reader is familiar with these operations.

12.2 algorithm design

The algorithm introduced in this chapter is based on the ESC algorithm [16, 38].

However, the focus is on removing load imbalances and on simplicity, as especially
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Figure 12.2: Data at the individual stages of the ESC algorithm1, a) the factors and their

product, b) CSC representation of the factors, c) top: expansion of the product,

segments of product columns indicated by alternating color, bottom: sorted

expansion, segments of product elements indicated by alternating color and

d) values of the product and its final CSC form.

the improved ESC algorithm in [38] handles many special cases, depending on the

memory space (local or global) and granularity (thread, warp or thread group) of

each particular operation. In contrast, the proposed implementation only requires

six custom kernels, some of which are merely a fusion of multiple general purpose

operations such as scan, created for performance purposes only.

12.2.1 Expansion Stage

Although the first conceptual stage of the algorithm is expansion, on GPU it is not

possible to directly proceed, without first knowing its size, as all the memory needs

to be allocated before starting the computation. From [75], it is trivial to derive the

exact size of the expansion:

expansion(A,B) =

cols(B)∑
j=1

nnzc(B,j)∑
k=1

nnzc(A, row(B, j,k)), (12.1)

where cols(·) gets the number of columns of a matrix, nnzc(·, ·) returns the number

of nonzero elements in a specified column of a specified matrix and row(·, ·, ·) is the

row of the given element in a column of a matrix. Note that all those are O(1) array

look-ups if the matrix is stored in CSC format. Also note that the expansion size is

closely related to the number of FLOPs required to carry out the multiplication.

The expansion size dictates the memory cost of the ESC algorithm (the proposed

variant as well as [16, 38]). Figure 12.3 plots a ratio of expansion size to the num-

ber of nonzeros in the product. In certain cases 100× more storage than the final

product is required (please, refer to Section 12.4 for the description of the dataset).

1 An interactive demonstrator is available online at http://www.fit.vutbr.cz/~ipolok/esc.

http://www.fit.vutbr.cz/~ipolok/esc
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Figure 12.3: Expansion factor by the number of product nonzero entries.

Fortunately, it is possible to transparently subdivide the product by cutting the B

matrix to several column slices, producing one slice of the product at a time.

The choice of granularity of expansion is crucial to load balancing. The proposed

algorithm achieves perfect load balancing in the expansion stage by using the gran-

ularity of individual scalar products. To do that, it is necessary for each thread to

find the elements of A and B to process. Here, the interpolation search [138] algo-

rithm is employed. It is a special case of binary search where the pivot is chosen

based on linear interpolation of the values of the endpoints of the searched inter-

val with the needle as the argument. The average complexity is O(log logn), worst

case being O(n). Interpolation search is not popular on CPU, as the linear inter- For com-

parison, the

complexity

of binary

search is

O(logn)

in both

average and

worst cases.

polation is too expensive to outperform a regular binary search. However, it is a

perfect fit for GPU where linear interpolation nicely hides under memory access

latency and allows to find the needle in fewer steps and with much less branching.

The expanded scalar products are essentially the product matrix in the COO for-

mat; they can be stored in three vectors of the same length, excols contains column

indices, exrows contains row indices and exvalues contains values of the elements

(see Figure 12.2b). Note that the sparse multiplication algorithm generates a par-

tially ordered expansion, where excols is ordered and exrows consists of many short

ordered runs (given by the rows of elements in the columns of A, which are typi-

cally ordered).

12.2.2 Sorting Stage

The approach in [16] is to use a single global sort. On GPU, the most efficient

sort implementations use radix sort [121] with complexity O(kN) where k is pro-
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portional to the number of bits of the key. In the case of keys generated by the

expansion, the number of bits is given by base 2 logarithm of the number of rows

and columns, respectively, and this knowledge can be used to accelerate the sort.

The radix sort may, however, not be the most efficient for a sequence which is

already nearly sorted. As the sort starts, the expansion will be first ordered by the

least significant bits of the keys, corresponding to the row indices. This will shuffle

the column indices which were already ordered at the beginning. The elements

are moved by long distances, leading to large amount of potentially uncoalesced

global memory traffic. These will be ordered again in the later stages of the sort,

by the most significant bits of the keys which correspond to the column indices,

leading to long distance movement again.

The radix sort is efficient on GPU if the sorted elements are only reordered by

small distances, as such reordering can be performed in the local memory. This

is achieved by sorting it in segments corresponding to the individual columns of

the product (Figure 12.2b top), instead of sorting the whole expansion at once. The

individual segments can be sorted in parallel. Now the elements are only reordered

by relatively short distances, leading to better write coalescing and leaving ample

opportunity to do the sorting in the local memory. However, load balancing issues

arise, as the lengths of expansions of the individual columns can vary wildly [38].

In the context of GPU computing, some operations have segmented variants, e.g.

a segmented scan. Its input is a vector of values to calculate the scan of, and a vector

of head flags, a binary vector with ones at the positions of segment starts. Note that

segmented operation is performed on the bulk of data rather than on the individ-

ual segments, and thus requires no explicit load balancing. Unfortunately, radix

sort is not a good candidate for segmented implementation, as it would lead to

both runtime and space tolls: the key bit histograms would need to be evaluated

per each segment and the reordering would also need to take place per segment,

leading to more load balancing issues. Fortunately, for merge sort, segmented vari-

ants exist2, and the performance toll, compared to the non-segmented variant, is

negligible. By using segmented sort, the time of the sorting stage was significantly

reduced; one can compare Figure 12.1 where sorting takes only 34%, with Figure 4

in [38] where it is closer to 63% of the total runtime.

12.2.3 Compression Stage

Once the expansion is sorted, the compression is a simple task of calculating sums

of elements with the same row and column, which are now in contiguous segments

of the expansion (see Figure 12.2b bottom). A simple segmented reduction can be

2 One such implementation can be found at http://nvlabs.github.io/moderngpu/segsort.html.

http://nvlabs.github.io/moderngpu/segsort.html
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Algorithm 12.1: Setup stage of PSpGEMM.

