
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
F A K U L T A I N F O R M A Č N Í C H T E C H N O L O G I Í

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FORMAL ANALYSIS OF NEURAL NETWORKS
FORMÁLNÍ M E T O D Y PRO ANALÝZU NEURONOVÝCH SÍTÍ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR DAVID HUDÁK
A U T O R PRÁCE

SUPERVISOR Doc. RNDr. MILAN ČEŠKA, Ph.D.
VEDOUCÍ PRÁCE

B R N O 2021

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2021/2022

Bachelor's Thesis Specification |||||||||||||||||||||||||
24620

Student: Hudák D a v i d

Programme: Information Technology

Title: F o r m a l A n a l y s i s of N e u r a l N e t w o r k s

Category: Formal Verification

Assignment:

1. Study the existing methods for formal analysis of neural networks (NNs). Focus on methods

for symbolic analysis of local robustness of NNs.

2. Evaluate these methods in the context of scalable analysis of practically relevant NNs.

3. Design improvements and extensions of these methods. Focus on different approaches for

symbolic representation of N N s and generating adversary inputs.

4. Implement the proposed improvements and extensions on top of an existing tool (e.g.

VeriNet or C R O W N)

5. Perform a detailed experimental evaluation of the proposed methods on a suitable

benchmark.

Recommended literature:

• Liu, C , Arnon, T., Lazarus, C , Strong, C , Barrett, C. and Kochenderfer, M . J . Algorithms for

Verifying Deep Neural Networks. Foundations and Trends in Optimization. 2020.

• Henriksen, P. and Lomuscio, A. Efficient neural network verification via adaptive refinement

and adversarial search. In ECAI2020.
• Henriksen, P. and Lomuscio, A. D E E P S P L I T : An Efficient Splitting Method for Neural

Network Verification via Indirect Effect Analysis. In IJCAI2021.
• X u , K., Zhang, H. , Wang, S., Wang, Y. , Jana, S., Lin, X. and Hsieh, C . J . Fast and Complete:

Enabling Complete Neural Network Verification with Rapid and Massively Parallel

Incomplete Verifiers. In ICLR 2020.
Requirements for the first semester:

• Items 1, 2, and partially 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Č e š k a M i l a n , d o c . RNDr. , P h . D .

Head of Department: Hanáček Petr, doc. Dr. Ing.

Beginning of work: November 1, 2021

Submission deadline: May 11, 2022

Approval date: November 3, 2021

Bachelor's Thesis Specification/24620/2021/xhudak03 Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract
Today, the area where we can use deep learning is becoming broader. It includes safety-
cr i t ical domains such as traffic or healthcare, and the need for its verification grows. How­
ever, sufficient verification toolkits for neural networks, the leading deep learning approach,
are s t i l l i n development. State-of-the-art algorithms now can not verify commonly used
deep networks. In this paper, we focus on one of the state-of-the-art solutions, Ver iNet .
More generally, we focused on the symbolic approach of local robustness analysis. This
approach usually relies on creating, processing, and refining the neural network represen­
tat ion, and we focused on the refinement phase. We pr imar i ly dealt w i th the branch and
bound algori thm, which i n this toolki t splits node inputs in a network to create smaller
sub-problems. For this algori thm, we proposed and implemented new split node selec­
t ion strategies. Specifically, we designed memory-based, alternating, and semi-hierarchical
strategies. We achieved significant improvements i n the scalabili ty of the Ver iNet toolkit .
One of our approaches can solve more complex cases and significantly improve already
solved cases' performance. Moreover, we discovered an anomaly in the behavior of the veri­
fication a lgori thm we named branch implosions, which led to extreme speed up for some
cases. In addi t ion, we extended the set of performed network benchmarks wi th models from
the M a r a b o u package.

Abstrakt
Skála ob las t í , ve k t e rých se dnes m ů ž e m e setkat s h l u b o k ý m učen ím, se velmi rychle
roz růs t á . Zasahuje už dokonce i mezi b e z p e č n o s t n ě kr i t ické oblasti jako doprava či l ékařs tv í ,
a tak n a r ů s t á nutnost t akové s y s t é m y verifikovat. N i c m é n ě , d o s t a t e č n ě šká lova te lné nás t ro j e
pro verifikaci n e u r o n o v ý c h sí t í , k t e r é tvoř í h l avn í p ř í s t u p k h l u b o k é m u učení , jsou s tá le
ve vývoji . D n e š n í řešení tak nejsou schopny verifikovat d o s t a t e č n ě h l u b o k é s í tě . Z toho
d ů v o d u jsme se zaměř i l i na jeden ze současných n á s t r o j ů , Ver iNet , a pokusi l i jsme jej
vylepš i t . Obecně j i jsme se zaměř i l i na symbol ický p ř í s t u p k ana lýze lokální robustnosti.
Tento p ř í s t u p b ě ž n ě spoč ívá na vy tvořen í , zp racován í a p ř ep racován í reprezentace neu­
ronové sí tě , p ř i čemž my jsme se zaměř i l i na fázi p řep racován í . P r i m á r n ě jsme se zabý­
val i a lgori tmem větv í a mezí , k t e r ý spoč ívá v rozdělování v s t u p ů dílčích síťových uz lů
k v y t v á ř e n í menš ích p o d p r o b l é m ů . Specificky jsme navrhl i nové paměťové , a l ternuj íc í
a semi-hierarchické strategie. P ř i e x p e r i m e n t o v á n í jsme dosáh l i v ý r a z n ý c h vy lepšen í ná s t ro j e
Ver iNet . Jeden z naš ich p ř í s t u p ů je tak schopen řeši t více komplexn ích p ř í p a d ů a t aké
vylepšuje zp racován í j iž řeš i te lných p ř í p a d ů . K tomu jsme nav íc narazi l i na a n o m á l i e pra­
covně n a z v a n é jako imploze větví , k t e r é vedou k e x t r é m n í m u urych len í n ě k t e r ý c h p ř í p a d ů .
V r á m c i t é t o p r á c e jsme t a k é rozšířili set síťových b e n c h m a r k ů s modely z ba l íku nás t ro j e
Marabou .

Keywords
Neural network, R e L U , Ver iNet , E S I P , branch and bound, spl i t t ing strategies, branch im­
plosions, semi-hierarchical strategy, formal verification

Klíčová slova
Neuronová síť, R e L U , Ver iNet , E S I P , metoda vě tv í a mezí , strategie dělení , imploze větví ,
semi-h ie ra rch ická strategie, formáln í verifikace

Reference
H U D Á K , D a v i d . Formal Analysis of Neural Networks. Brno , 2021. Bachelor's thesis. Brno
Univers i ty of Technology, Facul ty of Information Technology. Supervisor Doc . R N D r . M i l a n
Češka , P h . D .

Rozšířený abstrakt
Využi t í h l u b o k é h o učení , p r i m á r n ě pak n e u r o n o v ý c h sítí , se dnes dos t ává do č ím dá l více
ru t i nn í ch č innos t i l idských ž ivotů . N a j e d n é s t r a n ě to jsou n e š k o d n é oblasti jako fo­
tografování , detekce obličejů, p ř e k l a d a č e či j iné p o m o c n é nás t ro j e , k t e r é u snadňu j í život .
N a s t r a n ě d r u h é jsou to i b e z p e č n o s t n ě kr i t ické oblasti jako a u t o n o m n í ř ízení vozidel,
med ic ína , letecké kolizní modely či vojens tv í , kde naopak lze i drobnou chybou životy
ztrati t . S t ě m i t o d i sc ip l ínami tak vzn iká i p o t ř e b a je verifikovat, tedy nutnost formálně
potvrdi t jejich s p r á v n é usuzování . To s ohledem k faktu, že neu ronové s í tě p racu j í v pod­
s t a t ě jako če rná sk ř íňka , je p o m ě r n ě ob t í žné . V současné d o b ě je tak d isc ip l ína formální
verifikace n e u r o n o v ý c h velmi d y n a m i c k á , kdy k a ž d ý m rokem vycház í ř a d a nových a lépe
šká lovate lných n á s t r o j ů . Tato p r á c e se pak zabývá k o n k r é t n ě p ř í s t u p e m symbol ické ana lýzy
lokální robustnosti, je j ímž v ý r a z n ý m p ř e d s t a v i t e l e m je n á s t r o j Ver iNet , k t e r ý je de ta i lně
p o p s á n v t é t o p rác i , a jeho rozšíření .

Z m í n ě n á lokální robustnost je jednou z t r a d i č n ě verifikovaných v l a s tnos t í n e u r o n o v ý c h
sítí , k t e r á je insp i rována biologickými procesy. V p ř í p a d ě ž ivých o r g a n i s m ů robustnost
popisuje jako schopnost odo láva t ne ideá ln ím p o d m í n k á m . U neu ronových sí t í se j e d n á
o vlastnost, že p ř i j a t e lně velké odchylky na vstupech by nemě ly a ne smí změn i t korek­
t n í klasifikaci na j inou . N a p ř í k l a d v p ř í p a d u a u t o n o m n í h o ř ízení je naprosto n u t n é , aby
zpracovávaný z á z n a m z kamery, kde je n a p ř í k l a d d o p r a v n í značka stop, nezměni l kvůl i ně­
j aké d r o b n é odchylce výs l ednou klasifikaci na značku dá ln ice . Taková odchylka m ů ž e bý t
z p ů s o b e n á r ů z n ý m i b ě ž n ý m i jevy - od m í r n ý c h š u m ů z p ů s o b e n ý c h kamerou, m í r n ě vy­
bledlé b a r v ě červené na značce či z m ě n ě svět los t i kvůl i r ů z n é d e n n í d o b ě . Vůči t ě m t o v š e m
ochy lkám by m ě l a bý t ideá lně r o b u s t n í neu ronová síť odo lná .

K tomu, abychom tuto lokální robustnost mohl i zkoumat, je n u t n é v y t v o ř i t vhodnou
reprezentaci s í tě , kterou se s n a ž í m e zkoumat. To je p o m ě r n ě n á r o č n á discipl ína, jelikož
neu ronová síť je sama o sobě v p o d s a t ě silně ne l ineá rn í funkce. V p ř í p a d ě snah o vy tvo řen í
p řesné reprezentace tak docház í k p r o b l é m ů m s příl iš n á r o č n ý m modelem, k t e r é pak lze
verifikovat jen ve ve lmi omezené mí ře . Pro to zača ly vznikat postupy, k t e r é n e m a j í za cíl
popsat naprosto p ře sně v ý s t u p neu ronové sí tě , nýb rž v y t v á ř í jeho v h o d n ě nadhodnocenou
a d o b ř e zpracovatelnou verzi.

Jeden z t ěch to p ř í s t u p ů funguje skrze symbolickou reprezentaci sí t í , k t e r á se ř a d í mezi
metody propagace hranic. T a spočívá k p ř i ř azen í konk ré tn í ch číselných hranic a dvou
l ineárních rovnic (horn í a do ln í hranice) ke k a ž d é m u uzlu . Jejich kombinace pak popisuje
chování k o n k r é t n í h o uzlu, p ř i čemž v y t v á ř e n y jsou skrze proces p o s t u p n é h o p ropagován í
v s t u p n í c h hodnot s povolenou odchylkou skrze síť p řes j edno t l ivé uzly a vrs tvy až po vrs tvu
v ý s t u p n í . D í k y tomu lze na v ý s t u p n í v r s tvě s í tě urč i t , zdal i uzel reprezentu j íc í ko rek tn í
v ý s t u p m á za k a ž d ý c h p o d m í n e k ty nejvyšší hodnoty a je tak v r á m c i odchylek s t anovených
lokální r o b u s t n o s t í bezpečný . K vyřešen í tohoto p r o b l é m u slouží v y b r a n ý v h o d n ý solver (v
p ř í p a d ě Ver iNe tu Gurob i LP-solver) , k t e r ý zjišťuje, zda k o r e k t n í uzel na v ý s t u p n í v r s tvě
m á pro všechny možnos t i t u nejvyšší hodnotu.

V r á m c i Ver iNe tu pak bylo i m p l e m e n t o v á n o vylepšení ve formě symbol ické in tervalové
propagace založené na c h y b ě 1 , jež reprezentuje d a n é uzly s p o u ž i t í m pouze j e d n é dolní
l ineárn í rovnice, oproti p ů v o d n í m d v ě m a . H o r n í hranici reprezentuje s p o m o c í konk ré tn í ch
chyb definujících vzdá lenos t h o r n í relaxace.

Jak j iž ale bylo zmíněno , tato metoda se ř a d í mezi ty, jež n a d h o d n o c u j í chování sít í . To
což je p r i m á r n ě z p ů s o b e n o p o u ž i t í m l ineárn ích re laxací , k t e r é jsou p o u ž i t y př i propagaci

1Volný překlad error-based interval propagation.

skrze uzly m í s t o reá lných ak t ivačn ích funkcí. Je tomu tak z toho d ů v o d u , že b ě ž n é ak t ivačn í
funkce jsou ne l ineá rn í a v p ř í p a d ě p o s t u p n é propagace jejich ne l ineá rn ího chování by se jen
ob t í žně dalo použ í t ně jaký solver. Vedlejš ím produktem použ i t í l ineárních re laxac í je tedy
n e m a l é n a d h o d n o c e n í , k t e r é vede k s i t uac ím, kdy LP-so lver najde po tenc i á ln í p růn ik , o
k t e r é m ale n e m ů ž e ř íc t , zdal i je reálný.

Z toho d ů v o d u se použ ívá j e š t ě dalš í v h o d n ý solver či algoritmus (v tomto p ř í p a d ě
lokální g r a d i e n t n í h l edán í) , k t e r ý se snaž í na j í t k o n k r é t n í reá lný p ro t ip ř ík l ad , k t e r ý by
na rušova l definici lokální robustnosti . Ten n e m u s í bý t p rávě kvůl i n a d h o d n o c e n í nalezen,
a proto je n ě k d y n u t n é dosavadn í p o p s a n ý proces opakovat na přesnějš ích p ř e p r a c o v a n ý c h
reprezen tac ích .

Dnešn í n á s t r o j e jako jsou Crown, Ac t ive Sets či již z m í n ě n ý Ver iNet k tomu využívaj í
metodu vě tv í a mezí . T a spoč ívá v dě lení v y b r a n é h o v s t u p n í h o p r o b l é m u na menš í pod-
p rob l é my (v p ř í p a d ě Ver iNe tu dě len ím v s t u p ů uz lů) . T í m t o postupem pak vzn iká strom,
ve k t e r é m je b u d n u t n é p r o k á z a t , že všechny podstromy (větve) jsou bezpečné , nebo naléz t
a s p o ň jednu vě tev , k t e r á b e z p e č n á není .

V ý b ě r uz lů , na k t e rých se dělí vstupy, je j á d r e m t é t o p r á c e . Jednou z p ů v o d n í c h strate­
gií by l h ie ra rch ický v ý b ě r - nejprve se vza l p r v n í uzel v p r v n í v r s tvě , pak d ruhý , pak t ř e t í
atd. To nebylo efekt ivní z hlediska toho, že v r á m c i verifikace se za vhodnou dobu ne­
dostalo na všechny uzly a u n ě k t e r ý c h se dělilo zby t ečně . Ver iNet pak př ines l a d a p t i v n í
strategii, k t e r á vždy, na zák ladě j iž zmíněných chyb, bere uzel s nejvyšš í zpropagovanou
chybou. P r o b l é m e m t é t o metody je, že jednak nerespektuje p o ř a d í dě lených uz lů , kdy se
obecně vyp lác í rozděl i t ne jdř ív uzly v dřívějších v r s tvách a pak v pozdějš ích, jednak m á
tendence u p ř e d n o s t ň o v a t uzly spíše v pozdějš ích v r s tvách . S ohledem k tomu, že s k a ž d o u
propagovanou vrstvou se chyba zvětšuje , je v h o d n é děl i t i na dřívějších v r s tvách .

Jednou z nav ržených a vyzkoušených s t r a t eg i í je semi-h ie ra rch ická strategie v ý b e r u uzlů .
T a si bere čás t své funkcionality z obou metod. Její z á k l a d n í pr incip je, že se p o s t u p n ě
p rocház í vrstva za vrstvou, p ř i čemž dě lený uzel se v y b í r á zrovna z a k t u á l n í p o s t u p n ě vy­
b r a n é vrstvy. D íky tomu se še t ř í čas , k t e r ý by způsobi lo o p a č n é dělení uzlů, a současně
se dř íve el iminují chyby vyplývaj íc í z p o s t u p n é h o p r ů c h o d u relaxacmi. N á s l e d k e m tohoto
p ř í s t u p u t a k é nedocház í k p ř í l i šnému dělení na j e d n é k o n k r é t n í v r s tvě , k t e r é by vedlo k po­
m a l é m u o d s t r a ň o v á n í chyb z reprezentace.

