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1. Foreword 

This thesis is a compilation of several papers prepared over the course of my doctoral studies at the 

Department of Geoinformatics and Spatial Planning, Faculty of Environmental Sciences of the Czech 

University of Life Sciences. A lot has changed over the course of my studies. When I enrolled, the 

department focused predominantly on geoinformatic technologies and remote sensing (RS) was only 

a marginal scientific activity. This is the reason why the first papers created during my doctoral study 

were devoted especially to ground surveys.  

When I entered the second third of my studies, I was presented with an opportunity to participate in 

the first study using RS techniques. Ever since the first moments of working with RS, I recognised its 

strong points and potential for monitoring of extensive areas or of utilization of freely available data 

collected over more than 40 years. I have begun to use RS data more and more. At the same time, RS 

grew in importance all over the Department and, also in our lessons. The purchase of two unmanned 

aerial vehicles (UAV) and procurement of commercial satellite data further supported the “boom” of 

RS at our department. Nowadays, RS and various forms of its utilization amount for a significant part 

of our Department’s activities as well as of mine. 

The gradual development of RS at our department allowed me to also gradually progress from basic 

data and RS techniques to the advanced ones. Scientific papers presented in this thesis document my 

development from local surveys to pure remote sensing. This experience allows me to critically 

evaluate the suitability of various approaches for particular applications. I believe that my future 

scientific career will be predominantly about remote sensing. 
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2. Introduction and Aims 

On the turn of the millennium, Blake et al. (1999) declared that remote sensing (RS) will grow in 

importance in the next millennium – both as an independent scientific field  and as a part of an 

integrated interdisciplinary approach for tracking environmental changes caused by human or natural 

processes. 18 years later, it is obvious that they were correct in their assumption.  New technologies 

allowing new applications are still being introduced in the field of RS. Geoinformatics and RS became 

interdisciplinary sciences with a wide range of possible applications. Every phenomenon that can be 

observed using remote sensing is however unique and requires an individual approach. There is 

therefore no such thing as a “universal approach” applicable to every situation. The expertise of a 

specialist in geoinformatics lies in the deep knowledge of various techniques of observation and the 

knowledge of strong and weak points of these techniques. Thanks to such knowledge, the researcher 

can competently choose and apply the most suitable method of the observation.  

The aims of this study is to a) introduce possibilities of different approaches to the observation of the 

different environment from ground sampling to the remote sensing; b) describe the advantages and 

disadvantages of each approach; c) to usage them in the scientific articles in different conditions (type 

of environment, temporal or spatial resolution). 

In the first chapters of this thesis, I describe the types of the environment and changes that were 

subject of study in my research. The theoretical background then lays grounds for the subsequent 

chapters devoted to RS. Those chapters describe sources of RS data from direct ground surveying, 

which is surprisingly often important for acquisition of high quality RS data, through airborne platforms 

up to satellite systems. Then, the most frequently types of data (optical, radar and lidar) are described. 

The subsequent chapter deals with the issue of RS data resolution, which is crucial for the selection of 

the most suitable data or of the most suitable method of measurement. In the final chapters, I describe 

the techniques of the work with RS data, especially indices, change detection and creation of digital 

3D models out of 2D data (structure from motion, SfM). 

After that theoretical introduction, my published papers originating from my Ph.D. studies are inserted 

in the thesis. These constitute the principal part of the thesis.  

In the last part, I added my comments on the published papers. As a full discussion to the individual 

studies is already included in the studies themselves, these comments are somewhat different, more 

subjective and aiming at offering the reader a different view at the problems that had to be solved 

over the course of the individual experiments. Finally, a brief general outlook on the future of remote 

sensing is included in the final chapter.   
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3. Changes of environment 

3.1. History of changes 

People influence the environment to a smaller or greater degree for the entire period of Holocene (a 

period from 10,000 BC till present). At the beginning of the Holocene, the climate was the dominant 

factor and the effect of humans on the environment was almost negligible and difficult to detect 

(Magny 2004). At the beginning of the Holocene, the European landscape had a character of a mosaic 

and provided the hunters-gatherers with various sources of food. Later, however, a gradual expansion 

of the forests occurred and the Mesolithic humans in Europe were forced to abandon the hunting of 

the herd animals and focus on individual hunting of forest animals in small open areas inside the forests 

(Clark and Robinson 1993). In that period, environmental changes were predominantly caused by 

climate changes. Those in turn were driven especially by changes in the solar activity or some sudden 

events, such as huge freshwater pulses into the Atlantic from melting ice or, in a short term, volcanic 

explosions (Treml 2009). 

During the mid-Holocene (6000 – 4000 BC), the first signs of human influence on the environment can 

be observed (Magny 2004). At first, these were just small local changes  in the vegetation cover of the 

central Europe, which was predominantly covered with a continuous forest at that time (Zolitschka, 

Behre, and Schneider 2003). Nevertheless, the human influence could have been observed as soon as 

the in Epiatlantic period (4000–2500 BC) in the region of the present-day Czech Republic, especially in 

the lowlands. There, human activities gradually turned the continuous forest into the original steps 

known from the beginning of the Holocene (Ložek 1973) and the humans-farmers introduced the first 

non-native species into the area (Treml 2009; Ložek 1973; Kalis, Merkt, and Wunderlich 2003). 

From the end of the Neolithic age (8000 – 5000 BC), farming and pastures spread into the entire Central 

Europe (Kalis, Merkt, and Wunderlich 2003). Thanks to the pollen records in the sediments, it is obvious 

that the forests significantly receded. The anthropogenic influence gradually became the most 

important driver of the environmental changes (Zolitschka, Behre, and Schneider 2003).  
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Fig. 1 Climatic fluctuations, development of vegetation, Holocene classification and main cultures in 
Europe over the last 11 thousand years (Krajinná ekologie – online textbook (in Czech): 
www.uake.cz/vyukove_materialy/frvs1269/kapitola3.html according to Kubíková from Strejček et al. 
1982, amended) 

3.2. Current environmental changes 

At present, humans face many challenges in the field of environment. The pressure on the 

environment is maintained predominantly by the effort to provide food, clothing, water and shelter to 

more than 6 billion people on this planet (Foley et al. 2005). Such pressure, however, causes 

fundamental human-driven changes of the environment. Such changes include especially changes in 

the land use and greenhouse gasses emissions. The changes in the land use and land cover (LULC) are 

caused especially by the transformation of the original natural vegetation types into agricultural land 

or expansion of urban areas (Kalnay and Cai 2003). The emissions of greenhouse gasses are caused 

both by fossil fuels combustion and by land use change (IPCC 2014; Raupach et al. 2007). Although the 

type of land use differs across the countries or continents, the result is in most cases similar – 

acquisition of the natural resources to satisfy immediate human needs and subsequent degradation of 

the original environment (Foley et al. 2005). Such degradation mostly manifests as a reduced 

environmental diversity, leading to extinction of species. Although we have not discovered all species 

yet (it is likely that there are approx. 15% of plants out of  450,000 plant species awaiting documenting, 

the number being even higher in animals where approx. 1.9 million of species are documented and 

the estimated totals range from 4 to 13 millions), it is assumed that the current pace of extinction is 

approximately 1000 times higher than the natural pace (Pimm et al. 2014).  

http://www.uake.cz/vyukove_materialy/frvs1269/kapitola3.html
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Despite the constant increase in the measures adopted by governments to fight the global 

environmental changes, greenhouse gasses emission are still on the rise. One of the ways of reduction 

of those emissions is the increase in use of renewable energy sources (IPCC 2014). Building wind farms 

is a good example of such technology, being the most quickly growing of all electrical energy producing 

technologies (Pineda and Wilkes 2015). Nevertheless, even such technologies may affect the 

surrounding climatic conditions, which has not been sufficiently explored yet (S. Baidya Roy, Pacala, 

and Walko 2004; Daniel Andrew Rajewski 2013) . 

Another area of human activities significantly affecting the climate is agriculture, which is at the same 

time the reason of the most extensive transformations of the original ecosystems (Ramankutty and 

Floey 1999). In this field, the efforts to reduce the negative effects of agriculture manifest especially 

through ecological agriculture (Willer and Kilcher 2010). The reverse impact of ecological agriculture 

has however not been adequately explored so far. 

The presence of humans in the landscape can have, and often has, a destructive effect on the original 

environment in the respective location (Foley et al. 2005). We can however occasionally also observe 

the reverse effects – as an example, some Mediterranean mountains can be mentioned. The mountain 

areas have been inhabited for centuries and people have been actively changing and maintaining the 

landscape (Sitzia, Semenzato, and Trentanovi 2010). Since 1950s, however, the population in these 

areas has been ebbing away. This results in a gradual return of forest stands, which is however at the 

same time associated with the reduction of the original heterogeneity and of the number of biotopes 

tied to the human presence (Sitzia, Semenzato, and Trentanovi 2010; Campagnaro et al. 2017).   

The most transformed areas, when compared to the natural state of the landscape, are the urban 

areas. Urban environment is specific by the total dominance of humans. Besides the population 

increase, a mass migration to the cities is probably one of the most fundamental ecological changes of 

the last 100 years (Rees 1997). Several studies showed that health impairment or death due to long-

term effect of hot weather is much more common among people living in urban areas than those living 

outside such developments (Kovats and Hajat 2008). It is also well known that urbanization has a 

severe impact on the local biodiversity (Newbold et al. 2016). Both these negative phenomena could 

be however minimized by increasing the amount of vegetation in the urban areas. For example, green 

roofs are among the most progressively developing measures. The influence of green areas on the 

surface temperature or water retention is also well known (Takebayashi and Moriyama 2007). 

Moreover, green areas can serve as local refuges for many animal species and thus reduce the impact 

of human activities (Morelli et al. 2017). 
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3.3.1 Energy and Power 

Energy and Power play a crucial role in the socieconomic development and increase in the standard of 

living worldwide. Most of the world energy is however produced and consumed in a way that will not 

be sustainable in the long term if the energy demands grow further and technologies remain the same 

(Reviews 2008). At present, this consumption is covered predominantly by the use of fossil fuels 

(Panwar, Kaushik, and Kothari 2015). According to the estimates, the worldwide energy consumption 

will rise by approx. 60% before 2030 when compared with 2002 (Reviews 2008). The negative 

environmental impacts associated with the power industry based on the utilization of fossil fuels 

increase the interest in clean sources of energy (DeCarolis and Keith 2006). It must be however kept in 

mind that despite the fact that the energy from renewable sources can be distributed through high 

voltage power lines, the main benefits become apparent only if its use is greatly decentralized. 

Particularly in the poorer countries where building a power line network would be non-economical, 

renewable sources can play a crucial role. If such a decentralized network of renewable sources of 

energy exists in those countries, it could reduce their dependency on fuel import while at the same 

time increase the population life standard (Reviews 2008). In 2015, renewable sources (biomass, water 

energy, geothermal, solar and wind energy) covered approximately 14% of the worldwide energy 

consumption (Panwar, Kaushik, and Kothari 2015) 

The most rapidly growing field of renewable energy are wind farms. On average, their global 

production doubles every three years. Despite economic crises, this growth continues over the last 20 

years (Saidur et al. 2011). The electrical energy produced by wind farms could theoretically replace the 

fossil fuels and thus reduce CO2 emissions by more than 50% (DeCarolis and Keith 2006). However, 

every technology of power generation has its negatives. Several research studies were published that 

focused on the issue of effects borne by the wind farms on their surroundings, such as impacts on 

human health (Bakker et al. 2012; Van Renterghem et al. 2013), on bird and bat populations (Drewitt 

and Langston 2006; Barclay, Baerwald, and Gruver 2007), deforestation and soil erosion (Dai et al. 

2015), on sea ecosystems (Dolman and Simmonds 2010), visual pollution (Hurtado et al. 2004), on 

radar systems (de la Vega et al. 2013), on CO2 sink (DeCarolis and Keith 2006), as well as local (Somnath 

Baidya Roy 2011; S. Baidya Roy, Pacala, and Walko 2004) and global (Keith et al. 2004) climatic effects. 

The effect of the wind energy on the local climate can be mediated through two mechanisms: The first 

one is draining the kinetic energy of the wind, which reduces the velocity of the particular layer of the 

wind. This subsequently leads to the second mechanism – increase in the turbulent flow on the lee 

side of the turbine resulting from the interactions of the fast and slow wind layers. These effects were 

theoretically modelled (S. Baidya Roy, Pacala, and Walko 2004; Somnath Baidya Roy 2011), measured 

in the wind tunnels (Chamorro and Porté-Agel 2010) and through RS techniques (Zhou et al. 2013). A 
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direct measurement of the impact of wind farms on the climatic change in their vicinity was however 

performed only rarely (Somnath Baidya Roy and Traiteur 2010; Daniel A. Rajewski et al. 2013). 

3.3.2 Agriculture 

More than 35% of the land has been already changed through human activities. The most extensive 

change was the transformation of the original ecosystems into agricultural landscapes (Ramankutty 

and Floey 1999). This change had major impact on the flow of energy and nutrients in the landscape 

(Foley et al. 2005). Changed water flow ratios as well as those of heat and kinetic energy between the 

continents and atmosphere can lead to extensive climatic consequences that can manifest both locally 

and in regions very distant from the source of the problems (Snyder, Delire, and Foley 2004). It is 

however assumed that the overall effects on the environment will grow with further development of 

the human population and society. Wackernagel et al. (1997), for example, estimated the average 

American to need 10.3 ha of land to sustain him while an average Italian 4.2 ha, an average Indian 0.8 

ha and an average Bengali 0.5 ha of land. According to the estimates, current agriculture is capable of 

providing sustenance for approx. 8-10 billion people (Tilman et al. 2002). 

A challenge for future agriculture is to cover the global demand while minimizing environmental 

impacts. One of the ways of minimizing the climate changes caused by agriculture could lie in 

increasing of the soil ability to retain water through increasing the content of soil organic matter and 

nutrients (Tilman et al. 2002; Foley et al. 2005), which is actually one of the aims of ecological farming 

(Eu 2007).  

Agriculture actually means the management of the most fertile parts of the planet. The following 50 

years will probably witness the final stage of the global expansion of rural activities (Tilman et al. 2002). 

The future agricultural practice will shape, probably irreversibly, the face of the Earth. The agricultural 

practice will influence both plant and animal species including humans. For a chance on the globally 

sustainable agriculture, fundamental understanding of techniques is needed as these could enable the 

increase of the ecological value of the managed areas while maintaining or even increasing production 

(Tilman et al. 2002; Willer and Kilcher 2010).  

3.3.3 Positive anthropogenic effects 

The human effect on the environment is mostly perceived negatively. It is however possible to find 

examples where the opposite is true. In many mountainous regions, traditional agriculture and forestry 

replaced the natural environment centuries ago. Low population density and nature-sensitive land 

management resulted in increase of the heterogeneity of such areas (Haddaway, Styles, and Pullin 

2014). In the Mediterranean, generations have lived in the mountains, actively shaping the landscape 

for centuries (Sitzia, Semenzato, and Trentanovi 2010). Ever since 1950, however, the population 
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dwindles constantly (Campagnaro et al. 2017). The natural forest regeneration resulting from the 

abandonment of the landscape brings both positive and negative effects. The negative ones include in 

particular a reduction of the extent of the open landscape, of landscape heterogeneity and mosaic. 

Such a loss of heterogeneity usually also leads to a decline of the overall biodiversity of the area as the 

spreading forests usually have lower biodiversity than the original landscape maintained for centuries 

(Gerhardt, Foster, and Forest 2002). It also leads to reduction of the area of extensive agriculture, 

which traditionally provided many semi-natural sites for a wide range of animals (Beaufoy, Baldock, 

and Clark 1994).  

For example, the Apennines are a perfect example for a study of such a land cover change caused by 

many factors from farm abandonment, grazing by domestic animals, fires, climatic change or 

urbanization processes. In the past, several studies using various approaches were performed in the 

area of Apennines, revealing extensive changes in the land cover. Despite the primary influence of 

humans, these changes cannot be attributed solely to anthropogenic processes as natural processes 

also play a role (Symeonakis, Calvo-Cases, and Arnau-Rosalen 2007; Gatsis et al. 2006). The area was 

in the past also used for several botanical studies (Guarrera 1994; Petriccione and Mulder 1993; 

Bertoni 2012). A frequent drawback of those studies was however their local character; despite that, 

they can provide a unique opportunity to independently verify the trends detected through RS 

techniques.  

3.3.4 Urban areas 

Globally, urbanization is on a rise. According to the World Health Organization (WHO), the majority of 

people even in the less developed countries will live in the cities in 2017 (WHO 2015). Urban 

environment is an environment with an extreme dominance of the anthropogenic factor and the 

presence or persistence of natural ecosystems depends predominantly on the will of their inhabitants 

(Rees 1997).  

The main effect of urbanization on the biodiversity is fragmentation and loss of the natural 

environment, which also leads to a reduction of the overall biodiversity, often resulting in biotic 

homogenization. The effects of the loss of heterogeneity of the environment can in turn have, through 

various mechanisms, a negative impact even on the human society (Newbold et al. 2016). A deeper 

understanding of the ecological functions in the urban developments is necessary for maintaining a 

high biodiversity. It is a well-known fact that the green areas in the urban environment can serve as 

refuges for many animal species and it is necessary to bear that in mind and care for such areas 

properly (Alvey 2006). For example, parks can be beneficial for maintaining and even increasing the 

overall biodiversity in the cities (Morelli et al. 2017). It is therefore necessary to know the 
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environmental reactions on the structure and methods of management of such parks, and to actively 

act in favour of increasing the heterogeneity of the urban environment (Alvey 2006; Morelli et al. 

2017). 

The effect of urban areas on the local climate is another well recognized fact (Landsberg 1981). For 

example, people living in the urban developments are much more in danger of death or health 

impairment due to long-term effects of heat when compared to people living outside these areas 

(Kovats and Hajat 2008). This fact is also reflected in the National Programme for Reduction of the 

Impact of Climate Change in the Czech Republic, where an increase in the representation of the urban 

vegetation is recommended (MZP 2004).  

4. Remote Sensing 

There are many definition of remote sensing (RS). Although those definitions are all slightly different, 

they all share a common basis: 

- Remote sensing can be defined as a collection of information about an object without physical 

contact with such object. Aircraft and satellites are typical platforms used for RS. The term 

encompasses methods utilizing electromagnetic energy as a means for measurement of target 

characteristics (Sabins 1978).  

Or:  

- RS is a science and art of acquisition of information about an object, site or phenomenon using 

instrumentation that does not come in to a direct contact with the observed object, site or 

phenomenon (Reddy 2008). 

Besides those “regular” definitions, there are also unconventional, although often true, definitions: 

- RS is the most expensive way to make a picture. 

(Andrew Bashfield, Intergraph Corporation) 

 

- The art of dividing up the world into little multi-coloured squares and then playing computer 

games with them to release unbelievable potential that's always just out of reach.  

(Jon Huntington, CSIRO Exploration, Geoscience, Australia) 

RS has a long history reaching up to 18th and 19th century. The first attempts for RS were associated 

with fastening cameras on balloons or even pigeons. The true remote sensing is however only 

connected with the first use of airborne imaging for military purposes in the 20th century (Reddy 2008). 
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There are two fundamental types of RS enabling us to acquire information about an object – active 

and passive systems. Active systems use their own source of energy, which they use to irradiate the 

object and acquire the information about the object from the reflected energy. This group contains in 

particular lidar, radar and sonar systems (Hassebo 2012). The main advantage of these systems is their 

independence on the intensity of irradiation from other sources, such as the Sun. The other type of 

data collection are passive systems, which are on the contrary dependent on the irradiation of the 

objects or need the object to be an emitter itself. The nature of the object is then judged by the amount 

and type of the reflected, diffused or emitted energy captured by a passive sensor (Reddy 2008).     

4.1 Data sources 

Data used in RS can be divided according to several criteria. For example, Halounová and Pavelka 

(2008)  classify the data according to their character as image or non-image data or, based on the 

platform, as either airborne or satellite data. Another possible classification can be according to the 

sensor into digital or analogue data. 

4.1.1 Direct measurements 

Although direct measurements are not a part of RS as such, it is useful and often necessary for 

acquisition of quality results. Direct measurements is combined with RS in many instances, it is used 

for example for sensor calibration, determination of atmospheric parameters, measurement of the 

exact location of observed object or ground control points calibration (Smith and Atkinson 2001). In 

published studies, we also often find the need to supplement data or improve accuracy of the 

information acquired through RS methods (Kraus et al. 2009). As an example, we can mention the 

below study of detection of the bird diversity in Beijing where many park metrics were determined 

through RS but the presence of bird species had to be verified in situ. 

Another frequent example of the need of direct measurements for supplementing RS data is the 

creation of training data. Those serve both for finding out the algorithms needed for identification of 

the objects of interest and for verification of the resulting analysis (Mishra et al. 2017). Training data 

can be acquired both by a direct terrestrial collection or indirectly, as demonstrated in the attached 

manuscript (Malavasi et al. 2018) where the secondary data collection was performed through 

photographs containing the information about the exact location of image acquisition – so-called geo-

tagged photos (Flicker, Google Earth, Google Street View). 