1: function GEMM(A, B)

2: bcols = AllocInt(nnz(B))

3: bprods = AllocInt(nnz(B) + 1)

4: kernel (i = 0 . . . nnz(B))

5: bcols[i] = 0

6: row = B.i[i]

7: bprods[i] = A.p[row + 1] −A.p[row]

8: end kernel . the last element of bprods not initalized

9: kernel (i = 0 . . . Cols(B))

10: bcols[B.p[i+ 1] − 1] = 1

11: end kernel

12: bcols = ExclusiveScan(bcols)

13: bprods = ExclusiveScan(bprods)

14: exp_size = bprods[nnz(B)] . expansion size

used to calculate the sums, while the head flags can be calculated as a difference

of row and column numbers between consecutive expansion elements. Note that

similarly to expansion stage, the size of the compressed form needs to be calculated

first (e.g. as a sum (reduction) of the head flags) so that the memory to store the

results can be allocated, unless the size of the product is known beforehand.

When handling matrices with large elements, such as long double or especially

block matrix elements (i.e. dense blocks), it is beneficial to reorder the operations

slightly: instead of storing the values of the partial products in the expansion, store

only the pointers to the operands and calculate the products themselves during

compression. This reduces both the size of the expansion and the memory traffic

of sorting it.

12.3 implementation

The proposed algorithm was implemented in OpenCL, and is presented in Al-

gorithms 12.1, 12.2 and 12.3. This separation to parts is given by the need to

allocate memory, which requires CPU intervention. The algorithm therefore re-

quires CPU-GPU synchronization twice, at the beginning and after the end of Al-

gorithm 12.2. This may be omitted if the allocation sizes or their upper bounds are

known beforehand. Note that all the allocated buffers reside in the GPU memory.

In the algorithms, several conventions are followed. For any matrix M stored in

the CSC format, M.p is the prefix sum of nonzeros in each of its columns, M.i is

the vector of row indices of nonzero elements and M.x is the corresponding vector
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Algorithm 12.2: Expansion and sorting stages of PSpGEMM.

15: excols = AllocInt(exp_size)

16: exrows = AllocInt(exp_size)

17: exvalues = AllocFloat(exp_size)

18: exhf = AllocBit(exp_size) . head flags bit array

19: kernel (i = 0 . . . (n = GPUhardware threads))

20: begin = bexp_size · i/nc
21: count = bexp_size · (i+ 1)/Nc− begin

22: elemB = upper_bound(bprods, begin) − 1

23: col_skip = begin −bprods[elemB]

24: for (prod = 0; prod < count; ++ elemB) do

25: rowB = B.i[elemB]

26: elemA = col_skip +A.p[rowB]

27: endA = A.p[rowB+ 1]

28: while (elemA < endA and prod < count) do

29: dest = begin + prod

30: cur_col = excols[dest] = bcols[elemB]

31: exrows[dest] = A.i[elemA]

32: exvalues[dest] = A.x[elemA] ·B.x[elemB]

33: exhf[dest] = cur_col > bcols[elemB− 1]

34: ++ elemA, ++ prod

35: end while

36: col_skip = 0 . skip in the first iteration only

37: end for

38: end kernel

39: SegmentedSort(exhf,exrows,exvalues)

40: tail_blocks = dexp_size/block_sizee
41: tail_counts = AllocInt(tail_blocks + 1) . or reuse bprods (unused below)

42: kernel (i = 0 . . . exp_size − 1)

43: local int flags[block_size] . in local memory

44: flags[i] = excols[i] < excols[i+ 1] or exrows[i] < exrows[i+ 1]

45: g = bi/block_sizec . cooperating thread group

46: tail_counts[g] = cooperative_reduce(flags)

47: end kernel

48: tail_counts = ExclusiveScan(tail_counts)

49: productNNZ = tail_counts[tail_blocks] + 1



12.3 implementation 173

Algorithm 12.3: Compression stage of PSpGEMM.

50: C.p = AllocInt(cols(B) + 1)

51: C.i = AllocInt(productNNZ)

52: C.x = AllocFloat(productNNZ)

53: kernel (i = 0 . . . exp_size − 1)

54: g = bi/block_sizec . cooperating thread group

55: col_tail = excols[i] < excols[i+ 1]

56: elem_tail = exrows[i] < exrows[i+ 1] or col_tail

57: local int flags[block_size] . in local memory

58: flags[i] = elem_tail

59: flags = cooperative_scan(flags)

60: compressed_index = tail_counts[g] + flags[i]

61: if (elem_tail and i < exp_size) then

62: C.i[compressed_index] = i . write indices of

63: end if . reduced values of elements in expansion

64: if (col_tail and i < exp_size − 1) then

65: C.p[excols[i] + 1] = compressed_index + 1

66: end if . write positions of beginnings of columns

67: end kernel

68: C.p[0] = 0 . need to write this explicitly

69: exvalues = SegmentedReduction(C.i,exvalues)

70: kernel (i = 0 . . . productNNZ)

71: expansion_index = C.i[i]

72: C.i[i] = exrows[expansion_index]

73: C.x[i] = exvalues[expansion_index]

74: end kernel

75: return C

76: end function

of values of the elements. The parallel GPU kernel calls are denoted by kernel, and

the (one-dimensional) execution domain is specified as i = 0 . . . n, where i is

the name of the variable holding the thread id, and n is the required number of

threads (thread with id n− 1 is the last thread).

In the setup stage (Algorithm 12.1), the bcols vector is filled with column indices

of each corresponding element of B, making B available in both COO (intermediate)

and CSC (input) formats. This allows O(1) lookup of column of any element of B

in the later stages of the algorithm. Additionally, each element of bprods contains

the amount of work required to multiply all the preceding elements of B. This will

be further used to facilitate load balancing at the expansion stage. The last element



174 fast sparse matrix multiplication on gpu

contains the total amount of work, which equals the expansion size. Note that the

kernel at line 9 needs to be modified if B is known to be rank deficient (then the

number of succeeding empty columns needs to be added to each 1 in bprods, and

care must be taken to not write to index −1). These changes were omitted in order

to save space.