Tuto a dalš í e x p e r i m e n t á l n í metody jsme implementovali do a k t u á l n í h o n á s t r o j e Ver i ­
Net, kde jsme prováděl i experimenty s modely sí t í n a t r é n o v a n ý c h na s t a n d a r d n í m t r éno -
vac ím datasetu M N I S T , p r i m á r n ě pak na s í t ích s R e L U ak t ivačn ími funkcemi a okrajově i
s ak t i vačn ími funkcemi tanh a sigmoid. U p rvn ích zmíněných jsme dosáh l i n ě k d y i něko­
l i kanásobného u rych len í j iž řeš i te lných p r o b l é m ů a současně jsme dosáh l i redukce neřeši te l ­
ných p r o b l é m ů , k t e r é současné n á s t r o j e nebyly schopny verifikovat. Vedlejš ím produktem
t ě c h t o e x p e r i m e n t ů pak bylo o d h a l e n í imploz ivních p ř í p a d ů , kdy se d a ř í d a n ý v s t u p n í prob­
lém vyřeš i t za více než t i s í c inásobně k r a t š í dobu.

S ohledem k tomu, že se j e d n á o velmi a k t i v n í a dynamicky se rozvíjející se discipl ínu,
v r á m c i závěru bylo n a v r ž e n o několik směrů , k t e r ý m i se lze vydat dá l . M e z i ty se p r i m á r n ě
ř ad í implementace t é t o strategie do dalš ích verif ikačních ná s t ro jů , de ta i lně jš í s rovnán í s os­
t a t n í m i nás t ro j i či h lubš í z k o u m á n í př íč in existence imploz ivn ích p ř í p a d ů .

Formal Analysis of Neura l Networks

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of docent M i l a n Češka . The supplementary information was provided
by M r . Pa t r ick Henriksen from Imperial College London . I have listed a l l the l i terary
sources, publications and other sources, which were used during the preparation of this
thesis.

D a v i d H u d á k
M a y 6, 2022

Acknowledgements
I would like to thank my supervisor, doc. R N D r . M i l a n Češka , P h . D . , for his guidance
and suggestions. I would like to thank M r . Pa t r ik Henriksen for his support while working
wi th the Ver iNet toolki t . A n d I would like to thank my family and friends for continuous
support throughout my studies.

Contents

1 Introduction 3
1.1 State-of-the-art approaches 3
1.2 Cont r ibu t ion 4

2 Preliminaries 6
2.1 Neura l networks 6

2.1.1 Deep feedforward neural network 6
2.2 L o c a l robustness 7
2.3 Completeness 8
2.4 Basic verification directions 9

2.4.1 Reachabi l i ty 9
2.4.2 Opt imiza t ion 9
2.4.3 Search 10

2.5 Disciplines using neural networks 10
2.5.1 Autonomous dr iv ing 10
2.5.2 Deep learning in healthcare 11
2.5.3 Face recognition 12

3 M a i n concepts 14
3.1 Verification cycle 14
3.2 Linear relaxation 14
3.3 Representation methods 16

3.3.1 Naive interval propagation 17
3.3.2 Symbolic interval propagation SIP 17
3.3.3 Error-based interval propagation E S I P 18

3.4 Solvers 20
3.5 Refinement 20

3.5.1 Ex i s t ing spl i t t ing strategies 21
3.5.2 Heuristics 21
3.5.3 Spl i t t ing 22
3.5.4 Branch and bound 22

3.6 Other solutions 25
3.6.1 Methods according to Bune l , De Pa lma , et a l 25
3.6.2 C r o w n 26

4 Ver iNet toolkit 27
4.1 A l g o r i t h m overview 27
4.2 Propagat ion methods 28

1

4.3 Solvers 29
4.4 Branch and bound phase 29
4.5 Ex i s t i ng Ver iNet extensions 30

4.5.1 D E E P S P L I T 30
4.5.2 V e r i N e t B F 31

5 Extension design 32
5.1 Memory strategies 32

5.1.1 Simple memory strategy 32
5.1.2 Sorted memory strategy 33
5.1.3 Reverse sorted strategy 33
5.1.4 Branch mirror ing 34

5.2 Semi-hierarchical strategy 35
5.2.1 Compar ison of hierarchical and adaptive spl i t t ing 35
5.2.2 Best by layer strategy 35
5.2.3 Potent ia l advantages and disadvantages 35

5.3 Al te rna t ing impact strategy 37
5.4 General implementat ion details 37

5.4.1 New classes 38
5.4.2 Changes i n default classes 38

6 Experiments 39
6.1 Exper imenta l setting 39

6.1.1 Objectives of experiments 39
6.1.2 Dataset 40
6.1.3 Used networks and strategies 40

6.2 M a i n experiments 42
6.2.1 Ver iNet - 100 R e L U nodes i n 2 layers M N I S T network 42
6.2.2 M a r a b o u - 100 R e L U nodes in 10 layers M N I S T network 43
6.2.3 M a r a b o u - 200 R e L U nodes in 10 layers M N I S T network 44
6.2.4 M a r a b o u - 800 R e L U nodes in 20 layers M N I S T network 45
6.2.5 Ver iNet - Sigmoid and tanh networks 46

6.3 Branch implosions 47
6.4 Summary 48

7 Conclusion 49

7.1 W h a t to do next? 49

Bibl iography 51

A Project usage 54

2

Chapter 1

Introduction

Over the past decade, deep learning has become part of many applications. We can find
its use i n many ordinary disciplines, such as healthcare, traffic, aviation, or photography.
Generally, the area where we can use deep learning w i t h deep neural networks is unl imited.
However, it has one significant hi tch [11].

M a n y areas where we want to use deep learning methods are safety-critical so that the
end customer may require system features such as safety or correctness. For example, when
we use an autonomous car, we would like to know whether the car's system reacts (artificial
dr iv ing system) to various situations correctly. For example, the car does not increase the
velocity against pedestrians at the crossing [16]. It is unacceptable to sell something that
can be potential ly dangerous in the real world.

In contrast to some decision trees or expert systems, neural networks are problematic to
understand. Today, we do not have good tools for their verification and their use, especially
in safety-critical areas, is s t i l l at some risk. R i sk because neural networks work as a black
box. We can design different architectures and use many methods and examples to t ra in
them [10, 18]. However, as a result, we do not know how they work. We can deduce it for
small networks but not for the networks we commonly use [16].

The main problem of neural networks revealed by Szegedy [20] is smal l perturbations
that cause misclassification. These perturbations can be so smal l that they are not recog­
nizable to the human eye [1]. Thus, for example, some hackers 1 or some standard deviations
of recording devices (some artifacts, noises, brightness) may trigger potential ly dangerous
misclassifications [20].

Aircraft Col l i s ion Avoidance System X (A C A S X u) is an example of a deep neural
network that has found its use in safety-critical area. Th is system aims to anticipate
collision situations and suggest the correct behavior. Suppose this system made the wrong
decision based on intentional or unintentional perturbations. It could easily mean bill ions
of dollars in damage and the loss of hundreds of lives [23].

1.1 State-of-the-art approaches

Neural network verification is a dynamic, evolving topic today, and there are many differ­
ent approaches. These approaches differ i n how they prove the correctness of the network.
For example, work [18] notes three elementary approaches - reachability, opt imisat ion and
search. Reachabil i ty constructs potential ly reachable classifications at the output layer [25].

1For example https://www.tensorflow.org/tutorials/generative/adversarial fgsm

3

https://www.tensorflow.org/tutorials/generative/adversarial

Opt imiza t ion seeks to create a set of variables that are subsequently opt imized. For ex­
ample, M I P V e r i f y [21] describes opt imizat ion by finding the m i n i m u m possible distance
to the closest adversarial result (see 2.2). Today's state-of-the-art solutions use the th i rd
approach, search methods.

We combine search methods wi th the previous two approaches. Instead of a complete
proof, they focus on finding concrete examples and counter-examples. Thus, in the context
of reachability, they do not t ry to reconstruct some complete reachable area. They would
instead find a counter-example outside the permit ted area [13]. A s part of opt imizat ion,
they can look for an example beyond the l imi t determined by the adversarial result [7].
Th is thesis focuses on one of these state of the art solutions called Ver iNet . A s a part of
this tool , we design and implement extensions that we compare wi th the in i t i a l results.

The main inspirat ion came from The Second Verification of Neura l Networks Compe­
t i t i o n 2 . The winner solution was a , / 3 - C R O W N too lk i t 3 , boosted by G P U accelerated al­
gorithms. The second was a Ver iNet toolkit ' 1 (with an improvement named D E E P S P L I T)
developed at the Verification of Autonomous Systems (V A S) group at Imperial College
London . The main advantage of this toolkit is that there was no G P U acceleration, and
the a lgori thm got an excellent placement even wi th the C P U - o n l y algori thm.

B o t h mentioned toolkits implement actual state-of-the-art algorithms for local robust­
ness neural network analysis. However, while having excellent results, these toolkits s t i l l
face difficulties. They s t i l l can not solve more complex cases regarding inadequate t raining,
network size, or different activation layers [11, 27, 14].

These toolki ts are focused on searching counter-examples in some neighborhoods of
inputs of testing images (or other general inputs) . The central premise is simple - i f the
algori thm proves that there are no possible counter-examples i n some e neighborhood, the
neural network is safe for that case. If they find at least one, the network is not safe for a
part icular case. Formally, this work deals w i th the analysis of local robustness [28, 18, 13].

1.2 C o n t r i b u t i o n

Most search-based verification algorithms consist of three parts (see Figure 1.1): propa­
gation of input constraints to the output layer, some solvers that w i l l t ry to find some
counter-example to a given representation, or prove that no such case exists. The th i rd
phase helps the previous phases wi th the input problem's refinement (branch and bound)
if the solvers mark the problem undecidable.

The Ver iNet toolki t achieves it by adding split constraints to node inputs across the
network to create smaller sub-problems - branches. Problemat ic is the choice of split
node, so this thesis hypothesizes that creating different spl i t t ing strategies should accelerate
decisions over more complex cases. We proposed and evaluated three new types of strategies
extending the original branch and bound functionality w i th this idea i n mind . Moreover,
we proved that we could significantly speed up the current state-of-the-art solution wi th
different spl i t t ing strategies. Tha t is not only beneficial for the discussed Ver iNet toolkit
but also for any verification toolkit that uses branch and bound phase.

W i t h our experiments, we show some undocumented behavior of verification toolkits.
For example, we encountered an anomaly which we cal l branch implosions. We also ex­
panded the set of experimented networks from a package of M a r a b o u toolki t . Moreover, the

2https: / / s.google.com / view / vnn2021
3https: / / github.com/huanzhangl2/alpha-beta-CROWN
4https: / / github.com / vas-group-imperial /VeriNet

4

http://github.com/huanzhangl2/
http://github.com

Start

Figure 1.1: Simplified cycle of algorithms wi th branch and bound phase. We focus on the
green one in this thesis. See Section 3.1 for more details.

contr ibution of this paper is a deeper description of the behavior of the Ver iNet verification
toolkit .

W h e n reading this work, it is also necessary to keep i n m i n d that the verification of
neural networks is a very active and dynamic topic and has taken a considerable step
forward i n the last six years [29]. Scientific groups worldwide are working even during the
wr i t ing of this work and are inventing many new algorithms and tools. These take the
scalabili ty of verification algorithms to new levels, and the knowledge speculated here can
already be surpassed.

5

Chapter 2

Preliminaries

This chapter describes the main underlying concepts we need for deep learning verification,
such as neural network, activation function, local robustness, completeness, or fundamental
directions to verification. Th is chapter also mentions some safety-critical areas where we
can use deep learning algorithms.

2.1 N e u r a l networks

Neural networks can be used for various purposes [2]:

• Regression or function approximat ion - neural network computes from input values
output of the simulated nonlinear function.

• D a t a analysis - neural network sorts some data into some categories by similarities.

• Classification - neural network decides from input values some output classification.
The network chooses the classification from the highest value of outputs values.

In this thesis, we focus on the classification of neural networks.

2.1.1 D e e p feedforward n e u r a l network

Deep feedforward neural networks are feedforward neural networks (F F N N) that are com­
posed of a high amount of nodes i n many layers.

A feedforward neural network contains one input layer, which accepts a l l inputs of
the given problem, many hidden layers, and one output layer from which we derive the
classification. Each layer is composed of nodes (neurons). Each neuron has n inputs and
m outputs. Each input is composed of a mat r ix of learned values (weights), output values
from the previous layer (or network inputs), and bias. The neuron multiplies the weights
w i th values from previous layers and then sums it a l l together w i th bias. Every neural
network node has an activation function: a : W1 —> M m , which converts a node input values
to mat r ix output values [11]. Same as in the quoted thesis, we ignore skip-connections in
this thesis.

A n essential part of neural networks is act ivat ion functions, which affect the complete­
ness/soundness of verification and significantly impact the scalabili ty of verified networks.
The most important [2] are these:

ReLU(x) = max(0,x)

6

Sigmoid(x) =
1 + e x

e 2 x - l
e2x + 1

Ver iNet toolki t also includes support for neural networks wi th batch layers. These
networks have layers that do not use act ivat ion function to transform values from inputs
to outputs but use linear t ransformation 1 . These layers have an equal number of nodes as
a layer before [11].

R e m a r k (Convolut ional networks). Although many modern neural networks use convo-
lutional networks, this paper does not deal with them. For technical reasons, our version
of VeriNet does not support convolutional neural networks. However, it is necessary to
mention that the verification of convolutional neural networks (CNN) is not significantly
different from the verification of FFNN. The designed methods should be fully applied when
added to any toolkit (for example, DEEPSPLIT [14] or Crown [24]) that can verify CNNs.

Tanh(x)

2.2 L o c a l robustness

In the context of neural networks, the term robustness comes from the biological speci­
fication of l iv ing species, where robustness means endurance against external or internal
perturbations. Robustness i n the context of the neural network is s imilar in the way that
some bigger or smaller deviations from the normal si tuation cannot affect correct function­
ing [10]. For example, a robust human can work and survive at different temperatures or
not die while eating a bit of toxic food. A robust network works correctly even w i t h a di r ty
camera.

L o c a l robustness formally extends this definition. For example, the C r o w n project
describes local robustness by a neighborhood of input XQ and £ p ba l l around input where a l l
values (in £ p ball) need to have the same classification. If the tool falsifies the definition, the
neural network for XQ is not robust [28]. The Ver iNet documentation has a more complex
(but also better for formalization) definition - the definition we summarize below [11].

Definition 2.2.1 (Loca l robustness). Consider a tuple (f,tpx,c), where f is an FFNN2

f : M.m —> M.n, tpx is set of constraints {k < x% < Ui\k,Ui G ^}vie{i,2,...,n}; where li and U{
are defined as x% ± e and are lower and upper bounds for input values, and classification
c £ {1, 2 , . . . , m}. Let f(x)i be ith output of FFNN. Neural network is locally robust when
for each x' satisfying tpx and each t ^ c applies f(x')c > f(x')t [13].

Formal verification of neural networks is based on breaking local robustness condit ion
f(x')c > f(x')t- The verifier tries to find a counter-example x for which applies f(x)c <
f(x)t- If the verifier does not find any counter-example x, the classification of input values
is called safe. Otherwise, when the verifier finds a counter-example, it calls unsafe because
it found a counter-example. In the following chapters, we w i l l find out that algorithms for
finding these counter-examples are not necessarily complete these days.

A n example of a counter-example si tuation is in Figure 2.1. We can see that the expected
behavior of a robust neural network is that smal l perturbation can not change classification
if the network is locally robust.

1J/* = yl~X + b, where yl is an output of layer, i is layer index, and b bias.
2Fast-forward neural network.

7

R e m a r k (Adversarial result). When working with verification tools, we may also encounter
the notion of an adversarial result. Where the counter-example (result) is anything that
falsifies some constraints, the adversarial result is some maximum allowable disturbance
of inputs to some classification. If the case input constraints exceed the limit given by the
adversarial result, then the network changes output classification [18].

Inputs

Inputs

Locally robust

1 1 t

Neural network Neural network 1 Neural network 1 Neural network

1 V

Neural network

Classification
1 t

>
Neural network 1

>

£• w
Neural network 1 Neural network

Inputs

Inputs

1.1

2

3

Neural network

Not locally robust

Classification

> 1

Neural network
>

Neural network 2 W Neural network 2

~

Neural network

Figure 2.1: Y o u can see a local ly robust network on the left side and not local ly robust
network on the right.

2.3 Completeness

W h e n working wi th different verification toolkits, we encounter different features. For
example, which networks it supports (types of layers, activation functions) it supports, what
methods it contains, what it verifies (local robustness), and also whether it is complete (or
for which networks). To this is added the concept of soundness, which only says that if the
representation cannot calculate a value, then the existing network is not able to calculate
it too.

If we say that the tool is complete, then we can say that the tool covers the 1:1 behavior
of the neural network. Thus, i f the representation of a neural network wi th in a complete
tool says that the network can take on some value, then an existing network can indeed
take on that value. If it cannot take on some value, then neither a real network can take
on that value [18].

Some tools, such as Exac tReach [26], create a complete representation on the first iter­
ation. The problem is that it only works for the piecewise linear R e L U activation function
and that this tool can pract ical ly not verify any more extensive network. Tools complete for
networks wi th sigmoid and tanh activation functions do not appear much. Today's trend,
which follows both Ver iNet [11] and C r o w n [28, 27, 24], is an incomplete representation of
behavior that they gradually refine to some complete representation (branch and bound).
A s a result, they do not use unnecessarily accurate representations for uncomplicated cases

8

Reachability

MaxSens

ExactReach

AI2

Optimization

Primal Dual

NSVerify Duality

MlPVerify ConvDual

VeriNet Neurify

ReluVal FastLin

Search
Sherlock

Reluplex

Marabou

BaB

Crown

Active Sets

Figure 2.2: Scheme of recent methods. Taken, updated and modified from [18].

and insufficiently accurate ones for problematic cases. Th is incompleteness leads to much
better scalabili ty for more extensive networks.