Last but not least, a direct continuous measurement can verify or supplement RS results that usually 

only reflect the state of things at the moment of the measurement. One of the parts of my thesis 

presents such a continuous measurement that served to verify and supplement the data acquired 

through RS about the impact of a wind turbine on the climate change in its vicinity over a period of 
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several months and, based on such continuous measurement, suggested an improved experimental 

design of RS monitoring of that phenomenon (Moravec et al. 2018). 

4.1.2. Aircraft 

In RS, two types of aircraft are generally utilized. The first, more traditional, are standard manned 

aircraft offering a high payload, range, provide a sufficient source of electrical energy for demanding 

active sensors and, over the time, keep improving their resolution (Vaccari et al. 2015). These manned 

aircraft usually operate in the altitudes from 500 m to 8 km. In the past, airplanes were utilized for a 

systematic mapping of the Earth surface. At present, their use declines due to the improving resolution 

of satellite data on the one hand and improving payload capacity and range of cheaper unmanned 

aerial vehicles on the other (Tempfli et al. 2009). The principal disadvantage of the traditional aircraft 

is their low flexibility and high operational costs (Vaccari et al. 2015). Despite these disadvantages, 

traditional aircraft still remains one of important platforms for RS data acquisition (Reddy 2008).  

Unmanned aerial vehicles (UAVs) are, when compared to other traditional means of RS such as aircraft 

or satellites, a relatively new method. They offer the highest flexibility, lowest operational costs and 

allow recording in the highest resolution (Vaccari et al. 2015). There are however also drawbacks when 

using these platforms. Legislatively, their use is limited where a potential danger to the third parties 

or their possession exists. Also, their load bearing capacity and range are, despite being constantly 

improved, still a notable limitation. However, their use by environmental protection agencies, farmers 

or private subjects in the future can be expected, which can lead to the needs of acquisition of high 

quality data at a reasonable price (Puliti et al. 2015). 

4.1.3 Satellites 

Satellite images represent a reliable and regularly updated source of global information (Reddy 2008). 

The possibilities of detecting global changes on the Earth surface and a global energy balance of the 

planet depend primarily on satellites as they provide a regular, calibrated, and global measurement of 

the surface (Chander and Markham 2003). 

The possibilities of monitoring of individual satellites are to a significant degree predetermined by their 

orbit. The fundamental parameters of the satellite orbit are orbital altitude, predetermining to a major 

degree the spatial resolution and scope/extent, the inclination (angle of the orbit to equator) 

influencing (together with the scope width and potential inclination of the camera itself) the latitudes 

in which the satellite can perform imaging, and the satellite orbital time determining the period in 

which the satellite can observe the particular part of the global surface. The most frequent orbits are 

polar orbits allowing the observation of polar regions, Sun-synchronous orbits, which means orbits 
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recording every area of the Earth always in the same Sun-time of the place in question, or 

geostationary satellites having a fixed position against a particular location (Tempfli et al. 2009). 

Landsat series satellites are among the most frequently used for RS. In particular, Landsat 4 and 5 

meant a leap forward in the entire field (Chander and Markham 2003), however even the newer 

satellites in that series stand out thanks to the long measurement series, to representing a suitable 

compromise between spectral, spatial and temporal resolution, and to free availability (Roy, Ghosh, 

and Ghosh 2014; G. Chen et al. 2012; Wulder et al. 2008; Xian, Homer, and Fry 2009). At present, there 

are tens of satellites recording data that can be used for RS purposes. To mention but a few, satellites 

with spatial resolution up to 0.5m (Ikonos, QuickBird, WorldView or French SPOT-6), resolution of up 

to 5m (Landsat, Sentinel-2) or resolution over 100m (MODIS, Sentinel-3) can be utilized for RS 

purposes. For radar data, KOMPSAT-5 or Sentinel-1 satellites are often used (Lu, Li, and Moran 2014; 

Tempfli et al. 2009). 

4.2. Data types 

In this chapter, the frequent data types utilized in RS will be described. With respect to the focus of my 

thesis, some of the more exotic data types were intentionally omitted, such as measurements using 

gamma rays, measurements of magnetic or gravitational anomalies or data only marginally serving for 

RS purposes, such as methods based on spreading of vibrations (sound) or electrical conductivity of 

minerals (Tempfli et al. 2009). 

4.2.1 Optical data 

The primary physical properties associated with the optical spectrum that can bear information about 

the target object include the intensity, wavelength, wave coherence and polarization. Common optical 

systems used at present record especially the intensity. The radiation intensity can be measured in 

various wavelengths. Typically, the optical sensors are classified according to the number of recorded 

bands into panchromatic measuring only one spectral band, multispectral with several up to tens of 

spectral bands and hyperspectral with up to hundreds of bands. From these spectral sensors, we can 

acquire the information about the distribution and type of objects in the observed area (Tyo et al. 

2006). 

Multispectral cameras are the most frequently used type of sensors at present. Their advantage lies in 

in their longer history (compared to hyperspectral), which is associated with existing experience with 

application of their imagery in various fields. Another advantage is their typically higher spatial 

resolution when compared to hyperspectral sensors. Multispectral data are generally frequently used 

in RS due to their sufficient information value and wide availability (Jensen 2000).  
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Compared to the multispectral sensors, hyperspectral sensors record up to hundreds of spectral bands. 

Such a number allows studying the physical/chemical properties of the surface almost at a laboratory 

level, which can be used for example for identification of possible mineral deposits (Papp 2002). At 

present, however, the availability of such data is significantly worse than that of multispectral data 

(Tempfli et al. 2009). 

A relatively novel technique that can potentially increase the amount of available information about 

an optically observed object is the polarization measurement. While devices recording the intensity of 

radiation in individual wavelengths/bands provide us with basic information about the material, 

sensors recording variability in polarization provide the information about surface of that material, 

such as its shape, texture or structure. Polarization measurements are predominantly used in the radar 

spectrum but it can also apply to the visible spectrum. Polarization changes with the change of 

wavelength only slowly and, therefore, it provides an information uncorrelated with the spectral 

information, thus potentially suitably supplementing the spectral information see Fig. 2 (Tyo et al. 

2006). 

 
Fig. 2 A photograph of two cars in a shadow performed in visible spectrum (left), long-wave IR spectrum 
without polarization (middle) and with polarization (right). The high contrast of the material when 
compared with the original photograph demonstrates the benefit of polarization (Tyo et al. 2006). 

4.2.2 Radar data 

Radar (Radio Detector and Ranging) is usually an active system (although passive systems are also 

known) sending short pulses in the microwave spectrum to the observed object and recording the 

characteristics of the reflected radiation. The microwave spectrum ranges from 1 mm to 1 m 

wavelength with radar sensors typically utilizing the wavelengths from 1 cm up to 1m, therefore much 

longer wavelengths than those of optical or lidar systems. These wavelengths can penetrate the 

atmosphere almost under any conditions and, depending on the chosen wavelength, they can “see” 

through clouds, smoke, mist, light rain, snow or haze (Reddy 2008).  

The wavelengths are also very sensitive towards the structure and coarseness of the observed object. 

A surface with coarseness substantially smaller than the wavelength of the observed object acts as a 
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smooth surface and the signal is reflected in the same angle in which it came. However, the coarser 

the surface, the greater is the amount of irradiation scattered in all directions and for surfaces 

significantly coarser than the wavelength, the scatter is almost uniform in all directions. Radar scanning 

can also provide information about distances, macrostructure, objects below surface or about overall 

chemical properties of the studied objects (Campbell 2002). 

There are many possible applications of radar data. They provide an information supplementary to the 

spectral/optical data. For example, in forestry they provide information about the forest canopy, 

biomass or type of the forest. When recording the Earth surface, those data allow distinguishing 

different types of the surface such as urbanized areas, agricultural fields or water bodies. In agriculture, 

there is also an opportunity to observe the crops at any point of the season, regardless of the weather. 

Radar is also often used for geological mapping, hydrological modelling, oceanography, or monitoring 

of the ice sheets (Tempfli et al. 2009). 

4.2.3 Lidar data 

Lidar is an active method of data collection by the means of a laser pulse sent towards the observed 

object and registering the reflected radiation. From the temporal difference between the sent and 

received signal, the distance of the object can be determined (Lim et al. 2003). Besides the distance of 

the observed object, we are able to tell to some extent also the type of material from which the beam 

was reflected. Lidar laser beams can be of various wavelengths depending on the purpose: infrared 

(1500 – 2000 nm) and ultraviolet (250 nm) for meteorological purposes (Wandinger 2012; Hassebo 

2012), turquoise (500 – 600 nm) for bathymetric purposes (Klemas 2012) or near infrared (1040 - 1060 

nm) for Earth surface mapping (Lim et al. 2003).  

Data acquired through lidar can come in various formats depending on the system used to acquire the 

data as well as on the degree and quality of post-processing of such data. The lowest information value 

we can have is one reflection per each spatial unit. That reflection is usually the first or the last 

depending on the settings aimed at suppressing or contrary enhancing the effects of semi-transparent 

structures such as vegetation. More detailed formats contain more reflection for every spatial unit, 

which allows us to at least partially distinguish between the vegetation cover and the bare ground. The 

highest quality data are in the full wave form where every spatial unit contains the information about 

the amount of the energy registered by the sensor for individual fixed time units. Such a format has 

the broadest range of possible uses, such as a detailed study of the vegetation structure in various 

vegetation floors or biomass volume calculations (Lim et al. 2003; Jensen 2005). 
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Fig. 3 Lidar – a full waveform of the reflection and analysis of individual reflections (Tempfli et al. 
2009) 

Lidar data can usually achieve an accuracy of ±1,5 cm at a maximum distance of about 800 – 1000 m 

and density of about 20 points per square meter (Jaboyedoff et al. 2012). The real-life accuracy is 

however often worse, especially when there are adverse conditions such as very uneven surface, 

parallel angle of the object with the beam, adverse weather conditions (rain, hot wind, fog), too much 

ambient light, too great distance, etc. (Jaboyedoff et al. 2012). 

Lidar data are most frequently used in RS for acquisition of highly accurate digital surface models 

(DSMs), models of vegetation and buildings (Stoker et al. 2006). During lidar data processing, unlike 

for optical data, it is not necessary to pay attention to geometric, atmospheric or radiometric 

corrections. Lidar data processing consists of several steps. Those usually include automatized as well 

as manual work. Typically, the most crucial step is to filter the original point cloud to remove obvious 

errors and to distinguish the terrain from the remaining data. This step is however not always 

completely automatized and mostly requires repeated fine-tuning and manual edits (Q. Chen 2007). 

The next steps then lead to the extraction of required results. For ecological applications, these most 
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frequently include 3D models of the surface or terrain, canopy height models or prediction of the 

biomass volume (Lefsky et al. 2002). 

4.3 Data resolution 

In RS, we encounter several types of data resolution, in particular spatial, temporal or spectral 

resolutions. Spatial resolution is defined as the smallest angular or linear difference of two objects 

distinguishable by the used data acquisition system. In practice, however, this definition is often 

confused with the nominal spatial resolution, which is defined as the size of one pixel projected on the 

surface of the Earth (Jensen 2000). Such resolution can range from tens of kilometres (typically for 

satellites with passive radars, for example AMSR-2 has a frequency 350MHz and resolution of 35×62 

km). Contrary, the best satellite resolution can be as detailed as tens of centimetres (for example, 

resolution of the WorldView-4 satellite in the panchromatic channel is 31 cm).  

As mentioned above, the term spatial resolution is quite frequently confused with nominal resolution 

and thus spatial resolution is often characterized on the basis of the nominal one. However, as pointed 

out by Blaschke et al. (2014), high and low resolution is not only determined by the nominal resolution 

of the sensor but also by the size of the object relative to the nominal resolution of the sensor. A 

nominal resolution of e.g. 1m can be therefore considered a fine resolution if used for detection of 

objects that are significantly bigger than that, e.g. buildings. When applying the same resolution for 

smaller objects such as smaller shrubs or herbs, however, the resolution for that particular application 

will be low. 

One of the issues of the current RS is that it can only capture the state of the surface at the moment 

of recording and we can therefore not speak about a continuous recording. Still, it is possible to record 

a certain part of the surface with a certain periodicity and thus to observe the development of the area 

in question. That periodicity is called temporal resolution.   

Another resolution that must be taken into account for the choice of a right sensor is the spectral 

resolution. Most RS are based on the relationship between the amount of reflected, scattered or 

emitted radiation in various spectral wavelengths and chemical, physical or biophysical parameters of 

the observed object (Jensen 2000). On its basis, we can classify the sensors according to the number 

of observed spectral bands to multispectral or hyperspectral, see more in Chapter 4.2.1 Optical data. 

Along with the spectral resolution, we also have to mention radiometric resolution where we take into 

account the sensitivity of the sensor and its capability of distinguishing between signal strengths. For 

example, data depth of an older sensor Landsat 7 ETM+ was 8 bits, which allowed distinguishing of 256 
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signal strength values while the newer OLI sensor on Landsat-8 satellite uses a 12-bit format and can 

therefore distinguish between 4096 different signal strength values. 

4.4. Remote sensing techniques 

This chapter will briefly describe some of the principal RS techniques. Basic techniques such as 

georeferencing, orthorectification, vectorization or visual inspection of the images were due to the 

aims of the thesis omitted. The emphasis was laid especially on the use and applicability of described 

techniques in the own research. 

4.4.1 Indices 

Many RS techniques describe the observed objects on the surface of the Earth through the amount 

and properties of the radiation reflected from the surface and recorded by the sensor. As the amount 

of radiation received at the Earth surface changes over time, among other things due to atmospheric 

conditions, a simple recording of the amount of reflected irradiation is an insufficient way of describing 

the phenomena on the Earth surface. The problem lies in different results at different time points when 

observing the same phenomenon. This issue can however be resolved by combining values recorded 

in two or more spectral channels. The main benefit of spectral indices lies in providing comparable and 

relatively stable results over time if correct methods of computation are used (Jackson and Huete 

1991). 

At the beginning, ratio indices were used. Probably the first of those was the ratio vegetation index – 

RVI used for characterising the forest canopy measured from inside of the forest. It used the ratio of 

red and near infrared spectrum (0.800 / 0.675 µm) (Jordan 1969). The simple ratio however can 

sometimes offer just a limited range of variability. In vegetation indices, this problem was especially 

obvious in diffused vegetation. To overcome this issue, Rouse Jr et al. (1973) suggested to use the ratio 

between a difference of those channels and their sum. This vegetation index was later named NDVI 

(normalised difference vegetation index). It is however necessary to note that the amount of 

information represented by NDVI remains the same as that of the original RVI as can be shown by the 

simple mathematical conversion NDVI = (RVI – 1) / (RVI + 1). It however offers advantage for 

interpretation of the results. 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

The next step were linear combinations of two or more spectral channels. A linear combination is an 

orthogonal file of n independent equations calculated from n independent spectral channels. Those 

combinations were first described for RS purposes by Kauth and Thomas (1976) and were established 
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under the term „Tasselled Cap“. Nowadays, tens of indices describing different phenomena on the 

Earth surface have been developed. For example, in our study of change detection, altogether 36 

vegetation indices, 10 textural characteristics, 7 components of principal component analysis and 6 

components of Tasselled Cap transformation were derived from Landsat 8 data. 

4.4.2 Change detection 

Change detection (CD) became one of the fundamental tools of modern RS. Multispectral sensors are 

the most frequently used for the detection of changes on the surface of the Earth, especially due to 

the existence of a long series of freely available satellite images and resolution sufficient for most 

applications (Gupta and Shukla 2016; Chaudhuri and Mishra 2016; Kindu et al. 2013). Hyperspectral, 

radar or lidar data are utilized more rarely (Lu, Li, and Moran 2014). CD is performed especially on the 

basis of detection of differences in land use or land cover over a studied period. The principal 

assumption is that a change in the Earth surface results in the change of spectral characteristics of the 

area in question (Hussain et al. 2013). It is however necessary to beware of the detection of false 

changes caused for example by a change of atmospheric conditions, changes in phenological stages, 

different data sources or their different processing (Jensen 2005; Lu, Li, and Moran 2014; Song et al. 

2000). 

To be able to identify changes on the surface, it is necessary to be able to classify the surface first, 

which is the purpose of classification methods. There are several principal methods, such as supervised 

or unsupervised classification. In unsupervised classification, the surface is divided into a 

predetermined amount of categories based on an algorithm using differences in the spectral 

characteristics. Where supervised classification is concerned, user-identified categorized training data 

are used. The entire image is then classified into those categories based on the spectral similarities 

with training data (Tempfli et al. 2009).   

Many CD applications have been described including study of forests (Hussain et al. 2013), grassland 

(Tarantino et al. 2016), landscape degradation (Symeonakis, Calvo-Cases, and Arnau-Rosalen 2007) 

urban developments (Weng 2001) or even global change (Lunetta et al. 2006). The results of CD can 

be of a binary character (changed/not changed) or including the trajectory of change, i.e. between two 

time points (bi-temporal) or over more time points (multi-temporal). Approaches can also be divided  

between a pixel approach, where each pixel is evaluated separately, and an object approach where 

overall characteristics of defined objects are being observed (Hussain et al. 2013). Another sorting can 

be between pre- and post-classification approaches. In the post-classification method, all images are 

first classified and the two classified images are subsequently compared. This method is easier for 

interpretation, it is however at the expense of greater inaccuracy caused by a higher number of 
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classifications. The pre-classification method first compares the images and the classification of 

changes takes place only after that (Peiman 2011). Although many of those methods are already 

implemented in various software solutions, the choice of a correct method, its application and 

especially interpretation of the acquired results still depends on the expertise and experience of the 

user (Hussain et al. 2013). 

4.4.3 Structure from motion 

Structure from motion (SfM) is one of the subsets of photogrammetry. The full term is “structure 

derived from a moving sensor” (N. Micheletti, CHandler, and Lane 2015). It provides a 3D 

reconstruction of objects from 2D data, usually photographs. Although the method can be used for 

reconstruction of any object, it is most frequently used in RS for creating a 3D model of selected surface 

areas. Topographic data are among the basic data for RS. Their acquisition through traditional 

techniques such as differential GPS or laser scanning has been however often too demanding in respect 

of time, costs and expertise (Natan Micheletti, Chandler, and Lane 2015). However, thanks to the 

increase in computational performance and current possibility to use cheap and easily portable 

platforms such as UAVs, SfM became an effective and widely used tool for preparing high quality 

topographic models (Westoby et al. 2012). 

The particular methods and algorithms of SfM are still developing and can differ for individual 

applications, the basic principle is however similar. To achieve accurate georeferencing, it is 

recommended to have at least 10 ground control points (GCPs) with known coordinates. For creation 

of a 3D model, it is then necessary to have a sufficient number of photographs of the target object. For 

a quality reconstruction of an object, it is recommended to have a series of photographs with an 

overlap of individual photographs of at least 60% (Agisoft LLC (a) 2017). In the next step, search for 

identical points is performed using automated algorithms and aligned. Finally, a 3D reconstruction of 

the object is computed from the different angles between lines connecting identical points on various 

photographs (Westoby et al. 2012). 

SfM techniques allow us to acquire high quality topographic data in a highly automated way, which is 

undemanding of time, finance and expertise. These are the main reasons of the recent boom of the 

use of this method among the expert public (N. Micheletti, CHandler, and Lane 2015). 
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a b s t r a c t

Several aspects of wind farms’ environmental impacts have been thoroughly studied. Their effect on
surface temperature, however, has not been sufficiently explored. We analysed variations in land surface
temperature observed over 5 months on a large wind farm (42 000 kW maximum output). To describe
the near-surface microclimate variability, we measured air temperature at 15 cm above ground using 14
autonomous microclimatic stations arranged in the vicinity of 4 turbines. The observation covered
various weather conditions from summer to winter. In contrast to some other recent studies, we
confirmed no clear long-term, stable effect of wind turbines on near-ground temperatures. The only
effect we found was a daytime warming effect at one of the four turbines. Our results suggest that in
mountainous conditions the effect of turbulence caused by wind turbines can be overridden by natural
wind turbulence.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Wind power’s installation rate was the highest among all
energy-generating technologies in the EU during 2014 [1]. Pro-
duction of energy from wind sources has approximately doubled
about every 3 years over the past several decades. This is true
despite the financial crisis, and this trend shows but minimal signs
of slowing [2]. The argument for continuing to harvest wind energy
is to produce energy with minimal environmental impacts. With
increasing deployment of wind power plants, however, the cu-
mulative effects of today’s minor impacts could become substantial
[3]. It is essential, therefore, to understand fully all impacts in order
to optimize future planning and minimize possible negative effects
from wind farms.

Recent papers have focused on various types of environmental
impacts fromwind turbines (for a review see Dai et al., 2015). These
papers examine farms effect on noise and its impacts on nature or
human health [5,6], bird and bat mortality or disturbance [7,8],
deforestation and soil erosion [4], impacts on marine ecosystems

(in the case of offshorewind farms) [9], visual pollution [10], impact
on radar systems [11], reduction in carbon dioxide emissions [12],
as well as local [13,14] and global climate impacts [15].

Impacts on local climate are especially crucial in situations
where allocating more turbines is justified by reducing carbon
emissions, because these effects could have subsequent impacts on
the carbon cycle in the affected area [16]. Wind farms can affect
local climates in two main ways. The first is by extracting kinetic
energy, which slows wind flow. The second is by further height-
ening turbulence flow downwind. Turbulence can be generated in
the wake of rotors [14] and also by the shear between the non-
affected faster air layer below the turbine and the upper air layer
slowed by the turbine [17].