The expansion stage (Algorithm 12.2) begins by allocation of the arrays to hold

the expanded values. The expansion is performed by the number of threads nec-

essary to saturate the GPU (denoted GPUhardware threads), or less if the expansion is

smaller than that. Each thread will calculate the same number of scalar products, as

discussed in Section 12.2.1 A range of scalar products to carry out (begin, count)

is allocated for each thread, which then looks up bprods for the element of B where

to start multiplying (line 22). upper_bound is a standard binary search function:

for an ordered vector and a value, it returns the right-most position where this

value could be inserted without violating the ordering.

The inner loop at line 28 iterates over elements of a particular column of the

A matrix, while the outer loop (line 24) takes care of advancing onto the next

columns. Note that col_skip is used to start the loop in the middle of a column,

should that be required to equally balance the workloads. Also note that if A is

known to be rank deficient, the outer loop may need to advance multiple times,

until reaching a non-empty column (such that elemA < endA before entering the

inner loop).

Once the expansion is calculated, the exrows, exvalues pairs can be sorted while

using the head flags as segment markers (note that the beginning of the first seg-

ment is implied and does not need to be explicitly represented). Finally, once the

expansion is sorted, the boundaries of the elements and the columns can be easily

spotted, and the number of nonzeros of the final product can be calculated, using

the kernel at line 42. The variable block_size refers to the size of the blocks of the

ExclusiveScan kernel, which is selected at runtime to best fit the target GPU.

In the final compression stage (Algorithm 12.3), the storage for the product is

calculated. In the first kernel of this phase, the expansion is scanned for column

tails (changes in excols, line 55) and element tails (changes also in exrows, line 56).

The scan of the element flags gives the element index in the compressed matrix.

Note that the reduction of these flags was already calculated in the previous stage

(line 46), which could be promoted to a scan to avoid recalculation, but storing the

scans would require O(expansion size) memory and would be disadvantageous

from both memory requirements and computational time standpoints.

Once the global index in the compressed matrix is known, indices of the final

values of the elements in exvalues can be written (C.i can be reused as temporary

storage), and C.p can be filled. Again, if the product is rank deficient, care needs

to be taken: C.p would need to contain runs of multiple occurrences of the same
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index (including the zero index at the beginning), corresponding to the runs of

empty columns.

Finally, the expansion values are summed up using segmented reduction, with

C.i serving as tail flags, leaving the final values of the elements of the product

at the tail positions in exvalues (line 69). The last kernel (line 70) merely copies

these values to their compressed destinations in C.p and rewrites C.i by the cor-

responding row indices. Note that this kernel could be fused with the segmented

reduction.

12.4 results

In this section, the timing results of sparse matrix multiplication performed using

the proposed implementation3 are compared with a similar state of the art imple-

mentation, CUSP 0.3.1 [128]. It was also compared to CSparse 1.2.0 [41], which

runs on the CPU4. Despite all effort, we were unable to find any existing OpenCL

PSpGEMM implementations. The evaluation was performed by all-to-all multiplica-

tion of sparse matrices from The University of Florida Sparse Matrix Collection [39]

and their transposes (for matrices which share a common dimension). This collec-

tion was chosen because it contains sparse matrices corresponding to a diverse set

of problems, and as such it is suitable for testing of general purpose linear algebra

implementations.

All the tests were performed on a computer with NVIDIA GeForce GTX 680

(3 GB RAM) and Tesla K40 (12 GB RAM), a pair of AMD Opteron 2360 SE CPUs

running at 2.5 GHz and 16 GB of RAM. In both cases, the program was compiled as

x64, and both CUDA and OpenCL used 64-bit pointers. GPU drivers version 344.48

were used. CUDA implementations were linked against CUDA 6.5 SDK libraries.

During the tests, the computer was not running any time-consuming processes in

the background. Each test was run at least ten times until cumulative time of at

least 5 seconds was reached, and the average time was calculated in order to avoid

measurement errors, especially on smaller matrices. Explicit CPU-GPU synchroniza-

tion was always performed, using cuCtxSynchronize() or clFinish(), respectively.

ECC was disabled on the Tesla GPU.

Our implementation works with the CSC format. The implementations working

with CSR format had their matrices converted (transposed) accordingly. Recorded

times do not include the conversion or data transfers. The benchmarked version

of the proposed algorithm handles all the rank deficient cases described in Sec-

tion 12.3 in a fully general way, without requiring prior detection or specialized

3 The implementation of the proposed algorithm is available, at http://sf.net/p/blockmatrix/.

4 CSparse is used as an orientative example, more efficient CPU implementations exist.

http://sf.net/p/blockmatrix/
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Figure 12.4: Performance scaling comparison on Tesla K40. Note that both axes are loga-

rithmic.

Table 12.1: Matrices from the SNAP subset and CSparse matrix multiplication perfor-

mance.

Matrix nnz/row FLOPs CSparse time

roadNet-CA 2.807 22.138 · 106 0.774

web-Google 5.571 91.665 · 106 5.312

email-Enron 10.020 72.510 · 106 1.150

amazon0312 7.987 42.368 · 106 1.659

ca-CondMat 8.081 5.899 · 106 0.140

p2p-Gnutella31 2.363 539.035 · 103 0.032

wiki-Vote 12.497 7.254 · 106 0.082

cit-Patents 4.376 95.457 · 106 13.414

as-Skitter 13.081 53.771 · 109 out of RAM

kernels. The memory for the expansion and the product was allocated as outlined

in Section 12.3, without any prior knowledge of the size of either. All the calcula-

tions were carried out in double precision.

Timing results for the all-to-all product benchmarks are on Figure 12.4. Note

that for very small matrices of less than ten thousand FLOPs, CSparse is the fastest.

For larger matrices, the proposed implementation takes over. Note that time of

CSparse scales linearly with the number of FLOPs, as can be expected from a serial

implementation of [75]. The times of the parallelized implementations grow slowly
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Table 12.2: GPU sparse matrix multiplication performance comparison on the SNAP subset,

the best times are in bold (all times in seconds). The last two columns indicate

relative speedup over CSparse and CUSP.

