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ABSTRACT

This thesis focuses on data structures for sparse block matrices and the associated
algorithms for performing linear algebra operations that I have developed. Sparse
block matrices occur naturally in many key problems, such as Nonlinear Least
Squares (NLS) on graphical models. NLS are used by e.g. Simultaneous Localiza-
tion and Mapping (SLAM) in robotics, Bundle Adjustment (BA) or Structure from
Motion (5fM) in computer vision. Sparse block matrices also occur when solving
Finite Element Methods (FEMs) or Partial Differential Equations (PDEs) in physics
simulations.

The majority of the existing state of the art sparse linear algebra implementations
use elementwise sparse matrices and only a small fraction of them support sparse
block matrices. This is perhaps due to the complexity of sparse block formats
which reduces computational efficiency, unless the blocks are very large. Some
of the more specialized solvers in robotics and computer vision use sparse block
matrices internally to reduce sparse matrix assembly costs, but finally end up con-
verting such representation to an elementwise sparse matrix for the linear solver.

Most of the existing sparse block matrix implementations focus only on a sin-
gle operation, such as the matrix-vector product. The solution proposed in this
thesis covers a broad range of functions: it includes efficient sparse block matrix
assembly, matrix-vector and matrix-matrix products as well as triangular solving
and Cholesky factorization. These operations can be used to construct both direct
and iterative solvers as well as to compute eigenvalues. Highly efficient algorithms
for both Central Processing Units (CPUs) and Graphics Processing Units (GPUs) are
provided.

The proposed solution is integrated in SLAM ++, a nonlinear least squares solver
focused on robotics and computer vision. It is evaluated on standard datasets
where it proves to significantly outperform other similar state of the art imple-

mentations, without sacrificing generality or accuracy in any way.
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computations on graphics processing units.



ABSTRAKT

Tato préce se zaméfuje na datové struktury pro reprezentaci fidkych blokovych
matic a s nimi spojenych vypoetnich algoritmd, jeZ jsem navrhl. Ridké blokové
matice se vyskytuji pfi feSeni mnoha dil¢ich problémt jako napfiklad pfi feSeni
metody nejmensich ¢tvercli. Nelinedrni metoda nejmensich ¢tverchi (NLS) je ¢asto
aplikovdna v robotice pro feSeni problému lokalizace robota (SLAM) nebo v
piibuznych tlohach 3D rekonstrukce v pocitacovém vidéni (BA), (StM). Problémy
kone¢nych elementti (FEM) a parcidlnich diferencidlnich rovnic (PDE) v oboru
tyzikélnich simulaci miZou také mit blokovou strukturu.

Vétsina existujicich implementaci fidké linedrni algebry pouZivaji ¥fidké matice
s granularitou jednotlivych elementti a jen nékolik mélo podporuje fidké blokové
matice. To mtZe byt zptisobeno slozitosti blokovych formétt, jez sniZuje rychlost
vypoctli, pokud bloky nejsou dost velké. Nékteré ze specializovanych NLS op-
timalizatori v robotice a pocitacovém vidéni pouZivaji blokové matice jako in-
terni reprezentaci, aby sniZily cenu sestavovéni fidkych matic, ale nakonec tuto
reprezentaci pifevedou na elementovou fidkou matici pro implementaci k feSeni
systémii rovnic.

Existujici implementace pro fidké blokové matice se vétSinou sousttedi na jedi-
nou operaci, ¢asto ndsobeni matice vektorem. Reeni navrZené v této disertaci
pokryva Sirsi spektrum funkci: implementovdny jsou funkce pro efektivni ses-
taveni fidké blokové matice, nasobeni matice vektorem nebo jinou matici a nechybi
ani feSeni trojihelnikovych systémt nebo Choleského faktorizace. Tyto funkce mo-
hou byt snadno pouzity ke feSeni systémi linedrnich rovnic pomoci analytickych
nebo iterativnich metod nebo k vypoctu vlastnich &isel. Jsou zde popsany rychlé
algoritmy pro hlavni procesor (CPU) i pro grafické akcelerdtory (GPU).

Navrhované algoritmy jsou integrovdny v knihovné SLAM ++, jeZ fe$i prob-
lém nelinedrnich nejmensich ¢tvercli se zaméfenim na problémy v robotice a
pocitatovém vidéni. Je provedeno vyhodnoceni na standardnich datasetech kde
navrhované metody dosahuji vyrazné lepsich vysledkti neZ dosavadni metody

popsané v literatuie — a to bez kompromist v pfesnosti ¢i obecnosti feSeni.

KLICOVA SLOVA

Nelinearni metoda nejmensich ¢tvercti; numerické metody; fidké blokové matice;

obecné vypocty na jednotkach grafickych akceleratort.
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INTRODUCTION

Many applications of numerical methods in many scientific disciplines can benefit
from efficient implementations of linear algebra kernels. There are many imple-
mentations that provide comparable functionality, often providing standard Basic
Linear Algebra Subprograms (BLAS) or Linear Algebra Package (LAPACK) interfaces
that helped a great deal for linear algebra package development using a simple set
of state-less C or Fortran functions. These functions are divided into several groups
(or levels) by their complexity; L1 contains the linear time functions on vectors, L2
contains quadratic time matrix-vector functions and L3 contains cubic time func-
tions on matrices.

With the advent of C++, modern object-based interfaces with focus on intuitive-
ness, ease of use and safety became available. But that is not the only thing the
object-based design has to offer: techniques such as expression templates can help
fuse the computation kernels and reduce unnecessary data movement. The proce-
dural and object-oriented approaches are not mutually exclusive: an efficient BLAS
implementation can be conveniently wrapped in an expression templates interface.

Parallel implementations of BLAS kernels are the obvious next step to increase
performance. Although the technologies are evolving constantly and Moore’s law
promises bigger Central Processing Units (CPUs) every year and a half, this no
longer goes hand in hand with increasing clock frequencies. The era of constant
increases in frequency and of architectural improvements that made newer CPUs
faster “for free” is over. The performance is now obtained from parallelism, which
requires effort also on the side of the algorithms and data structures.

While consumer multicore processors have been available since the early 2000s,
the industry has not made major strides in the meantime — today’s chips still have
only up to 22 cores’ in a single package. However, other architectures are available.
One of those is the Graphics Processing Unit (GPU).

GPUs have been steadily gaining complexity for the past few years. Fueled by
the massive entertainment industry, they provide relatively cheap performance. At
tirst, they could only be utilized for computation by hacking the graphics pipeline.
Later, specialized interfaces for general purpose computation on Graphics Process-
ing Units (GPGPU) emerged that make it easier to leverage their performance for

nongraphics applications, including linear algebra. GPU is a streaming-oriented ar-

1 E.g. a 22 core Xeon E5-2696 v4 released in April 2016, priced at $4100.
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INTRODUCTION

chitecture that focuses on raw processing power with thousands? of relatively sim-
ple cores organized in three tier hierarchy, with only a very small amount of cache
available (hence streaming). The memory subsystem is also highly optimized as
the memory resides directly on the GPU and cannot be changed or upgraded the
way the CPU memory can.

Other architectures include e.g. Intel’s Many Integrated Cores (MIC) architecture
with hundreds? of cores based on updated Pentium designs. Although the cores in
different architectures are hardly comparable, this gives some idea about the levels

of parallelism attainable on a modern workstation.

1.1 DENSE AND SPARSE PROBLEMS

Although seemingly very simple, the implementation of dense operations on mod-
ern hardware is not straightforward, if it needs to be done efficiently. This is due
to the complexity of the CPUs in use today, which have a rather complex memory
subsystem [48] with several levels of cache, support for paging and an autonomous
prefetcher. There are also very fast Single Instruction Multiple Data (SIMD) instruc-
tion sets for arithmetics, with their own complicated rules.

To illustrate this with an example, a simple matrix product of the form A - B will
run several times faster if A is first transposed, even at the cost of copying and
reordering the data. To limit the amount of temporary storage and to otherwise
aid the memory subsystem, dense routines are often blocked, meaning that the op-
eration is not performed on the entire matrix at once but the matrix is divided into
several blocks that are processed individually. High-performance implementations
such as the Goto BLAS [69] focus on fine-tuning the sizes of blocks to match various
machine limits (in this case the size of the Translation Look-aside Buffer (TLB)).

For certain applications, the matrices have a substantial portion of zero entries.
Using dense matrix algorithms would be a waste of both memory and computa-
tion — that is where the sparse linear algebra comes in (and of course also sparse
BLAS). For sparse algorithms, the matrix is represented in such a way that only
the non-zero entries are stored and the computation can be performed efficiently
both in terms of storage and the ratio of the arithmetic operations to the rest of the
algorithm. Sparse algorithms are typically much more complicated compared with
the dense algorithms, due to the necessity of matching the non-zero entries that
interact in the given operation and at the same time forming the sparse structure
in case the result is a matrix. Efficient sparse algorithms are usually a fine mix of

numerical methods and graph theory. There is a certain threshold of useful sparsity

2E.g. NVIDIA Titan X introduced in May 2015 has 3072 cores and sells for about $1500.

3 E.g. Xeon Phi 7120A released in April 2014 with 61 cores costs about $4000.
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beyond which it is better to just represent the matrix as a dense matrix, from the
performance point of view.

To illustrate the difficulty in implementing efficient sparse operations, e.g. sparse
matrix-vector multiplication algorithms often run at one tenth of the peak hard-
ware performance [173] and the situation can be even worse for the matrix-matrix
multiplication [16, 38]. This is due to irregularity of memory accesses and various
other overheads. At the same time, those algorithms are typically much harder to

adapt for hardware acceleration.

1.2 FOCUS OF THE THESIS

The general objective of this thesis is to identify a suitable class of problems and
to propose a computation acceleration scheme. However, the topic of application
of GPGPU to accelerate linear algebra is too wide to specify a clear research goal.
Rather than pursuing fast implementations of a few randomly chosen algorithms,
this thesis examines a particular class of applications that are commonly solved
using numerical sparse linear algebra.

Several estimation problems fall into this category. In general, an estimation
problem finds an optimal configuration of a set of variables given a vector of their
initial values and a set of relations between those variables. If represented using a
graph, the nodes in the graph are given by the variables to be estimated and the
edges are the relations between those variables.

It is common to use tools such as graphical models to capture the structure
and dependencies of the estimation problems. Bayes Nets (BNs), Markov Random
Fields (MRFs) or Factor Graphs (FGs) are commonly used for this purpose. While
BNs are linked to the generative aspects and explicitly show the dependencies of
the variables in solving the problem, MRFs and FGs better capture the structure and
the connection with the underlying linear algebra, in particular the matrices.

A condition for the problem to be sparse is that each of the variables must only
relate to a small subset of the other variables. This translates into an underlying
graph with a low maximum degree.

Examples of such problems can be found in robotics and computer vision.
Simultaneous Localization and Mapping (SLAM) estimates the pose of a robot in
conjunction with the map of the environment from various sensor measurements.
Similarly, Bundle Adjustment (BA) or Structure from Motion (5fM) in computer vi-
sion estimate the camera parameters together with the 3D structure observed from
different locations of the same or different cameras.

These problems have been widely studied in the past decades, yet the compu-

tational complexity is still an open issue. A SLAM problem in general grows with
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Figure 1.1: Examples of approximately block matrices from the University of Florida
Sparse Matrix Collection [39], specifically in the DIMACS10 dataset [147], a) an
approximate block matrix with scattered nonzero elements, b) a block matrix
with unaligned blocks, and in the Oberwolfach dataset [110], ¢) an approximate
block matrix with overlapping blocks. Note that the block boundaries (in red)

are only suggested —not a part of the original matrices.

every step the robot takes, and for long runs (several days of robot operation) this
can become intractable using limited computational resources on board a robotic
platform. Similarly, reconstructing a large 3D environment using a BA algorithm
may involve millions of variables.

To handle the inherent sensor noise, those problems are formulated in a proba-
bilistic framework. Maximum Likelihood Estimation (MLE) is a way to incorporate
noise models into the estimation problem. In general, those models are nonlinear
(e.g. the motion model of a robot involves rotations, vision problems work with 3D
projective geometry). Under the assumption of Gaussian noise, MLE has an elegant
Nonlinear Least Squares (NLS) solution.

NLS problems are typically solved numerically, and that requires calculating
derivatives to linearize the problem locally and then solve the resulting system
of linear equations. In the above problems, each of the variables only has a lim-
ited number of relations to the others. In consequence, the Jacobian matrices ob-
tained by calculating derivatives of the functions relating the estimated variables
are sparse. Furthermore, those Jacobian matrices have a direct connection to the
incidence matrix of the underlying graph. Similarly, the adjacency matrix corre-
sponds to the Hessian matrices.

Another important characteristic of such problems is the fact that the variables
are often multivariate, e.g. a 3D robot pose may have six Degrees of Freedom
(DOFs) (three for position and three to represent the orientation), a landmark three
DOFs. This structure appears implicitly in the resulting system matrices, where the
elements corresponding to each variable can be conceptually grouped into blocks,

giving rise to sparse block matrices.
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Figure 1.2: An example of a randomly generated sparse block matrix composed of 31

blocks, 3 x 3 elements each, used in testing operations on block matrices.

A block matrix is a matrix that is conceptually partitioned into blocks. A block
matrix can have either an exact block pattern or an approximate one where scat-
tered nonzero entries are allowed, as in Figure 1.1a. Another distinction is the
presence of unaligned or overlapping blocks — whether the conceptual edges of a
block could intersect those of another block, as in Figure 1.1c.

While approximate block patterns are sometimes employed to limit the required
communication bandwidth in parallel algorithms [140, 164], this work relates to
exact block patterns such as in the matrix in Figure 1.2. While one may object that
such matrices are rare, the opposite is true. In Figure 1.3, there is a plot of the
distribution of matrix nonzeros between elementwise and block matrices in the
University of Florida Sparse Matrix Collection [39]. To generate it, the algorithm
from [146] was employed to discover block structure in the matrices. The hori-
zontal axis of the plot is given by the percentage of nonzeros of each given matrix
residing in blocks of at least three elements. Although the number of block matrices
is somewhat lower than that of sparse matrices, this plot shows that the majority
of the data in this dataset is in fact in block matrices.

The focus of this thesis is to propose new algorithms and implementations to
accelerate linear algebra operations in NLS problems with a sparse, block structure.
A new data structure is proposed to benefit highly from the block structure and
incremental nature of those problems, when iteratively calculating the solution of
an NLS. Furthermore, the possibilities of GPU acceleration are explored. The thesis
shows that the proposed methods supersede all existing implementations in this
direction and generate state of the art algorithms for problems such as SLAM and
BA or SfM.

The proposed solutions can also benefit other fields. In addition to the estimation

problems described here, there are other problems with inherent block structure,
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Figure 1.3: Distribution of data between elementwise and block sparse matrices in the Uni-

versity of Florida Sparse Matrix Collection [39].

such as Finite Element Methods (FEMs) or Partial Differential Equations (PDEs) in
physics simulations which also have an underlying graph and a block structure,
Lapped Orthogonal Transforms (LOTs) in image processing have a particular block
structure. In addition, a number of methods exist [50, 51, 140, 90, 173, 175] to
consolidate general sparse matrices into block matrices, making acceleration of

problems without inherent block structure also possible.

1.3 CONTRIBUTIONS

The main contributions of my work described in this thesis are the following:

NOVEL DATA STRUCTURE FOR SPARSE BLOCK MATRICES: In this dissertation,
an analysis of sparse matrix operations useful in NLS solving is presented.
Based on this analysis, a novel data structure for sparse block matrices was
designed. This also required implementation of efficient operations on those

new matrices.

A NEW APPROACH TO LOOP UNROLLING: The arithmetic operations on the pro-
posed sparse block matrices are optimized by loop unrolling (sometimes also
referred to as register blocking). This was done using novel C++ constructs,
based on BLAS kernel specialization using information about the input ma-

trices that is available at compile-time. This block matrix implementation is
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one of a very few implementations that support matrix factorizations also on

matrices with multiple block sizes.

FAST NLS SOLVER BASED ON BLOCK MATRIX SCHEMES: The proposed block
matrix scheme was demonstrated in a realistic scenario of NLS solving. Even
without any algorithmic improvements on the solver part, the block matrix
operations already give a significant performance advantage over the state of

the art solvers while operating in batch mode.

FAST ALGORITHMS FOR INCREMENTAL SOLVING: Incremental solving was also
investigated, and although the proposed block scheme offers some advan-
tages, such as fast matrix modification when new constraints need to be
integrated into the system, a basic Gauss-Newton solver cannot compete
with the state of the art incremental solvers, despite being implemented effi-
ciently. Two new methods for incremental solving are proposed, an algebraic
method, which only takes advantage of elementwise sparse factorizations
and a method taking advantage of the block approach, based on a novel
algorithm called resumed Cholesky factorization and the corresponding algo-
rithm for incremental variable reordering which keeps the incremented factor

sparse.

NEW ALGORITHMS FOR SCHUR COMPLEMENT: A novel variable ordering based
on cliques in the underlying graph was proposed, which yields some sort of
a supernodal Schur complement. It offers advantages when solving with a
dense linear solver (e.g. on a GPU). It can provide significant memory savings
by reducing the size of the dense part, as well as promoting parallelism and

cooperative CPU-GPU processing in inverting the block diagonal parts.

Incremental Schur complement equations were derived and benchmarked,
yielding notable speedups and at the same time requiring modest amounts

of memory.

FAST METHOD OF COVARIANCE RECOVERY: While estimating the mean of the
observed variables is the central role of MLE, estimating the covariances can be
equally important for some applications, yet it is often neglected by the state
of the art implementations. Blockwise formulation of covariance recovery

alone yields significant speedups compared with the state of the art.

A novel method for incremental covariance update was also proposed, yield-
ing up to two orders of magnitude speedups and thus offering covariances
at a cost comparable to that of a direct solver. The precision of incrementally

calculated covariances is on a par with batch methods. An elegant variant of
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update by downdate further reduces storage requirements in practical solver

implementations while not sacrificing any of the performance.

FAST COVARIANCE RECOVERY FOR SCHUR-COMPLEMENTED SYSTEMS:
Complexities of covariance recovery in Schur-complemented systems
are also investigated and efficient methods are proposed to recover the
covariances of both the variables in the diagonal part and in the complement,
observing up to an order of magnitude speedups when compared with the

blockwise recursive formula.

Finally, the selected operations were implemented to run on a GPU, which is
novel because block matrices were not widely attempted on GPUs. In the devel-
opment of these implementations, improved algorithms for parallel sorting and
sparse matrix-matrix multiplication on a GPU were developed.

All of the contributions (and more) form the basis of SLAM ++, a high-
performance NLS solver based on sparse block matrices, focused especially
on efficient incremental estimation (hence the ++, which means increment
in the family of C languages). SLAM ++ is freely available under the MIT
license and has been downloaded more than 3500 times from its website

http://sf.net/p/slam-plus-plus/ so far.

1.4 STRUCTURE OF THE THESIS

The next chapter serves a brief introduction into the NLS problems and their ap-
plications, along with their characteristics. The applications discussed have sparse
structure and Chapter 3 gives an overview of commonly used and also some rele-
vant but less used sparse matrix formats. Chapter 4 describes the state of the art
NLS solver packages while also focusing on the matrix representation and numeri-
cal algorithms.

In the following part of the thesis, Chapter 5 describes the proposed novel sparse
block matrix storage and the algorithms for performing allocation as well as nu-
merical operations with matrices in this format. Chapter 6 describes the use of
this new format in a batch NLS solver for SLAM problems. Real online problems in
robotics, among others, require incremental solving which is described in Chap-
ter 7. Some classes of problems, e.g. BA and SfM in computer vision, can be solved
more efficiently using Schur complement, which is the topic of Chapter 8. Chap-
ter 9 shows how covariance of the variables can be estimated, in addition to the
mean, and briefly summarizes what are the uses for such covariances.

In the final part which opens with Chapter 10, the sole focus is on the accel-

eration of the algorithms on the GPU. Specifically, Chapter 11 describes efficient


http://sf.net/p7slam-plus-plus/
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sorting algorithm for GPUs and Chapter 12 describes fast sparse matrix multiplica-
tion. Those two elementary kernels allow acceleration of the algorithms proposed
in the second part by removing their main bottlenecks and the results are summa-
rized in Chapter 13.

The thesis concludes with Chapter 14. The ArPENDIX contains some implemen-

tation details of the block format proposed in the second part.

1.5 MATH NOTATIONS

This text makes use of various more or less standard mathematical notations. This
section briefly revises the used conventions. Vectors are denoted by small bold
letters, e.g. v is a scalar but v is a vector. Matrices are denoted by capital Latin or
Greek letters, e.g. A and A are matrices. Matrices (and as a special case also vectors)
which are logically partitioned to blocks are denoted by bold capital Latin or Greek
letters, e.g. X is a matrix but X is a matrix where the elements are matrices.

To assemble a (column) vector, one writes ¢ = [1;2;3] while to assemble a row

vector, one writes v = [1, 2, 3]. By an extension, A = [1,2;3,4] is the same as:

1 2
3 4

A =

Similarly, a block vector can be initialized as J = [g—g, %, %} where the expres-

sions for the elements yield matrices (since r, 6, 1 and k are all vectors), or more
expressively as J = [A, B, C] (where A, B and C are clearly matrices).

In some cases, a need arises to access elements of the matrices and vectors. To
access an element of a vector, a subscript is used, e.g. v; is the ith element of this
vector. In some cases, this is similar to a scalar with a subscript in which case
the v would be typeset in regular. Cases of a vector with a subscript which is not
an index should be clear from the context (but the text mostly alerts the reader
when that occurs). To select a range of elements of a vector, Matlab notation is
used, so that vi; refers to a vector formed by concatenating [v | Vk:1 <k <jl.
For convenience, V;..nq refers to a vector formed by concatenating [vy | Vk : i < kl.

Similarly, to get an element of a matrix, it is possible to use A;; which selects an
element at row i and column j (note the use of the comma separating i and j). To
select an entire row of a matrix, it is possible to use A; . where the asterisk reads
as “any column”. The same is also possible for columns, e.g. A, ;. It is possible to
select ranges of elements, the same way as in vectors: Aj; . selects a rectangular
region of rows i through j and columns k to 1. Similarly, Ai.end k:end Selects the
bottom right corner of the matrix. Combinations with asterisk are also permitted,

e.g. Ay« selects a range of rows.

