
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FORMAL ANALYSIS OF NEURAL NETWORKS
FORMÁLNÍ METODY PRO ANALÝZU NEURONOVÝCH SÍTÍ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR DAVID HUDÁK
AUTOR PRÁCE

SUPERVISOR Doc. RNDr. MILAN ČEŠKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2021/2022

 Bachelor's Thesis Specification

Student: Hudák David
Programme: Information Technology
Title: Formal Analysis of Neural Networks
Category: Formal Verification
Assignment:

1. Study the existing methods for formal analysis of neural networks (NNs). Focus on methods
for symbolic analysis of local robustness of NNs.

2. Evaluate these methods in the context of scalable analysis of practically relevant NNs.
3. Design improvements and extensions of these methods. Focus on different approaches for

symbolic representation of NNs and generating adversary inputs.
4. Implement the proposed improvements and extensions on top of an existing tool (e.g.

VeriNet or CROWN)
5. Perform a detailed experimental evaluation of the proposed methods on a suitable

benchmark.
Recommended literature:

Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C. and Kochenderfer, M.J. Algorithms for
Verifying Deep Neural Networks. Foundations and Trends in Optimization. 2020.
Henriksen, P. and Lomuscio, A. Efficient neural network verification via adaptive refinement
and adversarial search. In ECAI 2020.
Henriksen, P. and Lomuscio, A. DEEPSPLIT: An Efficient Splitting Method for Neural
Network Verification via Indirect Effect Analysis. In IJCAI 2021.
Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S., Lin, X. and Hsieh, C.J. Fast and Complete:
Enabling Complete Neural Network Verification with Rapid and Massively Parallel
Incomplete Verifiers. In ICLR 2020.

Requirements for the first semester:
Items 1, 2, and partially 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Češka Milan, doc. RNDr., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 11, 2022
Approval date: November 3, 2021

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/24620/2021/xhudak03 Page 1/1

Abstract
Today, the area where we can use deep learning is becoming broader. It includes safety-
critical domains such as traffic or healthcare, and the need for its verification grows. How-
ever, sufficient verification toolkits for neural networks, the leading deep learning approach,
are still in development. State-of-the-art algorithms now can not verify commonly used
deep networks. In this paper, we focus on one of the state-of-the-art solutions, VeriNet.
More generally, we focused on the symbolic approach of local robustness analysis. This
approach usually relies on creating, processing, and refining the neural network represen-
tation, and we focused on the refinement phase. We primarily dealt with the branch and
bound algorithm, which in this toolkit splits node inputs in a network to create smaller
sub-problems. For this algorithm, we proposed and implemented new split node selec-
tion strategies. Specifically, we designed memory-based, alternating, and semi-hierarchical
strategies. We achieved significant improvements in the scalability of the VeriNet toolkit.
One of our approaches can solve more complex cases and significantly improve already
solved cases’ performance. Moreover, we discovered an anomaly in the behavior of the veri-
fication algorithm we named branch implosions, which led to extreme speed up for some
cases. In addition, we extended the set of performed network benchmarks with models from
the Marabou package.
Abstrakt
Škála oblastí, ve kterých se dnes můžeme setkat s hlubokým učením, se velmi rychle
rozrůstá. Zasahuje už dokonce i mezi bezpečnostně kritické oblasti jako doprava či lékařství,
a tak narůstá nutnost takové systémy verifikovat. Nicméně, dostatečně škálovatelné nástroje
pro verifikaci neuronových sítí, které tvoří hlavní přístup k hlubokému učení, jsou stále
ve vývoji. Dnešní řešení tak nejsou schopny verifikovat dostatečně hluboké sítě. Z toho
důvodu jsme se zaměřili na jeden ze současných nástrojů, VeriNet, a pokusili jsme jej
vylepšit. Obecněji jsme se zaměřili na symbolický přístup k analýze lokální robustnosti.
Tento přístup běžně spočívá na vytvoření, zpracování a přepracování reprezentace neu-
ronové sítě, přičemž my jsme se zaměřili na fázi přepracování. Primárně jsme se zabý-
vali algoritmem větví a mezí, který spočívá v rozdělování vstupů dílčích síťových uzlů
k vytváření menších podproblémů. Specificky jsme navrhli nové paměťové, alternující
a semi-hierarchické strategie. Při experimentování jsme dosáhli výrazných vylepšení nástroje
VeriNet. Jeden z našich přístupů je tak schopen řešit více komplexních případů a také
vylepšuje zpracování již řešitelných případů. K tomu jsme navíc narazili na anomálie pra-
covně nazvané jako imploze větví, které vedou k extrémnímu urychlení některých případů.
V rámci této práce jsme také rozšířili set síťových benchmarků s modely z balíku nástroje
Marabou.
Keywords
Neural network, ReLU, VeriNet, ESIP, branch and bound, splitting strategies, branch im-
plosions, semi-hierarchical strategy, formal verification
Klíčová slova
Neuronová síť, ReLU, VeriNet, ESIP, metoda větví a mezí, strategie dělení, imploze větví,
semi-hierarchická strategie, formální verifikace
Reference
HUDÁK, David. Formal Analysis of Neural Networks. Brno, 2021. Bachelor’s thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Doc. RNDr. Milan
Češka, Ph.D.

Rozšířený abstrakt
Využití hlubokého učení, primárně pak neuronových sítí, se dnes dostává do čím dál více
rutinních činnosti lidských životů. Na jedné straně to jsou neškodné oblasti jako fo-
tografování, detekce obličejů, překladače či jiné pomocné nástroje, které usnadňují život.
Na straně druhé jsou to i bezpečnostně kritické oblasti jako autonomní řízení vozidel,
medicína, letecké kolizní modely či vojenství, kde naopak lze i drobnou chybou životy
ztratit. S těmito disciplínami tak vzniká i potřeba je verifikovat, tedy nutnost formálně
potvrdit jejich správné usuzování. To s ohledem k faktu, že neuronové sítě pracují v pod-
statě jako černá skříňka, je poměrně obtížné. V současné době je tak disciplína formální
verifikace neuronových velmi dynamická, kdy každým rokem vychází řada nových a lépe
škálovatelných nástrojů. Tato práce se pak zabývá konkrétně přístupem symbolické analýzy
lokální robustnosti, jejímž výrazným představitelem je nástroj VeriNet, který je detailně
popsán v této práci, a jeho rozšíření.

Zmíněná lokální robustnost je jednou z tradičně verifikovaných vlastností neuronových
sítí, která je inspirována biologickými procesy. V případě živých organismů robustnost
popisuje jako schopnost odolávat neideálním podmínkám. U neuronových sítí se jedná
o vlastnost, že přijatelně velké odchylky na vstupech by neměly a nesmí změnit korek-
tní klasifikaci na jinou. Například v případu autonomního řízení je naprosto nutné, aby
zpracovávaný záznam z kamery, kde je například dopravní značka stop, nezměnil kvůli ně-
jaké drobné odchylce výslednou klasifikaci na značku dálnice. Taková odchylka může být
způsobená různými běžnými jevy – od mírných šumů způsobených kamerou, mírně vy-
bledlé barvě červené na značce či změně světlosti kvůli různé denní době. Vůči těmto všem
ochylkám by měla být ideálně robustní neuronová síť odolná.

K tomu, abychom tuto lokální robustnost mohli zkoumat, je nutné vytvořit vhodnou
reprezentaci sítě, kterou se snažíme zkoumat. To je poměrně náročná disciplína, jelikož
neuronová síť je sama o sobě v podsatě silně nelineární funkce. V případě snah o vytvoření
přesné reprezentace tak dochází k problémům s příliš náročným modelem, které pak lze
verifikovat jen ve velmi omezené míře. Proto začaly vznikat postupy, které nemají za cíl
popsat naprosto přesně výstup neuronové sítě, nýbrž vytváří jeho vhodně nadhodnocenou
a dobře zpracovatelnou verzi.

Jeden z těchto přístupů funguje skrze symbolickou reprezentaci sítí, která se řadí mezi
metody propagace hranic. Ta spočívá k přiřazení konkrétních číselných hranic a dvou
lineárních rovnic (horní a dolní hranice) ke každému uzlu. Jejich kombinace pak popisuje
chování konkrétního uzlu, přičemž vytvářeny jsou skrze proces postupného propagování
vstupních hodnot s povolenou odchylkou skrze síť přes jednotlivé uzly a vrstvy až po vrstvu
výstupní. Díky tomu lze na výstupní vrstvě sítě určit, zdali uzel reprezentující korektní
výstup má za každých podmínek ty nejvyšší hodnoty a je tak v rámci odchylek stanovených
lokální robustností bezpečný. K vyřešení tohoto problému slouží vybraný vhodný solver (v
případě VeriNetu Gurobi LP-solver), který zjišťuje, zda korektní uzel na výstupní vrstvě
má pro všechny možnosti tu nejvyšší hodnotu.

V rámci VeriNetu pak bylo implementováno vylepšení ve formě symbolické intervalové
propagace založené na chybě1, jež reprezentuje dané uzly s použitím pouze jedné dolní
lineární rovnice, oproti původním dvěma. Horní hranici reprezentuje s pomocí konkrétních
chyb definujících vzdálenost horní relaxace.

Jak již ale bylo zmíněno, tato metoda se řadí mezi ty, jež nadhodnocují chování sítí. To
což je primárně způsobeno použitím lineárních relaxací, které jsou použity při propagaci

1Volný překlad error-based interval propagation.

skrze uzly místo reálných aktivačních funkcí. Je tomu tak z toho důvodu, že běžné aktivační
funkce jsou nelineární a v případě postupné propagace jejich nelineárního chování by se jen
obtížně dalo použít nějaký solver. Vedlejším produktem použití lineárních relaxací je tedy
nemalé nadhodnocení, které vede k situacím, kdy LP-solver najde potenciální průnik, o
kterém ale nemůže říct, zdali je reálný.

Z toho důvodu se používá ještě další vhodný solver či algoritmus (v tomto případě
lokální gradientní hledání), který se snaží najít konkrétní reálný protipříklad, který by
narušoval definici lokální robustnosti. Ten nemusí být právě kvůli nadhodnocení nalezen,
a proto je někdy nutné dosavadní popsaný proces opakovat na přesnějších přepracovaných
reprezentacích.

Dnešní nástroje jako jsou Crown, Active Sets či již zmíněný VeriNet k tomu využívají
metodu větví a mezí. Ta spočívá v dělení vybraného vstupního problému na menší pod-
problémy (v případě VeriNetu dělením vstupů uzlů). Tímto postupem pak vzniká strom,
ve kterém je buď nutné prokázat, že všechny podstromy (větve) jsou bezpečné, nebo nalézt
aspoň jednu větev, která bezpečná není.

Výběr uzlů, na kterých se dělí vstupy, je jádrem této práce. Jednou z původních strate-
gií byl hierarchický výběr – nejprve se vzal první uzel v první vrstvě, pak druhý, pak třetí
atd. To nebylo efektivní z hlediska toho, že v rámci verifikace se za vhodnou dobu ne-
dostalo na všechny uzly a u některých se dělilo zbytečně. VeriNet pak přinesl adaptivní
strategii, která vždy, na základě již zmíněných chyb, bere uzel s nejvyšší zpropagovanou
chybou. Problémem této metody je, že jednak nerespektuje pořadí dělených uzlů, kdy se
obecně vyplácí rozdělit nejdřív uzly v dřívějších vrstvách a pak v pozdějších, jednak má
tendence upřednostňovat uzly spíše v pozdějších vrstvách. S ohledem k tomu, že s každou
propagovanou vrstvou se chyba zvětšuje, je vhodné dělit i na dřívějších vrstvách.

Jednou z navržených a vyzkoušených strategií je semi-hierarchická strategie výberu uzlů.
Ta si bere část své funkcionality z obou metod. Její základní princip je, že se postupně
prochází vrstva za vrstvou, přičemž dělený uzel se vybírá zrovna z aktuální postupně vy-
brané vrstvy. Díky tomu se šetří čas, který by způsobilo opačné dělení uzlů, a současně
se dříve eliminují chyby vyplývající z postupného průchodu relaxacmi. Následkem tohoto
přístupu také nedochází k přílišnému dělení na jedné konkrétní vrstvě, které by vedlo k po-
malému odstraňování chyb z reprezentace.

Tuto a další experimentální metody jsme implementovali do aktuálního nástroje Veri-
Net, kde jsme prováděli experimenty s modely sítí natrénovaných na standardním tréno-
vacím datasetu MNIST, primárně pak na sítích s ReLU aktivačními funkcemi a okrajově i
s aktivačními funkcemi tanh a sigmoid. U prvních zmíněných jsme dosáhli někdy i něko-
likanásobného urychlení již řešitelných problémů a současně jsme dosáhli redukce neřešitel-
ných problémů, které současné nástroje nebyly schopny verifikovat. Vedlejším produktem
těchto experimentů pak bylo odhalení implozivních případů, kdy se daří daný vstupní prob-
lém vyřešit za více než tisícinásobně kratší dobu.

S ohledem k tomu, že se jedná o velmi aktivní a dynamicky se rozvíjející se disciplínu,
v rámci závěru bylo navrženo několik směrů, kterými se lze vydat dál. Mezi ty se primárně
řadí implementace této strategie do dalších verifikačních nástrojů, detailnější srovnání s os-
tatními nástroji či hlubší zkoumání příčin existence implozivních případů.

Formal Analysis of Neural Networks

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of docent Milan Češka. The supplementary information was provided
by Mr. Patrick Henriksen from Imperial College London. I have listed all the literary
sources, publications and other sources, which were used during the preparation of this
thesis.

. .
David Hudák
May 6, 2022

Acknowledgements
I would like to thank my supervisor, doc. RNDr. Milan Češka, Ph.D., for his guidance
and suggestions. I would like to thank Mr. Patrik Henriksen for his support while working
with the VeriNet toolkit. And I would like to thank my family and friends for continuous
support throughout my studies.

Contents

1 Introduction 3
1.1 State-of-the-art approaches . 3
1.2 Contribution . 4

2 Preliminaries 6
2.1 Neural networks . 6

2.1.1 Deep feedforward neural network . 6
2.2 Local robustness . 7
2.3 Completeness . 8
2.4 Basic verification directions . 9

2.4.1 Reachability . 9
2.4.2 Optimization . 9
2.4.3 Search . 10

2.5 Disciplines using neural networks . 10
2.5.1 Autonomous driving . 10
2.5.2 Deep learning in healthcare . 11
2.5.3 Face recognition . 12

3 Main concepts 14
3.1 Verification cycle . 14
3.2 Linear relaxation . 14
3.3 Representation methods . 16

3.3.1 Naive interval propagation . 17
3.3.2 Symbolic interval propagation SIP 17
3.3.3 Error-based interval propagation ESIP 18

3.4 Solvers . 20
3.5 Refinement . 20

3.5.1 Existing splitting strategies . 21
3.5.2 Heuristics . 21
3.5.3 Splitting . 22
3.5.4 Branch and bound . 22

3.6 Other solutions . 25
3.6.1 Methods according to Bunel, De Palma, et al. 25
3.6.2 Crown . 26

4 VeriNet toolkit 27
4.1 Algorithm overview . 27
4.2 Propagation methods . 28

1

4.3 Solvers . 29
4.4 Branch and bound phase . 29
4.5 Existing VeriNet extensions . 30

4.5.1 DEEPSPLIT . 30
4.5.2 VeriNetBF . 31

5 Extension design 32
5.1 Memory strategies . 32

5.1.1 Simple memory strategy . 32
5.1.2 Sorted memory strategy . 33
5.1.3 Reverse sorted strategy . 33
5.1.4 Branch mirroring . 34

5.2 Semi-hierarchical strategy . 35
5.2.1 Comparison of hierarchical and adaptive splitting 35
5.2.2 Best by layer strategy . 35
5.2.3 Potential advantages and disadvantages 35

5.3 Alternating impact strategy . 37
5.4 General implementation details . 37

5.4.1 New classes . 38
5.4.2 Changes in default classes . 38

6 Experiments 39
6.1 Experimental setting . 39

6.1.1 Objectives of experiments . 39
6.1.2 Dataset . 40
6.1.3 Used networks and strategies . 40

6.2 Main experiments . 42
6.2.1 VeriNet – 100 ReLU nodes in 2 layers MNIST network 42
6.2.2 Marabou – 100 ReLU nodes in 10 layers MNIST network 43
6.2.3 Marabou – 200 ReLU nodes in 10 layers MNIST network 44
6.2.4 Marabou – 800 ReLU nodes in 20 layers MNIST network 45
6.2.5 VeriNet – Sigmoid and tanh networks 46

6.3 Branch implosions . 47
6.4 Summary . 48

7 Conclusion 49
7.1 What to do next? . 49

Bibliography 51

A Project usage 54

2

Chapter 1

Introduction

Over the past decade, deep learning has become part of many applications. We can find
its use in many ordinary disciplines, such as healthcare, traffic, aviation, or photography.
Generally, the area where we can use deep learning with deep neural networks is unlimited.
However, it has one significant hitch [11].

Many areas where we want to use deep learning methods are safety-critical so that the
end customer may require system features such as safety or correctness. For example, when
we use an autonomous car, we would like to know whether the car’s system reacts (artificial
driving system) to various situations correctly. For example, the car does not increase the
velocity against pedestrians at the crossing [16]. It is unacceptable to sell something that
can be potentially dangerous in the real world.