The generated turbulence has a secondary effect by enhancing
vertical mixing of air. Several studies showed that enhanced tur-
bulence produced by wind farms has impact on heat and moisture
exchange between the surface and the atmosphere [14,18,19]. In
stable atmospheric conditions, when a warm air layer is present
above cooler air, increased turbulence results in awarming near the
surface by transferring thermal energy from higher levels to the
lower. On the other hand, when unstable atmospheric conditions
are present, i.e. cool air lying above a warmer layer, enhanced
turbulence leads to mixing the layers and provides a cooling effect
on the ground. These impacts depend on the ratio of natural
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turbulence to turbulence generated by the wind turbine. The sta-
bility of atmospheric layers can also influence a wind farm’s im-
pacts. The effect of vertical mixing can be 10e15% stronger when a
wind turbine is present in the atmospheric boundary layer [20].

Theoretical models have been used to explore regional and
global climatic impacts of wind farms. A three-dimensional climate
model (CCM3) has been used to study the impact of a scenario
wherein wind energy would supply 10% of global energy demand.
The effects of increasing roughness and decreasing wind speed
could causewarming of more than 1 �C across land installations. On
the other hand, it can cause a 1 �C cooling effect over ocean in-
stallations [18]. Slowing wind has also been demonstrated by the
Regional Atmospheric Modelling System (RAMS) [13,14].

Theoretical models have been tested in wind tunnel experi-
ments. The outcomes of these experiments have shown that the
effect of the wake can be found up to a distance of 20 rotor di-
ameters [21]. A computational study has suggested this to be a
shorter still distance of 15 diameters [22]. Maximum turbulence
has been found at a distance of 4e4.5 rotor diameters above rotor
hub height in neutral cases of atmospheric layers and 3e6 di-
ameters in stable cases. Heightened turbulence intensity is asso-
ciated with strong shear of layers and turbulent kinetic energy
produced by regional features [21,23] or wind farm layout [19,24].

Similar results can be found in long-term remotely sensed
temperature data. The Landsat 5 Thematic Mapper (resolution ca
120m� 120m) was used to observe the San Gorgonio Pass Wind
Farm from 1984 to 2011. Daytime warming effect was confirmed
[25]. A MODerate resolution Imaging Spectroradiometer (MODIS)
analysis with ca 1 km resolution has been used for seasonal and
diurnal variation in land surface temperature. Data show consistent
warming as a night-time effect of 0.31e0.70 �C [26].

Direct measurement of near-surface temperature is much
needed, however, in order to validate modelled or remotely sensed
data, but such data has been collected only rarely. Two measuring
towers (upwind and downwind of a farm) in San Gorgonio, Cali-
fornia have evidenced significant impact of a wind farm on near-
surface temperature [27]. Another study focused on the impact in
intensely managed areas, and slight impact was observed there
[17]. These results indicate the usefulness of further long-term
exploration under diverse conditions. New field observations are
still required to confirm numerical models and to fully understand
the effects [2,18].

To fill this gap in data and knowledge, we assessed the impact of
a wind farm on near-ground temperature over a period of 5
months.

2. Materials and methods

As a model area we chose the largest wind farm in the Czech
Republic (Kry�stofovy Hamry e P�ríse�cnice; 50�260 N, 13�80 E; Fig. 1)
withmaximumoutput of 42 000 kW [28]. Thewind park consists of
21 wind turbines situated on a study area with hub-height 85m
and rotor diameter 82m. The park is located in the Ore Mountains
at 817e870m a.s.l. in a continental climate region.

We measured near-ground air temperature using 14 TMS-3
automatic climatic stations (TOMST, Prague, Czech Republic;
http://www.tomst.com/tms/TMS-3.html) installed in the vicinity of
4 turbines. Air temperature was measured ca 15 cm above ground
using a MAXIM/DALLAS Semiconductor DS7505U þ sensor with
resolution of 0.0625 �C and accuracy of ±0.5 �C over a range of 0 �C
to þ70 �C. Wind flow directions were measured at the nearby
M�ed�enec meteorological station (approximately 1500 m distant).

Much greater effect of turbine is expected along the direction of
prevailing wind flow [19]. Based on data from a Czech climate atlas
[29], twowind directionse north-west and the opposite south-east

e dominate at the locality (see Fig.1), andwe placed TMS-3 stations
along this line. Local topography, land cover and land use allowed
us to install two stations north-west of the turbine masts (200m
and 400m) and one station south-east of the turbine masts
(200m). The positions of the stations were numbered from 1 to 4,
starting at the south-east and ending at the north-west. Number 2
was assign to the turbine mast itself (see Fig. 1). Sensor spacing of
200m took into account location possibilities and also previous
studies. Chamorro and Port�e-Agel (2010) had shown that
maximum turbulence magnitude occurs at a distance of 3e6 tur-
bine diameters, depending on atmospheric conditions. Smith et al.
[30] had reported that impact onwind speed and turbulence occurs
within a distance of 2.4 rotor diameters (197m in our case). The
near-ground temperatures were measured at 10min intervals from
2 July 2014 to 30 November 2014. The chosen time period included
diverse summer, autumn and winter weather conditions with
temperature ranging from 29 �C to �7 �C.

We also examined wind turbines’ effect on temperature during
different periods of the day, because several authors have reported
temperature effects to be influenced by variation through the day in
air boundary level [14,26]. We therefore split the day into two
parts: diurnal observation (06:00e18:00 local time) and nocturnal
(18:00e06:00 local time). The data from the two time intervals
were analysed separately.

To establish a benchmark for measurement in turbine vicinity at
a non-affected locality, we installed two additional TMS-3 units
near the wind farm at places having similar topographic (slope,
altitude, orientation) and vegetation conditions but located neither
downwind nor upwind from the wind farm.

From the obtained measurements, we first determined the sit-
uation when the wind was roughly flowing from the sensor at
position 1 to positions 3 and 4 (from SE to NE). We considered such
situation as corresponding to the measured wind speed between
90� and 150�, i.e. covering an angle of 60� around the
turbineesensor axis (see Fig. 1). We term this the “forward” di-
rection inasmuch as it follows the dominant wind direction in the
locality during the observed period. To reduce the expected tem-
poral autocorrelation between measurements, we filtered the data
so that the minimum time lag between any two subsequent mea-
surements was 2 h. Moreover, we included only measurements
successfully made on all three (resp. two for turbine B) sensors at a
given turbine and time. The resulting triples or pairs of measure-
mentse each triple or pair consisting of measurementsmade at the
same turbine at the same time e are termed “events” through the
rest of this paper.

We evaluated the effect of the sensor’s position relative to the
turbine on the relative temperature using mixed models. We
considered sensor position (1, 3, or 4), wind turbine (A, B, C, or D),
and time of day (day or night) as fixed factors, including their in-
teractions. To consider the interdependence between measure-
ments made in different sensors at one turbine and during one
event, we included event as a random factor. Even though we
designed the experiment to ensure relatively homogeneous con-
ditions across turbines and sensors, we checked for possible effects
of such additional factors as distance of the sensor from the nearest
forest, as well as local elevation, slope, and aspect (categorized into
17 directions including a “flat” category). All these variables were
computed in the ArcGIS 10.5 environment and using an orthophoto
and digital terrain model (DMR 5 g) provided by the State Admin-
istration of Land Surveying and Cadastre of the Czech Republic.
These variables were considered as additional fixed factors in the
mixed models.

The significance of various fixed effects and their interactions
was evaluated by comparing Akaike information criterion (AIC)
values of corresponding models. The model selected as relatively
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best was then used for computing the estimates of mean relative
temperatures in various combinations of the factor levels, as well as
for testing the difference between themean relative temperature at
position 1 and those at positions 3 and 4. For these tests, we used
Wald confidence intervals constructed along the estimated differ-
ences between means, together with a Bonferroni correction for
multiple comparisons.

To confirmwhether the determined effect of sensor position can
truly be attributed to the effect of turbine, we estimated the mean
relative temperature also for the opposite wind direction (i.e.
roughly from position 4 to positions 2 and 1), covering a 120� angle
from 240� to 360� (see Fig. 1; we call this a “backward” direction),
using the same kind of mixed model analysis. We then checked
visually whether or not the pattern of differences between sensor
positions is qualitatively different compared to the pattern ob-
tained in the forward direction.

3. Results

The numbers of events we obtained after filtering the data for
temporal autocorrelation and wind directions are summarized in
Table 1. Final numbers of events were affected by sensors failure
during the operating period and/or damage caused by humans or
animals. This resulted in a reduced number of events especially at
turbine B, where all measurements from position 4 were lost.

In the model selection procedure (see Table 2), we started with
themost complexmodel including sensor position, time of day, and
turbine, all interactions among these three, as well as distance to
forest, elevation, and slope (Model 1 in Table 2). We could not
include also exposure, as such a model would have too many pa-
rameters and they would not be uniquely estimable. Therefore, we
fitted another model with exposure instead of elevation and slope

(Model 2), as well as a model with sensor position, time of day,
turbine, their interactions, and exposure (Model 3). All these
models reached the same AIC value as did the model including only
sensor position, time of day, turbine, and their interactions (Model
4). We thus proved the environmental and topographic factors to
be irrelevant, as had been expected from the experimental design.
Any further model created by excluding some of the interaction
terms or main effects resulted in considerably higher AIC values,
the least DAIC being 70.3 and 22.6 for forward and backward wind
direction models, respectively. Thus, both for forward and back-
ward wind direction, the relatively best model was Model 4
including all threemain effects (i.e. sensor position, time of day, and
turbine) and all interactions among them. The significance of
random effect (event) was confirmed by a likelihood-ratio test
comparingModel 4 with the samemodel but excluding the random
effect (i.e. a normal linear model); the p-value was practically zero
in the case of both forward and backward directions. Estimates for
the standard deviation of relative temperatures among the random
effect levels and the residual standard deviation were 0.61 �C and
0.37 �C, respectively, for forward wind direction and 1.08 �C and
0.66 �C, respectively, for backward wind direction.

Fig. 3 summarizes the resulting estimates of the mean relative
temperatures at different sensor positions, times of day, and tur-
bines, both for forward and backward directions. These are based
on Model 4. It is clear that except in the case of turbine A the
patterns do not differ qualitatively between the two wind di-
rections, especially when the large confidence intervals are taken
into account. Moreover, most of the differences in relative tem-
peratures between sensor positions 1 and 3 and positions 1 and 4
were not statistically significant. The only significant difference was
that between positions 1 and 3 at turbine A, during daytime, and in
the forward wind direction (see Figs. 3 and 4).

Fig. 1. Study locality of Kry�stofovy Hamry wind park, with sensor positions (1, 3, 4), turbine locations (A, B, C, D), and wind direction rose showing number of wind observations and
wind speed (WS) [m/s] based on the wind directions during the observation period. Base map ZABAGED®.

D. Moravec et al. / Renewable Energy 123 (2018) 627e633 629



Fig. 2. Temperatures measured by the sensors and corrected by subtracting an average of control measurements made at the same time by two sensors located at an independent
place with similar conditions. The original measurements are filtered so that the minimum time gap between any two subsequent measurements is 2 h. The upper panels show the
measurements made when the wind blew from the sensor at position 1 through the turbine to the sensors at positions 3 and 4 (i.e. in the “forward” direction covering an angle of
60�). The lower panels show the measurements made in the opposite direction (i.e. “backward”), covering an angle of 120� . Day was defined as 06:00e18:00, night as 18:00e06:00.

Table 1
Number of events (i.e. successful measurements made on all sensors at a given turbine and time, separated by at least 2 h from each other) obtained by filtering the original
data.

Time of day Forward wind direction Backward wind direction

Turb. A Turb. B Turb. C Turb. D Turb. A Turb. B Turb. C Turb. D

Day 12 3 89 15 10 8 33 15
Night 8 2 93 12 13 9 49 17

The relative temperatures at different sensors, times of day, and wind directions are summarized in Fig. 2.

Table 2
Results of model selection based on Akaike information criterion (AIC) values, for both forward and backwardwind directions. The “best”models (i.e. thosewith the lowest AIC
and least parameters) are shown in bold. Note that AIC values from forward and backward wind direction models cannot be mutually compared as they are based on different
data sets.

Model Fixed effects AIC (forward) AIC (backward)

1 Position*TimeofDay*Turbine þ DistancetoForest þ Elevation þ Slope 1150.2 1269.2
2 Position*TimeofDay*Turbine þ DistancetoForest þ Exposure 1150.2 1269.2
3 Position*TimeofDay*Turbine þ Exposure 1150.2 1269.2
4 Position*TimeofDay*Turbine 1150.2 1269.2
5 Position*TimeofDay þ Position*Turbine 1220.5 1291.8
6 Position*TimeofDay þ Turbine 1249.2 1303.2
7 Position*Turbine þ TimeofDay 1237.9 1312.0
8 Position þ Turbine þ TimeofDay 1267.3 1321.2
9 Position*TimeofDay 1278.5 1304.5
10 Position þ TimeofDay 1296.5 1322.6
11 Position 1295.0 1322.5
12 No (Intercept only) 1295.0 1335.4
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4. Discussion

Although we found various wind farm impacts on near-ground
air temperature, we cannot support the spatially and temporally
stable trends in relation to wind turbines referred to in several
studies [13,26,27]. Only one significant result of wind farm impact
was observed, that being at wind turbine A and position 3.
Although the measured magnitude of 0.387e2.082 �C was similar
to that reported by Baidya Roy and Traiteur (2010), the effect was
inverse. In our case, daytime warming effect was observed instead
of daytime cooling effect as reported by those authors. The effect of
turbines is thus very likely confounded or, in our case, overridden
by other environmental conditions affecting near-ground air tem-
perature at a landscape scale, such as topography. Other studies
have also pointed to the role of particular climatic and orographic
conditions which could influence the final effects caused by wind
[25,27,31].

On the other hand, we clearly demonstrated that the wind farm
did somehow affect the near-ground temperature. The model se-
lection (see Table 2) clearly confirms that models where wind farm
is included fit better than did models without wind turbines. The
potential influence of a turbine seems nevertheless to be location
and/or time specific. There could be several potential causes of site-
specific temperature differences, such as local hydrological, soil, or
ecological conditions. Despite the apparent physiognomic homo-
geneity of vegetation cover (grassland) under the wind farm, it
differs in species composition and therefore phenology including

time of moving. It has been shown that crop type could have a
greater effect on near-surface temperature than does a wind farm
[17]. Our sensors were installed near the ground and the effect of
vegetation cover could be more pronounced there, although we
kept them unshaded by vegetation throughout the experiment.
Given that crop or vegetation cover can have such an apparent ef-
fect, it is questionable whether the stable effect observed in other
studies can truly be ascribed to turbines or whether other con-
founding factors were neglected. On the other hand, the mixing of
air close to the groundwherewemeasured is much less than that at
2m above the surface where climate is usually measured. Though
such a measurement is less standard, it is much more relevant for
any biota living near the ground [32,33]. Our results thus indicate
that the effect of turbines on microclimate is relatively small and
can be overridden by many other environmental or anthropogenic
factors.

Baidya Roy et al. (2004) described process of vertical mixing of
air by wind farms. Well mixed air is subsequently capable to cool
down overhead ground surface during day and warming subcooled
surface during night. It is obvious that wind farms are mostly sit-
uated in places offering stable and strong wind. These locations are
inclined to have strong natural turbulent flow. Hence the impact of
induced turbulence could be small and/or rather limited. The
resulting effect of wind farms could be different under varying
conditions of natural turbulence and under different atmospheric
conditions [34]. These differences could also be the reason why, in
contrast with other studies [27,31], we observed no stable influence

Fig. 3. Estimates of mean relative temperatures at different sensors and times of day based upon a linear mixed model with sensor position, turbine, and time of day as fixed factors
(including their interactions) and event (i.e. unique time of measurement at a given turbine) as a random factor. The error bars represent 95% Wald confidence intervals. Separate
models were fitted for data measured in forward and backward wind directions. Vertical dotted lines represent turbine position relative to the position of sensors. Horizontal arrows
represent wind direction.
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in heterogeneous conditions either during day or night. Another
explanation might be that the impact of wind turbines varies over
time and hence the longer-term effects explored in this study may
be different from the short-term observations presented especially
in remotely sensed data [31].

The impact of wind farms is a complex issue. Our results con-
tradicting the findings of others demonstrate the importance of
following a proper field observation methodology. A cursory
assessment could yieldmisleading results. Individual exploration of
each turbine, removal of background effects, and inclusion of actual
wind flow directions are key to correctly evaluating wind farm
impacts on near-ground temperature. Future observations should
be made to compare the effects of wind farms under different
conditions.

5. Conclusion

Unlike other recent studies, ours provided no evidence of
spatially and temporally stable impact of a wind farm on near-
ground air temperature. Based on our measurements, such effect
occurred only rarely and was locally specific. It is very likely caused
by natural strong wind flow turbulence, which often occurs in
places where wind farms are built. Even if a turbine effect is pre-
sent, it can be of the same or lesser intensity than are effects caused
by topography, land cover or land use and can be easily overridden
by these environmental factors. These conclusions relate only to
temperature near the ground (15 cm above the surface), where
standard weather measurements only rarely are taken but where

most of the organisms live. Our results thus provide relevant in-
formation about the effect of wind turbines on the microclimate
and enable assessing this part of wind farms’ multifaceted envi-
ronmental impact.
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a  b  s  t  r  a  c  t

The  importance  of  biodiversity  conservation  is well  recognized,  and  the  loss  of  biodiversity  is  partic-
ularly  evident  in highly  urbanized  areas.  On  the  other  hand,  green  spaces  inside  cities, as  parks,  can
provide  a resource  for  maintaining  and  increasing  biodiversity,  especially  for bird  species.  However,  only
a few  studies  have  addressed  the effects  of vegetation  structure  and  land  use  composition  on  different
components  of  biodiversity.

Here,  we  explored  the response  of  bird community  composition  to environmental  differences  related  to
land use  composition  and  vegetation  structure  in green  spaces  in the  city  of  Beijing,  China.  We  compared
the  values  of  taxonomic  diversity,  functional  diversity  and  community  evolutionary  distinctiveness  in
breeding  bird  communities,  among  ten  urban  parks  of the world’s  third  most  populous  city.  Variation
partitioning  analysis  and  generalized  linear  mixed  models  were  used  to explore  the  unique  and  shared
effects  of land  use  composition  and  vegetation  structure  on each  biodiversity  metric.

Park  size  was  not  associated  with  the diversity  of bird communities  in  Beijing.  Land  use  composition
was  the  best  predictor  of  change  in  bird  community  composition,  followed  by vegetation  structure  at
ground  level  and the intersection  between  land  use  and  vegetation  structure  at tree  level. Water  coverage
increased  bird  species  richness,  while  the  presence  of  large  trees  increased  both  taxonomic  diversity  and
bird  functional  richness  in  urban  parks.  Finally,  the  presence  of  patches  of  deciduous  trees  showed  a
positive  effect  on  the  average  score of evolutionary  distinctiveness  of bird  communities.  In  conclusion,
we  highlight  that  different  elements  of the environment  are  supporting  different  components  of bird
community  diversity.

© 2017  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Urbanization has increased rapidly across the globe (McDonald,
2008), so understanding the ecological mechanisms supporting
biodiversity in urban areas is becoming essential for maintenance of
ecosystem functioning (Groombridge and Jenkins, 2002; Kang et al.,
2015; Pereira et al., 2012). The main effects of urbanization on bio-
diversity have been assessed in many studies: fragmentation and
loss of natural habitat for many species in highly urbanized areas
carry out strong negative effects on biodiversity (Cardinale et al.,

∗ Corresponding author.
E-mail address: fmorellius@gmail.com (F. Morelli).

2012; McKinney, 2002; Newbold et al., 2016; Shochat et al., 2010)
also leading to biotic (Devictor et al., 2007; McKinney, 2006). The
biotic homogenization is characterized by similar communities,
with few dominant species among different urban locations (Møller
et al., 2012). Furthermore, the loss of biodiversity can negatively
impact on human populations in many different ways (Cardinale
et al., 2012; Newbold et al., 2016).

Even if some species are able to use the urban environment by
exploiting the available resources or niches (Aronson et al., 2014;
Zerbe et al., 2003), it is generally accepted that urbanization has
a detrimental effect on wildlife (Sol et al., 2014). However, green
urban spaces constitute important refuges for wildlife in urban-
ized environments and thus should be maintained (Alvey, 2006).
Furthermore, green spaces can help to create less dense urban set-

http://dx.doi.org/10.1016/j.ufug.2017.03.009
1618-8667/© 2017 Elsevier GmbH. All rights reserved.
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tlements, such that an intermediate level of urbanization should
have less negative impact on overall biodiversity (Chace and Walsh,
2006; Jokimäki et al., 1996). For example, city parks can provide
a resource for maintaining or increasing urban biodiversity, espe-
cially for bird species (Chiesura, 2004; Schütz and Schulze, 2015;
Strohbach et al., 2009). Nevertheless, urban parks in general are not
necessarily hotspots of urban bird diversity (Strohbach et al., 2009).