9
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In some cases, the matrices are partitioned to logical sections (but other than the
blocks referred to before), for example a matrix A can be seen as:

A A
A — 11 12

A21 Az

where the Ay refers to a logical section of the matrix. Note that there is no comma
separating the indices. At the same time Ay refers to an element at row i and
column j (or a block element if A were bold). For some Ay, it generally cannot
be determined whether the element is e.g. in Aj7 or any other section unless the
sizes of the sections are specified. This notation is used almost exclusively with
numbers for the indices (rather than variables). This notation is sometimes also
used for vectors where it is again aliasing with the element access but the meaning
is made clear in such instances.

As far as indices are concerned, the algorithms and listings use zero-based
indexing since that is more natural and usually leads to shorter index expres-
sions. On the other hand, most of the math formulas will use one-based index-
ing as that is the de-facto norm. Indexing operations take precedence before ma-
trix operations denoted by the superscript, such as transpose or inverse, so e.g.
Ay = (Az )T # (/\T)zr

In the description of the incremental solvers, there are instances of a variable
from the previous time frame and from the next time frame coexisting together.
This is denoted using the hat symbol, e.g. after an update, A becomes A.

In the description of linear solving techniques, linear solving is denoted using
the backslash operator, e.g. for a linear system Ax = b with x being the unknown,
solving is denoted x = A \ b. This is especially applied to triangular systems
which can be solved by backsubstitution, but the operator is general and can be
applied to any system. The same operator is sometimes used in literature to denote

Schur complements — but not in this thesis, in order to avoid confusion.
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BACKGROUND
This part describes methods for nonlinear optimization and their appli-

cations, which in part serve as the motivation for proposing the accel-

erated data structures and algorithms in the latter parts of this thesis.






LEAST SQUARES METHODS AND THEIR APPLICATIONS

The following chapters describe nonlinear least squares on graphical models and
approaches to finding their solutions efficiently. Practical problems which are usu-
ally solved using least squares are discussed and their particularities are pointed
out. As the graph structure is usually quite sparse, it is suitable to represent it us-
ing a sparse matrix. The commonly used sparse matrix representations are listed,
along with their advantages. Finally, state of the art least squares solvers are de-
scribed, along with their own novel solutions to matrix representations and solving.
This chapter comprises the foundation for the requirements from the linear algebra

point of view.

2.1 NONLINEAR LEAST SQUARES

Probabilistic methods have been extensively applied in robotics and computer vi-
sion to handle noisy perception of the environment and the inherent uncertainty
in the estimation. There is a variety of solutions to the estimation problems in to-
day’s literature. Filtering and Maximum Likelihood Estimation (MLE) are among
the most used in robotics. Since filtering easily becomes inconsistent when applied
to nonlinear processes [160], MLE gained a prime role among the estimation solu-
tions. In Simultaneous Localization and Mapping (SLAM) [45, 95, 106, 98] or other
mathematically equivalent problems such as Bundle Adjustment (BA) [4, 105] or
Structure from Motion (SfM) [14], the estimation problem is solved by finding the
MLE of a set of variables (e.g. camera/robot poses and 3D points in the environ-
ment) given a set of observations. Assuming Gaussian noises and processes, the

MLE has an elegant Nonlinear Least Squares (NLS) solution.

In practice, the initial problem is nonlinear and it is usually addressed by repeat-
edly solving a sequence of linear systems. The linear system can be solved either
by matrix factorization or gradient methods. The latter are more efficient from the
storage point of view, since they only require access to the gradient, but they can
suffer from poor convergence, slowing down the execution. Matrix factorization,
on the other hand, produces more accurate solutions and avoids convergence dif-
ficulties but typically requires a lot of storage.

In this context, the estimation problem is formulated as a maximum likeli-

hood estimation of a set of variables 6 = [0;...6,] given a set of observations
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LEAST SQUARES METHODS AND THEIR APPLICATIONS

z = (27 ...zm]. Two basic modes of operation can be distinguished. The batch op-
eration consists of obtaining a bulk of initial values of the variables and a bulk
of measurements which specifies the task to be solved and solving it until conver-
gence. This is useful especially in the offline applications. On the other hand, the
estimation has to be done incrementally in an online application; at every step new
variables and the associated measurements are integrated into the system and a
new solution is calculated.

In this section, we briefly show how the MLE problem is formulated and solved

using NLS. The joint probability distribution can be written as:

P(0,2) o P(60) []P(z«6s.,65,), (2.1)

where P(0y) is the prior and zy are the constraints between the variables 6;, and
0j.. The goal is to obtain the MLE of a set of variables in 8, given the available
observations in z:

0" = argmax P(0|z) = argmin (—1log(P(0]z))). (2.2)
0 0

For every measurement zy = hy (Gik, ij) — vy, the noise vy is assumed to be nor-

mally distributed, with zero mean and covariance Zy:

1
P (Zk | eik, ejk) x exp (_E ||hk (eik, ejk) @Zk”§k> , (2.3)

where hy (eik,e]-k) is the nonlinear measurement function, z; are the measure-
ments, © is the vectorial inverse composition operator. Note that binary measure-
ments are assumed here but measurements of any degree can be combined at will.
Setting £ = I yields ordinary nonlinear least squares, otherwise weighted NLS are

obtained. Finding the MLE from (2.2) is done by solving the following NLS problem:
1 « 2
0" = arg;nin (E Z [[h (85,., 65,) @Zk”zk> : (2.4)
k=1

Gathering all residuals in 1(0) = [r1, ..., Tm]' where 1. = hy (01,,65,) © 2z«
and gathering the measurement noise in £ = diag ([X1, ..., £mm]), the sumin (2.4)

can be written in the vectorial form and expressed in terms of a L2-norm:
2
[r@) [z = @ £'re) = |70 (2.5)

Iterative methods, such as Gauss-Newton are often used to solve the NLS in (2.4).
This is usually addressed by repeatedly linearizing the problem, solving the ob-
tained linear system and updating the estimate. Linear approximations of the non-

linear residual functions around the current estimate ' are calculated as:

#(0Y) = r(0')+J(6') (00, (2.6)
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with ] being the Jacobian matrix which gathers the derivatives of the components
of r(0). With this, the NLS in (2.4) is approximated by a linear one and solved by

successive iterations:
* . 1 2
8" = argmin 5 IAS — D", (2.7)
5
where the matrix A and the vector b are defined [45] as:

A & I (2.8)
b & 2 (2.9)

The correction & £ 8 © 0' towards the solution is obtained by solving the linear

system:
ATAS = A'v, (2.10)

where we define the information matrix A = ATA and the right hand side (rh.s)

n = A" b. The linear system becomes:
AS = 1, (2.11)

and is commonly referred to as the normal equation. The particular state of 8 for
which the derivatives in ] are computed is referred to as the linearization point. In
order to obtain the solution of this linear system, it is common to apply matrix
factorization, followed by back-substitution. The Cholesky factorization of the ma-
trix A has the form R" R = A, where R is an upper triangular matrix with positive
diagonal entries. The forward and back-substitutions on R"d =1 and R & = d first
recover d and then the actual solution 8. Alternatives to the Cholesky factorization
in the form of RDR" or LU decomposition do not offer great advantages in solving
the normal equation while being slightly slower.

Alternatively, the normal equation in (2.11) can be skipped and QR factorization
can be applied directly to the matrix A in (2.7), yielding A = QR. The solution 6
can be directly obtained by back-substitution in R§ = Q" 'n where Q"' = Q" as Q
is orthogonal. Note, that Q is not explicitly formed; it is commonly represented
using either the Householder reflections or the Givens rotations instead.

After computing 6, the new linearization point becomes ot =0t @ 5, with @
being the vectorial composition operator. The nonlinear solver iterates until the
norm of the correction becomes smaller than a tolerance or the maximum number
of iterations is reached. This is essentially the Gauss-Newton algorithm.

The process of assembling and solving very large linear systems can become
very expensive as the size of the problem grows. The employed data structure has
to allow both, efficiently re-building the system every time a new linearization

point is available and high speed arithmetic operations.
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LEAST SQUARES METHODS AND THEIR APPLICATIONS
2.1.1  Avoiding Local Minima

The process of solving nonlinear least squares is not always guaranteed to reach the
global minimum and indeed the convergence depends on both the initialization of
the variables [28] and on the optimization method employed. Some domains such
as estimation on nonlinear manifolds contain plentiful local minima [157, 87] and
more robust methods should be used, e.g. Levenberg-Marquardt [125] or Dog-
leg [141] algorithms. The quality of the solution is directly proportional to the sum

of squared Mahalanobis norms of the residuals:

Na—— M @2
2o -1 & IMl=

where |z| is the dimension of the measurements and |0| is the dimension of the
variables; this quantity indeed approaches chi-squared distribution.
The Levenberg-Marquardt [125] adds a damping factor A to the least squares

formulation, so that (2.10) becomes:

(A+A)8 = n or (2.13)
(A+Adiag(A)) s = 1, (2.14)

where either an identity matrix I or the diagonal of A are used as an additive
damping. Setting A = 0 yields Gauss-Newton solution. Conversely, setting A — co
yields a solution which approaches the steepest gradient descent direction while
the step size approaches zero. There are different strategies for choosing the damp-
ing factor which also depend on the choice of the damper. For equation (2.13),
A may be chosen as a product of a carefully chosen constant (e.g. 107°) and the
maximum absolute value of the diagonal elements in A [118].

The x? is calculated before and after the linearization point change and based
on its increase or decrease the damping is either increased to yield a smaller op-
timization step in order to avoid stepping into a local minimum or decreased in
order to speed up convergence, respectively.

The Dogleg algorithm which was first described by Powell [141] uses a slightly

different method to implement the same strategy. It is possible to calculate:
Adcy = n and 8y =~ 7, (2.15)

both the Gauss-Newton step and also the direction of the steepest descent step at
the same time. To get the exact value of the steepest descent step, one needs to

calculate the appropriate scaling factor:

6Sd = on, (2'16)
nll?

5 -
butl

(2.17)
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At this point, the trust region radius A is defined, which serves a similar purpose
as the damping parameter A in the Levenberg-Marquardt algorithm. This radius

effectively sets the step size, and also affects the step direction, according to:

8GN if |don|l <A
I if |8l > A (2.18)
8sq + B8N — 8sq)  otherwise ,
where {3 is chosen so as to make the step size ||84| equal to A. This gives rise

to a quadratic equation where the single root of interest can be recovered using a

simple analytic solution (while taking care to avoid a loss of precision):

-
¢ = 8g4(8eN—8sd) (2.19)
—ct1/c2+ || 8on—b8.ql|* (A2—] 854l .
\/ GN sd|| g || sd” ) lfC < 0
B [18oNn—8sall
B - o (2.20)
— I8l otherwise,

2 2
cy/e2+ | 8an—8all (A2~ 8.qlI?)

and thus the Dogleg step can be calculated and taken. Similarly as in Levenberg-
Marquardt, the trust region radius is modified based on the improvement of the

solution once the step has been taken.

The famous study of Lourakis et al. [115] shows that for vision problems, Dogleg
converges faster than Levenberg-Marquardt while giving solutions of the same
quality. In addition to that, Dogleg is appealing from the incremental solving point
of view, as it does not require modification of the system matrix by damping which
would impede incremental factorization updates. Similarly, Dogleg is favorable if
not only the state mean but also state covariance is needed; then the factorization
can be inverted whereas in Levenberg Marquardt, a second factorization without

the damping needs to be formed first.

2.1.2  Dealing with Outlier Measurements

In some problems, perhaps especially in computer vision, a situation often arises
that some of the measurements introduced into the system are not affected by nor-
mal distributed noise, as assumed in (2.3) but rather a few of them have a signifi-
cantly larger error. It is possible to introduce additional variables to the optimized
system, which decide on the validity of the measurements [163]. Alternatively, it is
possible to calculate the weights directly, without any additional variables as in [1]

or by the use of standard robust estimators.
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Table 2.1: A few of the commonly used robust functions. Note that a, b and c are constant

parameters of the individual functions (i.e. not the same variable).

loss function p(u) score function P (u) = a%(;l)
Ordinary LS | Ju? u
Huber [88] %uz iflu<a 1 iflu <a
%a(ZIuI —a) otherwise a sign(u) otherwise
Cauchy [83] %Zlog <1 + (%)2) _uu >
1+(%)
2 2\3\ . 2
%(u(«—@))> ifhi<a | Ju(1-(®)?) it <a
Tukey [15]
%2 otherwise 0 otherwise
%uz if lul < a u if lul < a
H L8] ajul — %az ifa<|ul<b a sign(u) ifa<|ul<b
ampel [7
_1,2 A B
acluclféu—%az ifo<|u<c a% ifo<|u<c
alb+c—a) otherwise 0 otherwise

The appealing property of robust estimators or M-estimators [88, 78, 162] (maxi-
mum likelihood type estimators) is their simple integration into the ordinary non-

linear least squares framework. In fact, NLS is a special case of an M-estimator:

0* = argmin (Z p (hi (85, 65,) @zk)> , (2.21)

0 k=1
where the loss function p(-) happens to be the L2 norm or in case of (2.4), a squared
Mahalanobis norm. To construct a more robust estimator, rather than to minimize
the sum of squares which gets easily carried away by squares of outlier errors, it
would be better to minimize e.g. the L1 cost. Unfortunately, L1 in particular is not
differentiable and a slightly different approach needs to be taken: e.g. Huber [88]
uses L2 norm for small errors to avoid problems with calculating the derivatives
around zero but replaces its tails with that of appropriately scaled L1 norm so as
to avoid discontinuities. Many other cost functions were proposed in the literature,
some of them are listed in Table 2.1.

In order to be able to meaningfully set the parameters of any particular robust
function, the relative efficiency of an estimator is defined as the ratio of variances:

E((T2-0))
e(lh, ) = —F——%, (2.22)

E((Ti-0))
where T; and T, are two estimators to be compared. Typically, an estimator T;

would be compared to a least squares estimator T, as that is the most efficient one.
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If the efficiency is unity for all 8, the estimator is considered efficient. To set the
robust function parameters, one typically aims at 95% efficiency. E.g. for Huber’s
function this corresponds to setting a = 1.345, for Cauchy a = 2.385, for Hampel
(a,b,c) =(1.393,2.787,5.573) with ¢ = 2a + b and for Tukey it is a = 4.685.
Another problem in robust estimation is scale dependence; two problems with
variables of different magnitude will behave differently in (2.21) and this problem

is solved by adding a scale parameter:

0" = argmin (Z ) (hk(eik,gjk) @Zk>> . (2.23)

e k=1

Now by setting an appropriate scale s, it is possible to obtain robust treatments for
problems of any scale. Otherwise, it would be possible for all the measurements to
be misclassified as inliers if the scale was very small, or conversely as outliers if it
was very large.

Therefore, the choice of s has large implications on the robustness of the estimate.
It can be determined a-priori from the knowledge of the sensor characteristics or
from the type of problem that is being solved. Alternatively, it is possible to use
one of generic algorithms for estimating the scale. A popular procedure is Median

Absolute Deviation (MAD) which is calculated as:
m- m-
MAD = mggllan < |hk(61k, 0;.) © Zk| ) = mﬁilfm ( |rk|) , (2.24)
and the scale is then set as:
s = 14826 MAD, (2.25)

where the constant factor is intended to give unity scale for data with errors
following the N(0,1) distribution. An alternative to MAD was proposed by Hu-
ber [161, 88].

Finally, once the scale is known, it is possible to solve the robust estimation

P (u

problem in (2.23) by collecting all weights wy = ukk) where uy = £ in a diagonal

matrix W = diag(w1, ..., wy ) and writing the linearized form of the problem:
ATWAS = ATWD. (2.26)

Note that this is very similar to (2.11), with the exception of the introduction of
the weight matrix W, in addition to measurement weights in X. This leads to the
Iteratively Reweighted Least Squares (IRLS) algorithm where first the weights in W
are calculated, then the system in (2.26) is solved, the linearization point becomes
07! = 0' @ 6 and the process repeats until either the norm of & approaches zero

or the maximum number of iterations is exceeded.
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2.2 SIMULTANEOUS LOCALIZATION AND MAPPING

SLAM is a central problem in robotics and relates to navigation of a robot which
at the same time builds the map that it uses to determine its location and to plan
further movement [144], both the location and the map being unknown initially.
There are many formulations of SLAM, to some degree dependent on the sensor
used, the representation of the map and the underlying method for dealing with
sensor noise. The most common sensor types include range finders (e.g. LIDAR,
RGBD or time of flight cameras or sonar) and monocular, stereo or spherical cam-

eras, GPS, IMU, as well as various combinations of those.

Kalman Filtering (KF) is an efficient method for dealing with noisy measure-
ments of a linear variable. However, problems in robotics and computer vision
are highly nonlinear due to projections and rotations and rather than baseline KF,
its extensions are commonly used. Extended Kalman Filter (EKF) is a nonlinear
version of KF which uses a linear approximation around the current linearization

point, and has been popular in SLAM literature [35, 54, 43, 109].

One disadvantage of EKF is lower precision or even divergence, if the underlying
model is highly nonlinear. For that, Unscented Kalman Filter (UKF) uses a sampling
approach [92] in order to calculate the mean and the distribution of the estimate
more accurately. Several SLAM approaches were formulated using UKF [119, 32, 84,

86], yielding a better run time and consistency than that of EKF-based approaches.

Information Filter (IF) is another variation where information matrix, the inverse
of the state covariance matrix, is being propagated. The advantage is in simple
integration of new observations as the information is additive, leading to more
accurate estimates and higher stability. One disadvantage of IFs is the need to invert

the information matrix often but despite that, IFs are relevant in SLAM [165, 166, 57].

Particle filtering is a popular method based on Monte Carlo sampling. It is very
simple to implement and can inherently handle multiple hypotheses. The posi-
tion of the robot (the estimated variable) is represented by a set of particles which
are uniformly distributed initially, as the robot position is unknown. At each step,
robot control commands are applied to all the particles which are then re-sampled
using the posterior distribution of particle positions conditioned by map observa-
tions. The particles typically quickly converge to one or more clouds (hypotheses)
where the robot could be located. FastSLAM and its variants [124, 145, 10, 100] are

archetypal representatives of particle filter implementations.

The major disadvantage of filtering approaches is that they discard the infor-
mation once it has been ingested by the filter and they fix the linearization point.
As such, they can become inconsistent over time. A process in which both the

poses and the map are retained and optimized jointly is sometimes referred to as
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(@) (b)

Figure 2.1: Example of a) pose and b) landmark SLAM; 4 ... 84 are the poses of the robot,

05...0g are positions of the landmarks and z;, ;, are the observations.

smoothing (as opposed to filtering) or Smoothing and Mapping (SAM) [45]. It has
been observed that the SLAM forms a graph [9] where the optimized variables are
the nodes and the observations are edges. By optimizing this graph, one obtains
globally consistent maximum likelihood set of robot poses and also maximum like-
lihood map. Graph SLAM [167] is an unifying framework which solves the problem
by variable elimination, which effectively amounts to sparse matrix factorization
and standard NLS method can be used.

There are literally hundreds of extensions of this method, Pose Graph SLAM be-
ing notable in that the result is only the trajectory of the robot and the map is either
represented implicitly or not recovered at all, see Figure 2.1a. Conversely, Land-
mark SLAM recovers the trajectory of the robot, along with positions of the land-
marks in the environment, a similar example is given in Figure 2.1b. Perhaps also
interesting from the point of view of this thesis are the ones that relate to explicit
distributed processing, such as Tectonic SLAM [131] or similar approaches [132, 99].

In this thesis, several novel highly efficient SLAM algorithms using the Graph
SLAM formulation will be described, which previously appeared in [PSI*13b,
PSI*13a, PIS*13b, IPST 15].

2.3 BUNDLE ADJUSTMENT AND STRUCTURE FROM MOTION

Bundle Adjustment (BA) and Structure from Motion (SfM) are computer vision
problems in which the 3D reconstruction of the scene is calculated. A typical sparse
3D reconstruction pipeline consists of several stages: first, visual features [116] are
extracted from the images which are then matched using approximate nearest
neighbor search [126] and subsequently pruned using Random Sample Consen-
sus (RANSAC) along with geometric estimation [134]. Depending on the scale of

the problem, the matching can be either done in all-to-all manner or hierarchi-
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(b)

Figure 2.2: Graph of the Venice dataset a) edges connecting one of the cameras to the ob-
served landmarks, b) the matrix of the entire dataset, with all the camera ver-
tices ordered first. Note that each nonzero is inflated so as to be visible. There
is deliberately space left between the border and the matrix, to be able to better

see the fine arrow-like pattern.

cally using approximate clustering first and then fine grained matching within the
clusters [4]. The camera poses are given by relative transformations between the
matched images, the landmark positions are given by triangulation of the matched
feature points. Because of different sources of errors, the initial geometric estimate
tends to be rather noisy and simply concatenating the calculated pose transforma-
tions and triangulating the observed feature points as they come would quickly
diverge catastrophically. Therefore, one more crucial step is employed: the nonlin-
ear optimization.

Both BA and sfM deal with noise much like SLAM, to which these problems are
mathematically equivalent. Although the matters are perhaps more complicated,
we refer as BA to problems dealing with unstructured databases of images — often
from multiple different cameras with potentially unknown parameters and as StM
to problems of reconstruction from an ordered sequence of images from a single
moving camera — possibly a video-sequence of smooth motion. This makes the
two different from the image track processing point of view but very alike from
the optimization point of view.

The distinguishing trait that sets BA apart from SLAM is the space where the error
is minimized: in SLAM, the space in which the measurements (and thus the error)
is defined is the same as that of the poses. On the other hand, in BA, the error of
the reprojection in 2D image space is minimized while the poses and landmarks
exist in 3D space.

