
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

TRAJECTORY DATA PREPROCESSING FRAMEWORKFOR DISCOVERING SEMANTIC LOCATIONSRÁMEC PRO PŘEDZPRACOVÁNÍ DOPRAVNÍCH DAT PROOBJEVOVÁNÍ SÉMANTICKÝCH TRA-
JEKTORIÍ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR ANNA OSTROUKH
AUTOR PRÁCE
SUPERVISOR Ing. MAZEN ISMAEL, MSc.
VEDOUCÍ PRÁCE

BRNO 2018

Abstract
The main goal of this thesis is to study existing approaches for trajectory data preprocessing
with a focus on semantic trajectories, discovery and development of a framework, which
integrates trajectory data from GPS sensors with semantics. The problem of raw trajectories
analysis is that it cannot be as comprehensive as the analysis of trajectories containing
meaningful context. The study of different approaches and algorithms are followed up
by the design and implementation of the framework, which finds semantic locations by
application of a density-based clustering algorithm on trajectories stops. The proposed
framework is evaluated on real datasets containing raw GPS records.

Abstrakt
Cílem práce je vytvoření přehledu o existujících přístupech pro předzpracování dopravních
dat se zaměřením na objevování sémantických trajektorií a návrh a vývoj rámce, který in-
tegruje dopravní data z GPS senzorů se sémantikou. Problém analýzy nezpracovaných tra-
jektorií spočíva v tom, že není natolik vyčerpávající, jako analýza trajektorií, které obsahují
smysluplný kontext. Po nastudování různých přístupů a algoritmů sleduje návrh a vývoj
rámce, který objevuje semantická místa pomocí schlukovací metody záložené na hustotě,
aplikované na body zastavení v trajektoriích. Návrh a implementace rámce byl zhodnotěn
na veřejně přístupných datových souborech obsahujících nezpracované GPS záznamy.

Keywords
Semantic trajectories, traffic data preprocessing, semantics enrichment.

Klíčová slova
Sémantické trajektorie, předzpracování dopravních dat, integrace semantiky

Reference
OSTROUKH, Anna. Trajectory data preprocessing framework for discovering semantic lo-
cations. Brno, 2018. Master’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Ing. Mazen Ismael, MSc.

Rozšířený abstrakt
Cílem práce je vytvoření přehledu o existujících přístupech pro předzpracování dopravních
dat se zaměřením na objevování sémantických trajektorií a návrh a vývoj rámce, který inte-
gruje dopravní data z GPS senzorů se sémantikou. Diplomová práce na začátku vysvětluje
důležité pojmy, jako například co je trajektorie a trajektorie integrovaná se sémantikou.
Dále popisuje problém analýzy nezpracovaných trajektorií. Poté práce věnuje pozornost
obecným metodám předzpracování dopravních dat, zaměřených na vylepšení kvality (re-
dukce šumu a odlehlých hodnot) a redukci výpočetní náročnosti (komprese dat) pro budoucí
analýzu databáze s trajektorií. Značná část je věnována studiu shlukovacích algoritmů,
jelikož jsou základem přístupu pro objevování sémantických míst. Práce uvádí příklady
použití sémanticky zpracovaných dopravních dat za účelem dotazování a získání znalostí,
které nejsou dostupné pro nezpracovaná dopravní data.

Po úvodním nastudování obecných metod pro předzpracování dat práce dále sleduje
studium přístupů, které se používají pro objevování sémantických míst z nezpracovaných
dopravních dat. Objevování sémantických míst se dělí na dvě etapy: objevování fyzických
lokací neboli označení míst zájmu, pro které chceme získat sémantický kontext, a integrace
se sémantickým kontextem za použití veřejně přístupných geografických databází. Detailně
jsou popsány shlukovací metody založené na hustotě, které se dají aplikovat pro automatické
objevování fyzických lokací, a následně jsou popsané přístupy pro integraci objevených
takzvaných bodů zájmu se sémantickým kontextem. Mezi ně patří sémantický kontext
popisující určité chování a geograficky sémantický kontext.

Diplomová práce se zabývá návrhem rámce, který objevuje fyzická místa pomocí časo-
prostorové shlukovací metody ST-DBSCAN, založené na hustotě a aplikované na segmen-
tované podle bodů zastavení trajektorie. Poté vrací takzvaný obdélník vazeb pro každý
shluk. Tento obdélník se používá pro dotazování veřejně přístupné geografické databáze
OpenStreetMap za účelem objevování sémantických míst a následnou integraci příslušných
bodů zastavení ve shluku se sémantikou. Práce také navrhuje použití metody OPTICS pro
heuristické vyhodnocování shlukovacích parametrů za pomoci grafu dosažitelnosti.

Práce dále uvádí popis vývoje navrženého rámce a to s použitím programovacího jazyka
Java a principů Objektově orientovaného programování (OOP). Uživatelské rozhraní vyv-
inuté aplikace je rozděleno na segmentaci trajektorií, evaluaci shlukovacích parametrů a
shlukování a integraci se sémantikou. Následný popis vysvětluje architekturu rámce, vy-
plněnou v souladu s MVC modelem a RESTful services. V práci jsou uvedené imple-
mentační detaily použitých algoritmů OPTICS, ST-DBSCAN a modulu zodpovědného za
odeslání požadavků do OpenStreetMap databáze se zpracováním zpětné vazby.

Implementace rámce byla zhodnocena na dvou veřejně přístupných datových souborech
obsahujících nezpracované GPS záznamy: T-drive dataset od Microsoft Research, obsahující
trajektorie vozů taxi v Beijingu a dále dataset Berlin MOD obsahující simulované trajektorie
vozidel pohybujících se na dopravní síti v Berlíně. Cílem shlukovaní je objevení seskupení
stojících vozidel na malé ploše v relativně shodný časový okamžik. V obou případech
ukázalo implementované vyhodnocení shlukovacích parametrů na grafu dosažitelnosti OP-
TICS dobrou použitelnost pro nalezení nejbližší možné prostorové a časové vzdálenosti pro
počet vozidel, pro které je shlukování proveditelné. Pro všechny nalezené shluky v obou
datasetech byly objevené sémantické lokace a to i s tím, že chování objektů v datasetu s
taxíky a datasetu se simulovanými trajektoriemi jsou odlišné. Pro dataset s taxíky byly
objeveny zejména názvy cest a ulic, kde se obvykle taxíky pohybují. V datasetu se simulo-
vanými trajektoriemi byly nalezeny názvy budov se správnými adresami a parkovací místa.

V závěru diplomové práce se uvádí možnosti praktického využití vyvinutého rámce a to
především na etapě předzpracování dat. Rámec může sloužit jako podpůrný nástroj před
provedením datové analýzy, která vyžaduje sémantické trajektorie jako vstupní data.

Trajectory data preprocessing framework for dis-
covering semantic locations

Declaration
I hereby declare that this Master’s thesis is my own work created under the supervision of
Ing. Mazen Ismael and that the bibliography contains all the literature that I have used in
writing the thesis.

. .
Anna Ostroukh

May 15, 2018

Acknowledgements
I would like to express my gratitude to my supervisor Ing. Mazen Ismael for his assistance
and cooperation during the work on this thesis.

Contents

1 Introduction 3

2 Semantic trajectories and preprocessing methods of moving objects data 4
2.1 Semantic trajectories . 4
2.2 Trajectory data preprocessing techniques . 5

2.2.1 Noise reduction . 5
2.2.2 Data compression . 6
2.2.3 Data clustering . 8

2.3 Trajectory data mining tasks . 11
2.3.1 Clustering . 11
2.3.2 Classification . 11
2.3.3 Prediction . 12
2.3.4 Non-semantic trajectory knowledge discovery 12
2.3.5 Semantic-based trajectory knowledge discovery 12

3 Approaches of preprocessing trajectories for integrating semantics 14
3.1 Discovering physical locations . 15

3.1.1 ST-DBSCAN: Spatial-Temporal DBSCAN 15
3.1.2 TRACLUS: TRAjectory CLUStering 16
3.1.3 T-OPTICS: Trajectory Ordering Points 17

3.2 Semantic enrichment of trajectories . 18
3.2.1 Algorithm SMoT: Stops and Moves of Trajectories 18
3.2.2 Algorithm CB-SMoT: Clustering-Based SMoT 20
3.2.3 Reverse geocoding method . 21

4 Design of the trajectory data preprocessing framework 22
4.1 Trajectories segmentation . 22
4.2 Discovering places of interest . 23

4.2.1 Distance function . 23
4.2.2 Computing the cluster centroid . 24
4.2.3 Parameters evaluation heuristic . 24

4.3 Semantic enrichment of trajectories . 24
4.3.1 Semantic locations discovery . 24
4.3.2 Annotating trajectories with semantics 25

5 Implementation 26
5.1 GUI overview . 26
5.2 Architecture . 30

1

5.3 Implementation of the OPTICS algorithm 31
5.3.1 Data structure . 32
5.3.2 Processing the dataset . 32

5.4 Semantic locations discovery . 33
5.4.1 Implementation of the ST-DBSCAN algorithm 33
5.4.2 Implementation of semantic locations discovery 34

6 Evaluation 36
6.1 Datasets . 36
6.2 Results . 37

6.2.1 Goals and workflow . 37
6.2.2 Identifying the clustering structure 37
6.2.3 Clustering and semantic locations discovery 43

7 Conclusion 47

Bibliography 49

A DVD content 51

B Manual 52
B.1 Dataset configuration . 52
B.2 Extraction of stops . 52
B.3 OPTICS reachability plot . 52
B.4 ST-DBSCAN clustering . 53
B.5 Semantic locations discovery . 53

2

Chapter 1

Introduction

Nowadays there is a fast development of mobile communication technologies along with
global positioning and navigational systems. Positioning services are provided by such
well-known technologies as GPS (Global Position Systems), GSM (Global System for Mo-
bile Communications), RFID (Radio Frequency Identification) and many others. As a
consequence a big amount of spatial data is obtained by acquisition systems and used in
different areas like traffic analysis, security management, location based services, anomaly
detection, etc.