2.4 Bas ic verif icat ion directions

We can read in the literature [18] that there are three basic directions. T h e y are called
verification by reachability, opt imizat ion, and by search. For the mentioned methods, we
work wi th a set X of a l l possible inputs, set Y of allowed outputs, and the function f as a
neural network. See Figure 2.2 for an overview of current solutions.

2.4.1 R e a c h a b i l i t y

Reachabil i ty methods constructs a set of reachable outputs R(X, f). The construction is
done by taking the sets of input values and, using various methods, creating representations
of N N s , propagating the input values through the neural network up to the output layer.
A solver (or another algorithm) decides which classifications are reachable wi th a given
representation at the output layer. For a set of these obtained classifications, it must hold
that it is a subset of the possible classifications, i.e.:

R(X, f) C Y

These methods divide between those that do or do not perform over-approximations. Exact -
Reach [26] does not perform over-approximations, so it is complete for its set of problems
but can only be used for N N s wi th R e L U activation functions and cannot be used for
medium or more extensive networks. A i 2 and MaxSens [25] are not complete, but the
range of verifiable networks is larger [18].

2.4.2 O p t i m i z a t i o n

P r i m a l opt imizat ion methods stand on t ry ing to falsify assertion:

9

x G X =>- y = f(x) G Y

In this case, the neural network is a constraint structure that, by various algorithms,
is opt imized. For example, I L P [5] toolki t i teratively tries to estimate the m a x i m u m input
set XE of neural network concerning the correct outputs Y. Suppose X C XE, the neural
network is safe for that case. Current solutions are l imi ted to using only R e L U activation
functions [18].

The second approach to opt imizat ion methods is dual opt imizat ion methods. These
methods work on the principle that they t ry to optimize output constraints that, i f they
violate each other, the network is not safe for a given case. Compared to pr imary opti­
mizat ion, these bounds are much easier, and thanks to, for example, Lagrangian relaxation
(Dual i ty [9]), it is possible to implement other act ivat ion functions than R e L U .

However, using relaxations is necessary to use specific propagation methods, leading to
incompleteness. In addit ion, the constraints created i n this way are different than i n the
case of p r imal opt imizat ion [18]. It is thus necessary to create new solvers that can solve
dual problems. One of them is the Act ive Sets [19] solver, which works in combination wi th
search methods.

2.4.3 Search

Where standard reachability and opt imizat ion methods t ry to create an area and prove what
values a given network can acquire, search methods find concrete examples (or counter­
examples) that would falsify some condit ion. So, where the reachability methods must
prove the entire reachable output set, search methods only need to prove that there is no
counter-example to c la im otherwise. Alternat ively, find a specific counter-example instead
of proving an area that violates local robustness.

One of the implementations of these methods (combination of search and reachability) is
the Ver iNet [13, 14, 11] toolki t , which is the ma in object of this thesis. The following Chap­
ter 3 pr imar i ly describes the elementary concepts that bu i ld these verification algorithms.
It is also worth adding that current competi t ion algorithms such as C r o w n [28, 27, 24]
or Ac t ive Sets [19] consist of searching wi th dual opt imizat ion. So if we talk about some
state-of-the-art algori thm, it is pract ical ly certain that it w i l l be a tool based on some form
of search.

2.5 Discipl ines using neural networks

A s mentioned i n the Chapter 1, one of the essential milestones of neural networks was the
use of the A C A S X u [23] collision detection model . Nevertheless, that is not a l l . The use
of neural networks has become a regular part of routine life essentially and their use today
reaches that un t i l recently could only be done by a human.

2.5.1 A u t o n o m o u s d r i v i n g

One of the current hot topics today is the transportat ion industry 's future. In addi t ion to
the tendency to leave internal combustion engines, it is a matter of autonomous dr iving.
Various algorithms for object detection, traffic sign identification, route control (G P S) , or
dr iv ing that autonomous car use stands on neural networks [4].

10

In addit ion, we encounter the need to correctly aggregate information from various
sources and adapt the N N s to them. For example, to perceive the surroundings, such a
vehicle draws data from three sources - the camera, L i D A R (laser beams for perceiving
depth), and radar. Examples of known systems using neural networks that autonomous
vehicles use include HydraNet , ChauffeurNet, or N V I D I A self-driving car [4].

O n the one hand, there is a lower need for continuous learning and, therefore, less need
for fast verification. O n the other hand, the required size of the network increases wi th a
generally more extensive number of inputs and the need to respond to v i r tua l ly everything
in a large area around the car. For example, one of the works [15] on neural networks
for autonomous dr iv ing systems for embedded devices designed a network wi th just over
150,000 trainable parameters. We assume that these numbers would be much higher in
reality because this system focuses only on using data from the camera.

The need for verification is evident in the case of autonomous management - traffic
safety. Every traffic accident potential ly brings economic losses i n the case of car damage
and potential transport of goods. A n d the loss of lives i n worse cases.

A little ethical reflection

Eth i ca l and moral responsibili ty is also problematic i n this case. If an accident occurs,
who is responsible? The author of the system, the one who sold the vehicle, the one who
verified the system, the one who bought i t? Therefore, in addi t ion to the fact that this and
other works t ry to deal w i th a formal technical approach to the given problem of neural
networks, it is necessary to consider legal and ethical risks. Another problem may be that
maintaining such a system requires obtaining a lot of data, which can mean a significant
invasion of privacy.

2.5.2 D e e p l earn ing in heal thcare

The previous example replaces the ordinary person, the driver, and the following replaces
original security such as passwords or fingerprints. Th is example goes further. It replaces
years of education and experience w i t h the machine. It is a medical use that we classify
into two main directions - diagnosis [2] and treatment [8].

In the basic sense of the word, diagnostics work on the principle of a database of patients
w i th a given set of symptoms, test results, personal characteristics, and their final diagnosis.
Then neural networks use such sets to t ra in a network that serves to diagnose a specific
patient w i th an unknown diagnosis. The resulting network can then detect, for example,
cardiovascular disease, cancer, or diabetes [2].

Figure 2.3 shows a fundamental consideration of how such a model could work for
some common diseases A and B . For example, today, this detection tool could detect and
distinguish between Covid-19 and influenza, which have very similar symptoms. Symptom
A could be cough, symptom B olfactory loss, and laboratory test A standard antigen test
that is not very accurate and is not sufficient for diagnosis.

In the case of cancer, relatively harsh treatment is used, including radiation, chemother­
apy, or surgical removal of the tumor. F r o m this point of view, it is essential that the
diagnostic tool used is well trained and verified, as a wrong diagnosis can lead to fatal
consequences for the patient.

The problem wi th the neural network i n this case, and even more so in the case of using
the neural network for surgical interventions, is the already mentioned fact that neural
networks function as a black box [8]. The black box means that the neural network takes

11

Patient data Diagnosis

Age

Gender

Symptom A

Symptom B

Lab. test A

NN for diseases
X a n d Y
detection

Disease X

-Disease Y

Negative

Figure 2.3: A n example of using a classification network to detect X and Y diseases related
on age, gender, symptoms A and B and wi th the possibil i ty of laboratory test A . Inspired
by [2].

the inputs and returns the output—nothing in between. Unl ike a doctor who has years
of experience and education and can say why and how he came to a given conclusion and
wrote a medical report, we do not know anything about the calculation method i n a neural
network. Therefore, it is necessary to significantly improve the tools for the formal analysis
of neural networks.

A little ethical reflection

Compared to the other two examples, the author of the verification system gets into much
greater responsibili ty than i n the previous two examples. In the case of autonomous dr iving,
the user can intervene in the vehicle's d r iv ing i n the event of a visible failure. W h i l e illness
diagnosis or surgery, there may be only the machine trained and verified by their creators.
Thus, the network creators and those who verify the network have the destinies of human
lives i n their hands.

O n the other hand, the availabil i ty of qualified medical care in many less developed
societies is poor. Such generically learned machines can provide at least the necessary care.

2.5.3 Face recogni t ion

One of the most common areas where neural networks occur is image processing. After a l l ,
it is already quite common today for mobile phone publishers to write "boosted by A I " on
their packaging. However, there is a slightly safety-critical discipline apart from recognizing
food, text, nature, or other objects. This discipline is the face recognition w i t h which we
can unlock the various devices.

The main benefit of using neural networks is t raining the network directly to a specific
person i n real-time, moreover, w i th personal appearance changes [17]. For example, App le
boasts of using "Neura l Engine" chips to accelerate the learning of N N s and thus offer
comfort to their customers i n real- t ime 3 .

In this example, it can be relatively quickly emphasized that the excellent scalabili ty of
verification algorithms for neural networks could be pleasant. The user would not have to
wait long, and he would know that nobody can exploit bugs i n the face recognition system.
Moreover, many people store essential data on their devices, such as bank logins, passwords,

3https://support. apple.com/en-us/HT208108

12

https://support
http://apple.com/en-us/HT208108

or internal job data. Thus, the security weakness of neural networks can lead to unpleasant
consequences. A n enormous problem can be when an unverified, poorly trained network is
in a device owned by some high general or pol i t ic ian.

A little ethical reflection

The ethical question arises i n the context of recognizing a face. It is necessary first to
obtain the data, more accurately an image or, better, a 3D scan of the face. O n the one
hand, for example, phone manufacturers can be trusted that phone makers leave biometric
data only on the device and do not send it anywhere or misuse them for unfair matters. If
someone does not trust this system, the camera can be pasted or turned off wi th in the S W .
Alternatively, the person does not have to buy it.

In the context of crime, cameras often mul t ip ly on the streets, and it is not difficult
to create a complete populat ion map when using face recognition technology. That is the
main area where facial recognition technology can be misused. T h i s too l is even being
abused today by the People's Republ ic of C h i n a i n its Black Mirror- inspi red social credit
system, where people gain and lose credit not only for common offenses and crimes but also
for disloyalty to the government. In this case, the author of the system that verifies this
system becomes an accomplice of the regime.

In the context of crime, cameras often occur on the streets, and it is not difficult to
create a complete populat ion map when using face recognition technology. Tha t is the main
area where facial recognition technology can be misused. This tool is even being abused
today by the People's Republ ic of C h i n a in its Black Mirror- inspi red social credit system' 1,
where people gain and lose credit for common offenses and crimes and disloyalty to the
government. In this case, the author of the system that verifies this system becomes an
accomplice of the regime.

4https://en. wikipedia.org/wiki/Social_Credit_System

13

https://en
http://wikipedia.org/wiki/Social_Credit_System

Chapter 3

Main concepts

This chapter deals w i th the basic bui ld ing blocks of a large part of tools for neural network
verification. We explain the pr imary verification cycle, which occurs i n Ver iNet , and its
three basic blocks. We also briefly mention the competit ive C r o w n tool and tools created
by Bune l et al .

3.1 Ver i f ica t ion cycle

The toolkits like Ver iNet [11], C r o w n [28], B a B [7], and others consist of three main blocks
(see Figure 3.1) - construction of a network representation (usually some bound propagation
method), processing by a solver, and possible refining of the solved problem. The algori thm
always starts by creating a representation and terminates w i th an obtained result. A n
exception is a timeout, which occurs p r imar i ly for more extensive networks and is a relatively
common way to terminate an algori thm [11].

The th i rd option of terminat ion of the verification cycle, l inked to the system architec­
ture and can be handled i n various ways, is terminat ion due to lack of memory or excessive
rounding error. Round ing errors can terminate the a lgori thm when it is impossible to create
bounds wi th in the representation or rework phase. It occurs when we break the elementary
condit ion lower_bound < upper_bound.

3.2 L inear re laxat ion

Before mentioning bound propagation methods, it is essential to realize that the activation
functions used i n standard neural networks are non-linear. This non-linearity, as we explain
in Section 3.3.2, is not suitable for some bound propagation methods, such as symbolic
interval propagation, and therefore so-called linear relaxations are used.

Linear relaxation is a process where non-linear functions (as ReLU, sigmoid or tanh) are
converted to linear over-approximations. The result consists of n-tuples of linear constraints
for node input and output. V a l i d outputs that respect these constraints are part of the
overestimation of the output space. For example, to define the linear relaxation of the most
typica l act ivat ion function of neural networks, ReLU, Henriksen et a l . [11] refer to derived
relaxation:

14

Start

Timeout

New constraints Representation

Safe/unsafe

Figure 3.1: The main cycle of Ver iNet and others.

where x\ and xu are lower and upper bounds of the input . Basically, we intui t ively create
a triangle, where two sides are based on the ReLU function and the th i rd side is the
connection between the two farthest points.

However, this relaxation is not entirely suitable, as it contains three linear constraints,
which leads to a more precise output space, but at the same time, leads to a more de­
manding calculat ion for further verifications. Therefore, we subsequently encounter two
characteristic bounding lines during the verification: upper linear relaxation and lower l in ­
ear relaxation. So i f we use the same example of the ReLU act ivat ion function, we get a
set of linear constraints:

where xi and xu are lower and upper bounds of the input . To illustrate, we can see in
Figure 3.2 that such relaxations are actually two parallel lines glued to the ReLU activation
function [11].

The elementary principle is intuit ive, but there are many problems wi th i t . The first
one is the calculation of the already mentioned bounds xi and xu. W i t h i n Ver iNet , their
calculation solves propagation methods (SIP, E S I P) , which propagate the input bounds
through the network.

The second one is that propagation methods use these linear relaxations, but, as can
be noticed, there is a significant overestimation. Th is overestimation means that the errors
of the following bound increase wi th each new layer w i th the relaxed act ivation function.
Tha t , i n the end, causes false counter-examples [11]. The accuracy of these estimates is one
of the issues discussed, and different research groups take different approaches (for example,
some other toolkits use Lagrangian decomposition for refinement [6]).

Due to overestimations, the toolkits w i th linear relaxations are no longer complete by
default. This incompleteness we can solve while using the ReLU activation function, which
is piecewise linear. However, for other nonlinear functions, such as the already mentioned
tanh and sigmoid, this generally leads to a sound but incomplete solution [11, 18].

XU X[XU X[

15

In contrast to ReLU, there is also the problem that the creation of linear relaxation
may not necessarily be feasible w i th the help of an analyt ical solution. Henriksen et a l . [11]
represents an iterative approach for sigmoid and tanh activation function, where it is
possible to obtain relatively precise relaxations.

In general, linear relaxations are a par t ia l departure from complete solutions, but thanks
to the introduct ion of l inearity into the verification problem, the scalabili ty of the verifica­
t ion tool increases. Some other solutions, such as the C r o w n [24], then increase accuracy at
the expense of speed by introducing quadratic relaxations. Regardless, we do not address
them i n this work.

3.3 Representat ion methods

A n elementary problem of neural network verification is converting node notat ion wi th
edges to something that a verification tool can solve. Approaches to this are different, but
today we pr imar i ly talk about the so-called bound propagation methods. The bound prop­
agation methods t ry to make some estimation of f{x) from the model notation, where f{x)
represents the behavior of the neural network and x the vector of the inputs. Depending on
the activation methods and layers used, these methods are then differently applicable. The
result of bound propagation methods is some boundaries, constraints, equations (linear,
mixed-integer, some intervals), and others i n verifying usable data [18, 11].

R e m a r k (Or iginal approaches). The original methods for verification used MIP coding of
ReLU nodes, which was complete but at the same time very computationally demanding.
The next step was their relaxation of LP constraints, which led to incompleteness, but at
the same time, the field of verifiable neural networks expanded [18].

16

In this work, we focus pr imar i ly on symbolic representations because the toolki t (Veri-
Net) used in this work uses them. More details on the given methods are i n the main
sources [13, 11, 23].

3.3.1 N a i v e interval p r o p a g a t i o n

In order to find counter-examples, we need to identify possible outputs based on the intervals
for each input . For a naive implementation, Henriksen et a l . [13] gives the following formulas
(for F F N N) :

zj = w'+y]-1 + W'-yt1 + V
4 = W^-1 + W'-y]-1 + bl

where z\ and zl

u describe the lower and upper bounds of layer i, yl~x is the output upper
bound of the previous layer, y\~x is the output lower bound of the previous layer, bl is the
bias of layer i. We generate Wt+ from the weight mat r ix as:

i + = r wih wiA > o
k ' h \ 0 else

The real output of each layer is obtained wi th activation function a(x) of layer i as:

y\ = A4)

vi = <7*(4)

These formulas say that each node i n each layer calculates the m i n i m u m and max imum
possible values z\ and z%

u) which stand on a matr ix of the m i n i m u m and m a x i m u m values y\
and y%

u. These we obtain from the previous layer outputs mul t ip l ied by a matr ix of weights
of edges between the current and previous layer i n F F N N .

The advantage of naive interval propagation is its simplicity. However, the disadvantage
is that it does not include condit ional dependencies of m i n i m u m and m a x i m u m values
between nodes across the network and thus significantly overestimates the output intervals'
ranges. Thus, this method causes many undecided case occurrences, making it necessary
to split the solved domain into more subdomains [13].