GF GTX 680 Tesla K40

Matrix CUSP ours CUSP ours MFLOPS ×CSp. ×CUSP

roadNet-CA 0.1560.1560.156 0.199 0.103 0.0990.0990.099 223.662 7.823 1.038

web-Google 0.447 0.4330.4330.433 0.315 0.2490.2490.249 368.356 21.347 1.265

email-Enron 0.360 0.2710.2710.271 0.247 0.1730.1730.173 418.961 6.645 1.429

amazon0312 0.209 0.2410.2410.241 0.141 0.1230.1230.123 344.389 13.488 1.148

ca-CondMat 0.035 0.0270.0270.027 0.024 0.0150.0150.015 394.591 9.347 1.575

p2p-Gnutella31 0.015 0.0070.0070.007 0.008 0.0030.0030.003 190.560 11.304 3.003

wiki-Vote 0.036 0.0240.0240.024 0.025 0.0150.0150.015 482.961 5.482 1.633

cit-Patents out of RAM 0.497 0.4460.4460.446 214.127 30.089 1.114

as-Skitter out of RAM5

before the GPU gets saturated, then also scale approximately linearly. Least squares

was employed to estimate the saturated costs to 27.7 ms/MFLOP for CSparse,

4.2 ms/MFLOP for CUSP and finally 3.0 ms/MFLOP for the proposed.

A more conventional comparison is presented in Table 12.2. This comparison

was performed on the SNAP subset of the University of Florida Sparse Matrix Col-

lection, see Table 12.1 for details about the matrices involved. It contains 9 different

classes of matrices, a single matrix was chosen from each of them, much like in the

evaluation in [120]. Each of the matrices was multiplied by itself (or in case of rect-

angular matrices, by its transpose). The proposed solution maintains the best times

for most of the matrices, except for roadNet-CA, where the number of scalar prod-

ucts per element of the r.h.s. matrix is very low, yielding high thread divergence in

the proposed implementation. On smaller matrices such as p2p-Gnutella31, CUSP

does not scale well and is slower despite the divergence. Reducing this divergence

is the subject of the future work.

Note that on cit-Patents, both the proposed and CUSP ran out of memory on

GTX 680, and on as-Skitter there was not enough system memory to perform the

multiplication even on the CPU. This is not a principal problem of the algorithm,

rather it is an implementation issue. One would only need to add an extra pa-

rameter of how many columns of the r.h.s. matrix should be processed at a time

5 Note that with only 16 GB of RAM, this matrix is too large even for CSparse: the product would take

26.4 GB.
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Figure 12.5: Performance scaling comparison of sparse block matrix multiplication on the

first four matrices from the SNAP dataset.

(corresponding to the same number of columns of the result), and the CPU would

schedule the multiplication as several calls of the original algorithm.

For a synthetic benchmark of the sparse block matrix multiplication, the matrices

from SNAP were used again. Each element was replaced by a dense block, while

the block size was varied between the different tests. The algorithm was slightly

modified, to only perform product of the block structure of the matrix, and the ac-

tual arithmetics on the dense blocks is performed in the last stage of the algorithm.

This significantly reduces the size of the expansion stage, permitting multiplication

of even large matrices. The results of this benchmark are on Figure 12.5.

As expected, the proposed implementation exhibits performance increase with

increasing block sizes. However, it was discovered that the loop unrolling for

known block sizes which was so beneficial on a CPU is not helpful at all on GPU.

This is likely because the operation is memory bound and reducing the number of

instructions does not yield additional performance. It would likely be more ben-

eficial to use the block size information to choose a tuned implementation when

dealing with matrices with multiple block sizes. This remains as a future work.

12.5 chapter summary

A novel algorithm for sparse matrix multiplication was presented and its exten-

sion to sparse block matrices was demonstrated. The algorithm yields on average

329.7 MFLOPS, outperforms CUSP by a factor of 1.53×, and outperforms CSparse

running on a single CPU by a factor of 13.19×. The sparse block matrix multiplica-
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tion exhibits further performance scaling with increasing block size, yielding up to

1.26 GFLOPS on Tesla K40 (email-Enron, 8× 8 blocks). To improve the performance

even more, multi-GPU or hybrid CPU-GPU extensions could be implemented. The

implementation needs to be improved to handle large matrices by splitting the

computation to bands, when the expansion does not fit in the GPU memory at

once, as e.g., in the case of as-Skitter.

Currently, only constant block size compressed column format (CBC) is sup-

ported. This can be extended to variable block size compressed column (VBC), once

addressing the possible thread divergence problems. Also, to better integrate with

the existing CPU pipelines which use the SSE instruction set, allocation of the prod-

uct matrix with the proper memory alignment of the blocks needs to be solved.

While it is straightforward to align the allocated blocks to pages for the proposed

block format, it is not straightforward to also align the blocks inside those pages,

in parallel and in a single pass.
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A C C E L E R AT I N G T H E N O N L I N E A R L E A S T S Q U A R E S

S O LV E R S O N G P U

This chapter contains a brief evaluation of the proposed GPGPU methods in the

context of NLS solving. The focus is on timing evaluation, as the precision of the

solutions calculated using the proposed methods is not expected to decrease, save

for possible rounding errors due to different order of floating-point operations in

the parallel implementation and due to a different implementation of the IEEE 754

standard than in the CPU.

The evaluation was done on standard BA datasets, in the batch mode. This is

because in there, the amount of time spent in matrix multiplication in forming the

Schur complement is significant compared to the rest of the operations. Fast & Furi-

ous 6 is a bundle adjustment dataset comprising of 160 high-resolution DSLR stills

of an open landscape and a highway bridge in Gran Canaria1. Guildford Cathedral

comprises of 92 DSLR stills of the Guildford Cathedral2 (Surrey, London). Venice is

a standard bundle adjustment dataset [106] created from an internet collection of

871 photos of a courtyard adjacent to the San Marco square in Venice, Italy.