The data obtained from sensors or other collecting devices contain raw, unprocessed
data point sequences in geographic space mapped with time and object identity and do not
contain any context about the particular location they belong to. By context in this work
connotes a meaningful description of places like streets and building names. Knowing the
context can be critical for some mining tasks as mining frequent patterns of moving objects
for the objects’ location prediction or improving location-based services (advertisement,
advisers, etc.).

The aim of this thesis is to perform a research of existing methods and algorithms of
trajectory data preprocessing for semantic data analysis and data mining of traffic data.
Design and implementation of an algorithm for trajectory data preprocessing in order to dis-
cover semantic locations. The ST-DBSCAN algorithm is utilized for the semantic location
discovery as a density-based clustering approach which allows clustering in both, spatial
and temporal dimensions. The follow up semantic enrichment of locations performed with
utilization of the online GIS database OpenStreetMap through the Overpass API and the
Nominatim API.

In chapter 2 an overview of semantic trajectories and main definitions are provided.
The chapter also deals with the general overview of trajectory preprocessing techniques and
basic mining tasks on trajectories as well as a specific type of mining tasks on trajectories
with semantics. Chapter 3 describes basic steps, existing methods and algorithms for
trajectory data preprocessing for semantics. Chapter 4 contains the design of trajectory data
preprocessing framework for semantic enrichment of trajectories. The following Chapter 5
provides the design and implementation details of the proposed solution. The final Chapter
6 evaluates implemented framework on real datasets.

3

Chapter 2

Semantic trajectories and
preprocessing methods of moving
objects data

This chapter gives main definitions for trajectory and semantic trajectory which will ac-
company this work hereinafter. The chapter also provides an overview of general trajectory
data preprocessing techniques and common data mining tasks which are performed on
trajectories as well as on semantic trajectories.

2.1 Semantic trajectories
The most common way of gathering information about a moving object is using small GPS
loggers or GPS-equipped mobile phones. This information is represented as GPS-records
which are a sequence of time-stamped latitude/longitude points shaping a GPS-trajectory.
An example of such GPS-trajectory is shown in Figure 2.1.

Figure 2.1: Example of a GPS-trajectory with inset showing individual points [14]

Definition 2.1. GPS point 𝑝 is a pair p = (lng, lat), representing the longitude-latitude
location and corresponding to a unique point in the geographical space.

4

Definition 2.2. GPS record 𝐺 is a tuple 𝐺 = < 𝑢, 𝑡, 𝑝, 𝑠 > where 𝑢 is the ID of the
moving object for which 𝐺 is recorded, 𝑡 is a timestamp, 𝑝 is a GPS point, and 𝑠 is a
vehicle’s speed as reported by the GPS device [10].

Definition 2.3. GPS trajectory 𝑇 is a sequence of GPS records 𝑇 = < (𝐺0, ..., 𝐺𝑛)>
ordered by their timestamps so that 𝑡𝑘 < 𝑡𝑘+1.

The problem in data representation of a moving object as GPS trajectory is that it does
not contain any meaningful information which is easy understandable by humans. Com-
prehension of the context of particular sets of points from a trajectory may significantly
improve certain mining tasks. For example, instead of dealing with a sequence of points
we can define mining tasks or perform analysis with respect of certain semantics as street
names, buildings, parking spots, etc. In a general meaning, semantic trajectory is a tra-
jectory where GPS location points are associated with semantic entities. Semantic entities
can be different depending on the application. For example, for touristic applications as
semantic entities attractions, restaurants and other popular touristic destinations can be
used. When considering traffic study, semantic entities usually refer to a road and street
names, buildings, parking spots, etc.

In this work as an application area we consider traffic study and by semantic trajec-
tory we will define the data model where physical location is integrated with geographic
information.

Definition 2.4. Semantic place 𝑃𝑠 is a pair 𝑃𝑠 = <(𝑝0, ..., 𝑝𝑘), 𝐶0> where 𝑝𝑛 is a point
from physical location and 𝐶𝑚 is a geographic information (street name, building, etc.).

Definition 2.5. Semantic trajectory 𝑆𝑇 is a trajectory which has been enhanced with
annotations and therefore contains semantic places 𝑇𝑠 = <(𝑃𝑠1 , (𝑡0, ..., 𝑡𝑛)), ..., (𝑃𝑠𝑘 , (𝑡0, ...,
𝑡𝑚))>. For each semantic place its starting/ending instants are known.

2.2 Trajectory data preprocessing techniques
Data preprocessing is a basic and very first step of any mining task which aims at im-
proving the quality of the trajectory database. Trajectory data may contain noise caused
by sensors and other factors which can be eliminated by noise reduction techniques [24].
High sampling rates in acquiring location points cause high data load which significantly
reduces computation performance. Appropriate data compression techniques can improve
the efficiency.

Clustering trajectories, segmentation and integrating semantics to trajectories may be
also a part of the preprocessing step, but as this is the key topic of this thesis, bigger
attention to it is given in chapter 3. This chapter contains a quick overview of basic
clustering algorithms for better understanding their modifications described in chapter 3.

2.2.1 Noise reduction

Data cleaning is performed for identifying and eliminating missing, inconsistent or incom-
plete data points from a database. For example, there is no sense in studying trajectories
which contain too few location points or trajectories containing noise and outliers can lead
to errors in future computations. Trajectories containing few points can simply be removed
from the studying dataset and outliers as well as noise can be eliminated or smoothed.

5

Mean and median filters

Mean and median filters are simple filters which are used for smoothing noise in trajectory
location points. These filters use previously measured values to approximate the estimated
value. The amount of previously measured points is set by the user defined sliding window.
The mean filter is sensitive to outliers therefore the approximated curve will not be smooth
enough in places where the outlier appeared. A better solution is to use the median filter
as it is robust to outliers and provides better smoothing.

The main disadvantage of these filters is that they can perform measurements just for
the spatial dimension omitting the temporal part.

Kalman and Particle filter

The Kalman filter is a more advanced method and considers other dimensions like speed
or acceleration. The filter is able to model the measurement noise and the dynamics of the
trajectory. The Kalman’s filter prediction of the estimated value is based on measurements
of speed, distance and acceleration but also takes into account simple laws of physics like
gravity.

The Particle filter is similar to the Kalman filter. The Kalman filter gains efficiency
by matrix multiplication plus Gaussian noise whereas the Particle filter uses a less efficient
algorithm and therefore is computationally less effective.

Outlier detection

Previously mentioned methods substitute noise in trajectory by an estimated value. The
outlier detection method removes noisy points from the trajectory. This algorithm computes
the travel speed of each point in a trajectory based on the time interval and distance between
a point and its successor. If the computed interval has a speed larger than a threshold, it
is removed from the trajectory.

2.2.2 Data compression

Data compression methods are used for reduction of the communication and storage over-
head of trajectory data representation. The main idea of compression algorithms is to keep
the data precision in a new, compressed trajectory. Reduction techniques are grouped into
two categories: offline and online data reduction. Offline data reduction techniques collect
the full dataset of location data points and then compress the data by discarding redundant
points. Online techniques work during the data points collection. For every obtained new
data point it has to be determined whether it can be preserved in a trajectory.

Distance metric

Distance metrics are used in compression algorithms as an error measuring metric. In
Figure 2.2 perpendicular Euclidian distance for the compressed trajectory of 12 points
into a representation of three points 𝑝1, 𝑝7, 𝑝12 is illustrated. The distance metric is the
summation of the lengths of the segments connecting 𝑝𝑖 and 𝑝′𝑖. Therefore this error measure
takes the geometric shape of the trajectory into account.

6

Figure 2.2: Perpendicular Euclidian distance [24]

Offline compression

For offline compression a trajectory with a full set of location points is given. The compres-
sion algorithm generates an approximated trajectory by removing points with errors from
the original trajectory. Following some algorithms are described:

The Douglas-Peucker algorithm attempts to replace the original trajectory by an ap-
proximate line segment. The replacement has to meet the defined error metric requirement
otherwise the algorithm recursively splits the segment into two sub-segments choosing the
point with biggest error as a splitting point (Figure 2.3). The stop condition for this recur-
sive algorithm is met when the error between the original and approximated trajectory is
below a threshold.