3.3.2 S y m b o l i c interval p r o p a g a t i o n S I P

A big step away from this naive implementat ion introduced the R e l u V a l [23] and Neurify [22]
toolkits - a symbolic interval propagation (SIP) [18]. Instead of propagating specific values,
SIP propagates linear equations. Accord ing to experimental results, this method leads to
a reduction of overestimation compared to naive implementat ion. In contrast to naive
implementation, the formulas for each layer change to:

etiLjnfr) = Wi+eliow,out(X) + ^ " < L t W + 6

<p,in(X) = Wi~eCtiow,out(X) + Wi+e<Cp]out{*) +b
where eql

upin and eq\owin are symbolic upper and lower bounds and eq%~pout and eq\~^out

are symbolic output bounds of the previous layer. In contrast to the propagation formula
of naive interval propagation, the lower and upper input and output values of y%~x and z%

17

are replaced by the equations eql~x and eql. F r o m working w i t h specific values, we get to
working wi th symbolic notat ion

This method leads to strongly non-linear equations because we usually use non-linear
activation functions i n commonly used neural networks. The solution is the usage of linear
relaxations, which cancel out non-linearities while creating linear overestimation [18, 11, 23].
Therefore, we take the calculated input upper and lower equations from the previous formula
and substitute them wi th the calculated relaxation. Formal ly :

e1low,out(x)k = rl,k(e1low,in(x)k)
eQup,out(X)k = ru,k(.eQup,in(.X)k)

where r\k and rl

u k are lower and upper relaxations for node k in layer i
To create specific relaxations, it is necessary to calculate both specific bounds for upper

and lower relaxation. These we calculate as:

zi = min(eq(x)) = aix\ + ajX^
i |a i>0 i |a i<0

zu = max(eq(x)) = a^x" + aix\
i\ai>0 i |aj<0

where eq(x) = ^ a^Xj and where each Xi is bounded by x\ < Xi < xf.
In most cases, S IP creates a better representation (tighter bounds) of larger neural

networks than the naive method, but it s t i l l has its shortcomings. This method is s t i l l
not able to trace a l l the inter-dependencies between the ind iv idua l nodes and s t i l l creates
a considerable number of false counter-examples. For this reason, symbolic propagation is
followed by error-based symbolic propagation (ESIP) and also reverse symbolic propagation
(RSIP) wi th in the D E E P S P L I T extension [11, 14].

3.3.3 E r r o r - b a s e d interval p r o p a g a t i o n E S I P

W h i l e standard symbolic interval propagation works wi th lower and higher bound relax­
ations, the error-based interval propagation (ESIP) method presented here works only wi th
the lower one. It replaces the upper relaxation and the higher bound equation wi th a spe­
cific error value describing the upper relaxation distance from the lower one. Thus, the
E S I P further propagates errors and bound equations only through the lower relaxations.

Principle

Each layer thus contains at its input its mat r ix E\n £ M m i X m i representing errors from the
previous layers, where mi is the number of nodes in layer i and m\ is a number of a l l nodes
in previous layers. We use this mat r ix for verification v ia solvers on the output layer and
for the spl i t t ing strategy heuristic.

Continuous errors and equations of behavior are propagated i n an intuit ive way using
weights for ind iv idua l edges W% and for the propagation of equations also w i t h bias b:

El = WiEi

 t

in '" out
eqL(x) = Wieqiut(x)+b

18

Figure 3.3: Two N N s wi th one different edge. The nodes contain the propagated error value
from the left node. Ac t iva t ion function is f(x) = x.

Henriksen et a l . [11] provides further necessary formulas for describing the E S I P method.
Fi rs t , how to calculate a new error on a node k in a layer i that describes the max imum
possible distance between the value created by the upper relaxation and the lower relaxation:

4 = maxzie[zj fe,4 k](.ru,k(.z) ~ rt,k(.z))

Second, the method of calculating new errors through the node wi th the usage of only lower
relaxations r\ k:

(Kut)k, = r{k{{E^)k.)

where the resulting output error mat r ix is concatenation of the propagated errors and new
errors:

Ei

out = [(Ei

out),diag(e)i}

A n d very similarly, propagated equations are obtained as:

e<iout(x)k = rlk(eqin(x)k)

A n d th i rd , we need to get new lower z\ k and upper z%

u k bounds for each node. To do this,
we use the input equations eq\n obtained from the previous layers and also the error matr ix
E\n obtained from the previous layers as:

4,k = min(eqln(x)k) + (Eln)k,h
h\(Ejn)Kh<o

zu,k = max(eql

in(x)k) + ^ (El

in)k,h
h\(EiJKh>o

Benefits

Thanks to a l l these errors, we can te l l what m a x i m u m or m i n i m u m values are and obtain
each node's output using only one relaxation. Another advantage is that thanks to these
errors, which we propagate through the neural network, we can cancel each other out or
mul t ip ly the dependencies between the given nodes. For example, in Figure 3.3, we can
see that i n the network on the left error, the error cancels out, while i n the network on the
right, it doubles.

Thanks to these sums and subtractions of errors from previous layers, E S I P manages
to suppress the condit ional dependency issue. In turn, the absence of the propagation of
upper relaxation increases the overall overestimation of the network's behavior. However,

19

experimental results show that E S I P generally leads to significantly better boundaries, and
thus, the E S I P generates fewer counter-examples than SIP [13, 11].

Moreover, the concrete error values propagated to the output layer and summed together
give a pretty accurate overview of what overestimation is produced by which node. These
errors then te l l which nodes are pul l ing overestimation of the correct class down. Moreover,
which nodes are pul l ing up overestimation of potential ly counter-example classes. Based
on this knowledge, the Ver iNet can create a very effective heuristic wi th in the branch and
bound phase.

3.4 Solvers

In the previous section, we created a representation and got some output behavior at the
output layer. The representation at the output layer can tel l us a specific output changes
when a part icular input changes or i f it can reach a specific value. Nevertheless, we do
this to check whether the network is local ly robust or not, and that is why we use different
solvers to find out.

The result of propagation methods is a set of constraints, linear equations, bounds, and
other helpful verification data. W i t h that, it is possible to search for counter-examples or
other network behavior, and, for example, Ver iNet uses the L P solver and local gradient
search for its processing. The selection of these tools is also an essential topic wi th in
verification tools.. For more details, see [18].

The choice of solver depends on how we code the neural network verification problem.
For example, in dual opt imizat ion, one of the works [19] designs and implements the so-
called Act ive Set Solver. Some other methods encode the network for other solvers such as
M I L P , S M T , S A T , or other custom solvers. Different solvers then have different domains
of what they can process and how fast they can process it [11]. In general, the less complex
the problem to be solved and the less complex the task is, such as having only a linear
behavior, the faster the solver usage is. For example, a system of linear inequalities is much
easier to solve than a system of quadratic inequalities. However, a less complex solution
leads to a less accurate solution, and therefore the solver needs to be called mult iple times,
so it is necessary to look for a balance. So, for example, using a simple L P solver can be
very fast, but again it does not have to process as accurate representations as M I L P . We
can demonstrate this i n the example of the previously mentioned representation methods.

Naive interval propagation would be simple for solvers. It consists only of specific
boundary values. The solver used needs only to check the intersections of the intervals
formed by bounds. O n the other hand, i n contrast to the more complex E S I P , this method
completely lacks any interdependence of nodes wi th in the network, so the result returned
by the solver has a great chance of being a false positive.

3.5 Refinement

A s mentioned i n Section 3.3, today's state-of-the-art representation methods lead to the
overestimation of output intervals. Thus, there are a lot of false counter-examples that do
not exist i n a given input domain. We can prove the existence of real counter-examples
wi th the help of various solvers, as we mention in the following chapters. O n the other
hand, proving the non-existence of such cases is a lot more complicated, and most state-of-
the-art algorithms go through some refinement phase. It is also important to mention that

20

this phase often adds completeness to the basic incomplete algorithms (at least for R e L U
sites) [18, 11].

3.5.1 E x i s t i n g sp l i t t ing strategies

These refinement methods usually work by d iv id ing the main problem into smaller ones.
Usually, we select a node and then divide its input i n half (or in a different ratio). Then the
algori thm solves sub-problems and adds a new split constraint to a solver. The selection of
these nodes is an essential aspect of verification algorithms, and different approaches lead
to differently efficient algorithms.

W h i l e the original tools d id not rework and d id not have to use any strategies, newer
ones, such as Neurify [22], moved towards a hierarchical strategy. The strategy is to grad­
ually take nodes from the input layer to the output layer while d iv id ing the inputs of the
selected node. This strategy leads to the expansion of solvable problems. However, we
cannot split a l l the inputs of neural network nodes i n a reasonable t ime [11].

In this regard, Ver iNet has introduced an adaptive spl i t t ing strategy wi th a heuristic
that uses the results from the E S I P phase and deduces the nodes that w i l l be divided first
and later according to the effect on the output layer. A s a result, Ver iNet can find and split
necessary inputs sooner and reduce the overall number of required splits [13]. The problem
wi th this adaptive method is that it does not look at the order of split nodes at a l l and is
thus stateless. Th is stateless logic can lead to a "wrong" split node order and thus slower
verification. Moreover, this strategy tends to prefer some layers. Thus it does not split
fairly in the whole network.

We describe spl i t t ing strategies more in the following chapters, and the new we present
and experimentally evaluate new ones i n this thesis.

3.5.2 Heur i s t i c s

M o d e r n verification tools use adaptive spl i t t ing strategies i n different ways. Usually, they
need some heuristics to determine which node is in the given representation the most
significant. Sometimes these heuristics choose the node w i t h the longest distance between
bounds or the node wi th the highest gradients of representation. Alternat ively, they can
calculate heuristics on some representation characteristics. The th i rd case is also the case
of Ver iNet .

The Ver iNet uses mentioned errors on ind iv idua l nodes to observe their two undesirable
impacts - lowering the lower bound of the correct classification c or increasing the upper
bound of the wrong classification t . The goal of the refinement is to reduce both of these
influences (reduce overestimation), and the Ver iNet heuristic tries to find such nodes by
looking for the most significant errors. Thus, the Ver iNet toolki t introduces the value of
impact score, which it calculates as:

s(h) = lcmax(E™hl 0) - ^ 7 t m m (E ^ , 0)

where 7 is so-called weighting factor and E is the error matr ix at output layer from E S I P
phase 1 - Ec as the error mat r ix of correct output and Et as the error matr ix of other
outputs.

xFor details see subsection 3.3.3.

21

For safe classes, which the Ver iNet proved i n its previous iterations, we use 7 = 0 , for
the correct class 7 = n where n is the number of potential counter-examples, 7 = 1 for
other unproven classes. This heuristic does not include any indirect impacts - the difficulty
of spl i t t ing between the input layer or first layers is more challenging to compute than
spl i t t ing wi th in later layers. We need to recalculate a l l subsequent layers i n the newly
created branches (previous layers remain the same). O n the other hand, spl i t t ing wi th in
the first layers has a more significant impact on decreasing over-estimations caused by linear
relaxations of non-linear functions [13, 11]. We discuss these effects more in Chapter 5.

These heuristics are one of the goals for further improvements. For example, in the
extension of Ver iNet D E E P S P L I T , they create an impact score as a combinat ion of direct,
indirect, and propagation effects [11, 14]. There w i l l be a discussion on the importance of
the quali ty of heuristic functions i n the following chapters.

3.5.3 S p l i t t i n g

We discussed some strategies and heuristics to create new branches by d iv id ing the current
branch and thus making more accurate representations. We do this branching by adding
split constraints to the current representation of the node inputs (and LP-solver) . The split
constraint then splits the node input in the case of the E S I P method (in Ver iNet toolkit)
into two "halves" as:

eqi(x) + ^2 Eijk > s
fc|£;,k>0

eqi(x) + ^2 Ei,k < s

k\Eitk<0

These split constraints s then differ depending on the act ivation function of the node.
For ReLU nodes, split constraints are s = 0 , because this constraint leads to the cancellation
of the non-linearity of the ReLU act ivat ion function. This cancellation also means that
the a lgori thm is complete for networks consisting only of ReLU layers. If we created 2 ^
branches where iV is the number of nodes, a l l nodes would have exact linear behavior, and
thus the representation would have complete behavior [11].

For other activation functions (s-shaped tanh and sigmoid) a are split constraints s
counted as midpoint :

a(zi) + a(zu)
°(s) = j

where z\ and zu are lower and upper symbolic bounds to input calculated by E S I P [11].
For an i l lustrat ion of spl i t t ing, suppose we have an overestimated result i f we assume

that we have some computed input bounds over positive and negative values and a node
applies some linear relaxation of the R e L U function on them. However, if we introduce a
split constraint s = 0 , we get two intervals, which are located purely on two linear sections of
the R e L U function, so no overestimation occurs. We can see such a si tuation i n Figure 3.4.

3.5.4 B r a n c h a n d b o u n d

Combin ing the spl i t t ing strategy, heuristics, the spl i t t ing method, and the solver's outputs,
as described in the sections and subsections above, is created one of the basic bui lding
blocks of modern verification algorithms, the so-called branch and bound algori thm.

This algori thm, or rather the programming paradigm, was not in i t ia l ly intended to
verify neural networks but, for example, for solving various opt imizat ion problems such as

22

No split
constraint

Split constraint
s = 0

Branch 1

Branch 0

input: <-5, 0> output: 0

input: <-5, 17> Inaccurate relaxed
output

Branch 2

input: <0, 17> output: <0, 17>

Figure 3.4: Simplified example of adding split constraint. Branch one restricts inputs only
to less than or equal to the split constraint and the second one vice versa.

the traveling salesman problem or knapsack problem 2 [7]. One of the original tools that
adopted this method for neural network verification is the B a B verification t oo lk i t 3 [7]
(named after Branch and Bound) .

The branch and bound method constructs a tree divided into sub-domains based on
some input domain. Th is tree aims to gradually reduce the size of the problem which we
process and thus solve the smaller sub-problems. The given problem does not have an
existing (safe, robust) solution, and we must prove it i n a l l branches, or the problem has a
solution (unsafe), and thus, it must find at least one branch which violates some condit ion.
Safe branches we prune. The satisfiability of the branch and the goal of the search depend
on the too l used [18, 11, 7].

In the case of Ver iNet , we are ta lking about finding a real counter-example or el iminat ing
al l potential . Therefore, if the L P solver, in the case of Ver iNet , states that there is no
intersection on the output layer and therefore no potential counter-example, then the branch
is pruned. If we prune a l l branches, the network is safe for the case (unsatisfiable). If we
find a real counter-example i n any branch, the a lgori thm stops i n a l l remaining branches.
The case then we report as unsafe (satisfiable) [13, 11].

Figure 3.5 shows how the branch and bound phase of the Ver iNet verification algori thm
works. The node symbolizes the problem branch and always shows the number of current
potential counter-examples. The branching symbolizes the addi t ion of split constraints on
the input domains of the nodes.

In the left tree i n Figure 3.5 we can see that we pruned a l l branches of a l l counter­
examples. I.e., the processed domain and its overestimation do not generate any intersec­
tions which the LP-solver could find. In the right tree, we can see that one of the branches
found a real counter-example during the branching and the whole a lgori thm then stopped.

2For more examples, see littps://en.wikipedia.org/wiki/Brancli and bound
3 [18] describes that the Planet and Reluplex tools can also be seen as an implementation of branch and

bound.

23

http://wikipedia.org/wiki/Brancli

Safe Unsafe

Figure 3.5: Example of a tree for the branch and bound phase of a Ver iNet toolki t . The
number in the nodes describes the number of potential counter-examples. Green nodes are
proven to be safe. R e d nodes are proven to be unsafe.

In the case of the B a B tool , we sought a global min imum. In this case, the too l has the
condit ion that i n the case of proving a negative value of local min ima, the branch, tree, and
we mark the whole case as unsafe. If it becomes positive, the case is safe, and we prune the
branch. The goal is to prune a l l branches and find a global m i n i m u m higher than 0 or to
prove that the global m i n i m u m is lower than 0 [7].

Different algorithms use different methods for working wi th the branch and bound al­
gori thm. However, we can distinguish three elementary bui ld ing blocks - selection strategy,
domain spl i t t ing method, and some decision algori thm (solver), which can decide i n a set
{satisfied, unsatisfied, undecided}.

M a n y S o A algorithms use branch and bound, but the sub-blocks often differ signif­
icantly [24, 19, 14]. These differents are also because branch and bound often lead to
extreme branching when it is necessary to create and verify tens of thousands of branches
to solve a given case. After a specific timeout, this si tuation leads to the network being
unverifiable i n many cases. Th is exponential branching is one of the most significant current
scalabili ty problems for neural network verification.

It is also necessary to keep i n m i n d that this method of exponential branching has
considerable memory requirements. In the case of Ver iNet , these requirements are at least
part ia l ly reduced by the non-recursive implementat ion of queue-based branching [11, 18].
Another problem may be the so-called underflow result. It says that the divis ion of branches
failed to create val id bounds and that we have to terminate the algori thm.

Various efforts to improve this method at the level of spl i t t ing strategies we discuss in
this work, but a key topic in working wi th this a lgori thm is its parallel ization. For example,
the C r o w n [28, 27] toolki t i n its newer versions approaches massive G P U parallelization.
However, the Ver iNet toolki t uses only C P U parallelization, but Ver iNets i? extension [12]
uses G P U .