Birds are potentially useful bioindicator in the cities, because
it is relatively easy to assess their responses to urbanization and
environmental changes (Koskimies, 1989; Minor and Urban, 2010).
Some characteristics like park size, vegetation structure and patch
connectivity have been shown to be important factors for the main-
tenance of avian diversity in urban landscapes (Fernández-Juricic
and Jokimäki, 2001; Zhang et al., 2013). However, the effects of
urbanization have mostly been studied on species richness and
functional diversity (Devictor et al., 2008, 2007; Godet et al., 2016)
than on other components such as phylogenetic diversity and evo-
lutionary uniqueness of bird communities (Ibáñez-Álamo et al.,
2016; Morelli et al., 2016).

Some aspects of bird diversity have already been studied in Bei-
jing’s urban parks, mainly focusing on taxonomic diversity and the
diet guild of bird species in each community (Huang et al., 2015).
Beijing is an interesting case study, because it has been particularly
affected by rapid urbanization process when compared with other
cities; in 10 years the population has increased from 13.9 million to
more than 20 million (Xia, 2013). However, in order to assess the
effects of habitat, vegetation structure and land use composition
on the biodiversity of urban parks we must explore these effects
on each different component of diversity of bird communities. For
instance, a study to assess phylogenetic diversity and evolutionary
uniqueness of Beijing’s urban parks is still absent. Even an explicit
exploration trying to quantify the relative effect of each environ-
mental characteristic of green spaces on functional diversity of bird
communities can lead to a better understanding the impacts of
fast urbanization processes as well as bird adaptation and potential
associated ecological changes.

The aim of this study is to explore the effects of land use
and vegetation structure on different components of biodiver-
sity on Beijing’s urban parks: species richness, functional diversity
and evolutionary uniqueness of bird communities. In addition, we
investigate the environmental characteristics driving the change
on each diversity metric and ecological score in these parks.

2. Methods

2.1. Study area, environmental variables and bird data collection

The study was carried out in ten urban parks of the city of Beijing,
the capital of the People’s Republic of China and third most popu-
lous city in the world, with more than 21.7 millions people (http://
www.stats.gov.cn) in 2670.83 ± 103.62 km2 of urban area (Li et al.,
2015). These parks were selected because they can be considered
representative of the main types of urban parks of the city. Park
borders were vectorized using World Imagery maps (ESRI, 2009)
in ArcGis 10.4 for Desktop as well as geographical metrics calcula-
tions. The city center was selected in the middle of the Forbidden
City. Limits to the border of Beijing’s urban areas were based on
maps of China’s urban areas (Yang et al., 2013).

The land-use composition of sampling sites was  quantified in
a 100 m radius buffer zone around each sampling site. The selec-
tion of 100 m radius is suggested by the results of previous studies
(Morelli et al., 2013, 2014). Land-use categories were classified
in 7 land-use types: roads, building (which includes residential
building, built with infrastructure and processing areas), cropland
(which includes all cultivated and farmland categories), unculti-

vated, forest, water and shrubs (ESM Table A). For each sampling
site, we  calculated the distance to the center of the city and the
distance to the nearest urban park of the city.

To characterize the vegetation in Beijing’s urban parks we
described eight vegetation structural attributes (VGS) around each
sampling site (100 m radius area). The measures were estimated
based on ground level and tree level. Each stratum was assessed
independently of the other. The structural variables of VGS at
ground level were visually estimated percentage cover of bare
soil, grass and leaf litter. For VGS at tree level, we estimated visu-
ally the percentages of tree layout (rows, scattered, patches), leaf
typology (perennial, deciduous), bark typology (wrinkled, smooth),
estimated height (above and below 30 m)  and crown width (above
and below 5 m).

Data on bird species were collected using standardized bird
point counts, carried out during the 2016 breeding season (June).
Point counts provide highly reliable estimates of relative popula-
tion density, constituting a standardized method in ecology (Bibby
et al., 1992). All points, separated by at least 200 m, were visited
once between 06:00 and 10:00 for 10 min, only under favorable
weather conditions. All diurnal bird species detected visually and
acoustically were recorded by the observer in a radius of 100 m.

2.2. Biodiversity metrics and evolutionary distinctiveness in bird
communities

In this study we used three different measures of biodiversity,
calculated for each bird community (sampling site): (a) one related
to taxonomic diversity, (b) one related to functional diversity and
(c) one related to phylogenetic uniqueness.

(a) The bird species richness (BSR) was used as a measure of
taxonomic diversity (Magurran, 2004). Species richness was
expressed as the number of recorded bird species at each sam-
pling site.

(b) The biodiversity metrics based on species-trait approaches are
focused on functional aspects of biodiversity, and constitute an
additional tool to the traditional taxonomic approach (de Bello
et al., 2010). In this study, a functional diversity (FD) index was
calculated using the avian niche traits, based on foraging and
breeding ecology for all species (Huang et al., 2015; MacKinnon
et al., 2000). The traits table consists of: resident type (resident
or summer migrant), diet (granivorous, seed-eater, omnivo-
rous, insectivorous, carnivorous), foraging substrate (foliage,
ground), nesting substrate (tree, ground), nesting parasitism
(yes or not). All variables, except resident type, are binomial
(scored as either 0 or 1) (ESM Table A). In this study, Functional
Richness (FRic) was used to describe the overall functional
diversity in an assemblage. FRic represents the amount of func-
tional space occupied by a species assemblage (Villéger et al.,
2008). The FRic index was calculated using the ‘FD’ package for
R (Laliberté et al., 2015).

(c) In order to explore changes in bird communities in terms of phy-
logenetic diversity, we  used the evolutionary distinctiveness
(ED) score as a measure of the species uniqueness (Frishkoff
et al., 2014; Isaac et al., 2007). Using the ED score, we calculated
the community evolutionary distinctiveness (CED) as the aver-
age ED for the entire assemblage (Morelli et al., 2016; Tucker
et al., 2016).

2.3. Statistical analysis

In order to avoid redundancy variables, we performed principal
components analysis (PCA) of measured land use and vegetation
attributes. For graphical purposes, land use and vegetation struc-
ture variables were also classified on quartiles classes.

http://www.stats.gov.cn
http://www.stats.gov.cn
http://www.stats.gov.cn
http://www.stats.gov.cn
http://www.stats.gov.cn
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A variation partitioning by partial regression analysis was used
to isolate the proportion of the variation explained by each of the
two sets of factors exclusively (vegetation structure at ground level,
vegetation structure at tree level and land use composition), and the
proportions attributable to interactions between factors, account-
ing for variation in bird community composition (Borcard et al.,
1992; Perez-Neto et al., 2006). The Pearson’s product-moment
correlations for all relationships were calculated during the pre-
liminary exploration of the dataset. Pearson’s product-moment
correlations between predictors included in models were all below
0.6, to avoid multicollinearity between predictors (Graham, 2003).
To test whether explanatory variables account for a significant
variance, we used function ‘rda’ to test for fractions. Variation par-
titioning was performed using the ‘vegan’ package for R (Oksanen
et al., 2016).

We used GLMMs, accounting for variation in bird species
richness, functional richness and community evolutionary distinc-
tiveness in relation to land use composition, vegetation structure
and connectivity measures in the ten urban parks in Beijing. The
names of the parks were added as random factors in the statis-
tical models. Models were fitted assuming a Poisson distribution
for bird species richness, and normal distribution for functional
richness and community evolutionary distinctiveness, after having
explored the distribution of variables (Box and Cox, 1964) using
the package ‘MASS’ (Venables and Ripley, 2002), and ‘glmmADMB’
in R (Fournier et al., 2012; Skaug et al., 2013). The Akaike’s Infor-
mation Criterion (AIC) was used to determine the model that ‘best’
explained variation in the data (Burnham and Anderson, 2002).

All statistical tests were performed with R software (R
Development Core Team, 2017).

3. Results

From the ten Beijing’s urban parks, surveyed by means of 102
sampling sites (Fig. 1; Table A, ESM), 39 breeding bird species
were recorded (Table B, ESM). The bird species richness in sam-
pling sites ranged from a minimum of 1 species to a maximum of
13 species (Table B, ESM). The highest values of average species
richness was  recorded in Minghe Park (8 ± 3.34 species), and the
lowest in Jingshan Park (3.25 ± 1.26 species) (Fig. 2). The highest
average functional diversity (FRic) estimated on bird traits (Table
C, ESM) was calculated in bird communities from Chaoyang Park
(0.18 ± 0.07), while the lowest values were obtained for Heaven
Park and Jingshan Park (0.09 ± 0.06) (Fig. 2). Finally, the high-
est values of community evolutionary distinctiveness (CED) was
estimated in Minghe Park (9.29 ± 1.71), and the lowest values
was estimated in Yuyuantan Park (6.27 ± 1.34) (Fig. 2). The values
recorded in Zizhuyuan Park were excluded from this comparison
as they were obtained from only two sampling sites.

Nine environmental descriptors were found to be suitable to
describe urban parks. Three land use types: shrubs, forest and water
(%); three categories of VGS at ground level: i.e. bare soil, grass and
litter (%); and three categories of VGS at tree level: leaf typology
(deciduous), tree height (above 30 m)  and crown width (above 5 m).

The three categories of environmental descriptors were sig-
nificantly correlated with bird species composition (all p < 0.05).
However, the large effect on bird composition was  found for land

Fig. 1. Map  of the ten Beijing parks surveyed during the breeding season 2016 in this study. Park names: 1: Yuyuantan Park; 2: Heaven Park; 3: Chaoyang Park; 4: Jingshan
Park;  5: Zhongshan Park; 6: Minghe Park; 7: Yuanmingyuan Park; 8: Olympic Forest North Park; 9: Sanhaizi Country Park; 10: Zizhuyuan Park. ESRI, DeLorme, MapmyIndia,
©  OpenStreetMap contributors, and the GIS user community. The urban zones were taken from Yang et al. (2013).
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Fig. 2. Comparison of bird species richness, functional diversity and community evolutionary distinctiveness among Beijing’s urban parks. The y-axis represents the estimated
variable. The box plots show the median (bar in the middle of rectangles), mean (yellow rhombus), upper and lower quartiles, maximum and minimum values (vertical
dashed  lines) and outliers. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Fig. 3. Venn diagram showing the results of variation partitioning analysis on bird community composition. The diagrams represent the adjusted percentages of unique
contribution of vegetation structure (VGS) at ground level, tree level and land use composition on bird species composition in parks of Beijing, China. The fraction between two
overlapped circles represents the variation explained between the components while the residuals are the variation left unexplained by the canonical model. The fractions
of  variation displayed in the diagram are computed from adjusted r2. All unique contributions were statistically significant (*).

use composition, followed by vegetation structure at the ground
level, and the intersection between land use composition with veg-
etation structure at the tree level (Fig. 3).

Considering separately each bird diversity metric and evolution-
ary distinctiveness, the effects of land use and vegetation structure
were significantly associated with different measures. Among the

candidate predictors, connectivity measures (distance from the city
center and the distance from the nearest park) were not included
in the best models. Water coverage increased the values of bird
species richness (Table 1, Fig. 4), while shrub coverage was neg-
atively associated with functional richness of bird communities
(Table 1, Fig. 4). Bird species richness increased with grass coverage,
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Fig. 4. Differences of bird species richness, functional diversity and community evolutionary distinctiveness in relation to land use composition (shrub, forest and water
coverage) classified in quartiles, in Beijing’s urban parks. The y-axis represents the estimated variable. The box plots show the median (bar in the middle of rectangles), mean
(yellow  rhombus), upper and lower quartiles, maximum and minimum values (vertical dashed lines) and outliers. (For interpretation of the references to color in this figure
legend,  the reader is referred to the web version of the article.)

Table 1
Results of fixed-effect parameters in a GLMM,  accounting for variation in bird species
richness, functional richness and community evolutionary distinctiveness in rela-
tion to land use composition and vegetation structure in Beijing’s urban parks. The
parks were added as random factors in the models. Only significant variables are
shown in the table. ES, estimate; SE, standard error.

Variable/(model) ES SE z/t P

(Bird species richness)
Intercept 2.707 0.885 3.06 <0.05
Water 0.010 0.003 1.98 <0.05
Crown width > 5 m 0.042 0.014 2.88 <0.05

(Functional richness)
Intercept 0.002 0.168 0.01 >0.05
Shrub −0.019 0.011 −1.98 <0.05
Crown width > 5 m 0.005 0.003 1.93 <0.05

(Community evolutionary distinctiveness)
Intercept 8.378 3.883 2.16 <0.05
Tree deciduous 0.014 0.006 2.34 <0.05

and showed a U-shaped response to litter coverage, however these
effects were not statistically significant (Table 1, Fig. 5). Finally, the

presence of large trees with crown width larger than 5 m slightly
increased both species richness and functional richness of bird
communities. The coverage of deciduous trees was also associated
with a slight increase in average scores of evolutionary distinctive-
ness in bird communities in Beijing’s urban parks (Table 1, Fig. 6).

4. Discussion

In an interesting study, Huang et al. (2015) explored the rela-
tionships between the size of parks, plant and insects richness
in relation to birds in many Beijing urban parks. It highlighted
how green spaces around urban parks increase breeding bird rich-
ness, and also indicated the importance of connectivity. In addition,
Huang et al. (2015) showed how important coniferous trees are for
the settlement of many species, such as omnivorous birds. Green
spaces, such as urban parks, can play a key role in conservation of
biodiversity, especially under scenarios of densification processes
as exhibited in many major cities (Haaland and van den Bosch,
2015; Xie et al., 2016).
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Fig. 5. Differences of bird species richness, functional diversity and community evolutionary distinctiveness in relation to the vegetation structure at ground level (bare soil,
grass  and litter coverage) classified in quartiles, in Beijing’s urban parks. The y-axis represents the estimated variable. The box plots show the median (bar in the middle of
rectangles), mean (yellow rhombus), upper and lower quartiles, maximum and minimum values (vertical dashed lines) and outliers. (For interpretation of the references to
color  in this figure legend, the reader is referred to the web version of the article.)

Our findings provide new data on bird community composition
and bird diversity metrics in some urban parks of the metropolis
of Beijing. Furthermore, our study provides a first assessment of
the relative effects of land use and vegetation structure on each
component of diversity and evolutionary distinctiveness of bird
communities, analyzed separately. Land use composition was the
main predictor of bird community composition, followed by vege-
tation structure at ground level and the intersection between land
use and vegetation structure at tree level. Water surface was associ-
ated with an increase in bird species richness, while the percentage
of shrubs, was surprisingly only slightly negatively correlated with
the number of bird species in communities. However, examining
the data collected, we hypothesize that this was a statistical artifact
due to a strong correlation between built areas and shrub features
in the surveyed parks.

At the ground level of vegetation structure, the balance between
availability of bare soil and coverage of grass, can be important
for the foraging strategies of insectivorous birds, as demonstrated
in other studies in Europe (Fonderflick et al., 2010; Morelli, 2013,
2012). Another interesting result, although not statistically signif-
icant, was the inverse U-shape relationship found between litter
coverage and bird species richness (Fig. 5). We  know that bird
species can respond to variations in the soil composition and the
presence of litter (Myers et al., 2015). Based on this evidence, we
can hypothesize that bird communities achieve the highest values
of richness in habitat where the litter is present (but not at extreme
values), corresponding to more heterogeneous environments.

In this study, we found higher values of bird taxonomic diver-
sity in Minghe Park and Olympic Forest North Park, the smallest
and largest parks surveyed in Beijing respectively. However, even
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Fig. 6. Differences of bird species richness, functional diversity and community evolutionary distinctiveness in relation to the vegetation structure at tree level (coverage of
deciduous tree, tree height above 30 m and tree with crown width above 5 m)  classified in quartiles, in Beijing’s urban parks. The y-axis represents the estimated variable.
The  box plots show the median (bar in the middle of rectangles), mean (yellow rhombus), upper and lower quartiles, maximum and minimum values (vertical dashed lines)
and  outliers. (For interpretation of the references to color in this figure legend, the reader is referred to the web  version of the article.)

considering Zizhuyuan Park, a medium-size park where the data
came from only one sampling site, the size of the parks seems not
to be the key-stone factor for bird diversity. Furthermore, the small
Minghe Park, with a surface of only 48 ha, was the first park for
community evolutionary distinctiveness and the second park for
functional richness (after Chaoyang Park, a medium-size park). Our
findings support the statement that park size is more important for
bird abundance than for bird species diversity, in agreement with
a recent study, where authors suggest that vegetation foliage is
an important factor influencing avian species diversity in Beijing’s
parks (Xie et al., 2016).

The results of mixed model approach highlighted how the per-
centage of large trees can increase bird functional richness in urban
parks. In fact, our findings support the theory that large and old
trees (represented by trees with crown width >5 m in this study)

are key-stones for biodiversity conservation, providing refuge and
required resources for many species (Le Roux et al., 2014; Stagoll
et al., 2012).

One of the reasons why  Minghe Park presented higher values
of community evolutionary distinctiveness, constituting an impor-
tant target for the conservation of birds evolutionary uniqueness,
is related to the presence and abundance of two  species with high
ED scores: Cyanopica cyanus, the Azure-winged Magpie, with ED
score of 17.139 and Stigmatopelia chinensis, the Spotted Dove, with
ED score of 11.523. Both values are relatively high if compared
with the average ED score for all bird species monitored in this
study, ED score: 8.56 (see the values of ED for bird species in the
EDGE website, Zoological Society of London, 2008). Furthermore,
the presence of patches of deciduous forest and small patches of
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deciduous trees were positively associated with average score of
evolutionary distinctiveness of bird communities in urban parks.

In conclusion, we have shown how different environmental
characteristics of urban parks can improve different components
of bird community as taxonomic or functional diversity and evo-
lutionary distinctiveness. Water surface can increase bird species
richness and large trees can enhance both species richness and
functional diversity of bird communities in the ecosystem. Finally,
increasing the surface of patches of deciduous trees in green spaces,
it is possible to attract bird species characterized by evolutionary
uniqueness, supporting more evolutionary history in bird assem-
blages. Each biodiversity component needs to be considered, in
order to establish better ecological planning, and future biodiver-
sity conservation in urban parks.
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Abstract. Topography usually plays an important role for yield variability assessment. This study 

provides insight into the use of surface models from different sources for agriculture purposes: 

unmanned aerial vehicle imagery, LiDAR data and elevation data acquired from a harvester. The 

dataset from an aerial vehicle was obtained in the form of ortho-mosaics and digital surface model 

using casual camera. The LiDAR data was provided by the State Administration of Land 

Surveying and Cadastre in the form of Digital Terrain Model of the 4th and 5th generation. The 

data of yield together with its coordinates were gained from a combine harvester in the form of a 

regular grid. Yield data was interpolated by kriging geostatistical method. Position data including 

an altitude was used for modelling the last digital surface model. All gained surface models were 

correlated with the spring barley yield. Results show correlation similarity across all tested 

models with the yield; no significant differences were sighted. Free available coarser scale data 

is able to predict a yield sufficiently. The study indicates less effectivity of using very detailed 

scale data sources due to its time-consumption or expensive data gathering and processing 

process. 

 

Key words: Unmanned aerial vehicle, structure from motion, spatial resolution. 

 

INTRODUCTION 

 

Elevation data can be acquired from three main sources: ground surveys, existing 

topographic maps and remote sensing techniques (Ouédraogo et al., 2014). Imagery 

acquisition using unmanned aerial vehicles (UAV) is very popular elevation data 

gathering technique within the last years. Besides other advantages, consumer grade 

cameras can perform high spatial resolution and high temporal frequency imagery. It is 

possible to get sufficient-accuracy ortho-mosaic and elevation model of large areas. 

UAV-based data became a promising tool for many agronomic applications during last 

few years (Schmale et al., 2008; Zhang & Kovacs, 2012; Gómez-Candón et al., 2014). 

These systems become an effective complement for conventional agricultural 

approaches, especially in precision agriculture or site-specific management respectively 

(Primicerio et al., 2012; Honkavaara et al., 2013; Rokhmana, 2015). UAV could be less 
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expensive and more practical in contrast with satellite and airborne systems for high 

resolution remotely sensed data (Zhang & Kovacs, 2012). That is why it is possible to 

use UAV for the creation of topography model for agricultural purposes. Moreover, it is 

possible to capture actual micro-topography in any time using UAV. The Digital 

Elevation Model (DEM) is a stable factor compared to other variables (Schmidt & 

Persson, 2003), and it is generally known that spatial variability of yield can be explained 

by topography as one of several variables (Zhang et al., 2002). For example, Kumhálová 

& Moudrý (2014) used RTK-GPS, harvester yield monitor with DGPS and Airborne 

Laser Scanning (ALS) in their study. Using aerial systems, high spatial scale data are 

gained. Use of low-cost cameras and specialized software solutions make the generation 

of ortho-mosaic and elevation models quite easy. UAV based models usually reach 

resolutions within centimetres. On the other hand, there is still the question of 

justification of accurate digital surface models in comparison with free available coarse 

datasets. 

The aim of this study was to discuss the effectiveness of Digital Elevation Models 

from different sources with different spatial resolution for explanation of yield on large 

agricultural plots. 

 

MATERIALS AND METHODS 

 

The experimental field is located near to Vendoli in Eastern Bohemia (49°43' 

47.94"N, 16°24' 14.21"E) and its size is 26.4 ha large. A 15.55 ha section of the field 

was chosen for our experiment. The terrain of the plot is undulated with an average slope 

of approximately 6%. The elevation ranges from 555.3 to 571.6 m above average sea 

level (565.4 m on average). The soil can be classified as modal cambisoils lying on 

calcareous sandstone. Some parts, on sloped terrain especially, are strongly eroded. The 

average precipitation is 700 mm per year and the average temperature is between  

6–7 °C. Conventional arable soil tillage technology based on ploughing and crop 

rotation system based on wheat, barley and oilseed rape crops alternation were applied 

on the plot. 