Some of the tests, including all the CPU-only tests, were performed on a machine

with a pair of Intel Xeon E5-2470 CPUs running at 2.30 GHz and sharing 96 GB of

RAM, equipped with a single NVIDIA Tesla K20m GPU. Additionally, some tests

were performed on an Intel Core i5 CPU 661 with 8 GB of RAM and running at

3.33 GHz, equipped with NVIDIA Tesla K40c GPU. During the tests, the computers

were not running any time-consuming processes in the background. Each test was

run several times and the average time was calculated to avoid measurement errors.

The turbo boost function of the Xeon CPU was disabled for the benchmarks, so as

to not make the results dependent on the variations in the temperature.

The results can be seen in Figure 13.1 and Table 13.1. The solutions using a di-

rect solver without the Schur complement are denoted direct-Λ-CS (CSparse [41]),

direct-Λ-CM (Cholmod [42]) and direct-Λ-BC (the block Cholesky proposed in

Chapter 5). The times are relatively similar, with CSparse being better in the Fast &

Furious 6 dataset, and the block Cholesky being better in the larger Venice dataset.

The times with Schur complement, denoted Schur-BC, are improved by about a

factor of two. Note that the reported times include also calculation of the Jacobians

1 Kindly provided by Double Negative Visual Effects, http://www.dneg.com/.

2 Freely available at http://cvssp.org/impart/, upon request.
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Figure 13.1: GPU-accelerated NLS solving performance on the standard BA datasets.

and other tasks that are the same for all the versions of the algorithm. This makes

the perceived speedup slightly smaller than that of the linear solver only (those

are reported in Table 8.1).

The GPU-accelerated Schur complement achieves about 50% speedup compared

to Schur complement using block Cholesky on the first two smaller datasets, but

almost 150% speedup on the larger Venice dataset, using Tesla K40. The time re-

quired to calculate the Jacobians and update the system is about 70% of the total

time for Fast & Furious 6, 60% for the Guildford Cathedral and 42% for Venice, which

explains the speedups. To further accelerate the solving, it would be necessary to

calculate the Jacobians also on the GPU. Although that would be suitable for a

specialized system, it would be difficult to implement generally in an extensible

library such as SLAM ++.

The χ2 errors of all the implementations are basically the same, with differences

appearing at the eighth or ninth decimal place. The GPUs have consistently higher

error, but the difference is entirely insignificant. Note that all these computations

are performed in double precision. In context of GPU computing, single precision

is more common. However, the NLS solving can be numerically demanding and

could easily diverge or produce special numbers if using single precision only. For

that reason, the Tesla-class GPUs were used in this comparison. Those are specifi-

cally tailored for scientific computation and have more double precision units than

gaming or other professional GPUs.

The GPU proves to be an useful tool in the context of small-scale acceleration,

such as in the robotics scenarios where the processing needs to be performed in an

online fashion. However, the limit of acceleration seems to be low, perhaps with the
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Table 13.1: GPU-accelerated NLS solving performance on the standard BA datasets, the best

times in bold.

Dataset
Fast &

Furious 6

Guildford

Cathedral
Venice

direct-Λ-CS 8.337 10.867 208.052

direct-Λ-CM 13.720 10.045 202.669

direct-Λ-BC 9.889 10.742 156.924

Schur-BC 4.916 4.426 73.039

Schur-GPU K20m 3.632 3.646 40.363

Schur-GPU K40c 3.0993.0993.099 3.0523.0523.052 30.50330.50330.503

χ2 direct-Λ-CS 973514.12 3372728.35 233948930.76

χ2 direct-Λ-CM 973514.12 3372728.37 233948936.39

χ2 direct-Λ-BC 973514.12 3372728.35 233948943.53

χ2 Schur-BC 973514.12 3372728.33 233948938.86

χ2 GPU K20m 973514.12 3372728.36 233948948.27

χ2 GPU K40c 973514.14 3372728.35 233948938.13

exception of image processing and other embarrassingly parallel tasks. For large-

scale parallelization, distributed processing on CPUs seems to be a better choice,

although it presents its own set of challenges.
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C O N C L U S I O N S

The main focus of this thesis was on efficient sparse numerical linear algebra rou-

tines with applications in Nonlinear Least Squares (NLS) solving. We selected a

particular class of NLS problems that are sparse and exhibit a natural block struc-

ture. This block structure was exploited in the implementation of SLAM ++, a high

performance NLS solver. Having fast arithmetics on block matrices naturally led to

the development of more efficient algorithms for incremental matrix factorization

and direct solving which would have been impractical or elaborate when using ele-

mentwise sparse matrices. GPU acceleration of the key routines on those matrices

was also performed. All of the algorithms were rigorously evaluated on standard

datasets and compared with similar state of the art implementations.

To summarize, the main contributions of the work presented in this thesis are:

new sparse block matrix format : While the format proposed in Chapter 5

is similar to VBR, there are some important improvements. Attention is paid

to incremental processing and thus adding new elements to the matrix. When

sparse matrices are stored, e.g., in CSC format, this is difficult and typically

needs data shuffling – in practice, the matrices are kept in the COO format for

simple modification and then compressed to CSC for numerical operations.