Most of the 3D reconstruction implementations work incrementally: only one

or a few frames are integrated at a time, followed by a BA step. Bundle adjust-
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ment finds the MLE of the camera poses and the structure, given the observations
and is most commonly solved using nonlinear least squares optimization. To solve
the nonlinear least squares, Conjugate Gradient (CG) or a direct solver can be em-
ployed. While CG is often claimed as a linear cost algorithm [26, 57] it usually takes
more iterations of the nonlinear solver to converge, being effectively slower than
direct methods [169]. Other approaches [169] are possible.

The seminal paper [113, 114] describes design and implementation of an efficient
BA package called SBA with the basic traits shared by most of the other implemen-
tations. The problem is formulated as a Levenberg-Marquardt [125] nonlinear least
squares optimization. It makes use of the problem sparsity: not all of the points
are observed by all of the cameras and the system graph is usually far from being
fully connected. It also makes use of the characteristics of the BA problem which
typically contains a relatively large amount of landmarks that have no relations
among themselves (from the graphical point of view, they form a large indepen-
dent set, or — if there are no connections among the cameras either — the entire
graph is bipartite). As seen in Figure 2.2b, this gives rise to diagonal sub-matrices
that make the underlying linear problem easier to solve using the Schur comple-
ment [178] techniques, as opposed to applying a general linear solver directly to
the whole matrix.

Photo tourism [155] is an application of BA to building sparse reconstructions
from unstructured collections of photographs for the purpose of interactive nav-
igation in such collection. It makes use of the EXIF image tags to get the intrin-
sic camera parameters rather than solving an uncalibrated problem. The camera
poses are primarily used for photo placement in the user interface while the sparse
structure is rendered as textured points (rather than performing triangulation), op-
tionally in non-photo-realistic mode. Two techniques for view interpolation for
animated transitions are suggested.

Using unstructured photograph collections from the Internet allows for ex-
tremely large scale 3D reconstruction [4]. The problems that need to be tackled
exist both in the vision part of the reconstruction pipeline as well as in the BA opti-
mizer. In the vision part, the feature matching becomes the bottleneck, as it scales
with O(n?) in the number of images and hierarchical matching is proposed to solve
the problem both more efficiently and in parallel. Agarwal et al. [4] implement two
optimization strategies which are selected based on problem size. The first one is a
block diagonal preconditioned Conjugate Gradient (CG) solver. The second one is
rather similar to SBA, with the difference that unlike in SBA [113, 114] where the
Schur complement is solved using dense LDL' factorization, a sparse Cholesky
factorization is employed here to gain up to an order of magnitude speedup for
large systems where the Schur complement is quite sparse. Similar speedups were

reproduced by e.g. [105].

23

This also
depends on
the precon-
ditioning
of the
system, an
advanced
topic which
is not
discussed
here as
this thesis
relates
more to
direct

solvers.

The authors
actually do
not specify
which one
is used

for small

problems.



24

LEAST SQUARES METHODS AND THEIR APPLICATIONS

To further accelerate the optimization part, it is possible to employ paralleliza-
tion. CG solvers are parallelized easily, as they basically only require parallel imple-
mentation of sparse matrix-vector multiplication routine [176]. For direct solvers,
distributed optimization techniques were proposed [130] where the problem is
split into several sub-problems with minimal graph separators that are solved inde-
pendently, followed by a separator optimization pass. Such methods can be easily
used for parallelization on clusters.

Parameterizations taking advantage of the incremental solving were proposed as
well. In [153], relative camera and pose formulation is employed, rather than using
a single global Euclidean coordinate frame. After adding a new camera pose and
the associated observations, it is possible to find the variables where this addition
induced a significant change and only a reduced system consisting of those vari-
ables and their neighbors is solved. The size of the system that needs to be solved
is only a fraction of the full system, making the optimization faster. A standard
Schur complement solver is employed.

Another approach is acceleration via graph sparsification. In [91], rather than
optimizing the entire problem only the camera poses are optimized, with the
observations taking form of three-view constraints related to the tri-focal tensor.
A similar generalized approach is proposed in [27] where the structure variables
would be represented implicitly by the corresponding triangulation functions and
therefore only the camera poses and optionally also their calibrations would be
optimized. In both cases, the structure points can be triangulated after-the-fact in
the least squares fashion from all the cameras that observe each given point. Since
these methods effectively solve a pose graph, it is possible to use the appropriate

incremental algorithms [95, 98], [PIST13b] as well.

2.4 FINITE ELEMENT METHODS

FEM is a class of popular methods used in physics simulation. While less related to
SLAM or BA by the underlying principles of estimation, they also feature graphical
structure. This yields matrices with certain sparsity patterns with characteristics
not unlike those of SLAM or BA, and the basic matrix operations described in this
thesis are also useful in solving FEM problems.

Since the domain of the real world is continuous, it can be difficult to
parametrize and describe it numerically for the needs of physics simulation. FEM
sets out to solve this issue by discretizing the simulation domain into a large (but
finite) number of elements. Typically, those can be triangles, quadrilaterals or tetra-

hedra, which are connected in a mesh. Formally, FEM solves a linear system:

Ku = f, (2.27)
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®
(@) (b)

Figure 2.3: Example of a) 5 x 5 uniform FEM mesh and b) the associated stiffness matrix.

where K is the stiffness matrix, f is the load vector and u holds the unknown
element states which we seek. The stiffness matrix is given by a sum of the stiffness
matrices of the elements, which are themselves derivatives of basis functions which
describe the elements, integrated over each element area. The choice of the basis
function is a trade-off between accuracy and computational complexity and there
are many functions used in practice [67, 158], some of which yield dense blocks.
An example of a stiffness matrix for a small triangular mesh is given in Figure 2.3b.
Note that each of the nonzeros could be a dense block, depending on the choice
of the basis functions. For example, assuming 2D triangular mesh and piecewise
linear basis functions, the element stiffness matrix is a 2 x 2 dense matrix.
Furthermore, [158] describes a special case of the stiffness matrix which is appli-
cable to structured 2D grids. It relies on writing the system in the following block

tridiagonal form:

A T uq f]
-T A T u f
. 2 = 2 . (2.28)
-T A uyN fN

Assuming a few conditions are met (AT =TA and N =25"! —1 for some inte-
ger s), it is possible to solve such a system using the cyclic reduction method [158]
which requires s modifications of the system to arrive at a single block equation
which can be solved using e.g. Gaussian elimination and then one can work back
to recover the rest of the solution. It would be equally possible to employ sparse

block matrices to calculate the solution using a (more) direct method.
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SPARSE MATRIX REPRESENTATIONS

The problems described in the previous sections (among others) all have a graph
structure which can be represented as a sparse matrix and matrix operations are
used to find solutions to those problems. In the field of numerical techniques and
matrix computations, Basic Linear Algebra Subprograms (BLAS) is the de-facto stan-
dard for the implementation of matrix representations, as well as the interface for
the matrix operations. While the original BLAS proposal [108, 46, 47] was for dense
matrices, it was later adopted for sparse matrices as well [49]. The sparse BLAS pro-
posal specifies several sparse matrix storage formats, some of which will be briefly

revised below. Unless specified otherwise, the formats are elementwise.

3.1 COORDINATE FORMAT

The coordinate format, often abbreviated C00, is a very simple sparse matrix for-
mat; it stores each nonzero entry as a triplet of row, column and the associated
value, with no ordering imposed by a rule or at least a convention. It is suitable for
assembly of the sparse matrices and it is simple to erase or add more values at any
time. For the matrix in Figure 3.1a, the C00 representation is in Listing 3.1.

To better illustrate the properties of this format, let us consider a simple matrix
vector product of the form y = Ax +y, listed in Algorithm 3.1. Looking at this pro-
cedure, two things quickly become apparent. In case there are several entries for
the same row and column, they will have the same effect as if those duplicate en-

tries were summed up into a single one. This is a convention commonly observed

6 s |[ e 5 ]
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Figure 3.1: Example sparse matrices.
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Algorithm 3.1: A basic matrix - vector multiplication algorithm.

1: function coo_GeEmv(A, x, y)

> calculates y = Ax + y where x, y are dense and A is sparse in C00 format

2: fori=0to Annz—1do

3 T =ArTow[i]

4 ¢ = A.col[i]

5: ylrl = y[r] + Avalli] - x[c]
6 end for

7: end function

for the C00 format. A second issue is regarding the performance of the algorithm:
the elements of the x and y vectors are both indexed by the sparsity pattern of A,
the algorithm therefore both gathers and scatters elements in memory which can
lead to poor performance if the entries are ordered unfavorably. Since the matrix
vector product is a building stone of the CG solvers, more efficient formats were

proposed.

Listing 3.1: The matrix from Figure 3.1a stored in the C00 format.

1: m=6; n=4; nnz = 12;

2: row= {0, 0, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5};
3: col = {0, 3, 0, 2, 3, 0, 1, 3, 0, 3, 1, 3};
4: val = {6, 4, 7,9, 4, 2,5,3,2,1, 1, 2};
3.2 SPARSE DIAGONAL

The diagonal format (DIA, not to be confused with a diagonal matrix) strives to
represent the sparse matrix in a more structured manner. It consists of the array of
several dense diagonals and an array of their offsets, as illustrated in Listing 3.2.
The matrix vector product now degenerates to a sum of dense dot products which

are implemented efficiently on today’s machines.

Listing 3.2: The matrix from Figure 3.1b stored in the DIA format.

1: m = 4; n = 4; ndiag = 3;
2: diag = {6, 1, 9, 3,

3 0, 7, 4, %,

4 5, 0, %, *};

5: ioff = {0, 1, 2};

Matrices consisting of just a few diagonals arise in some applications and then

the diagonal format is suitable. Matrices with just a single diagonal are often repre-
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sented just as a dense vector with special semantics. Consider, however, storing the
matrix in Figure 3.1a: all the diagonals but one are occupied and the matrix would
in effect be stored almost as a dense matrix, with many zero entries represented
explicitly. For that reason, the diagonal format is often paired with a different for-
mat so that the almost empty diagonals can be represented more efficiently. This

is often referred to as a hybrid (HYB) format.

3.3 SKYLINE

Triangular matrices can be represented using the skyline (SKY) format, symmetric
matrices can be similarly stored as a triangular matrix with symmetry semantics,
sometimes also referred to as the symmetric skyline (SSK) format. Assuming an
upper-triangular matrix, skyline stores rows of the matrix, starting with the di-
agonal element and ending with the last non-zero element in the given row. For
lower-triangular matrix, the range of elements would start with the first non-zero

and end with the diagonal instead.

An appealing quality of the skyline format is that operations such as Gaussian
elimination or Cholesky factorization do not change the structure of the matrix and
can be performed in-place. The obvious disadvantage is that it is only efficient for
matrices with all the non-zero elements situated close to the diagonal. An example

of an upper-triangular skyline matrix is shown in Listing 3.3.

Listing 3.3: The matrix from Figure 3.1b stored in the SKY format.

2: val = {6, 0, 5,

3: 1, 7,

4: 9, 4,

5: 3}

6: rptr = {0, 3, 5, 7, 8};

3.4 ELLPACK-ITPACK

The Ellpack format (ELL) is conceptually similar to the diagonal format but is
geared towards general sparse matrices without a prominent diagonal structure.
It relies on the number of nonzero entries per row being relatively similar over the
whole matrix. The matrix is represented by a pair of a dense matrix containing the
values of each row with the zeros removed and a corresponding column permu-

tation matrix of the same size. The number of rows in these matrices matches the
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original matrix and the number of columns is given by the maximum number of

entries in a single row. An example of this is shown in Listing 3.4.

Listing 3.4: The matrix from Figure 3.1a stored in the ELL format.

1: m=6; n=4; ndiag = 3;

2: coef = {6, 7, 9, 2, 2, 1,
3 4, 0, 4,5, 1, 2,
4 0, 0, 0, 3, 0, 0};
5: col = {0, 0, 2, 0, 0, 1,
6 3, =, 3,1, 3, 3,
7 *, X, %, 3, %, *};

The matrix-vector product is again implemented as a sum of dot products, with
the modification that for each dot product the right-hand side vector needs to be
gathered from memory based on the column indices. This was implemented as an
instruction in vector processors so that it could be implemented efficiently [146].
This operation can also be implemented on a GPU, with performance depending

on the characteristics of the data.

3.5 JAGGED DIAGONAL

A basic disadvantage of the Ellpack format is the reliance on uniform row lengths.
For the matrix in Figure 3.1a, 33% of zeros are filled in because the third row is
longer than the others. The Jagged Diagonal (JAD) further improves upon Ellpack,
for matrices with uneven distribution of non-zeros and also keeps parallel process-
ing on vector processors in mind. First, the rows of the matrix are sorted by de-
scending number of non-zeros (Figure 3.2b) and the permutation for obtaining the

original matrix is recorded (Figure 3.2c). Then the rows are compacted similarly

6 4 25 3 | 3 ] 2 5 3 |
7 6 4 0 6 4
9 4 9 4 2 9 4
- -

25 3 2 1 4 2 1
2 1 1 2 5 1 2

1 2 7 1 7
(@) (b) (c) (d)

Figure 3.2: Converting a matrix to the jagged diagonal format: a) the original matrix, same
as in Figure 3.1a, b) sorted by row lengths, c) the associated permutation vector

and d) compacted rows are stored column-wise as three “diagonals”).
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as in the Ellpack format (Figure 3.2d) and the column indices are also recorded.
To avoid storing zero entries, the numbers of nonzero elements for each row are

recorded as well. The matrix stored in the JAD format is shown in Listing 3.5.

Listing 3.5: The matrix from Figure 3.1a stored in the JAD format.

=

m = 6; n=4; ndiag = 3; nnz = 12;

2: val = {2, 6, 9, 2,1, 7,
3: 5,4, 4, 1, 2,

4: 3}

5: col = {0, 6, 2, 0, 1, 0,
6: 1, 3, 3, 3, 3,

7 3}

8 ilg = {3, 2, 2, 2, 2, 1};
9: dlg = {6, 5, 1};

10: perm = {3, 0, 2, 4, 5, 1};

The matrix vector multiplication for the JAD format would be implemented sim-
ilarly as in the case of Ellpack, via dense vector dot products with right hand side
gathering. In addition, the left hand side vector needs to be permuted at the begin-
ning and inversely permuted at the end — but that is a fast linear time operation.
On the other hand, there are no filled-in zeros and no computation is wasted. The

format was designed for highly efficient operations on vector processors.

36 COMPRESSED SPARSE COLUMN OR ROW

Compressed sparse column (CSC) and its transpose, compressed sparse row (CSR),
are formats aimed at storing general sparse matrices while being able to perform
operations efficiently. CSC stores the non-zeros of the matrix column by column and
ordered by row in terms of each individual column (although notable exceptions
exist [41]). Along with the non-zeros, an array of row indices is stored. So far,
the format is equivalent to the C00 format. But rather than storing column indices
for each element, column pointers are stored instead (either in a single array of
pointers to the first element with the total number of elements appended at the
end, or in a pair of index arrays of the first elements of each column and of the last
elements of each column).

That makes it easy to access the columns of the matrix in any order while the
rows must be accessed sequentially. The algorithms that work with these formats
order their loops so that row lookup is avoided, for greater efficiency. The format
is geared more towards scalar processors; the matrix - vector product cannot be
formulated in terms of dense dot products as it requires both gather and scatter

operations. In contrast to the C00 format, the memory accesses are predictable
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and fast algorithms exist [41]. An example of CSC representation is in Listing 3.6.
Modified formats based on CSC and either a dense diagonal vector or several dense

diagonals in the DIA format exist.

Listing 3.6: The matrix from Figure 3.1a stored in the CSC format.

1: m=6; n=4;

2: val =4{6, 7, 2, 2,5,1,09, 4, 4, 3, 1, 2};
3 row =4{0, 1, 3, 4, 3,5, 2,0, 2, 3, 4, 5};
4: cptr = {0, 4, 6, 7, 12};

3.7 BLOCK COMPRESSED SPARSE ROW

Matrices which have sparse block structure appear in many applications, notably in
those described in Sections 2.2, 2.3 and 2.4. These matrices can be readily stored
using the general-purpose elementwise (sometimes also point) sparse formats but
there are some advantages in exploiting the block structure explicitly. Block com-
pressed sparse row (BSR) and its less common transpose, block compressed sparse
column (BSC), are extensions of the corresponding elementwise sparse formats CSR
and CSC, respectively. Multiple other variants of these block formats exist, e.g. block
coordinate (BC0), block sparse diagonal (BDI) or block Ellpack (BEL). For symmetric
matrices, the convention is that the diagonal blocks store both the upper and the
lower half.

Elements become blocks, columns and rows become block columns and block rows,
respectively. These formats assume that all the blocks in the matrix are square and
have the same size. Each block is stored in either row-major or column-major (de-
pending on the implementation convention), including any zeros. Two examples
of block matrices are given in Figure 3.3, while 3.3a (two block columns and two

block rows, three nonzero blocks) will need to store some zeros. The other matrix
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Figure 3.3: Example sparse block matrices.
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in Figure 3.3b (four block columns, three block rows, six nonzero blocks) does not
have any zeros in its conceptual blocks, but they are not of the same size which
is not suitable for the BSR format — the block boundaries would have to be moved
in order for all the blocks to be the same size (e.g. 2 x 2) and some additional ze-
ros would be stored again. An example of a matrix stored in the BSR format is in
Listing 3.7.

It is notable that compared to the representation of the same matrix using the
CSR format, the index arrays take up 50% less space and similarly the algorithms
will spend less time in the indexing and control logic parts and more in the com-
putational parts (CSR would need 5 row pointers and 7 column indices). Not all
matrices can benefit from block schemes though, e.g. the matrix from Figure 3.1a

would end up being completely dense if represented using 2 x 2 blocks.

Listing 3.7: The matrix from Figure 3.3a stored in the BSR format.

1: m=4; n = 4;

2: bm = 2; bn = 2;

3: nnz = 12; bnnz = 3;

4: b = 2;

5: val = {6, 0,0,1,5,7,0,0,9, 0, 4, 3};
6: bindx = {0, 0, 1};

7: bpntrb = {0, 2};

8: bpntre = { 2, 3};

38 VARIABLE BLOCK COMPRESSED SPARSE ROW

While the previous section introduced formats which assume all the blocks to be
the same size, many applications will require matrices with rectangular blocks or
mixtures of different block sizes. One approach, referred to as splitting in the liter-
ature, which is indeed sometimes used in solving FEM [168, 139, 65] is to represent
such matrix as a sum of several matrices, each containing blocks of one particular
size. That works well for operations with additive semantics, such as matrix vector
products, but it is not a viable alternative for e.g. Gaussian elimination or matrix
factorizations. Therefore, a variable block compressed sparse row (VBR) format was
introduced. It is an extension of the BSR format with additional information about
the sizes of the blocks and the layout of the block rows and block columns. An

example of such a matrix is in Listing 3.8.

It is notable that there are few implementations of the VBR scheme, perhaps due
to its complexity and algorithmic overheads (intuitively, there are more nested

loops required for the implementation of arithmetic operations which cannot be
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unrolled). This results in diminished performance unless the blocks are very large.
To our best knowledge, the only such implementation is NIST Sparse BLAS' al-
though few other variants of the format exist and their implementations will be
discussed in the following chapter. There are more libraries that support the BSR

format, most notably Intel MKL [59] or PETsc [12].

Listing 3.8: The matrix from Figure 3.3b stored in the VBR format.

1: m=6; n=10; // six rows and ten columns

2: bm = 3; bn =4; // three block rows and four block columns

3: nnz = 19; bnnz = 6; // nineteen non-zeros, six non-zero blocks

4: rpntr = {0, 2, 3, 6}; // rows of the block row origins

5: cpntr = {0, 2, 5, 6, 8}; // columns of the block column origins

6: val ={1, 4, 2,5,3,6,7,8,9, a, b, e, h, ¢, f, i, d, g, j};

7: // block data (column-major)
8: indx = {0, 4, 6, 9,10, 13, 19};

9: // indices of the first element of each block, nnz
10: bindx = {0, 2, 1, 2, 2, 3};

11: // per-block block column indices
12: bpntrb = {0, 2, 4}; // pointers to the first block in each block row

13: bpntre = {2, 4, 6}; // and to one past the last block in each block row

Thttp://math.nist.gov/spblas/original.html
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This chapter describes existing implementations of general Nonlinear Least
Squares (NLS) solvers which are used in robotics, with the focus on the algorithms
and data structures. The list is definitely not an exhaustive one, but an attempt was
made to have the most significant implementations present. There is a considerable
overlap with other scientific communities that solve computer vision, surveying,
photogrammetry or other similar problems, often using their own methods and

software tools.

4.1 TORO

TORO [71] was inspired by the influential work of Olson et al. [136] on stochastic
gradient descent for map optimization in SLAM. Olson proposes an incremental
pose parameterization where the state of the optimized system is given by the
algebraic differences of the consecutive poses (rather than by their inverse com-
position). This yields simple sparse Jacobian but requires the consecutive poses
to have only small rotational differences, otherwise the poses are captured impre-
cisely. Another difficulty with the relative parameterizations when coupled with
stochastic gradient descent is that each constraint affects multiple variables, slow-
ing down the convergence since different constraints can affect the same variables

in antagonistic fashion, effectively undoing each other’s work.

TORO uses a similar parameterization, but rather than using relative representa-
tion between the consecutive poses, it constructs a spanning tree and represents the
poses as the algebraic difference of a pose and its parent. Therefore, a constraint
between two poses goes through the common ancestor and less poses need to be
updated, speeding up the convergence of the algorithm. Note that the spanning
tree does not replace the system graph - it merely affects the numerical represen-
tation of the optimized variables. The proposed algorithm also allows for node

reduction in case the robot navigates a previously visited area.

Written in C++, it only uses small fixed-size dense matrices since the structure of
the problem and the approximations applied do not necessitate the use of sparse
matrices. It can solve for 2D and with a later extension also 3D pose graphs. It is
self-contained in the sense that it does not depend on any libraries e.g. for linear

algebra or graph orderings.
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4.2 ISAM

In their work, Dellaert and Kaess [45] investigate the connection between the factor
graph formulation of the SLAM problem, its matrix representation and the corre-
spondence of the factorization of a such matrix to the variable elimination in the
corresponding graph. Initial matrix factorization performance results are reported,
with the goal to develop an efficient incremental NLS solver. The authors recognize
the importance of the need of a good variable ordering and argue for the use of the
QR factorization via Givens rotations because of the simplicity of its incremental
implementation compared to Cholesky factorization up/down-dates. Interestingly,
they report their implementation of sparse matrix product to be slower than the

subsequent factorization of its result.