The topographic data were obtained from four sources. The first data set was 

obtained from perpendicular images taken by an unmanned aerial vehicle using the 

photogrammetry approach. Aerial photographs were taken on September 11, 2015 by a 

fixed 16 mm focal length lens at consumer-grade RGB camera Sony NEX5. The camera 

was mounted on the Falcon 8 V-form octocopter platform manufactured by Ascending 

Technologies GmbH, Germany. The aerial system and the camera were managed 

manually by a pilot. Photoscan software solution (version 1.2.6., Agisoft LLC, Russia) 

was used for aligning imagery and dense cloud generation. Images were aligned using 

74 ground control points, which were measured by real time kinematic GPS method 

using Trimble device with VRS Now corrections. Digital elevation model with its final 

spatial resolution of 0.05 m was created from 285 overlapping images using Structure 

from Motion method (Fig. 1a). More than 80 million dense cloud points were gained by 

this approach. The next sources of elevation data, Digital Terrain Model of the Czech 

Republic of the 5th generation (DMR 5G) and Digital Terrain Model of the Czech 

Republic of the 4th generation (DMR 4G), Airborne Laser Scanning data sets were kindly 

provided by the State Administration of Land Surveying and Cadastre. Both models 

represent natural man-modelled terrain in digital form from the year of 2013. DMR 4G 
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was distributed in a grid of 5×5 m with total mean elevation error of 0.3 m in open areas, 

while DMR 5G was distributed in a grid of 2 × 2 m with a total mean elevation error of 

0.18 m (Brázdil & Dušánek, 2010; 2012). 

Yield and the fourth terrain model has been measured by axial combine harvester 

New Holland CR9080. The harvester was equipped with a yield monitor and differential 

GPS receiver. The precision of this system is ± 0.1 to 0.3 m horizontally and ± 0.2 to 

0.6 m vertically. The yield and elevation data were stored with the coordinates every 

second. The yield values of spring barley were corrected using a common statistical 

procedure; all values that exceeded the range defined as mean ± 3 standard deviations 

were removed. Because of the large amount of data for every year studied (more than 18 

thousand), the MoM (Method of Moments) was used to compute the experimental 

variograms. Experimental variograms of yield were computed and modelled by 

weighted least squares approximation in GS+ (Gamma Design Software LLC, USA). 

Ordinary punctual kriging was done using the relevant data and variogram model 

parameters for yield data visualization. For detailed description of the data sets see 

Table 1. All spatial data were processed using ArcGIS solution (version 10.3.1., ESRI, 

USA). 

 
Table 1. Summary of statistics for data sets used (m) 

Source 
Yield DEM DEM DEM DEM 

harvester harvester UAV DMR 4G DMR 5G 

Count 18,537 18,537 62,188,439 6,118 38,811 

Resolution   0.05 × 0.05 5 × 5 2 × 2 

Mean 4.049 566.8 566.2 565.7 565.1 

Median 4.111 567.0 566.7 566.0 565.0 

Std 1.377 3.178 3.797 2.994 3.064 

Minimum 0.204 557.0 554.0 556.6 556.0 

Maximum 8.733 578.0 573.3 571.6 571.0 

Skewness -0.025 -0.310 -0.432 -0.458 -0.449 

 

Statistical data was counted in R free software (version 3.2.2., R Core Development 

Team, Austria). The number of 23 random sampling points were created for the plot. At 

each point, the yield and altitude from all four digital elevation models were estimated. 

The yield spatial autocorrelation was verified by Moran's Index where presence of 

autocorrelation was not revealed. The estimated altitude from each model in each point 

was then tested for correlation with yield. R-squared error was also determined by fitting 

individual linear models for each digital elevation model as predictor of yield. A Hot 

Spot map of yield was finally created by using the Getis-Ord Gi* statistic for supporting 

our results. 

 

RESULTS AND DISCUSSION 

 

The results of the evaluation are shown in Table1. DMR 4G and DMR 5G models 

had similar median and also minimum and maximum values. Slightly different values 

can be observed in the digital model obtained by UAV (Fig. 1a). This is due to a better 

resolution which can capture different local roughness. Standard deviation is also 

slightly higher in UAV (4.15) compared to DMR 5G (3.43) and DMR 4G (3.34). The 
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elevation models used are highly correlated (between ≈0.98 and ≈1.00, Pearson R), see 

Fig. 2. To evaluate differences in the models, we provide Tests of significance for 

correlations (r.test). The results show that input models are equivalent as predictor of 

yield with probability of ≈ 100%. For a better understanding of heterogeneity of yield at 

the field we have created a hot spot map where statistically significant high (red colour) 

and low (blue colour) yields can be observed, Fig. 1b. It also reveals relative 

homogeneity of field yields. 
 

 
 

Figure 1. Elevation model using photo-reconstruction methods (a) and yield hotspot map (b) of 

the field study. 

 

Elevation models were compared according to yield data using the correlation 

method (Table 2). The best model for yield prediction was DMR 4G explained 22.08% 

of yield variation followed by DEM from the UAV and DEM from the combine 

harvester. But all models can equally predict yield. The ability for predicting yield varies 

from 19% to 22% depending on the model. 

 
Table 2. Statistics of correlation between models; yield and amount of variability in yield 

Source 
DEM DEM DEM DEM 

harvester UAV DMR 4G DMR 5G 

Pearson's correlation coefficient 0.480 0.502 0.477 0.506 

Correlation significance (p-value) 0.020 0.015 0.021 0.014 

Adjusted R-squared 0.194 0.217 0.221 0.191 
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Figure 2. Matrix of input scatterplots showing dependence of input variables. 

 

There is an effort in recent studies (Ristorto et al., 2015; Rokhmana, 2015) to use 

the most accurate data with the finest resolution as possible. As we show in this study, a 

field’s yield can be relatively homogenous (Fig. 1b). In fact, using the finest resolution 

for prediction of yield does not necessarily bring additional information and furthermore, 

can have similar information value as models with coarse resolution. Uysal et al. (2015) 

discussed in their study the advantages of UAV systems utilization, such as low-cost, 

real time, high temporal or spatial resolution data. These conclusions are in accordance 

with our study. The UAV campaign was planned to early spring after sowing the spring 

barley, when the soil was bare. Belka et al. (2012) stated that the Airborne Laser 

Scanning was made during the spring or autumn. A large part of the Czech Republic was 

scanned regardless of vegetation on the fields. The flexibility in time is why the UAV 

possibility is suitable for monitoring the agriculture plot in different time. 

Comparatively, acquisition of DEM from UAV is quite time consuming. To benefit 

from accurate UAV based DEM, 74 ground control points were necessary in our study. 

All of the points had to be measured by accurate GPS method. Moreover, special 
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software has been used for computation of DEM from acquired photos. As we can see 

from the results, the ability to predict yield is similar across our models. In this point of 

view, the free available DEM models (DMR 5G or DMR 4G) could be better due to less 

time consumption. The digital model acquired by harvester is also a better choice than 

UAV in this case; nevertheless, some interpolating technics have to be made in GIS 

software to achieve final DEM. 

The explained variability of yield reached at maximum only 22% in the DMR 4G 

model. It can be assumed that we could obtain similar results with other predictors, 

i.e. amount of soil meter, fertilization distribution, distribution of water, solar radiation 

etc. Using coarse data for predicting future yield or plant health could bring similar 

information value as the more accurate ones. 

 

CONCLUSION 

 

In this study we compare different digital terrain models obtained from different 

sources. Despite the fact of different resolution and accuracy of the data (from course 

5 × 5 m to 0.05 × 0.05 m UAC model), the ability of models to predict the final yield 

were almost the same. We did not observe any statistically significant difference between 

input models. 

As our results show, to use the most precise data is not necessary in every case. 

Less accurate, free available data could be equally sufficient to data with high costs or 

high time consumption. UAV based data can be used for DEM generation as a low-cost 

and real time source. 
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Abstract
Reforestation after land abandonment across Mediterranean mountains, together with the related landscape pattern dynamics and
its possible impacts on the natural flora and fauna are issues that need further research efforts. This research, based on multi-
temporal land cover maps derived from remotely sensed data (1987, 2003, 2016) of the Central Apennines, sets out to (i) quantify
land cover changes and (ii) explore forest re-growth accounting for the interdependencies between forest gain and spatial
configuration through trajectory analyses. Landscape change was assessed by transition matrix. Forest composition and config-
uration over time were analyzed by trajectory analysis based on random sampling techniques. This approach, implemented here
for the first time for analyzing forest re-growth, allows us to explore the relationship between forest gain (the percentage of
landscape covered by forests) and changes in spatial pattern (patch density, edge density, and mean patch area). An increase in
forest cover over the past 30 years underlined the intense process of natural re-colonization, which started after World War II, at
the expense of the typical heterogeneity of Mediterranean cultural landscapes. The change in the spatial pattern of forested areas
highlighted a significant transformation which is related to two processes: the centrifugal development of existing patches and the
establishment of new nuclei. The trajectory analysis highlighted non-linear relationships between forest gain and spatial pattern,
offering the basis envisage of their effects on biodiversity. Conservation-oriented management ofMediterraneanmountain forests
must acknowledge both the role of natural succession in generating complex mosaics and the importance of maintaining forest
patches of different dimensions and configuration.

Keywords Landscape change .Transitionmatrix .Spatial pattern .Landscape composition andconfigurationmetrics .Vegetation
dynamics

Introduction

Human activity has shaped natural landscapes across the
world since ancient times (Munteanu et al. 2015). In several

mountain and hilly areas of Europe, landscapes were histori-
cally dominated by pastures and agriculture cover types; in
fact, grazing pressure and agricultural practices were the most
important man-induced selection forces on the environment
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(Plieninger et al. 2010). In the Mediterranean basin, broad
mountain areas were deforested in order to gain new space
for grazing and agriculture, while forests were maintained
and managed for the provision of timber or non-timber prod-
ucts, and to prevent soil erosion or avalanches (Furher 2000).
With increased human colonization of the Mediterranean
mountains from 1700 to 1900, pastoralism became the preva-
lent human activity (De Arabanzabal et al. 2008; Papanastasis
2012), contributing to the formation of a typical Bcultural
landscape^ (sensu Antrop 2005) characterized by a mosaic
of sparse open areas and woodland patches (Rosati et al.
2010). Conversely, in recent decades, widespread abandon-
ment of agricultural land and traditional cultivation practices
has occurred (Lasanta et al. 2017). The consistent rural exo-
dus, which started after World War II and persisted over time,
triggered the process of natural vegetation re-growth
(Rocchini et al. 2006): the abandonment of grazing activities,
followed by the onset of natural succession processes, promot-
ed shrub and woodland encroachment (Falcucci et al. 2007;
Campagnaro et al. 2017) and, in a few decades, allowed for-
ests to recover in wide areas in which they were present a long
time ago (Sitzia et al. 2010; Bracchetti et al. 2012).

Throughout the Mediterranean basin, the ecological conse-
quences of land abandonment and forest recovery may be dis-
parate (Plieninger et al. 2014). Natural reforestation on Italian
mountains, as highlighted by Falcucci et al. (2007), can promote
recolonization by large vertebrates (wolf, ungulates, brown
bear) or may limit the effect of water runoff and soil erosion
(Tasser et al. 2003), control the sediment yield and improvement
the soil properties (Seeber and Seeber 2005). On the other hand,
changes occurring after land abandonment and forest recovery
are generally accompanied by a simplification and homogeni-
zation of these landscapes (Ricotta et al. 2000; Carranza et al.
2007; Sitzia et al. 2010), resulting in a decrease in biodiversity
typically sheltered by traditional anthropogenic landscapes
(Mazzoleni et al. 2004; Kleijn et al. 2011; Lasanta et al. 2017).

Landscape change after land abandonment is of particular
concern on Mediterranean mountains, since many of the spe-
cies and plant communities that characterize traditional cultur-
al landscapes are also of concern for the conservation of nat-
ural biodiversity in Europe (e.g., protected by the European
Commission (1992) network and European protected areas)
(Tsiafouli et al. 2013).

There is a growing consensus that the landscape is the most
important level for the management of biodiversity and that
conservation strategies should be implemented at this scale to
have the highest probability of success (With 2005; Malavasi
et al. 2018). Indeed, given the widely documented relationship
between natural biodiversity and landscape patterns (Fahrig
2003; Walz 2011), improving the actual understanding
concerning the ongoing landscape processes affecting tradi-
tional rural landscapes after land abandonments is still crucial
for defining appropriate conservation policies (Dahlström et

al. 2013). However, there is no Bone-size-fits-all^ biodiversity
conservation approach, since any effect on biodiversity is de-
pendent on the environmental characteristics of the analyzed
region (Plieninger et al. 2014).

Still, in the Mediterranean mountain ecosystems, natural
reforestation after land abandonments is responsible for the
greater environmental and landscape transformation (Lasanta
et al. 2017). Within the context of this investigation, refores-
tation (sensu Sitzia et al. 2010) can be defined as natural rees-
tablishment of a forested landscape on disused agricultural
lands and grasslands following land abandonment in regions
where the potential natural vegetation (sensu Zerbe 1998) is
forest. The reforestation process entails changes in the spatial
pattern of forested land cover type that can be described by
two landscape components (Uuemaa et al. 2009): (a) compo-
sition changes, such as forest loss or gain, and (b) configura-
tion changes or changes in the arrangement of forest patches.
Forest compositional and configurational changes occur si-
multaneously, but the effects on biodiversity of such changes
(e.g., Noss, 1999) are different, calling for the need to isolate
these diverse components. Besides, contrary to the well-
known process of forest loss and fragmentation affecting trop-
ical and subtropical ecosystems (e.g., Wade et al. 2003; Frate
et al. 2015; Carranza et al. 2015), which is one of the most
important causes of biodiversity loss (see Fahrig 2003), find-
ings about landscape dynamics of natural reforestation and the
related natural biodiversity after abandonment are
controversial. In a comprehensive review study about natural
forest recovery on rural mountain landscapes, Sitzia et al.
(2010) found diverse and fragmentary results concerning con-
figurational changes of forested land cover types in relation to
forest gain (compositional change).

In consideration of the above, this research sets out to an-
alyze temporal landscape changes which occurred over the
last three decades in Mediterranean mountain landscapes
and provide reliable temporal trajectories of forest composi-
tion and configuration changes accounting for their possible
effects on natural flora and fauna. Based on multi-temporal
land cover maps derived from remotely sensed data of the
Central Apennines, landscape change was analyzed by the
implementation of traditionally used transition matrices
(Turner 1990); forest composition and configuration changes
were analyzed by trajectory analysis based on random sam-
pling of the landscape. Trajectory analysis, previously used to
describe the process of forest loss and fragmentation (Long et
al. 2010; Carranza et al. 2014), is here adopted for the first
time to explore the configurational changes of forested land
cover type in relation to forest gain. In addition, the random
sampling approach allows us to obtain statistically valid de-
scriptions of each map (Hassett et al. 2012) and comparisons
between the different time steps (Carranza et al. 2015).

By identifying the role of forest cover and configuration
changes, we contribute to the exhaustive description of the
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process of mountain forest re-growth, offering the basis to
envisage their effects on natural flora and fauna.

Material and methods

Study area

The study area is located in the Central Apennines on a lime-
stone massif ranging from 450 to 2486 m asl and covering
62,500 ha in total. It is characterized by a transition zone
between temperate and submediterranean bioclimate
(Pesaresi et al. 2017). This territory host two protected areas
(Montagne della Duchessa Natural Regional Reserve; Sirente-
Velino Natural Regional Park; see online resource 1) and is
part of the E-LTER (European Long Term Ecological
Research) network, thus representing a worthwhile training
ground to assess landscape changes in mountain ecosystems.

This area is representative of the landscape dynamics oc-
curring in the Mediterranean mountains that over recent cen-
turies were mainly shaped by grazing activities. Still, before
the 1950s, the abandonment of transhumance practices and
pastoralism took place with a consequent reduction in natural
grasslands. During the last few decades, human population in
the study area declined by 10% and major changes in grazing
activities occurred with a steep decrease of sheep units (on-
line resources 2 and 3).

The Apennine area hosts high levels of biodiversity, with
more than 1000 species and subspecies of vascular plants
recorded above 1400 m asl, 12.7% of which are endemic
(Lucchese and De Simone 2000), and several habitats of
European conservation concern (92/43/EEC) (European
Commission 1992; Biondi et al. 2009) (for a complete list of
habitats of European concern, see online resource 4).

Land cover maps

In order to analyze changes in landscape composition and
configuration, we used land cover maps derived from a
multitemporal sequence of remotely sensed satellite data.
Three vegetation maps were produced relying on three dates
of Landsat imagery. We used three different satellites due to a
total span of 29 years: Landsat 5 with Thematic Mapper (TM)
sensor, Landsat 7 with Enhanced Thematic Mapper (ETM+),
and Landsat 8 Operational Land Imager (OLI) sensor for 14
August 1987, 25 August 2003, 29 August 2016 (path 190,
row 031). All the satellite images have a spatial resolution of
30 m (15 m for panchromatic band in ETM+ and OLI). Each
satellite image was selected with respect to a cloud-free study
area. The satellite data were downloaded from USGS (online:
https://earthexplorer.usgs.gov/) in the format of Level 1
product which are processed with standard radiometric,
geometric, and terrain correction using digital elevation

model and ground control points. The accuracy of geo-
registration was visually confirmed for all images. Image to
image registration was not necessary.

First, pixel-based unsupervised classification was per-
formed on each image to analyze the number of distinguish-
able classes. Particular attention was given to natural and
semi-natural land cover types. Artificial structures were not
considered in the classification because of their low extent in
the area. Six land cover types were identified and mapped
according to CORINE Land Cover classification, with a
fourth level of detail for forests and semi-natural formations.
A description of these cover types is included in Table 1.
Then, more than 16 km2 (0.5–8 km2 depending on class) of
training data were vectorized on basic visual inspection of
images, knowledge of the local vegetation, and ground truth
data (Google Earth satellite images and geo-tagged Flickr pic-
tures) (for details, see Arsanjani et al. 2016). Using these
training data, we created final maps using pixel-based super-
vised classification with maximum likelihood method. The
whole classification process was done in ENVI 5.3. The over-
all accuracy of classification was calculated using 488 points.
All the points were distributed by stratified random sampling
method, where each class has a randomly distributed number
of points proportional to the area of the class. Practical verifi-
cation of the points was done by comparison of the classified
image from 2016 with Google Earth images. The overall ac-
curacy of the recent map has reached 85.4%.

Land cover change

Data on general land cover changes which occurred over the
last 29 years was derived by comparing the cover maps at two
time periods t and t + τ. In particular, after describing the ex-
tent of each cover type in 1987 and 2016, we build a transition
matrix that summarizes the percentage of each land cover type
extent which changed into each other during the time interval
τ (Turner 1990). The temporal dynamics of the analyzed land-
scape over the selected time period (1987–2016) were
displayed as percentage (%) of landscape change using a
Chord-Diagram. The Chord-Diagram is a graphical method
for displaying the inter-relationships between data in a contin-
gency matrix, and it is very appropriate to represent confusion
or transition matrices (Rajbhandari et al. 2017; Komarek et al.
2018).

Spatial pattern analysis of forest over time

The dynamics of forest spatial pattern over timewere analyzed
by trajectory analysis (Cushman and McGarigal 2007; Long
et al. 2010). Trajectory analysis, introduced by Cushman and
McGarigal (2007), relies on the documented relationship be-
tween landscape composition and landscape configuration
and allows to inspect both aspects of change simultaneously.

Reforestation dynamics after land abandonment: a trajectory analysis in Mediterranean mountain landscapes
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Trajectory analysis offers the framework to correctly interpret
and model the configurational changes of each habitat (i.e.,
spatial arrangement of forest patches) in relation to changes in
its composition (i.e., forest amount) at landscape scale.
Because this relationship could be non-linear, similar forest
configuration values could be related to different landscapes
in terms of forest amount (e.g., Long et al. 2010; Carranza et
al. 2014). Within this context, we considered the trajectory
analysis approach as a very appropriate one for dealing with
forest changes over time and we implemented it for the first
time for describing reforestation dynamics as follows. First, a
set of non-redundant landscape metrics and adequate for

sample-based estimations of landscape pattern (Hassett et al.
2012) were selected, relying on the pre-existing literature
(Long et al. 2010; Carranza et al. 2015; Uuemaa et al.,
2009). Specifically, a composition metric, the percentage of
landscape covered by forests (PLAND), and three configura-
tion metrics, patch density (PD), edge density (ED), and mean
patch area (AREA_MN) were calculated for the different
dates using FRAGSTAT (McGarigal and Marks 1995).
Pattern metrics were calculated within a set of non-
overlapping and randomly sampled square grids within the
whole set of land cover maps (1987, 2003, 2016), covering
a total of 10% of the total study area. Since the square grid

Table 1 CORINE land cover types present in the study area with a
fourth level of detail for natural and semi-natural categories. A brief
vegetation description and the EC habitat types (92/43/EEC) and
EUNIS 2007 Code (in brackets) are also reported. A synthetic land cover

name is reported in capital letters and brackets. All the mapped categories
belong to category 3 of the first level of CORINE: forest and semi natural
areas

Level 2 Level 3 Land-cover types Most significant vegetation formations, EC habitat types, and EUNIS
code

3.1 Forests 3.1.1.
Broad-leaved
forests

3.1.1.1. Mixed deciduous
woods (Forest)

- Fagus sylvatica forests and woodlands (9210*: Apennine beech
forests with Taxus and Ilex) (G1.681; G1.685; G1.686).