Our new data structure takes this overhead away by allowing modification

of the matrix structure.

efficient arithmetics for sparse block matrices : Although there are

some block matrix implementations available today, they are plagued by the

extra complexity of the format; intuitively, more nested loops are needed

compared with elementwise sparse matrices. In addition, the algorithms for

sparse block matrices need to contain extra logic for correctly combining

the block layout of the input operands and producing block layout of the

output. Such logic is not needed in elementwise sparse matrices. This the-

sis proposes a highly efficient implementation of arithmetic operations on

sparse block matrices, using a novel loop unrolling methodology based on

C++ metaprogramming. The results are summarized in Section 5.3.

sparse block matrix factorizations : Both batch and incremental variants

of the Cholesky factorization were proposed, implemented and benchmarked

in this thesis. There are only a few implementations of block matrix factor-

ization to date, which do not offer significant performance advantages and
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are not used in practice. The proposed factorization is evaluated on synthetic

data in Section 5.3 and also on real robotics problems in Section 7.8 and on

computer vision problems in Section 8.4.

efficient variable reordering strategy for incremental cholesky

factorization : The incremental NLS solver employing the resumed Chol-

esky algorithm relies on variable reordering to reduce the fill-in. Other

implementations perform periodic variable reordering with the fill-in rising

uncontrollably in between. A novel incremental variable reordering strategy

was proposed in Section 7.6. In addition to this reordering strategy, the new

resumed Cholesky factorization algorithm can reuse a part of the factor-

ization that was not affected by the update. This allowed for incremental

solvers that superseded the current state of the art.

analysis of the computational complexities in schur complement :

For analyzing the numbers of FLOPs, a small library for exactly counting

the floating point operations in sparse matrix operations was implemented.

It was discovered that using the Schur complement for linear solving, in

fact, increases the number of FLOPs by about a factor of two, rather than

maintaining it. This shows the importance of structured memory access

patterns. For more details, please refer to Chapter 8.

clique-based ordering for schur complement : Orderings based on

finding the (weighted) Maximum Independent Set (MIS) and Maximum

Independent Clique Set (MICS) were proposed in Section 8.1 and evaluated

with both simple and nested Schur complements on standard datasets. The

MICS ordering can be nested several times, finding relatively large diagonal

sections. It was shown how to convert the problem of finding the maximum

independent cliques set to finding cliques and subsequently finding an

ordinary maximum independent set in a modified graph. The new orderings

open possibilities for parallel and hybrid GPU-CPU processing.

incremental schur complement : Similarly to incremental solving in

SLAM problems, an efficient method for incremental solving of Schur-

complemented systems was proposed in Section 8.2. It reduces the amount

of computation in forming the Schur complement and yields up to an order

of magnitude speedup if GPU acceleration is also available.

sparse block matrix formulation of the recursive formula : The re-

cursive formula used for sparse covariance recovery was originally formu-

lated for general sparse matrices. In Section 9.2, we demonstrated that a
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blockwise formulation is practical for recovering covariances of multidimen-

sional variables and brings significant performance advantages.

incremental covariance matrix update and downdate : A novel ap-

proach for incrementally updating a previously calculated covariance of the

variables in an NLS solver is proposed in Section 9.2. It proved to be about two

orders of magnitude faster than the recursive formula implementations in

the existing solvers. Furthermore, an elegant method of update by downdate

is proposed, which allows maintaining the covariance matrix independently

from the nonlinear solver.

sparse covariance recovery for schur complemented systems :

Following the work on covariance recovery in general NLS systems, formulas

for recovering covariances in Schur complemented systems were derived

in Section 9.3 and their performance tested. It follows that the covariance

of the variables inside the Schur complement can be recovered simply by

inverting the Schur complement, e.g. using the recursive formula. In BA,

this is suitable for finding the covariances in the reduced camera system

but it was found that calculating the Schur complement of the landmarks

generates large dense matrix, taking hundreds of GB or even TB and is

impractical. An alternative formulation was proposed using sparse sparse

backsubstitution, significantly outperforming the recursive formula on the

original system.

The algorithms for covariance recovery were field-tested in a European

project, IMPART, by the Double Negative Visual Effects1 Company. They inte-

grated our implementation of the proposed algorithms in their in-house tool

Jigsaw and applied them for estimation of the quality of 3D reconstructions

captured on a film set for the support of special effects. This significantly im-

proved the existing workflow, enabled timely quality control and aided the

film crew in creative decision making.

fast gpu sorting kernel : Based on the requirements established by evaluat-

ing the proposed NLS solver implementation on a CPU, fast sorting was iden-

tified as one of the key algorithms required for implementing accelerated

matrix operations on a GPU. Sorting is employed in sparse matrix compres-

sion, multiplication and transposition and can also facilitate load balancing in

other general tasks. Rather than using the platform-dependent CUDA library,

the implementation proposed in Chapter 11 uses OpenCL, which lacks sort-

ing implementations on a par with those in CUDA. The radix sort algorithm

was implemented, with improvements in parallel histogram calculation.

1 http://www.dneg.com

http://www.dneg.com
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fast gpu sparse matrix multiplication kernel : Used especially by the

Schur complement in both batch and incremental variants but also in the

incremental covariance update, sparse matrix - matrix multiplication is one

remaining bottleneck that cannot be accelerated using the readily available

implementations because they are slower than the proposed sparse block

schemes on a CPU. Sparse block matrix implementation on a GPU is de-

scribed and evaluated in Chapter 12, showing substantial performance im-

provements over similar GPU implementations.

14.1 future work

The sparse block matrix factorizations presented here, despite being highly

competitive and outperforming even state of the art implementations such as

Cholmod [42], are just the first attempts with hardly any performance tuning. It is

possible to employ dense block vectors to accumulate dot products between block

columns with different sparsity patterns (as described e.g., in [75]), rather than us-

ing the ordered merge algorithm. The memory alignment is currently performed

on all of the blocks, likely hurting performance when small blocks are present. It is

straightforward to add a memory alignment policy that would disable alignment

of those small blocks, based either on expert knowledge or auto-tuning. A number

of other low-level improvements and optimizations could be implemented, includ-

ing also compile-time optimizations.

Furthermore, the proposed block matrix factorizations are simplical. Their su-

pernodal forms can be implemented to gain significantly better performance. Effi-

cient multifrontal or parallel CPU implementations would also yield a considerable

speedup.

To extend the applicability of the proposed methods, other decompositions than

Cholesky should be implemented. While being computationally efficient, it is only

applicable to symmetric, positive definite matrices. Block-based pivoting was dis-

cussed in Section 5.2.5. An efficient pivoting strategy is needed for implementation

of LU and QR factorizations, which can be used on general square or rectangular

matrices, where it directly affects the numerical stability of the factorization and

also affects the resulting fill-in.