Incremental Smoothing and Mapping (iSAM) [95] is an implementation which
focuses on incremental solving, using incremental QR factorization. Unlike TORO,
it uses exact derivatives (or automatically generated numerical ones) and so the Ja-
cobian does no longer consist of identity matrices and sparse matrix computations
are employed throughout. 3D rotations are expressed and optimized either in the

domain of Euler angles (yaw, pitch, roll) or as quaternions.

The solver maintains QR factorization incrementally, adding only entries for the
new observations while the changes in the rest of the Jacobian are ignored. Every
one hundred steps, the variables are reordered using the COLAMD algorithm to
avoid fill-in, the Jacobian is recomputed and the whole QR factorization is calcu-
lated from scratch. This approach, although no longer exact, proves quite efficient.
iSAM also provides calculation of covariances using the recursive formula [18, 68]
in conjunction with dynamic programming [93] or alternatively using a fast con-

servative approximation described in [57].

Initially implemented in OCaml, the currently available version is in C++ and
makes use of its own custom sparse matrix representation where each column of
a sparse matrix is represented using a sparse vector. This essentially corresponds
to the CSC format, except that the data is not stored in a single contiguous array
but is split into one array per column. This makes adding new values easier as less

data needs to be shifted around.

Despite using elementwise matrices, iSAM makes a limited use of the block
structure by calculating the fill-reducing ordering on variables (which corresponds
to block columns) and then expanding this ordering to the individual elements
(columns). It uses either CSparse [41] or Cholmod [42] internally for batch matrix
factorizations — the disadvantage is that it needs to convert from its own sparse
format to standard CSC before such libraries can be used, and then to convert the

result back.



4.3 HOG-MAN

4.3 HOG-MAN

HOG-Man [72] is hierarchical SLAM optimizer, working on manifolds. The mani-
fold representation is important, as representing the rotations using Euler angles
(e.g. such as iSAM) introduces singularities and gimbal locks and similarly using
over-parameterized representations such as quaternions easily leads to denormal-
ization. Instead, the authors define a manifold projection operator which converts
the rotation from its representation to the manifold where it is locally Euclidean
and can be optimized using classical methods, such as Gauss-Newton. HOG-Man
thus uses axis-angle representation to represent the rotations.

Another important feature is hierarchical graph optimization. A graph is repre-
sented at the highest level as well as on several lower levels of detail. The first level
of detail is obtained by dividing vertices of the original graph into subgraphs and
treating each subgraph as a vertex. For that, a representative vertex is selected from
each subgraph. There is an edge between representative vertices of two graphs in
case there were edges between any two vertices between those graphs. The mea-
surement and its associated covariance are calculated by solving for a problem
consisting of the union of the two graphs, with the representative vertex from the
first graph being in the origin and the representative vertex from the second graph
providing the mean as well as covariance. The hierarchical optimization starts at
the highest level (the smallest graph) and the significant changes are propagated
downwards via rigid body transformations. When needed, a lower level subgraph
can be refined using another optimization round, with the additional constraint on
the representative vertices. Covariances can be calculated for the data association.

Written in C++, HOG-Man uses the graph as its primary representation rather
than a matrix. It stores an associative array of vertices and an ordered set of
pointers to the edges. Such structure allows for simple graph modifications but
requires multiple indirections to access any element of the graph. It makes use of
CSparse [41] for Cholesky decomposition and solving, while the graph or its sub-
graphs are converted into sparse matrix form on the fly, rather than maintaining a
matrix and updating it incrementally. No advantage is taken of the block structure

of the matrices.

4.4 SSBA

Sparse Sparse Bundle Adjustment [105] is a bundle adjustment optimizer, similar
to the one described by Lourakis and Argyros [113, 114]. It uses the Levenberg
Marquardt method described in Section 2.1.1, in conjunction with the standard

Schur complement trick, followed by sparse Cholesky factorization (rather than
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dense as in case of Lourakis), using Cholmod [42]. The feature that sets it apart is
that it uses its own hybrid sparse block matrix scheme where each block column
consists of an associative array that contains dense blocks, indexed by rows. The
diagonal blocks are stored in a separate linear array (structurally rank deficient
matrices are not permitted). The format only permits blocks of one size, R®*®.
However, this matrix is only maintained for convenience of formation of the
Schur complement. No matrix product operation is implemented on this block
matrix — the partial products are accumulated based on camera tracks. Sparse
block matrix-dense vector product is implemented for the CG solver. For the direct
solver, the Schur complement needs to be converted to elementwise sparse CSC for-
mat each time before solving. This conversion is split to two phases, the structure
allocation and value filling, in an attempt to save some time in nonlinear iterations

where the structure does not change.

4.5 SPA

Similar to sSBA, Sparse Pose Adjustment [104] reuses a slightly modified imple-
mentation of Levenberg Marquardt optimizer to solve 2D pose-SLAM problems. It
forms the information matrix (rather than the Schur complement as in sSBA) us-
ing the same sparse block matrix structure. Another interesting feature is that the
whole solver is specialized for 2D pose graphs, which means that all the block
matrices are R3*3 and dynamic memory allocation can thus be saved, resulting
in better performance. Still, this solver also takes advantage of elementwise sparse
Cholesky factorization implemented in CSparse [41] and no computation is actu-

ally saved by using sparse block matrices.

4.6 G20

A General Framework for Graph Optimization (g20) [106] is the culmination of
the research done on sSBA and SPA and has quickly become a popular frame-
work for nonlinear optimization in robotics. It contains several optimizers, based
on Gauss-Newton, Levenberg-Marquardt or Dogleg methods. While designed to
be easily extensible, g20 can sole BA and SLAM problems out-of-the-box. It uses
Lie algebra [159] group SE(3) to correctly calculate derivatives involving spatial
rotations and optimizes such variables in the tangent space vectorial form se(3).
In addition, it contains numerical differentiation functions to calculate derivatives
automatically if needed. It can also recover covariances of the estimate, using the
same recursive formula implementation as described in [93]. The support for ro-

bust solving is also implemented.



4.7 ISAM2

Compared to sSBA, the sparse block matrix scheme is changed, the diagonal
element storage was removed and now all the matrices are represented as a vector
of block columns where each block column is row-indexed associative array of ma-
trix blocks. This is similar to sSBA, with the exception that in g2o0 the blocks can
take any size, including matrices with blocks of mixed size. The (incomplete, to
save space) C++ prototype of the matrix storage can be seen in Listing 4.1. Several
operations are implemented on this matrix format, including addition, matrix and
vector products, transpose and scalar multiplication. Diagonal matrix view is imple-
mented for faster access to the block diagonal (but it is not useful for representing
block diagonal matrices by itself). Linear solving is accomplished using one of
CSparse [41], Cholmod [42], Eigen [73] or CG. Conversion to elementwise sparse

matrix is again required (except for CG) every time linear solving takes place.

Listing 4.1: The g2o sparse block matrix format (C++; the code comments were redacted).

1: template <class MatrixType = Eigen::MatrixXd>

2: class SparseBlockMatrix {

3: public:

4: typedef MatrixType SparseMatrixBlock;
5: typedef std::map<int, SparseMatrixBlock*> IntBlockMap;
6:

7:

8:

9: protected:

10: std::vector<int> _rowBlockIndices;
11: std::vector<int> _colBlockIndices;
12: std::vector<IntBlockMap> _blockCols;
13: };

Notably, g2o allows for optimization of problems with fixed-size blocks, with
the limitation that only a single block size is supported, or the block size can be
different for poses and for landmarks but then the landmarks are either handled
by the Schur complement or are not optimized at all. This allows for highly effi-
cient solving because then the inner loops in all the block matrix operations can
be unrolled and Streaming SIMD Extensions (SSE) vectorization can be applied.
Solvers for 2D SLAM (R3*3,R?*2), 3D SLAM or BA (R®*®,R3*3) and Sim(3) BA
(R7*7,R3*3) are instantiated by default.

4.7 ISAM2

The iSAM2 algorithm [98] implemented in the GTSAM library, is an improvement

over the iSAM solver. It uses a novel data structure called the Bayes Tree, which is
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a graphical representation of the square root matrix (the Cholesky factorization of
the information matrix). It allows for incremental variable reordering and selective
relinearization which was not previously implemented on matrices.

The solving process in iSAM2 is a three stage one, starting by eliminating the
factors from a factor graph to yield a Bayes net, then turning this Bayes net into
a Bayes tree and finally solving by backsubstitution. The step of turning a Bayes
net (a chordal graph) into a Bayes tree (a directed clique graph) is done in reverse
elimination order and thus the information in the tree is propagated towards the
root. When some variables are changed, the root of the tree and the descendants on
the path to the affected variables need to be recalculated, the unaffected children
are then re-attached.

The solving is thresholded by a small constant on backsubstitution (which can
skip cliques of the Bayes Tree where the change in the solution is to be low). Thanks
to that, the backsubstitution usually runs in better than linear time. Another sev-
eral orders of magnitude larger, threshold is on the increment of the variables to
be relinearized. The relinearization is only performed every ten steps of the al-
gorithm by default. Constrained column Approximate Minimum Degree (AMD)
(CCOLAMD) is employed for variable ordering, with the most recent variables or-
dered last in order to reduce the size of the incremental updates (since the new
observations are most likely to reference those variables). Unlike iSAM, more pre-
cise Lie-algebraic derivatives calculated using the exponential map paradigm are
employed throughout.

Written in C++ with heavy use of BOOST?, it has a limited implementation of
dense block matrices with no arithmetics support, except for operations on the
individual blocks and dense Cholesky factorization. It uses Eigen [73] for linear
algebra. The algorithm to calculate the marginal covariances of the variables has
changed since iSAM, to one using the Bayes Tree instead of the recursive formula.
It is only efficient in case a covariance of a single variable is sought after — there is

no efficient way of recovering covariances of multiple variables at once [IPS*15].

4.8 CERES

Google’s Ceres solver [3] received much attention, as it is used in their 3D Maps
and Street View applications. It is mostly focused on batch solving, using a variety
of available algorithms (Gauss-Newton, Levenberg-Marquardt, Powell’s Dogleg,
subspace Dogleg [25], CG, BFGS and LBFGS). It relies on SuiteSparse [41] and
Eigen [73] for solving the linear systems via a set of sparse and dense solvers.

It supports automatic and numeric derivatives, as well as analytical ones. It also

Thttp://www.boost.org/
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has a multitude of robust loss functions. Ceres can also recover covariances of the
solution, either using dense SVD or using sparse QR decomposition followed by

sparse right-hands-side backsubstitution.

Listing 4.2: The Ceres sparse block matrix format (C++; the constructors and member

functions omitted, the code comments were redacted).

1: struct Block {

2: int32_t size;

3: int position;

4}

5:

6: struct Cell {

7 int block_id;

8: int position;

9: };

10:

11: typedef struct CompressedList {

12: Block block;

13: std::vector<Cell> cells;

14: } CompressedRow, CompressedColumn;
15:

16: struct CompressedRowBlockStructure {
17: std::vector<Block> cols;

18: std::vector<CompressedRow> rows;
19: };

20:

21: class BlockSparseMatrix : public SparseMatrix {

22: private:

23: int num_rows_, num_cols_;

24: int max_num_nonzeros_, num_nonzeros_;

25: scoped_array<double> values_;

26: scoped_ptr<CompressedRowBlockStructure> block_structure_;
27: };

Notably, Ceres also has its own block matrix storage format. It is a bit more
similar to the classical sparse matrix formats (e.g. to VBR) in the sense that it has
an array for element values rather than storing block data in separate structures,
e.g. as in g2o. The layout itself is based on the CSR format, with each block row
consisting of a starting row, number of rows in the block and the list of blocks
in that row, each block being a pair of block column index and offset to the dense
block data. This structure can be seen in more detail in Listing 4.2. Basic operations

such as matrix-vector products, scalar products and conversion to triplet form are
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Table 4.1: Overview of the state-of the art NLS solver data structures. Note that the linear
solvers marked by dagger' require data conversion from the NLS solver internal

storage format.

NLS Solver Storage format Linear solver
TORO custom stochastic gradient descent
iSAM modified CSC sparse QRT

HOG-Man | graphical structure sparse Cholesky
sSBA hybrid sparse block sparse Cholesky '

SPA hybrid sparse block sparse Cholesky

§20 custom sparse block | sparse Cholesky' or CG
iSAM2 Bayes tree variable elimination
Ceres custom sparse block | sparse Cholesky' or CG

available. Although Ceres contains interface for general block matrices (dense or

sparse), the sparse block matrix does not implement it.

4.9 PART SUMMARY

Chapter 2 contains a brief introduction into nonlinear least squares methods and
their extensions, the problems those methods are applicable or have been tradi-
tionally applied to and some of the state of the art solvers. A strong focus is on
data structures: the problems discussed here are all sparse, with non-trivial spar-
sity patterns and the choice of the data representation affects the algorithms and
ultimately the efficiency of the solution. Chapter 3 discusses the standard formats
for storing and manipulating sparse matrices.

Sparse matrices are often used in the implementations described in this chapter,
as representing the problems by dense matrices would bring significant compu-
tational overhead and would quickly become impractical. Standard libraries for
elementwise sparse matrices are popular, with Tim Davis’ SuiteSparse being used
notably often (10 out of 24 projects in the OpenSLAM? repository use it, Google’s
Ceres solver does as well).

This might well be due to the simplicity of its interface. E.g. rather than calling it
by its BLAS designation dcscgemm, the matrix-matrix multiplication routine is called
cs_multiply in CSparse. Also, rather than passing each parameter and array com-

prising a sparse matrix separately (e.g. such function in Intel MKL [59] requires 15

2http://openslam.org — a platform for publishing SLAM implementations
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arguments), it wraps sparse matrices in an easy to use structure cs (and thus only
requires two arguments — the matrices to be multiplied).

Basic forms of sparse block matrices are used in the existing solvers, although
they are practically always eventually being converted to elementwise sparse ma-
trices for solving, see Table 4.1. Standard formats for sparse block matrices are
not being used and the authors of NLS solvers keep designing custom ones. NIST
Sparse BLAS contains implementations of the routines for VBR format, but to our
best knowledge, it is not being used in any of such solvers in robotics or computer
vision. Admittedly, there is no standard LAPACK library for the VBR format which
would provide matrix factorizations but iterative solvers would still be possible.
Intel MKL does support the BSR format but that is of limited use as it would only
allow solving problems where all the variables have the same dimension.

The common design goals in sparse block storage are:

DENSE BLOCKS: the blocks are stored as dense matrices so that they can be easily
written by the Jacobian function rather than scattered into an elementwise

format. This removes the bottleneck of matrix assembly.

IMMUTABLE ADDRESSES: in an incremental setting, the Jacobian matrix is aug-
mented with new blocks as new observations come in and it can double as a

cache if the addresses of the existing blocks do not change.

INTEGRAL REPRESENTATION: the nonlinear solvers often employ direct meth-
ods and matrix factorizations which are not compatible with split matrix

schemes.

EFFICIENT ARITHMETICS: the current solvers, much to their disadvantage, only
use sparse block matrices as a convenient platform for generation of element-

wise sparse matrices to be passed to the linear solver.

In the following chapters, a new sparse block matrix format meeting this criteria
will be introduced and compared to existing implementations. A suite of arith-
metic routines comparable to CSparse in its extent is also supplied. Even though
the proposed implementation is quite simple and not thoroughly tuned, it yields
considerable performance and a simple NLS solver using this format easily outper-

forms the other state of the art solvers.
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Part II

SLAM ++ THE SPARSE BLOCK MATRIX SOLVER

This part introduces a new sparse block matrix format proposed in this
thesis. An efficient implementation of arithmetic routines for this new
format is described as well. A simple nonlinear least squares solver, us-
ing this format at its core, is introduced and compared to the state of
the art solvers. More efficient and novel methods for incremental solv-
ing and covariance recovery based on the block matrices are proposed

as well.
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Many applications ranging from physics, computer graphics, computer vision to
robotics rely on efficiently solving large nonlinear systems of equations, as illus-
trated in the previous chapter. In the case of using a Gauss-Newton-like algorithm,
the solution can be approximated by iteratively solving a series of linearized prob-
lems. In some applications, the size of the system can be considerably large. The
most computationally demanding part is to assemble and solve the linearized sys-
tem at each iteration. This chapter shows solutions that exploit both, the block
structure and the sparsity of the corresponding matrices and offers very efficient
methods to manipulate, assemble and perform arithmetic operations on them.

A block matrix is a matrix which is interpreted as partitioned into sections called
blocks that can be manipulated at once. A matrix is called sparse if many of its en-
tries are zero. Considering both, the block structure and the sparsity of the matrices
can bring important advantages in terms of storage and operations.

The block matrices can be more or less permissive as to the shape and place-
ment of the dense blocks. From the algorithmic point of view, the blocks can be
overlapping or non-overlapping and at the same time aligned or unaligned. Note
that any of the first three combinations can be converted to the fourth — aligned,
non-overlapping — by fragmenting the blocks as needed and summing up the re-
maining fully overlapping blocks, as illustrated in Figure 5.1. The only downside is
that in some cases, the fragmentation can leave many 1 x 1 blocks behind or even

yield an elementwise sparse matrix.
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Figure 5.1: Block placements in sparse block matrices: a) unaligned block matrix with four
blocks, two of which overlap, b) aligned block matrix — the unaligned blocks
were fragmented (now there are 8 blocks two of which still overlap), c) un-
aligned with the overlapping blocks fragmented and fused (total of 5 blocks)
and d) aligned non-overlapping block matrix (7 blocks).
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Figure 5.2: Relation of expressions on block and elementwise sparse matrices: a) aligned
non-overlapping block matrix and b) a structurally equivalent elementwise

sparse matrix.

An overlapping block matrix may be obtained e.g. by a procedure for find-
ing block structure in general sparse matrices which aims at covering all matrix
nonzeros by the minimum number of blocks possible, see e.g. Figure 1.1c or Fig-
ure 5.1a. Unaligned block matrices (Figure 1.1b or Figure 5.1c) arise naturally e.g.
in LOTs [30, 31] in image processing, where each two adjacent blocks overlap in
order to avoid discontinuities in the processed image.

Assuming aligned, non-overlapping matrices has its benefits. Each block of the
matrix can be treated as a (scalar) variable in an ordinary (elementwise) sparse
matrix and formulas applicable to the elements can be automatically extended
to blocks (see Figure 5.2), with the difference that scalar operations become opera-
tions on matrices: addition becomes elementwise addition of the blocks, multiplica-
tion becomes matrix multiplication, division becomes linear solving or backsubsti-
tution in case the blocks are triangular, square root becomes Cholesky factorization.
The only issue is that the blocks interacting in an arithmetic operation must have
compatible dimensions. Fortunately, for most of the matrix algorithms, only the
blocks in the same block row or block column are interacting and the dimensions
are therefore guaranteed to match.

Similarly, operations taking multiple matrices as input (e.g. matrix addition or
multiplication) can rely on the blocks of the two matrices to be aligned with each
other. This makes the implementation of the arithmetic operations simpler and
faster as only entire blocks interact (rather than the overlapping parts of the blocks
interacting in case the matrices weren’t aligned). In our implementation, it is re-
quired for the matrices to be aligned with each other, or in different words, to have
a compatible block layout.

Using dense blocks is a natural way to minimize cache misses, since the CPU
automatically prefetches the data as they are accessed. Nevertheless, taking care
of the layout of the individual blocks in memory is also very important in order
to avoid cache misses at block boundaries, especially if the blocks are very small.

Finally, the compressed format the blocks are to be stored in, needs to be chosen
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carefully — otherwise the handling of the blocks can easily outweigh the advantages
of cache efficiency.

As seen in Chapter 4, some of the existing state of the art NLS solvers rely
on sparse block structure schemes. In general, the block structure is maintained
until the point of solving the linear system. Here is where e.g. CSparse [41] or
Cholmod [42] libraries are used to perform the matrix factorization.

The advantage of elementwise sparse matrix schemes is that the arithmetic oper-
ations can be performed efficiently. Compressed sparse column (CSC) format [146]
used in CSparse is an efficient way to store the sparse data in memory. The dis-
advantage of this format is its inability or impracticality to change a matrix struc-
turally or numerically once it has been compressed. The block-wise schemes are
complementary, their advantages include both easy numeric and sometimes also
structural matrix modification, at the cost of slight memory overhead and reduced
arithmetic efficiency, speed-wise.

Matrix assembly is a notable bottleneck in many situations: the time needed for
putting the matrix together is comparable to the numerical operations which follow.
The elementwise CSC representation [146] can be as efficient as any block matrix
structure, in case of assembling a set of structurally-different matrices. The NLS
solvers, however, involve operating iteratively on matrices where large portions
of the matrix structure do not change between the iterations. In such case, block
matrix schemes can be very proficient, as they allow for modifying parts of the
block structure as well as efficiently modifying the numeric content.

In this chapter, a fast and cache efficient data structure for sparse block ma-
trix representation is proposed, which combines the advantages of elementwise
and block-wise schemes. It enables simple matrix modification, be it structural or
numerical, while also maintaining, and often even exceeding the speed of element-
wise operations schemes. Another important advantage of the proposed scheme is

the overall robustness of the structure, allowing for validation and error-checking.

5.1 RELATED WORK

Many sparse linear algebra libraries are currently available. They range from
implementations of basic arithmetics routines to complete linear algebra solu-
tions [108, 46, 47, 8, 41, 73]. This chapter describes implementation and evaluation
of matrix operations and storage, and it is particularly focused on matrices having
a block structure. The operations we tackle are the building blocks for any least
squares solver, and the performance of their execution is crucial.

Standard interfaces for various linear algebra packages proved to be very useful

in the past. Perhaps the most used include the three levels of BLAS [108, 46, 47],
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containing simple operations on vectors and matrices, and LAPACK [8], containing
additional factorization functions and other more advanced functionality. These
interfaces were originally proposed for dense matrices only. In time, other imple-
mentations emerged, including implementations for sparse matrices. Few of the
available libraries support sparse block matrix operations, however.