In contrast to some decision trees or expert systems, neural networks are problematic to
understand. Today, we do not have good tools for their verification and their use, especially
in safety-critical areas, is still at some risk. Risk because neural networks work as a black
box. We can design different architectures and use many methods and examples to train
them [10, 18]. However, as a result, we do not know how they work. We can deduce it for
small networks but not for the networks we commonly use [16].

The main problem of neural networks revealed by Szegedy [20] is small perturbations
that cause misclassification. These perturbations can be so small that they are not recog-
nizable to the human eye [1]. Thus, for example, some hackers1 or some standard deviations
of recording devices (some artifacts, noises, brightness) may trigger potentially dangerous
misclassifications [20].

Aircraft Collision Avoidance System X (ACAS Xu) is an example of a deep neural
network that has found its use in safety-critical area. This system aims to anticipate
collision situations and suggest the correct behavior. Suppose this system made the wrong
decision based on intentional or unintentional perturbations. It could easily mean billions
of dollars in damage and the loss of hundreds of lives [23].

1.1 State-of-the-art approaches
Neural network verification is a dynamic, evolving topic today, and there are many differ-
ent approaches. These approaches differ in how they prove the correctness of the network.
For example, work [18] notes three elementary approaches – reachability, optimisation and
search. Reachability constructs potentially reachable classifications at the output layer [25].

1For example https://www.tensorflow.org/tutorials/generative/adversarial_fgsm

3

https://www.tensorflow.org/tutorials/generative/adversarial_fgsm

Optimization seeks to create a set of variables that are subsequently optimized. For ex-
ample, MIPVerify [21] describes optimization by finding the minimum possible distance
to the closest adversarial result (see 2.2). Today’s state-of-the-art solutions use the third
approach, search methods.

We combine search methods with the previous two approaches. Instead of a complete
proof, they focus on finding concrete examples and counter-examples. Thus, in the context
of reachability, they do not try to reconstruct some complete reachable area. They would
instead find a counter-example outside the permitted area [13]. As part of optimization,
they can look for an example beyond the limit determined by the adversarial result [7].
This thesis focuses on one of these state of the art solutions called VeriNet. As a part of
this tool, we design and implement extensions that we compare with the initial results.

The main inspiration came from The Second Verification of Neural Networks Compe-
tition2. The winner solution was 𝛼,𝛽-CROWN toolkit3, boosted by GPU accelerated al-
gorithms. The second was a VeriNet toolkit4 (with an improvement named DEEPSPLIT)
developed at the Verification of Autonomous Systems (VAS) group at Imperial College
London. The main advantage of this toolkit is that there was no GPU acceleration, and
the algorithm got an excellent placement even with the CPU-only algorithm.

Both mentioned toolkits implement actual state-of-the-art algorithms for local robust-
ness neural network analysis. However, while having excellent results, these toolkits still
face difficulties. They still can not solve more complex cases regarding inadequate training,
network size, or different activation layers [11, 27, 14].

These toolkits are focused on searching counter-examples in some neighborhoods of
inputs of testing images (or other general inputs). The central premise is simple – if the
algorithm proves that there are no possible counter-examples in some 𝜖 neighborhood, the
neural network is safe for that case. If they find at least one, the network is not safe for a
particular case. Formally, this work deals with the analysis of local robustness [28, 18, 13].

1.2 Contribution
Most search-based verification algorithms consist of three parts (see Figure 1.1): propa-
gation of input constraints to the output layer, some solvers that will try to find some
counter-example to a given representation, or prove that no such case exists. The third
phase helps the previous phases with the input problem’s refinement (branch and bound)
if the solvers mark the problem undecidable.

The VeriNet toolkit achieves it by adding split constraints to node inputs across the
network to create smaller sub-problems – branches. Problematic is the choice of split
node, so this thesis hypothesizes that creating different splitting strategies should accelerate
decisions over more complex cases. We proposed and evaluated three new types of strategies
extending the original branch and bound functionality with this idea in mind. Moreover,
we proved that we could significantly speed up the current state-of-the-art solution with
different splitting strategies. That is not only beneficial for the discussed VeriNet toolkit
but also for any verification toolkit that uses branch and bound phase.

With our experiments, we show some undocumented behavior of verification toolkits.
For example, we encountered an anomaly which we call branch implosions. We also ex-
panded the set of experimented networks from a package of Marabou toolkit. Moreover, the

2https://s.google.com/view/vnn2021
3https://github.com/huanzhang12/alpha-beta-CROWN
4https://github.com/vas-group-imperial/VeriNet

4

https://sites.google.com/view/vnn2021
https://github.com/huanzhang12/alpha-beta-CROWN
https://github.com/vas-group-imperial/VeriNet

Bound
propagation

SolversBranch and
bound

Safe/unsafeUndecidable

Start

RepresentationNew constraints

Figure 1.1: Simplified cycle of algorithms with branch and bound phase. We focus on the
green one in this thesis. See Section 3.1 for more details.

contribution of this paper is a deeper description of the behavior of the VeriNet verification
toolkit.

When reading this work, it is also necessary to keep in mind that the verification of
neural networks is a very active and dynamic topic and has taken a considerable step
forward in the last six years [29]. Scientific groups worldwide are working even during the
writing of this work and are inventing many new algorithms and tools. These take the
scalability of verification algorithms to new levels, and the knowledge speculated here can
already be surpassed.

5

Chapter 2

Preliminaries

This chapter describes the main underlying concepts we need for deep learning verification,
such as neural network, activation function, local robustness, completeness, or fundamental
directions to verification. This chapter also mentions some safety-critical areas where we
can use deep learning algorithms.

2.1 Neural networks
Neural networks can be used for various purposes [2]:

• Regression or function approximation – neural network computes from input values
output of the simulated nonlinear function.

• Data analysis – neural network sorts some data into some categories by similarities.

• Classification – neural network decides from input values some output classification.
The network chooses the classification from the highest value of outputs values.

In this thesis, we focus on the classification of neural networks.

2.1.1 Deep feedforward neural network

Deep feedforward neural networks are feedforward neural networks (FFNN) that are com-
posed of a high amount of nodes in many layers.

A feedforward neural network contains one input layer, which accepts all inputs of
the given problem, many hidden layers, and one output layer from which we derive the
classification. Each layer is composed of nodes (neurons). Each neuron has 𝑛 inputs and
𝑚 outputs. Each input is composed of a matrix of learned values (weights), output values
from the previous layer (or network inputs), and bias. The neuron multiplies the weights
with values from previous layers and then sums it all together with bias. Every neural
network node has an activation function: 𝜎 : R𝑛 → R𝑚, which converts a node input values
to matrix output values [11]. Same as in the quoted thesis, we ignore skip-connections in
this thesis.

An essential part of neural networks is activation functions, which affect the complete-
ness/soundness of verification and significantly impact the scalability of verified networks.
The most important [2] are these:

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥)

6

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥

𝑇𝑎𝑛ℎ(𝑥) =
𝑒2𝑥 − 1

𝑒2𝑥 + 1

VeriNet toolkit also includes support for neural networks with batch layers. These
networks have layers that do not use activation function to transform values from inputs
to outputs but use linear transformation1. These layers have an equal number of nodes as
a layer before [11].

Remark (Convolutional networks). Although many modern neural networks use convo-
lutional networks, this paper does not deal with them. For technical reasons, our version
of VeriNet does not support convolutional neural networks. However, it is necessary to
mention that the verification of convolutional neural networks (CNN) is not significantly
different from the verification of FFNN. The designed methods should be fully applied when
added to any toolkit (for example, DEEPSPLIT [14] or Crown [24]) that can verify CNNs.

2.2 Local robustness
In the context of neural networks, the term robustness comes from the biological speci-
fication of living species, where robustness means endurance against external or internal
perturbations. Robustness in the context of the neural network is similar in the way that
some bigger or smaller deviations from the normal situation cannot affect correct function-
ing [10]. For example, a robust human can work and survive at different temperatures or
not die while eating a bit of toxic food. A robust network works correctly even with a dirty
camera.

Local robustness formally extends this definition. For example, the Crown project
describes local robustness by a neighborhood of input 𝑥0 and ℓ𝑝 ball around input where all
values (in ℓ𝑝 ball) need to have the same classification. If the tool falsifies the definition, the
neural network for 𝑥0 is not robust [28]. The VeriNet documentation has a more complex
(but also better for formalization) definition – the definition we summarize below [11].

Definition 2.2.1 (Local robustness). Consider a tuple ⟨𝑓, 𝜓𝑥, 𝑐⟩, where 𝑓 is an FFNN2

𝑓 : R𝑚 → R𝑛, 𝜓𝑥 is set of constraints {𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖|𝑙𝑖, 𝑢𝑖 ∈ R}∀𝑖∈{1,2,...,𝑛}, where 𝑙𝑖 and 𝑢𝑖
are defined as 𝑥𝑖 ± 𝜀 and are lower and upper bounds for input values, and classification
𝑐 ∈ {1, 2, . . . ,𝑚}. Let 𝑓(𝑥)𝑖 be 𝑖𝑡ℎ output of FFNN. Neural network is locally robust when
for each 𝑥′ satisfying 𝜓𝑥 and each 𝑡 ̸= 𝑐 applies 𝑓(𝑥′)𝑐 > 𝑓(𝑥′)𝑡 [13].

Formal verification of neural networks is based on breaking local robustness condition
𝑓(𝑥′)𝑐 > 𝑓(𝑥′)𝑡. The verifier tries to find a counter-example 𝑥 for which applies 𝑓(𝑥)𝑐 ≤
𝑓(𝑥)𝑡. If the verifier does not find any counter-example 𝑥, the classification of input values
is called safe. Otherwise, when the verifier finds a counter-example, it calls unsafe because
it found a counter-example. In the following chapters, we will find out that algorithms for
finding these counter-examples are not necessarily complete these days.

An example of a counter-example situation is in Figure 2.1. We can see that the expected
behavior of a robust neural network is that small perturbation can not change classification
if the network is locally robust.

1𝑦𝑖 = 𝑦𝑖−1 + 𝑏, where 𝑦𝑖 is an output of layer, 𝑖 is layer index, and 𝑏 bias.
2Fast-forward neural network.

7

Remark (Adversarial result). When working with verification tools, we may also encounter
the notion of an adversarial result. Where the counter-example (result) is anything that
falsifies some constraints, the adversarial result is some maximum allowable disturbance
of inputs to some classification. If the case input constraints exceed the limit given by the
adversarial result, then the network changes output classification [18].

Neural network

1

2

3

Inputs
Classification

1

Neural network

1.1

2

3

Inputs

1

Neural network

1

2

3

Inputs
Classification

1

Neural network

1.1

2

3

Inputs

2

Locally robust Not locally robust

Figure 2.1: You can see a locally robust network on the left side and not locally robust
network on the right.

2.3 Completeness
When working with different verification toolkits, we encounter different features. For
example, which networks it supports (types of layers, activation functions) it supports, what
methods it contains, what it verifies (local robustness), and also whether it is complete (or
for which networks). To this is added the concept of soundness, which only says that if the
representation cannot calculate a value, then the existing network is not able to calculate
it too.

If we say that the tool is complete, then we can say that the tool covers the 1:1 behavior
of the neural network. Thus, if the representation of a neural network within a complete
tool says that the network can take on some value, then an existing network can indeed
take on that value. If it cannot take on some value, then neither a real network can take
on that value [18].

Some tools, such as ExactReach [26], create a complete representation on the first iter-
ation. The problem is that it only works for the piecewise linear ReLU activation function
and that this tool can practically not verify any more extensive network. Tools complete for
networks with sigmoid and tanh activation functions do not appear much. Today’s trend,
which follows both VeriNet [11] and Crown [28, 27, 24], is an incomplete representation of
behavior that they gradually refine to some complete representation (branch and bound).
As a result, they do not use unnecessarily accurate representations for uncomplicated cases

8

Reachability

MaxSens

ExactReach

AI2

Primal

NSVerify

MIPVerify

Optimization

Dual

Duality

ConvDual

Search
VeriNet Neurify

ReluVal FastLin

BaB

Crown

Active Sets

Sherlock

Reluplex

Marabou

Figure 2.2: Scheme of recent methods. Taken, updated and modified from [18].

and insufficiently accurate ones for problematic cases. This incompleteness leads to much
better scalability for more extensive networks.

2.4 Basic verification directions
We can read in the literature [18] that there are three basic directions. They are called
verification by reachability, optimization, and by search. For the mentioned methods, we
work with a set 𝑋 of all possible inputs, set 𝑌 of allowed outputs, and the function f as a
neural network. See Figure 2.2 for an overview of current solutions.

2.4.1 Reachability

Reachability methods constructs a set of reachable outputs R(𝑋, f). The construction is
done by taking the sets of input values and, using various methods, creating representations
of NNs, propagating the input values through the neural network up to the output layer.
A solver (or another algorithm) decides which classifications are reachable with a given
representation at the output layer. For a set of these obtained classifications, it must hold
that it is a subset of the possible classifications, i.e.:

𝑅(𝑋, f) ⊆ 𝑌

These methods divide between those that do or do not perform over-approximations. Exact-
Reach [26] does not perform over-approximations, so it is complete for its set of problems
but can only be used for NNs with ReLU activation functions and cannot be used for
medium or more extensive networks. Ai2 and MaxSens [25] are not complete, but the
range of verifiable networks is larger [18].

2.4.2 Optimization

Primal optimization methods stand on trying to falsify assertion:

9

𝑥 ∈ 𝑋 =⇒ 𝑦 = 𝑓(𝑥) ∈ 𝑌

In this case, the neural network is a constraint structure that, by various algorithms,
is optimized. For example, ILP [5] toolkit iteratively tries to estimate the maximum input
set 𝑋𝐸 of neural network concerning the correct outputs 𝑌 . Suppose 𝑋 ⊆ 𝑋𝐸 , the neural
network is safe for that case. Current solutions are limited to using only ReLU activation
functions [18].

The second approach to optimization methods is dual optimization methods. These
methods work on the principle that they try to optimize output constraints that, if they
violate each other, the network is not safe for a given case. Compared to primary opti-
mization, these bounds are much easier, and thanks to, for example, Lagrangian relaxation
(Duality [9]), it is possible to implement other activation functions than ReLU.

However, using relaxations is necessary to use specific propagation methods, leading to
incompleteness. In addition, the constraints created in this way are different than in the
case of primal optimization [18]. It is thus necessary to create new solvers that can solve
dual problems. One of them is the Active Sets [19] solver, which works in combination with
search methods.

2.4.3 Search

Where standard reachability and optimization methods try to create an area and prove what
values a given network can acquire, search methods find concrete examples (or counter-
examples) that would falsify some condition. So, where the reachability methods must
prove the entire reachable output set, search methods only need to prove that there is no
counter-example to claim otherwise. Alternatively, find a specific counter-example instead
of proving an area that violates local robustness.

One of the implementations of these methods (combination of search and reachability) is
the VeriNet [13, 14, 11] toolkit, which is the main object of this thesis. The following Chap-
ter 3 primarily describes the elementary concepts that build these verification algorithms.
It is also worth adding that current competition algorithms such as Crown [28, 27, 24]
or Active Sets [19] consist of searching with dual optimization. So if we talk about some
state-of-the-art algorithm, it is practically certain that it will be a tool based on some form
of search.

2.5 Disciplines using neural networks
As mentioned in the Chapter 1, one of the essential milestones of neural networks was the
use of the ACAS Xu [23] collision detection model. Nevertheless, that is not all. The use
of neural networks has become a regular part of routine life essentially and their use today
reaches areas that until recently could only be done by a human.

2.5.1 Autonomous driving

One of the current hot topics today is the transportation industry’s future. In addition to
the tendency to leave internal combustion engines, it is a matter of autonomous driving.
Various algorithms for object detection, traffic sign identification, route control (GPS), or
driving that autonomous car use stands on neural networks [4].

10

In addition, we encounter the need to correctly aggregate information from various
sources and adapt the NNs to them. For example, to perceive the surroundings, such a
vehicle draws data from three sources - the camera, LiDAR (laser beams for perceiving
depth), and radar. Examples of known systems using neural networks that autonomous
vehicles use include HydraNet, ChauffeurNet, or NVIDIA self-driving car [4].

On the one hand, there is a lower need for continuous learning and, therefore, less need
for fast verification. On the other hand, the required size of the network increases with a
generally more extensive number of inputs and the need to respond to virtually everything
in a large area around the car. For example, one of the works [15] on neural networks
for autonomous driving systems for embedded devices designed a network with just over
150,000 trainable parameters. We assume that these numbers would be much higher in
reality because this system focuses only on using data from the camera.

The need for verification is evident in the case of autonomous management - traffic
safety. Every traffic accident potentially brings economic losses in the case of car damage
and potential transport of goods. And the loss of lives in worse cases.

A little ethical reflection

Ethical and moral responsibility is also problematic in this case. If an accident occurs,
who is responsible? The author of the system, the one who sold the vehicle, the one who
verified the system, the one who bought it? Therefore, in addition to the fact that this and
other works try to deal with a formal technical approach to the given problem of neural
networks, it is necessary to consider legal and ethical risks. Another problem may be that
maintaining such a system requires obtaining a lot of data, which can mean a significant
invasion of privacy.