24

3.6 Other solutions

The techniques described above pr imar i ly focus on Ver iNet and similar tools. The following
subsections describe a few other excit ing solutions.

3.6.1 M e t h o d s a c c o r d i n g to B u n e l , D e P a l m a , et a l .

It is worth mentioning the latest projects around the Oxford effort of R u d y Bunel , De P a l m a
et a l . They bring some tools that, according to the Crown authors [29], are part of the
latest generation of verification tools. A n important fact is that Bune l et a l . brought the
branch and bound phase [7] to the field of verification. Thus, they significantly increased
the scalabili ty of verification tools and brought a new generation of algorithms to neural
network verification.

Verification via Lagrangian Decomposit ion

This solution deals w i th too much looseness of calculated bounds, which leads to unneces­
sarily large inaccuracies and thus more difficult verification of neural networks. The work
thus improves the properties of bounds using relaxations formed by Lagrangian decompo­
sit ion [6], which overcomes the so-called Lagrangian relaxations [9]. Unl ike Ver iNet , this is
an opt imizat ion search approach to neural network verification.

This work builds on dual algorithms, where the authors c la im that their new method
allows at least as accurate bounds as previous approaches, and this solution a, /3-Crown
follows. The authors boast i n their work that they can stop their a lgori thm anytime. This
stopping is advantageous i n setting between the performance price and accuracy. That
means that we can stop the a lgori thm and obtain a roughly current intermediate result
from it , which may not be the tightest possible, but is s t i l l usable i n the subsequent phases
of the algori thm. Another benefit of their approach is easy G P U parallel ization [6].

Compared to p r imal opt imizat ion, the difference i n this approach is that it is necessary
to use dual solvers to solve problems obtained by Lagrangian decomposition. They take
them from previous approaches to dual opt imizat ion, but they also developed i n the follow-
up approaches. For example, they further design Act ive Sets Solver [6, 19].

Verification via Active Sets

The main topic of this solution is working wi th dual solvers, where they propose and im­
plement the so-called Act ive Set Solver, which, unlike existing solvers (L P) , can solve dual
problems. L ike the C r o w n solution, this method also represents alpha and beta opt imiza­
t ion variables and is based on the above work based on Lagrangian decomposition. Th is
verification tool allows massive G P U parallelization. The toolkit uses branch and bound
phase [19].

The benefit of this work is that Ac t ive Set Solver better process tighter boundaries.
Th is processing is advantageous because tighter boundaries are more accurate, leading to
better verification results and better estimation of network behavior. However, at the
same time, tighter boundaries consist of many more constraints that consume much more
computing power to solve wi th a solver. They achieve this by storing an active set of the
dual variable [19].

Thei r tool is again well parallelizable i n terms of the branch and bound phases, the
calculation of bounds on specific layers, and the presented solver itself [19].

25

3.6.2 C r o w n

The C r o w n too l views formal neural network verifications differently than Ver iNet . This
toolki t is pr imar i ly famous for winning the 2nd International Verification of Neura l Net­
works Compet i t ion , and the H u a n Zhang group is longly involved i n neural network formal
analysis. Unl ike Ver iNet , C rown is more of an ecosystem of not only verification tools,
which they gradually develop and expand, among other things, for compat ibi l i ty w i th other
activation functions' 1.

F rom their point of view, during the seminar on the verification of neural networks,
four different generations of N N s verification tools have been created since 2017. The first
generation consisted of existing solvers and the second generation of extending scalabili ty
wi th the presentation of incomplete tools. The th i rd and fourth are interesting i n that
they both talk about the development of tools based on the branch and bound method.
Accord ing to them, the fourth generation brings G P U acceleration to this method [29].
Th is finding is intr iguing. A l though the extension of Ver iNet , D E E P S P L I T , was very close
to their solution in the already mentioned competi t ion [3], according to this definition, it is
a tool one generation behind because D E E P S P L I T is not G P U accelerated. O n the other
hand, the creators of Ver iNet are currently working on G P U acceleration, pr imar i ly i n the
context of the propagation phase.

The two main tools developed under the " C r o w n brand" are the a -Crown and /3-Crown,
where a and (3 indicates unique optimizable variables a and (3. B o t h tools br ing massive
G P U parallel ization and are currently probably (at least according to the last competi­
t ion [3]) the fastest solutions available.

Unl ike Ver iNet , their principle is not symbolic interval propagation (SIP, E S I P , R S I P . . .)
methods but bound propagation methods based on Lagrangian opt imizat ion using linear
and quadratic bounds. A s a result, the C r o w n can verify given inputs w i t h relatively tight
boundaries. A l so , unlike VeriNet , the Crown's principle is not to search for reachable states
but to optimize and search for global min ima . We can include their approach among the
search and opt imizat ion methods [24], but resources on this topic vary. For example, the
book [18] includes them between search wi th reachability methods.

In the context of this work, a branching strategy can be interesting. C r o w n uses a
well-established B a B S R calculation strategy that quickly estimates and searches for the
nodes wi th the highest significance i n a given network and selects the best one. In addit ion,
they have tested C r o w n also wi th an F S B strategy similar to B a B S R and serves on the
principle of imi ta t ing the bound propagation method for the few best selections by the
B a B S R method and selecting the one w i t h the most significant impact . The authors then
c la im that they also dealt w i t h the G r a p h neural network (G N N) branching strategy and
that their tool is easily extensible i n this regard [24].

4For more details see: https://github.com/liuanzliangl2/alplia-beta-CROWN

26

https://github.com/liuanzliangl2/alplia-beta-CROWN

Chapter 4

VeriNet toolkit

VeriNet is a l ibrary of modules used to verify neural networks based on local robustness.
It is one of the so-called search algorithms wi th a focus on reachability. In this chapter,
we focus on the ma in parts of the a lgori thm pipeline. We take the deep description from
articles [13, 14] and the d ip loma thesis of M r . Henriksen [11].

4.1 A l g o r i t h m overview

The main algori thm of the Ver iNet toolki t consists of four blocks (phases; see Figure 4.1).
The first phase starts after loading inputs to the verification toolki t . We need to know the
structure of the neural network - the number of layers, size of layers, act ivat ion functions,
weights, biases, and other parameters. We derive input constraints which from training
input (pr imari ly images) and some e s imply as:

input _node_constraint = (input_value — e; input_value + e)

where e is the distance for which we require the a lgor i thm to be local ly robust.
Fi rs t phase inputs also include correct classification. We can predict (user chooses

correct classification) or calculate it from the input values result - classification is the node
at the output layer w i th the highest value. This phase uses E S I P i n the default VeriNet
implementation, but we can replace it w i t h other methods. For example, we can replace
it w i t h the combinat ion of SIP and R S I P , as they do it i n the D E E P S P L I T [14] extension
(see 4.5). The result of this phase is the new representation of the input neural network.
Tha t includes a matr ix of bounds for each node i n each layer, a matr ix of error values, and
output equations 1 .

In the second phase, the a lgori thm seeks to find potential counter-examples i n a given
representation. The algori thm uses G u r o b i L P - S o l v e r 2 , which processes the combination
of the output equations, the errors, and the split constraints. Thus, it tries to find poten­
t i a l counter-examples through the applicat ion of linear programming (optimization). This
solver works on the premise that the equation on the correct output node must always
return the highest values from a l l equations. If the LP-solver calls unsatisfiable, there
are no output interval intersections, no possible counter-examples, and thus the network
is safe for the case. If the LP-so lver calls satisfiable, there may be (but not necessary)

1See subsection 3.3.3.
2https://www.gurobi.com

27

https://www.gurobi.com

NNet model,
image

Underflow <-

Invalid
bounds ESIP

Representation
LP-solver

"Unsat"
-> Safe

Undecidable -<-

Split
constraints

Potential
counterexamples

Timeout Branch and

No
counterexample Gradient

descent
search

"Sat"
bound

Gradient
descent
search

Unsafe

Figure 4.1: Ver iNet pipeline scheme. Taken and polished from [11].

some counter-examples. It is just a potential counter-example as it works w i t h a relatively
significant overestimation of network behavior.

In contrast to the second phase, the th i rd phase seeks to find real counter-examples.
For searching real counter-examples, the Ver iNet toolkit uses gradient descent search. If
it finds some real counter-example and calls it satisf table, the Ver iNet toolki t calls the
input case of neural network unsafe. However, standard representation methods, including
the Ver iNet E S I P , are relatively high overestimated. Thus, if this phase does not find a
counter-example, it can either mean that the search area was too broad or there is no
counter-example.

Therefore, i f the solvers do not find the solution, the fourth phase of branch and bound
occurs. Th is phase is a direct implementat ion of the branch and bound phase described in
the subsection 3.5.4. This a lgori thm then selects the best appropriate node and adds split
constraints to its input . This step creates two new branches, al lowing the original solved
domain to split into two smaller ones. Runn ing processes then take these new branches,
and each process re-performs the entire Ver iNet pipeline wi th some optimizations.

If any of these branches is unsafe, the neural network is unsafe for the input case. The
neural network is safe for the input case i f a l l branches are safe. If new branches do not find
a solution again, we create the two branches from the original branch again. The algori thm
thus creates new branches un t i l it finds the right solution or un t i l it expires the t ime l imi t
(timeout). A n alternative way to terminate the a lgori thm is the so-called underflow. It
says that it was impossible to create the correct new bounds because of the accuracy of
floating-point arithmetic.

4.2 Propaga t ion methods

The algori thm implements an error-based symbolic interval propagation (ESIP) method
wi th few improvements leading to better opt imizat ion. For example, the E S I P method
calculates the bounds for the whole network only for the first i teration. New bounds
and equations are calculated only for the layers that follow the current split node. This
opt imizat ion leads to higher numbers of branches calculated per t ime unit.

28

However, this method is s t i l l the bottleneck of the verification cycle. The main reason is
that the current version is not parallelizable on the G P U or C P U and, therefore, challenging
to accelerate. A n exception in this may be matr ix operations used in calculations by the
standard P y t h o n l ibrary N u m p y which is well optimized.

The input of this phase is, logically, a neural network model. The authors encode it w i th
the help of a slightly modified N N e t model, which in i t ia l ly comes from the neural networks
used i n the Acas X u collision detector. Such a model contains both the amounts and widths
of layers, the m a x i m u m and m i n i m u m possible values on the inputs, ind iv idua l connections,
and other helpful information. In addit ion, the improved version of Ver iNet provides the
abil i ty to specify act ivat ion functions on ind iv idua l layers and the types of connections
between those layers, including the abi l i ty to specify convolution kernels. Another input is
some set of inputs (image), and another is correct classification. It is the opt ional parameter
because the toolki t can replace it w i th the statement that a l l inputs should have the same
resulting classification.

The input of this phase is, logically, a neural network model . The authors code it
w i th the help of a sl ightly modified N N e t m o d e l 3 , which in i t ia l ly comes from the neural
networks used i n the Acas X u collision detector [23]. Such a model contains both the
amounts and widths of layers, the m a x i m u m and m i n i m u m possible values on the inputs,
ind iv idua l connections, and other helpful information. In addit ion, the improved version
of Ver iNet provides the abi l i ty to specify activation functions on ind iv idua l layers and the
types of connections between those layers. Other inputs are some set of inputs (image)
and optionally correct classification. Opt iona l because the toolki t can replace it w i t h the
statement that a l l inputs should have the same resulting classification [11].

4.3 Solvers

VeriNet uses a G u r o b i LP-solver . It gives the a lgori thm information about the existence of
potential counter-examples. Also , it adds information about which outputs these counter­
examples generate, which we can use i n the subsequent phases of the algori thm. In general,
we do not perceive this phase as significantly time-consuming.

Ver iNet toolki t uses a P y T o r c h opt imized A D A M tool to search real counter-examples
default. It does a gradient descent search L(x) = yc — yt, where x indicates input, the
yc indicates the output value of the correct classification and the yt indicates the output
value of the potential ly incorrect classification. The authors set the default setting to do five
iterations wi th a step size equal to 0.1. The optimizer finds real counter-examples relatively
quickly w i th this setting, even wi th min ima l branching. Thus, Ver iNet , by default, calls a
local search only every five iterations (every fifth branch) [11].

4.4 B r a n c h and bound phase

The main goal of this phase is to find the problematic node, select some of its inputs,
divide this input and create new branches according to this split . Unl ike some other tools,
such as C R O W N [28], this phase is parallelized only through the C P U . The principle is
that ind iv idua l processes, so-called Ver iNet Workers, gradually take unprocessed branches
from the queue. After completing them, it either creates two new branches (undecided)

3https://github.com/sisl/NNet

29

https://github.com/sisl/NNet

from them, or when successfully solving the verification task, it passes the result on i n the
manner mentioned i n 3.5.4.

A l though the general principle of the branch and bound algori thm might suggest, this
branching phase is not directly recursive. It mimics recursion using a classic queue, where
it places unprocessed branches. This queue use generally leads to an order of magnitude
better memory ut i l iza t ion than when using classical recursion.

In the default version of the program, Ver iNet uses adaptive refinement, which estimates
the most influential node to split . Th is phase does not look at the previous split nodes or the
subsequent split nodes, so the node selection depends only on the current representation of
the neural network i n the given branch. The following experiments w i l l focus on reworking
this phase.

4.5 E x i s t i n g V e r i N e t extensions

Given that verification of neural networks is a very current topic and, at the same time,
the scalabili ty and thus the pract ical usabil i ty of verification algorithms is low, many new
tools are emerging. This section w i l l list the two most significant enhancements to Ver iNet .

4.5.1 D E E P S P L I T

D E E P S P L I T is an extension of the Ver iNet toolki t . In addi t ion to improving the com­
pat ibi l i ty of P y t h o n libraries and minor development enhancements, this extension brings
significant improvements in two main ways [14].

They made a significant change in the representation methods phase. Instead of d i ­
rectly calculat ing bounds and equations through the E S I P method, this tool combines two
methods - R S I P and E S I P . The R S I P method is very similar i n principle to the SIP and
E S I P methods, but unlike them, it accesses the network from the other side - it propagates
bounds from the last layer to the first layer.

The combination of these two different methods works by first calculating the repre­
sentation using the R S I P method. E S I P then works wi th the values calculated by the
R S I P method and for each layer counts its representation (bounds). T h e n it selects the
bound that is tighter and therefore more accurate. A s a result, it finds fewer false counter­
examples, and at the same time, the areas in which we search for real counter-examples are
smaller [14].

The second significant change is the extension of the heuristic function wi th indirect
and propagation effects. Indirect effects describe the importance of linear relaxations on
the accuracy of the boundaries estimations in the following layers - spl i t t ing a node i n the
previous layer reduces the effect of linear relaxation on the following layers. The propagation
effects describe the difficulty of spl i t t ing wi th in specific layers - the more profound the node's
layer locates, the easier the spl i t t ing is. This improved heuristic leads to a better selection
of split nodes and thus reduces the number of split nodes needed to resolve the case [14].

In addi t ion to these improvements, D E E P S P L I T changes the original G u r o b i LP-solver
to a better one. It also improves input parameters of solvers - it adds the possibil i ty
of solving problems other than local robustness, improves the search for specific counter­
examples, and much more. Together, these improvements led to D E E P S P L I T placing
second i n the 2nd International Verification of Neura l Networks Compet i t ion (2021), close
behind the a , /3-Crown toolki t , making it one of the best state-of-the-art solutions [3, 14].

30

4.5.2 V e r i N e t B F

Another version of Ver iNet is VeriNetBF) which brings significant improvements over the
original Ver iNet i n many ways. In addit ion, this work focuses on bias field perturbations
and also brings an extension of representation methods.

The extension presents a combination of undemanding SSIP (Standard-SIP) and more
demanding and accurate R S I P (Reversed-SIP) for neural network representation. This
combination works so that SSIP finds and creates a representation of more stable and less
cr i t ical nodes, and then VeriNetBF computes more important nodes using the R S I P method.
This combination then advantageously combines the s implic i ty of SSIP and the accuracy
of R S I P [12].

Another advantage over the original Ver iNet implementations is G P U acceleration
wi th in representation methods. This acceleration leads to significantly better results but
at the same time creates a problem wi th the need to estimate the memory requirements
for calculat ing the given operations. R S I P has huge memory requirements on the G P U
and can often run out of memory. In addit ion, it also provides 64-bit precision compared
to the 32-bit precision in most verification algorithms, which is more time-consuming and
accurate [12].

The algori thm boasts that it can better verify tools that analyze images from the med­
ical environment thanks to the bias field analysis. For example, in Magnet ic Resonance
Imagining (M R I) , where images may be damaged by intense artifacts. Bias field analysis
can verify resistance to these perturbations. The algori thm also boasts that the most ex­
tensive network they verify reaches the size of 6 .5M nodes, which is a significantly higher
number than the N N s we verify i n this work [12].

31

Chapter 5

Extension design

This chapter describes the extension design and implementat ion details for new branching
strategies wi th in the Ver iNet toolki t . A l l proposed strategies are universally applicable and
modular to any other toolkit w i th similar principles as Ver iNet (branch and bound, E S I P) .
A l l parts of this chapter were designed and implemented dur ing work on this bachelor thesis.