The Douglas-Peucker algorithm is widely used, but there are a couple of other modifica-
tions of it. The Top-down time-ratio algorithm uses an error metric which takes the time
dimension into account, whereas the Bellman’s algorithm applies a dynamic programming
technique to ensure that the approximated trajectory is optimal.

Figure 2.3: Douglas-Peucker algorithm [24]

Online compression

Online compression algorithms do computations during the data acquisition and have to
ensure the provision of efficient on-line decisions when a new location point is obtained and
thus decide, whether it can be present in a trajectory. Those methods can be divided into
two major categories: methods based on a window and methods based on the speed and
direction of a moving object.

The Sliding window algorithm in the beginning initializes the first location point
and starts growing the sliding window by including the next point. After adding a new
point, the algorithm checks on fulfilment of the distance error threshold by computing all
distance errors for all the location points in a window against the potential approximated
line segment. The algorithm continues the growth of the window if the check is positive.
Otherwise the last valid line segment is included as a part of approximated trajectory and
the next point is set as the next first location point.

7

The Open window algorithm uses the Douglas-Pecker method for identification of the
point with the maximum error in the window. This point then is used as a first location
point to approximate the next line segment of the trajectory.

Speed and direction based algorithms are based on prediction of the incoming
location point from computed speed and direction. One of such algorithms is the threshold-
guided sampling algorithm. This method defines a safe area which is derived from the last
two location points and by a given thresholds defines whether a newly obtained point has
some significant changes in direction or speed. If the new data point is located within the
safe area, such point is considered as redundant and is removed from the approximated
trajectory.

2.2.3 Data clustering

Clustering is a way to organize a dataset into groups by objects’ similarity. A cluster
contains objects which are similar to each other and dissimilar to objects of another cluster.

In this subsection basic clustering methods are described. These clustering algorithms
are divided into four major [23] groups.

Partitioning algorithms

Partitioning algorithms divide the dataset into k partitions. The number of partitions is
defined by the user and partitioning is performed using some evaluation criteria. The most
well-known algorithm is the k-means which randomly divides the dataset into k partitions,
computes a centroid of each partition and assigns all objects with the closest centroid to
it. The algorithm continues calculating centroids and assigns objects till all centroids stay
unchanged.

The main disadvantage of this category of algorithms is that the user has to define the
number of clusters as an input parameter which requires the knowledge of the approximate
data distribution in the dataset. Another drawback is that partitioning algorithms are not
robust to outliers.

Hierarchical clustering

Hierarchical algorithms group objects into a tree of clusters. There are two approaches:
bottom-up and top-down. The bottom-up approach merges objects starting from leaves
where they are represented by single clusters. The criterion of merging clusters is defined
by a specified measure of cluster proximity.

The top-down approach has in the beginning all objects in a single cluster. They are
recursively split by a certain measure of similarity like in the bottom-up approach.

Hierarchical clustering algorithms handle noise and outliers better than partitioning
algorithms, but there is still the requirement to provide a number of clusters and stopping
criteria.

Density-based clustering

Density-based clustering algorithms group objects in clusters by identification of dense
regions. Identification of dense regions is based on the definition of a neighbourhood radius
for an object and a minimal number of neighbour objects to shape a cluster. The most well

8

known algorithm is DBSCAN [11] and its extension OPTICS [6] which does not perform
clustering but describes objects ordering in the dataset.

DBSCAN: Density-Based Spatial Clustering of Applications with Noise
DBSCAN [11] is a density-based algorithm which does not require a number of clusters

as an input and uses notions of density and noise. The key idea is that for each point of a
cluster the neighbourhood of a given radius has to contain at least a minimum number of
points(𝑀𝑖𝑛𝑃𝑡𝑠), i.e. the density has to exceed a certain threshold. DBSCAN uses notions
of 𝜀− 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 and 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 − 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 defined as following:

Definition 2.6. 𝜀-neighbourhood of a point 𝑝 is defined as

𝑁𝜀(𝑝) = {𝑞 ∈ 𝐷|𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝜀}, (2.1)

where 𝑑𝑖𝑠𝑡(𝑝, 𝑞) is the distance between point 𝑝 and 𝑞 and 𝐷 is a database of points.

Definition 2.7. Density-reachability of a point 𝑝 from a point 𝑞 is when a chain of
points 𝑝1, ..., 𝑝𝑛, 𝑝1 = 𝑞, 𝑝𝑛 = 𝑝 exists such that 𝑝𝑖+1 is in the 𝜀-neighbourhood of 𝑞 (𝑁𝜀(q))
and 𝑁𝜀(q) satisfies a certain density threshold defined as 𝑀𝑖𝑛𝑃𝑡𝑠.

To find a cluster, DBSCAN starts with an arbitrary point p from the database satisfying
the threshold of 𝑀𝑖𝑛𝑃𝑡𝑠 and retrieves all points that are density-reachable from 𝑝 obtaining
the cluster containing 𝑝 as a core point. The input parameters of 𝜀 and 𝑀𝑖𝑛𝑃𝑡𝑠 for the
DBSCAN algorithm are defined globally for the whole dataset and therefore two clusters
may be merged into one if they are close enough to each other.

OPTICS: Ordering Points To Identify the Clustering Structure
The OPTICS [6] algorithm does not perform explicit clustering of the dataset but instead

creates an ordering for the dataset which represents a density-based clustering structure.
The main feature of this algorithm is that it does not use global input parameters as
other clustering algorithms do. The authors of OPTICS consider the approach of using
global parameters for the whole dataset as incorrect as clusters in real-datasets do not have
homogeneous intrinsic structure (have different local densities) and therefore some clusters
cannot be revealed with global parameters. The basic idea of this algorithm is to produce
an ordering of the dataset which contains the information about intrinsic structure of every
cluster in it and which is easy to analyse.

OPTICS utilizes the idea of the DBSCAN algorithm and stores the order in which the
particular data point is processed when expanding a cluster and the information which
DBSCAN would use to assign the data point to a particular cluster. This information con-
sists of two values for each object: the core-distance and a reachability-distance (graphically
represented in Figure 2.4).

Definition 2.8. Core-distance of an object 𝑝 is the smallest distance 𝜖′ between 𝑝 and
an object in its 𝜖-neighbourhood such that 𝑝 would be a core object with 𝜖′-neighbourhood
which contains at least 𝑚𝑖𝑛𝑃𝑡𝑠 objects.

Definition 2.9. Reachability-distance of an object 𝑝 from core object 𝑜 is the minimum
radius value that makes 𝑝 density-reachable from 𝑜.

As we see from the definitions of core-distance and reachability-distance, this informa-
tion is sufficient for extracting all density-based clusters with a 𝜖′-neighbourhood radius

9

Figure 2.4: Core distance (o), reachability-distances r(𝑝1, 𝑜), r(𝑝2, 𝑜) for minPts = 4 [6]

smaller than the initially defined 𝜖-neighbourhood radius on the DBSCAN input. This
algorithm helps to reveal small nested clusters inside of big ones as shown in Figure 2.5.
Clusters A, B and C only will be revealed with a global parameter of 𝜖, but ordering the
dataset with the OPTICS algorithm will discover the smaller nested clusters 𝐶1, 𝐶2 and
𝐶3 inside of the C cluster as well.

Figure 2.5: Clusters with different density parameters [6]

Grid-based clustering

Grid-based clustering algorithms partition the clustering space into a finite number of grid
cells and then performs operations on the partitioned space. Cells containing points more
than a certain threshold are marked as dense and then dense cells are connected to form
clusters.

10

2.3 Trajectory data mining tasks
Trajectory data mining tasks try to answer two major questions: prediction and description
of a moving object’s behaviour. The goal of the prediction task is to determine the future
state of objects based on information obtained from the database and the description task
has to provide a meaningful interpretation describing a moving objects’ behaviour. The
most common data mining tasks are described below, the information for this overview of
the main approaches is taken from [19], [22].

2.3.1 Clustering

Clustering is a widely used approach for detecting a group of trajectories moving together,
sharing the same path or identify outliers.

Trajectory is a two dimensional spatio-temporal data type and therefore traditional
clustering methods cannot be applied without modifications. There are attempts to develop
trajectory specific clustering methods based on model-based clustering. For example, [12]
proposed a method based on a mixture of trajectories’ regression models. Each trajectory
is represented by a function of time depending on a set of parameters. The algorithm
groups trajectories together which likely were generated from a representative trajectory
plus Gaussian noise. In another work [1] trajectory is represented as sequences of transitions
and a hidden Markov model (HMM) estimates trajectories which best fit to the cluster.

Another approach for clustering trajectories is to extend existing clustering algorithms.
Density-based algorithms like DBSCAN and OPTICS described above are widely used as
a basis for extension. For example in T-OPTICS [20] the extension is in defining a spatio-
temporal distance for clustering trajectories. ST-DBSCAN [8] uses two additional distance
(𝜀− 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑) parameters as input - for spatial and non-spatial attributes.