2.5.2 Deep learning in healthcare

The previous example replaces the ordinary person, the driver, and the following replaces
original security such as passwords or fingerprints. This example goes further. It replaces
years of education and experience with the machine. It is a medical use that we classify
into two main directions - diagnosis [2] and treatment [8].

In the basic sense of the word, diagnostics work on the principle of a database of patients
with a given set of symptoms, test results, personal characteristics, and their final diagnosis.
Then neural networks use such sets to train a network that serves to diagnose a specific
patient with an unknown diagnosis. The resulting network can then detect, for example,
cardiovascular disease, cancer, or diabetes [2].

Figure 2.3 shows a fundamental consideration of how such a model could work for
some common diseases A and B. For example, today, this detection tool could detect and
distinguish between Covid-19 and influenza, which have very similar symptoms. Symptom
A could be cough, symptom B olfactory loss, and laboratory test A standard antigen test
that is not very accurate and is not sufficient for diagnosis.

In the case of cancer, relatively harsh treatment is used, including radiation, chemother-
apy, or surgical removal of the tumor. From this point of view, it is essential that the
diagnostic tool used is well trained and verified, as a wrong diagnosis can lead to fatal
consequences for the patient.

The problem with the neural network in this case, and even more so in the case of using
the neural network for surgical interventions, is the already mentioned fact that neural
networks function as a black box [8]. The black box means that the neural network takes

11

NN for diseases
X and Y
detection

Age
Gender

Symptom A

Symptom B

Lab. test A

Disease X

Disease Y

Diagnosis

Negative

Patient data

Figure 2.3: An example of using a classification network to detect X and Y diseases related
on age, gender, symptoms A and B and with the possibility of laboratory test A. Inspired
by [2].

the inputs and returns the output—nothing in between. Unlike a doctor who has years
of experience and education and can say why and how he came to a given conclusion and
wrote a medical report, we do not know anything about the calculation method in a neural
network. Therefore, it is necessary to significantly improve the tools for the formal analysis
of neural networks.

A little ethical reflection

Compared to the other two examples, the author of the verification system gets into much
greater responsibility than in the previous two examples. In the case of autonomous driving,
the user can intervene in the vehicle’s driving in the event of a visible failure. While illness
diagnosis or surgery, there may be only the machine trained and verified by their creators.
Thus, the network creators and those who verify the network have the destinies of human
lives in their hands.

On the other hand, the availability of qualified medical care in many less developed
societies is poor. Such generically learned machines can provide at least the necessary care.

2.5.3 Face recognition

One of the most common areas where neural networks occur is image processing. After all,
it is already quite common today for mobile phone publishers to write “boosted by AI” on
their packaging. However, there is a slightly safety-critical discipline apart from recognizing
food, text, nature, or other objects. This discipline is the face recognition with which we
can unlock the various devices.

The main benefit of using neural networks is training the network directly to a specific
person in real-time, moreover, with personal appearance changes [17]. For example, Apple
boasts of using “Neural Engine” chips to accelerate the learning of NNs and thus offer
comfort to their customers in real-time3.

In this example, it can be relatively quickly emphasized that the excellent scalability of
verification algorithms for neural networks could be pleasant. The user would not have to
wait long, and he would know that nobody can exploit bugs in the face recognition system.
Moreover, many people store essential data on their devices, such as bank logins, passwords,

3https://support.apple.com/en-us/HT208108

12

https://support.apple.com/en-us/HT208108

or internal job data. Thus, the security weakness of neural networks can lead to unpleasant
consequences. An enormous problem can be when an unverified, poorly trained network is
in a device owned by some high general or politician.

A little ethical reflection

The ethical question arises in the context of recognizing a face. It is necessary first to
obtain the data, more accurately an image or, better, a 3D scan of the face. On the one
hand, for example, phone manufacturers can be trusted that phone makers leave biometric
data only on the device and do not send it anywhere or misuse them for unfair matters. If
someone does not trust this system, the camera can be pasted or turned off within the SW.
Alternatively, the person does not have to buy it.

In the context of crime, cameras often multiply on the streets, and it is not difficult
to create a complete population map when using face recognition technology. That is the
main area where facial recognition technology can be misused. This tool is even being
abused today by the People’s Republic of China in its Black Mirror-inspired social credit
system, where people gain and lose credit not only for common offenses and crimes but also
for disloyalty to the government. In this case, the author of the system that verifies this
system becomes an accomplice of the regime.

In the context of crime, cameras often occur on the streets, and it is not difficult to
create a complete population map when using face recognition technology. That is the main
area where facial recognition technology can be misused. This tool is even being abused
today by the People’s Republic of China in its Black Mirror-inspired social credit system4,
where people gain and lose credit for common offenses and crimes and disloyalty to the
government. In this case, the author of the system that verifies this system becomes an
accomplice of the regime.

4https://en.wikipedia.org/wiki/Social_Credit_System

13

https://en.wikipedia.org/wiki/Social_Credit_System

Chapter 3

Main concepts

This chapter deals with the basic building blocks of a large part of tools for neural network
verification. We explain the primary verification cycle, which occurs in VeriNet, and its
three basic blocks. We also briefly mention the competitive Crown tool and tools created
by Bunel et al.

3.1 Verification cycle
The toolkits like VeriNet [11], Crown [28], BaB [7], and others consist of three main blocks
(see Figure 3.1) – construction of a network representation (usually some bound propagation
method), processing by a solver, and possible refining of the solved problem. The algorithm
always starts by creating a representation and terminates with an obtained result. An
exception is a timeout, which occurs primarily for more extensive networks and is a relatively
common way to terminate an algorithm [11].

The third option of termination of the verification cycle, linked to the system architec-
ture and can be handled in various ways, is termination due to lack of memory or excessive
rounding error. Rounding errors can terminate the algorithm when it is impossible to create
bounds within the representation or rework phase. It occurs when we break the elementary
condition 𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 < 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑.

3.2 Linear relaxation
Before mentioning bound propagation methods, it is essential to realize that the activation
functions used in standard neural networks are non-linear. This non-linearity, as we explain
in Section 3.3.2, is not suitable for some bound propagation methods, such as symbolic
interval propagation, and therefore so-called linear relaxations are used.

Linear relaxation is a process where non-linear functions (as 𝑅𝑒𝐿𝑈 , 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 or 𝑡𝑎𝑛ℎ) are
converted to linear over-approximations. The result consists of n-tuples of linear constraints
for node input and output. Valid outputs that respect these constraints are part of the
overestimation of the output space. For example, to define the linear relaxation of the most
typical activation function of neural networks, 𝑅𝑒𝐿𝑈 , Henriksen et al. [11] refer to derived
relaxation:

𝑅𝑒𝐿𝑈(𝑥, 𝑦) = {𝑦 ≥ 0, 𝑦 ≥ 𝑥, 𝑦 ≤ 𝑥𝑢(𝑥− 𝑥𝑙)

𝑥𝑢 − 𝑥𝑙
}

14

Bound
propagation

SolversBranch and
bound

Safe/unsafeUndecidable

Start

RepresentationNew constraints

Invalid bounds
(underflow)

Timeout

Figure 3.1: The main cycle of VeriNet and others.

where 𝑥𝑙 and 𝑥𝑢 are lower and upper bounds of the input. Basically, we intuitively create
a triangle, where two sides are based on the 𝑅𝑒𝐿𝑈 function and the third side is the
connection between the two farthest points.

However, this relaxation is not entirely suitable, as it contains three linear constraints,
which leads to a more precise output space, but at the same time, leads to a more de-
manding calculation for further verifications. Therefore, we subsequently encounter two
characteristic bounding lines during the verification: upper linear relaxation and lower lin-
ear relaxation. So if we use the same example of the 𝑅𝑒𝐿𝑈 activation function, we get a
set of linear constraints:

𝑅𝑒𝐿𝑈(𝑥, 𝑦) = {𝑦 ≥ 𝑥𝑢𝑥

𝑥𝑢 − 𝑥𝑙
, 𝑦 ≤ 𝑥𝑢(𝑥− 𝑥𝑙)

𝑥𝑢 − 𝑥𝑙
}

where 𝑥𝑙 and 𝑥𝑢 are lower and upper bounds of the input. To illustrate, we can see in
Figure 3.2 that such relaxations are actually two parallel lines glued to the 𝑅𝑒𝐿𝑈 activation
function [11].

The elementary principle is intuitive, but there are many problems with it. The first
one is the calculation of the already mentioned bounds 𝑥𝑙 and 𝑥𝑢. Within VeriNet, their
calculation solves propagation methods (SIP, ESIP), which propagate the input bounds
through the network.

The second one is that propagation methods use these linear relaxations, but, as can
be noticed, there is a significant overestimation. This overestimation means that the errors
of the following bound increase with each new layer with the relaxed activation function.
That, in the end, causes false counter-examples [11]. The accuracy of these estimates is one
of the issues discussed, and different research groups take different approaches (for example,
some other toolkits use Lagrangian decomposition for refinement [6]).

Due to overestimations, the toolkits with linear relaxations are no longer complete by
default. This incompleteness we can solve while using the 𝑅𝑒𝐿𝑈 activation function, which
is piecewise linear. However, for other nonlinear functions, such as the already mentioned
tanh and sigmoid, this generally leads to a sound but incomplete solution [11, 18].

15

ffhh

Lower relaxation

ReLU

Upper relaxation

xl xu

Figure 3.2: An example of relaxation of ReLU activation function.

In contrast to 𝑅𝑒𝐿𝑈 , there is also the problem that the creation of linear relaxation
may not necessarily be feasible with the help of an analytical solution. Henriksen et al. [11]
represents an iterative approach for 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 and 𝑡𝑎𝑛ℎ activation function, where it is
possible to obtain relatively precise relaxations.

In general, linear relaxations are a partial departure from complete solutions, but thanks
to the introduction of linearity into the verification problem, the scalability of the verifica-
tion tool increases. Some other solutions, such as the Crown [24], then increase accuracy at
the expense of speed by introducing quadratic relaxations. Regardless, we do not address
them in this work.

3.3 Representation methods
An elementary problem of neural network verification is converting node notation with
edges to something that a verification tool can solve. Approaches to this are different, but
today we primarily talk about the so-called bound propagation methods. The bound prop-
agation methods try to make some estimation of 𝑓(𝑥𝑥𝑥) from the model notation, where 𝑓(𝑥𝑥𝑥)
represents the behavior of the neural network and 𝑥𝑥𝑥 the vector of the inputs. Depending on
the activation methods and layers used, these methods are then differently applicable. The
result of bound propagation methods is some boundaries, constraints, equations (linear,
mixed-integer, some intervals), and others in verifying usable data [18, 11].

Remark (Original approaches). The original methods for verification used MIP coding of
ReLU nodes, which was complete but at the same time very computationally demanding.
The next step was their relaxation of LP constraints, which led to incompleteness, but at
the same time, the field of verifiable neural networks expanded [18].

16

In this work, we focus primarily on symbolic representations because the toolkit (Veri-
Net) used in this work uses them. More details on the given methods are in the main
sources [13, 11, 23].

3.3.1 Naive interval propagation

In order to find counter-examples, we need to identify possible outputs based on the intervals
for each input. For a naive implementation, Henriksen et al. [13] gives the following formulas
(for FFNN):

𝑧𝑖𝑙 =𝑊 𝑖+𝑦𝑦𝑦𝑖−1
𝑙 +𝑊 𝑖−𝑦𝑦𝑦𝑖−1

𝑢 + 𝑏𝑏𝑏𝑖

𝑧𝑖𝑢 =𝑊 𝑖+𝑦𝑦𝑦𝑖−1
𝑢 +𝑊 𝑖−𝑦𝑦𝑦𝑖−1

𝑙 + 𝑏𝑏𝑏𝑖

where 𝑧𝑖𝑙 and 𝑧𝑖𝑢 describe the lower and upper bounds of layer 𝑖, 𝑦𝑖−1
𝑢 is the output upper

bound of the previous layer, 𝑦𝑖−1
𝑙 is the output lower bound of the previous layer, 𝑏𝑖 is the

bias of layer 𝑖. We generate 𝑊 𝑖+ from the weight matrix as:

𝑊 𝑖+
𝑘,ℎ =

{︂
𝑊 𝑖

𝑘,ℎ 𝑊 𝑖
𝑘,ℎ > 0

0 else

The real output of each layer is obtained with activation function 𝜎(𝑥) of layer 𝑖 as:

𝑦𝑖𝑙 = 𝜎𝑖(𝑧𝑧𝑧𝑖𝑙)

𝑦𝑖𝑢 = 𝜎𝑖(𝑧𝑧𝑧𝑖𝑢)

These formulas say that each node in each layer calculates the minimum and maximum
possible values 𝑧𝑖𝑙 and 𝑧𝑖𝑢, which stand on a matrix of the minimum and maximum values 𝑦𝑖𝑙
and 𝑦𝑖𝑢. These we obtain from the previous layer outputs multiplied by a matrix of weights
of edges between the current and previous layer in FFNN.

The advantage of naive interval propagation is its simplicity. However, the disadvantage
is that it does not include conditional dependencies of minimum and maximum values
between nodes across the network and thus significantly overestimates the output intervals’
ranges. Thus, this method causes many undecided case occurrences, making it necessary
to split the solved domain into more subdomains [13].

3.3.2 Symbolic interval propagation SIP

A big step away from this naive implementation introduced the ReluVal [23] and Neurify [22]
toolkits – a symbolic interval propagation (SIP) [18]. Instead of propagating specific values,
SIP propagates linear equations. According to experimental results, this method leads to
a reduction of overestimation compared to naive implementation. In contrast to naive
implementation, the formulas for each layer change to:

𝑒𝑞𝑖𝑙𝑜𝑤,𝑖𝑛(𝑥𝑥𝑥) =𝑊 𝑖+𝑒𝑞𝑖−1
𝑙𝑜𝑤,𝑜𝑢𝑡(𝑥𝑥𝑥) +𝑊 𝑖−𝑒𝑞𝑖−1

𝑢𝑝,𝑜𝑢𝑡(𝑥𝑥𝑥) + 𝑏𝑏𝑏

𝑒𝑞𝑖𝑢𝑝,𝑖𝑛(𝑥𝑥𝑥) =𝑊 𝑖−𝑒𝑞𝑖−1
𝑙𝑜𝑤,𝑜𝑢𝑡(𝑥𝑥𝑥) +𝑊 𝑖+𝑒𝑞𝑖−1

𝑢𝑝,𝑜𝑢𝑡(𝑥𝑥𝑥) + 𝑏𝑏𝑏

where 𝑒𝑞𝑖𝑢𝑝,𝑖𝑛 and 𝑒𝑞𝑖𝑙𝑜𝑤,𝑖𝑛 are symbolic upper and lower bounds and 𝑒𝑞𝑖−1
𝑢𝑝,𝑜𝑢𝑡 and 𝑒𝑞𝑖−1

𝑙𝑜𝑤,𝑜𝑢𝑡

are symbolic output bounds of the previous layer. In contrast to the propagation formula
of naive interval propagation, the lower and upper input and output values of 𝑦𝑖−1 and 𝑧𝑖

17

are replaced by the equations 𝑒𝑞𝑖−1 and 𝑒𝑞𝑖. From working with specific values, we get to
working with symbolic notation

This method leads to strongly non-linear equations because we usually use non-linear
activation functions in commonly used neural networks. The solution is the usage of linear
relaxations, which cancel out non-linearities while creating linear overestimation [18, 11, 23].
Therefore, we take the calculated input upper and lower equations from the previous formula
and substitute them with the calculated relaxation. Formally:

𝑒𝑞𝑖𝑙𝑜𝑤,𝑜𝑢𝑡(𝑥𝑥𝑥)𝑘 = 𝑟𝑖𝑙,𝑘(𝑒𝑞
𝑖
𝑙𝑜𝑤,𝑖𝑛(𝑥𝑥𝑥)𝑘)

𝑒𝑞𝑖𝑢𝑝,𝑜𝑢𝑡(𝑥𝑥𝑥)𝑘 = 𝑟𝑖𝑢,𝑘(𝑒𝑞
𝑖
𝑢𝑝,𝑖𝑛(𝑥𝑥𝑥)𝑘)

where 𝑟𝑖𝑙,𝑘 and 𝑟𝑖𝑢,𝑘 are lower and upper relaxations for node 𝑘 in layer 𝑖.
To create specific relaxations, it is necessary to calculate both specific bounds for upper

and lower relaxation. These we calculate as:

𝑧𝑙 = 𝑚𝑖𝑛(𝑒𝑞(𝑥𝑥𝑥)) =
∑︁
𝑖|𝑎𝑖>0

𝑎𝑖𝑥
𝑙
𝑖 +

∑︁
𝑖|𝑎𝑖<0

𝑎𝑖𝑥
𝑢
𝑖

𝑧𝑢 = 𝑚𝑎𝑥(𝑒𝑞(𝑥𝑥𝑥)) =
∑︁
𝑖|𝑎𝑖>0

𝑎𝑖𝑥
𝑢
𝑖 +

∑︁
𝑖|𝑎𝑖<0

𝑎𝑖𝑥
𝑙
𝑖

where 𝑒𝑞(𝑥𝑥𝑥) =
∑︀

𝑖 𝑎𝑖𝑥𝑖 and where each 𝑥𝑖 is bounded by 𝑥𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑢𝑖 .
In most cases, SIP creates a better representation (tighter bounds) of larger neural

networks than the naive method, but it still has its shortcomings. This method is still
not able to trace all the inter-dependencies between the individual nodes and still creates
a considerable number of false counter-examples. For this reason, symbolic propagation is
followed by error-based symbolic propagation (ESIP) and also reverse symbolic propagation
(RSIP) within the DEEPSPLIT extension [11, 14].