We propose three different strategies i n the first three sections. After the main descrip­
t ion, we briefly discuss implementat ion and the class design. In the next Chapter 6, we
experimentally evaluated a l l ideas from this chapter.

5.1 M e m o r y strategies

This section introduces methods that increase the speed of branching at the expense of
reducing the quali ty of node selection. The expected result of these methods is an increase
in the required number of branches to solve the given verification tasks but at the same
time a reduction i n the t ime required to solve them.

5.1.1 S i m p l e m e m o r y strategy

Dur ing each i teration of the branch and bound phase, several steps need to be taken -
select the node, split it , and create new branches. A l l of these are non-tr ivia l ly demanding
operations, and therefore this first strategy tries to save on the first-mentioned step.

The basic idea is that instead of counting a new heuristic, each t ime we split a new
node, the heuristic is counted only once i n a while. Specifically, we create a stack of n best
nodes, and only when they run out is a new heuristic called. The heuristic then returns the
n best results instead of one result. These we again store on the stack, from which further
iterations of the branch and bound phase take new nodes.

The potential benefit of this method is to save on the operations required to perform
heuristics, which include several mat r ix mult ipl icat ions, mat r ix additions, and the best node
selection (sorting algori thm). In addit ion, this method assumes that the estimated impact
scores of ind iv idua l nodes do not change as much over t ime and that the quali ty of the
heuristics would not deteriorate as much.

The disadvantage may be the deteriorating accuracy of the heuristic for higher n. For
sigmoid and tanh networks could be a disadvantage impossibi l i ty to choose the same sig­
nificant node twice i n one stack iteration. Another disadvantage is that this strategy does
not include the order of split nodes. Accord ing to the stack memory, it only takes them

32

Figure 5.1: A n example of a neural network where the first number is the impact score and
the second number (optional) is the split node order for simple memory strategy. M e m o r y
size n is equal to 4.

from the best to the worst. Th is order can be disadvantageous, as it is more advantageous
to divide the nodes at the beginning and then at the end of the network.

For example, as we can see i n Figure 5.1 wi th some impact score values, the node i n the
last layer is d ivided first, then i n the second, then i n the th i rd , and finally also i n the th i rd .
Thus, given that the new branch is necessary to calculate the representations of the only
following layers, it raises the number of needed operations. For example, i f we swap the
node spl i t t ing i n the last layer and the second layer, we save six new node representation
calculations. If we split in the last layer, we get two representations i n which we next split
the node in the second layer. Whereas i f we split i n the second layer, we recalculate bounds
in the following six nodes, and after spl i t t ing i n the last layer, we do not have to recalculate
them again.

5.1.2 S o r t e d m e m o r y s trategy

The second strategy we propose is the sorted memory strategy. This strategy extends the
previous simple memory strategy, where we perform heuristics, n best nodes are selected,
and these we save on stack. In the case of a sorted strategy, we sort the obtained results
from the input layer to the output layer to reduce the unnecessary recalculation of nodes.
The selection of nodes we illustrate in Figure 5.2 (same network as i n the case of the simple
memory strategy).

The main advantage of this strategy over the simple memory strategy and the default
adaptive strategy 1 is that it reduces the number of node recalculations. It thus par t ia l ly
includes indirect effects that the Ver iNet heuristic does not account for [11]. A s in the case
of a simple memory strategy wi th a larger n, the heuristic accuracy decreases.

5.1.3 Reverse sorted s trategy

This strategy aims not to improve verification tools but to show the effect of the order of
the split nodes on the verification itself. Its principle is the same as for the sorted memory
strategy in Section 5.1.2, we only reverse the order of the divided nodes i n such a way that
the node from the last layer goes first.

1Default VeriNet [11] strategy, briefly mentioned in Section 3.5.1.

33

Figure 5.2: A n example of a neural network where the first number is the impact score
and the second number (optional) the split node order for sorted memory strategy. The
memory size is equal to 4.

New branches

Figure 5.3: Example of branch mirror ing effect. Green and red nodes are current split
nodes and blue one is a planned split node.

It w i l l be interesting to observe two behaviors i n experiments w i th this solution. O n
the one hand, experiments w i l l measure the reduction i n the rate at which we split nodes
per unit of t ime. Moreover, on the other hand, these experiments may show the effect of
the order on the number of branches needed to solve the case.

5.1.4 B r a n c h m i r r o r i n g

Another significant disadvantage of both described methods may be the problem of branch
mirroring. For example, in Figure 5.3 we can see that i n the new branches, we split a
significant node i n one branch, while in the other branch, we split a node wi th a meager
impact score. In both branches, we split the same nodes for some time depending on the
size of memory n. Th is spl i t t ing means that in one series of branches, overestimation can be
constantly l imi ted i n one direction (of correct or incorrect output), which does not approach
the solution of the given task. The result can be one or more unnecessarily deep lines of
branches that slow down the task.

34

5.2 Semi-hierarchical strategy

This section proposes a novel strategy for the branch and bound method that combines
previous approaches.

5.2.1 C o m p a r i s o n of h ierarch ica l a n d adapt ive sp l i t t ing

Previous approaches used two main ways how to choose split nodes. Neurify [22] proposed
hierarchical spl i t t ing, one of the first approaches to the branch and bound algori thm. Ver i -
Net [11], which follows Neurify, proposed a novel adaptive spl i t t ing strategy, significantly
improving branch and bound mechanisms.

In the case of a hierarchical strategy, we follow an intuit ive selection of split nodes. We
start w i th the first node of the first layer and continue to the second and th i rd un t i l we get
to the last node of the last layer. Formally, let us consider a list of indices of the neural
network nodes indices as a one-dimensional array and variable i in i t ia l ized as i=0. We get
a new node as node = indices [i++]. The advantages of this approach are its s implic i ty
and respect for the correct split node order we mentioned in Subsection 5.1.1. However,
the disadvantage is that significant nodes we might split late.

The principle of the second approach, the adaptive spl i t t ing strategy, is choosing the
most significant node in each branch and bound i teration of the representation of the
neural network. For this purpose, we use some heuristic functions. If we again suppose ar­
ray indices, we choose split node as node = indices[h e u r i s t i c (representation)].
This approach chooses the best nodes sooner, but it does not respect the correct split node
order. However, the adaptive spl i t t ing strategy generally leads to having a better result on
larger networks [11, 14].

For example, as shown i n Figure 5.4, the second step of the hierarchical strategy plans to
split a node wi th a min ima l impact score of 0.3. In contrast, an adaptive split strategy splits
nodes w i t h significant influence on network behavior and faster reduces overestimation in
the representation.

5.2.2 Bes t by layer s trategy

This strategy represents a combination of an adaptive and a hierarchical spl i t t ing. The
principle is to calculate the heuristics only for the current layer, from which we select the
most cr i t ical node. After each i teration (creation of a new branch), we shift the index of
the current layer.

We can see an example in Figure 5.5, where i n the first i teration, the node wi th a value
of 0.9 has the best score i n the first layer. We split the node, and the a lgor i thm continues
in one of the new branches so that it currently has the highest node wi th a value of 1.2 in
the second layer.

5.2.3 P o t e n t i a l advantages a n d disadvantages

This method should have several advantages over previous mentioned strategies. O n the
one hand, we l imi t the heuristic calculation for a specific layer, so if the neural network
has n layers, then the number of necessary operations for branch calculation is reduced
to O n the other hand, it solves problems solved i n D E E P S P L I T extension [14] more
intuitively. It solves propagation impacts by introducing the order into divided branches,
and indirect impacts it solves by giving adequate space to a l l layers. This fairness is related

35

Figure 5.4: Yel low nodes were chosen by hierarchical and blue by adaptive strategy. The
second sub-figure illustrates the N N after d iv id ing by the blue node in the first sub-figure.

to the current problem of Ver iNet [11] heuristics, which tends to prefer nodes in later layers
of the network at the expense of earlier ones.

R e m a r k (Pr ior i t ized layers). However, while experimenting with networks beyond the de­
fault VeriNet package, it has been shown that the VeriNet adaptive heuristic prefers different
layers for different networks. More research would be beneficial.

Compared to the memory-based methods, it has the advantage of less heuristic distort ion
and also cancels the branch mirror ing effect. The advantage may also be the absence of the
need to select the memory size, which dramatical ly affects the quali ty of memory methods.

The disadvantage of this method may be excessive fairness. We may split less often than
necessary some layers w i th nodes that generate significant overestimation. In addit ion, this
method does not include the possibil i ty of different layer sizes, so if a layer is significantly
smaller or larger, it w i l l s t i l l go as often as the other layers.

5.3 A l t e r n a t i n g impact strategy

A s mentioned i n section 3.5.2, Ver iNet calculates heuristics as the sum of some positive and
negative errors. Due to these errors, we create a k ind of reasonable heuristic when the most
significant node is always selected. In this section, we describe a method that, s imilar ly
to the reverse sorted strategy, is used pr imar i ly to test the behavior of the verification
algori thm.

The goal of this strategy is not to select the best nodes, but the best nodes for positive
or negative errors separately. A s mentioned i n section 3.5.2, the original heuristics have the
following formula:

s(h) = lcmax{E™h, 0) - ^ 7 t m m (E ^ , 0)

A s a part of this new strategy, heuristics are modified to apply to odd/even branches:

s(h) = jcmax(E™h, 0)

and to even/odd branches:

s(h) = -J2ltmin(E™h,0)

The potential advantage of this strategy is that branching w i l l not reduce the impact
i n only one direction. The second advantage may be reducing the number of operations
required for heuristics.

O n the contrary, the disadvantage may be many potential counter-examples. Thus al­
ternating impact strategy w i l l reduce their overestimation less often. Another disadvantage
may be asymmetry in that there may be a high reduction of overestimation of correct
classification. A t the same t ime, there may be a significantly lower reduction i n the over-
estimation of potential ly incorrect classifications.

5.4 Genera l implementa t ion details

A s part of the implementation, it was necessary to resolve a few details that do not directly
result from the design of new strategies.

37

Figure 5.6: The class dependencies diagram of Ver iNet extension. Diagram taken and
extended from [11].

5.4.1 N e w classes

Our approach includes an extension by two classes - the Strategist and the Spli tmans classes.
We design the Strategy class to include static methods for selecting a node to divide, and
the Spl i tmans class we design to add the necessary strategy information to the branches.
We can see the proposed scheme i n Figure 5.6, where the classes marked i n green are the
core of the extension.

The Spli tmans class pr imar i ly includes some memory of the selected nodes, the max­
i m u m memory size, or the last split layer. To determine the last split node, it is also
necessary to keep the reference to the last selected node.

The Strategist class contains static methods for specifying a new split node and updat ing
data i n branches, especially i n the embedded Spli tmans class. The main goal of this class is
to replace the adaptive spl i t t ing strategy presented in [11] w i t h more advanced ones. The
following sections show the proposed strategies.

5.4.2 C h a n g e s i n default classes

We implement several changes to create compat ibi l i ty between extension modules and the
default toolki t . The first one is the addi t ion of the memory variable to the main VeriNet
module. Th is variable we use i n a l l memory strategies determines the memory size for any
strategy. The default value of this variable is 1.

Each t ime we init ial ize the main VeriNet module, the pr imary Spli tmans entity is
ini t ial ized, including the value for memory size. W h e n creating addi t ional branches, we
send a deep copy of this original entity to one branch, and the other takes over the reference
to the original entity. References are possible since we no longer use a closed branch. A s
a result, we transfer the data needed to work wi th a l l strategies for each new branch, i.e.,
memory index, memory, and layer index. We cal l new strategies i n _branch() method of
the VeriNetWorker class.

38

Chapter 6

Experiments

This chapter discusses the performance of Ver iNet while t ry ing to investigate the behavior
of the verification algori thm. It includes a section about our experimental setting, the
experiments, and one section for zoomed results to branch implosions we discovered. We
also carried out many experiments which d id not fit here. We placed them on our G i t H u b
and the submitted attachment.

6.1 Expe r imen ta l sett ing

For a l l experiments, the environment we used was a computer w i th U b u n t u 20.04 L T S , 16
G B R A M , C P U A M D Ryzen 3 1300X processor, and G P U G T X 1660 wi th 6 G B memory.
The installed libraries are the same as recommended by the authors [11]. The following
subsections describe our goals, testing and t ra ining dataset, and networks we tested.

6.1.1 Objec t ives of exper iments

Before we proceed to experiments, we must set our objectives. The main ones include:

• Solving more undecided cases. Default Ver iNet and other tools have l imi ted scalabili ty
of solvable cases, and we want to improve it.

• Preservation or acceleration of already solvable cases.

In addi t ion to these pr imary objectives, we performed experiments to observe other be­
haviors of the verification algori thm. Tha t includes branching speed for different strategies,
numbers of needed branches, or general observation of the Ver iNet behavior.

R e m a r k (Results). As we mentioned in chapters before, the VeriNet returns for given cases
three possible results. These are:

• Safe - The VeriNet says the network is locally robust for a given input.

• Unsafe - The VeriNet says the network is not locally robust for a given input.

• Undecided - The VeriNet was unable to decide in a given timeout.

39

4 ? H
(a) (b) (c) (d)

Figure 6.1: The four (a) on the left was relatively unproblematic and was among the less
problematic cases. The nine (b) was mistaken for eight by medium-sized networks and either
was unsafe very soon or was verified for a long t ime. The nine (c) then made significant
problem wi th larger and better networks (sigmoid, tanh), when there occurs exponential
branching. This case was misclassified w i t h the one. The five (d) was also problematic and
was usually confused wi th the six.

6.1.2 Datase t

For network creation and subsequent verification, it is necessary to use some data for
network t ra ining and then part of this data for verification as tested inputs. For these
purposes, institutions, companies, or other groups create datasets. These are a database of
images or records wi th their correct classifications.

We worked wi th one of the most common datasets to t ra in neural networks, M N I S T . It
contains relatively basic pictures of black and white digits w i th a low resolution of 28x28
pixels. In the context of experiments, we observed that some images were problematic
for verification while others were usually undemanding. However, i n general, the images
were problematic differently for each network - the examples wi th short comments we have
placed i n Figure 6.1.

Ver iNet uses a clear format without an extension to represent the images. It contains
784 consecutive numbers that describe the intensity of the input . These can take values
from 0 . 0 to 255 .0 . The numbers after the decimal point are usually 0. The advantage
of this notat ion is that it does not contain any dis turbing addi t ional information. VeriNet
reads a set of numbers assigned to the given neural network inputs i n a given order.

Ver iNet authors have also worked wi th a network trained on the dataset Cifar-10 while
experimenting. The i r knowledge refers to their trained network as the largest known verified
network[11] (it has over 100 000 nodes). However, as we mentioned i n Remark 2.1.1, we
d id not perform experiments w i th convolutional networks for technical reasons.

6.1.3 U s e d networks a n d strategies

We took trained networks and their models from the V e r i N e t 1 and M a r a b o u 2 repositories.
In Table 6.1, we show which networks we benchmarked.

For some networks, we mentioned in the comment that they were either too large or
too small . For too large, we encountered both the problem of weaker setting and too high
timeout for the abi l i ty to monitor any behavior. We have decided that it is unnecessary to
carry out deeper benchmarks for too smal l networks.

1https://github.com/vas-group-imperial/VeriNet-OpenSource
2 https: / / github. com / NeuralNetworkVerification/Marabou

40

https://github.com/vas-group-imperial/VeriNet-OpenSource

Source Funct ion Layers Nodes Comment
Ver iNet R e L U 2 100
Ver iNet Sigmoid 6 3000 Best t rained network
Ver iNet Tanh 6 3000

M a r a b o u R e L U 10 100
M a r a b o u R e L U 10 200 Sl ight ly reduced the number of experiments
M a r a b o u R e L U 20 800 O n l y few experiments
M a r a b o u R e L U 6 1536 Too large
Ver iNet R e L U 2 48 Too small
Ver iNet R e L U 2 1000 O n l y few experiments

Table 6.1: Table of experimented networks. A l l networks were trained on the M N I S T
dataset. The nodes are evenly distr ibuted in the layers. The number of nodes includes only
nodes in hidden layers.

For R e L U networks, we can state that it had an upper l imi t for pract ical experiments
at about 800 nodes i n our setup. Surprisingly for sigmoid and tanh networks, there was no
problem wi th 3000 nodes. However, we also observed that, despite good verifiability, we
were unable to demonstrate any significant results on these networks. Mos t cases ended
i n one branch, and the rest we have not resolved by either our or the original version of
Ver iNet .

R e m a r k (Scalabil i ty of verification). We noted that universally better-trained networks
are easier to verify. For this reason, VeriNet authors were able to verify a convolutional
network with more than a hundred thousand nodes. The size influences only the time needed
to create a representation, while the need for refinement comes from the quality of networks.
For example, if we have a poorly-trained or well-trained network, we can decide quickly, but
we meet with many undecidable cases for a "half sufficient" network.

We experimented wi th the first three networks from Table 6.1 for a l l strategies. Our
semi-hierarchical strategy shows significant improvement over the original adaptive split­
t ing strategy w i t h these networks. Thus, for deeper comparison, we extended the set of
benchmarked networks wi th the rest networks mentioned i n Table 6.1.