CSparse [41], developed by Tim Davis is one of the most used sparse linear
algebra libraries in robotics and computer vision. It is written in pure C and its
functions are also available through MATLAB interface. It is highly optimized in
terms of run time and memory storage and it is also very easy to use. It implements
most of BLAS and some of LAPACK functionality, it was therefore used as a reference
for comparison with the algorithms proposed in this chapter. As mentioned above,
CSparse stores its matrices in compressed column format which is suitable for
operation on matrices, or in uncompressed coordinate format for simple matrix
specification. Functions to convert between the formats are provided.

NIST Sparse BLAS [29] is also written in C and its source codes are generated
from a set of kernel templates. Although very fast, it only implements a limited
subset of BLAS. Operations, such as product of two sparse matrices, are not imple-
mented. It implements two block matrix storage formats, constant block size (BSR)
and variable block size (VBR) compressed sparse row and also their column-major
alternatives (BSC and VBC). Unlike CSparse, it does not define any structure to store
the matrices nor does it implement functions for conversion between different stor-
age formats. As a result, it is rather difficult to use since the standard sparse block
storage scheme is quite complex. To our best knowledge, it is the only library with
BLAS interface to support the non-trivial VBR block matrices and one of a few to
support them at all.

Sparskit [146] is a sparse matrix package written in Fortran. It has many matrix
conversion routines, including conversions between CSR, BSR and VBR. It imple-
ments matrix-vector product for the VBR format and routines for finding block par-
titioning of a matrix. Interestingly, it does not implement routines for the simpler
BSR format.

Intel Math Kernel Library (MKL) [59] is a closed-source dense and sparse BLAS
and LAPACK implementation. It features C and Fortran interfaces and supports lev-
els 2 and 3 functions for single block size (BSR) matrices. It also has other features
such as Fast Fourier Transform, random number generation and data fitting.

PETsc [12] is library for scientific computation which includes support for sparse
block matrices. It supports matrices in the single block size BSR format. It contains
implementations of both direct and iterative solvers. It can use UMFPack [40] or
Cholmod as back-ends.

As such, the BSR-only libraries are of limited use to applications with only single

variable sizes. Sometimes it is possible to express a block matrix with different
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block sizes as a sum of matrices with a single block size (often referred to as
splitting [168, 139, 65]), e.g. for the CG solvers which only require matrix - vector
product. For direct solvers, one option is to append the blocks with identity matri-
ces in order for all the blocks to be of the same size but this naturally comes with
performance penalties.

Bulug et al. [23] introduces a novel orientation-agnostic block matrix format (it
is neither row- or column-major). It is called compressed sparse blocks (CSB) and
works by partitioning the matrix to single size square blocks. The data of each
block are represented in a coordinate format with reduced number of bits for row
and column indices (since the blocks are small) and the data of all the blocks are se-
rialized into three contiguous arrays. The blocks uniformly cover the entire matrix
and one more array of pointers to the first element of each block is required. The
blocks can therefore be accessed at random with the only disadvantage that com-
pletely zero blocks still have their pointer (although it points to an empty range of
elements) so choosing very small block size becomes inefficient. The best perfor-
mance was observed with block size of about 4096. Essentially while BSR stores a
sparse collection of dense blocks, CSB stores dense collection of sparse blocks. The
nonzero elements in each block should be ordered by Z-Morton ordering for bet-
ter performance. While the serial performance of CSB is comparable to CSR, it gains
higher performance rates in parallel processing, likely due to being more ordered
and requiring lower bandwidth for the element indices.

Vuduc and Moon [175] describe a different kind of a block matrix format based
on CSR. They call the new format unaligned block compressed sparse row (UBCSR).
This format relaxes the alignment requirements of the BSR with the aim to reduce
the zero fill-in caused by blocking. Additionally, they split the matrices with mul-
tiple block sizes. For conversion from CSR, the approximate block structure is first
found and the matrix is converted to a VBR format. This is then split to several
BSR matrices and finally the zero fill-in is reduced by un-aligning the blocks. This
reduces both runtime and storage. The authors implement sparse matrix - vector
multiply and gain about 2x speedups compared to CSR.

g20 [106] (also see Section 4.6) is a library for solving NLS problems on graph-
ical models. It contains an implementation of block matrix storage and supports
a limited set of operations on it, essentially the matrix-vector and matrix-matrix
products to be able to implement Schur and CG solvers. The block matrices in
g20 are stored in block column-major order with the blocks of each column in a
separate associative array (std: :map in C++). This particular implementation of as-
sociative array guarantees immutable address of the blocks. g20 leverages this by
storing pointers to the blocks in the corresponding graph factor objects (those gen-
erate the block values), eliminating repeated lookup. At the same time, std: :map

is implemented using a red-black tree, making the insertion of new blocks po-
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tentially expensive and requiring multiple non-consecutive memory indirections
upon lookup, increasing the likelihood of cache misses.

Ceres-solver [3] (also Section 4.8) is a library for solving NLS and regression
problems. It is very popular since it is used at Google to estimate the pose of Street
View cars, aircrafts, and satellites; to build 3D models for PhotoTours; to estimate
satellite image sensor characteristics, and more. Ceres-solver uses CSparse for most
of the linear algebra operations. It contains an internal implementation of block
matrix storage and supports a limited set of operations on it, essentially the matrix-
vector product. This block matrix functionality is not exported by the library, and
is not supposed to be employed by the users. The block matrices in Ceres are
stored in a way, similar to the scheme described here’, but their implementation
does not allow for matrix modification and every time the block matrix changes
structurally, it needs to be rebuilt. This is a major drawback for the iterative or
incremental nonlinear solvers as a significant amount of time is lost in rebuilding
the system matrix at every iteration. In one of the recent releases, Ceres adds
support for split block matrices with the aim to handle problems with two types
of variables, such as BA or 5fM, where the block sizes can be chosen from a prepared
list of specializations®. Those are however generated by an external Python script,

making it somewhat difficult to use.

5.2 PROPOSED IMPLEMENTATION

When dealing with matrices with a block structure, operating on dense blocks is
a natural way to support vectorization and improve cache efficiency without any
additional effort. Note that this only holds for SIMD type processors, and likely
would not be practical for true vector processors, such as Cray machines, where
interleaved block storage would be more beneficial. On the other hand, the use
of dense blocks allows efficient data representation at their natural granularity,
making it simple to reference the data inside the matrix and change their value
when it is needed.

In the g20 block matrix implementation, the blocks are allocated on the heap,
and it can not be guaranteed that the blocks are allocated in close memory lo-
cations. If the blocks are allocated in distant memory locations, cache misses still
occur. In the Ceres implementation, the blocks are allocated in a linear array which

would necessitate reallocation and data copying when incrementally adding new

! The representation described in here was developed independently, before Ceres was made public.

2 This is not listed in the release notes as this functionality is hidden from the end user. Although no
credit is given, this could well be an impact of one of our publications in this direction [PSI* 13b,
PIS13a, PIS* 13b].
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Figure 5.3: Block row / column layout of a block matrix. a) An example of a sparse block
matrix and the actual values of the cumulative block sum (on top and left side).
Non-zero dense blocks are shown in violet. Yellow shows null rows/columns.
b) Dense block data in segregate storage. On the bottom, we show the block
column layout and the corresponding sorted list of pairs of type (iRL, pDB),
where iRL is the index of the row layout, and pDB is the pointer to the block

data in the memory.

blocks to the matrix. It also uses element offsets rather than pointers, perhaps to
avoid pointer arithmetics in reallocation but then pointer arithmetics is required
every time when referencing the blocks. Additionally, Ceres does not align the
memory, necessitating the use of slower unaligned SIMD instructions. To alleviate
those problems, the proposed implementation allocates block memory in pages,
which guarantees that the blocks are stored tightly next to each other while also
allowing more blocks to be added without requiring to copy or shift the data.

The arithmetic efficiency of block matrices is mostly reduced, compared to ele-
mentwise sparse matrices, which might come as a surprise. That is because two
or three extra inner loop counters for element rows and columns of the blocks are
needed. This reduces the ratio of the arithmetics to flow control instructions.

Fortunately, in the least square problems the size of the blocks corresponds to
the number of Degrees of Freedom of the variables. The possible block sizes of
a given problem are therefore known in advance, at compile time. It is possible
to use this information to hint the individual operations on matrices with lists of
possible block sizes occurring in the operands. The proposed implementation is

able to elegantly take advantage of this information using metaprogramming.

5.2.1 The Data Structure

In general, a vast majority of the existing block matrix schemes, including the pro-

posed one, involves the same data layout as CSC representation (or an equivalent
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one), but use more complex data structures to allow changes to the matrix struc-
ture which is useful especially in the context of incremental solving. For example,
in the existing implementations [3, 105, 106] described in the previous section, trees
or other higher abstract data types are used.

In the proposed block matrix implementation, block row and block column lay-
outs are described using the same cumulative sum structure, as seen in Figure 5.3a
on the top and left edge of the matrix. The columns structure additionally contains
the lists of non-zero matrix blocks, each comprising of a row index and a pointer

to matrix data.

Listing 5.1: The SLAM ++ sparse iiber block matrix format (C++; the constructors and

member functions omitted).

1: class CUberBlockMatrix {

2: public:

3: struct TRow { // a block row

4: size_t n_height; // height of the row. in elements

5: size_t n_cumulative_height_sum; // position of the block row
6: ¥

7

8: struct TColumn { // a block column

9: typedef std::pair<size_t, doublex> TBlockEntry; // one block entry
10:

11: size_t n_width; // width of the column. in elements

12: size_t n_cumulative_width_sum; // position of the block column
13: std::vector<TBlockEntry> block_list; // list of blocks

14: b

15:

16: typedef forward_allocated_pool<double, PAGE_SIZE,

17: MEM_ALIGNMENT> _TyPool; // data storage type

18:

19: // [constructors and operations on block matrices]

20:

21: protected:

22: size_t m_n_row_num; // number of matrix rows, in elements

23: size_t m_n_col_num; // number of matrix columns, in elements

24: std::vector<TRow> m_block_rows_list; // list of sizes of blocks rows
25: std::vector<TColumn> m_block_cols_list; // list of block columns

26:

27 _TyPool m_data_pool; // data storage for matrix elements

28: size_t m_n_ref_elem_num; // num. of referenced elements (shallow copy)
20: };

The elements themselves are stored in forward-allocated segregated storage (see

Figure 5.3b), a storage model similar to a pool but only permitting allocation and
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de-allocation of elements from the end of the storage, in the same manner stacks
do. This yields fast allocation and improves cache coherence. The C++ declaration
of the complete data structure can be seen in Listing 5.1.

The choice of a sorted list over e.g. a tree structure is given by the nature of
matrix usage. When iteratively solving an NLS problem, the block columns or block
rows are created once and used (referenced) many times. This reflects the nature
of a sorted list where insertion is costly (except for the insertion at, or near the end)
but lookup is fast. At the same time the flat structure is cache friendly, allowing for
fast iteration over the matrix data in arithmetics operations. Tree structures have
more balanced insertion and lookup costs, but since the nodes of a tree are typically
allocated on the heap, cache misses are potentially incurred at every lookup. Also,
traversal of all the nodes of the tree can be non-trivial.

To allow for the acceleration using vectorization by the SIMD instructions and
to make hardware implementations easier, the blocks should be memory-aligned.
E.g. for SsE, the addresses of the first element of each block need to be an integer
multiple of 64 bytes. Similarly, GPUs require so-called read coalescing which corre-
sponds to alignment to 128 byte boundaries. It is possible in the proposed format
to leave out unused entries so that each block is aligned (the pages are allocated
aligned so that the first block is always aligned). In some cases, small blocks need
not be aligned to save memory because vectorization would not be applied in such
case (e.g. 1 x 1 blocks for SSE).

In order to enable the unusually fast O(1) block lookup in arithmetic operations
and also to facilitate error checking for incorrectly placed blocks, one important
restriction on block and column layouts must be applied. The whole area of the
matrix needs to be represented, which means that the layout of null block rows and
columns needs to be represented as well. Those are marked in yellow in Figure 5.3a
and their representation is shown in Figure 5.3b where the fifth and sixth fields in
the block column layout are empty and similarly the block row 5 is not referenced
by any of the blocks.

This contrasts with the usual sparse block matrix representations, which only
describe the layout of nonzero blocks without caring about the null elements in be-
tween. It comes at the cost of small increase in memory requirements, but only for
the layout itself, not for the data. If ny, and my, are the number of block rows and
columns, respectively, up to O(mp + ny +2) additional cumulative sums are stored
in the worst case. These describe the layout of null block rows and columns. This
assumes no null space fragmentation which indeed does not occur in our imple-
mentation. The exact amount of required extra memory depends on the positions
of the nonzero blocks in the matrix. Please note that for the structurally full-rank
matrices in NLS problems there are no such null columns or rows, therefore, no

extra space requirements apply.
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5.2.2  Sparse Block Matrix Assembly

In order to write (scatter) a block into a matrix, the block column and block row
need to be resolved first. Adding a new block row or column inside the matrix
area, or alternatively reusing or subdividing an existing one is a logarithmic time
operation. However, incrementally appending the matrix with blocks to or after the
last block row or column is a constant time operation, as it only needs to determine
whether to create a new block row or column at the end, or to use an existing one.
This is a basic operation but frequently used in the context of incremental solvers
where the system matrix grows every step.

In order to look a block up by its position given by element coordinates of the
starting row and column, the block row and block column are resolved first in
O(lognp + log my,) time. Then the block needs to be found in the sorted list, taking
additional O(logfy) time (f, being the number of nonzero blocks (the fill) of a
given column; for most sparse matrices f, < my,). This operation can mostly be
avoided by storing a reference to the block after inserting it in the matrix. This is
very useful for updating the system matrices in (2.7) or (2.11) every time a new
linearization point is computed. In this case, the new values of the blocks can
be calculated directly inside the matrix, avoiding data copying or block lookup.
In addition, our implementation allows insertion of block using logical indexing,
where the block position is given by indices of block row and block column. That
avoids the block column and row resolution and only requires to find the block
in a sorted list, taking O(log fy,) time. This feature is useful for applications that
insert many blocks in the same column, and for arithmetic operations which can
operate with logical indexing.

The proposed implementation also allows for making shallow copies of matrices,
where the block data is with the original matrix. That makes it possible to e.g. make
permutation of a matrix using a fill-reducing ordering for factorization without the
need to copy block data or to create triangular views. Any numerical modification
to the original matrix is reflected in its copies. This feature is also vital in the
context of nonlinear incremental solvers because it allows to reuse the permutation

even after the linearization point (and so also the unordered matrix) has changed.

5.2.3 Basic Arithmetic Operations

The arithmetic operations on block matrices are typically carried out in the same
manner as on elementwise sparse matrices, with the exception of handling ma-
trix blocks instead of scalar values. Most of the arithmetic operations require

block lookup at some point. In other existing block matrix implementations, the
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Algorithm 5.1: Naive sparse block matrix multiplication.

1: function NAIVEMULT(A, B)
2: C = NewMarTtrix(Rows(A), Cors(B))

3 for each columnBy, in B do
4 colB = CoLuMNOEF(columnBy;oci )
5 for each blockB in columnBy, do
6: rowB = RowO¥F(blockB)
7 columnAy;,x = FINDCoLuMN(rowB, A) > O(logny)
8 for each blockA in columnAyjyq do
9 rowA = RowOFr(blockA)
10: blockgest = FINDBLOCK(rowA, colB, C)>O(log np-+Hog mp-+Hog fp )
11: blockgest = blockgest + blockA - blockB
12: end for
13: end for
14: end for
15: return C

16: end function

O(lognyp) lookup is used, and an example of the matrix multiplication is given
in Algorithm 5.1. At line 7, an O(logny ) lookup is required to find block column.
Then at line 10, another O(logny +log my, + log fy ) lookup is performed in order
to place a new block in the destination matrix. This algorithm is otherwise effi-
cient in the sense that each loop iteration calculates a single partial product and the
number of iterations thus matches the number of Floating Point Operations (FLOPs)
required by the matrix product at hand.

To improve performance, a function, mapping block rows of B to block columns
of A can be used. Consider Algorithm 5.2: first, note the use of logical indexing
of block rows and block columns by their id (lines 14 and 17), rather than by
their physical position in elements which was used in Algorithm 5.1 (lines 7 and
10). This mapping is calculated as a projection from block rows of the B matrix
to block columns of the A matrix using a modified ordered merge, as detailed
in Algorithm 5.3 (a similar mapping is used also for matrix addition where it is
calculated between row layouts and between column layouts of the matrices being
added). The cost of calculating the mapping function is O(my, + ny, ) in the number
of block rows or block columns. Note that the mapping function needs to be only
calculated once, before the arithmetic operation takes place. Note that the complex-
ity involved is negligible, compared to the complexity of the arithmetic operation
itself. This later allows to replace the logarithmic time lookup of columnAg;,k by
an O(1) lookup. It also enables checking whether the matrix product is defined on

the given block matrices.
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Algorithm 5.2: Fast sparse block matrix multiplication.

1: function FAsTMULT(A, B)
2: C = NewMaATtrix(Rows(A),Cors(B))

3: fmap = BLOCKLAYOUTMAPPING(BLOCKCOLS(A ), BLockRows(B))
4 colBjg =0
5: for each columnBy, in B do
6: for each blockB in columnBy;, do
7: rowB;q4 = RowIpOr(blockB)
8: columnA;q = fimap (rowBiq)
9: if columnA,yq = mismatch then
10: return > block layout mismatch, product not defined
11: else if columnA;q = null then
12: continue > the column in A is mismatched but also empty
13: end if
14: columnAy ok = BLockCoLs(A)[columnA,g] > O(1)
15: for each blockA in columnAy;yq do
16: rowA;qy = RowIpOFr(blockA)
17: blockgest = FINDBLOCKLOG(row A4, colB;g, C) > < O(log fp)
18: blockgest = blockgest + blockA - blockB
19: end for
20: end for
21: colBig + +
22: end for
23: return C

24: end function

Furthermore, insertion of a block only requires insertion into a sorted list which
is up to O(log fv ) but avoids the lookup of block row and block column. For some
types of operands (such as diagonal matrices or symmetric matrices), the order
of the inserted blocks can be anticipated and the O(logfy) time lookup can be
avoided. In our implementation, this is used to optimize matrix products in the
ATA form. In the elementwise sparse matrix multiplication routines [75, 41], a
helper dense vector is employed to accumulate the partial products and the nonze-
ros are then read out in linear time. This approach however produces matrices
where the nonzeros in each column are not ordered by row. Sorting them would
take O(fyp log fy,) time, which is equivalent to performing lookup fy times in up to
O(log fp) time. The proposed algorithm is therefore not much slower.

As mentioned above, the block sizes correspond to the DOF of the variables and,

in general, are known in advance. Using typelists [5] and templates, decision trees
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Algorithm 5.3: Algorithm for Calculating Block Layout Mapping Function.

1: function BrockLavoutMarriNG(a, b)

2:

10:
11
12!
13:
14:
15:
16:
17:
18:
19:
20:

21:

22:
23:
24:
25:
26:
27:

28:
29:
30:
31:
32:

m = S1ze(a), n = Sizg(b)
map, = ZErOS(1, m), map, = Zeros(1,n)
count =0, cumy,gs =0, lastq =0, last, =0, i=0, j =0
whilei <mAj<ndo > merge the two layouts
cumg = BrockBasEg(ali]) + BLockSisE(ali])
cumy, = BLockBasg(b[j]) + BLockS1sg(b[j])
CUMpext = Min(cumg, cumy, )
if cum, = cumpey; then
map  [i] = (lastq = cumyyg)? count : mismatch
last, = cumpext
i++
end if
if cumyp = cumypey then
map,, [j] = (last, = cumy,g)? count : mismatch
lasty, = cumpext
j++
end if
CUMast = CUMpext
count + +

end while

invy, = ReEpmAT(null, 1, count) > make a vector of count “null” symbols
fori=0tom—1do
if map  [i] # mismatch then
invg[map fill =1 > invert permutation map
end if

end for

fmap = ZEROS(1, 1)
fori=0ton—1do
fmap (il = (mapy [i] # mismatch)? invq[mapy [i]] : mismatch
end for > compose permutations

return fp,p

33: end function

are built at compile time that later at runtime enable the use of dense kernels

generated for a given block size. This allows for optimization using loop unrolling
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and vectorization at the block level, e.g. in Algorithm 5.2 at line 18. It can be easily
shown that if log, of the number of possible block sizes is smaller than the average
block size, the resulting code will contain less branching and thus will run faster.
Note that in the proposed C++ implementation, this functionality is accessible
using simple and easy to read syntax where the list of block sizes is passed to each
individual matrix operation call in angled brackets. It would also be possible to
restrict certain types or instances of matrices to only contain blocks of specified
sizes, but such solution was seen as less versatile, and was not implemented. The

implementation details are described in Appendix A.

5.2.4 Sparse Block Matrix Factorizations

An indispensable tool for solving linear systems, most of the matrix factorizations
borrow from, is Gaussian elimination. Gaussian elimination modifies a matrix into
its upper-triangular form by performing linear combinations of rows and at the
same time modifies the right-hand side. The solution of a triangular system is
easily found by backsubstitution: the last variable does not depend on any other
and the solution is a simple ratio. The second last variable depends only on the
last but now that it is known, it can be substituted to get a simple linear equation.
The rest of the variables are solved for in similar manner, proceeding backwards,
from the right to the left — hence the name back-substitution.

An important problem in Gaussian elimination (and most of matrix factoriza-
tions in general), is stability: the elimination involves division by the diagonal
element (a pivot). If this division is by a small number, numerical issues ensue. A

simple example might be the following matrix:

e 1

10

(5-1)

Eliminating the 1 to get the matrix into the upper-triangular form requires division
by a small quantity e which will in turn amplify roundoff errors. A simple solution
is to swap the rows first (and equally swap the rows of the right hand side). This
process is called pivoting. The pivot can be chosen as the element of maximum
magnitude, either only from the current column (partial pivoting) or from the
lower-right submatrix that was not eliminated yet (full pivoting). Full pivoting is
understandably slower but typically leads to more numerically robust algorithms.