3.3.3 Error-based interval propagation ESIP

While standard symbolic interval propagation works with lower and higher bound relax-
ations, the error-based interval propagation (ESIP) method presented here works only with
the lower one. It replaces the upper relaxation and the higher bound equation with a spe-
cific error value describing the upper relaxation distance from the lower one. Thus, the
ESIP further propagates errors and bound equations only through the lower relaxations.

Principle

Each layer thus contains at its input its matrix 𝐸𝑖
𝑖𝑛 ∈ R𝑚𝑖×𝑚′

𝑖 representing errors from the
previous layers, where 𝑚𝑖 is the number of nodes in layer 𝑖 and 𝑚′

𝑖 is a number of all nodes
in previous layers. We use this matrix for verification via solvers on the output layer and
for the splitting strategy heuristic.

Continuous errors and equations of behavior are propagated in an intuitive way using
weights for individual edges 𝑊 𝑖 and for the propagation of equations also with bias 𝑏𝑏𝑏:

𝐸𝑖
𝑖𝑛 =𝑊 𝑖𝐸𝑖

𝑜𝑢𝑡

𝑒𝑞𝑖𝑖𝑛(𝑥) =𝑊 𝑖𝑒𝑞𝑖𝑜𝑢𝑡(𝑥) + 𝑏𝑏𝑏

18

1

1

-1
0

1

-1

1

1
1

1

1
2

1

1

1

1

Figure 3.3: Two NNs with one different edge. The nodes contain the propagated error value
from the left node. Activation function is 𝑓(𝑥) = 𝑥.

Henriksen et al. [11] provides further necessary formulas for describing the ESIP method.
First, how to calculate a new error on a node 𝑘 in a layer 𝑖 that describes the maximum
possible distance between the value created by the upper relaxation and the lower relaxation:

𝜖𝑖𝑘 = 𝑚𝑎𝑥𝑧𝑖∈[𝑧𝑖𝑙,𝑘,𝑧
𝑖
𝑢,𝑘]

(𝑟𝑖𝑢,𝑘(𝑧)− 𝑟𝑖𝑙,𝑘(𝑧))

Second, the method of calculating new errors through the node with the usage of only lower
relaxations 𝑟𝑖𝑙,𝑘:

(�̂�𝑖
𝑜𝑢𝑡)𝑘,: = 𝑟𝑖𝑙,𝑘((𝐸

𝑖+1
𝑖𝑛)𝑘,:)

where the resulting output error matrix is concatenation of the propagated errors and new
errors:

𝐸𝑖
𝑜𝑢𝑡 = [(�̂�𝑖

𝑜𝑢𝑡), 𝑑𝑖𝑎𝑔(𝜖𝜖𝜖)
𝑖]

And very similarly, propagated equations are obtained as:

𝑒𝑞𝑖𝑜𝑢𝑡(𝑥)𝑘 = 𝑟𝑖𝑙,𝑘(𝑒𝑞𝑖𝑛(𝑥)𝑘)

And third, we need to get new lower 𝑧𝑖𝑙,𝑘 and upper 𝑧𝑖𝑢,𝑘 bounds for each node. To do this,
we use the input equations 𝑒𝑞𝑖𝑖𝑛 obtained from the previous layers and also the error matrix
𝐸𝑖

𝑖𝑛 obtained from the previous layers as:

𝑧𝑖𝑙,𝑘 = 𝑚𝑖𝑛(𝑒𝑞𝑖𝑖𝑛(𝑥)𝑘) +
∑︁

ℎ|(𝐸𝑖
𝑖𝑛)𝑘,ℎ<0

(𝐸𝑖
𝑖𝑛)𝑘,ℎ

𝑧𝑖𝑢,𝑘 = 𝑚𝑎𝑥(𝑒𝑞𝑖𝑖𝑛(𝑥)𝑘) +
∑︁

ℎ|(𝐸𝑖
𝑖𝑛)𝑘,ℎ>0

(𝐸𝑖
𝑖𝑛)𝑘,ℎ

Benefits

Thanks to all these errors, we can tell what maximum or minimum values are and obtain
each node’s output using only one relaxation. Another advantage is that thanks to these
errors, which we propagate through the neural network, we can cancel each other out or
multiply the dependencies between the given nodes. For example, in Figure 3.3, we can
see that in the network on the left error, the error cancels out, while in the network on the
right, it doubles.

Thanks to these sums and subtractions of errors from previous layers, ESIP manages
to suppress the conditional dependency issue. In turn, the absence of the propagation of
upper relaxation increases the overall overestimation of the network’s behavior. However,

19

experimental results show that ESIP generally leads to significantly better boundaries, and
thus, the ESIP generates fewer counter-examples than SIP [13, 11].

Moreover, the concrete error values propagated to the output layer and summed together
give a pretty accurate overview of what overestimation is produced by which node. These
errors then tell which nodes are pulling overestimation of the correct class down. Moreover,
which nodes are pulling up overestimation of potentially counter-example classes. Based
on this knowledge, the VeriNet can create a very effective heuristic within the branch and
bound phase.

3.4 Solvers
In the previous section, we created a representation and got some output behavior at the
output layer. The representation at the output layer can tell us a specific output changes
when a particular input changes or if it can reach a specific value. Nevertheless, we do
this to check whether the network is locally robust or not, and that is why we use different
solvers to find out.

The result of propagation methods is a set of constraints, linear equations, bounds, and
other helpful verification data. With that, it is possible to search for counter-examples or
other network behavior, and, for example, VeriNet uses the LP solver and local gradient
search for its processing. The selection of these tools is also an essential topic within
verification tools.. For more details, see [18].

The choice of solver depends on how we code the neural network verification problem.
For example, in dual optimization, one of the works [19] designs and implements the so-
called Active Set Solver. Some other methods encode the network for other solvers such as
MILP, SMT, SAT, or other custom solvers. Different solvers then have different domains
of what they can process and how fast they can process it [11]. In general, the less complex
the problem to be solved and the less complex the task is, such as having only a linear
behavior, the faster the solver usage is. For example, a system of linear inequalities is much
easier to solve than a system of quadratic inequalities. However, a less complex solution
leads to a less accurate solution, and therefore the solver needs to be called multiple times,
so it is necessary to look for a balance. So, for example, using a simple LP solver can be
very fast, but again it does not have to process as accurate representations as MILP. We
can demonstrate this in the example of the previously mentioned representation methods.

Naive interval propagation would be simple for solvers. It consists only of specific
boundary values. The solver used needs only to check the intersections of the intervals
formed by bounds. On the other hand, in contrast to the more complex ESIP, this method
completely lacks any interdependence of nodes within the network, so the result returned
by the solver has a great chance of being a false positive.

3.5 Refinement
As mentioned in Section 3.3, today’s state-of-the-art representation methods lead to the
overestimation of output intervals. Thus, there are a lot of false counter-examples that do
not exist in a given input domain. We can prove the existence of real counter-examples
with the help of various solvers, as we mention in the following chapters. On the other
hand, proving the non-existence of such cases is a lot more complicated, and most state-of-
the-art algorithms go through some refinement phase. It is also important to mention that

20

this phase often adds completeness to the basic incomplete algorithms (at least for ReLU
sites) [18, 11].

3.5.1 Existing splitting strategies

These refinement methods usually work by dividing the main problem into smaller ones.
Usually, we select a node and then divide its input in half (or in a different ratio). Then the
algorithm solves sub-problems and adds a new split constraint to a solver. The selection of
these nodes is an essential aspect of verification algorithms, and different approaches lead
to differently efficient algorithms.

While the original tools did not rework and did not have to use any strategies, newer
ones, such as Neurify [22], moved towards a hierarchical strategy. The strategy is to grad-
ually take nodes from the input layer to the output layer while dividing the inputs of the
selected node. This strategy leads to the expansion of solvable problems. However, we
cannot split all the inputs of neural network nodes in a reasonable time [11].

In this regard, VeriNet has introduced an adaptive splitting strategy with a heuristic
that uses the results from the ESIP phase and deduces the nodes that will be divided first
and later according to the effect on the output layer. As a result, VeriNet can find and split
necessary inputs sooner and reduce the overall number of required splits [13]. The problem
with this adaptive method is that it does not look at the order of split nodes at all and is
thus stateless. This stateless logic can lead to a “wrong” split node order and thus slower
verification. Moreover, this strategy tends to prefer some layers. Thus it does not split
fairly in the whole network.

We describe splitting strategies more in the following chapters, and the new we present
and experimentally evaluate new ones in this thesis.

3.5.2 Heuristics

Modern verification tools use adaptive splitting strategies in different ways. Usually, they
need some heuristics to determine which node is in the given representation the most
significant. Sometimes these heuristics choose the node with the longest distance between
bounds or the node with the highest gradients of representation. Alternatively, they can
calculate heuristics on some representation characteristics. The third case is also the case
of VeriNet.

The VeriNet uses mentioned errors on individual nodes to observe their two undesirable
impacts - lowering the lower bound of the correct classification c or increasing the upper
bound of the wrong classification t. The goal of the refinement is to reduce both of these
influences (reduce overestimation), and the VeriNet heuristic tries to find such nodes by
looking for the most significant errors. Thus, the VeriNet toolkit introduces the value of
impact score, which it calculates as:

𝑠(ℎ) = 𝛾𝑐𝑚𝑎𝑥(𝐸
𝑚
𝑐,ℎ, 0)−

∑︁
�̸�=𝑐

𝛾𝑡𝑚𝑖𝑛(𝐸
𝑚
𝑡,ℎ, 0)

where 𝛾 is so-called weighting factor and 𝐸 is the error matrix at output layer from ESIP
phase1 – 𝐸𝑐 as the error matrix of correct output and 𝐸𝑡 as the error matrix of other
outputs.

1For details see subsection 3.3.3.

21

For safe classes, which the VeriNet proved in its previous iterations, we use 𝛾 = 0, for
the correct class 𝛾 = 𝑛 where 𝑛 is the number of potential counter-examples, 𝛾 = 1 for
other unproven classes. This heuristic does not include any indirect impacts – the difficulty
of splitting between the input layer or first layers is more challenging to compute than
splitting within later layers. We need to recalculate all subsequent layers in the newly
created branches (previous layers remain the same). On the other hand, splitting within
the first layers has a more significant impact on decreasing over-estimations caused by linear
relaxations of non-linear functions [13, 11]. We discuss these effects more in Chapter 5.

These heuristics are one of the goals for further improvements. For example, in the
extension of VeriNet DEEPSPLIT, they create an impact score as a combination of direct,
indirect, and propagation effects [11, 14]. There will be a discussion on the importance of
the quality of heuristic functions in the following chapters.

3.5.3 Splitting

We discussed some strategies and heuristics to create new branches by dividing the current
branch and thus making more accurate representations. We do this branching by adding
split constraints to the current representation of the node inputs (and LP-solver). The split
constraint then splits the node input in the case of the ESIP method (in VeriNet toolkit)
into two “halves” as:

𝑒𝑞𝑖(𝑥𝑥𝑥) +
∑︁

𝑘|𝐸𝑖,𝑘>0

𝐸𝑖,𝑘 ≥ 𝑠

𝑒𝑞𝑖(𝑥𝑥𝑥) +
∑︁

𝑘|𝐸𝑖,𝑘<0

𝐸𝑖,𝑘 ≤ 𝑠

These split constraints 𝑠 then differ depending on the activation function of the node.
For 𝑅𝑒𝐿𝑈 nodes, split constraints are 𝑠 = 0, because this constraint leads to the cancellation
of the non-linearity of the 𝑅𝑒𝐿𝑈 activation function. This cancellation also means that
the algorithm is complete for networks consisting only of 𝑅𝑒𝐿𝑈 layers. If we created 2𝑁

branches where 𝑁 is the number of nodes, all nodes would have exact linear behavior, and
thus the representation would have complete behavior [11].

For other activation functions (s-shaped 𝑡𝑎𝑛ℎ and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑) 𝜎 are split constraints 𝑠
counted as midpoint:

𝜎(𝑠) =
𝜎(𝑧𝑙) + 𝜎(𝑧𝑢)

2

where 𝑧𝑙 and 𝑧𝑢 are lower and upper symbolic bounds to input calculated by ESIP [11].
For an illustration of splitting, suppose we have an overestimated result if we assume

that we have some computed input bounds over positive and negative values and a node
applies some linear relaxation of the ReLU function on them. However, if we introduce a
split constraint 𝑠 = 0, we get two intervals, which are located purely on two linear sections of
the ReLU function, so no overestimation occurs. We can see such a situation in Figure 3.4.

3.5.4 Branch and bound

Combining the splitting strategy, heuristics, the splitting method, and the solver’s outputs,
as described in the sections and subsections above, is created one of the basic building
blocks of modern verification algorithms, the so-called branch and bound algorithm.

This algorithm, or rather the programming paradigm, was not initially intended to
verify neural networks but, for example, for solving various optimization problems such as

22

ReLU node
input: <-5, 17> Inaccurate relaxed

output

ReLU node
input: <-5, 0> output: 0

ReLU node
input: <0, 17> output: <0, 17>

No split
constraint

Split constraint
s = 0

Branch 1

Branch 2

Branch 0

Figure 3.4: Simplified example of adding split constraint. Branch one restricts inputs only
to less than or equal to the split constraint and the second one vice versa.

the traveling salesman problem or knapsack problem2 [7]. One of the original tools that
adopted this method for neural network verification is the BaB verification toolkit3 [7]
(named after Branch and Bound).

The branch and bound method constructs a tree divided into sub-domains based on
some input domain. This tree aims to gradually reduce the size of the problem which we
process and thus solve the smaller sub-problems. The given problem does not have an
existing (safe, robust) solution, and we must prove it in all branches, or the problem has a
solution (unsafe), and thus, it must find at least one branch which violates some condition.
Safe branches we prune. The satisfiability of the branch and the goal of the search depend
on the tool used [18, 11, 7].

In the case of VeriNet, we are talking about finding a real counter-example or eliminating
all potential. Therefore, if the LP solver, in the case of VeriNet, states that there is no
intersection on the output layer and therefore no potential counter-example, then the branch
is pruned. If we prune all branches, the network is safe for the case (unsatisfiable). If we
find a real counter-example in any branch, the algorithm stops in all remaining branches.
The case then we report as unsafe (satisfiable) [13, 11].

Figure 3.5 shows how the branch and bound phase of the VeriNet verification algorithm
works. The node symbolizes the problem branch and always shows the number of current
potential counter-examples. The branching symbolizes the addition of split constraints on
the input domains of the nodes.

In the left tree in Figure 3.5 we can see that we pruned all branches of all counter-
examples. I.e., the processed domain and its overestimation do not generate any intersec-
tions which the LP-solver could find. In the right tree, we can see that one of the branches
found a real counter-example during the branching and the whole algorithm then stopped.

2For more examples, see https://en.wikipedia.org/wiki/Branch_and_bound
3[18] describes that the Planet and Reluplex tools can also be seen as an implementation of branch and

bound.

23

https://en.wikipedia.org/wiki/Branch_and_bound

20

514

0 007

00

Safe

20

416

0 008

1 5

Unsafe

Figure 3.5: Example of a tree for the branch and bound phase of a VeriNet toolkit. The
number in the nodes describes the number of potential counter-examples. Green nodes are
proven to be safe. Red nodes are proven to be unsafe.

In the case of the BaB tool, we sought a global minimum. In this case, the tool has the
condition that in the case of proving a negative value of local minima, the branch, tree, and
we mark the whole case as unsafe. If it becomes positive, the case is safe, and we prune the
branch. The goal is to prune all branches and find a global minimum higher than 0 or to
prove that the global minimum is lower than 0 [7].

Different algorithms use different methods for working with the branch and bound al-
gorithm. However, we can distinguish three elementary building blocks - selection strategy,
domain splitting method, and some decision algorithm (solver), which can decide in a set
{𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑, 𝑢𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑, 𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑}.

Many SoA algorithms use branch and bound, but the sub-blocks often differ signif-
icantly [24, 19, 14]. These differents are also because branch and bound often lead to
extreme branching when it is necessary to create and verify tens of thousands of branches
to solve a given case. After a specific timeout, this situation leads to the network being
unverifiable in many cases. This exponential branching is one of the most significant current
scalability problems for neural network verification.

It is also necessary to keep in mind that this method of exponential branching has
considerable memory requirements. In the case of VeriNet, these requirements are at least
partially reduced by the non-recursive implementation of queue-based branching [11, 18].
Another problem may be the so-called underflow result. It says that the division of branches
failed to create valid bounds and that we have to terminate the algorithm.