The implementation of the specialized block matrix kernels expects a complete,

exhaustive list of block sizes that can occur in the input – it is fully specialized.

It would be very simple to specialize it only partially – to handle matrices with

blocks of sizes that are not on the list, i.e., specifying only a few of the most

common block sizes to be processed by the specialized dense kernels while the

few blocks of different sizes would be handled using a generic variable-size dense

kernel. This would reduce the depth of the block-size decision tree on matrices
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that contain many different block sizes and at some point would outperform the

fully specialized version.

In the incremental Cholesky factorization, a constrained fill-reducing ordering

on a section of the matrix is employed. The whole section is then refactorized using

the resumed Cholesky algorithm. It is possible to track the variable dependencies

in the factorization and only recalculate those columns that are affected by the

update. Alternatively, the Bayes Tree algorithm demonstrates that it is possible to

reorder variables in an already factorized matrix. It should be possible to reorder

the variables so as to best accommodate the update (e.g., by ordering the affected

variables last) and to reduce the fill-in at the same time.

The MIS and AMICS orderings for the Schur complement only focus on maximiz-

ing the size of the diagonal section. While that leads to a reduction in the size of

the Schur complement and thus memory savings, the variables inside each diag-

onal block and the diagonal blocks themselves can be arbitrarily reordered. This

can be used to improve memory access patterns, possibly also saving some fill-in

in the Schur complement.

The block matrix kernels on the GPU are designed with small blocks in mind,

which means that the individual blocks have to fit into the shared memory. It

would be simple to also design an implementation for very large blocks that do

not fit, and slightly more challenging to design an implementation that allows

mixtures of both small and large blocks while being able to facilitate reasonable

load balancing. Applications of block matrices with very large blocks can be found

e.g. in computational chemistry.

The algorithms described in this thesis were implemented with a single-process

model in mind and could also be extended to GPU-CPU hybrid or distributed com-

puting and out-of-core processing. The derivatives are now calculated on the CPU

and consume a significant portion of the time budget. If the analytic expressions

for the derivatives are known, it is straightforward to offload this computation

onto the GPU. Expression templates and concurrent evaluation of the expression

dependency trees could also increase performance.
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A P P E N D I X

The purpose of this appendix is to briefly revise the C++ code constructs used in

unrolling the loops in the fixed block size implementation described in Chapter 5.

It uses fairly advanced constructs and the readers who are not familiar with them

are kindly referred to [5].

a.1 typelist

Typelist is a construct which can be used to store structured information which is This is

C++98;

the newer

versions

of the

standard

bring little

advantage,

despite the

variadic

templates

introduced

in C++11.

constant at compile time. A basic typelist declaration can look like this:

Listing A.1: A basic typelist.

1: template <class CHead, class CTail>

2: class CTypelist {

3: public:

4: typedef CHead _TyHead; // head type

5: typedef CTail _TyTail; // tail type (another CTypelist or CTypelistEnd)

6: };

7:

8: class CTypelistEnd {}; // end marker type, also an empty typelist by itself

9:

10: #define MkTypelist(...) BuildTypelistSomehow<__VA_ARGS__>::Result

This enables us to declare recursive structures which form lists, where the el-

ements are types. The MkTypelist macro is for convenience only and there are

several ways to implement it, which are not disclosed here for the sake of space.

An interested reader can refer to [5]. To store (compile-time constant) data in a

type, templates can be used again:

Listing A.2: Storing values in a typelist.

1: template <int value>

2: struct CCTScalar { // a compile-time scalar class

3: enum { n_value = value }; // to be able to read the stored value

4: };

5:

6: typedef MkTypelist(CCTScalar<3>, CCTScalar<5>, CCTScalar<7>) BA_var_dims;
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The last line declares a typelist with three elements which correspond to dimen-

sions of variables in a hypothetical Bundle Adjustment (BA) problem (3D land-

marks, 5D camera intrinsic parameters and 7D camera poses). These would be

used to specialize algorithms for those given sizes.

a.2 compiler-generated decision tree

The idea behind the fixed block size implementation is to make the compiler build

a decision tree for the block sizes and perform arithmetics inside each leaf, with the

loops unrolled. To build a decision tree, a few operations on the typelist are needed:

calculating its length (easily accomplished using a recursive template which incre-

ments a counter for each recursion until it finds CTypelistEnd), getting an element

by index (a very similar template, this time decrementing an index and returning

the current head type once it reaches zero) and sorting a typelist.

Sorting is the only non-trivial operation, which was implemented using a bubble

sort. While not the most efficient algorithm for general arrays, it is quite suitable

for linked lists – and thus also typelists. In any case, the sorting takes place at

compile time.

To build the decision tree, a common skeleton class is used, which calculates

the positions and values (types) of pivots, as illustrated in Listing A.3. In order to

save space, it is assumed here that the elements of the tree are specializations of

CCTScalar and it is thus known how to compare them to the needle (needle refers

to the item being searched for). However, it is not difficult to add the needle type

and the needle to pivot comparison algorithm to the list of decision tree template

parameters, to make it fully general.

To use such a decision tree skeleton is surprisingly easy. as illustrated inThis uses

C++14 in

order to

save a few

extra lines

of code; it is

very easy to

implement

enable_if

in C++98

as well.

Listing A.4. In here, the function DTExample uses a decision tree to invoke the func-

tion operator of functor CDTExampleFunctor which in turn gets the run-time value

5 as a compile-time constant. Although this may seem like a much ado to do just

that, it is the enabling component which makes sparse block matrices practical. At

the same time, CDTExampleFunctor could carry data in its member variables, such

as references to the input and output vectors or matrices to do arithmetics with.

Note that this example relies on the typelist to be sorted (otherwise the decision

tree would not work) and in the implementation, one more layer which takes care

of the sorting and making sure there are no duplicate entries is employed. The

result is a nicely verbose construct CWrap::In_DecisionTree<ListOfSizes>(int

size, Functor f). For the operations on block matrices, the decision trees can be

over column width, row heights or only some row heights which can occur in a

column of a given width.
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Listing A.3: Decision tree skeleton.