The choice of a clustering approach and its modification also depends on whether a
group of trajectories or a single trajectory has to be clustered. The approach described in
[21] finds density regions in a single trajectory as places of interest while the TRACLUS
algorithm [16] finds similar groups of trajectories segments.

There are many other noticeable approaches in clustering trajectories [13] like a visual-
aided approach based on human expertise [5], micro-clustering methods for grouping seg-
ments of trajectories [17], discovering moving clusters [7] and others. In this thesis we will
use clustering in the preprocessing stage for discovering places of interest for future seman-
tics integration and will concentrate on density-based clustering algorithms for groups of
trajectories with more detailed description provided in chapter 3.

2.3.2 Classification

Classification tasks allow to divide the dataset into predefined classes. Identification of
classification rules is based on a training dataset for that it is known to which classes each
object from this dataset belongs. According to classification rules obtained during the
training phase the remaining dataset is divided into classes.

Classification is applicable for tasks where there is a need to classify a special behaviour
or nature of moving objects. For example, classification can divide a trajectories dataset
into pedestrians, traffic, cyclists, etc.

Very often trajectory classification is performed after other algorithms like trajectories
segmentation or clustering for discovering discriminative features. For example, in work [15]

11

the authors used segmentation and clustering to extract sub-trajectory and region features
that are used afterwards in support vector machine (SVM) classification of the trajectories.

2.3.3 Prediction

Prediction is used for the forecast of future moving objects’ location or route. There is a
possibility to predict several features of moving objects like location, traffic congestion or
traffic jams and route.

Prediction for trajectories is based on two approaches: Markov models and trajectory
patterns (sequential rules). Markov models use probabilistic models for location prediction
while trajectory patterns mine frequent moving patterns and association rules which are
used for prediction.

2.3.4 Non-semantic trajectory knowledge discovery

According to a survey on semantic trajectories [22] for the non-semantic trajectory knowl-
edge discovery the most popular mining task is analysis of collective behaviours. The anal-
ysis of collective behaviours can be divided into two categories: the analysis of behaviour
patterns of single trajectories or a group of trajectories showing specific interactions.

The first category studies the sequence of regions traversed by the trajectories. The main
idea is to discover behaviour which is frequently repeated in particular regions. Regions can
be areas defined by the user or discovered by the algorithm based on discovering density
areas (containing a minimal number of trajectory positions and frequently visited).

Another one category studies repeating activities of moving objects. The fundamental
idea is that periodic behaviours are connected to frequently visited places of interest (POIs)
like office, pub, home, etc. Frequently visited places are usually discovered with density-
based clustering algorithms and for trajectories the time periods spent within the ROI is
detected. Afterwards frequent periods can be identified and behaviours found over these
periods.

2.3.5 Semantic-based trajectory knowledge discovery

As was mentioned in chapter 2.1 raw (unprocessed) trajectory data does not contain any
application specific context. Semantic information associated with discovered POIs can
significantly improve the analysis of behaviour patterns and help to discover meaningful
patterns. According to [22] semantic-based behaviour discovery approaches can be divided
in two main categories: discovering common behaviour which is previously unknown (e.g.
frequent or repetitive pattern mining) and discovering some specific behaviour (e.g. finding
stops and moves [3]). Both will be explained in the following paragraphs.

Discovering unknown behaviours

Enhancement of trajectories with geographic context plays a significant role in mining
meaningful behaviour of moving objects. In Figure 2.6 on the left side a behaviour pattern
is illustrated which can be discovered from raw data. Here we see that objects are moving
towards one POI. On the right side, the same pattern enhanced with semantics which shapes
a meaningful semantic behaviour ’Going from school to the cinema’.

Semantics cannot only be spatial but also temporal. Temporal semantics means for
example, annotating time series with days of the week, month, etc. Annotating trajectories

12

Figure 2.6: behaviour from raw data (left), behaviour with semantic (right) [22]

with spatio-temporal semantics allows the user to query semantic behaviour patterns like
’Going from work to pub on Friday’ in the set of semantic trajectories. The ability to query
semantic behaviour patterns is developed into the Semantic Trajectory Data Mining Query
Language (ST-DMQL) tool [9].

Integration of trajectories with semantics helps to discover behaviour patterns which
cannot be discovered from raw data. In the scenario shown in Figure 2.6 existing approaches
(e.g. density-based clustering) would discover just a place C while annotating trajectories
with context before mining will give a meaningful semantic behaviour.

Discovering specific behaviours

Semantic context does not necessary have to be geographic information. For some applica-
tions it is enough to discover places where an object stops, moves, accelerates, i.e. performs
a certain kind of activity.

Alvares and others in [4] define avoidance behaviour and present an algorithm for the
detection of trajectories that avoid some static object. An avoidance behaviour is defined
as a moving of the object towards the target geographic object, turning around without
intersecting it and returning to the original route. The same authors in [2] define stop and
move activities. The algorithm will be in more detailed described in chapter 3

13

Chapter 3

Approaches of preprocessing
trajectories for integrating
semantics

The problem of trajectories data preprocessing for semantic analysis can be divided into two
general sub-problems: first, obtaining physical locations which have significance or interest
for the analysis (POIs) and second, integrating physical locations with context. Graphically
the workflow of a trajectory preprocessing framework is represented in Figure 3.1.

Figure 3.1: Framework for semantic trajectory discovery

14

This work stands for discovery of physical locations from GPS trajectories. The most
commonly used approach is the application of some density-based clustering algorithms.
There are several modifications of the well-known DBSCAN and OPTICS algorithms adopted
for spatial-temporal data. This chapter gives an overview of the ST-DBSCAN, based on
two 𝜀 parameters for both data dimensions, the TRACLUS algorithm which is useful for
discovering clusters in line segments of trajectories and T-OPTICS which performs spatial
clustering for a particular time interval.

Approaches for the semantic enrichment of discovered locations vary depending on the
application. In this chapter are presented two main methods - discovering special type of
activity, in our case Stops and Moves patterns, and discovering geographic context which is
performed with utilization of online GIS (Geographic Information System) databases like
Google Maps or OpenStreetMaps.

3.1 Discovering physical locations
There are two ways of obtaining physical locations: i) the user can define spatial regions
of interest, ii) automatic discovery of regions from GPS trajectories. In this work methods
for the automatic discovery of physical locations will be reviewed.

Discovering regions can be done for a single trajectory as well as for a group of trajecto-
ries depending on the type of the semantic context which will be added to the trajectories
afterwards. The main goal in the automatic discovery of physical locations is to find places
with a high density of objects. The majority of approaches for solving this problem use
density-based clustering methods due to their good extensibility.

As was mentioned in chapter 2.3.1, trajectories are a spatio-temporal data type and
therefore traditional density-based clustering methods will not give accurate results as they
take just the spatial constituent into consideration. This chapter provides an overview
of modifications of well-known algorithms which allow clustering spatio-temporal datasets
with more accurate results.

3.1.1 ST-DBSCAN: Spatial-Temporal DBSCAN

The authors of the ST-DBSCAN algorithm [8] present a method which is able to discover
clusters in dataset with non-spatial, spatial and temporal data types. Their algorithm is
an extension of the DBSCAN and requires additional parameter 𝐸𝑝𝑠2 as input for the
𝜀-neighbourhood by the second dimension. The algorithm also requires a parameter ∆𝜖
which is used for evaluation of the non-spatial value whether it has to be appended to the
cluster or not. The distance function for the 𝜀 parameter can be Euclidian, Manhattan or
Minkowski Distance Metric.

The ST-DBSCAN starts from an arbitrary point 𝑝 from the database and retrieves all
density-reachable points from 𝑝 with respect to 𝐸𝑝𝑠1 and 𝐸𝑝𝑠2. If the amount of points
is bigger than 𝑀𝑖𝑛𝑃𝑡𝑠, a cluster is formed and the algorithm retrieves neighbours of other
points within the cluster. For those points the algorithm checks: i) the object is not an
outlier, ii) the object is not in the cluster, iii) the value of object is less than the threshold
∆𝜖, and after positive result appends the point to the cluster. The threshold ∆𝜖 has to be
bigger than the absolute difference between the average (or mean) value of a cluster and a
new object’s value.

The algorithm also solves the main issue of the DBSCAN algorithm - identifying noise
objects when clusters of different densities exist by computing a so called density factor for

15

each cluster. This density factor captures the scope of the density for the cluster. For its
computing, the maximum and the minimum distance in the cluster is evaluated according
to Formula 3.1. The density factor then can be found by applying Formula 3.2

Θ𝑚𝑎𝑥(𝑝) = 𝑚𝑎𝑥{𝑑𝑖𝑠𝑡(𝑝, 𝑞)|𝑞 ∈ 𝐷 ∧ 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝐸𝑝𝑠}
Θ𝑚𝑖𝑛(𝑝) = 𝑚𝑖𝑛{𝑑𝑖𝑠𝑡(𝑝, 𝑞)|𝑞 ∈ 𝐷 ∧ 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝐸𝑝𝑠},

(3.1)

where Θ𝑚𝑎𝑥 and Θ𝑚𝑖𝑛 are the minimum and maximum density distance, 𝑝 and 𝑞 are points
and 𝐷 is a database.