Various efforts to improve this method at the level of splitting strategies we discuss in
this work, but a key topic in working with this algorithm is its parallelization. For example,
the Crown [28, 27] toolkit in its newer versions approaches massive GPU parallelization.
However, the VeriNet toolkit uses only CPU parallelization, but VeriNet𝐵𝐹 extension [12]
uses GPU.

24

3.6 Other solutions
The techniques described above primarily focus on VeriNet and similar tools. The following
subsections describe a few other exciting solutions.

3.6.1 Methods according to Bunel, De Palma, et al.

It is worth mentioning the latest projects around the Oxford effort of Rudy Bunel, De Palma
et al. They bring some tools that, according to the Crown authors [29], are part of the
latest generation of verification tools. An important fact is that Bunel et al. brought the
branch and bound phase [7] to the field of verification. Thus, they significantly increased
the scalability of verification tools and brought a new generation of algorithms to neural
network verification.

Verification via Lagrangian Decomposition

This solution deals with too much looseness of calculated bounds, which leads to unneces-
sarily large inaccuracies and thus more difficult verification of neural networks. The work
thus improves the properties of bounds using relaxations formed by Lagrangian decompo-
sition [6], which overcomes the so-called Lagrangian relaxations [9]. Unlike VeriNet, this is
an optimization search approach to neural network verification.

This work builds on dual algorithms, where the authors claim that their new method
allows at least as accurate bounds as previous approaches, and this solution 𝛼, 𝛽-Crown
follows. The authors boast in their work that they can stop their algorithm anytime. This
stopping is advantageous in setting between the performance price and accuracy. That
means that we can stop the algorithm and obtain a roughly current intermediate result
from it, which may not be the tightest possible, but is still usable in the subsequent phases
of the algorithm. Another benefit of their approach is easy GPU parallelization [6].

Compared to primal optimization, the difference in this approach is that it is necessary
to use dual solvers to solve problems obtained by Lagrangian decomposition. They take
them from previous approaches to dual optimization, but they also developed in the follow-
up approaches. For example, they further design Active Sets Solver [6, 19].

Verification via Active Sets

The main topic of this solution is working with dual solvers, where they propose and im-
plement the so-called Active Set Solver, which, unlike existing solvers (LP), can solve dual
problems. Like the Crown solution, this method also represents alpha and beta optimiza-
tion variables and is based on the above work based on Lagrangian decomposition. This
verification tool allows massive GPU parallelization. The toolkit uses branch and bound
phase [19].

The benefit of this work is that Active Set Solver better process tighter boundaries.
This processing is advantageous because tighter boundaries are more accurate, leading to
better verification results and better estimation of network behavior. However, at the
same time, tighter boundaries consist of many more constraints that consume much more
computing power to solve with a solver. They achieve this by storing an active set of the
dual variable [19].

Their tool is again well parallelizable in terms of the branch and bound phases, the
calculation of bounds on specific layers, and the presented solver itself [19].

25

3.6.2 Crown

The Crown tool views formal neural network verifications differently than VeriNet. This
toolkit is primarily famous for winning the 2nd International Verification of Neural Net-
works Competition, and the Huan Zhang group is longly involved in neural network formal
analysis. Unlike VeriNet, Crown is more of an ecosystem of not only verification tools,
which they gradually develop and expand, among other things, for compatibility with other
activation functions4.

From their point of view, during the seminar on the verification of neural networks,
four different generations of NNs verification tools have been created since 2017. The first
generation consisted of existing solvers and the second generation of extending scalability
with the presentation of incomplete tools. The third and fourth are interesting in that
they both talk about the development of tools based on the branch and bound method.
According to them, the fourth generation brings GPU acceleration to this method [29].
This finding is intriguing. Although the extension of VeriNet, DEEPSPLIT, was very close
to their solution in the already mentioned competition [3], according to this definition, it is
a tool one generation behind because DEEPSPLIT is not GPU accelerated. On the other
hand, the creators of VeriNet are currently working on GPU acceleration, primarily in the
context of the propagation phase.

The two main tools developed under the “Crown brand” are the 𝛼-Crown and 𝛽-Crown,
where 𝛼 and 𝛽 indicates unique optimizable variables 𝛼 and 𝛽. Both tools bring massive
GPU parallelization and are currently probably (at least according to the last competi-
tion [3]) the fastest solutions available.

Unlike VeriNet, their principle is not symbolic interval propagation (SIP, ESIP, RSIP. . .)
methods but bound propagation methods based on Lagrangian optimization using linear
and quadratic bounds. As a result, the Crown can verify given inputs with relatively tight
boundaries. Also, unlike VeriNet, the Crown’s principle is not to search for reachable states
but to optimize and search for global minima. We can include their approach among the
search and optimization methods [24], but resources on this topic vary. For example, the
book [18] includes them between search with reachability methods.

In the context of this work, a branching strategy can be interesting. Crown uses a
well-established BaBSR calculation strategy that quickly estimates and searches for the
nodes with the highest significance in a given network and selects the best one. In addition,
they have tested Crown also with an FSB strategy similar to BaBSR and serves on the
principle of imitating the bound propagation method for the few best selections by the
BaBSR method and selecting the one with the most significant impact. The authors then
claim that they also dealt with the Graph neural network (GNN) branching strategy and
that their tool is easily extensible in this regard [24].

4For more details see: https://github.com/huanzhang12/alpha-beta-CROWN

26

https://github.com/huanzhang12/alpha-beta-CROWN

Chapter 4

VeriNet toolkit

VeriNet is a library of modules used to verify neural networks based on local robustness.
It is one of the so-called search algorithms with a focus on reachability. In this chapter,
we focus on the main parts of the algorithm pipeline. We take the deep description from
articles [13, 14] and the diploma thesis of Mr. Henriksen [11].

4.1 Algorithm overview
The main algorithm of the VeriNet toolkit consists of four blocks (phases; see Figure 4.1).
The first phase starts after loading inputs to the verification toolkit. We need to know the
structure of the neural network – the number of layers, size of layers, activation functions,
weights, biases, and other parameters. We derive input constraints which from training
input (primarily images) and some 𝜖 simply as:

𝑖𝑛𝑝𝑢𝑡_𝑛𝑜𝑑𝑒_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = (𝑖𝑛𝑝𝑢𝑡_𝑣𝑎𝑙𝑢𝑒− 𝜖; 𝑖𝑛𝑝𝑢𝑡_𝑣𝑎𝑙𝑢𝑒+ 𝜖)

where 𝜖 is the distance for which we require the algorithm to be locally robust.
First phase inputs also include correct classification. We can predict (user chooses

correct classification) or calculate it from the input values result – classification is the node
at the output layer with the highest value. This phase uses ESIP in the default VeriNet
implementation, but we can replace it with other methods. For example, we can replace
it with the combination of SIP and RSIP, as they do it in the DEEPSPLIT [14] extension
(see 4.5). The result of this phase is the new representation of the input neural network.
That includes a matrix of bounds for each node in each layer, a matrix of error values, and
output equations1.

In the second phase, the algorithm seeks to find potential counter-examples in a given
representation. The algorithm uses Gurobi LP-Solver2, which processes the combination
of the output equations, the errors, and the split constraints. Thus, it tries to find poten-
tial counter-examples through the application of linear programming (optimization). This
solver works on the premise that the equation on the correct output node must always
return the highest values from all equations. If the LP-solver calls 𝑢𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑎𝑏𝑙𝑒, there
are no output interval intersections, no possible counter-examples, and thus the network
is safe for the case. If the LP-solver calls 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑎𝑏𝑙𝑒, there may be (but not necessary)

1See subsection 3.3.3.
2https://www.gurobi.com

27

https://www.gurobi.com

ESIP

Branch and
bound

Gradient
descent
search

LP-solverUnderflow

NNet model,
image

"Unsat"
Safe

Unsafe
"Sat"

Undecidable

Invalid
bounds

Timeout

Representation

No
counterexample

Potential
counterexamples

Split
constraints

Figure 4.1: VeriNet pipeline scheme. Taken and polished from [11].

some counter-examples. It is just a potential counter-example as it works with a relatively
significant overestimation of network behavior.

In contrast to the second phase, the third phase seeks to find real counter-examples.
For searching real counter-examples, the VeriNet toolkit uses gradient descent search. If
it finds some real counter-example and calls it 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑎𝑏𝑙𝑒, the VeriNet toolkit calls the
input case of neural network unsafe. However, standard representation methods, including
the VeriNet ESIP, are relatively high overestimated. Thus, if this phase does not find a
counter-example, it can either mean that the search area was too broad or there is no
counter-example.

Therefore, if the solvers do not find the solution, the fourth phase of branch and bound
occurs. This phase is a direct implementation of the branch and bound phase described in
the subsection 3.5.4. This algorithm then selects the best appropriate node and adds split
constraints to its input. This step creates two new branches, allowing the original solved
domain to split into two smaller ones. Running processes then take these new branches,
and each process re-performs the entire VeriNet pipeline with some optimizations.

If any of these branches is unsafe, the neural network is unsafe for the input case. The
neural network is safe for the input case if all branches are safe. If new branches do not find
a solution again, we create the two branches from the original branch again. The algorithm
thus creates new branches until it finds the right solution or until it expires the time limit
(timeout). An alternative way to terminate the algorithm is the so-called underflow. It
says that it was impossible to create the correct new bounds because of the accuracy of
floating-point arithmetic.

4.2 Propagation methods
The algorithm implements an error-based symbolic interval propagation (ESIP) method
with few improvements leading to better optimization. For example, the ESIP method
calculates the bounds for the whole network only for the first iteration. New bounds
and equations are calculated only for the layers that follow the current split node. This
optimization leads to higher numbers of branches calculated per time unit.

28

However, this method is still the bottleneck of the verification cycle. The main reason is
that the current version is not parallelizable on the GPU or CPU and, therefore, challenging
to accelerate. An exception in this may be matrix operations used in calculations by the
standard Python library Numpy which is well optimized.

The input of this phase is, logically, a neural network model. The authors encode it with
the help of a slightly modified NNet model, which initially comes from the neural networks
used in the Acas Xu collision detector. Such a model contains both the amounts and widths
of layers, the maximum and minimum possible values on the inputs, individual connections,
and other helpful information. In addition, the improved version of VeriNet provides the
ability to specify activation functions on individual layers and the types of connections
between those layers, including the ability to specify convolution kernels. Another input is
some set of inputs (image), and another is correct classification. It is the optional parameter
because the toolkit can replace it with the statement that all inputs should have the same
resulting classification.

The input of this phase is, logically, a neural network model. The authors code it
with the help of a slightly modified NNet model3, which initially comes from the neural
networks used in the Acas Xu collision detector [23]. Such a model contains both the
amounts and widths of layers, the maximum and minimum possible values on the inputs,
individual connections, and other helpful information. In addition, the improved version
of VeriNet provides the ability to specify activation functions on individual layers and the
types of connections between those layers. Other inputs are some set of inputs (image)
and optionally correct classification. Optional because the toolkit can replace it with the
statement that all inputs should have the same resulting classification [11].

4.3 Solvers
VeriNet uses a Gurobi LP-solver. It gives the algorithm information about the existence of
potential counter-examples. Also, it adds information about which outputs these counter-
examples generate, which we can use in the subsequent phases of the algorithm. In general,
we do not perceive this phase as significantly time-consuming.

VeriNet toolkit uses a PyTorch optimized ADAM tool to search real counter-examples
default. It does a gradient descent search 𝐿(𝑥𝑥𝑥) = 𝑦𝑐 − 𝑦𝑡, where 𝑥𝑥𝑥 indicates input, the
𝑦𝑐 indicates the output value of the correct classification and the 𝑦𝑡 indicates the output
value of the potentially incorrect classification. The authors set the default setting to do five
iterations with a step size equal to 0.1. The optimizer finds real counter-examples relatively
quickly with this setting, even with minimal branching. Thus, VeriNet, by default, calls a
local search only every five iterations (every fifth branch) [11].

4.4 Branch and bound phase
The main goal of this phase is to find the problematic node, select some of its inputs,
divide this input and create new branches according to this split. Unlike some other tools,
such as CROWN [28], this phase is parallelized only through the CPU. The principle is
that individual processes, so-called VeriNetWorkers, gradually take unprocessed branches
from the queue. After completing them, it either creates two new branches (undecided)

3https://github.com/sisl/NNet

29

https://github.com/sisl/NNet

from them, or when successfully solving the verification task, it passes the result on in the
manner mentioned in 3.5.4.

Although the general principle of the branch and bound algorithm might suggest, this
branching phase is not directly recursive. It mimics recursion using a classic queue, where
it places unprocessed branches. This queue use generally leads to an order of magnitude
better memory utilization than when using classical recursion.

In the default version of the program, VeriNet uses adaptive refinement, which estimates
the most influential node to split. This phase does not look at the previous split nodes or the
subsequent split nodes, so the node selection depends only on the current representation of
the neural network in the given branch. The following experiments will focus on reworking
this phase.

4.5 Existing VeriNet extensions
Given that verification of neural networks is a very current topic and, at the same time,
the scalability and thus the practical usability of verification algorithms is low, many new
tools are emerging. This section will list the two most significant enhancements to VeriNet.

4.5.1 DEEPSPLIT

DEEPSPLIT is an extension of the VeriNet toolkit. In addition to improving the com-
patibility of Python libraries and minor development enhancements, this extension brings
significant improvements in two main ways [14].

They made a significant change in the representation methods phase. Instead of di-
rectly calculating bounds and equations through the ESIP method, this tool combines two
methods – RSIP and ESIP. The RSIP method is very similar in principle to the SIP and
ESIP methods, but unlike them, it accesses the network from the other side – it propagates
bounds from the last layer to the first layer.

The combination of these two different methods works by first calculating the repre-
sentation using the RSIP method. ESIP then works with the values calculated by the
RSIP method and for each layer counts its representation (bounds). Then it selects the
bound that is tighter and therefore more accurate. As a result, it finds fewer false counter-
examples, and at the same time, the areas in which we search for real counter-examples are
smaller [14].

The second significant change is the extension of the heuristic function with indirect
and propagation effects. Indirect effects describe the importance of linear relaxations on
the accuracy of the boundaries estimations in the following layers - splitting a node in the
previous layer reduces the effect of linear relaxation on the following layers. The propagation
effects describe the difficulty of splitting within specific layers - the more profound the node’s
layer locates, the easier the splitting is. This improved heuristic leads to a better selection
of split nodes and thus reduces the number of split nodes needed to resolve the case [14].

In addition to these improvements, DEEPSPLIT changes the original Gurobi LP-solver
to a better one. It also improves input parameters of solvers – it adds the possibility
of solving problems other than local robustness, improves the search for specific counter-
examples, and much more. Together, these improvements led to DEEPSPLIT placing
second in the 2nd International Verification of Neural Networks Competition (2021), close
behind the 𝛼, 𝛽-Crown toolkit, making it one of the best state-of-the-art solutions [3, 14].

30

4.5.2 VeriNetBF

Another version of VeriNet is VeriNetBF, which brings significant improvements over the
original VeriNet in many ways. In addition, this work focuses on bias field perturbations
and also brings an extension of representation methods.

The extension presents a combination of undemanding SSIP (Standard-SIP) and more
demanding and accurate RSIP (Reversed-SIP) for neural network representation. This
combination works so that SSIP finds and creates a representation of more stable and less
critical nodes, and then VeriNetBF computes more important nodes using the RSIP method.
This combination then advantageously combines the simplicity of SSIP and the accuracy
of RSIP [12].

Another advantage over the original VeriNet implementations is GPU acceleration
within representation methods. This acceleration leads to significantly better results but
at the same time creates a problem with the need to estimate the memory requirements
for calculating the given operations. RSIP has huge memory requirements on the GPU
and can often run out of memory. In addition, it also provides 64-bit precision compared
to the 32-bit precision in most verification algorithms, which is more time-consuming and
accurate [12].

The algorithm boasts that it can better verify tools that analyze images from the med-
ical environment thanks to the bias field analysis. For example, in Magnetic Resonance
Imagining (MRI), where images may be damaged by intense artifacts. Bias field analysis
can verify resistance to these perturbations. The algorithm also boasts that the most ex-
tensive network they verify reaches the size of 6.5M nodes, which is a significantly higher
number than the NNs we verify in this work [12].

31

Chapter 5

Extension design

This chapter describes the extension design and implementation details for new branching
strategies within the VeriNet toolkit. All proposed strategies are universally applicable and
modular to any other toolkit with similar principles as VeriNet (branch and bound, ESIP).
All parts of this chapter were designed and implemented during work on this bachelor thesis.

We propose three different strategies in the first three sections. After the main descrip-
tion, we briefly discuss implementation and the class design. In the next Chapter 6, we
experimentally evaluated all ideas from this chapter.

5.1 Memory strategies
This section introduces methods that increase the speed of branching at the expense of
reducing the quality of node selection. The expected result of these methods is an increase
in the required number of branches to solve the given verification tasks but at the same
time a reduction in the time required to solve them.

5.1.1 Simple memory strategy

During each iteration of the branch and bound phase, several steps need to be taken -
select the node, split it, and create new branches. All of these are non-trivially demanding
operations, and therefore this first strategy tries to save on the first-mentioned step.