- Mixed thermophilous woods with Quercus cerris, Q. pubescens,
Ostrya carpinifolia, Acer obtusatum; locally Corylus avellana e
Populus tremula (91AA*: Eastern white oak woods) (G1.7371;
G1.7372).

3.1.2. Coniferous
forests

3.1.2.2. Pinus spp plantations
(Pinus)

- Pinus nigra (and other coniferous species) plantations.

3.2. Scrub and/or herba-
ceous vegetation asso-
ciations

3.2.1. Natural
grasslands

3.2.1.1. Xeric grassland
(Arid grass)

- Xerophytic grassland dominated by Bromus erectus, Sesleria nitida,
Globularia meridionalis, Helianthemum sp.pl.; generally
discontinuous coverage, includes facies with Brachypodium
rupestre and those of rocky outcrops (Stipa appenninicola ssp.
dasyvaginata) (6210*: Semi-natural dry grasslands and scrubland
facies on calcareous substrates (Festuco-Brometalia) (*important
orchid sites).

- Primary (and secondary) alpine and subalpine grasslands dominated
by genus Carex, Festuca, Sesleria, generally above 2000 m (6170:
Alpine and subalpine calcareous grasslands) (E4.4).

3.2.1.2. Mesophytic grasslands
(Wet grass)

- Mesophytic grassland with continuous coverage dominated by
Brachypodium genuense, Sesleria uliginosa, Nardus stricta.
Generally in depressions (dolines) and on poor slopes with deep
soils (6510: Lowland hay meadows (Alopecurus pratensis,
Sanguisorba officinalis) (E2.2).

3.2.4.
Transitional
woodland--
shrub

3.2.4.1. Scattered trees
embedded in grassland and
shrubs (Shrub)

- Isolated trees or small groups (Quercus cerris, Q. pubescens, Ostrya
carpinifolia, Acer obtusatum) mixed with low scrubls (Juniperus
oxycedrus and J. communis) and residual grassland (5130: Juniperus
communis formations on heaths or calcareous grasslands) (F3.1;
F3.16).

- Heath with Juniperus communis ssp. nana and Arctostaphylos
uva-ursi (generally at higher altitude but also at intermediate altitude
on steep slopes) with isolated Fagus tree (sometimes Ostrya
carpinifolia) (4060: Alpine and Boreal heaths) (F2.2).

3.3. Open spaces with
little or no vegetation

3.3.2. Bare rocks 3.3.2.1. Bare areas (Rock) - Bare soil without vegetation, rocky outcrops. Rock communities with
very low coverage also with Primula auricula and Saxifraga sp.pl.
and Potentilla sp.pl.; scree vegetation dominated by Festuca
dimorpha and Silene acaulis at higher altitude (8120 Calcareous and
calcshist screes at the montane to alpine levels (Thlaspietea
rotundifolii) (H2.4) and 8210 Calcareous rocky slopes with
chasmophytic vegetation (H3.2).
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dimension must be at least twice as large as the landscape
grain (O’Neill et al. 1996), a 250 × 250-m grid was used,
representing an adequate dimension for describing landscape
changes in Italian mountains (Campagnaro et al. 2017).

Then, after a Shapiro normality test, the set of values of the
landscape parameters of each date were statistically compared
through Kruskal-Wallis rank test and the mean values with
confidence intervals (95%) were calculated. To examine
thedifferences between coupled dates, Dunn’s paired compar-
ison test was used (R package FSA; Ogle 2016).

Finally, the relationship between forest gain (composition)
and spatial pattern changes (configuration) over time was ex-
plored by trajectory analysis. Specific relationship space for
each configuration metric (PD, ED, AREA_MN) was built by
plotting the metric values computed for each sampled grid
against the respective composition value (percentage of forest
cover: PLAND). The construction of a multi-temporal rela-
tionship space derived from sampled landscapes offered
sound insight for spatial configuration metrics analysis and
was used here in the assessment of forest change. Then, the
means of the pattern metrics for each year were plotted in the
relationship space, and the chronological trajectories were
drawn by connecting such means with arrows (Carranza et
al. 2015).

Results

Land cover change

The percent of each cover type in the analyzed mountain land-
scape largely varied through time. A consistent increment of

natural woodlands (Forest) occurred over the last three de-
cades, as clearly revealed by the expansion of broad-leaved
forests, initially covering 15.6% of the total area and 20.4% in
2016 (Fig. 1a). On the other hand, the cover amount of the
other cover categories looks quite constant, except for arid
grasslands (Arid grass), which decreased from 31.2% of the
landscape in 1987 to the 26.6% in 2016 (Fig. 1a).

As regards the observed major changes, the transition ma-
trix displayed by chord diagram (Fig. 1b) highlighted that
forest re-growth has mainly occurred at the expenses of
scattered trees (4.9% of Shrub went into Forest) which, in
turn, maintained the same overall extent in time because it
substituted xeric grassland (6.4% of Arid grass went into
Shrub). For absolute values of the transition matrix, see on-
line resource 5.

Spatial pattern analysis of forests over time

Kruskal-Wallis rank test (p < 0.05) comparing the three differ-
ent dates shows significant change for the whole set of land-
scape parameters, highlighting a significant transformation of
the pattern of forested areas (Fig. 2a). Specifically, the percent-
age of landscape covered by forest (PLAND) increased during
the considered time period, as did patch density (PD), edge
density (ED), and mean patch area. Forests, initially occupy-
ing 17.1% of the sampled landscaped, now occupy more than
21.6% of the sample. The density of the patches per sample
also increased from 5.1 patches per sample to 8.3 per sample,
resulting in an increase in edge density. The mean area of
forest patches also increased, but only considering the second
time period (2003–2016), while it remained stable during the
first one (1987–2003).

Fig. 1 a Percentage (%) ofmapped land cover types for 1987 and 2016. b
Chord Diagram summarizing the percentage (%) of each land cover type
which changed into each other during the time interval (1987–2016). To
show transitions, the arrows represent the direction of change, while the

width of the arrow represents the extent (%) of the transition. The internal
colored ring indicates the extent (%) of each land cover type that
remained stable over time. For a detailed description of cover types, see
Table 1. For absolute values of the transition matrix, see online resource 5
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Visual inspection of the relationship spaces (Fig. 2a) evi-
dences that during the reforestation process, spatial pattern
metrics are characterized by index-specific behaviors in rela-
tion to forest cover. Mean patch size tends to be very low for
low forest cover values and exponentially increases when for-
est cover exceeds 50%. In contrast, edge density is character-
ized by a symmetric parabolic relationship, assuming a posi-
tive peak at intermediate values of forest cover (∼ 50%) and
low values at the upper and lower curve tails. Patch density
has an asymmetric parabolic shape along the forest cover gra-
dient, assuming a positive peak when forest reaches almost
20% of the landscape area, and low values for both landscapes
dominated by forests or landscapes where forest cover is very
low (close to 0%).

The projection of mean metric values of each year (1987,
2003, 2016) into the respective relationship spaces, and the
relative trajectories over time, show important changes in for-
est pattern which begun during the first time period (1987–
2003) and accelerated in the second one (2003–2016). In con-
junction with the increment of forest cover, changes in forest

configuration also occurred (Fig. 2b–d). Patch density (PD)
significantly increased (Fig. 2b), even though it is in the lower
tile of the relationship curve (forest cover above 20%). Edge
density (ED) has also been increasing and it is coherently
included in the increasing left side of the parabolic relation-
ship curve (up to 50% of forest cover) (Fig. 2c). Mean values
of mean patch area (AREA_MN) have been increasing and
they will clearly increase as long as the reforestation process
occurs (Fig. 2d).

Discussion

Land cover change

During recent decades, as in other mountain areas in Europe
(Gellrich et al. 2007; Verburg et al. 2010), we have observed a
consistent process of natural forest recolonization at the ex-
pense of the typical heterogeneity of such cultural landscapes.

Fig. 2 aMeans and confidence intervals (CI) for each year (1987, 2003,
2016) for forest pattern metrics (PLAND: percentage of forest cover, PD:
patch density, ED: edge density, AREA_MN:mean patch area). Different
superscripted letters indicate significant differences between dates
(Dunn’s multiple comparison test, p < 0.05). PLAND: percent of
landscape covered by forests, PD: patch density, ED: edge density,
AREA_MN: mean patch area. Trajectories of forests in the relationship
space described by plotting the percentage (%) of forest cover (PLAND)

against forest configuration metrics: b PD, c ED, d AREA_MN are also
reported. Gray dots represent the observed values of pattern metrics
within the whole set of samples (250 × 250-m random sampled grids).
The blue line represents the fitted curves describing the configuration vs
composition metrics relationship. Red dots indicate the mean values of
forest cover (%) and configuration metrics for each date (T1: 1987, T2:
2003, T3: 2016). The arrows display the direction of temporal change
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The observed changes reflect wider socioeconomic trans-
formations occurring in Europe (Cernusca et al. 1999;
MacDonald et a l . 2000) and speci f ica l ly in the
Mediterranean basin, which evolved from a post-war rural
economy to an industrial one (Lasanta-Martinez et al. 2005;
Mottet et al. 2006; Petanidou et al. 2008). Indeed, during
recent decades, in the Central Apennines, the human popula-
tion moved to industrialized areas causing a reduction in
mountain inhabitants in association with an increment in for-
ested lands (Pelorosso et al. 2009). On the other hand, grazing
activities (mainly sheep livestock numbers) that in the past
ensured wide and widespread secondary grasses have recently
dropped with a consequent reduction in open areas and grass-
lands (Evangelista et al. 2016; Frate et al. 2018).

Across the investigated area, the reduction and cessation of
mountain cropping and livestock grazing have allowed the
onset of natural succession processes. Abandonment of
meadows and pastures (Arid grass) growing in areas where
the potential natural vegetation is forest has allowed
shrublands (Shrub) to take over, and in turn to evolve into
woodlands (Forest). While the total amount of grassland de-
creased and forest increased, the total extent of shrubland kept
constant over time. Although different models of succession
were detected in the temperate mountains (Mazzoleni et al.
2004; Bracchetti et al. 2012), these results differ from previous
studies where, together with forest expansion, shrub expan-
sion is listed among the main effects of land abandonment
(Rocchini et al. 2006; Campagnaro et al. 2017). Shrublands
kept similar cover over time, most likely because of the turn-
over, which balances losses (transition to forest) and gains
(areas gained from grassland). Such a peculiarity may be
due to the dispersal and growth features that the tree species
of the analyzed habitats (EC 9210*: Apennine beech forests
with Taxus and Ilex and EC 91AA*: Eastern white oak woods)
tend to adopt in mountain environments. There are two par-
ticular issues to be noted in Italian mountains (Canullo 1991;
Cutini and Blasi 2002): the capacity of some trees (Fagus
sylvatica and Ostrya carpinifolia) to constitute shrub-low ar-
boreal formations that ensure fast dynamism and forest ad-
vancement and the fact that on grazed and impervious areas,
thanks to the easy movement of propagules (anemophilous
entities), the reforestation process is also initiated by tree pio-
neer species (Fraxinus ornus, Ostrya carpinifolia, Acer
campestre, and A. obtusatum).

Spatial pattern of forests over time

The statistical comparison of landscape pattern metrics over
time and the trajectory analysis show a significant transforma-
tion in the composition and configuration of forested areas,
highlighting an ongoing reforestation process. Specifically, in
concomitance with the rise in the percentage of landscape
covered by forest, an increase in the spatial configuration

metrics of forested land (patch density, edge density, and the
mean patch area) also occurred.

The observed changes in forest configuration is most likely
related to two natural mechanisms involved in the reforesta-
tion process: (1) the centrifugal development of existing forest
patches (Bfrontal^ colonization, Rameau 1993) that promotes
the increment in edge density and mean patch area (Geri et al.
2010; Frate and Carranza, 2013) and (2) the settlement of new
isolated nuclei (Bnucleation^ process; Decocq, 2005) with a
consequent rise in the number of patches (Rocchini et al.
2006).

However, Sitzia et al. (2010), in a review paper collecting
the behavior of landscape metrics related to natural reforesta-
tion process, found a common trend as regards forest mean
patch size, which usually tends to increase, while data on the
number of patches (or patch density) and boundary length
(i.e., edge density) are fragmentary and diverse. Such a dilem-
ma can be solved by inspecting the, here adopted, relationship
space of the trajectory analyses. In this context, while the
relationship of forest cover with forest mean patch size is
linear, allowing us to envisage a further linear increment of
forest mean patch size over time, the relationship with patch
density and edge density is not (Neel et al. 2004). In the light
of this, the detected temporal growth of forest edge density
mean values (ED) should continue over time until forest area
reaches 50% of the landscape, after which a further increase in
forest cover should drive to a decline in edge density values
(Long et al. 2010; Carranza et al. 2015). Similarly, patch den-
sity (PD) has been significantly increasing, even though these
mean values are included in the lower tile of the relationship
curve (forest cover above 20%), suggesting that patch density
will slowly start to decline in the coming years with the in-
crease of forested land that goes over the 20% of the
landscape.

Implications for conservation of forested habitats

Trajectory analysis, allowing us to relate changes in spatial
pattern metrics to different levels of forest cover, offered a
basis to envisage the effects of such changes on native flora
and fauna. Since the directions and intensities of response in
biodiversity to land abandonment are heterogeneous across
the Mediterranean basin (Plieninger et al. 2014), we specifi-
cally focused our discussion on some conservation issues of
the Central Apennines. However, it must be noted that such
implications have been inferred from existing literature
connecting landscape pattern to biodiversity field data of the
study area.

The Blinear^ increment of forest mean patch size
(AREA_MN) concurrently with forest cover (PLAND)
highlighted how forest patches expanded and joined into larg-
er ones (Geri et al. 2010; Frate and Carranza 2013). Prior
studies illustrated that the presence of big and well-
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connected patches of natural forest help wildlife survival and
conservation by ensuring habitat availability (Fahrig 1997)
and offer opportunities for organisms to move across the land-
scape (Saura and Rubio 2010). Concerning temperate moun-
tain forests, mainly represented in the area by natural Fagus
sylvatica forests (Habitat 9210*: Apennine beech forests with
Taxus and Ilex), the size of fragments is correlated with plant
species diversity: bigger fragments generally host higher num-
bers of rare, nemoral, and specialist species (Rosati et al. 2010;
Carranza et al. 2012; Scolastri et al. 2017a). Furthermore,
large and well-connected forest patches have ensured optimal
conditions for forest specialist vertebrates (Di Febbraro et al.
2015), forest birds (Tellini-Florenzano 2004), and large verte-
brates that during recent decades increased both in numbers
and distribution (Falcucci et al. 2007).

As the percentage of cover in the prior and new situation is
under 50%, forest edges tend to increase and, in the absence of
disturbance, should further increase in the coming years.
Many authors agree that edge habitats have micro-
environmental conditions that differ from those of interior
forest habitats, such as more light availability and lower mois-
ture (Forman and Moore 1992). The implications of long
edges for the conservation of native temperate forest flora
and fauna could promote the presence of generalist and clear-
ing species, as observed in some Italian temperate forests
(Rosati et al. 2010; Carranza et al. 2012; Scolastri et al.
2017b). Furthermore, forest edges are efficient corridors for
vertebrates, thus allowing the movement of natural fauna over
long distances across the landscape (Roscioni et al. 2014).

The temporal trends observed in the density of forest
patches (PD) is primarily related to a process of colonization
of open formations by many isolated woody vegetation
patches occurring in the former stages of reforestation
(Rocchini et al. 2006) and to the expansion and coalescence
of wooded nuclei in a few patches in the advanced stages
(Sitzia et al. 2010; Frate et al. 2014). The presence of several
small patches across the landscape that may serve as stepping
stones for the movement of fauna should be considered as an
important factor promoting positive effects on species rich-
ness and dispersal (Fahrig 2003; Saura et al. 2014).

Conclusions

Over the past 30 years, the analyzed Mediterranean mountain
area has undergone an intense process of natural forest recol-
onization that began after World War II and that is still in
progress. Management abandonment led to natural succes-
sion: meadows and pastures were abandoned in a region
where the potential natural vegetation is forest. In contrast to
previous studies listing shrub expansion among the main ef-
fects of land abandonment, the total extent of shrubland
remained constant over time because of the fast dynamism

and forest advancement of the involved species, which bal-
ance losses (transition to forest) and gains (areas gained from
grassland).

The significant transformation of the landscape pattern of
forested areas is related to two processes: the centrifugal de-
velopment of existing patches and the establishment of new
nuclei. Trajectory analysis allowed us to draw general conclu-
sions about the spatial pattern dynamics occurring with forest
re-growth, highlighting the non-linear relationship between
forest gain and spatial pattern change over time. Although
previous studies reported fragmentary and diverse observa-
tions about the behavior of landscape metrics related to natural
reforestation process, the trajectory approach revealed that
such observation mainly depends on the stage of reforestation
process, thus on the time at which the reforestation process
was analyzed and recorded.

From our results, sound implications for habitat and species
conservation inMediterraneanmountain forests also emerged.
Forest advancement is likely to provide higher opportunity for
organisms to move across the landscape and an increase in
nemoral and specialist species for Fagus sylvatica forests.
Simultaneously, more edges could promote the presence of
generalist and clearing species until forest cover reaches
50% of the local landscape.

A conservation-oriented management of Mediterranean
mountain forests must contemplate both the role of natural
succession in generating complex and heterogeneousmosaics,
and the importance of maintaining forest patches of different
dimensions and configuration. Management practices such as
moderate grazing activities and harvesting should have a cru-
cial role for mountain landscapes to preserve long-term per-
sistence of native species and they could represent important
measures to be implemented in the definition of landscape
management policies able to fulfill Habitat Directive demands
and legal obligations.
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ABSTRACT
Grassland is one of the most represented, while at the same time, ecologically
endangered land cover categories in the European Union. In view of the global climate
change, detecting its change is growing in importance from both an environmental
and a socio-economic point of view. A well-recognised tool for Land Use and Land
Cover (LULC) ChangeDetection (CD), including grassland changes, is Remote Sensing
(RS). An important aspect affecting the accuracy of change detection is the finding the
optimal indicators of LULC changes (i.e., variables). Inappropriately selected variables
can produce inaccurate results burdened with a number of uncertainties. The aim of
our study is to find themost suitable variables for the detection of grassland to cropland
change, based on a pair of high resolution images acquired by the Landsat 8 satellite
and from the vector database Land Parcel Identification System (LPIS). In total, 59
variables were used to create models using Generalised Linear Models (GLM), the
quality of which was verified through multi-temporal object-based change detection.
Satisfactory accuracy for the detection of grassland to cropland change was achieved
using all of the statistically identified models. However, a three-variable model can
be recommended for practical use, namely by combining the Normalised Difference
Vegetation Index (NDVI), Wetness and Fifth components of Tasselled Cap. Increasing
number of variables did not significantly improve the accuracy of detection, but rather
complicated the interpretation of the results and was less accurate than detection based
on the original Landsat 8 images. The results obtained using these three variables are
applicable in landscapemanagement, agriculture, subsidy policy, or in updating existing
LULC databases. Further research implementing these variables in combination with
spatial data obtained by other RS techniques is needed.

Subjects Natural Resource Management, Spatial and Geographic Information Science
Keywords Change detection (CD), Grassland, Tasseled Cap (TC), Cropland, Normalized
Difference Vegetation Index (NDVI), Variables

INTRODUCTION
Land Use and Land Cover (LULC) techniques form an integral part of many studies
(Kindu et al., 2013; Gupta & Shukla, 2016; Chaudhuri & Mishra, 2016) overlapping with
other research fields (Cardinale et al., 2012). LULC is considered an important factor
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influencing the environment and its changes have a demonstrable impact on climate
change (Tasser, Leitinger & Tappeiner, 2017). Among the land cover types in the European
Union (EU), grassland and cropland are the most prominent, accounting for 44% of the
total area (Eurostat, 2017). Since the 1990s, the main LULC change trends in most post-
communist Central European countries are afforestation, grassing over, intensification,
and urbanisation. Even though the change of grassland to cropland is not as frequent
a transition as it was during the communist era (Kupková & Bičík, 2016), it still elicits a
significant impact on the ecosystem. Grassland plays an irreplaceable role as a natural
habitat of many organisms, helps with the accumulation of greenhouse gases, prevents
erosion, keeps water in the landscape and reduces pollution (European Union, 2016).
However, these benefits are easily disrupted by ploughing the grassland, thus turning
it into cropland. It is, therefore, important to detect such changes, quantify them and
continuously monitor the developments. The occurrence of new cropland at the expense
of grassland is especially prominent in post-communist states that have recently joined
the EU and started to receive agricultural subsidies (Pazúr et al., 2014). This process is
also affected by a number of national and European agricultural policies and initiatives
(Sklenicka et al., 2014), such as the Good Agricultural and Environmental Conditions
(GAEC) (Sklenicka et al., 2015). Change data acquired from remote sensing based models
can, therefore, serve both as a basis for decision-making in the landscape management and
have a socio-economic application in agriculture and its subsidy policy (Esch et al., 2014).