One disadvantage of Gaussian elimination becomes apparent in solving multi-
ple right-hand sides: although the right hand sides can be modified by the row
operations simultaneously, a problem appears if not all the right hand sides are

available at the same time. It is possible to gather the row operations in a matrix
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instead which can later be used to multiply each right hand side and apply those
operations to it. Enter matrix factorizations.

Cholesky factorization is a decomposition of a symmetric positive-definite ma-
trix A to a product? RT R. Matrices involved in normal equations of NLS are positive-
definite and thus Cholesky factorization is a popular method. To solve a system
of linear equations in the form Ax = b, one first solves R'y = b and then Rx = y
by forward- and back-substitution. Blocking Cholesky factorization is popular in
dense linear algebra and is implemented e.g. in Eigen [73] but to our best knowl-
edge, our sparse block Cholesky implementation is the first of its kind.

Due to symmetry, Cholesky factorization can be row-wise or column-wise. Addi-
tionally, the order of elimination can produce a row (a column) at a time (gather),
or can modify the whole submatrix (scatter). These two cases are illustrated in
Algorithm 5.4, functions CoLuMNCHOL and SUBMATRIXCHOL (note that the RmoD
function is a row-vise variant of cMoD from line 7 and was omitted to save space),
respectively. Those modify the matrix and calculate the factorization in-place. An
appealing property of Cholesky factorization is that no pivoting is needed.

In the sparse case, the order of operation is typically given by the underlying
format. Since the proposed block format is derived from CSC, the CoLumN-CHOL
is taken as the starting point. Implementing cp1v is trivial, with the exception
that the loop is over nonzero blocks and the square root (line 2) becomes dense
Cholesky decomposition and the division (line 4) becomes back-substitution with
multiple right hand sides. Implementing cMOD involves some more trickery: the
dot product of the two columns (line 9) becomes /\iT,k -/Ay; and needs to be re-
solved efficiently. Due to the sparsity, not all the columns will have blocks at the
same positions so their contribution would be zero. Choosing the columns k that
modify the current column j can be done efficiently using the elimination tree
structure [41], a tree of variable dependences. To find the elements at the same row
in the two columns, it is possible to employ a dense vector for the j*™ column, in
the style of CSparse. For the block case, this could cost quite a lot of additional
storage therefore a different strategy using ordered merge (which runs in linear
time) is employed.

In sparse decompositions, a different notion of blocking is sometimes used. In

some cases, several consecutive columns in the factorization will have the same

3Or alternatively as A = LLT where L £ R'. In this work, upper-triangular matrices are preferred,
as most of the Cholesky factorization routines, including Cholmod, read only the upper-triangular
part of the matrix and there seems to be some integrity in also writing an upper-triangular out-
put. Additionally, for ATA =A and A = QR (where Q is orthogonal), it can be shown by writing
ATA =RTQT QR = R'R that this R matrix is the same one as in the Cholesky factorization, up to the
sign of the rows (Cholesky will always have positive diagonal entries). This choice of R over L is not

motivated by any political or occult preferences.

61



62

SLAM ++ BLOCK MATRIX DESIGN

Algorithm 5.4: Two Dense Cholesky Factorization Algorithms.

Require: That A is a symmetric, positive-definite n x n matrix

1: function coiv(k, A) > Column k divided by the square root of the pivot.

2: /\k,k = 4/ Ak,k

3 fori=0tok—1do
4: Ak = AN /Nx
5 end for

6: end function

7: function cMoD(j, k, A) > Column j modified by a preceding column k (j > k).

8: fori=0tok—1do

9: Axj = Ay — Ak - Aij > Gather (cmop for L would scatter).
10: end for

11: end function

12: function CoLuMNCHOL(A, n)

13: forj=0ton—1do

14: fork =0tojdo > Left-looking, inclusive.
15: cmop(j, k, A) > Gather contributions of the preceding columns.
16: end for

17: cp1v(j, A) > Finalize the current column.
18: end for

19: end function

20: function SUBMATRIXCHOL(A, 1)

21: fork=0ton—1do

22: cprv(k, A)

23: forj=k+Tton—1do > Right-looking, exclusive.
24: rRMOD(j, k, A, n) > Scatter contributions from the current row.
25: end for

26: end for

27: end function

sparsity pattern, forming a dense block around the diagonal. This is commonly
referred to as a supernode. While the proposed implementation and e.g. the one in
CSparse are simplical, Cholmod implements a supernodal factorization [33] which
identifies these supernodes and uses dense kernels to speed the computation up.
It would similarly be possible to identify block-supernodes in the block structure

of the factorized matrix but its implementation was not attempted.
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Another observation to be made about cmoD is that it can introduce new non-
zero entries: for two columns j and k which have nonzero values in the same row
above the diagonal, Ry ; will be nonzero (ignoring possible numerical cancellation).
This is commonly referred to as fill-in. The speed of the sparse factorization can be

severely affected by the fill-in. A classical example is an arrow matrix:

21 11 00 01 2 0 01
1200 1000 o 0 201

A = , P = ,PPAP = (5.2)
1020 0100 0 0 21
100 2 0010 T 11 2

The Cholesky factorization of such A will be a full matrix (all the columns share
nonzeros in the first row). However, an appropriate permutation P of the original
system of equations can be employed, yielding no fill-in at all in the factorization
of PTAP. This requires the right-hand side vector (and the solution vector) to be
permuted (inversely permuted) as well but that presents a negligible cost. Note
that the permutation is rarely represented as a matrix in practice, rather it is repre-
sented as a vector of variable number reassignments (in this case p = (3,0, 1, 2)).

Finding the best fill-reducing permutation is an NP-complete problem [177],
however many approximate algorithms are available. Based on the observation that
the fill-in only occurs under the highest element of each column, initially the or-
derings strived to reduce the matrix profile or bandwidth, [66, 156, 58, 53], notably
Reverse Cuthill-McKee (RCM) [37]. Later, orderings based on the elimination graph
were proposed such as Exact Minimum Degree (EMD) and its modifications [112],
Approximate Minimum Degree (AMD) [7] or Nested Dissection [64].

The ordering can be done on the level of elements (customary in sparse lin-
ear algebra) or on the level of blocks. The proposed implementation depends on
the ordering of the block structure, otherwise the elementwise permutation could
scatter the block structure completely. On the other hand, the block structure is
represented by a much smaller matrix and the ordering heuristics thus run faster.
At the same time, the quality of such ordering is comparable to the conventional

one if not better [98].

5.2.5 Pivoting Sparse Block Matrix Factorizations

The major advantage of the Cholesky factorization is that it does not require piv-
oting — other factorizations are usually not numerically stable without one. This
presents a serious issue in the context of sparse matrices if the pivoting is oblivious
to the fill-in it causes, which in turn can present a significant explosion in space

and complexity, as well as additional source of numerical problems. A related issue
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in sparse block schemes is again the shattering of the block structure. This can be
solved using threshold pivoting [152, 40] — a different pivot than the one proposed
by the fill-reducing ordering is only used if it is of much larger magnitude, as de-
fined by the threshold. Choosing a small threshold leads to pivoting for numerical

stability while choosing a large threshold leads to pivoting for sparseness.

Threshold pivoting can still lead to large fill-in though. For instance, a Chol-
esky factorization of a 174,515 x 174,515 symmetric positive-definite matrix with
9,363,966 nonzero entries (a 3D reconstruction problem*) takes about 74 MB. How-
ever, LU factorization of the same matrix takes over 15 GB, due to less fortunate
pivoting choices. This problem appeared when analyzing eigenvalues of the said

matrix in R, using the rARPACK package>.

Applying the block structure to pivoting can lead to significant advantages,
however. The pivot can only be chosen within the current block given by the fill-
reducing ordering, which guarantees no changes in the sparsity pattern and thus
no unexpected fill-in would occur. Since this can still lead to sub-optimal pivots
in some rare cases, a different block can be chosen. Fortunately, to detect a sub-
optimal pivot, only the diagonal block needs to be factorized, without modifying
the off-diagonal entries, which presents a relatively small or even constant cost.
If the factorization of the diagonal block fails, another block is chosen as the piv-
otal one, and at that point fill-in may occur. This fill-in is comparable to the one
caused by the elementwise threshold pivoting algorithm. If no pivotal block is vi-
able, the factorization could choose to either fail or to shatter the block structure

and continue with elementwise pivoting.

5.3 PERFORMANCE ANALYSIS

In this section, the timing results for several matrix operations performed using the
proposed implementation are compared to similar state of the art implementations
such as CSparse, Ceres and NIST Sparse BLAS. NIST implementation can store
matrices in several formats. CSR is a compressed sparse row elementwise format,
similar to the one used in CSparse. BSR denotes constant block size compressed
block row format, and is a simple block matrix format where all the blocks have the
same size. Finally, VBR denotes variable block size compressed block row format,
which is an extension of BSR where the individual blocks can have arbitrary size.
This format is the most general, and is equivalent to the one used in Ceres and

by the proposed solution. The proposed implementation is denoted as UBlock (as

4 The Guildford Cathedral dataset from http://cvssp.org/impart/

5http://cran.r-project.org/package=rARPACK
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Figure 5.4: Time for compression of the MCCA matrix (smaller is better).

per Listing 5.1), and the version with metaprogramming optimization is denoted
UBlock FBs (fixed block size) or “UB. FBS” for short.

All the tests were performed on a computer with Intel Core i5 CPU 661 running
at 3.33 GHz and 4 GB of RAM. This is a quad-core CPU without hyperthreading
and with full SSE instruction set support. During the tests, the computer was not
running any time-consuming processes in the background. Each test was run ten
times and the average time was calculated in order to avoid measurement errors,
especially on smaller matrices. The computer was running Ubuntu 11.10 (64 bit)
and all the tested libraries were compiled using g++ version 4.6.1.

The evaluation was performed on a subset of the The University of Florida
Sparse Matrix Collection [39]. This collection was chosen because it contains sparse
matrices corresponding to a diverse set of problems, and as such it is suitable for
testing of general purpose linear algebra implementations. Note that the goal of
this benchmark was to ascertain the performance scaling and for that reason, only
the structure of the matrices was used. In the tests, each nonzero element was
assumed to be a block of size given by each particular test configuration. As the
speed of blockwise operations depends on block size, the block size was varied
from 1 x 1 to 30 x 30 elements. Note that these benchmarks are synthetic, but still
highly relevant in the context of problems with naturally occurring block structure,
such as (but not limited to) NLS, FEM or PDE.

Several matrices were selected for comparison. In particular, the MCCA matrix
from the Harwell-Boeing [52] collection, a relatively small matrix of 180 x 180 ele-
ments containing 2659 nonzero entries was used for the comparison with the NIST

implementation. This matrix was selected because the authors already performed
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Figure 5.5: Performance scaling of general matrix vector product on the MCCA matrix.

experimental evaluation [29] on it. Since the NIST BLAS is not widely used, this lim-
ited comparison should be sufficient. For the rest of the evaluations, 200 matrices
from The University of Florida Sparse Matrix Collection were chosen randomly.

A comparison of the time required to compress a sparse matrix using CSparse,
Ceres and our implementation is shown in Figure 5.4. The NIST implementation is
missing from the plot because their library does not provide compression routines.
Note that CSparse time is directly dependent on the number of matrix nonzero
elements. The block schemes become more efficient as the block size grows; our
implementation becomes the fastest for 6 x 6 blocks (or larger).

Similarly, Figure 5.5 shows the time comparison for the general matrix vector
product operation. For 1 x 1 blocks, CSparse is faster than every other implemen-
tation, except for the NIST elementwise implementation and the proposed fixed
block size implementation. Although the NIST elementwise implementation is
very fast and significantly outperforms CSparse, there is only small speedup with
their block matrix formats. For block size 1 x 1, the NIST elementwise sparse imple-
mentation is the fastest. Interestingly enough, the Ceres implementation is slower
than the NIST implementation, approaching NIST performance as the block size
grows. It becomes faster than CSparse for block size 5 x 5. Our general implementa-
tion becomes faster than CSparse for 4 x 4 blocks and is the fastest for 8 x 8 blocks
or larger. However, the proposed fixed block size implementation is always the
fastest, except that the NIST CSR is faster for 1 x 1 blocks (but our implementation
is still slightly ahead of the CSparse library).

An additional benchmark is performed for the operation of addition of the ma-

trix and its transpose. This operation is not particularly important in the context of
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Figure 5.6: Performance scaling of linear combination of the MCCA matrix and its trans-

pose (note that it is a square, nonsymmetric matrix).

nonlinear solvers, but due to its arithmetic simplicity it is sensitive to efficient data
manipulation. Since the MCCA matrix is not structurally symmetric, the result of
this operation has a different nonzero pattern than the operands. That can be ex-
pected in most matrix addition situations, therefore it serves as a valid benchmark.
The results can be seen in Figure 5.6. Note that the time spikes of the proposed im-
plementation, especially on the fixed-block-size version, are caused by the compiler
being able to generate more optimized code for blocks of sizes that are multiples
of four, since the SSE registers store four values.

Multiplication benchmark in Figure 5.7 displays similar behavior. Note that the
gap between elementwise sparse and blockwise sparse implementation gets very
wide as the block size increases. On the other hand, most of the popular nonlinear
least squares problems will likely only use blocks up to no more than 10 x 10. On
the other hand, problems from the field of the computational chemistry may use
even larger blocks. Still, it is fast enough to outperform even elementwise sparse
implementations running on GPU, as will be demonstrated later on.

We also performed cache profiling using the Cachegrind® tool, with the default
settings (64 kB of L1 cache and 6 MB of L2 cache). The benchmark with the MCCA
matrix was run several times in order to identify outliers in Cachegrind results.
The test was run with block size 4 x 4, and confirmed that the proposed storage is
indeed cache efficient. Matrix multiplication had 8.3% L1 cache misses and 16.3%
last level cache misses, compared to CSparse. Similarly, matrix vector multiplica-

tion reduced L1 cache misses down to 14.2% and last level cache misses to 9.45%.

6A part of the Valgrind tool family, see http://www.valgrind.org/info/tools.html#cachegrind.
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Figure 5.7: Performance scaling of the product of the MCCA matrix and its transpose.

Additional benchmarks are shown in Table 5.1, which contains the average run
times on 200 randomly chosen matrices from The University of Florida Sparse
Matrix Collection [39]. The benchmarks involved matrix addition, matrix product,
optimized matrix product for symmetric matrices, matrix - vector product, matrix
compression from sparse values in triplet form, matrix transpose and the triangu-
lar solve operation. Note that some of the above operations could only be executed
on a subset of chosen matrices. It can be seen that for 1 x 1 blocks, CSparse is the
fastest, except for the triangular solve operation. Otherwise the proposed imple-
mentation consistently yields better times, with the fixed block size optimization
being faster than the general optimization. The only exception is the compression
benchmark, where Ceres also gets good results. This is understandable as Ceres
does not provide any functionality to change the matrix once it has been com-
pressed, which makes the storage simpler. This is a disadvantage in the context of
incremental iterative solvers, since the system matrix adds a few new blocks at ev-
ery step and it is considerably more efficient to have an option to alter compressed
matrix than to recompress at every step. Also note that the proposed scheme only
accelerates problems with inherent block structure, and is not suitable for general
sparse matrix operations where CSparse is faster.

Cholesky factorization benchmarks are in Table 5.2, which contains the average
run times on 200 other randomly chosen “Cholesky candidate” matrices from The
University of Florida Sparse Matrix Collection [39]. In here, the elementwise and
blockwise factorizations used the same variable ordering (and therefore required
the same amounts of FL.OPs). The block size was varied from 1 x 1 to 6 x 6 (each

block was initialized to the value of the original sparse matrix element and its
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Table 5.1: Timing results on a subset of University of Florida Sparse Matrix Collection [39];

the best times are in bold.

Block Size
1x1 4 x4 5x5 8x8 | 10x10 | 15x15 16 x 16
Operation | Library Time [ms]
) CSparse | 0101 | 1497 | 2574 7.232 | 12.081 | 26.877 | 31.890
Matrix
Add UBlock 0.389 | 0.89 | 1.261 2.747 4.048 7.884 8.934
UB.FBS | 0.198 | 0.586 | 0.939 2.500 3.785 7.438 8.546
. CSparse | 0.672 | 23.079 | 42.608 | 144.294 | 271.700 | 908.861 | 1096.108
Matrix
UBlock | 11.601 | 24.555 | 37.316 | 86.752 | 148.873 | 421.273 | 495.385
Product
UB. FBS | 3330 | 8440 | 20506 | 31.895 | 55.363 | 261.459 | 242.498
AT A UBlock 4.821 | 12.256 | 18.360 | 49.159 | 85.476 | 257.207 | 310.401

Product UB. FBS 4.966 9.014 | 15212 | 24.284 65.773 | 146.110 239.969

CSparse | 0.012 | 0204 | 0.357 1.018 1.550 3.237 3.643

Matrix

Ceres 0.031 | 0.165 | 0.247 0.646 0.992 2.083 2.280
Vector

UBlock 0.028 | 0.148 | 0.238 0.625 0.962 1.890 2.153
Product

UB. FBS | 0.016 | 0.107 | 0.185 0.556 0.931 1.706 1.999

CSparse | 0.037 | 0851 | 1490 | 4.266 6.916 | 15.001 18.480
Compress | Ceres 0.530 | 0.815 | 1.049 2.062 2.906 5.494 6.378
UBlock | 1167 | 1380 | 1487 | 2211 2844 | 5.152 5.767

CSparse | 0.040 | 0787 | 1348 | 4.223 7.080 | 18.625 | 24.474

Transpose

UBlock 0.337 | 0.639 | 0.854 1.629 2497 5.054 5.817
) CSparse | 0.015 | 0.168 | 0.279 0.823 1.305 2.976 3.463
Triangular

UBlock 0.024 | 0.126 | 0.190 0.500 0.752 1.661 1.877
Solve

UB. FBS | 0014 | 0.089 | 0.155 0.455 0.661 1472 1.763

diagonal was multiplied by two to ensure the matrix stays positive definite rather
than becoming semi-definite). The fixed block size version of our implementation
is the fastest for 3 x 3 (which corresponds to 2D problems in robotics) or larger.
The generic implementation requires larger blocks to be efficient and becomes
faster than CSparse for 6 x 6 blocks.

In solving FEM problems and perhaps also in other methods which rely on highly
efficient matrix vector products, an approach called splitting [168, 139, 65] can be
employed. It refers to representing a matrix with blocks of multiple different sizes
as a sum of several matrices, each containing blocks of one particular size. Then,
each of those matrices can be represented using a simpler block matrix format and
loops can be unrolled similarly as in the proposed Fixed Block Size (FBS) approach.

To compare the performance of the splitting approach to the proposed decision tree
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Table 5.2: Timing results of sparse block Cholesky factorization benchmark on a subset of

University of Florida Sparse Matrix Collection [39]; the best times are in bold.

Block Size
Tx1|2%x2|3%x3|4x4|5x5]|6x6

Benchmark | Library | Mode Time [ms]
CSparse 1.233 | 1.850 | 0.765 | 2.065 | 3.034 | 1.166
Cholesky 14910 | 5.601 | 1.244 | 2.617 | 3.314 | 1.084
UBlock
FBS 4.095 | 2.080 | 0.569 | 1.542 | 1.911 | 0.655

(@) (b)

Figure 5.8: The MCCA matrix a) with the elements inflated to blocks of four different sizes
and b) its split form.

approach, one more benchmark was performed. The MCCA matrix was used, and
again its elements were inflated to blocks. In contrast to the previous benchmarks
of performance scaling which used a single block size in the entire matrix, mixtures
of different block sizes were generated. The mean block size was 9 x 9 for all cases,
so that the number of FLOPs would be the same for all the tests. An example for
four different block sizes is given in Figure 5.8. On the right, the matrix is reordered
so that it can be split to four independent matrices, each of which contains only
blocks of a single size. The matrix vector product is then performed separately for
each of the four sub-matrices and the results are summed up.

The results for this benchmark are in Figure 5.9. It can be seen that CSparse has
the same performance for all the tests, since it does not work with blocks at all.
Similarly, NIST BLAS VBR and the proposed scheme denoted UBlock achieve rela-
tively constant performance. Surprisingly, Ceres only achieves good performance
for matrices with a single block size and then drops to the performance of CSparse

and lower, even though it does not optimize for matrices with a single block size.
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Figure 5.9: Comparison of splitting and the variable block size approaches.

The split approach implemented using the BSR format of the NIST BLAS, denoted
Split NIST BSR, achieves slightly higher performance than the VBR format up to 9
block sizes, then it becomes slower. The small yield is given by this implementation
not being able to unroll the loops. The version of the split approach implemented
using the proposed block matrix scheme with the loops unrolled, denoted Split
UBlock FBS, gains much higher performance and always stays ahead of the pro-
posed variable block scheme, although for more than 64 block sizes, it would drop
below. The decision tree approach using the non-split matrix denoted UBlock FBS
achieves better performance than the split one, with the performance decreasing
at lower rate with the growing number of block sizes. The performance hit of the
decision tree version is related to the base 2 logarithm of the number of block
sizes, while the performance hit of the splitting approach is related to the number
of block sizes directly. On top of that, splitting also increases the bandwidth of the
matrix, further increasing memory traffic. Note that for the splitting approaches,

the time needed to reorder and split the matrix is not included in this evaluation.

5.4 CHAPTER SUMMARY

A new implementation for block matrix operations was proposed in this chapter. It
implements highly efficient kernels that are core for Nonlinear Least Squares (NLS)
solvers. We targeted problems that have a particular block structure, where the
size of the blocks corresponds to the number of Degrees of Freedom (DOFs) of the

variables.
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The proposed scheme combines the advantages of block schemes convenient in
both, numeric and structural matrix modification and elementwise, which are effi-
cient in arithmetic operations. It also allows to conveniently restrict possible block
sizes to a defined set (per every instance of matrix operation), at compile time.
This leads to further substantial speedup. The advantage of the new scheme was
demonstrated through comparisons with the existing implementations on a subset
of matrices from University of Florida Sparse Matrix Collection dataset.