The basic idea is that instead of counting a new heuristic, each time we split a new
node, the heuristic is counted only once in a while. Specifically, we create a stack of 𝑛 best
nodes, and only when they run out is a new heuristic called. The heuristic then returns the
𝑛 best results instead of one result. These we again store on the stack, from which further
iterations of the branch and bound phase take new nodes.

The potential benefit of this method is to save on the operations required to perform
heuristics, which include several matrix multiplications, matrix additions, and the best node
selection (sorting algorithm). In addition, this method assumes that the estimated impact
scores of individual nodes do not change as much over time and that the quality of the
heuristics would not deteriorate as much.

The disadvantage may be the deteriorating accuracy of the heuristic for higher 𝑛. For
sigmoid and tanh networks could be a disadvantage impossibility to choose the same sig-
nificant node twice in one stack iteration. Another disadvantage is that this strategy does
not include the order of split nodes. According to the stack memory, it only takes them

32

0.3

0.7 0.2 0.8

0.6 0.9

1.4 [3]1.5 [2]1.2 [4]

0.5

0.4

1.7 [1]

Input vector Output vector0.3

0.7 0.2 0.8

0.6 1.2 [4]

1.4 [3]1.5 [2]0.9

0.5

0.4

1.7 [1]

Input vector Output vector

Figure 5.1: An example of a neural network where the first number is the impact score and
the second number (optional) is the split node order for simple memory strategy. Memory
size 𝑛 is equal to 4.

from the best to the worst. This order can be disadvantageous, as it is more advantageous
to divide the nodes at the beginning and then at the end of the network.

For example, as we can see in Figure 5.1 with some impact score values, the node in the
last layer is divided first, then in the second, then in the third, and finally also in the third.
Thus, given that the new branch is necessary to calculate the representations of the only
following layers, it raises the number of needed operations. For example, if we swap the
node splitting in the last layer and the second layer, we save six new node representation
calculations. If we split in the last layer, we get two representations in which we next split
the node in the second layer. Whereas if we split in the second layer, we recalculate bounds
in the following six nodes, and after splitting in the last layer, we do not have to recalculate
them again.

5.1.2 Sorted memory strategy

The second strategy we propose is the sorted memory strategy. This strategy extends the
previous simple memory strategy, where we perform heuristics, 𝑛 best nodes are selected,
and these we save on stack. In the case of a sorted strategy, we sort the obtained results
from the input layer to the output layer to reduce the unnecessary recalculation of nodes.
The selection of nodes we illustrate in Figure 5.2 (same network as in the case of the simple
memory strategy).

The main advantage of this strategy over the simple memory strategy and the default
adaptive strategy1 is that it reduces the number of node recalculations. It thus partially
includes indirect effects that the VeriNet heuristic does not account for [11]. As in the case
of a simple memory strategy with a larger 𝑛, the heuristic accuracy decreases.

5.1.3 Reverse sorted strategy

This strategy aims not to improve verification tools but to show the effect of the order of
the split nodes on the verification itself. Its principle is the same as for the sorted memory
strategy in Section 5.1.2, we only reverse the order of the divided nodes in such a way that
the node from the last layer goes first.

1Default VeriNet [11] strategy, briefly mentioned in Section 3.5.1.

33

0.3

0.7 0.2 0.8

0.6 1.2 [3]

1.4 [2]1.5 [1]0.9

0.5

0.4

1.7 [4]

Input vector Output vector

Figure 5.2: An example of a neural network where the first number is the impact score
and the second number (optional) the split node order for sorted memory strategy. The
memory size is equal to 4.

0.3

1.2 [4]

0.4

1.7 [1]

1.0

1.6

1.2

1.4
0.3

1.2 [4]

1.0

0.7

0.5

1.3

0.3

1.2 [4]

0.4

1.7 [1]

1.0

1.1

1.1

0.4

Original branch

New branches

Figure 5.3: Example of branch mirroring effect. Green and red nodes are current split
nodes and blue one is a planned split node.

It will be interesting to observe two behaviors in experiments with this solution. On
the one hand, experiments will measure the reduction in the rate at which we split nodes
per unit of time. Moreover, on the other hand, these experiments may show the effect of
the order on the number of branches needed to solve the case.

5.1.4 Branch mirroring

Another significant disadvantage of both described methods may be the problem of branch
mirroring. For example, in Figure 5.3 we can see that in the new branches, we split a
significant node in one branch, while in the other branch, we split a node with a meager
impact score. In both branches, we split the same nodes for some time depending on the
size of memory 𝑛. This splitting means that in one series of branches, overestimation can be
constantly limited in one direction (of correct or incorrect output), which does not approach
the solution of the given task. The result can be one or more unnecessarily deep lines of
branches that slow down the task.

34

5.2 Semi-hierarchical strategy
This section proposes a novel strategy for the branch and bound method that combines
previous approaches.

5.2.1 Comparison of hierarchical and adaptive splitting

Previous approaches used two main ways how to choose split nodes. Neurify [22] proposed
hierarchical splitting, one of the first approaches to the branch and bound algorithm. Veri-
Net [11], which follows Neurify, proposed a novel adaptive splitting strategy, significantly
improving branch and bound mechanisms.

In the case of a hierarchical strategy, we follow an intuitive selection of split nodes. We
start with the first node of the first layer and continue to the second and third until we get
to the last node of the last layer. Formally, let us consider a list of indices of the neural
network nodes indices as a one-dimensional array and variable i initialized as i=0. We get
a new node as node = indices[i++]. The advantages of this approach are its simplicity
and respect for the correct split node order we mentioned in Subsection 5.1.1. However,
the disadvantage is that significant nodes we might split late.

The principle of the second approach, the adaptive splitting strategy, is choosing the
most significant node in each branch and bound iteration of the representation of the
neural network. For this purpose, we use some heuristic functions. If we again suppose ar-
ray indices, we choose split node as node = indices[heuristic(representation)].
This approach chooses the best nodes sooner, but it does not respect the correct split node
order. However, the adaptive splitting strategy generally leads to having a better result on
larger networks [11, 14].

For example, as shown in Figure 5.4, the second step of the hierarchical strategy plans to
split a node with a minimal impact score of 0.3. In contrast, an adaptive split strategy splits
nodes with significant influence on network behavior and faster reduces overestimation in
the representation.

5.2.2 Best by layer strategy

This strategy represents a combination of an adaptive and a hierarchical splitting. The
principle is to calculate the heuristics only for the current layer, from which we select the
most critical node. After each iteration (creation of a new branch), we shift the index of
the current layer.

We can see an example in Figure 5.5, where in the first iteration, the node with a value
of 0.9 has the best score in the first layer. We split the node, and the algorithm continues
in one of the new branches so that it currently has the highest node with a value of 1.2 in
the second layer.

5.2.3 Potential advantages and disadvantages

This method should have several advantages over previous mentioned strategies. On the
one hand, we limit the heuristic calculation for a specific layer, so if the neural network
has 𝑛 layers, then the number of necessary operations for branch calculation is reduced
to 1

𝑛 . On the other hand, it solves problems solved in DEEPSPLIT extension [14] more
intuitively. It solves propagation impacts by introducing the order into divided branches,
and indirect impacts it solves by giving adequate space to all layers. This fairness is related

35

0.3

0.7 0.2 0.8

0.6 0.9

1.4 [3]1.5 [2]1.2 [4]

0.5

0.4

1.7 [1]

0.3

0.7 0.2 0.8

0.6 1.2

1.71.50.9

0.5

0.4

1.6

Input layer Output layer

0.3

0.7 0.2 0.8

0.6 0.9

1.4 [3]1.5 [2]1.2 [4]

0.5

0.4

1.7 [1]

0.3

0.7 0.2 0.8

0.6 1.2

0.81.50.9

0.4

0.3

1.2

Input layer Output layer

Figure 5.4: Yellow nodes were chosen by hierarchical and blue by adaptive strategy. The
second sub-figure illustrates the NN after dividing by the blue node in the first sub-figure.

0.3

0.7 0.2 1.8

1.3 1.2

1.41.50.9

0.5

0.4

1.7

Input vector Output vector

0.3

0.7 0.2 1.5

1.2 1.1

1.31.10.6

0.4

0.3

1.6

Input vector Output vector

Figure 5.5: Green indicates the nodes that we split according to the best by layer strategy.

36

to the current problem of VeriNet [11] heuristics, which tends to prefer nodes in later layers
of the network at the expense of earlier ones.

Remark (Prioritized layers). However, while experimenting with networks beyond the de-
fault VeriNet package, it has been shown that the VeriNet adaptive heuristic prefers different
layers for different networks. More research would be beneficial.

Compared to the memory-based methods, it has the advantage of less heuristic distortion
and also cancels the branch mirroring effect. The advantage may also be the absence of the
need to select the memory size, which dramatically affects the quality of memory methods.

The disadvantage of this method may be excessive fairness. We may split less often than
necessary some layers with nodes that generate significant overestimation. In addition, this
method does not include the possibility of different layer sizes, so if a layer is significantly
smaller or larger, it will still go as often as the other layers.

5.3 Alternating impact strategy
As mentioned in section 3.5.2, VeriNet calculates heuristics as the sum of some positive and
negative errors. Due to these errors, we create a kind of reasonable heuristic when the most
significant node is always selected. In this section, we describe a method that, similarly
to the reverse sorted strategy, is used primarily to test the behavior of the verification
algorithm.

The goal of this strategy is not to select the best nodes, but the best nodes for positive
or negative errors separately. As mentioned in section 3.5.2, the original heuristics have the
following formula:

𝑠(ℎ) = 𝛾𝑐𝑚𝑎𝑥(𝐸
𝑚
𝑐,ℎ, 0)−

∑︁
�̸�=𝑐

𝛾𝑡𝑚𝑖𝑛(𝐸
𝑚
𝑡,ℎ, 0)

As a part of this new strategy, heuristics are modified to apply to odd/even branches:

𝑠(ℎ) = 𝛾𝑐𝑚𝑎𝑥(𝐸
𝑚
𝑐,ℎ, 0)

and to even/odd branches:
𝑠(ℎ) = −

∑︁
�̸�=𝑐

𝛾𝑡𝑚𝑖𝑛(𝐸
𝑚
𝑡,ℎ, 0)

The potential advantage of this strategy is that branching will not reduce the impact
in only one direction. The second advantage may be reducing the number of operations
required for heuristics.

On the contrary, the disadvantage may be many potential counter-examples. Thus al-
ternating impact strategy will reduce their overestimation less often. Another disadvantage
may be asymmetry in that there may be a high reduction of overestimation of correct
classification. At the same time, there may be a significantly lower reduction in the over-
estimation of potentially incorrect classifications.

5.4 General implementation details
As part of the implementation, it was necessary to resolve a few details that do not directly
result from the design of new strategies.

37

VeriNet VeriNetWorker

NNBounds
Activation

FunctionAbstraction

LPSolver Gurobi

Verification
ObjectiveAbstraction

Branch SplitmansStrategist

Figure 5.6: The class dependencies diagram of VeriNet extension. Diagram taken and
extended from [11].

5.4.1 New classes

Our approach includes an extension by two classes - the Strategist and the Splitmans classes.
We design the Strategy class to include static methods for selecting a node to divide, and
the Splitmans class we design to add the necessary strategy information to the branches.
We can see the proposed scheme in Figure 5.6, where the classes marked in green are the
core of the extension.

The Splitmans class primarily includes some memory of the selected nodes, the max-
imum memory size, or the last split layer. To determine the last split node, it is also
necessary to keep the reference to the last selected node.

The Strategist class contains static methods for specifying a new split node and updating
data in branches, especially in the embedded Splitmans class. The main goal of this class is
to replace the adaptive splitting strategy presented in [11] with more advanced ones. The
following sections show the proposed strategies.

5.4.2 Changes in default classes

We implement several changes to create compatibility between extension modules and the
default toolkit. The first one is the addition of the memory variable to the main VeriNet
module. This variable we use in all memory strategies determines the memory size for any
strategy. The default value of this variable is 1.

Each time we initialize the main VeriNet module, the primary Splitmans entity is
initialized, including the value for memory size. When creating additional branches, we
send a deep copy of this original entity to one branch, and the other takes over the reference
to the original entity. References are possible since we no longer use a closed branch. As
a result, we transfer the data needed to work with all strategies for each new branch, i.e.,
memory index, memory, and layer index. We call new strategies in _branch() method of
the VeriNetWorker class.

38

Chapter 6

Experiments

This chapter discusses the performance of VeriNet while trying to investigate the behavior
of the verification algorithm. It includes a section about our experimental setting, the
experiments, and one section for zoomed results to branch implosions we discovered. We
also carried out many experiments which did not fit here. We placed them on our GitHub
and the submitted attachment.

6.1 Experimental setting
For all experiments, the environment we used was a computer with Ubuntu 20.04 LTS, 16
GB RAM, CPU AMD Ryzen 3 1300X processor, and GPU GTX 1660 with 6 GB memory.
The installed libraries are the same as recommended by the authors [11]. The following
subsections describe our goals, testing and training dataset, and networks we tested.

6.1.1 Objectives of experiments

Before we proceed to experiments, we must set our objectives. The main ones include:

• Solving more undecided cases. Default VeriNet and other tools have limited scalability
of solvable cases, and we want to improve it.

• Preservation or acceleration of already solvable cases.

In addition to these primary objectives, we performed experiments to observe other be-
haviors of the verification algorithm. That includes branching speed for different strategies,
numbers of needed branches, or general observation of the VeriNet behavior.

Remark (Results). As we mentioned in chapters before, the VeriNet returns for given cases
three possible results. These are:

• Safe – The VeriNet says the network is locally robust for a given input.

• Unsafe – The VeriNet says the network is not locally robust for a given input.

• Undecided – The VeriNet was unable to decide in a given timeout.

39

https://github.com/DaveHudiny/Strategist-VeriNet-extension-BUT-FIT/tree/main/Results

(a) (b) (c) (d)

Figure 6.1: The four (a) on the left was relatively unproblematic and was among the less
problematic cases. The nine (b) was mistaken for eight by medium-sized networks and either
was unsafe very soon or was verified for a long time. The nine (c) then made significant
problem with larger and better networks (sigmoid, tanh), when there occurs exponential
branching. This case was misclassified with the one. The five (d) was also problematic and
was usually confused with the six.

6.1.2 Dataset

For network creation and subsequent verification, it is necessary to use some data for
network training and then part of this data for verification as tested inputs. For these
purposes, institutions, companies, or other groups create datasets. These are a database of
images or records with their correct classifications.

We worked with one of the most common datasets to train neural networks, MNIST. It
contains relatively basic pictures of black and white digits with a low resolution of 28x28
pixels. In the context of experiments, we observed that some images were problematic
for verification while others were usually undemanding. However, in general, the images
were problematic differently for each network – the examples with short comments we have
placed in Figure 6.1.

VeriNet uses a clear format without an extension to represent the images. It contains
784 consecutive numbers that describe the intensity of the input. These can take values
from 0.0 to 255.0. The numbers after the decimal point are usually 0. The advantage
of this notation is that it does not contain any disturbing additional information. VeriNet
reads a set of numbers assigned to the given neural network inputs in a given order.

VeriNet authors have also worked with a network trained on the dataset Cifar-10 while
experimenting. Their knowledge refers to their trained network as the largest known verified
network[11] (it has over 100 000 nodes). However, as we mentioned in Remark 2.1.1, we
did not perform experiments with convolutional networks for technical reasons.

6.1.3 Used networks and strategies

We took trained networks and their models from the VeriNet1 and Marabou2 repositories.
In Table 6.1, we show which networks we benchmarked.

For some networks, we mentioned in the comment that they were either too large or
too small. For too large, we encountered both the problem of weaker setting and too high
timeout for the ability to monitor any behavior. We have decided that it is unnecessary to
carry out deeper benchmarks for too small networks.

1https://github.com/vas-group-imperial/VeriNet-OpenSource
2https://github.com/NeuralNetworkVerification/Marabou

40

https://github.com/vas-group-imperial/VeriNet-OpenSource
https://github.com/NeuralNetworkVerification/Marabou

Source Function Layers Nodes Comment
VeriNet ReLU 2 100
VeriNet Sigmoid 6 3000 Best trained network
VeriNet Tanh 6 3000

Marabou ReLU 10 100
Marabou ReLU 10 200 Slightly reduced the number of experiments
Marabou ReLU 20 800 Only few experiments
Marabou ReLU 6 1536 Too large
VeriNet ReLU 2 48 Too small
VeriNet ReLU 2 1000 Only few experiments

Table 6.1: Table of experimented networks. All networks were trained on the MNIST
dataset. The nodes are evenly distributed in the layers. The number of nodes includes only
nodes in hidden layers.

For ReLU networks, we can state that it had an upper limit for practical experiments
at about 800 nodes in our setup. Surprisingly for sigmoid and tanh networks, there was no
problem with 3000 nodes. However, we also observed that, despite good verifiability, we
were unable to demonstrate any significant results on these networks. Most cases ended
in one branch, and the rest we have not resolved by either our or the original version of
VeriNet.

Remark (Scalability of verification). We noted that universally better-trained networks
are easier to verify. For this reason, VeriNet authors were able to verify a convolutional
network with more than a hundred thousand nodes. The size influences only the time needed
to create a representation, while the need for refinement comes from the quality of networks.
For example, if we have a poorly-trained or well-trained network, we can decide quickly, but
we meet with many undecidable cases for a “half sufficient” network.