𝜗(𝐶) = 1/

∑︀
𝑝∈𝐶 Θ(𝑝)

|𝐶|
,

Θ(𝑝) =
Θ𝑚𝑎𝑥(𝑝)

Θ𝑚𝑖𝑛(𝑝)

(3.2)

where 𝜗(𝐶) is a density-factor, Θ(𝑝) is a density distance and 𝐶 is a cluster.

3.1.2 TRACLUS: TRAjectory CLUStering

The TRACLUS algorithm [16] performs clustering of trajectories’ line segments identifying
common sub-trajectories illustrated in Figure 3.2. The algorithm is based on the DBSCAN
with the same set of input parameters.

Figure 3.2: Example of a common sub-trajectory [16]

The authors of the algorithm suggest to use a distance function based on the weighted
sum of three types of distances: the perpendicular distance between line segments from
different trajectories, the parallel distance between line segments of the same trajectory (to
check the correct adjacent) and the angular distance measures the directional difference
between line segments.

The TRACLUS reciprocally redefines the main definitions of the DBSCAN algorithm
in favour of line segments. In Figure 3.3 for a minimum number of line segments (𝑀𝑖𝑛𝐿𝑛𝑠)
of 3, thick line segments indicate core line segments. 𝜀-neighbourhoods are represented by
ellipses. Segments 𝐿2 and 𝐿3 are directly density-reachable from 𝐿1, segments 𝐿1, 𝐿4 and
𝐿5 are density-connected and 𝐿6 is density-reachable from 𝐿3 (but not vice versa)

The authors suggest their own heuristic for the input parameter evaluation. The eval-
uation of the parameter 𝜀 is adopted from the entropy theory. There are two assumptions:
i) 𝜀 is too small and the amount of line segments in the 𝜀-neighbourhood

⃒⃒
𝑁𝜀(𝐿)

⃒⃒
equals

1 for almost all line segments, ii) 𝜀 is too large and the
⃒⃒
𝑁𝜀(𝐿)

⃒⃒
equals to 𝑛𝑢𝑚𝑙𝑛, where

𝑛𝑢𝑚𝑙𝑛 is the total number of line segments. Both assumptions are valid for the worst case
of clustering where the entropy is maximal. In a good case, the

⃒⃒
𝑁𝜀(𝐿)

⃒⃒
is deviating and

16

Figure 3.3: Density-reachability and density-connectivity [16]

the entropy becomes smaller. The authors suggest to compute an optimal value of 𝜀 which
minimizes the entropy 𝐻(𝑋) using Formula 3.3.

𝐻(𝑋) =
𝑛∑︁

𝑖=1

𝑝(𝑥𝑖) log2
1

𝑝(𝑥𝑖)
= −

𝑛∑︁
𝑖=1

𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖),

where 𝑝(𝑥𝑖) =

⃒⃒
𝑁𝜀(𝑥𝑖)

⃒⃒∑︀𝑛
𝑗=1

⃒⃒
𝑁𝜀(𝑥𝑗)

⃒⃒ and 𝑛 = 𝑛𝑢𝑚𝑙𝑛

(3.3)

The heuristic for the evaluation of the parameter 𝑀𝑖𝑛𝐿𝑛𝑠 is computed from the average
𝑎𝑣𝑔 |𝑁𝜀(𝐿)| of

⃒⃒
𝑁𝜀(𝐿)

⃒⃒
at the optimal 𝜀. Then the minimal number of line segments is

computed as 𝑀𝑖𝑛𝐿𝑛𝑠 = 𝑎𝑣𝑔 |𝑁𝜀(𝐿)| + 1 ~ 3.
Unlike DBSCAN not all discovered density-connected sets can become clusters. The

algorithm assumes that all density-connected line segments in a set belong to different
trajectories. The method checks on the trajectory cardinality which cannot be less than a
certain threshold.

The TRACLUS algorithm is suitable for mining tasks where we need to discover regions
of line segments with common behaviour in a group of trajectories. The algorithm also has
the very useful feature in computing of a representative trajectory of discovered cluster
which can be used for example in maps mapping.

3.1.3 T-OPTICS: Trajectory Ordering Points

The algorithm T-OPTICS (Trajectory Ordering Points To Identify the Clustering Struc-
ture) [20] adopts the OPTICS algorithm’s concepts [6] and is a spatio-temporal clustering
algorithm. The algorithm uses a distance function depending on the Euclidean distance in
the temporal interval (Formula 3.4)

𝐷(𝜏1, 𝜏2) |𝑇 =

∫︀
𝑇 𝑑(𝜏1(𝑡), 𝜏2(𝑡))𝑑𝑡

|𝑇 |
, (3.4)

where 𝑑() is the Euclidean distance over R2, 𝑇 is the temporal interval over which the
trajectories 𝜏1 and 𝜏2 exist and 𝜏𝑖(𝑡) (𝑖 ∈ {1, 2}) is the position of the object 𝜏𝑖 at time 𝑡.

The T-OPTICS algorithm performs trajectories clustering for the specific time interval
and takes the density threshold parameter 𝜀′ and the time interval value as input.

As a quality measure the authors suggest to use the reachability plot (represented in
Figure 3.4) which is returned by OPTICS. The graph shows the intrinsic structure of the
dataset and distances between the objects. The 𝜀 value chosen in the range of the three

17

central protrusions would discover all 4 clusters (displayed as valleys on the graph). The
clusterization can be considered good when there are high density clusters which are clearly
separated (the noise is minimal).

Figure 3.4: OPTICS reachability plot [20]

3.2 Semantic enrichment of trajectories
The process of applying application context to trajectory data is called semantic enrich-
ment [22]. Such trajectories with context are called semantic trajectories and are used for
supporting knowledge discovery.

A basic trajectory semantic enrichment process takes as input the set of GPS trajectories
and a contextual data repository and as output produces a set of trajectories integrated
with some application context. The application context may be a set of geographical
places as well as semantic definitions of a certain trajectories’ behaviour like ’stop’, ’move’,
’acceleration’, etc.

This chapter describes approaches which are used for semantic enrichment of trajecto-
ries. The overview of both, the semantic as a behaviour definition and the semantic as a
geographical context enrichment is provided.

3.2.1 Algorithm SMoT: Stops and Moves of Trajectories

The algorithm SMoT suggested by Alvares and others [3] is based on the idea of the semantic
trajectories representation as a set of stops and moves. Stops represent a place of interest
where the object has stayed for a predefined minimal amount of time.

This algorithm requires a set of GPS trajectories and a set of candidate stops with a
minimum time threshold as input. The candidate stop is a topologically closed polygon 𝑅𝐶

18

defined in 𝑅2 with a minimum time duration ∆𝐶 . 𝑅𝐶 has a relevant spatial feature type
(e.g parking spot, hotel, etc.) which can be obtained for example from a shape file. The
concept of candidate stops is represented in Figure 3.5.

Figure 3.5: Example of a set with three candidate stops [3]

For each point of a trajectory the algorithm verifies, if it intersects a geometry of a
candidate stop 𝑅𝐶 . If the check is positive, a followed up verification on satisfying the
predefined time threshold is performed. If both, geometry and time conditions are met,
the candidate stop is recorded as a place of interest (stop). A period between the last
timestamp of a previous stop and the first timestamp of the next stop is recorded as a
move.

In Figure 3.5 are three candidate stops 𝑅𝐶1 , 𝑅𝐶2 , 𝑅𝐶3 . In the beginning the trajectory
of an object does not intersect any candidate stop and therefore is considered as a move. In
the end two stops (𝑅𝐶1 , 𝑅𝐶3) will be recorded as they satisfy the time duration threshold
and three moves (in the beginning till the intersection with geometry 𝑅𝐶1 , between 𝑅𝐶1

and 𝑅𝐶3 , and in the end after the object leaves the 𝑅𝐶3 geometry).
The example output of the SMoT algorithm is a semantic trajectory dataset represented

in table 3.1. In table (a) for stops dataset the Tid attribute corresponds to a trajectory
identifier, Sid corresponds to a stop identifier, SFTid is a geometry identifier, SFTname
represents a geographic information (parking, airport, etc.) where the stop occurs, Sbegint
and Sendt are the beginning and the end timestamps of the stop respectively.

Table 3.1 (b) for moves dataset has following attributes: Mid is a move identifier,
S1id and S2id are previous and next stop identifiers, geometry and timest corresponds to
geometry coordinates and the time during the move.

The algorithm is designed in a way that it can be applicable to any domain - basically
the user can define candidate stop set as input from any area he is interested in (traffic
management, touristic application, etc.). The decomposition of GPS trajectories into stops
and moves helps to reduce the computational complexity during the knowledge discovery
as the preprocessing step is performed just once and afterwards the user can query the
semantic trajectories in more effective way. The model of stops and moves allows to perform
traditional data mining tasks as frequent pattern mining and mining association rules.