Even though the proposed scheme proved to outperform the state of the art
implementations, several improvements from algorithmic point of view can be ap-
plied. Support for special matrix types, such as diagonal or band-diagonal and
symmetric matrices can be provided. Furthermore, some of the block matrix oper-
ations can be efficiently parallelized. The block layout was designed with hardware

acceleration in mind, especially on the GPU.
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In the previous chapter, a fast implementation of operations on sparse block matri-
ces was introduced and its performance was evaluated on more or less synthetic
dataset obtained by “inflating” elementwise sparse matrices into block matrices.
This chapter discusses design of an efficient nonlinear least squares solver based
on the block matrices and evaluates its performance on several well-known SLAM
problems. We refer to gathering all the constraints and variables and calculating
the solution at once as batch solving. In contrast, incremental solving would be first
solving a small part of the problem, then adding some variables and constraints,
solving this larger problem again, and so on. This scenario typically arises in online
robotic applications where a robot is traveling through the environment, gathering
data and at the same time requiring estimates of its position and of the map before
it can plan its next actions.

In robotics, Simultaneous Localization and Mapping (SLAM) is often formulated
as a nonlinear least squares problem. Similar problems such as Structure from
Motion (SfM) in computer vision [55] or elastodynamic simulations in computer
graphics [81] rely on solving large nonlinear systems. Efficient incremental online
algorithms for solving the underlying nonlinear least square problem are essential
in real-time applications. Solving the nonlinear system is usually addressed by iter-
atively solving a sequence of linear systems (as described in Section 2.1). The most
computationally demanding part is to assemble and solve the linearized system at
each iteration.

The linear system can be solved either using direct or iterative methods. Direct
methods, such as Cholesky or QR factorizations, are based on repeatedly factoriz-
ing a large matrix and backsubstitution to obtain the solution. Iterative methods,
such as Conjugate Gradient (CG), on the other hand, employ matrix-vector multi-
plications and iteratively approximate the solution of the linear system. Iterative
methods are more efficient from the storage (memory) point of view, since they
only require access to the gradient, but they can suffer from poor convergence. Di-
rect methods produce more accurate solutions and avoid convergence difficulties
but they typically require a lot of storage as well as efficient elimination orderings
to be found in order to maintain the sparsity of the resulting factors.

In robotics, approaching SLAM as a nonlinear optimization on graphs showed
to provide very efficient solutions to moderate scale and well-behaved SLAM ap-

plications [45, 71, 95, 97, 106]. Graphs allow more natural representation of non-
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linear least squares problems such as SLAM, where a set of variables such as the
robot poses and landmark positions are estimated, given a set of measurement
constraints between those variables. The goal is to find the optimal configura-
tion of the variables that maximally satisfy the set of nonlinear constraints. The
existing methods repeatedly solve a sequence of linear systems in an iterative
Gauss-Newton (GN) or Levenberg-Marquardt (LM) nonlinear solver. Real applica-
tions such as online mapping and localization of a robot in a large area and over
very long period of time require extremely fast methods for building, updating
and solving the sequence of linearized systems. It involves operating on matrices
having a block structure, where the size of the blocks corresponds to the number

of DOF of the variables.

Some of the existing implementations rely on sparse block-structure
schemes [105, 106]. The block structure is maintained until the point of solving
the linear system. Here is where CSparse [41] or Cholmod [42] libraries are used
to perform the matrix factorization. Those are state of the art elementwise imple-

mentation of operations on sparse matrices.

6.1 RELATED WORK

This work focuses on the implementation of nonlinear least square solvers, involv-
ing direct methods. Several successful implementations of graph optimization tech-
niques for SLAM already exist and have been used in robotic applications. In gen-
eral, they are based on similar algorithmic framework, repeatedly applying Chol-
esky or QR factorizations in an iterative Gauss-Newton or Levenberg-Marquardt
nonlinear solver. g20 [106] is an easy to use, open-source implementation which
has been proven to be very fast in batch mode. It exploits the sparse connectivity
and operates on the block-structure of the underlying graph problem. A similar
scheme was initially implemented in SSBA [105] and SPA [104] and it is based
on block-oriented sparse matrix manipulation. Using blocks is a natural way to
minimize cache misses, since the CPU can automatically prefetch the data as they
are accessed. Nevertheless, taking care about the layout of the individual blocks in
the memory is very important, otherwise the overhead of handling the blocks can

easily outweigh the advantage of cache efficiency.

However, in SLAM the state changes every step when new observations need
to be integrated into the system. For very large problems, updating and solv-
ing every step can become very expensive. Incremental smoothing and mapping
(iISAM) allows efficiently solving a nonlinear graph optimization problem in every
step [95]. The implementation incrementally updates the R factor obtained from

the QR factorization and performs backsubstitution to find the solution. The spar-
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sity of the R factor is ensured by periodic reorderings. Recently, the Bayes tree
data-stucture [97, 98] was introduced to enable a better understanding of the link
between sparse matrix factorization and inference in graphical models. The Bayes
tree was applied to obtain iSAM2 [97, 98], which achieves high efficiency through
incremental variable re-ordering and fluid relinearization, eliminating the need for
periodic batch steps. When compared to the existing methods, iISAM2 performance
finds a good balance between efficiency and accuracy. But still the complexity of

maintaining the Bayes tree data structure can introduce several overheads.

The solutions proposed in this chapter aim to improve the above-mentioned im-
plementations, which spend most of the time performing sparse matrix manipula-
tion and arithmetic operations on sparse matrices. Our scheme is general, and can
be easily incorporated into advanced incremental algorithms such as iSAM. Even
iSAM2, which relies on a tree-like data structure, could benefit from the proposed

scheme for the management of the dense blocks in memory.

6.2 INCREMENTAL SLAM

Online robotic applications require fast and accurate methods for the estimation of
the current position of the robot. In an online application, the state is incremented
with a new robot position and/or a new landmark every step and it is updated with
the corresponding measurements. This translates into changing (2.10) by adding
new block columns to the matrix A corresponding to each new variable (e.g. a pose

or a landmark) and new block rows corresponding to each measurement [45]:

R A R b,
A = ,b = , (6.1)
where for the case of a single new measurement, A,, = ]EZE/ and by = — ;/ e

with Ji being the block row of the Jacobian matrix, corresponding to the residual

11 of the measurement function hy (Gik, ij):

ark ark
= 0... 0 =) . 6.
Ji ( 20, aejk> (62)

Note that the additions in (6.1) may require padding A with new zero columns
and b, with new zero rows in case new variables are added. Extension to multiple

new measurements is trivial.

Similarly, for the A matrix in the normal equation (2.11), the increments translate

to adding new block rows and block columns (as A is symmetric) with the size of
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Figure 6.1: The synthetic datasets used in the batch solver evaluations.

(a) Intel (b) Killian Court (c) Victoria Park

Figure 6.2: The real-world datasets used in the batch solver evaluations.

each new variable. Updates translate to (potentially) adding new nonzero entries.

Updating A and 7 is additive:

R ASE! A12 R ul
A = M= , (6.3)

/\Tz N2z +Q N, +w

where like for the A matrix above, Q is the bottom-right section of J| £,/ Jx and
w is the bottom part of —]kZE/ *rc. Also, one can see that A = A+Al A, and
w = Ji by

A batch computation of the solution of the new incremented and updated system
is then performed at every n'" step. Ideally, the estimate is recalculated whenever
new constraints or variables are added, to obtain the most accurate model of the
environment that can be derived from all measurements gathered so far. For very
large problems, batch solving at every step can become very expensive. Kaess et.
al [95, 97, 98] proposed efficient algorithms to incrementally solve the linear sys-
tems. Those algorithmic improvements offer very good solutions to online SLAM
but they are out of scope of this chapter, which focuses on efficiently construct-
ing the system at each iteration and speeding-up the basic arithmetic operations

involved in batch solving.

63 IMPLEMENTATION DETAILS

In order to efficiently cope with very large nonlinear systems, the process of assem-

bling and solving the sequence of linear systems must be as fast as possible. The
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data structure has to allow for both, efficiently re-computing the values of the ma-
trices A or A and the r.h.s. b or n every time a new linearization point is available
as well as efficiently updating the system when new measurements are available
in incremental mode. One important characteristic of those matrices is their sparse
block structure. For maintaining the A matrix, the individual Jacobian blocks Ji
are cached and the data flow of the product AT A is represented in such a way that
it can be incrementally updated as the linearization point is changed.

Operating on dense blocks is a natural way to support vectorization and improve
cache efficiency without any additional effort. Also, the division of the data in
blocks allows efficient data representation at their natural granularity, making it

simple to reference the data inside the matrix and change their value when needed.

64 EXPERIMENTAL EVALUATION

In order to evaluate our new efficient block matrix scheme, two standard graph
SLAM algorithms were implemented; one that builds the linear system in (2.7),
which is denoted allBatch-A and another one that increments the information ma-
trix in (2.11), which is denoted allBatch-A. The timing results were compared to
similar state of the art implementations such as iSAM [95], g20 [106], and SPA [104]
(a 2D SLAM variant of sSBA [105]), which were described in further detail in Chap-
ter 4. For SPA the svn revision 39478 of ROS (http://www.ros.org/) was used;
for g20, svn revision 29 from http://openslam.org/ was used and for iSAM we
used revision 7 from https://svn.csail.mit.edu/isam. Our implementation is
available as open source at http://sf.net/p/slam-plus-plus/.

The implementations were evaluated on five standard simulated datasets; Man-
hattan [137], 10k and 100k [71], City10ok and CityTree1ok [94] and on three real
datasets; Intel [85], Killian Court [21] and Victoria Park [133] (see Figure 6.1 and Fig-
ure 6.2). These are 2D SLAM datasets commonly used in evaluating graph-based
SLAM implementations.

All the tests were performed on a computer with Intel Core i5 CPU 661 running
at 3.33 GHz and 8 GB of RAM, the same machine as in the previous chapter. This is
a quad-core CPU without hyperthreading and with full SSE instruction set support.
Each test was run ten times and the average time was calculated in order to avoid

measurement errors, especially on smaller datasets.

6.4.1 Tested Implementations

All the implementations used for comparisons are based on relatively similar algo-

rithms, both in batch and incremental mode. Gauss-Newton non-linear solver was
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Table 6.1: Time comparisons of the batch solvers (CM refers to Cholmod and CS refers to

CSparse); the best times are in bold.

CS CM CS CM CS CM
Dataset §20 iSAM allBatch-A allBatch-A x?2 (iter.)
Manhattan 0.0614 | 0.0607 1.3641 0.0573 0.0613 | 0.0419 0.0468 6112.18 (5)
10k 0.5539 | 0.5497 2.9518 0.6341 0.6977 | 0.4852 0.5798 | 171545.45 (6)
100k 10.8135 | 9.4181 | 24.9582 | 10.4795 | 12.0097 | 9.2213 | 11.0566 8685.07 (6)
City1ok 0.4855 | 0.4491 1.4207 0.4635 0.5312 | 0.4203 0.4563 31931.41 (6)

CityTr66810k 0.1359 | 0.1391 0.6245 0.1390 0.1469 | 0.0916 | 0.1090 548.50 (5)

Intel 0.0066 | 0.0070 | 0.0356 | 0.0126 | 0.0083 | 0.0052 | 0.0060 559.05 (2)

Killian Court | 0.0084 | 0.0086 | 0.0535 | 0.0090 | 0.0095 | 0.0070 | 0.0075 5-1076(1)
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Figure 6.3: Comparisons of time per vertex in the batch solvers (CM refers to Cholmod and

CS refers to CSparse).

tested in all cases, with the exception of SPA which uses Levenberg-Marquardt
instead. iSAM has the possibility to perform incremental updates to solve at every
step and to perform expensive batch steps only when needed, but for compari-
son purposes we tested only the cases where batch, update and solve are all done
together.

g20 and SPA use their own sparse block matrix implementation. In g2o0, it is
based on a dense vector of trees, where each tree contains blocks for one column.
This allows relatively fast random access to matrix elements, only O(logf) com-
pared to O(lognyp + log f) in our implementation. However, our implementation
always avoids accessing blocks randomly, while in g20 this complexity is enforced

on block lookup in matrix operations, making them slower than both CSparse and
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our implementation. Overall, g20 is optimized for batch processing, but not for

incremental solving.

The good SPA timings come from the fact that their implementation is optimized
for the specific 2D pose adjustment problem (or bundle adjustment problem in case
on sSBA), thus SPA is unable to process datasets with landmarks. In contrast, our

implementation is general, allowing any combination of any block sizes.

The comparison with iSAM technically stands only for incremental every step.
For incremental every 10 or every 100 steps, the other solvers perform state con-
catenation only and possibly also Jacobian computations. While the solution is still
available at each step, the observation errors are only being reduced at every 10t"
or every 100" step, respectively. iSAM, on the other hand, is able to reduce this
error in every step of the algorithm even between the 10" or 100*" ones, using an
approximate Gauss-Newton step which reuses the factorization from the previous
linearization point (which is different from the current one — hence the approxi-
mation). But since the factorization takes most of the time in all the solvers, this

comparison is still relevant.

6.4.2 Discussion of the Results

Timing results for running batch and incremental SLAM are shown in Tables 6.1
and 6.2 and Figures 6.3 and 6.4, respectively. Note that the accompanying figures
show time per vertex, as it was hard to display the radically different times for
all the datasets in a single plot. The Victoria Park dataset is not included in the
batch tests since it does not converge if solved as batch. Similarly, the 100k dataset
is too large to be executed incrementally in reasonable time, and is not included
either. The last column of Table 6.1 reports values of the x? error and the number
of iterations. Those are both the same (or very close in the case of x?) for all
the tested solvers. The number of iterations was dictated by SPA, which does not
allow setting the limit explicitly. In incremental mode, the tests were done using
the linear solver which was the fastest in batch mode (Cholmod in case of g20 and
CSparse in case of our implementation). The incremental results are split in three
parts; solution updated every time a vertex is added, every 10 vertices and every

100 vertices.

Our implementation outperforms all the existing implementations in both batch
and incremental mode. The comparison in batch mode shows a speed up of 10%
when compared to the fastest implementation. This is mainly due to the proposed
block matrix scheme, the algorithm being very similar and the differences in the im-
plementation style cannot cause such large speedups. Note that in this benchmark,

the block Cholesky factorization is not used yet and so the proposed implemen-
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Table 6.2: Time comparisons of the batch solvers running in the incremental mode (CM

refers to Cholmod and CS refers to CSparse); the best times are in bold.

Dataset g20-CM iSAM SPA allBatch-A-CS | allBatch-A-CS
Solve at each step
Manhattan 94.9096 64.5844 | 23.8834 10.8883 10.0038
10k 2134.3000 | 1768.8400 | 515.2880 377.7490 329.1840
City1ok 1326.6600 | 693.7860 | 308.0680 235.7910 222.5930
CityTrees1ok | 659.1590 | 434.7500 N/A 25.2809 22.7070
Intel 5.0513 4.4647 1.4763 0.8829 0.8424
Killian Court 20.8899 19.7519 5.6260 24275 2.1485
Victoria Park | 293.1010 | 209.1740 N/A 30.6333 28.0194

Solve at each 10 steps

Manhattan 9.5326 6.2510 2.5745 2.1462 1.9560
10k 211.2470 | 172.8720 | 62.6485 46.8314 42.0610
City1ok 132.0070 68.5533 | 33.4328 28.8257 26.7019
CityTrees1ok 65.0364 42.7519 N/A 13.2880 12.0940
Intel 0.5245 0.4541 0.1689 0.1336 0.1227
Killian Court 2.1518 1.9473 0.6392 0.3194 0.2794
Victoria Park 29.2946 20.708¢9 N/A 6.0668 5.5461

Solve at each 100 steps

Manhattan 0.9891 0.6142 0.4446 0.3059 0.2853
10k 21.0767 17.0565 | 17.4968 6.2372 5.4294
City1ok 13.3781 6.6846 5.4739 3.4363 3.0175
CityTrees10k 6.4883 4.1876 N/A 1.8136 1.5028
Intel 0.0695 0.0459 0.0371 0.0339 0.0292
Killian Court 0.2443 0.1915 0.1426 0.0904 0.0845
Victoria Park 29323 2.0580 N/A 0.8963 0.7522

tation also needs to resort to converting the block matrix to elementwise one and
passing it to Cholmod or CSparse. The backsubstitution is then also performed
using the elementwise code.

However, observe that there is some imbalance between small speedup in batch
mode and large speedup in incremental mode. This stems from the simple fact that

in batch, the system is only constructed once and most of the time is spent in the
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Figure 6.4: Comparisons of time per vertex in the batch solvers running in incremental
mode (CM refers to Cholmod and CS refers to CSparse).

linear solver. In incremental mode, the block scheme starts paying off as more time
is spent in building and updating the system matrix, especially on large datasets.
Due to the efficient block matrix operations described in Section 5.2, the differ-
ence between allBatch-A and allBatch-A is not very large, as updating A as in (6.3)
with all the measurements is just an incremental version of the AT A product. Of
course, when adding new variables and observations into the system, the upper-
left submatrix of A doesn’t change and in allBatch-A, this computation is saved.
In allBatch-A, AT A must be calculated for the whole matrix, resulting in increased

number of floating-point operations and slightly worse run times.

6.4.3 Block Operations Tests

Beyond the SLAM evaluation, matrix operations benchmarks were also ran on A

and A matrices computed with the corresponding SLAM solution. Times for ele-
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Figure 6.5: Time comparison of sparse block matrix operations performance on SLAM
dataset matrices with 6 x 6 blocks. For the comparison with 3 x 3 blocks, please
see [PSI*13b].

mentary sparse matrix operations, such as compression, transpose, addition and mul-
tiplication were measured. Performance of CSparse [41], g20 [106] and our imple-
mentation were compared. SPA [104] was not included because it’s block matrix
scheme is similar as in g20. iSAM [95] was not included either, since it does not
use any block matrix scheme. The results are shown in Figure 6.5.

Observe that CSparse is very good with matrix compression, since it’s data struc-
ture is the least complicated. But the compression must be performed every time
the system is updated, making CSparse compression effectively slower after two it-
erations. In the other tests, our block matrix implementation outperforms CSparse.
The most of the speedup comes from the use of vectorization. Furthermore, the
block schemes prove to be more cache friendly than elementwise especially in the
case of matrix transposition. In case of g20 [106], matrix transposition and multi-
plication is slower because of the use of the slow O(log f) block lookup, but those
functions are not used in the optimization framework for SLAM (those would be

used for BA or SfM).

6.5 CHAPTER SUMMARY

In Chapter 5, a new implementation of sparse block matrix format and opera-
tions for it were proposed and individually benchmarked on a partially synthetic
dataset. In this chapter, a basic implementation of a nonlinear least squares solver,

operating in batch mode and using this new format, was proposed and compared
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to other state of the art solvers. Simultaneous Localization and Mapping (SLAM)
was chosen as a suitable application, since SLAM has a particular block structure,
where the size of the blocks corresponds to the number of DOF of the variables.
At the same time, it is relatively sparse and tractable using the unextended Gauss-
Newton algorithm.

The proposed scheme combines the advantages of block-wise schemes convenient
in both, numeric and structural matrix modification and elementwise, which allows
efficient arithmetic operation. The advantage of the new scheme was demonstrated
through an exhaustive comparison with the existing implementations in SLAM, on
several publicly available datasets.

Even though the proposed scheme proved to significantly outperform the state
of the art implementations in incremental mode, several improvements from algo-
rithmic point of view can be applied. As already mentioned above, at this point it
is just a batch solver operating in incremental mode. Performing incremental up-
dates directly on the Cholesky factor, applying better ordering strategies (ordering
is important to reduce the fill-in), and changing only the blocks corresponding to

the affected variables should bring larger advantages.
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The previous chapter discussed efficient methods for batch solving and although
it touched the topic of incremental solving briefly, the implementation there did
not really perform any increments and merely resorted to doing many batch steps
of increasing size. While already quite fast, such approach is not very efficient as a
lot of the computation is repeated unnecessarily. That is where the real incremental
methods come in. Same as there, the focus of this chapter will be on solving SLAM
problems efficiently but also precisely.

The challenge appears in online applications, where the state changes every step.
In an online SLAM application, for example, every step the state is incremented with
a new robot pose and with positions of the newly observed landmarks and it is
updated with the corresponding measurements. For very large problems, updating
and solving the nonlinear system at every step can become very expensive. Ev-
ery iteration of the nonlinear solver involves building a new linear system using
the current linearization point, calculating its factorization and solving. In here,
calculating the factorization is typically the most expensive step.

This can be alleviated by changing the linearization point less frequently so that
the factorization is not needed at every step. New variables can be added to the
factorization e.g. using so called rank 1 updates [41, 33]. The solution to the lin-
earized system can then be calculated at any time, using back-substitution (which
runs at a fraction of time needed for the factorization). Although the Jacobian ma-
trix (and so the linearization point) does not correspond to the state, approximate
Gauss-Newton steps can still reduce the error, unless close to an abrupt change
in the derivatives (such as in the vicinity of a singularity). This is essentially the
iSAM algorithm [95], although it uses Q-less QR factorization rather than the Chol-
esky decomposition. It was later reimplemented in an experimental branch of g20"
using Cholmod’s rank updates, with comparable results.

It would seem that the solution is to incrementally update the linear system in
the already factorized form and to perform backsubstitution to compute the solu-
tion. However, there is still one more problem — the fill-in. Merely updating the
factorization with new variables without ever applying a fill-reducing ordering
would quickly lead to a massive fill-in ...and a correspondingly massive slow-

down. In the context of robotics, this happens notoriously with so called loop clo-

1 Can be found at https://github.com/RainerKuemmerle/g2o.
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sures which occur when the robot is returning to a place it has visited before and
begins establishing links between the latest pose and some of the much older ones.
In the matrix form, those links (measurements, observations) typically occupy far
off-diagonal entries under which fill-in occurs.

Conversely, odometric measurements (the other prominent type of measurement
in robotics; no matter whether measured using an odometry sensor, expected from
the control commands to the actuators or calculated e.g. by laser scan matching)
are between the consecutive poses only and can thus be handled relatively easily.

Unfortunately, there is no viable algorithm for performing matrix permutation
once it has been factorized as of yet, so the authors of iSAM [95] settled for periodic
reordering and batch re-factorization. On the other hand, different data structures
were developed later that allow variable reordering in the factorization [98], so
clearly it can be done also in matrices. This is typically done every 10 or every 100
steps in order to compromise between the fill-in rising uncontrollably and between

performing too many batch steps.