1: template <class CList>

2: class CMakeDecisionTreeSkeleton {

3: public:

4: template <int n_begin, int n_length>

5: class CSkeleton {

6: public:

7: enum {

8: n_half = (n_length + 1) / 2, // half of the length (round up)

9: n_pivot = n_begin + n_half - 1, // index of pivot

10: b_leaf = false // leaf flag

11: };

12:

13: typedef typename CTypelistGet<CList, n_pivot>::_TyResult _TyPivot;

14:

15: typedef CSkeleton<n_begin + n_half, n_length - n_half> _TyLeft;

16: typedef CSkeleton<n_begin, n_half> _TyRight;

17: // left and right subtrees

18:

19: static bool b_Left_of_Pivot(int needle)

20: {

21: return _TyPivot::n_value < needle; // or use custom comparator

22: }

23: };

24:

25: template <int n_begin>

26: class CSkeleton<n_begin, 1> {

27: public:

28: enum {

29: n_pivot = n_begin, // index of pivot

30: b_leaf = true // leaf flag

31: };

32:

33: typedef typename CTypelistGet<CList, n_pivot>::_TyResult _TyPivot;

34:

35: static inline bool b_Equals_Pivot(int needle)

36: {

37: return _TyPivot::n_value == needle; // or use custom comparator

38: }

39: };

40:

41: typedef CSkeleton<0, CTypelistLength<CList>::n_result> _TyRoot;

42: };
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Listing A.4: Wrapping an algorithm in a decision tree.

1: template <class CList>

2: class CDecisionTree {

3: typedef typename CMakeDecisionTreeSkeleton<CList>::_TyRoot _TyRoot;

4:

5: template <class CNode, class CContext, typename =

6: std::enable_if_t<CNode::b_leaf> > // version for leafs

7: static void Recurse(int needle, CContext context)

8: {

9: assert(CNode::b_Equals_Pivot(needle)); // the needle is present

10: context.template operator ()<CNode::_TyPivot::n_value>();

11: }

12:

13: template <class CNode, class CContext, typename =

14: std::enable_if_t<!CNode::b_leaf> > // version for internal nodes

15: static void Recurse(int needle, CContext context)

16: {

17: if(CNode::b_Left_of_Pivot(needle))

18: Recurse<typename CNode::_TyLeft>(needle, context);

19: else

20: Recurse<typename CNode::_TyRight>(needle, context);

21: }

22:

23: public:

24: template <class CContext>

25: static void Run(int n_size, CContext context)

26: {

27: Recurse<_TyRoot>(n_size, context);

28: }

29: };

30:

31: struct CDTExampleFunctor {

32: template <int block_size>

33: void operator ()() const

34: {

35: assert(block_size == 5); // now it is a compile time constant

36: }

37: };

38:

39: void DTExample()

40: {

41: CDecisionTree<BA_var_dims>::Run(5, CDTExampleFunctor());

42: } // the 5 is passed as a run-time variable
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Listing A.5: Fixed block size matrix vector multiplication.

1: template <class CBlockMatrixTypelist>

2: struct GAXPY {

3: template <int n_col_width> // function object can be a template too

4: struct CInnerLoop {

5: const double *m_A, *m_x; // inputs

6: double *m_y; // input / output

7:

8: CInnerLoop(const double *A, double *y, const double *x); // ...

9:

10: template <int n_row_height>

11: void operator ()()

12: {

13: for(int c = 0; c < n_col_width; ++ c) { // unrolls

14: for(int r = 0; r < n_row_height; ++ r) // unrolls

15: m_y[r] += m_A[r + c * n_col_width] * m_x[c];

16: } // y = A * x + y

17: }

18: };

19:

20: struct COuterLoop {

21: const TColumn &m_block_col;

22: double *m_y;

23: const double *m_x;

24: const std::vector<TRow> &m_block_row_list;

25:

26: COuterLoop(const TColumn &block_col, double *y, const double *x,

27: const std::vector<TRow> &block_row_list); // ...

28:

29: template <int n_col_width>

30: void operator ()()

31: {

32: const double *p_x = &m_x[m_block_col.n_first_column];

33: FOR_EACH(block in m_block_col) {

34: const TRow &block_row = m_block_row_list[block.row];

35: double *p_y = &m_y[block_row.n_first_row];

36:

37: CWrap::In_RowHeight_DecisionTree_Given_ColumnWidth<

38: CBlockMatrixTypelist, n_col_width>(block_row.n_height,

39: CInnerLoop<n_col_width>(block.data, p_y, p_x));

40: } // wrap the inner loop in the row height decision tree

41: } // for row heights which are possible in this column

42: };
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Listing A.6: Fixed block size matrix vector multiplication (continued).

1: static void Run(const CSparseBlockMatrix &matrix,

2: double *y, const double *x)

3: {

4: FOR_EACH(block_col in matrix.BlockCol_List()) {

5: CWrap::In_ColumnWidth_DecisionTree<CBlockMatrixTypelist>(

6: block_col.n_width, COuterLoop(block_col, y, x,

7: matrixl.BlockRow_List()));

8: // wrap the outer loop in a column width decision tree

9: }

10: }

11: };

The final example in Listing A.5 is the pseudocode for the sparse block ma-

trix - dense vector multiplication routine. The code is split into three sections:

GAXPY::CInnerLoop containing the body of the inner loop which calculates prod-

uct of a single dense block with the vector, GAXPY::COuterLoop with the body of

the outer loop which iterates over nonzero blocks in each block column and finally

the outer loop itself in GAXPY::Run which iterates over the block columns in the

matrix. Note that the constructors of the loop classes were omitted to save space;

they only copy their arguments to the corresponding member variables.

Note that all the loops inside the function operator of CInnerLoop can be un-

rolled, which is the key to the high performance arithmetics routines for sparse

block matrices. It is even possible to write specializations for specific dimensions,

which use handcrafted assembly code, e.g. to use SIMD instructions. The proposed

sparse block matrix implementation uses this technique throughout and imple-

ments all the matrix routines in this manner.
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