The main disadvantage of this algorithm is that the user has to define the candidate
places of interest and some potential candidate places can be missed as they are not known
by the user in advance.

19

Table 3.1: Example dataset of SMoT algorithm [3]

(a) Stops
Tid Sid SFTid SFTname Sbegint Sendt
1 1 1 Hotel 08:25 08:40
1 2 1 TouristicPlace 09:05 09:30
1 3 3 TouristicPlace 10:01 14:20
...

(b) Moves
Tid Mid S1id S2id geometry timest
1 1 1 2 48.888880 2.246102 08:41
1 1 1 2 48.885732 2.255031 08:42
...
1 1 1 2 48.860021 2.336105 09:04
1 2 2 3 48.860515 2.349018 09:41
...

3.2.2 Algorithm CB-SMoT: Clustering-Based SMoT

The CB-SMoT algorithm [21] is based on the SMoT model of stops and moves, but uses
a clustering algorithm for discovering candidate stops. The clustering algorithm on which
this method is based is a density-based DBSCAN with some changes.

The DBSCAN is changed in the CB-SMoT in order to find clusters in a single trajectory
and take the time dimension into consideration. The authors of the CB-SMoT algorithm
defined the 𝜀-neighbourhood as the 𝜀-linear-neighbourhood where instead of a radius around
a point p, a set of points before and after p is considered, whose distance from p is less
or equal to 𝜀. In other words, 𝜀 represents the maximum distance between a point p and
its neighbours on the trajectory. Another change in the DBSCAN is the definition of the
density for a region. Instead of the minimum number of points minPts the authors suggest
to use the minimal time duration MinTime. As the neighbourhood is linear and ordered
in time, it is possible to compute a time between the very first and last points of a cluster
and define a core point according to Formula 3.5. Therefore the ratio 𝜀/MinTime gives the
maximum average speed of the respective neighbourhood.

|𝑡𝑛 − 𝑡𝑚| ≥ 𝑀𝑖𝑛𝑇𝑖𝑚𝑒 (3.5)

The 𝜀 value is chosen differently in the CB-SMoT as well. In the DBSCAN the user has
to set up the value of the neighbourhood, but for the CB-SMoT this approach cannot be
used due to the different characteristics of single trajectories. Thence in the CB-SMoT it
is suggested to use an adjustable 𝜀 value based on a relative parameter related to the mean
and the standard deviation. An arithmetic mean 𝜇 and a standard deviation 𝜎 is computed
from a list of distances 𝑑𝑖 between two consecutive points 𝑝𝑖 and 𝑝𝑖+1 of the trajectory T.
Knowing properties of the trajectory, the quantile function can be used: [0, 1] → ℜ defined
as in 3.6

20

𝐹−1(𝑝, 𝜇, 𝜎) = 𝜇 + 𝜎
√

2𝑒𝑟𝑓−1(2𝑝− 1),

and 𝑒𝑟𝑓−1(𝑥) =
∞∑︁
𝑘=0

𝑐𝑘
2𝑘 + 1

(

√
𝜋

2
𝑥)2𝑘+1,

(3.6)

where 𝑐0 = 1 and 𝑐𝑘 =
∑︀𝑘−1

𝑚=0
𝑐𝑚𝑐𝑘−1−𝑚

(𝑚+1)(2𝑚+1)
The user needs to know the approximate proportion of points that generate potential stops
in the relation to the total number of points in the trajectory. Therefore the parameter
called area ∈ [0, 1] is required for the computation of the 𝜀 value.

3.2.3 Reverse geocoding method

Geocoding is the process of obtaining coordinates (𝑙𝑎𝑡, 𝑙𝑜𝑛) from the address for locating
of the marker on a map. The reverse geocoding method, on the contrary, uses (𝑙𝑎𝑡, 𝑙𝑜𝑛)
coordinates to obtain the location address1. The reverse geocoding approach uses online
GIS (Geographic Information System) databases like Google Maps or OpenStreetMap 2 to
retrieve the data.

In [10], [18] reverse geocoding is used for mining semantic locations from raw GPS
data. First, the nearest to the query position addressable location with the coordinates
of the street address is returned. Secondly, the yellow and white pages directory is used
for obtaining a list of semantic locations which are near the query street address. This
traditional reverse geocoding method may produce incorrect results. As shown in Figure
3.6 two buildings 𝐵1 and 𝐵2 have entrances 𝐸1 and 𝐸2. The reverse geocoding will return
the ’W Taylor St.’ instead of the actual address ’S. Halsted St.’ for the query point 𝐸2 as it
is closer to the ’W Taylor St.’. Therefore it is important to consider a returned set of street
addresses as candidate streets and define some distance tolerance threshold from the query
position to the physical location of each street in a set.

Querying the street addresses available on the internet yellow pages directory will deliver
additional information like correspondent business names and business types. The final
information about physical location can be represented as a triple containing location name,
semantic category and street address.

Figure 3.6: Example of reverse geocoding [18]

1https://developers.google.com/maps/documentation/geocoding/intro
2https://www.openstreetmap.org/

21

Chapter 4

Design of the trajectory data
preprocessing framework

In this chapter the proposed trajectory data preprocessing framework is presented. The
main application problem which has to be solved is discovering semantic locations from the
street traffic dataset. The dataset consists of GPS trajectories of vehicles and therefore the
trajectories have to be annotated with geographic context for future mining tasks.

First, each trajectory is segmented into stops as stops indicate places of interest. Sec-
ondly, a density-based clustering algorithm is applied to group stops in order to discover
interesting places for a group of objects. Thirdly, the reverse-geocoding technique by bound-
ing box is utilized for discovering semantic locations. The design of the framework is inspired
by ideas of [10].

4.1 Trajectories segmentation
For choosing the proper approach for the trajectories segmentation, the main requirements
for discovering interesting places have to be defined. Our framework will preprocess data
from the GPS sensors of vehicles and the primary interest for us represent places where
several vehicles did a stop as such physical places may have a certain context (shopping
mall, parking spot, etc.). Therefore the segmentation of trajectories has to be performed
in order to obtain information about vehicles’ stop points.

The best approach is to use the Stops and Moves model. The GPS sensor of a vehicle is
collecting data during the whole period of driving and stops recording when the vehicle is
turned off. This feature can be used for identifying stops in a vehicle’s trajectory. The stop
point will be identified by computing the time duration ∆t between two consecutive points
𝑝𝑖 and 𝑝𝑖+1. The point 𝑝𝑖 will be marked as a stop if the time duration ∆t is bigger than
the required minimum duration threshold. The stop 𝑃𝑠𝑡𝑜𝑝 is presented as 𝑃𝑠𝑡𝑜𝑝 = (𝑝𝑖, 𝑇𝑎𝑟𝑟,
∆t), where 𝑝𝑖 is a location point of the stop, 𝑇𝑎𝑟𝑟 is the time of arrival to the stop and ∆t is
the stop duration. An example of the output dataset after stops extraction is represented
in Table 4.1, where Tid and Sid are the trajectory ID and the stop ID respectively.

22

Table 4.1: Example of a stops dataset

Tid Sid 𝑃𝑠𝑡𝑜𝑝 𝑇𝑎𝑟𝑟 ∆t
1 1 49.195416,16.609122 08:25 30
1 2 49.196583,16.60296 14:15 45
1 3 49.193884,16.609424 18:00 75
...

4.2 Discovering places of interest
The main interest of this work is to discover semantic locations which are places of interest
for groups of vehicles. Therefore the density-based clustering algorithm can be applied to
extracted stops in order to discover regions of interest.

The use of traditional density-based clustering algorithms like the DBSCAN or the
OPTICS considers just the spatial constituent which can lead to inaccurate results. Let us
consider an example of the average gas station which serves 200 cars per day, but it cannot
serve more than 10 cars at approximately the same short interval of time. The application
of the clustering algorithm on the spatial dimension only would discover such gas station as
a significant place which is not correct. The other situation is vehicles parked at the same
area for a long period of time (e.g in residential areas over night). In order to eliminate the
discovery of such places the time threshold requirements have to be set for the clustering
method.

As a basis for the clustering algorithm ST-DBSCAN (chapter 3.1.1) is chosen, which
allows to set requirements on the distance function for the non-spatial values and is able
to discover clusters of various densities. The density-based clustering algorithm of the
proposed preprocessing framework takes on input the following set of parameters:

< 𝐷,𝐸𝑝𝑠1, 𝐸𝑝𝑠2,𝑀𝑖𝑛𝑃𝑡𝑠,∆𝜖,∆𝑡𝑚𝑎𝑥 >, where D is a stops dataset filtered by 𝑡𝑚𝑖𝑛 and
𝑡𝑚𝑎𝑥 thresholds. Then the algorithm consequently retrieves neighbours for each point with
respect of the input parameters values.

4.2.1 Distance function

The choice of an appropriate distance function depends on the clustered objects’ features.
As we have stop points distributed in space and time, the Euclidean distance can be applied
for both, spatial and temporal values.