W h i l e experimenting, we use various strategies. For clarity, we created short abbrevia­
tions for each one:

• Adapt ive spl i t t ing strategy - A D S

• Semi-hierarchical strategy - S H S

• Memory-based strategies - M S

— Simple memory strategy - S M S

— Sorted memory strategy - S T S

— Reverse sorted memory strategy - R S S

• Al te rna t ing heuristic strategy - A H S

We are authors of a l l mentioned strategies but the first one. For a l l memory-based strategies,
we use memory size 20.

41

6.2 M a i n experiments

In this section we describe our observations from benchmarked experiments. E a c h subsec­
t ion include experiments w i th one network, p r imar i ly w i th semi-hierarchical strategy. We
focus on the number of solved cases and t ime needed for solving decidable cases.

R e m a r k (Epsi lon) . While working with experiments, we need to define the value of epsilon.
As we mentioned in previous chapters, the epsilon value tells how wide are neighborhoods
of inputs we verify. For example, if we have epsilon with value 1 and input with value 5,
we verify robustness for inputs in the interval < 4, 6 >.

6.2.1 V e r i N e t - 100 R e L U nodes in 2 layers M N I S T network

This network contains two hidden layers of 50 nodes. Implementing a proposed semi-
hierarchical strategy here led to the solution of two new cases in a given timeout (900
seconds), as shown i n Table 6.2. Thus, there were no unverifiable cases for the epsilon
5. However, sorted and reverse-sorted memory strategies show worse results than default
strategies.

Eps i lon 1 2 5 10 15
Solved safe cases SHS 97 93 78 24 3
Solved safe cases A D S 97 93 77 23 3
Solved safe cases S T S 97 93 76 23 3
Solved safe cases R S S 97 93 75 20 2
Solved unsafe cases (all) 3 7 22 71 89
Timeout cases SHS 0 0 0 5 8
Timeout cases A D S 0 0 1 6 8

Table 6.2: Compar ison of the numbers of results of different spl i t t ing strategies. M N I S T
R e L U 2 x 50. Timeout 900 seconds.

In Table 6.3, we can see that a semi-hierarchical strategy significantly improved the
t ime of safe cases over the default adaptive spl i t t ing strategy i f we include only the same
classifications.

Eps i lon 1 2 5 10 15
Safe cases t ime SHS 2.26 s 2.46 s 748.04 s 913.50 s s 47.72 s
Safe cases t ime A D S 2.28 s 2.65 s 834.71 s 1313.14 s 86.99 s
Unsafe cases t ime SHS 0.06 s 0.14 s 0.49 s 1.62 s 2.05 s
Unsafe cases t ime A D S 0.06 s 0.16 s 0.50 s 1.67 s 1.89 s

Table 6.3: Compar ison of sums of times necessary for obtaining the results for each ep­
silon (timeout 900 seconds). Removed newly resolved cases. M N I S T R e L U 2 x 50, semi-
hierarchical.

Table 6.4 shows part icular cases that changed their classification from undecided to safe.
We reduced time from the timeout of 900 seconds more than twice for the first case. A l so ,
we can see that the semi-hierarchical strategy significantly reduced the number of needed
branches.

The semi-hierarchical strategy presents a significant improvement i n the verification of
this network. In contrast, the sorted and reverse sorted memory strategies reduced the

42

Eps i lon T ime SHS Branches A H S Branches SHS

5 431.30 s 61897 36599
10 663.67 s 74805 59277

Table 6.4: Compar ison of newly resolved cases. Or ig ina l t ime was 900 seconds (timeout)
w i th adaptive spl i t t ing strategy (A D S) for both cases. M N I S T R e L U 2 x 50.

number of solved cases. However, we proved that the split node order significantly impacts
verification algorithms that use E S I P .

W i t h i n the following experiments, we work wi th similar tables and metrics.

6.2.2 M a r a b o u - 100 R e L U nodes i n 10 layers M N I S T network

We can see a significant improvement i n this network wi th a semi-hierarchical strategy.
The improvement includes reducing the number of undecidable cases from 30 to 24, which
was achieved pr imar i ly by significantly reducing the number of branches needed to solve a
part icular case. Specifically, i n Table 6.5, the most significant absolute decrease occurred
wi th the middle epsilon 5 and a smal l one wi th epsilon value 2. Conversely, for epsilon
10, we solved no addi t ional case. These different decreases could indicate a trend for this
strategy to work better at lower epsilon values. However, it is s t i l l only a t iny sample.

Eps i lon 1 2 5 10 15
Solved safe cases SHS 83 72 12 0 0
Solved safe cases A D S 83 71 7 0 0
Solved unsafe SHS 17 25 70 97 100
Solved unsafe A D S 17 25 70 97 100
Timeout cases SHS 0 3 18 3 0
Timeout cases A D S 0 4 23 3 0

Table 6.5: Compar ison of the numbers of results of the default (A D S) version and the
semi-hierarchical strategy (SHS) . M N I S T R e L U 10 x 10. Timeout was 900 seconds.

In Table 6.6, we can see how much time the verification process took to determine the
specific states for each epsilon. We can see that the semi-hierarchical strategy achieved
significantly better results for a l l epsilons for safe cases.

Eps i lon 1 2 5 10 15
Safe cases t ime SHS 32.24 s 759.06 s 9.84 s 0.00 s 0.00 s
Safe cases t ime A D S 112.73 s 996.38 s 15.81 s 0.00 s 0.00 s
Unsafe cases t ime SHS 0.38 s 0.69 s 4.07 s 5.28 s 2.19 s
Unsafe cases t ime A D S 0.38 s 0.69 s 3.98 s 5.15 s 2.16 s

Table 6.6: Compar ison of sums of taken t ime for each epsilon and each result. Removed
newly resolved cases. M N I S T R e L U 10 x 10.

This strategy also has a relatively significant impact on the number of branches needed
to solve specific examples. If we exclude cases where the result has not changed, we get
Table 6.7. We can see that the implementat ion of the strategy significantly reduces the
number of branches needed to solve safe cases, w i th the lowest epsilon even to less than

43

one-third. Regarding the safe part of the table, we can assume that the semi-hierarchical
strategy reduces the average number of branches needed to resolve the case and speeds up
the branching process.

Eps i lon 1 2 5 10 15
Branches for solved safe cases SHS 57.36 2249.45 126.43 nan nan
Branches for solved safe cases A D S 184.61 3095.73 382.14 nan nan
Branches for solved unsafe cases SHS 1.00 1.00 1.80 2.37 1.00
Branches for solved unsafe cases A D S 1.00 1.00 1.77 2.37 1.00
Branches for t imeout cases SHS nan 106548.67 78531.11 53653.33 nan
Branches for t imeout cases A D S nan 85457.00 70283.22 50611.00 nan

Table 6.7: Compar ison of average numbers of solved branches for cases. Cases wi th different
results were removed. Timeout 900. M N I S T R e L U 10 x 10.

The last Table 6.8 demonstrates how the strategy overcomes previously undecided
cases. We can see that the number of branches needed to solve has significantly decreased.
A smaller decrease occurs only i n the last case when there is significant acceleration in the
speed of branches solution per t ime unit . For the original version of Ver iNet , the results
could be a few branches close, or the result might be hundreds of thousands of branches far.
However, to obtain this information, we would have to run the a lgori thm wi th a possible
order of magnitude higher timeout.

Eps i lon T ime SHS Branches A H S Branches SHS

2 566.25 s 185345 120361
5 108.52 s 113892 24989
5 454.15 s 116803 75111
5 342.30 s 119094 67557
5 882.46 s 97540 79735
5 595.33 s 111825 110509

Table 6.8: Compar ison of newly resolved cases. Or ig ina l t ime was 900 seconds (timeout)
w i t h adaptive spl i t t ing strategy (A D S) for a l l cases. M N I S T R e L U 10 x 10.

6.2.3 M a r a b o u - 200 R e L U nodes i n 10 layers M N I S T network

We achieved the best improvement wi th in this network w i t h 10 layers of 20 nodes. A s shown
in Table 6.9, the number of undecided cases in the 1800 second long timeout dropped from
44 to 36. We can assume that the visible acceleration would be even higher w i th an increase
in timeout.

We can see i n Table 6.10 that, while excluding cases wi th different results, we get
an almost 50-fold decrease for epsilon 5. It p r imar i ly causes branch implosions which we
describe in the following Section 6.3.

If we compare the behavior of the verification tool i n terms of the average number of
solved branches for cases where the results were the same, we get the following Table 6.11.
In this comparison, we can see an increase i n the number of solved branches for unde­
cided cases. We also see a significant reduction i n the number of branches needed to solve

44

Epsi lon 1 2* 5** 10 15
Solved safe cases SHS 92 38 6 0 0
Solved safe cases A D S 91 33 4 0 0
Solved unsafe cases 6 11 32 94 100
Timeout cases SHS 2 18 19 6 0
Timeout cases A D S 3 23 21 6 0

Table 6.9: Compar ison of the numbers of results of the default (SHS) version and the
extension (A D S) . M N I S T R e L U 10 x 10. * includes 57 cases and ** only 57 examples in
total .

Eps i lon 1 2 5 10
Safe cases t ime SHS 140.81 s 65.05 s 75.99 s 0.00 s 0.00 s
Safe cases t ime A D S 1213.89 s 1344.85 s 3696.19 s 0.00 s 0.00 s
Unsafe SHS 0.14 s 0.30 s 0.89 s 3.34 s 2.35 s
Unsafe A D S 0.16 s 0.30 s 1.08 s 3.29 s 2.34 s

Table 6.10: Compar ison of sums of taken t ime for each epsilon (timeout 900 seconds) and
each result. Removed newly resolved cases. M N I S T R e L U 10 x 20, semi-hierarchical.

safe cases. The reduction is almost 40 times for epsilon 5, which causes frequent encounters
of implosive cases. One of these cases we describe by the network below, and more details
we tel l about them i n Section 6.3.

Eps i lon 1 2 5 10 15
Branches for safe cases S H S 106.58 145.12 1213.50 nan nan
Branches for safe cases A D S 786.12 2475.55 46137.50 nan nan
Branches for undecided cases SHS 90215.50 61607.83 40872.58 34447.00 nan
Branches for undecided cases A D S 80922.50 57208.83 37311.52 30536.50 nan

Table 6.11: Compar ison of average number of solved branches for cases. Cases wi th different
results were removed. Timeout 900. M N I S T R e L U 10 x 20.

In Table 6.12, we can see that the semi-hierarchical strategy solved new cases signifi­
cantly. Over timeouts, it speeds up almost four times, and for epsilon 2 it speeds up over
eight times. Moreover, we do not know the real t ime needed to solve these cases wi th in the
original strategy, so that the speed-up may be even higher.

Eps i lon 1 2 5
Solved safe cases t ime SHS 1292.84 1124.96 1417.37
Unsolved cases t ime (timeouts) A D S 1800.09 9000.39 3600.11

Table 6.12: Compar ison of sums of times of newly resolved cases over unsolved cases.
Timeout 900. M N I S T R e L U 10 x 20.

6.2.4 M a r a b o u - 800 R e L U nodes i n 20 layers M N I S T network

The deepest network is a network from the M a r a b o u package, containing 20 layers, each
wi th 40 nodes. Th is network was complicated to verify, and the complete logs were created

45

only for the lowest two epsilon values. In addit ion, it failed to gain some awareness of
general improvement using a semi-hierarchical strategy because of this difficulty. It would
be necessary significantly raise the timeout for experiments (more than 1800 seconds).

However, the extension managed to implode the number of necessary branches i n one
part icular case to solve the example. In this case, for the clar i ty given i n Table 6.13, the
resulting t ime decreased 2045 times. The number of branches decreased 1737 times. This
implosion occurs more times during experiments, and we describe these anomalies i n the
next Section 6.3.

Eps i lon A D S time S H S time A D S branches SHS branches

1 1800.07 s (t) 0.88 s 64286 37

Table 6.13: Compar ison of newly resolved case, (t) means timeout.

6.2.5 V e r i N e t — S i g m o i d a n d t a n h networks

For these two networks, it was not possible to demonstrate a significantly positive effect
of our strategies on the number of resolvable cases. For tanh, it even decreased slightly.
Moreover, it was impossible to find a significant trend i n the number of resolving branches
per unit t ime. However, it is worth adding that the sigmoid network performed well in
verification and was the best of a l l tested networks. It had only a m i n i m u m of unsafe cases
and undecided cases.

Eps i lon 0.005 0.01 0.015 0.02 0.025 0.03
Safe cases 99 99 97 97 96 95
Undecided cases 0 0 2 1 1 2
Unsafe cases 1 1 1 2 3 3

Table 6.14: Numbers of results of cases according to the results for sigmoid M N I S T network.
Same for a l l strategies. Timeout 900 seconds.

Eps i lon 0.005 0.01 0.015 0.02 0.025 0.03
Solved safe cases SHS 100 100 97 87 47
Solved safe cases A D S 100 100 99 98 87 49
Solved unsafe cases 0 0 0 0 0 1
Timeout cases SHS 0 0 1 3 13 52
Timeout cases A D S 0 0 1 2 13 50

Table 6.15: Numbers of results for tanh M N I S T network. Timeout 900 seconds.

To show how specific strategies have performed i n terms of branching speed, we show
the results of specific strategies on the undecided cases of the tanh network in Table 6.16.
We can see that a semi-hierarchical strategy generally does not work well w i th the tanh
network. Tha t is probably because the default strategy prioritizes nodes in later layers that
can be split faster and usually do not reach the first layers. O n the other hand, we can
see quite convincingly the best performance of the sorted memory-based strategy. W i t h
the reverse sorted memory-based strategy, we see that it d id not do poorly in branching

46

speed, p r imar i ly due to the large memory. A problem that we can not see i n this table is
the significant deterioration in the number of branches needed for solving the case.

Eps i lon 0.015 0.02 0.025 0.03
Branches A D S 6803.00 4876.00 10100.23 9919.96
Branches S T S 7149.00 5816.00 12648.77 11133.50
Branches R S S 6722.00 5770.00 11434.31 nan*
Branches SHS 5544.00 4742.00 8746.077 8467.00
Branches A H S 5832.00 4745.00 10606.54 nan*

Table 6.16: Compar ison of average number of solved branches for undecided cases by dif­
ferent strategies. Timeout 900. Tanh M N I S T network. * means no experiments were
performed. S T S is sorted memory strategy.

The main problem wi th these networks is that the toolki t solves the case dur ing the first
branch or creates an exponential number of branches. It is thus possible that the extension
would be an improvement i f the timeout was set higher. However, the default VeriNet
experiments wi th in the original thesis [11] were done on a significantly better setting and
wi th a timeout four times higher. S t i l l , the number of solved cases wi th default Ver iNet was
similar to that obtained in this thesis. In addit ion, w i th a higher timeout, rounding errors
increase, and Ver iNet is not complete for tanh and sigmoid networks. So even a higher
number of resolved branches would not result. The solution of these networks probably lies
in better bounds created by network representation methods.

However, the acceleration of the branch counting speed d id not prove to be sufficient
to deal w i th more cases. In general, it has not been possible to prove the usefulness of any
new strategy on both sigmoid networks and tanh networks.

6.3 B r a n c h implosions

For a l l strategies, it was possible to watch two main metrics - the number of branches needed
to resolve the case and the speed of resolving these branches per unit t ime. Generally, we can
see some expected behavior. The number of needed branches for semi-hierarchical strategy
was lower, for memory-based strategies higher. Th is tendency also applies to branching
speed.

The exceptions that appeared when comparing different strategies we named branch
implosions 3 . For example, as described in Subsection 6.2.4, the network d id not give any
significantly interesting results, except for one implosion. There the number of required
branches has decreased at least 2045 times.

This case is not the only one. Moreover, it occurs independently of the strategy used, so
sometimes the random case implodes for the adaptive spl i t t ing strategy and sometimes for
the semi-hierarchical one - the si tuation of this implosion i n favor of other methods we have
not found i n the experiments. Some of the implosions we found we placed in Table 6.17.

The exact reason why this happens remains unknown, but it is l ikely that while some
nodes are generally suitable for spli t t ing, some are excellent. Moreover, as we can see in
Figure 6.2, the images do not look exceptional.

O n the one hand, there is the idea that current heuristic methods are not sufficient,
and it is necessary to create even better ones. O n the other hand, we offer the idea of a

3From another perspective, we can call them branch explosions.

47

Network Eps i lon A D S time SHS time A D S branches SHS branches

M N I S T 20 x 40 1 1800.07 s (t) 0.88 s 64286 37
M N I S T 10 x 20 1 1038.33 s 26.27 s 59633 1611
M N I S T 10 x 20 2 1800.07 s (t) 6.98 s 94946 573
M N I S T 10 x 20 2 1800.05 s (t) 7.89 s 75062 725
M N I S T 10 x 20 2 1800.10 s (t) 1.46 s 89384 125

M N I S T tanh 0.02 127.09 900.09 s (t) 1835 s 11314
M N I S T 6 x 256 2 46.85 1772.78 1423 s 63595

Table 6.17: Examples of found branch implosions, (t) means timeout.