We experimented with the first three networks from Table 6.1 for all strategies. Our
semi-hierarchical strategy shows significant improvement over the original adaptive split-
ting strategy with these networks. Thus, for deeper comparison, we extended the set of
benchmarked networks with the rest networks mentioned in Table 6.1.

While experimenting, we use various strategies. For clarity, we created short abbrevia-
tions for each one:

• Adaptive splitting strategy – ADS

• Semi-hierarchical strategy – SHS

• Memory-based strategies – MS

– Simple memory strategy – SMS
– Sorted memory strategy – STS
– Reverse sorted memory strategy – RSS

• Alternating heuristic strategy – AHS

We are authors of all mentioned strategies but the first one. For all memory-based strategies,
we use memory size 20.

41

6.2 Main experiments
In this section we describe our observations from benchmarked experiments. Each subsec-
tion include experiments with one network, primarily with semi-hierarchical strategy. We
focus on the number of solved cases and time needed for solving decidable cases.

Remark (Epsilon). While working with experiments, we need to define the value of epsilon.
As we mentioned in previous chapters, the epsilon value tells how wide are neighborhoods
of inputs we verify. For example, if we have epsilon with value 1 and input with value 5,
we verify robustness for inputs in the interval < 4, 6 >.

6.2.1 VeriNet – 100 ReLU nodes in 2 layers MNIST network

This network contains two hidden layers of 50 nodes. Implementing a proposed semi-
hierarchical strategy here led to the solution of two new cases in a given timeout (900
seconds), as shown in Table 6.2. Thus, there were no unverifiable cases for the epsilon
5. However, sorted and reverse-sorted memory strategies show worse results than default
strategies.

Epsilon 1 2 5 10 15
Solved safe cases SHS 97 93 78 24 3
Solved safe cases ADS 97 93 77 23 3
Solved safe cases STS 97 93 76 23 3
Solved safe cases RSS 97 93 75 20 2
Solved unsafe cases (all) 3 7 22 71 89
Timeout cases SHS 0 0 0 5 8
Timeout cases ADS 0 0 1 6 8

Table 6.2: Comparison of the numbers of results of different splitting strategies. MNIST
ReLU 2× 50. Timeout 900 seconds.

In Table 6.3, we can see that a semi-hierarchical strategy significantly improved the
time of safe cases over the default adaptive splitting strategy if we include only the same
classifications.

Epsilon 1 2 5 10 15
Safe cases time SHS 2.26 s 2.46 s 748.04 s 913.50 s s 47.72 s
Safe cases time ADS 2.28 s 2.65 s 834.71 s 1313.14 s 86.99 s
Unsafe cases time SHS 0.06 s 0.14 s 0.49 s 1.62 s 2.05 s
Unsafe cases time ADS 0.06 s 0.16 s 0.50 s 1.67 s 1.89 s

Table 6.3: Comparison of sums of times necessary for obtaining the results for each ep-
silon (timeout 900 seconds). Removed newly resolved cases. MNIST ReLU 2 × 50, semi-
hierarchical.

Table 6.4 shows particular cases that changed their classification from undecided to safe.
We reduced time from the timeout of 900 seconds more than twice for the first case. Also,
we can see that the semi-hierarchical strategy significantly reduced the number of needed
branches.

The semi-hierarchical strategy presents a significant improvement in the verification of
this network. In contrast, the sorted and reverse sorted memory strategies reduced the

42

Epsilon Time SHS Branches AHS Branches SHS
5 431.30 s 61897 36599
10 663.67 s 74805 59277

Table 6.4: Comparison of newly resolved cases. Original time was 900 seconds (timeout)
with adaptive splitting strategy (ADS) for both cases. MNIST ReLU 2× 50.

number of solved cases. However, we proved that the split node order significantly impacts
verification algorithms that use ESIP.

Within the following experiments, we work with similar tables and metrics.

6.2.2 Marabou – 100 ReLU nodes in 10 layers MNIST network

We can see a significant improvement in this network with a semi-hierarchical strategy.
The improvement includes reducing the number of undecidable cases from 30 to 24, which
was achieved primarily by significantly reducing the number of branches needed to solve a
particular case. Specifically, in Table 6.5, the most significant absolute decrease occurred
with the middle epsilon 5 and a small one with epsilon value 2. Conversely, for epsilon
10, we solved no additional case. These different decreases could indicate a trend for this
strategy to work better at lower epsilon values. However, it is still only a tiny sample.

Epsilon 1 2 5 10 15
Solved safe cases SHS 83 72 12 0 0
Solved safe cases ADS 83 71 7 0 0
Solved unsafe SHS 17 25 70 97 100
Solved unsafe ADS 17 25 70 97 100
Timeout cases SHS 0 3 18 3 0
Timeout cases ADS 0 4 23 3 0

Table 6.5: Comparison of the numbers of results of the default (ADS) version and the
semi-hierarchical strategy (SHS). MNIST ReLU 10× 10. Timeout was 900 seconds.

In Table 6.6, we can see how much time the verification process took to determine the
specific states for each epsilon. We can see that the semi-hierarchical strategy achieved
significantly better results for all epsilons for safe cases.

Epsilon 1 2 5 10 15
Safe cases time SHS 32.24 s 759.06 s 9.84 s 0.00 s 0.00 s
Safe cases time ADS 112.73 s 996.38 s 15.81 s 0.00 s 0.00 s
Unsafe cases time SHS 0.38 s 0.69 s 4.07 s 5.28 s 2.19 s
Unsafe cases time ADS 0.38 s 0.69 s 3.98 s 5.15 s 2.16 s

Table 6.6: Comparison of sums of taken time for each epsilon and each result. Removed
newly resolved cases. MNIST ReLU 10× 10.

This strategy also has a relatively significant impact on the number of branches needed
to solve specific examples. If we exclude cases where the result has not changed, we get
Table 6.7. We can see that the implementation of the strategy significantly reduces the
number of branches needed to solve safe cases, with the lowest epsilon even to less than

43

one-third. Regarding the safe part of the table, we can assume that the semi-hierarchical
strategy reduces the average number of branches needed to resolve the case and speeds up
the branching process.

Epsilon 1 2 5 10 15
Branches for solved safe cases SHS 57.36 2249.45 126.43 nan nan
Branches for solved safe cases ADS 184.61 3095.73 382.14 nan nan
Branches for solved unsafe cases SHS 1.00 1.00 1.80 2.37 1.00
Branches for solved unsafe cases ADS 1.00 1.00 1.77 2.37 1.00
Branches for timeout cases SHS nan 106548.67 78531.11 53653.33 nan
Branches for timeout cases ADS nan 85457.00 70283.22 50611.00 nan

Table 6.7: Comparison of average numbers of solved branches for cases. Cases with different
results were removed. Timeout 900. MNIST ReLU 10× 10.

The last Table 6.8 demonstrates how the strategy overcomes previously undecided
cases. We can see that the number of branches needed to solve has significantly decreased.
A smaller decrease occurs only in the last case when there is significant acceleration in the
speed of branches solution per time unit. For the original version of VeriNet, the results
could be a few branches close, or the result might be hundreds of thousands of branches far.
However, to obtain this information, we would have to run the algorithm with a possible
order of magnitude higher timeout.

Epsilon Time SHS Branches AHS Branches SHS
2 566.25 s 185345 120361
5 108.52 s 113892 24989
5 454.15 s 116803 75111
5 342.30 s 119094 67557
5 882.46 s 97540 79735
5 595.33 s 111825 110509

Table 6.8: Comparison of newly resolved cases. Original time was 900 seconds (timeout)
with adaptive splitting strategy (ADS) for all cases. MNIST ReLU 10× 10.

6.2.3 Marabou – 200 ReLU nodes in 10 layers MNIST network

We achieved the best improvement within this network with 10 layers of 20 nodes. As shown
in Table 6.9, the number of undecided cases in the 1800 second long timeout dropped from
44 to 36. We can assume that the visible acceleration would be even higher with an increase
in timeout.

We can see in Table 6.10 that, while excluding cases with different results, we get
an almost 50-fold decrease for epsilon 5. It primarily causes branch implosions which we
describe in the following Section 6.3.

If we compare the behavior of the verification tool in terms of the average number of
solved branches for cases where the results were the same, we get the following Table 6.11.
In this comparison, we can see an increase in the number of solved branches for unde-
cided cases. We also see a significant reduction in the number of branches needed to solve

44

Epsilon 1 2* 5** 10 15
Solved safe cases SHS 92 38 6 0 0
Solved safe cases ADS 91 33 4 0 0
Solved unsafe cases 6 11 32 94 100
Timeout cases SHS 2 18 19 6 0
Timeout cases ADS 3 23 21 6 0

Table 6.9: Comparison of the numbers of results of the default (SHS) version and the
extension (ADS). MNIST ReLU 10 × 10. * includes 57 cases and ** only 57 examples in
total.

Epsilon 1 2 5 10
Safe cases time SHS 140.81 s 65.05 s 75.99 s 0.00 s 0.00 s
Safe cases time ADS 1213.89 s 1344.85 s 3696.19 s 0.00 s 0.00 s
Unsafe SHS 0.14 s 0.30 s 0.89 s 3.34 s 2.35 s
Unsafe ADS 0.16 s 0.30 s 1.08 s 3.29 s 2.34 s

Table 6.10: Comparison of sums of taken time for each epsilon (timeout 900 seconds) and
each result. Removed newly resolved cases. MNIST ReLU 10× 20, semi-hierarchical.

safe cases. The reduction is almost 40 times for epsilon 5, which causes frequent encounters
of implosive cases. One of these cases we describe by the network below, and more details
we tell about them in Section 6.3.

Epsilon 1 2 5 10 15
Branches for safe cases SHS 106.58 145.12 1213.50 nan nan
Branches for safe cases ADS 786.12 2475.55 46137.50 nan nan
Branches for undecided cases SHS 90215.50 61607.83 40872.58 34447.00 nan
Branches for undecided cases ADS 80922.50 57208.83 37311.52 30536.50 nan

Table 6.11: Comparison of average number of solved branches for cases. Cases with different
results were removed. Timeout 900. MNIST ReLU 10× 20.

In Table 6.12, we can see that the semi-hierarchical strategy solved new cases signifi-
cantly. Over timeouts, it speeds up almost four times, and for epsilon 2 it speeds up over
eight times. Moreover, we do not know the real time needed to solve these cases within the
original strategy, so that the speed-up may be even higher.

Epsilon 1 2 5
Solved safe cases time SHS 1292.84 1124.96 1417.37
Unsolved cases time (timeouts) ADS 1800.09 9000.39 3600.11

Table 6.12: Comparison of sums of times of newly resolved cases over unsolved cases.
Timeout 900. MNIST ReLU 10× 20.

6.2.4 Marabou – 800 ReLU nodes in 20 layers MNIST network

The deepest network is a network from the Marabou package, containing 20 layers, each
with 40 nodes. This network was complicated to verify, and the complete logs were created

45

only for the lowest two epsilon values. In addition, it failed to gain some awareness of
general improvement using a semi-hierarchical strategy because of this difficulty. It would
be necessary significantly raise the timeout for experiments (more than 1800 seconds).

However, the extension managed to implode the number of necessary branches in one
particular case to solve the example. In this case, for the clarity given in Table 6.13, the
resulting time decreased 2045 times. The number of branches decreased 1737 times. This
implosion occurs more times during experiments, and we describe these anomalies in the
next Section 6.3.

Epsilon ADS time SHS time ADS branches SHS branches
1 1800.07 s (t) 0.88 s 64286 37

Table 6.13: Comparison of newly resolved case. (t) means timeout.

6.2.5 VeriNet – Sigmoid and tanh networks

For these two networks, it was not possible to demonstrate a significantly positive effect
of our strategies on the number of resolvable cases. For tanh, it even decreased slightly.
Moreover, it was impossible to find a significant trend in the number of resolving branches
per unit time. However, it is worth adding that the sigmoid network performed well in
verification and was the best of all tested networks. It had only a minimum of unsafe cases
and undecided cases.

Epsilon 0.005 0.01 0.015 0.02 0.025 0.03
Safe cases 99 99 97 97 96 95
Undecided cases 0 0 2 1 1 2
Unsafe cases 1 1 1 2 3 3

Table 6.14: Numbers of results of cases according to the results for sigmoid MNIST network.
Same for all strategies. Timeout 900 seconds.

Epsilon 0.005 0.01 0.015 0.02 0.025 0.03
Solved safe cases SHS 100 100 97 87 47
Solved safe cases ADS 100 100 99 98 87 49
Solved unsafe cases 0 0 0 0 0 1
Timeout cases SHS 0 0 1 3 13 52
Timeout cases ADS 0 0 1 2 13 50

Table 6.15: Numbers of results for tanh MNIST network. Timeout 900 seconds.

To show how specific strategies have performed in terms of branching speed, we show
the results of specific strategies on the undecided cases of the tanh network in Table 6.16.
We can see that a semi-hierarchical strategy generally does not work well with the tanh
network. That is probably because the default strategy prioritizes nodes in later layers that
can be split faster and usually do not reach the first layers. On the other hand, we can
see quite convincingly the best performance of the sorted memory-based strategy. With
the reverse sorted memory-based strategy, we see that it did not do poorly in branching

46

speed, primarily due to the large memory. A problem that we can not see in this table is
the significant deterioration in the number of branches needed for solving the case.

Epsilon 0.015 0.02 0.025 0.03
Branches ADS 6803.00 4876.00 10100.23 9919.96
Branches STS 7149.00 5816.00 12648.77 11133.50
Branches RSS 6722.00 5770.00 11434.31 nan*
Branches SHS 5544.00 4742.00 8746.077 8467.00
Branches AHS 5832.00 4745.00 10606.54 nan*

Table 6.16: Comparison of average number of solved branches for undecided cases by dif-
ferent strategies. Timeout 900. Tanh MNIST network. * means no experiments were
performed. STS is sorted memory strategy.

The main problem with these networks is that the toolkit solves the case during the first
branch or creates an exponential number of branches. It is thus possible that the extension
would be an improvement if the timeout was set higher. However, the default VeriNet
experiments within the original thesis [11] were done on a significantly better setting and
with a timeout four times higher. Still, the number of solved cases with default VeriNet was
similar to that obtained in this thesis. In addition, with a higher timeout, rounding errors
increase, and VeriNet is not complete for tanh and sigmoid networks. So even a higher
number of resolved branches would not result. The solution of these networks probably lies
in better bounds created by network representation methods.

However, the acceleration of the branch counting speed did not prove to be sufficient
to deal with more cases. In general, it has not been possible to prove the usefulness of any
new strategy on both sigmoid networks and tanh networks.

6.3 Branch implosions
For all strategies, it was possible to watch two main metrics - the number of branches needed
to resolve the case and the speed of resolving these branches per unit time. Generally, we can
see some expected behavior. The number of needed branches for semi-hierarchical strategy
was lower, for memory-based strategies higher. This tendency also applies to branching
speed.

The exceptions that appeared when comparing different strategies we named branch
implosions3. For example, as described in Subsection 6.2.4, the network did not give any
significantly interesting results, except for one implosion. There the number of required
branches has decreased at least 2045 times.

This case is not the only one. Moreover, it occurs independently of the strategy used, so
sometimes the random case implodes for the adaptive splitting strategy and sometimes for
the semi-hierarchical one – the situation of this implosion in favor of other methods we have
not found in the experiments. Some of the implosions we found we placed in Table 6.17.

The exact reason why this happens remains unknown, but it is likely that while some
nodes are generally suitable for splitting, some are excellent. Moreover, as we can see in
Figure 6.2, the images do not look exceptional.

On the one hand, there is the idea that current heuristic methods are not sufficient,
and it is necessary to create even better ones. On the other hand, we offer the idea of a

3From another perspective, we can call them branch explosions.

47

Network Epsilon ADS time SHS time ADS branches SHS branches
MNIST 20× 40 1 1800.07 s (t) 0.88 s 64286 37
MNIST 10× 20 1 1038.33 s 26.27 s 59633 1611
MNIST 10× 20 2 1800.07 s (t) 6.98 s 94946 573
MNIST 10× 20 2 1800.05 s (t) 7.89 s 75062 725
MNIST 10× 20 2 1800.10 s (t) 1.46 s 89384 125

MNIST tanh 0.02 127.09 900.09 s (t) 1835 s 11314
MNIST 6× 256 2 46.85 1772.78 1423 s 63595

Table 6.17: Examples of found branch implosions. (t) means timeout.

(a) (b) (c) (d) (e) (f)

Figure 6.2: Images that caused branch implosions.

new strategy. We could create two different representations on an ongoing basis according
to two different strategies, from which we choose the better one. In general, this strategy
would roughly double the performance and memory requirements, but at the same time,
there would constantly be branching implosions in favor of the strategy.

Another thing that remains unknown is whether these cases are more or less unique or
whether they can be achieved artificially in some way. If so, it would be a revolutionary
moment for the whole verification with algorithms with branch and bound phase. However,
these cases are about over ten in the several thousand cases we examined.