Let us consider two stop points 𝑃𝑠𝑡𝑜𝑝1 = (𝑥1, 𝑦1, 𝑇𝑎𝑟𝑟1, ∆𝑡1) and 𝑃𝑠𝑡𝑜𝑝2 = (𝑥2, 𝑦2,
𝑇𝑎𝑟𝑟2, ∆𝑡2). The Euclidean distance for the parameters 𝐸𝑝𝑠1 and 𝐸𝑝𝑠2 can then be found
according to 4.1.

𝐸𝑝𝑠1(𝑃𝑠𝑡𝑜𝑝1, 𝑃𝑠𝑡𝑜𝑝2) =
√︀

(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

𝐸𝑝𝑠2(𝑃𝑠𝑡𝑜𝑝1, 𝑃𝑠𝑡𝑜𝑝2) =
√︀

(𝑇𝑎𝑟𝑟1 − 𝑇𝑎𝑟𝑟2)2
(4.1)

23

4.2.2 Computing the cluster centroid

Computing of the cluster’s centroid can be a part of the clustering algorithm like in 𝑘 −
𝑚𝑒𝑎𝑛𝑠. Density-based algorithms usually do not require computing of clusters’ centroids.
Knowing of the centroids’ values of discovered clusters can be useful for application mining
algorithms in the future.

As we deal with geospatial data points, the method for computing the cluster centroid
has to respect their features. Therefore, computing of the geographic midpoint method 1

has to be used in this work to find clusters’ centroids.
First, each point 𝑝𝑖 = (𝑙𝑎𝑡, 𝑙𝑜𝑛) of the cluster will be converted into a Cartesian coordi-

nates vector 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖). Secondly, these vectors will be summarized and the resulting
vector will be normalized. Finally, the result will be converted back to spherical coordinates.

4.2.3 Parameters evaluation heuristic

The authors of the ST-DBSCAN suggest their own heuristic. In the beginning, the value
𝑀𝑖𝑛𝑃𝑡𝑠 needs to be computed as ln(𝑛), where 𝑛 is the size of the database. From the
value 𝑀𝑖𝑛𝑃𝑡𝑠 the 𝐸𝑝𝑠 parameters will be found. The 𝑀𝑖𝑛𝑃𝑡𝑠 parameter is used to obtain
𝑀𝑖𝑛𝑃𝑡𝑠-nearest neighbours for each object. Then the 𝑀𝑖𝑛𝑃𝑡𝑠-distance values will be
sorted in descending order to get the sorted graph. The 𝐸𝑝𝑠 parameter value should be
less than the distance defined by the first valley on the graph.

In this thesis we will use the reachability plot heuristic suggested by the OPTICS
algorithm to graphically evaluate the quality of clustering. Note that for the ST-DBSCAN
algorithm two reachability graphs will be used, one is for spatial and another one is for
temporal dimensions.

4.3 Semantic enrichment of trajectories
The semantic enrichment module requires the set of discovered clusters as input. Each
cluster has an arbitrary shape and contains several stops.

The reverse-geocoding method by bounding-box will be used in this work. First, the
query containing bounding box coordinates of the cluster is sent to the OpenStreetMap
online GIS database for retrieving semantic locations. Consequently, the user can select
semantic locations found in the cluster’s area which are interesting for the analysis. Finally,
trajectories will be integrated with semantics.

4.3.1 Semantic locations discovery

Unlike the authors of proposed reverse-geocoding method in [10], each point from the cluster
will not be queried to obtain the address as it generates a lot of requests and therefore is
computationally not effective. The online yellow pages source also will not be used in this
work as it may return inaccurate results and might be unavailable for some countries.

Instead, the bounding box of each cluster will be retrieved from the stops with minimal
values (𝑙𝑎𝑡𝑚𝑖𝑛, 𝑙𝑜𝑛𝑚𝑖𝑛) and maximum values (𝑙𝑎𝑡𝑚𝑎𝑥, 𝑙𝑜𝑛𝑚𝑎𝑥). Then, using the Overpass
API 2 service, all location objects which are inside or intersect a bounding box will be
extracted as shown in Figure 4.1.

1http://www.geomidpoint.com/calculation.html
2https://wiki.openstreetmap.org/wiki/Overpass_API

24

Figure 4.1: Example of semantic locations’ geometry extracted by bounding box

4.3.2 Annotating trajectories with semantics

Extracted data from the Overpass API contains location points within the bounding box.
The service will return just those location points which contain semantics. The user can
filter locations which are valuable for the analysis. For example, places marked as a ’bus
stop’ can be excluded, but places with the category ’supermarket’ can be interesting for
future study. Note that within one cluster several semantic locations can be. An example
of output data with integrated semantics is represented in Table 4.2 where Sid, Cluster_ID,
Cluster_centroid and Sem_pl_ID are a stop, cluster identifier with cluster centroid coor-
dinates, semantic place identifier and Loc_coord is a location coordinate of the semantic
location.

Table 4.2: Example of a dataset with semantics

Sid Cluster_ID Cluster_centroid Sem_pl_ID Loc_coord
20 10 49.1531256,16.6283180 1 49.1544447,16.6292356
21 10 49.1531256,16.6283180 2 49.1582668,16.6279795
15 9 49.1534894,16.6281212 14 49.1534894,16.6281212
...

25

Chapter 5

Implementation

This chapter describes the implementation of the proposed data preprocessing framework
for discovering semantic locations. For the implementation of the back-end part the pro-
gramming language Java 8 was chosen. This version of Java provides a big advantage
in having the ability to use functional features such as lambdas, which allows to build
highly performant data science projects. Implementation of front-end has been done with
AngularJS thanks to its high performance in data binding and built-in wrappers for com-
munication with RESTful services.

First, a quick overview of the application’s GUI will be provided. Secondly, the over-
all architecture of the application will be described. Thirdly, the design solution for the
implementation of clusters’ parameters heuristics, the OPTICS algorithm, will be marked
out. Lastly, the design of the ST-DBSCAN algorithm and the semantic locations discovery
module will be overviewed.

5.1 GUI overview
The Sminer application is designed as a single page web application divided into four tabs:
Extract stops, OPTICS reachability plot, Extract semantic locations and Configuration.

Input file format description

The application takes as input a .csv format file. For successful data parsing the following
set of columns is required: moving object ID, timestamp, latitude and longitude coordinates.
Supported data formats of columns are listed in table 5.1. The Sminer also assumes that
the file contains a header and skips the first row.

Table 5.1: Supported formats of data in the input file

ModId Time Latitude Longitude
Integer Date: yyyy-MM-dd hh:mm:ss Double: wgs84 coords Double: wgs84 coords

26

Configuration tab

To provide better user experience, the application provides the ability to configure the order
of the columns of the input file which will be parsed into the internal data structure Record.
Therefore the user does not need to edit the code to parse the file with various columns
ordering.

Extract stops tab

This is the start screen of the application represented in Fig. 5.1 and necessary step to
continue the data preprocessing. The upload file functionality is also located on this tab
and after reading the file, some file statistics are shown to the user. These statistics help to
identify the total number of records in the file as well as the number of valid records during
parsing of the dataset into the internal data structure. After reading the file, there is a
possibility to extract stops from the trajectories for which it is enough to set a minimum
stop duration in minutes. However, it is better to set the maximum stop duration as well,
as this additional limitation can improve the future analysis in terms of efficiency and can
help in more detailed data analysis. The user also has the possibility to filter the dataset
by particular days.

Figure 5.1: Extract stops view with file statistics and filtering stops functionality

OPTICS reachability plot tab

The OPTICS reachability plot tab provides the possibility to evaluate the dataset distri-
bution and choose appropriate parameters for clustering. There is an implemented func-
tionality to display the dataset distribution by temporal, spatial and both, temporal and
spatial dimensions. Further description of the module will be provided in chapter 6.

27

Extract semantic locations tab

The last tab allows to perform clustering depending on the input parameters of temporal
and spatial 𝜀−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 and the minimal amount of points to shape a cluster 𝑀𝑖𝑛𝑃𝑡𝑠.
The user can view discovered clusters with stop points and discover locations for clusters
(Fig. 5.3a), display clusters’ area and found locations’ geometry on a map (Fig. 5.3b).
There is also the option to edit locations if needed (Fig. 5.2). In the end the user can
export preprocessed data to a JSON file, which contains all information about discovered
clusters, locations and locations’ geometry.

Figure 5.2: Modal window to edit discovered locations

28

(a) View with discovered clusters in a list

(b) View with clusters’ area and locations on a map

Figure 5.3: GUI of the ST-DBSCAN tab with discovered clusters

29

5.2 Architecture
The framework is designed as a REST (Representational State Transfer) application and
runs on an application server. The applications’ architecture is built according to the MVCS
(Model - View - Controller - Service) model and is divided into the following modules: input
dataset configuration and parsing, data analysis operations provider, OPTICS, clustering
and semantic locations extraction. In Figure 5.4 the REST architecture with all endpoints
is illustrated. The diagram contains just names of the public methods of interfaces, further
description of particular services will be provided below.