The new method introduced in this chapter has the advantage that it adapts to
the size of the updates and performs batch steps only when needed while still
keeping the option to set the frequency of the batch steps. It is based on several op-
timizations of the incremental algorithm. The proposed implementation a) selects
between three types of updates, depending on the size of the the update and the
error b) uses double-constrained ordering by blocks c) performs backsubstitution
by blocks and d) uses efficient block-matrix scheme for storage and arithmetic op-
erations. These optimizations allow for very fast online execution of the algorithm

and provide very accurate solutions at every step.

7.1 RELATED WORK

Several successful implementations of nonlinear least squares optimization tech-
niques for SLAM already exist and have been used in robotic applications. In gen-
eral, they are based on similar algorithmic framework, repeatedly applying Chol-
esky or QR factorizations in an iterative Gauss-Newton or Levenberg-Marquardt
nonlinear solver. g20 [106] is an easy to use, open-source implementation which
has been proven to be very fast in batch mode. It exploits the sparse connectivity
and operates on the block-structure of the underlying graph problem.

A similar scheme was initially implemented in sSBA [105] and SPA [104] and it is
based on block-oriented sparse matrix manipulation. Using blocks is a natural way
to optimize the storage, nevertheless, taking care about the layout of the individual
blocks in the memory is very important, otherwise the overhead of handling the

blocks can easily outweigh the advantage of cache efficiency.
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However, in SLAM the state changes at every step since new observations need
to be integrated into the system. For very large problems, updating and solving ev-
ery step can become very expensive. Incremental smoothing and mapping (iSAM)
allows efficiently solving a nonlinear optimization problem in every step [95]. The
implementation incrementally updates the R factor obtained from the QR factor-
ization and performs backsubstitution to find the solution. To reduce the rank of
those updates, the linearization point is only changed every 100 steps. The sparsity

of the R factor is ensured by reordering upon relinearization.

Recently, the Bayes tree data-stucture [96, 97, 98] was introduced to enable a
better understanding of the link between sparse matrix factorization and inference
in graphical models. The Bayes tree was used to obtain iSAM2 [97, 98], which
achieves high efficiency through incremental variable reordering, eliminating the
need for periodic batch steps, and through fluid relinearization. It is achieved by
thresholding the update 6 on a per-variable basis and updating only the signif-
icantly changing variables (the default threshold is 0.1). Similarly to iSAM, the
linearization points are only changed every 10 steps. When compared to the ex-
isting methods, iSAM2 performance finds a good balance between efficiency and
accuracy. But still the complexity of maintaining the Bayes tree data structure can

introduce several overheads.

7.2 INCREMENTAL SLAM

The system in (2.7) can be incrementally built by appending the matrix A with new
columns corresponding to each new variable (pose/landmark) and new rows cor-
responding to each measurement. We now shall focus more closely on the sparsity
patterns involved — for each new measurement, the new block row is sparse and

the only nonzero elements correspond to the Jacobians of the new residual.

For the normal equation in (2.11), the size of the matrix increments in number of
rows and columns with the size of each new variable and it is updated by adding
the new information to A and n. To match with the formulation in Section 2.1, and

building on Section 6.2, the update step is:

. 0 0 . 0
A = A+ ,H = n+ . (7.1)

0 Q w

Assuming that this update corresponds to adding a single new observation of
the form zy = hy (03,,0;,) — vk (regardless of whether it adds a new variable or
not and without the loss of generality — extending to multiple new observations

or measurements involving more than two variables is trivial), QO = T{Zk] Jx and
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w = —TkZE/ *rx, where Jy is the following block row of the Jacobian matrix, trun-

cated so as to contain no zeros on the left:

= - . 6rk 6rk
S = Ikmin(ikrik):end - (aeik 0L ae]k> . (72)

The derivatives of the residual function 1 = hy(0;,,0;,) © zic with respect to its
state variables 0;, and 0;, are referred to? as ]y, and Jy;, below. The sparsity and
the size of the () matrix are important for the incremental updates of the system.

For the two affected variables, Q will have four nonzero blocks:

Q = 0 0 (7:3)
—]Ejkzi;l]kik O —]E]kzi;l ]k'jk

Let us recall that the solution of the next Gauss-Newton step becomes A§ =
which can be obtained by calculating Cholesky factorization R"TR = A and solv-
ing R'd = fj and R& = d using back and forward substitution. For very large

problems, recalculating R at every step becomes very expensive.

7-3 ALGEBRAIC INCREMENTAL UPDATES OF THE CHOLESKY FACTOR

In this section, the update of the Cholesky factor R = chol(R' R) is discussed. This
update is referred to as an algebraic one because it is slightly different from the
rank update. It can be used in order to avoid unnecessary and expensive matrix
factorizations every step. Observe that in (7.1) only a part of the information matrix
and the information vector is changed in the update process and the same happens
with the upper triangular factor R. The updated R factor and the corresponding

r.h.s. d can be written as:

R = ,d = : (7.4)

From A = R"R and (7.1), the equation (7.4) becomes:

Az = An+Q = RLRi2+RLR2, (7.5)

? Note that here, Jxi, and Jy;, are logical blocks of the matrix ] at block row k and block columns iy
and jy, respectively, which correspond to the first and the |iy — ji | elements of the block vector Jy.

The former notation is preferred, in order to avoid nested subscripts and notation clutter.
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Figure 7.1: Evaluation of several ordering heuristics in terms of nonzero elements, com-
pared to the actual number of non-zero elements in the Incremental R algo-
rithm, on the 10k dataset. Note that the results for orderings by block are prac-

tically identical.

and the part of the R factor that changes after the update can be computed by

applying Cholesky decomposition to this matrix of the same size as Q:

RILR2 = A+ Q—R},Ry, (7.6)
Rz = chol(Az; —Ri,R12) (7.7)
= chol(R},R2 + Q). (7.8)

Further in this chapter, (7.7) is referred to as lambda-update because it uses parts of
the A to update R and similarly (7.8) is referred to as omega-update since it directly
uses O to update R.

The part of the r.h.s. vector affected by the new measurement can also be easily
updated. By expanding R"d = fj and focusing on the lower part that is changing,
= +w= RT2d1 + ﬁ;zdz and so:

@zaz = n2+w—RT2d1, (7.9)

d; = R}, \(fi—Rj,dq), (7.10)

where \ is linear solving operator; with R}, being lower triangular, it can be re-
alized using backsubstitution. After obtaining both R and d, forward substitution

can be performed to find the solution of the linear system R& = d.
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Figure 7.2: The fill-in relative to the best heuristic in Figure 7.1, which is AMD by elements.
Please, note that the scale of this plot is about two orders of magnitude smaller

than the absolute values of the fill-in. Figures for the 10k dataset.

7-4 IMPLEMENTATION DETAILS

Online applications such as SLAM, require extremely fast methods for building,
updating and solving the sequence of linearized systems. In this section, we intro-
duce several optimizations towards high performance SLAM based on incremental

updates of the factored representation.

7.4.1 Adaptive Updates

The proposed methodology adapts to the most favorable incremental update
scheme, depending on the size of the updates. It considers three ways to update
the system: 1) omega-updates, 2) lambda-updates and 3) updating the entire R,
and applies heuristics to select the best strategy. Omega-updates in (7.8) are fast
for small-size Q) because they involve the multiplication of small matrices REZ R22
which can however be relatively dense. Therefore, this is not suitable when Q is
obtained from measurements that are far apart (e.g. loop-closures). In this case
lambda-updates in (7.7) are faster since they involve the multiplication of typically
very sparse matrices RT2R1 2.

Updating very large loops becomes expensive due to bookkeeping. When loop
length approaches the number of variables in the system, recalculating R by ap-
plying full Cholesky decomposition to the A matrix becomes more efficient. Full

factorization is also beneficial due to the fact that the ordering heuristics are ap-
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plied to the entire A, which considerably reduces the fill-in of the factor R and

speeds up the backsubstitution in the subsequent solving steps.
% p q g step

7.4.2 Efficient Ordering Strategies

The fill-in of the factor R directly affects the speed of the backsubstitution and the
updates. Its sparsity depends on the order of the rows and columns of the matrix
A, called variable ordering. Unfortunately, finding an ordering which minimizes
the fill-in of R is NP-complete. Therefore, heuristics have been proposed in the
literature [6] to reduce the fill-in of the result of the matrix factorization. In the
proposed implementation, the constrained AMD ordering is used, available as a
part of SuiteSparse family of libraries [41].

In an incremental SLAM process, the new variable — either the next observed
landmark or the next robot pose — is always linked to the current pose in the
representation. In order to be able to perform efficient incremental updates on the
Cholesky factor, the last pose is constrained to be ordered last. This especially helps
when updating using odometric constraints between the consecutive poses in Pose-
SLAM type problems. For landmark SLAM, one landmark is often observed from
several poses. Without an additional constraint, a recently observed landmark can
be ordered anywhere in the matrix, possibly causing large-size updates later on. To
alleviate this problem, the proposed implementation constraints recently observed
landmarks to immediately precede the last pose. Figures 7.1 and 7.2 show that the
used ordering restrictions barely affect the fill-in. Furthermore, due to the inherent
block structure, and in order to facilitate further incremental updates, the ordering
is done by blocks. Figure 7.2 shows that applying ordering by blocks instead of
elementwise has very small influence in the fill-in of the R factor. The small but
persistent difference between the elementwise and blockwise orderings is caused
mostly by the fact that the diagonal blocks in R are half empty, but still have to be
stored as full blocks.

7.4.3 Fast Update Factorization

In the increment formula (77.8), a need arises to factorize a sparse block matrix. Note
that this is slightly different from the batch solving where the aim was to solve a
linear system. On the other hand, here we are interested in the factorization itself.
In the proposed implementation, the Cholesky factorization is calculated using
CSparse [41] or Cholmod [42] and then converted back to a sparse block matrix.
This factorization is performed practically at every step and its speed affects the

speed of the incremental solver. Fortunately, (7.8) is usually rather small and dense.
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Algorithm 7.1: Incremental sLAM algorithm using the algebraic R updates.

1: function INCREMENTALR(O, 1, £, R, d, A, 1, newp, MaXjers, tol)

2: (Q, w) < ComPUTEOMEGA( (04, , 05, ) , Tk , Zx)
3: if newp then
4: (A, 7)) = LINEARSYSTEM(O, 1)
5: else
6: (A, 7)) = UPDATELINEARSYSTEM(A, 1, Q, w)
7 end if
8: loopSize = Size(BLockCoLs(Q)))
9: if newp or loopSize > bigLoopThresh then
10: R = chol(A) > Calculate variable ordering using constrained AMD.
11: d=R\H
12 else
13: if loopSize < smallLoopThresh then
14 R = (Ry1,R12;0,chol(Q + R},R25))
15: else
16: R = (Ry1,R12;0,chol(Az; —RT,R12))
17: end if
18: d = (di; R, \ (A, —R],d1))
19: end if
20: newpp = false > Both A and R now contain the current linearization point.
21: if maxiers < 0 or “hadLoop then
22: return
23: end if
24: GaussNEwTON(O, 1, X, R, d, A, 1, NeW p, MaXjters, t0l)

25: end function

Applying dense Cholesky is faster than sparse Cholesky, up to a certain limit
where the dense implementation gets beaten by the fact that it operates mostly on
zeroes when R is very sparse. Therefore, dense Cholesky is applied for matrices up
to 5 x 5 blocks which occur relatively frequently in (7.8). This Cholesky is further
optimized by anticipating the possible combinations of the sizes of R, from the
knowledge of the dimension of the variables. E.g. in 3D SLAM, the variables have

6 DOF and therefore the possible matrices can be 6 x 6, 12 x 12 and so on.

7.4.4 Incremental Algorithm

The proposed approach is described by pseudocode in Algorithm 7.1. It can be
understood as having three distinct parts. The first part (lines 3 to 7) is keeping



7.4 IMPLEMENTATION DETAILS

Algorithm 7.2: Gauss-Newton algorithm using the R factorization.

1: function GAussNEwTON(O, 1, X, R, d, A, 1}, newrp, MaXiters, tol)

Require: This function assumes that newyp is initially false (A and R are current).

2: for it = 1 to maxXjiers do
3: if it > 1 then
4 (A,f)) = LINEARSYSTEM(O, )
5: R = chol(A)
6: d=R\H
7: newpp = false
8: end if
9: §=R\d
10: if ||8]| > tol then
11: 0=0d6 > The linearization point changes.
12: newprp = true
13: else
14: break
15: end if
16: end for

17: end function

the A matrix up to date. This can be done incrementally by adding O, unless the
linearization point changed. The change in the linearization point is stored in the
have, flag.

The second part of the algorithm updates the R factor (lines 9 to 19). The algo-
rithm employs a simple heuristic to decide which update method is the fastest. In
case of large updates, invalidating a substantial portion of R, or if the lineariza-
tion point has changed, R is recalculated from A. This step involves calculating
a suitable variable ordering using the constrained AMD algorithm. On the other
hand, if R was up to date, before the new observations were introduced into the
system, and the size of the update is relatively small, it is faster to update R using
either (7.8), which is faster for smaller updates, or using (7.7). The r.h.s. vector d
is updated in a similar manner. Please, note that while the thresholds used in this
part of the algorithm affect the speed of the computation, they do not affect the
precision of the results in any way.

The final part of the algorithm is basically a simple Gauss-Newton nonlinear
solver, listed separately in Algorithm 7.2. An interesting point to note is that the
nonlinear solver only needs to run if the residual grew after the last update. This
is due to two assumptions; one is that the allowed number of iterations maxXiters is

always sufficiently large to reach the local minima, and the other is that good initial
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Table 7.1: Evaluation of incremental solving times (solve at each step) of the NLS optimizers
on multiple datasets, in seconds (the best times of solutions which solve at each

step are in bold). Note that Inc-R is using the algebraic Cholesky updates.

Dataset Manhattan 10K CityTrees1ok | Intel | Killian C. | Victoria P.
SPA 23.8834 | 515.2880 N/A | 1.4763 5.6260 N/A
§20 94.9096 | 2134.3000 659.1590 | 5.0513 | 20.8899 | 293.1010

iSAM 64.5844 | 1768.8400 434.7500 | 4.4647 | 19.7519 | 209.1740
iSAM b1o 9.9222 | 334.3650 60.2726 | 0.9442 3.6273 29.5268
iSAM b1oo 4.7142 | 289.7870 25.2429 | 1.3648 4.2522 12.6860
allBatch-A 10.0038 | 329.1840 22,7070 | 0.8424 2.1485 28.0194
Inc-R 5.0274 | 183.3850 25.5549 | 0.7032 2.5719 16.0173
Inc-R b1o 5.0275 | 166.7970 25.3064 | 0.6861 24637 14.6821

priors are calculated. Without a loop closure, the norm of & would be close to zero
and the system would not be updated anyway. This information is introduced to
the Algorithm 7.1 at line 21 (if such information is not available, it is safe to assume
that there always is a loop closure, at a cost of an extra backsubstitution). The first
iteration uses the updated R factor, and the subsequent iterations rebuild both A
and R so that R would be available for the next steps in case the algorithm finishes

by reaching the solution.

7.5 EXPERIMENTAL RESULTS

In order to evaluate the proposed incremental algorithm and its implementation
this section compares timing with similar state of the art implementations such as
iSAM [95], g20 [106], and SPA [104] (a 2D SLAM variant of sSBA). These implemen-
tations are easy to use on standard datasets. iSAM2 [97, 98], on the other hand,
is an incremental algorithm based on GTSAM library, and, at the time of running
the benchmarks, the source code for iSAM2 was not available among the examples
of the GTSAM library. The reported results from iSAM2 papers [97, 98] cannot be

used for comparisons since they were measured on a radically different platform.

The evaluation was performed on three standard simulated datasets, Manhat-
tan, [137], 10k and CityTrees10k, [94] and on three real datasets, Intel, [85], Killian
Court, [21] and Victoria Park [133] dataset. The solution for each dataset is shown

in Figures 6.1 and 6.2.
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Figure 7.3: Time comparison of multiple NLS optimizers.

Again, the same machine as in the previous chapter was used for the tests, an
Intel Core i5 CPU 661 with 8 GB of RAM running at 3.33 GHz. This is a quad-core
CPU without hyperthreading and with full SSE instruction set support. During the
tests, the computer was not running any time-consuming processes in the back-
ground. Each test was run ten times and the average time was calculated in order
to avoid measurement errors, especially on smaller datasets.

Table 7.1 and Figure 7.3 show the execution times of different implementations
evaluated on the above mentioned datasets. The b1io and b1oo flags represent the
frequency of batch computations — once each 10 and once each 100 steps, respec-
tively. For the results without those flags, the nonlinear system was solved at every
step in order to obtain the current estimation or only when needed in the case
of the proposed Incremental-R algorithm. Unlike g2o and SPA, iSAM and our im-
plementation provide both the factorization and an error-minimizing solution at
every step, even when the batch solver runs only each 10 or each 100 steps. This
is an important characteristic for online applications. Therefore, and in order to
make the spread of the plotted values lower, Figure 7.3 shows timing results only
for iSAM and for the proposed implementation.

All the times below the double horizontal line in Table 7.1 are obtained using the
proposed implementation. The execution time of Algorithm 7.1 is denoted Inc-R.
The Inc-R b1o is obtained by forcing batch every 10, but observe that this is not
the natural way to execute our algorithm and has been introduced only for com-
parison purposes. allBatch-A is an implementation of the algorithm introduced in
Chapter 6 — it keeps and updates only the A matrix and performs matrix factoriza-

tion every time a new linearization point needs to be calculated. From the point
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Figure 7.4: Comparison of the x? errors, on the 10k dataset.

of view of estimation quality, recalculating the system every time the linearization
point changes, is the best the nonlinear solver can do but it can sometimes become
computationally expensive. Even though, our optimized implementation performs
very well also in the allBatch-A case.

Figure 7.4 compares the quality of the estimations measured by the sum of
squared errors, the x? errors. The test was performed for the 10k dataset. Ob-
serve that our new algorithm, Inc-R (in orange in Figure 7.4), nicely follows the
allBatch-A (in violet in Figure 7.4). Spikes appear when performing periodic batch
solve in iSAM b100, iISAM b10 and Inc-R b1o due to the fact that the error increases
between the batch steps and drops afterwards.

As an overall remark, the Inc-R has, in general, the best performance (which is
only rivaled by allBatch-A from the previous chapter) and provides very accurate
results every step. Compared to allBatch-A, it provides not only the solution but
also the factorization at every step. That amounts to doing slightly more work,
but allows doing one more Gauss-Newton step towards the solution, at virtually
no cost. It also becomes important if the covariances of the solution need to be
recovered as well. Therefore, it is the most suitable implementation for online ap-

plications which require efficient nonlinear least squares solving.

76 IMPROVED ALGORITHM USING BLOCK CHOLESKY FACTORIZATION

The incremental algorithm described so far made use of block matrix operations,
except for the block Cholesky factorization. It needed to convert the A matrix to ele-

mentwise sparse one, factorize it using CSparse and then convert the factor back



76 IMPROVED ALGORITHM USING BLOCK CHOLESKY FACTORIZATION

to blockwise representation. Although competitive, the incremental implementa-
tion is really taking the toll by performing this conversion at each step. Another
disadvantage is its inability to reorder the variables in the factorization, after e.g. a
loop closure occurs. It only relies on reordering when linearization point changes
take place (they usually happen at loop closures) and on cleverly constraining the
ordering in order to be able to efficiently update the factorization while going in
an open loop.

While the implementation described above was comparable with the others of
its time, Kaess et al. later introduced the Bayes tree data structure [98], which pro-
vides insights on the connection between graphical model inference and sparse
matrix factorization. This offered the possibility of eliminating the periodic batch
steps by allowing incremental variable re-ordering to reduce the fill-in and imple-
menting fluid relinearization to guarantee good linearization points [97]. In the
remaining part of this chapter, an improved incremental algorithm which takes ad-
vantage of the sparse block Cholesky factorization from Section 5.2.4 is described
and compared yet again to the state of the art solvers.

The work introduced in the paragraphs below combines the efficiency of operat-
ing directly on the matrix factorization with the insights gained from the Bayes tree
data structure to produce highly efficient incremental solutions. The incremental
solution proposed here is changing the linearization point every time if the error
increases. This guarantees high quality estimates. Furthermore, it is based on a
resumed? Cholesky factorization which recalculates only the parts affected by the
new updates, together with an incremental reordering scheme which maintains
the factorization sparse without the need for periodic batch steps.

This form of incrementally updating the Cholesky factor is very similar to the in-
cremental updates proposed in [95], where the authors use Q-less QR factorization
to incrementally factorize R. In its form, this factorization is de-facto resumed: the
factor R is calculated by transforming rows of A by Givens rotations into R. After
new observations are made, these are added as new rows to yield A. The factor-
ization is then resumed at the first of these new rows, adding them to R. Similar
row-oriented methods are used for out-of-core QR factorizations of large systems.

However, this type of QR factorization does not make it possible to reorder the

variables: A is ordered using column ordering. Therefore, reordering the columns

3 In the context of iterative numerical methods and subspace methods, the word restarted is sometimes
used, meaning that the algorithm can stop iterating at some point and then be restarted later, possibly
in different conditions. Our use of the word resumed refers to a direct method involving Cholesky
factorization. Our implementation of Cholesky is left-looking and produces one column of the factor
at a time. If the right part of the original matrix changes later, the factorization can be started in the
middle (resumed), at the first column that will change to recalculate only the corresponding right

portion of the factor while keeping the left part intact and saving computation.
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Figure 7.5: Incremental updates on A-system and R-system. The sections are color-coded
according to the way they are affected by the update. Green — not affected, red

— affected, pink — affected if the variables are also reordered.

potentially affects all the rows, making the tracking of changes in the factorization
in order to reuse the unaffected parts infeasible. The recently introduced data struc-
ture, the Bayes tree [98], offers the possibility to develop incremental algorithms
where variable reordering can be performed fluidly. Inspired by these recent ad-
vances, the resumed Cholesky fact