6.4 Summary
We have experimented with different strategies on various benchmarks. Our observations
led to three independent findings:

• We proved that the proposed semi-hierarchical strategy significantly improves verifi-
cation over the original adaptive splitting strategy. We observe a significant speed-up
of already solvable cases and a decrease of previously undecidable cases.

• We proved that the order of splitting nodes significantly impacts branching speed.
However, the acceleration of our memory-based strategies is smaller than the deteri-
oration of heuristic quality. Thus, it does not lead to verifying more cases.

• We have observed unexpected anomalies we named branch implosions, which led to
significantly different processing times and the numbers of needed branches for solved
cases.

48

Chapter 7

Conclusion

In this work, we designed a semi-hierarchical strategy based on selecting the best node from
the layer. We proved that this strategy has a general effect on ReLU networks, resolving
a more significant number of cases and speeding up already resolvable cases. For some
epsilons, the number of calculated branches for solving the case is almost 40 times lower
for safe cases. For some specific implosive cases, this requirement has dropped several 1000
times. Moreover, our strategy solves more branches per time unit. Thus we encountered a
50-fold decrease in time for some cases.

In addition, this strategy is very modular. It only needs a heuristic for evaluating
nodes at least on a given layer and can thus be implemented in any other state-of-the-art
solution. In particular, the branch and bound phase strengthened by this new strategy and
GPU acceleration could bring even better results.

Thanks to various strategies, branch implosions have also been discovered. Their tar-
geted search could significantly speed up verification algorithms based on the branch and
bound phase.

We also proposed an alternating strategy and three memory-based strategies in this
work. However, despite slight improvements in some metrics, their significant contribution
has not been demonstrated. Nevertheless, we suppose they can find their application in
algorithms that either has more demanding heuristics or have a more significant effect on
the order of the split nodes on the speed of verification. Another possibility is that it will be
possible to find applications within similar solutions with more powerful devices or another
choice of parameters.

7.1 What to do next?
Verification of neural networks is one of the current hot topics for scientists worldwide.
They publish new ideas, methods, and experiments. This work does not capture all the
possibilities of formal verification of neural networks. This work responds to only one of
the topics offered in the original thesis concerning VeriNet [11]. So, to build on the work
of the original authors, we also present open possibilities for further research:

• One of the problem domains of verification is time. Therefore, it would be beneficial
to perform more experiments in better settings with higher timeouts.

• Memory-based methods have two fundamental weaknesses - heuristic degradation
and unlimited parameter selection. Beneficial could be a better heuristic function
considering the changes that splitting makes.

49

• We would like to see an implementation of the semi-heuristic strategy in other veri-
fication toolkits. We would like to see how different toolkits with different heuristics
and different network representations would behave.

• The current VeriNet cannot solve convolutional networks for technical reasons, so the
experiments with them could be beneficial in this respect as well.

• In general, this work gives some basic methods of working with a state approach to
the branch and bound phase, which is almost non-existent. However, we can create
as many possible strategies for a single step as how many nodes are in the network.

• We prove that there may be significant deviations in the number of needed branches
for solving particular cases. Research for analysis of the existence of these branch
implosions and finding out why this happens would be beneficial. The design and
implementation of its target achieving would lead to significantly better results of
verification tools.

• One of the issues that we do not address much is validation itself. Newly emerging
tools already have relatively usable scalability. It would be appropriate to find out
whether the results of verifications correspond to the quality of the network in practice.
In addition, when working with local robustness in general, we must use some epsilon
size values. Finding out which one is correct, or if we need more epsilon values for a
single case, would also help speed up verification.

50

Bibliography

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z. et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. 2015. Software available
from tensorflow.org. Available at: https://www.tensorflow.org/.

[2] Amato, F., Lopez, A., Pena Mendez, M. E., Vanhara, P., Hampl, A. et al.
Artificial neural networks in medical diagnosis. Journal of Applied Biomedicine.
2013, vol. 11, no. 2, p. 47–58. DOI: 10.2478/v10136-012-0031-x. ISSN 1214021X.
Available at: https://jab.zsf.jcu.cz/artkey/jab-201302-0001.php.

[3] Bak, S., Liu, C. and Johnson, T. The second international verification of neural
networks competition (vnn-comp 2021): Summary and results. ArXiv preprint
arXiv:2109.00498. 2021.

[4] Barla, N. Self-Driving Cars With Convolutional Neural Networks (CNN) [[online]].
2021. Available at: https:
//neptune.ai/blog/self-driving-cars-with-convolutional-neural-networks-cnn.

[5] Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A. V. et al.
Measuring Neural Net Robustness with Constraints. CoRR. 2016, abs/1605.07262.
Available at: http://arxiv.org/abs/1605.07262.

[6] Bunel, R., Palma, A. D., Desmaison, A., Dvijotham, K., Kohli, P. et al.
Lagrangian Decomposition for Neural Network Verification. CoRR. 2020,
abs/2002.10410. Available at: https://arxiv.org/abs/2002.10410.

[7] Bunel, R. R., Turkaslan, I., Torr, P., Kohli, P. and Mudigonda, P. K. A
unified view of piecewise linear neural network verification. Advances in Neural
Information Processing Systems. 2018, vol. 31.

[8] Chang, M., Canseco, J. A., Nicholson, K. J., Patel, N. and Vaccaro, A. R.
The Role of Machine Learning in Spine Surgery: The Future Is Now. Frontiers in
Surgery. 2020, vol. 7. DOI: 10.3389/fsurg.2020.00054. ISSN 2296-875X. Available at:
https://www.frontiersin.org/article/10.3389/fsurg.2020.00054.

[9] Dvijotham, K., Stanforth, R., Gowal, S., Mann, T. A. and Kohli, P. A Dual
Approach to Scalable Verification of Deep Networks. CoRR. 2018, abs/1803.06567.
Available at: http://arxiv.org/abs/1803.06567.

[10] Gaňo, M. Improving Robustness of Neural Networks against Adversarial Examples.
Brno, CZ, 2020. Bakalářská práce. Vysoké učení technické v Brně, Fakulta
informačních technologií. Available at: https://www.fit.vut.cz/study/thesis/22999/.

51

https://www.tensorflow.org/
https://jab.zsf.jcu.cz/artkey/jab-201302-0001.php
https://neptune.ai/blog/self-driving-cars-with-convolutional-neural-networks-cnn
https://neptune.ai/blog/self-driving-cars-with-convolutional-neural-networks-cnn
http://arxiv.org/abs/1605.07262
https://arxiv.org/abs/2002.10410
https://www.frontiersin.org/article/10.3389/fsurg.2020.00054
http://arxiv.org/abs/1803.06567
https://www.fit.vut.cz/study/thesis/22999/

[11] Henriksen, P. Efficient Neural Network Verification via Adaptive Refinement and
Adversarial Search. 2020. Master’s thesis. Imperial College London. Supervisor
Lomuscio, A. Available at:
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/
computing/public/1819-pg-projects/Ef%EF%AC%81cient-Neural-Network-Veri%EF%AC%
81cation-via-Adaptive-Re%EF%AC%81nement-and-Adversarial-Search.pdf.

[12] Henriksen, P., Hammernik, K., Rueckert, D. and Lomuscio, A. Bias Field
Robustness Verification of Large Neural Image Classifiers. In:. The 32nd British
Machine Vision Conference, 2021. Available at:
https://www.bmvc2021-virtualconference.com/assets/papers/1291.pdf.

[13] Henriksen, P. and Lomuscio, A. Efficient Neural Network Verification via
Adaptive Refinement and Adversarial Search. In: De Giacomo, G., Catala, A.,
Dilkina, B., Milano, M., Barro, S. et al., ed. ECAI. 2020. ISBN
978-1-64368-101-6. Available at: https://ecai2020.eu/papers/384_paper.pdf.

[14] Henriksen, P. and Lomuscio, A. DEEPSPLIT: An Efficient Splitting Method for
Neural Network Verification via Indirect Effect Analysis. In: IJCAI-21. International
Joint Conferences on Artificial Intelligence Organization, 2021, p. 2549–2555. ISBN
978-0-9992411-9-6. Available at: https://www.ijcai.org/proceedings/2021/0351.pdf.

[15] Kocić, J., Jovičić, N. and Drndarević, V. An End-to-End Deep Neural Network
for Autonomous Driving Designed for Embedded Automotive Platforms. Sensors.
2019, vol. 19, no. 9. DOI: 10.3390/s19092064. ISSN 1424-8220. Available at:
https://www.mdpi.com/1424-8220/19/9/2064.

[16] Leucker, M. Formal Verification of Neural Networks? In:. November 2020, p. 3–7.
ISBN 978-3-030-63881-8.

[17] Li, X. AirFace: Lightweight and Efficient Model for Face Recognition. CoRR. 2019,
abs/1907.12256. Available at: http://arxiv.org/abs/1907.12256.

[18] Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C. et al. Algorithms for
Verifying Deep Neural Networks. 2020.

[19] Palma, A. D., Behl, H., Bunel, R. R., Torr, P. and Kumar, M. P. Scaling the
Convex Barrier with Active Sets. In: International Conference on Learning
Representations. 2021. Available at: https://openreview.net/forum?id=uQfOy7LrlTR.

[20] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D. et al.
Intriguing properties of neural networks. ArXiv preprint arXiv:1312.6199. 2013.
Available at: https://arxiv.org/abs/1312.6199#.

[21] Tjeng, V. and Tedrake, R. Verifying Neural Networks with Mixed Integer
Programming. CoRR. 2017, abs/1711.07356. Available at:
http://arxiv.org/abs/1711.07356.

[22] Wang, S., Pei, K., Whitehouse, J., Yang, J. and Jana, S. Efficient Formal Safety
Analysis of Neural Networks. CoRR. 2018, abs/1809.08098. Available at:
http://arxiv.org/abs/1809.08098.

52

https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1819-pg-projects/Ef%EF%AC%81cient-Neural-Network-Veri%EF%AC%81cation-via-Adaptive-Re%EF%AC%81nement-and-Adversarial-Search.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1819-pg-projects/Ef%EF%AC%81cient-Neural-Network-Veri%EF%AC%81cation-via-Adaptive-Re%EF%AC%81nement-and-Adversarial-Search.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1819-pg-projects/Ef%EF%AC%81cient-Neural-Network-Veri%EF%AC%81cation-via-Adaptive-Re%EF%AC%81nement-and-Adversarial-Search.pdf
https://www.bmvc2021-virtualconference.com/assets/papers/1291.pdf
https://ecai2020.eu/papers/384_paper.pdf
https://www.ijcai.org/proceedings/2021/0351.pdf
https://www.mdpi.com/1424-8220/19/9/2064
http://arxiv.org/abs/1907.12256
https://openreview.net/forum?id=uQfOy7LrlTR
https://arxiv.org/abs/1312.6199#
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1809.08098

[23] Wang, S., Pei, K., Whitehouse, J., Yang, J. and Jana, S. Formal Security
Analysis of Neural Networks using Symbolic Intervals. CoRR. 2018, abs/1804.10829.
Available at: http://arxiv.org/abs/1804.10829.

[24] Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S. et al. Beta-CROWN: Efficient
Bound Propagation with Per-neuron Split Constraints for Complete and Incomplete
Neural Network Verification. CoRR. 2021, abs/2103.06624. Available at:
https://arxiv.org/abs/2103.06624.

[25] Xiang, W., Tran, H. and Johnson, T. T. Output Reachable Set Estimation and
Verification for Multi-Layer Neural Networks. CoRR. 2017, abs/1708.03322.
Available at: http://arxiv.org/abs/1708.03322.

[26] Xiang, W., Tran, H. and Johnson, T. T. Reachable Set Computation and Safety
Verification for Neural Networks with ReLU Activations. CoRR. 2017,
abs/1712.08163. Available at: http://arxiv.org/abs/1712.08163.

[27] Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S. et al. Fast and Complete:
Enabling Complete Neural Network Verification with Rapid and Massively Parallel
Incomplete Verifiers. In: International Conference on Learning
Representations. International Conference on Learning Representations. 2021.
Available at: https://openreview.net/forum?id=nVZtXBI6LNn.

[28] Zhang, H., Weng, T., Chen, P., Hsieh, C. and Daniel, L. Efficient Neural
Network Robustness Certification with General Activation Functions. CoRR. 2018,
abs/1811.00866. Available at: http://arxiv.org/abs/1811.00866.

[29] Zhang, H., Xu, K., Wang, S. and Hsieh, C.-J. Neural Network Verification
Tutorial [[online]]. Last seen in 2022. Available at:
https://neural-network-verification.com/.

53

http://arxiv.org/abs/1804.10829
https://arxiv.org/abs/2103.06624
http://arxiv.org/abs/1708.03322
http://arxiv.org/abs/1712.08163
https://openreview.net/forum?id=nVZtXBI6LNn
http://arxiv.org/abs/1811.00866
https://neural-network-verification.com/

Appendix A

Project usage

Project parts description
The storage medium (SD card) and the data submitted to NextCloud contain:

xhudak03_verification_NN.pdf Complete text of bachelor thesis.

README.md Short description of our project.

results Includes our experimental results. Includes scripts for printing tables and convert-
ing MNIST raw images to real images. It contains README.md with a short
description.

VeriNet Includes the whole VeriNet project, including our extension. It also includes a
set of benchmarks and script script.sh for running benchmarks. The folder
contains README.md with a short description.

doc Includes all source codes from Overleaf LaTeX documentation. The structure is the
same as the template.

Installation and usage
Since our implementation is only an extension of the existing VeriNet toolkit, we strongly
recommend following the installation instructions of the original authors from:

• https://github.com/vas-group-imperial/VeriNet-OpenSource

• Appendices of the VeriNet original thesis [11]

In the following subsection, we describe the main requirements.

Mandatory libraries and software

For proper working of the VeriNet toolkit, the user device must have installed Python
version at least 3.6. For all functionalities, it is necessary to have the following libraries
installed with the appropriate versions:

We strongly recommend installing identical versions of the libraries due to possible
incompatibilities between the new versions. During the installation, we encountered a
problem with the compatibility of the NumPy library with other libraries - in this case,
choose any that is compatible with others.

54

https://github.com/vas-group-imperial/VeriNet-OpenSource
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1819-pg-projects/Ef%EF%AC%81cient-Neural-Network-Veri%EF%AC%81cation-via-Adaptive-Re%EF%AC%81nement-and-Adversarial-Search.pdf

Name Version Name Version
llvmlite 0.32.1 torchvision 0.5.0
torch 1.4.0 numba 0.47.0

matplotlib * scipy *
ipykernel * tqdm *
cython * numpy *
onnx * Gurobi *

Table A.1: Table of libraries and their versions.

Gurobi

For installation of Gurobi we recommend following the instructions at:

• https://abelsiqueira.github.io/blog/

Alternatively, our experience shows that we can easily install Gurobi by pip package-
management system or Conda. However, we still have to download grbgetkey and install a
license on our device. License is free for academic institutions.

Usage

Due to the need to prohibit CUDA parallelism, we created a short script script.sh. With
this script, we can run a specific benchmark with the command:

• ./script.sh benchmark_name.py

Strategies

Our primary strategy is a semi-hierarchical strategy, which we set by default. If we want to
change the current strategy, we need to open ./src/algorithm/verinet_worker.py and
find function _branch() (approximately at line 340), add # before the current strategy, and
remove the # from the new strategy. If we want to create a new strategy, we need to create
a function that returns to variable split two integer numbers – the layer position and the
node position.

55

https://abelsiqueira.github.io/blog/_posts/2017/2017-03-13-installing-gurobi-7-on-linux/

	Introduction
	State-of-the-art approaches
	Contribution

	Preliminaries
	Neural networks
	Deep feedforward neural network

	Local robustness
	Completeness
	Basic verification directions
	Reachability
	Optimization
	Search

	Disciplines using neural networks
	Autonomous driving
	Deep learning in healthcare
	Face recognition

	Main concepts
	Verification cycle
	Linear relaxation
	Representation methods
	Naive interval propagation
	Symbolic interval propagation SIP
	Error-based interval propagation ESIP

	Solvers
	Refinement
	Existing splitting strategies
	Heuristics
	Splitting
	Branch and bound

	Other solutions
	Methods according to Bunel, De Palma, et al.
	Crown

	VeriNet toolkit
	Algorithm overview
	Propagation methods
	Solvers
	Branch and bound phase
	Existing VeriNet extensions
	DEEPSPLIT
	VeriNetBF

	Extension design
	Memory strategies
	Simple memory strategy
	Sorted memory strategy
	Reverse sorted strategy
	Branch mirroring

	Semi-hierarchical strategy
	Comparison of hierarchical and adaptive splitting
	Best by layer strategy
	Potential advantages and disadvantages

	Alternating impact strategy
	General implementation details
	New classes
	Changes in default classes

	Experiments
	Experimental setting
	Objectives of experiments
	Dataset
	Used networks and strategies

	Main experiments
	VeriNet – 100 ReLU nodes in 2 layers MNIST network
	Marabou – 100 ReLU nodes in 10 layers MNIST network
	Marabou – 200 ReLU nodes in 10 layers MNIST network
	Marabou – 800 ReLU nodes in 20 layers MNIST network
	VeriNet – Sigmoid and tanh networks

	Branch implosions
	Summary

	Conclusion
	What to do next?

	Bibliography
	Project usage