The primary data source for LULC Change Detection (CD) is Remote Sensing (RS).
Multi-spectral satellite images are one of the most commonly used types of RS data, among
which Landsat satellites images stand out due to long-term imaging, a suitable compromise
between spectral, spatial and temporal resolution and free availability (Wulder et al., 2008;
Xian, Homer & Fry, 2009; Chen et al., 2012; Roy, Ghosh & Ghosh, 2014). LULC change
detection using RS data is based on the theoretical assumption that each LULC type has
its own typical spectral signatures. If an LULC type changes, so will change its spectral
signatures (Hussain et al., 2013). In practice, it is often difficult to distinguish the signal
of true changes from the false signals arising from external factors (different atmospheric
conditions, soil moisture, or the phenological stage Jensen, 1996), the selection of RS data
(Lu, Li & Moran, 2014), pre-processing (Dai, 1998) and atmospheric corrections (Song
et al., 2001), the choice of the change detection method, the selection of the variables or
the inexperience of the analyst (Lu et al., 2003). The significance of these uncertainties is
even greater in LULC objects with very similar spectral signatures, which is exactly the
case of croplands with a high degree of heterogeneity and significant effects of different
phenological phases of individual crops and plants (Lu et al., 2003).

Some studies dealing with the classification and change detection of grassland and
cropland have been published (Chen & Rao, 2008; Esch et al., 2014). These categories
are often a part of a comprehensive change detection study (Mas, 1999; Bergen et al.,
2005; Wondrade, Dick & Tveite, 2014; Vorovencii, 2014). We can also find studies aimed
at a more detailed classification on the level of individual croplands (Wardlow, Egbert
& Kastens, 2007; Turker & Ozdarici, 2011) or on grassland change detection (Weeks et
al., 2013). Studies focusing specifically on grassland to cropland change are, however,
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still exceedingly rare (Tarantino et al., 2016). Among the studies closest to the topic of our
study, the papers by Tarantino et al. (2016), who achieved 86.91% accuracy in the detection
of semi-natural grassland to cropland changes in Italy using a cross-correlation analysis
of Landsat 8 OLI images, and by Weeks et al. (2013), who used NDVI differencing for the
change of ‘‘indigenous’’ grasslands in New Zealand and achieved 56% accuracy, can be
mentioned.

Many papers have been published that reviewed the methods and techniques used for
the detection of LULC changes (Singh, 1989; Lyon et al., 1998; Lu et al., 2003; Coppin et al.,
2004; Berberoglu & Akin, 2009; Bhandari, Kumar & Singh, 2012; Hussain et al., 2013; Lu,
Li & Moran, 2014; Tewkesbury et al., 2015), in forest ecosystems (Coppin & Bauer, 1996;
Woodcock et al., 2001; Lu, Batistella & Moran, 2008), urban areas for building detection
(Liu & Zhou, 2004; Sohn & Dowman, 2007; Aleksandrowicz et al., 2014) or for the detection
of imperious surfaces (Xian, Homer & Fry, 2009). Other studies focus on the problem of
mapping the general land use change (Yin et al., 2014) or on agricultural land specifically
(Weeks et al., 2013; Müller et al., 2015; Tarantino et al., 2016). The application of RS in
agriculture is summarised, for example, in a review by Atzberger (2013). The current trend
uses a time series for agricultural change detection (for example, all the available Landsat
imagery), which provides additional phenological information (Müller et al., 2015). In
many cases, an insufficient number of satellite images is available due to cloud cover and,
therefore, bi-temporal change detection is still needed. The alternative approach uses
imagery from two dates, for which the time of the acquisition and the variable selection are
crucial. The potential usefulness of various CD variables and their impact on LULC CDs
has not been sufficiently studied either.

Variables used for CD may be divided into three categories. One category consists of
spectral variables that include spectral bands and derived vegetation indices, transformed
images, segments, sub-pixel features, and classification results. The second category
includes spatial variables such as textures, different scales, the complexity of the landscape
or topography. The temporal variables comprise the third category (Lu, Li & Moran, 2014).
With more than 40 modifications, vegetation indices form the most numerous group of
variables (Bannari et al., 1995). Significant variability and the amount of RS data, as well as
the choice of variables, are very likely to affect the LULC CD, as was shown in other spatial
analyses (Barry & Elith, 2006; Moudrý & Šímová, 2012; Klouček, Lagner & Šímová, 2015).
Using a large number of variables can potentially improve the accuracy of the CD. On the
other hand, such an approach can introduce a number of uncertainties into the detection
and make the interpretation of obtained results difficult (Lu &Weng, 2007).

Despite the fact that LULC change detection has been one of the most discussed RS
topics for decades, to the best of our knowledge, only few studies have focused their
attention on selection of appropriate variables for detection of changes in croplands. The
aim of our study is to find the optimal variable(s) for grassland to cropland detection
based on the Landsat 8 OLI high resolution data and the vector database, called the Land
Parcel Identification System (LPIS), and to test the results for the 2013-2016 period on the
selected territory. We hypothesised that (1) it is possible to find a suitable variable or group
of variables capturing the change of the grassland to cropland due to different spectral

Klouček et al. (2018), PeerJ, DOI 10.7717/peerj.5487 3/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.5487


Figure 1 The study area is (located in the Czech Republic, specifically) comprising a part of Landsat 8
scene Path 192 Row 25.

Full-size DOI: 10.7717/peerj.5487/fig-1

profiles; (2) the greater the amount of the incorporated variables, the more accurate the
CD would be; (3) spectral variables would be more significant than textural ones; (4) an
important aspect of the grassland to cropland change detection would be the time of the
acquisition input satellite data.

MATERIALS AND METHODS
Study area
The study area is located inCentral Europe, namely in thewestern part of theCzechRepublic
intersecting with Landsat 8 scene No. 192/25 with centre point coordinates approximately
50◦22′N, 13◦41′E, see Fig. 1. The study area is on a regional scale (approx. 36,260 km2) and is
characterised by notable variability (topographical, landscape ecology as well as vegetational
variability). This scale and localisation therefore warrants the occurrence of a sufficient
number of both grassland to cropland changes and of no-change areas. The expected
occurrence of changes was manually verified prior to the analysis using freely available
CORINE Land Cover data (http://land.copernicus.eu/pan-european/corine-land-cover/).

Input data
The main data source was a pair of high resolution images taken by the Landsat 8 OLI on
August 3rd, 2013 and August 27th, 2016. The images downloaded from the US Geological
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Figure 2 An example of used datasets. Landsat 8 images, NDVI vegetation index, and (no-)change
grassland to cropland plots (LPIS database) from 2013 and 2016. (A) Landsat 8 image from 2013.
(B) Landsat 8 image from 2016. (C) NDVI RGB composite (R= NDVI 2013, G= NDVI 2016, B= NDVI
2013). (D) (No-)change grassland to cropland plots from LPIS database.

Full-size DOI: 10.7717/peerj.5487/fig-2

Survey (http://earthexplorer.usgs.gov/) contain 9 spectral bands with a resolution of 30 m
(multi-spectral) and 15 m (panchromatic), respectively. Detailed specifications of the OLI
sensor can be found in Roy et al. (2014). At the time of the image selection, the chosen
images were the only one’s available for a pair of scenes that, besides being almost cloudless,
also met the other criteria including the suitable extent, the sufficient temporal distance
between the imaging data, and acquisition at the suitable phenological stage. The most
suitable period for the grassland to cropland change detection is the period shortly after
harvest (late summer, early autumn) (Esch et al., 2014).

As a source of reference data on the use of the agricultural land, we used the Land
Parcel Identification System and its vector database containing the land use data for the
entire territory of the Czech Republic from 2004. The basic unit of LPIS is a group of
adjacent plots representing a continuous area farmed by a single farmer with a single crop
plant. The database classifies the agricultural land into 11 land use categories. Data from
years corresponding with the Landsat images, i.e., 2013 and 2016, was used, see Fig. 2. In
accordance with LPIS classification, cropland is defined as a ‘‘farmed land producing crop
plants requiring annual replanting, which is not grassland’’ in this study. Grassland, on the
other hand, is defined as a ‘‘farmed land under permanent pasture or, where appropriate,
contiguous vegetation dominated by grass, used predominantly for feeding or technical
purposes’’ (The Ministry of Agriculture of the Czech Republic, 2016).
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Figure 3 A scheme of the study methods describing data processing workflow. For validation of models
was used multi-temporal change detection based on object-based classification using Support Vector Ma-
chine algorithm.

Full-size DOI: 10.7717/peerj.5487/fig-3

Images and data pre-processing
Landsat 8 OLI images were obtained at a Level-1T processing level, which includes standard
radiometric, geometric and terrain correction using Ground Control Points and the Digital
Elevation Model. The results of this step were visually inspected for accuracy with regard to
the geometric overlay of the images and the LPIS database. No additional image to image
registration was needed. The raw Digital Number data was converted to surface reflectance
(Song et al., 2001) using FLAASH (Fast Line-of-sight Atmospheric Analysis of Hypercubes)
in ENVI software (version 5.4), and any areas obscured by clouds were manually removed
from the image.

From the LPIS database, both plots with grassland to cropland change and those on
which the grassland remained were extracted. Plots detected as croplands in both time
points (information acquired from LPIS also) were removed from the calculation. In the
area of interest, 570 changed LPIS plots and 33,196 no-change LPIS plots were identified.
To minimise the mixed pixel effect, only plots larger than 1 hectare with a non-elongated
shape were selected. A non-elongated shape was defined as the proportion between the
shape area (ha) and the shape length (m), which had to be greater than 0.045. This threshold
value was expertly set based on the visual inspection and knowledge of the LPIS database.
On the acquired sample, a visual check that focused on the homogeneity of the selected
plots was carried out based on the freely available orthophotos of the Czech Republic. See
Fig. 3 for data processing workflow.

Selection and calculation of the variables
For each scene, 59 LULC change detection variables were calculated. Specifically, the
calculated variables included 36 vegetation indices, 10 textural characteristics, 7 components
of Principal Component Analysis, and 6 Tasselled Cap components (Table 1). The numbers
of variables represent, in our opinion, potentially used spectral and spatial indicators
for change detection in the ENVI software by a common user. The calculation of the
variables was performed by algorithms implemented in ENVI. Spectral-based variables
were calculated from pre-processed spectral bands, while textural variables were calculated
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Table 1 59 change detection variables used in the study for detection of (no-)change from grassland to
cropland. Specifically, 36 vegetation indices, 10 texture characteristics, 7 components of Principal Compo-
nent Analysis and 6 components of Tasseled Cap were used. Numbers represent almost all available vari-
ables in ENVI software. For details see external links.

Group Change detection variables

Vegetation Indices Atmospherically Resistant Vegetation Index, Burn Area
Index, Clay Minerals, Difference Vegetation Index,
Enhanced Vegetation Index, Ferrous Minerals, Global
Environmental Monitoring Index, Green Atmospherically
Resistant Index, Green Difference Vegetation Index,
Green Normalized Difference Vegetation Index, Green
Ratio Vegetation Index, Green Vegetation Index,
Infrared Percentage Vegetation Index, Iron Oxide, Leaf
Area Index, Modified Non Linear Index, Modified
Normalized Difference Water Index, Modified Simple
Ratio, Modified Triangular Vegetation Index, Modified
Triangular Vegetation Index, Improved Non-Linear Index,
Normalized Burn Ratio, Normalized Difference Built Up
Index, Normalized Difference Snow Index, Normalized
Difference Vegetation Index, Optimized Soil Adjusted
Vegetation Index, Red Green Ratio Index, Renormalized
Difference Vegetation Index, Simple Ratio, Soil Adjusted
Vegetation Index, Structure Insensitive Pigment Index,
Sum Green Index, Transformed Difference Vegetation
Index, Visible Atmospherically Resistant Index, WorldView
Improved Vegetative Index, WorldView Water Index

Texture Contrast, Correlation, Data Range, Dissimilarity, Entropy,
Homogeneity, Mean, Skewness, Second Moment, Variance

Principal Component Analysis PCA 1, PCA 2, PCA 3, PCA 4, PCA 5, PCA 6, PCA 7
Tasseled Cap Brightness, Greenness, Wetness, Fourth, Fifth, Sixth

Notes.
For more information about the variables visit http://www.harrisgeospatial.com/docs/alphabeticallistspectralindices.html or
http://www.harrisgeospatial.com/docs/backgroundtexturemetrics.html.

from the panchromatic band (see ENVI help in Table 1). For each variable, the mean value
for every plot of the LPIS-acquired database was obtained using the ArcGIS (version 10.4)
Zonal Statistics tool for both 2013 and 2016.

Statistical assessment
To determine the optimal set of variables for grassland to cropland change detection, we
first excluded the highly correlated ones (r > 0.9) from the full correlation matrix (see
Supplemental Information 1). Where correlations were detected, only the variable most
frequently used in the available literature was included into the subsequent analysis. From
the original set of 59 variables, 41 were eliminated in preselection due to high correlation
and the uncorrelated variables are presented in Table 2.

The best set of variables was found using logistic regression specifically based on the
lowest AIC (Akaike Information Criterion) (deLeeuw, 1992) using Generalised Linear
Models (GLM) with a defined binominal distribution of errors (more about GLM can be
found, e.g., in Dobson & Barnett, 2008). Models, from one to seven members, were found
by permutation of all the combinations of variables with the ‘glmulti’ package in R (version
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Table 2 Non-correlated variables used for detecting grassland to cropland (no-)changes.

Group Not correlated variables

Vegetation indices Normalized Difference Vegetation Index, Simple Ratio,
Sum Green Index

Texture Contrast, Data Range, Entropy, Homogenity, Mean, Second
Moment, Skewness

Principal component analysis PCA 1, PCA 2, PCA 3, PCA 4, PCA 7
Tasseled cap Brightness, Wetness, Fifth

3.3.2). Models with a higher number of variables than seven were best found by AIC in a
Stepwise Algorithm in R because of the time-consuming nature of the previous method.
The calculated AIC values for the models based on two - fourteen variables were very
similar (only one-variable model using AIC values was significantly different), so only the
models, where the AIC values are at least slightly changed (one, three, five, seven, fourteen),
were chosen for the accuracy assessment.

Classification and accuracy assessment
A practical accuracy assessment of the created models and the Landsat 8 images only
(Table 3) was undertaken using the object-based multi-temporal change detection. The
variables of the models from both years were merged, based on statistic calculation, into a
single image (Layer stacking tool). The training data for classificationwas selected fromall of
the 33,766 plots frompre-prepared LPIS database (‘Images and data pre-processing’). Based
on stratified random sample design, 300 plots with change and 1200 without change were
chosen (Congalton & Green, 2009). Borders of selected plots from LPIS database were used
as the segments of the object-based classification. Using slides consisting of variables and
training data, changemaps were created in ENVI software. Due to non-normal distribution
of the input data, the non-parametric Support Vector Machine (SVM) classifier (Lu &
Weng, 2007) was used for classification. The settings of the SVM algorithm was set as the
default. The Kernel type: Radial Basic Function; Gamma in Kernel Function: the inverse
of the number of bands in the input image; The Penalty Parameter: 100; The Pyramid
Levels: 0; and the Classification Probability Threshold: 0. The same methodology was used
for the change detection based only on the Landsat 8 images (the amount of training and
validation samples, classification algorithm, etc.).

Finally, the accuracy of the change maps was calculated by comparison with stratified
random validation (testing) samples extracted from the pre-prepared LPIS database
(excluding the training data) using an confusion matrix. The sampling design was inspired
by Zhen et al. (2013) and Olofsson et al. (2014). The assessment was based on evaluating
the number of correctly classified 200 change and 800 no-change plots into change maps
with validation plots from the LPIS database. A 95% confidence interval was calculated
from the overall accuracy of the models. The models accuracy has been tested with a
homogeneity test of binominal distribution. The models have been tested against each
other using Holm’s p-value adjustment for multiple comparisons.
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Table 3 Summary of the validated models for the grassland to cropland change detection based on dif-
ferent set of variables. The value of AIC specifies the information potential of models.

No. of variables Change detection model AICa

One Normalized Difference Vegetation Index 5,633.39
Three Normalized Difference Vegetation Index, Wetness, Fifth 4,592.41
Five Normalized Difference Vegetation Index, Wetness, Fifth,

Brightness, Sum Green Index
4,263.74

Seven Normalized Difference Vegetation Index, Wetness, Fifth,
Brightness, Sum Green Index, Second Moment, PCA 2

4,060.35

Fourteen Normalized Difference Vegetation Index, Wetness, Fifth,
Brightness, Sum Green Index, Second Moment, PCA
2, PCA 1, PCA 3, PCA 4, PCA 7, Data Range, Contrast,
Skewness

3,950.90

Notes.
aAIC (Akaike Information Criterion).

Table 4 The accuracy of models (%) calculated based on different sets of variables by non-parametric
classifiers Support Vector Machine (SVM).

No. of
variables/model

Change
PA

No-change
PA

Change
UA

No-change
UA

OA 95%CI

One 46.00 98.63 89.32 87.96 88.10 86.09–90.11
Three 49.50 98.88 91.67 88.68 89.00 87.07–90.94
Five 46.50 99.00 92.08 88.10 88.50 86.52–90.48
Seven 52.00 98.25 88.14 89.12 89.00 87.06–90.94
Fourteen 55.50 98.38 89.52 89.84 89.80 87.93–91.68
Landsat image 59.00 98.25 89.39 90.55 90.40 88.57–92.23

RESULTS
Models for change detection
The lowest AIC was obtained from the model with fourteen variables (3950.90), the highest
from the model using a single variable (5633.39). The single most significant variable
was the NDVI (Normalised Difference Vegetation Index), which was represented in all
the models. In the models with a lower number of variables, variables based on spectral
information were predominantly used. The separability of the model with one variable
(NDVI) is demonstrated by Fig. 4. With additional variables, textural variables began
to play a greater role, see Table 3. The summary of calculated models can be found in
Supplemental Information 2.

Change maps evaluation
The overall accuracy of the change maps generally increases with the increasing number
of variables in the models. The best change map was created from the highest number of
variables (89.80% accuracy, Kappa 0.63), however classification based on a single variable
provided only slightly inferior results (88.10% accuracy, Kappa 0.55) as illustrated in
Table 4. These findings were statistically confirmed by the homogeneity test for binominal
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Figure 4 2D scatter plot created fromNDVI average values of change and no-change plots. Points rep-
resent training data (300 change, 1,200 no-change plots). X-axis belongs to NDVI 2016 and Y -axis be-
longs to NDVI 2013 (one-variable model).

Full-size DOI: 10.7717/peerj.5487/fig-4

distribution. So, we cannot conclude (on a 95% confidence level), that one of the models
is more accurate, see Fig. 5.

Looking more closely, the improvement in accuracy with an increasing number of
variables is associated only with the increasing Producer’s Accuracy (PA) of the change
class (one-variable model 46.00% and fourteen-variable model 55.50%). As shown in
Table 4, there is an improvement in the change class PA quality of the model between the
models using one and three variables. The rest of the confusion matrix parameters (User’s
Accuracy, Commission and Omission) were very similar in all the cases. Contrary, the
no-change detection did not show any notable improvement with an increasing number
of variables (PA 98.25–99.00%). All change maps, however, underestimated the number
of change plots and overestimated the number of grassland to cropland no-change plots
(Fig. 6). The results indicate that classification of the change and no-change plots has
achieved sufficient accuracy. If we compare the accuracy of the change maps based on a
statistically selected set of variables with change maps created from the Landsat images
(OA 90.40%, Kappa 0.66), there is not any significant difference. The detailed confusion
matrices are available in Supplemental Information 3.

DISCUSSION
In accordancewith the results, it is possible to use statistically selected variables for detection
of grassland to cropland land cover changes. At first sight, it could be apparent that it is
sufficient to only use the NDVI vegetation index for this type of analysis. However, based
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Figure 5 Overall accuracy (%) of calculated models with 95% confidence intervals.
Full-size DOI: 10.7717/peerj.5487/fig-5

on the visual inspection of the misclassification in all the change maps and the confusion
matrix (Supplemental Information 3), it is clear that the largest change detection inaccuracy
is in a case when differentiating grassland and cropland plots with green plants. The largest
number of these plots were poorly classified in the case of using only a one-variable model
based on NDVI (the lowest Producer’s Accuracy). This result is not surprising because
the surface reflectance of both categories is, in the spectral range of the Landsat 8 bands,
almost identical and the NDVI index even uses two spectral bands (Red and Near Infrared).
Only the NDVI variable can be used in the situation, when almost all plots are in the same
phenological phase. However, this is not the case of our study and it is not common in the
most of analyses, where some parts of the area (mountains vs. lowlands) are in different
phenological phases. Therefore, the addition of some variables based on another spectral
band is needed.

In our study, almost all vegetation indices were significantly correlated. The NDVI
variable was chosen as the most appropriate because of its frequency of use in research.
The statistical evaluation, however, indicates that very similar results would be achieved
with any of the other vegetation indices closely correlated with the NDVI one, see the
correlation matrices in Supplemental Information 1.