(a) (b) (c) (d) (e) (f)

Figure 6.2: Images that caused branch implosions.

new strategy. We could create two different representations on an ongoing basis according
to two different strategies, from which we choose the better one. In general, this strategy
would roughly double the performance and memory requirements, but at the same time,
there would constantly be branching implosions i n favor of the strategy.

Another th ing that remains unknown is whether these cases are more or less unique or
whether they can be achieved artificially i n some way. If so, it would be a revolutionary
moment for the whole verification wi th algorithms wi th branch and bound phase. However,
these cases are about over ten in the several thousand cases we examined.

6.4 Summary

We have experimented wi th different strategies on various benchmarks. O u r observations
led to three independent findings:

• We proved that the proposed semi-hierarchical strategy significantly improves verifi­
cation over the original adaptive spl i t t ing strategy. We observe a significant speed-up
of already solvable cases and a decrease of previously undecidable cases.

• We proved that the order of spl i t t ing nodes significantly impacts branching speed.
However, the acceleration of our memory-based strategies is smaller than the deteri­
oration of heuristic quality. Thus, it does not lead to verifying more cases.

• We have observed unexpected anomalies we named branch implosions, which led to
significantly different processing times and the numbers of needed branches for solved
cases.

18

Chapter 7

Conclusion

In this work, we designed a semi-hierarchical strategy based on selecting the best node from
the layer. We proved that this strategy has a general effect on R e L U networks, resolving
a more significant number of cases and speeding up already resolvable cases. For some
epsilons, the number of calculated branches for solving the case is almost 40 times lower
for safe cases. For some specific implosive cases, this requirement has dropped several 1000
times. Moreover, our strategy solves more branches per t ime unit . Thus we encountered a
50-fold decrease in t ime for some cases.

In addit ion, this strategy is very modular . It only needs a heuristic for evaluating
nodes at least on a given layer and can thus be implemented i n any other state-of-the-art
solution. In particular, the branch and bound phase strengthened by this new strategy and
G P U acceleration could br ing even better results.

Thanks to various strategies, branch implosions have also been discovered. The i r tar­
geted search could significantly speed up verification algorithms based on the branch and
bound phase.

We also proposed an alternating strategy and three memory-based strategies i n this
work. However, despite slight improvements i n some metrics, their significant contr ibution
has not been demonstrated. Nevertheless, we suppose they can find their appl icat ion in
algorithms that either has more demanding heuristics or have a more significant effect on
the order of the split nodes on the speed of verification. Another possibil i ty is that it w i l l be
possible to find applications wi th in similar solutions wi th more powerful devices or another
choice of parameters.

7.1 W h a t to do next?

Verification of neural networks is one of the current hot topics for scientists worldwide.
They publ ish new ideas, methods, and experiments. Th is work does not capture a l l the
possibilities of formal verification of neural networks. This work responds to only one of
the topics offered i n the original thesis concerning Ver iNet [11]. So, to bu i ld on the work
of the original authors, we also present open possibilities for further research:

• One of the problem domains of verification is t ime. Therefore, it would be beneficial
to perform more experiments in better settings wi th higher timeouts.

• Memory-based methods have two fundamental weaknesses - heuristic degradation
and unl imi ted parameter selection. Beneficial could be a better heuristic function
considering the changes that spl i t t ing makes.

49

• We would like to see an implementat ion of the semi-heuristic strategy in other veri­
fication toolkits . We would like to see how different toolkits w i th different heuristics
and different network representations would behave.

• The current Ver iNet cannot solve convolutional networks for technical reasons, so the
experiments w i th them could be beneficial i n this respect as well.

• In general, this work gives some basic methods of working wi th a state approach to
the branch and bound phase, which is almost non-existent. However, we can create
as many possible strategies for a single step as how many nodes are i n the network.

• We prove that there may be significant deviations i n the number of needed branches
for solving part icular cases. Research for analysis of the existence of these branch
implosions and finding out why this happens would be beneficial. The design and
implementation of its target achieving would lead to significantly better results of
verification tools.

• One of the issues that we do not address much is val idat ion itself. Newly emerging
tools already have relatively usable scalability. It would be appropriate to find out
whether the results of verifications correspond to the quali ty of the network i n practice.
In addit ion, when working wi th local robustness i n general, we must use some epsilon
size values. F i n d i n g out which one is correct, or if we need more epsilon values for a
single case, would also help speed up verification.

50

Bibliography

[1] A B A D I , M . , A G A R W A L , A . , B A R H A M , P . , B R E V D O , E . , C H E N , Z . et a l . TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Software available
fromtensorflow.org. Available at: https://www.tensorflow.org/.

[2] A M A T O , F . , L O P E Z , A . , P E N A M E N D E Z , M . E . , V A N H A R A , P . , H A M P L , A . et a l .

Art i f i c i a l neural networks i n medical diagnosis. Journal of Applied Biomedicine.
2013, vol . 11, no. 2, p. 47-58. D O I : 10.2478/vl0136-012-0031-x. I S S N 1214021X.
Available at: ht tps: / / jab.zsf . jcu.cz/ar tkey/ jab-201302-0001 .php.

[3] B A K , S., L I U , C . and J O H N S O N , T . The second international verification of neural
networks competi t ion (vnn-comp 2021): Summary and results. ArXiv preprint
arXiv.2109.00498. 2021.

[4] B A R L A , N . Self-Driving Cars With Convolutional Neural Networks (CNN) [[online]].
2021. Available at: h t tp s :
/ / n e p t u n e . a i / b l o g / s e l f - d r i v i n g - c a r s - w i t h - c o n v o l u t i o n a l - n e u r a l - n e t w o r k s - c n n .

[5] B A S T A N I , O. , I O A N N O U , Y . , L A M P R O P O U L O S , L . , V Y T I N I O T I S , D . , N O R I , A . V . et a l .

Measur ing Neura l Net Robustness w i th Constraints. CoRR. 2016, abs/1605.07262.
Available at: http://arxiv.org/abs/1605.07262.

[6] B U N E L , R . , P A L M A , A . D . , D E S M A I S O N , A . , D V I J O T H A M , K . , K O H L I , P . et al .

Lagrangian Decomposi t ion for Neura l Network Verification. CoRR. 2020,
abs/2002.10410. Available at: https://arxiv.org/abs/2002.10410.

[7] B U N E L , R . R . , T U R K A S L A N , L , T O R R , P . , K O H L I , P . and M U D I G O N D A , P . K . A

unified view of piecewise linear neural network verification. Advances in Neural
Information Processing Systems. 2018, vol . 31.

[8] C H A N G , M . , C A N S E C O , J . A . , N I C H O L S O N , K . J . , P A T E L , N . and V A C C A R O , A . R .

The Role of Machine Learning i n Spine Surgery: The Future Is Now. Frontiers in
Surgery. 2020, vol . 7. D O I : 10.3389/fsurg.2020.00054. I S S N 2296-875X. Available at:
h t tp s : //www.f rontiersin.org/article/10.3389/fsurg.2020.00054.

[9] D V I J O T H A M , K . , S T A N F O R T H , R . , G O W A L , S., M A N N , T . A . and K O H L I , P . A D u a l

Approach to Scalable Verification of Deep Networks. CoRR. 2018, abs/1803.06567.
Available at: http://arxiv.org/abs/1803.06567.

[10] G A Ň O , M . Improving Robustness of Neural Networks against Adversarial Examples.
Brno , C Z , 2020. B a k a l á ř s k á p ráce . Vysoké učen í technické v Brně , Fakul ta
informačních technologi í . Available at: https://www.fit.vut.cz/study/thesis/22999/.

51

http://fromtensorflow.org
https://www.tensorflow.org/
https://jab.zsf.jcu.cz/artkey/jab-201302-0001.php
http://arxiv.org/abs/1605.07262
https://arxiv.org/abs/2002.10410
http://www.f
http://rontiersin.org/article/10.3389/fsurg.2020.00054
http://arxiv.org/abs/1803.06567
https://www.fit.vut.cz/study/thesis/22999/

[11] H E N R I K S E N , P . Efficient Neural Network Verification via Adaptive Refinement and
Adversarial Search. 2020. Master 's thesis. Imperial College London . Supervisor
L O M U S C I O , A . Available at:

https: //www. imperial.ac.uk/media/ imperial-college/faculty-of-engineering/
computing/public/1819-pg-projects/Ef7,EF7,AC7,81cient-Neural-Network-Veri7 ,EF7.AC7.

81cation-via- Adapt i ve - Re7oEF7o AC7o8 lnement - and- Adver sarial-Search.pdf.

[12] H E N R I K S E N , P. , H A M M E R N I K , K . , R U E C K E R T , D . and L O M U S C I O , A . Bias F i e l d

Robustness Verification of Large Neura l Image Classifiers. In:. The 3 2 n d B r i t i s h
Machine V i s i o n Conference, 2021. Available at:
https: //www.bmvc2021-virtualconference.com/assets/papers/ 1291.pdf.

[13] H E N R I K S E N , P . and L O M U S C I O , A . Efficient Neura l Network Verification via
Adapt ive Refinement and Adversar ia l Search. In: D E G I A C O M O , G . , C A T A L A , A . ,

D I L K I N A , B . , M I L A N O , M . , B A R R O , S. et a l . , ed. ECAI. 2020. I S B N

978-1-64368-101-6. Available at: https://ecai2020.eu/papers/384_paper.pdf.

[14] H E N R I K S E N , P . and L O M U S C I O , A . D E E P S P L I T : A n Efficient Spl i t t ing M e t h o d for
Neura l Network Verification v ia Indirect Effect Analys is . In: IJCAI-21. International
Joint Conferences on Ar t i f i c i a l Intelligence Organizat ion, 2021, p. 2549-2555. I S B N
978-0-9992411-9-6. Available at: https://www.ijcai.org/proceedings/2021/0351.pdf.

[15] K o c i C , J . , J o v i C i C , N . and D R N D A R E V I C , V . A n E n d - t o - E n d Deep Neura l Network
for Autonomous D r i v i n g Designed for Embedded Automot ive Platforms. Sensors.
2019, vol . 19, no. 9. D O I : 10.3390/sl9092064. I S S N 1424-8220. Available at:
https://www.mdpi.com/1424-8220/19/9/2064.

[16] L E U C K E R , M . Formal Verification of Neura l Networks? In:. November 2020, p. 3-7.
I S B N 978-3-030-63881-8.

[17] L i , X . Ai rFace : Lightweight and Efficient M o d e l for Face Recognit ion. CoRR. 2019,
abs/1907.12256. Available at: http://arxiv.org/abs/1907.12256.

[18] L i u , C , A R N O N , T. , L A Z A R U S , C , S T R O N G , C , B A R R E T T , C . et a l . Algorithms for

Verifying Deep Neural Networks. 2020.

[19] P A L M A , A . D . , B E H L , H . , B U N E L , R . R . , T O R R , P . and K U M A R , M . P . Scaling the

Convex Barr ier w i th Act ive Sets. In: International Conference on Learning
Representations. 2021. Available at: https ://openreview.net/forum?id=uQf0y7LrlTR.

[20] S Z E G E D Y , C , Z A R E M B A , W . , S U T S K E V E R , I., B R U N A , J . , E R H A N , D . et al .

Intriguing properties of neural networks. ArXiv preprint arXiv:1312.6199. 2013.
Available at: https://arxiv.org/abs/1312.6199*.

[21] T J E N G , V . and T E D R A K E , R . Verifying Neura l Networks w i th M i x e d Integer
Programming. CoRR. 2017, abs/1711.07356. Available at:
http://arxiv.org/abs/1711.07356.

[22] W A N G , S., P E I , K . , W H I T E H O U S E , J . , Y A N G , J . and J A N A , S. Efficient Formal Safety

Analys is of Neura l Networks. CoRR. 2018, abs/1809.08098. Available at:
http://arxiv.org/abs/1809.08098.

52

http://imperial.ac.uk/media/
http://www.bmvc2021-virtualconference.com/assets/papers/
https://ecai2020.eu/papers/384_paper.pdf
https://www.ijcai.org/proceedings/2021/0351.pdf
https://www.mdpi.com/1424-8220/19/9/2064
http://arxiv.org/abs/1907.12256
https://arxiv.org/abs/1312.6199*
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1809.08098

[23] W A N G , S., P E I , K . , W H I T E H O U S E , J . , Y A N G , J . and J A N A , S. Formal Security
Analys is of Neura l Networks using Symbolic Intervals. CoRR. 2018, abs/1804.10829.
Available at: http://arxiv.org/abs/1804.10829.

[24] W A N G , S., Z H A N G , H . , X U , K . , L I N , X . , J A N A , S. et a l . B e t a - C R O W N : Efficient
B o u n d Propagat ion w i t h Per-neuron Spli t Constraints for Complete and Incomplete
Neura l Network Verification. CoRR. 2021, abs/2103.06624. Available at:
https : //arxiv.org/abs/2103.06624.

[25] X I A N G , W . , T R A N , H . and J O H N S O N , T . T . Output Reachable Set Es t ima t ion and
Verification for Mu l t i -Laye r Neura l Networks. CoRR. 2017, abs/1708.03322.
Available at: http://arxiv.org/abs/1708.03322.

[26] X I A N G , W . , T R A N , H . and J O H N S O N , T . T . Reachable Set Computa t ion and Safety
Verification for Neura l Networks wi th R e L U Activat ions. CoRR. 2017,
abs/1712.08163. Available at: http://arxiv.org/abs/1712.08163.

[27] X u , K . , Z H A N G , H . , W A N G , S., W A N G , Y . , J A N A , S. et a l . Fast and Complete:
Enab l ing Complete Neura l Network Verification w i t h R a p i d and Massively Paral le l
Incomplete Verifiers. In: International Conference on Learning
Representations. International Conference on Learning Representations. 2021.
Available at: https : / /openreview.net / f orum?id=nVZtXBI6LNn.

[28] Z H A N G , H . , W E N G , T . , C H E N , P. , H S I E H , C . and D A N I E L , L . Efficient Neura l
Network Robustness Cert if icat ion wi th General Ac t iva t ion Functions. CoRR. 2018,
abs/1811.00866. Available at: http://arxiv.org/abs/1811.00866.

[29] Z H A N G , H . , X U , K . , W A N G , S. and H S I E H , C . - J . Neural Network Verification
Tutorial [[online]]. Last seen in 2022. Available at:
https : / / n e u r a l - n e t w o r k - v e r i f i c a t i o n . c o m / .

53

http://arxiv.org/abs/1804.10829
http://arxiv.org/abs/1708.03322
http://arxiv.org/abs/1712.08163
http://arxiv.org/abs/1811.00866
https://neural-network-verification.com/

Append i x A

Project usage

Project parts descr ipt ion

The storage medium (SD card) and the data submitted to N e x t C l o u d contain:

xhudak03 verification N N . p d f Complete text of bachelor thesis.

R E A D M E . m d Short description of our project.

results Includes our experimental results. Includes scripts for pr int ing tables and convert­
ing M N I S T raw images to real images. It contains R E A D M E . m d wi th a short
description.

VeriNet Includes the whole Ver iNet project, including our extension. It also includes a
set of benchmarks and script s c r i p t . sh for running benchmarks. The folder
contains R E A D M E . m d wi th a short description.

doc Includes a l l source codes from Overleaf L a T e X documentation. The structure is the
same as the template.

Instal la t ion and usage

Since our implementat ion is only an extension of the existing Ver iNet toolki t , we strongly
recommend following the instal lat ion instructions of the original authors from:

• https: / / github .com / vas-group-imperial / VeriNet-OpenSource

• Appendices of the Ver iNet original thesis [11]

In the following subsection, we describe the main requirements.

M a n d a t o r y l ibraries a n d software

For proper working of the Ver iNet toolki t , the user device must have installed P y t h o n
version at least 3.6. For a l l functionalities, it is necessary to have the following libraries
installed wi th the appropriate versions:

We strongly recommend instal l ing identical versions of the libraries due to possible
incompatibil i t ies between the new versions. D u r i n g the instal lat ion, we encountered a
problem wi th the compat ibi l i ty of the N u m P y l ibrary wi th other libraries - i n this case,
choose any that is compatible w i th others.

54

Name Version Name Version
11 vml i t e 0.32.1 torchvision 0.5.0

torch 1.4.0 numba 0.47.0
matplot l ib * scipy *
ipykernel * tqdm *

cython * numpy *
onnx * G u r o b i *

Table A . l : Table of libraries and their versions.

Gurobi

For instal lat ion of G u r o b i we recommend following the instructions at:

• h t tps : / /abels iqueira .gi thub. io/blog/

Alternatively, our experience shows that we can easily instal l G u r o b i by pip package-
management system or Conda . However, we s t i l l have to download grbgetkey and instal l a
license on our device. License is free for academic institutions.

Usage

Due to the need to prohibit C U D A parallelism, we created a short script s c r i p t . sh. W i t h
this script, we can run a specific benchmark wi th the command:

• ./script.sh benchmark_name.py

Strategies
Our pr imary strategy is a semi-hierarchical strategy, which we set by default. If we want to
change the current strategy, we need to open ./src/algorithm/verinet_worker.py and
find function _branch() (approximately at line 340), add # before the current strategy, and
remove the # from the new strategy. If we want to create a new strategy, we need to create
a function that returns to variable s p l i t two integer numbers - the layer posit ion and the
node posit ion.

55

https://abelsiqueira.github.io/blog/