A good compromise among improving the accuracy of detection, the demands for
computational time and complications of the interpretation of the obtained results,
seems to be supplied by NDVI with the Wetness and Fifth components of Tasselled
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Figure 6 Comparison of created change maps with Landsat 8 images and LPIS database. (A) One-
variable model. (B) Three-variable model. (C) Fourteen-variable model. (D) Landsat 8 images only
model. (E) Landsat 8 image from 2013. (F) Landsat 8 image from 2018 with (no-)change plots from LPIS
database.

Full-size DOI: 10.7717/peerj.5487/fig-6

Cap (three-variable model in the study). These variables are more sensitive to different
conditions of the grassland plots and cropland plots with the green plants. The advantage
of the three-variable model is also the relatively small number of variables, allowing the
utilisation ofmethods based on the determination of an optimal change detection threshold
(Chen & Rao, 2008; Otukei & Blaschke, 2010). These findings related to crop phenology,
besides other conclusions, point an importance of appropriate time acquisition of satellite
images. It also confirms the hypothesis about an importance of this aspect for the grassland
to cropland change detection.

The suitability of NDVI for the classification and change detection has been
demonstrated in several studies (Lunetta et al., 2006; Wardlow, Egbert & Kastens, 2007;
Pu et al., 2008; Bhandari, Kumar & Singh, 2012; Esch et al., 2014; Aleksandrowicz et al.,
2014; Gandhi et al., 2015; Nagendra et al., 2015) as well as in those studies successfully
combining NDVI with Tasselled Cap (e.g., Chen & Rao, 2008).

Introducing too many variables into a model does not necessarily lead to achieving
better results (Lu &Weng, 2007), which underlines the importance of selecting the most
appropriate variables for change detection. In this case, the best accuracy was achieved
by using directly bands of Landsat image instead of calculated models due to almost all
variables (outside the spatial variables) were based on similar spectral bands.

The study results could have been, theoretically, influenced by a number of uncertainties
that we, however, strived to eliminate, e.g., through the pre-processing of the satellite images
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(atmospheric correction, registration of images and its visual verification). No object is
shifted by more than 1/2 a pixel between two frames (Dai, 1998). The selection of the
Landsat 8 OLI pairs was predominantly limited by the launch of the satellite mission
(2013) and by the cloud cover. Still, a suitable pair of pictures in a suitable phenological
phase according to the recommendations (Coppin et al., 2004; Hájková et al., 2012; Esch
et al., 2014; Tarantino et al., 2016) was found. The selection of the suitable acquisition
period depends on the geographical conditions (especially longitude, latitude or altitude)
of the observed area. From this point of view, the presented methods and results are
relevant for similar environmental conditions in central Europe. Another uncertainty is
a possible error in the LPIS reference database as the land use data is entered directly by
the farmers themselves. Also, the information in the LPIS differs slightly from the date
of acquisition of the satellite imagery, as it refers to the end of the particular year. No
better reference database covering the entire territory of the Czech Republic on such a
detailed scale is available however. Moreover, using such a high number of individual
plots combined with suitable statistical methods ensured that even if the information was
inaccurate by a small fraction, it should not have any significant impact on the results
of our study. The accuracy of the resulting change maps could have been affected by
selection of the change detection method also. An object-based classification was used
in the multi-temporal change detection as it is, according to literature, a more suitable
approach for high resolution data, when the pixels are significantly smaller than the object.
In this case, grouping pixels into segments is needed (Blaschke, 2010). The ratio of change
to no-change units in our study is approximately 1:50 and, therefore, the stratified random
sampling design with a proportion of 1:4 (change vs. no-change) for the training and
validation data was used.

LULC change detection most commonly employs Post-Classification Comparison
(PCC) (Otukei & Blaschke, 2010), it is, therefore, rather a classification than a pure change
detection task. For many applications, it is important to describe the trajectory of the
change. On the other hand, the knowledge about the occurrence of (no-)change (so-called
pre-classification, or bi-temporal change detection Coppin et al., 2004) is sufficient for
many other tasks. If this is the case, the choice of suitable variables is the key to acquiring
quality results, and this is where the contribution of our study can be deemed significant.
The methods used here can be applied to CDs of other LULC categories as well. It is a
well-known fact that finding suitable variables streamlines analyses, while at the same time
improves the results (Lu, Li & Moran, 2014).

Our results indicate that we are nearing a maximum accuracy of the grassland to
cropland change detection achievable from a pair of high resolution multi-spectral images.
Possible improvements could be brought about by implementing new data into themodels.
Examples of such supplementary data could include a time series of high resolution images,
e.g., Landsat or Sentinel-2 (Esch et al., 2014), very high resolution data (Tarantino et al.,
2016), data with a different resolution (Lu, Batistella & Moran, 2008; Turker & Ozdarici,
2011), data captured by other RS methods (Smith & Buckley, 2011), for example radar
(Sentinel-1) and thermal data (Landsat 8 TIRS) or the incorporation of an existing GIS
database (Hussain et al., 2013). Hussain et al. (2013) and Lu et al. (2003) both state that
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hybrid methods of change detection combining multiple approaches can increase the
accuracy of change detection.

The variables selected in this study can be used with sufficient precision as a source
of data for updating existing LULC databases or as a tool for setting agricultural subsidy
policies and their implementation. As the reference dataset used in the presented study was
quite large, it is relatively safe to assume the applicability of using the results for other studies
addressing this change detection problem in the whole of Central Europe. The results are
relevant for areas with similar geographical conditions, especially regarding the latitude.
However, the selected statistical methods and classification algorithms should be robust
due to the used images (full scene of Landsat 8) covered a large area with topographical
variable conditions (lowlands, highlands, mountains).

CONCLUSIONS
This study provides an analysis of the utilisation of selected remote sensing variables
(vegetation indices, textures, Principal Component Analysis, and Tasselled Cap analysis)
for grassland to cropland change detection based on a pair of Landsat 8 OLI images and
the Land Parcel Identification System (LPIS) vector database. The results confirm the
principal hypotheses that (1) there are suitable variables usable for grassland to cropland
change detection; (2) increasing the number of variables used in a model leads to increased
accuracy of the change detection, but to achieve the highest accuracy, it is necessary to use
original Landsat 8 bands; (3) spectral variables play a more important role than textural
variables in the change detection; (4) the appropriate time of the acquisition satellite images
is important for grassland to cropland change detection. In view of the accuracy of the
created change maps, which was verified using the reference database, we consider a model
utilising three variables (namely NDVI, Wetness and Fifth components) the most suitable.
Incorporation of additional variables into the model does not significantly improve the
accuracy of the change map. By analogy, the methods used in this study can be applied
for the CD of other LULC categories than solely those based on grassland to cropland
change. The models prepared in this way can serve as data sources for updating the current
LULC databases or as a tool for creating agricultural subsidy policies. As the selection of
variables was based on a large dataset of reference data on grassland to cropland change
detection, the applicability for other studies can be safely assumed. Our conclusions are
valid for analyses on a regional scale in Central Europe using high resolution data. To
further improve the grassland to cropland change detection using RS, research combining
our variables with spatial data acquired using other RS techniques is needed.
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7. Comments on Results 

As the discussion and comments on the results are already present in the published papers, this 

chapter has a different goal than that typical in scientific publications. In the first part of this chapter, 

I will present my subjective and personal views on the individual studies. I will explain why the 

particular methods were chosen, clarify my contribution to these studies and focus on the problems 

that arose during my work on these studies. In the conclusion and outlook part, I will shortly present 

general comments valid across all presented studies.  

7.1 Wind turbine impact on near-ground air temperature: a long-term field 

measurement  

In this paper, we observed in a long term the temperature in the vicinity of wind farms. Reviewing 

available literature revealed that the effect of wind farms on the temperature in their vicinity can vary 

throughout the day and the season. There was also a certain ambiguity in respect of different effects 

of the wind farms during the day and at night. All of these reasons led us to the conclusion that to be 

able to monitor the real effects, it will be necessary to perform measurements on hourly basis over 

the period of several months. At present, however, there are no satellites providing the requested 

temporal and spatial resolution. The needed nominal resolution was 200m, which would provide a 

clean pixel with a temperature affected by the wind turbine. A sufficient spatial resolution would be 

provided by Landsat satellites, those, however, with their periodicity of 16 days, cannot meet the other 

condition of temporal resolution in the order of hours.  

Another factor supporting the use of direct measurement was the fact that RS only provides so-called 

skin temperature values. That means that the radiation registered at the satellite originates 

predominantly from the top layer of molecules (more about skin temperature can be found e.g. in Jin 

and Dickinson (2010)). The skin temperature is however very susceptible to the actual direction and 

velocity of the wind while the directly measured temperature is more accurate, more stable over time 

and at the same time better reflecting the effect of the wind farm on the surrounding environment.  

Despite these advantages, direct measurement also has its drawbacks. The susceptibility of the sensors 

to microclimatic conditions turned out to be the greatest disadvantage. A typical feature of RS-

detected temperatures is averaging – the temperature in the particular pixel is a sum of partial 

contributions of all surfaces in the given pixel. Contrary, direct measurements can be affected by 
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specific conditions found in a very small (in the case of our TMS sensor, several centimetres) 

surroundings. If, for example, the sensor is placed in a small hollow, its immediate surroundings is likely 

to be damper, which will result in a more stable temperature curve.  Another drawback is the 

susceptibility of the sensors to damage or break-ups. In our experiment, I originally had 26 TMS TOMSR 

sensors at my disposal. They however gradually succumbed to malfunction, especially due to a 

frequent ice forming and thawing, which caused a gradual increase of fine gaps resulting in a 

subsequent destruction of the sensor. This affected 7 sensors over the course of the study. Another, 

unexpected and perhaps even worse by that, was an ordinary human curiosity, ignorance or even 

maliciousness. Before the experiment started, an agreement was reached with the plot owner allowing 

us to place the sensors on the premises. Each sensor was labelled with a leaflet explaining the purpose 

and explanation of the experiment, thanks for consideration and personal contact. Unfortunately, 

despite these measures, 5 more sensors where (un?)intentionally ran over by a tractor. For these 

reasons, I had to wrap up the experiment, originally designed to last 12 months, after 5 months already 

as even after that period, I was left with only 14 out of original 26 functional sensors. 

 

Fig. 4 A sensor destroyed after being ran over by a tractor.  
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Despite the above mentioned problems, we managed to acquire a sufficient amount of data from 

different weather conditions to be able to perform an assessment of the results. The results were quite 

surprising when compared to those of previously published studies, e.g. those of Baidya Roy (2011) or 

Zhou et al. (2013). There, a cooling effect of the turbine on the surroundings was observed during the 

day and warming during night. In our study, contrary, none of that was proved (with one exception). 

Personally, I tend to explain the discrepancy predominantly by different conditions. Unlike in other 

studies, our turbine was located in a mountainous area. The area is susceptible to a natural occurrence 

of turbulent flow on itself. It is however the turbulent flow generated by the wind farm that is typically 

used as an explanation of the effects of the wind farm on the surrounding climate (Baidya Roy and 

Traiteur 2010). As in our environment, the turbulent flow was probably to a great extent present 

naturally, we were unable to show a consistent effect of the wind farm on the surroundings. Another 

possible reason may lie in the direct temperature measurement while Zhou et al. (2013) only measured 

the skin temperature. The study was published in a prestigious journal Renewable Energy. 

 

7.2 Taxonomic diversity, functional diversity and evolutionary uniqueness in bird 

communities of Beijing’s urban parks: effects of land use and vegetation structure 

In this paper, my task was predominantly to use simple classification techniques and vectorization to 

find out the size of water bodies and parks, to delineate edges of urbanized areas and to measure a 

distance of each directly measured point from those. All these tasks were relatively simple and 

straightforward apart from the delineation of the edge of the city of Beijing. To facilitate a simple 

statistical evaluation and due to limitations of the intended statistical approaches, it was necessary to 

specify a definite number, without any uncertainty. 

The efforts to determine a definite number however can lead to substantial uncertainties. As 

mentioned for example by Rocchini et al. (2013), classification methods used in the RS often lead to 

creating a limited number of discrete categories, which however often does not reflect on the reality 

and natural substance of the phenomena on the surface of the Earth where the categories are only 

gradually changing into one another. Such classification approaches therefore may not reflect the real 

state of the phenomenon and in effect can lead to a loss of information contained in the original 

images.  

In this study, it was no different. The real borders of the city of Beijing gradually dissipate into the 

surrounding countryside and a dense mosaic of developments becomes first an area with more 

sparsely scattered buildings, which subsequently turns into an open landscape. At first, I attempted to 

overcome this lack of existence of a firm border by determining a firm threshold in the spectral 
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channels of the landscape reflectance or through derived indices (NDVI or Built-Up Area Index). None 

of those approaches was however satisfactory over the entire border. Another approach that could 

have resolved the issue was to use one of fuzzy/soft classification methods instead of hard 

classification techniques. In those methods, the area in question does not necessarily have to be 

assigned into one of the two categories, they leave the room for “unclear” pixels. Fuzzy classifications 

can mimic human thinking and allow the expression of probability with which the pixel belongs to a 

given category (e.g., the pixel is with a 70% probability a water body and with 30% probability a 

grassland). Spectral unmixing is another soft classification method with the resulting spectral curve of 

a pixel in question being thought of as of a combination of n spectral curves with a uniform surface 

(so-called endmembers). In the resulting product, it can be said how much of the surface in the 

particular pixel is covered by the user-defined land cover types (Jones and Vaughan 2010). Such results 

would however not be fully satisfactory for subsequent analyses. For those reasons, I opted in the end 

for the use of a raster from the study of Yang et al. (2013) who defined a sharp border of Beijing 

(although on a coarse raster). 

7.3 Digital elevation models as predictors of yield: Comparison of UAV and other 

elevation data sources 

This paper was prepared in a little unusual way. Thanks to our cooperation with the Faculty of 

Engineering, we performed together one of the first UAV flights with the purpose of acquiring data for 

creation of a detailed digital model using the structure from motion technique. As our Faculty lacked 

both the necessary know-how and technologies at the time, that flight had to be performed by an 

external subject. As it turned out, however, the overlap of the acquired photos was relatively low for 

processing using the required method. The resulting model had therefore a high number of “holes” 

and was therefore unsuitable for the original study purpose, i.e. the effect of precision farming on 

microtopography.  

We have therefore acquired a dataset/digital model of a field that could not have been used for the 

original purpose. For that reason, we (in particular with my colleagues Komárek and Kumhálová) came 

up with a new study concept where we correlated the data on crop on that field with detailed SfM 

data and freely available laser scanning models. Despite an interesting result, namely that our 

significantly more detailed data have not resulted in a significant improvement for such models, the 

main purpose of the study was accomplished through presenting/publishing the information at a 

conference and in conference proceedings and thus introducing the capabilities of SfM technique to 

the experts in the field of agriculture as a novel method in the field. 
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7.4 Reforestation dynamics after land abandonment: a trajectory analysis in 

Mediterranean mountain landscapes  

In this study, we were observing the development of land cover in the region of Apennines, central 

Italy, namely in two protected areas. Ever since World War II, a notable decline of population due to 

migration from the mountainous areas to the lowland urban regions is apparent there.  RS brought in 

this area an independent verification of many observations previously made directly by ground 

sampling. The main benefit of the use of RS when compared to ground sampling lied in a possibility of 

the quantification of all processes over the entire area as well as in the opportunity to utilize an 

extensive database of archived images.  

My tasks in the study included in particular processing of Landsat satellite imagery (namely Landsat 5, 

7 and 8) and subsequent change detection analysis. Thanks to the long-term database of Landsat 

images, I was able to perform an analysis of a period of over 29 years (1987 till 2016). 

The biggest complication of this analysis rested in the missing direct data from the site. Due to the 

extent of the area, along with high financial and time demands, I had no opportunity to collect the data 

directly in the area of interest. The collection of real-life data is however crucial for such a study for 

two reasons. The first reason is the need to create a land cover database that can be used as training 

data for algorithms for the automated classification. Secondly, it is necessary to verify the accuracy of 

each classification method. We managed to overcome this problem through the use of available data 

from other sources. The primary source was Google Street View where individual land cover types 

used in our study could be relatively well distinguished. Additional auxiliary information was extracted 

from geo-tagged photographs from Flicker. These two sources enabled us to find 488 calibration points 

in total for accuracy assessment. The accuracy was 85.4 %.  

7.5 Selecting appropriate variables for detecting grassland to cropland changes 

using high resolution satellite data 

This paper built on the Master’s thesis by Tomáš Klouček. My involvement rested predominantly in the 

experimental design, its statistical evaluation and manuscript preparation. The original idea of the 

research was to detect the change of the arable land to grassland. That phenomenon has been 

described, mainly due to the return to the market economy, restitutions, land abandonment or 

abandonment of cultivation where there were adverse natural conditions (Boučníková and Kučera 

2005). Unfortunately, as the first experiments showed, the process of arable land succession is very 

slow and it can take several years till the former fields begin to show the spectral characteristics of the 

original grassland. For this reason, we decided to take a different route, i.e., to detect the opposite 

change of grassland to cropland. This is a very abrupt process and, therefore, easier to detect in a short 
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time horizon. As training data, we used LPIS database, which contains annual data about type of 

farming on individual plots of land. The aim of this research was to create a potential tool of automatic 

inspection of land management on the agricultural land in the Czech Republic. 

After finding an agreement, we opted for a method of search for various combinations of predictors 

(spectral or textural indices) until a proper combination facilitating the grassland to cropland change 

detection is found. Despite this approach being scientifically sound, I would not use it again. It became 

soon apparent that many indices are closely correlated, often more than r=0.98 (see manuscript 

supplement), which led to an immense amount of redundant work. In my opinion (supported by the 

opinion of one of the manuscript reviewers), a far more elegant approach would lie in observation of 

spectral profiles of the given phenomena and to select spectral bands for detection only based on such 

knowledge. Thereafter, it is possible to focus on spectral indices working within those bands. 

Another significant issue of the study was a major heterogeneity of the study area. As we selected an 

area containing both lowlands in the vicinity of major rivers and mountainous border regions, climate 

conditions and therefore stages of agricultural process differed throughout the study area. It is obvious 

that the change of grassland to cropland is best detectable at the moment of ploughing up the 

cropland. However, due to different climate conditions across the area, this moment was at different 

times in different locations, which significantly complicated a selection of a suitable time point.  

Despite those issues, we managed to find suitable indices and time points and to publish the research 

in a prestigious journal. 

8.  Conclusion and outlook 

In this thesis, I have described and successfully used several types of ground measurement and remote 

sensing techniques to study environment and its changes. The main advantages and disadvantages of 

each study can be seen either in the scientific papers or in the comment part above. When we decide 

to use remote sensing data, then we usually have to choose between temporal and spatial resolution. 

There is trade-off present in the systems, and with increasing temporal resolution we usually end with 

coarse spatial resolution and vice versa. For example, sensors MODIS on the TERRA and AQUA satellites 

has the temporal resolution from one to two days, but their best spatial resolution is only 250 m. In 

contrast, Sentinel-2 satellite has 10 m resolution however temporal resolution of five days. 

To choose the appropriate sensor for observing of different aspects of the environment, we have to 

consider the specific parameters of the satellite. In the areas of geology, forestry or land cover and 

land change detection the appropriate periodicity is around month or years and the nominal spatial 
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resolution in the order of tenth meters. On the other end, there are areas (i.e. emergency response, 

Precision Agriculture) where the demands on the spatial and temporal resolution are significantly 

higher. 

 

Fig. 5 Spatial and temporal resolution for selected applications (Jensen 2000). 

Alternatively, ground measurement is preferred in cases where one of the resolutions of the remote 

sensing systems are insufficient or in cases where acquisition costs are too high. 

Very interesting and perspective approach of remote sensing is UAV. They offer higher flexibility, lower 

operational costs and allow recording in the higher temporal and spatial resolutions in contrast to 

satellites or aircraft (Vaccari et al. 2015). With UAV we can overcome the factor of clouds, which is 

limiting for satellite observation, especially in conditions of Central Europe. On the other hand, there 

are still some limitations especially due to weather conditions (rain or strong wind) or legislation 

restrains. 
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Fig. 6 Mean global cloud cover in all available Landsat 8 scenes between September 2013 and August 

2017 (Zhu et al. 2018). 

The amount of the cloud cover over some areas such as central Europe is also rising importance of 

radar data. Their main advantage is ability to penetrate signal through clouds. The main free source of 

such data is nowadays Sentinel 1 satellite. 

In the near future, we can expect several improvements of the earth observation capacity. One of the 

milestones is the LIDAR on the international space station (ISS). This LIDAR system called Global 

Ecosystem Dynamics Investigation – or GEDI is first of its kind and should increase the capability of 

observing of forest structure, carbon recourses and biodiversity of the world. Similar aim have also 

first of its king P-band polarimetric SAR satellite called BIOMASS. The satellite antenna will be the first 

earth observing SAR satellite observing in P-band which could penetrate forest canopy with the spatial 

resolution of 200m. 

Several improvements could be expected also in the non-space remote sensing. One of the most 

progressive technology is UAV. We can expect further improvements of the flight duration and payload 

capabilities. Another promising technology (but still not fully available yet) is the High Altitude Pseudo-

Satellites (HAPS). These technology is filling the gap between satellites and a drones. These unmanned 

aircraft are able to fly in very high altitudes (even in the stratosphere) for a long time (few months 

nowadays) and make an almost continual investigation of the requested areas. 
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