Requests from the client are handled in RestApiController and are delegated to spe-
cific modules. All operations related to the input dataset preprocessing in order to convert
it into the main data structure Record are handled by the IDocumentService interface. For
the dataset analysis the IDataAnalysisService interface is used as a provider. Utilization
of the provider has two main functions: delegating of the request to particular algorithm
implementation and additional data preprocessing from the response in order to provide
appropriate data structure to the consumer layer.

Figure 5.4: REST architecture diagram

30

5.3 Implementation of the OPTICS algorithm
The OPTICS algorithm is used in this work as a heuristics for parameters evaluation for
future clustering work. First, the OPTICS algorithm running on a single dimension (tem-
poral or spatial) was implemented. However, after the experimental evaluation of the im-
plemented method, it became obvious that this implementation of OPTICS is not able to
provide the full picture of the dataset distribution to satisfy the framework’s requirements.
Since the requirement is to perform clustering in both dimensions, spatial and temporal, a
two-dimensional OPTICS was implemented in this work.

Figure 5.5: OPTICS implementation class diagram

In Figure 5.5 the OPTICS class diagram is illustrated. The generic interface IOptics<T>
provides access to two abstract methods runOneDimensionOptics, which calls an imple-
mentation of the one-dimensional OPTICS, and ruSpatialTemporalOptics, which pro-
vides data analysis in two dimensions. The method runOneDimensionOptics contains a
generic parameter <T>. For the temporal dimension this parameter is substituted by the

31

Integer type, for the spatial it is substituted by Double. The usage of a generic type allows
to distinguish higher level of abstraction and better code reuse.

Class AbstractOpticsImpl<T, D> implements methods of the IOptics<T> interface.
The usage of the abstract class is beneficial as each child class can override particular
parent’s methods implementation depending on the type of the OPTICS dimension.

5.3.1 Data structure

OPTICS takes on input a basic data structure Record, which stores the GPS records
representation from the .csv file. The functional interface recordsToOpticsPointsById
converts the Record entity to the OpticsPoint entity and groups elements by moving ob-
ject IDs to form trajectories. Since the OpticsPoint data structure is similar to Record,
OpticsPoint inherits from the Record data structure and extends its properties. To op-
erate with data in two dimensional OPTICS, the SpatialTemporalDim data structure was
created, which allows to store the result of the distance function getCoreDistance and
perform a comparison in order to sort discovered points in a seed list while processing the
dataset.

5.3.2 Processing the dataset

The method runOptics is an entry point for both methods, runOneDimensionOptics and
ruSpatialTemporalOptics. It iterates through trajectories’ stops and calls the method
expandCluster, which discovers neighbours according to set parameters of 𝜀 value and
minimum number of points(𝑀𝑖𝑛𝑃𝑡𝑠). The expandCluster method accepts the current
data point for which neighbours might be discovered, the database with stops grouped by
trajectories, parameters for clustering, current list with already discovered neighbours (if
present) and current order of processing the point. It filters out elements from the database,
which belong to the same trajectory as the point on input. Afterwards all neighbours are
discovered using the lambda expression. If the size of the neighbours set satisfies the param-
eter 𝑀𝑖𝑛𝑃𝑡𝑠 on input, the assignReachabilityDistance method chooses an appropriate
implementation of the distance function to compute core distance and reachability distance
and assigns it to the respective neighbours. The current point is marked as processed and
the current order of processing is assigned to it. The expandCluster method returns all
neighbours which were discovered. In case expandCluster has already a list of previously
discovered neighbours on its input, it joins two lists together and returns the result. The
returned list with points is sorted in ascending order and the algorithm continues processing
this list. The cycle stops when all points of the dataset of stops have been processed.

The neighbourhood of the point is discovered by the getNeighbours method, which ap-
plies the isNeighbour method in the lambda expression. The isNeighbour method utilizes
the distance function to identify the neighbour of the point. For the temporal dimension
OPTICS Euclidean as the distance function (as described in 4.2.1) is used. For the spatial
OPTICS the Pythagoras’ theorem1 5.1 is used, as this method is efficient on computing
short distances between two points which are represented as geospatial coordinates.

1https://www.movable-type.co.uk/scripts/latlong.html

32

∆𝑥 = (𝑙𝑜𝑛2 − 𝑙𝑜𝑛1) cos(
(𝑙𝑎𝑡1 + 𝑙𝑎𝑡2)

𝜋

180
2

)

∆𝑦 = (𝑙𝑎𝑡2 − 𝑙𝑎𝑡1)

𝐸𝑝𝑠2(𝑃𝑠𝑡𝑜𝑝1, 𝑃𝑠𝑡𝑜𝑝2) = 𝑅
√︀

∆𝑥2 + ∆𝑦2

(5.1)

where 𝑅 is the Earth’s radius 𝑅 = 6371𝑒3.

5.4 Semantic locations discovery
Semantic locations discovery is a follow up step after the evaluation of the dataset structure
by the OPTICS algorithm. It consists of two main parts, the first is running the two-
dimensional clustering algorithm ST-DBSCAN, the second is querying the OpenStreetMap
service through the Overpass API and Nominatim API in order to get clusters’ locations
and semantic places’ names and geometry.

5.4.1 Implementation of the ST-DBSCAN algorithm

Implementation of the ST-DBSCAN algorithm is quite similar to the implementation of
OPTICS, but not polymorphic. Figure 5.6 illustrates the ST-DBSCAN class diagram. The
interface IStdbscan contains one public method runStdbscan to invoke clustering. Similar
to the OPTICS implementation, the runStdbscan accepts the basic data structure Record
and converts it into the ST-DBSCAN data structure StdbscanPoint, which extends the
Record entity object. Processing the dataset works in a similar way as in OPTICS, but the
difference is that it does not sort the set of discovered neighbour points. While processing
points in the dataset, the predicate isValidPoint is applied to filter points, which have
not been assigned to any cluster yet and not marked as noise.

Figure 5.6: ST-DBSCAN implementation class diagram

33

5.4.2 Implementation of semantic locations discovery

Semantic locations discovery is the last step in data preprocessing and fully implemented on
the front-end side. There are two OSM data services provided by OpenStreetMap, which
are used in this project: Overpass API2 and Nominatim3. The motivation of using two
data services instead of one lays in better reliability of discovering semantic locations.

The method getSemanticLocations, which is responsible for semantic locations’ dis-
covery, is located in the AngularJS controller sminerController.js. It sends requests to
the Overpass API interpreter first, parses the response getting such data as node names
and addresses (if present) and assigns semantic locations to the respective cluster. If no
semantic locations were discovered in this step, the second request to Nominatim service is
sent.

Overpass API

After grouping points into clusters, we are able to compute the bounding boxes in which
every cluster is enclosed. This information is enough to query the OpenStreetMap service
via the Overpass API. The Overpass API allows to query for OSM data by specific search
criteria. For this purpose, it has a specifically crafted query language Overpass QL. The
basic semantics of the Overpass API is that flows of OSM data (nodes, ways, relations)
are generated and modified by statements, which are executed one after another4. A big
advantage of using this API is that within a single HTTP GET request it is possible to
get all data we are interested in. In this project query 5.1 is used to get the geometry and
names of places inside the bounding boxes.

https://overpass-api.de/api/interpreter?data=[out:json];way[amenity]
(latMin, lonMin, latMax, lonMax);out geom;

Listing 5.1: Overpass query

where (latMin, lonMin, latMax, lonMax) parameters define a cluster’s rectangular
bounding box.

This query returns only places with a special tag amenity, with which useful and im-
portant facilities for visitors and residents5 are marked. The node name way allows to get
all ways of the bounding box. A way is found not only if it has a node inside the bounding
box, but also if it just crosses the bounding box somewhere. The combination of query
parameters way[amenity](latMin, lonMin, latMax, lonMax) and out geom allows to
get the geometry of all important places, which adjoin the way and this way can be either
inside or cross the bounding box.

Nominatim

Nominatim is a service for searching OSM data by name and address, but the main feature,
which is utilized in this project, is its ability to generate addresses of OSM points by reverse
geocoding. The Nominatim service is used when no semantic locations were identified by
the Overpass API (no nodes with tag amenity were found). The query used in this project
is listed in 5.2.

2https://wiki.openstreetmap.org/wiki/Overpass_API
3https://wiki.openstreetmap.org/wiki/Nominatim
4https://wiki.openstreetmap.org/wiki/Overpass_API/Language_Guide
5https://wiki.openstreetmap.org/wiki/Key:amenity

34

https://nominatim.openstreetmap.org/reverse?format=jsonv2&lat=<X>&lon=<Y>
&osm_type=W&zoom=18&polygon_geojson=1&addressdetails=1&accept-language=en

Listing 5.2: Nominatim query

Meaning of used parameters is listed below:

∙ reverse? - reverse geocoding mode generates an address from a latitude and longi-
tude

∙ jsonv2 - set up response format to JSON

∙ lat=<X>&lon=<Y> - latitude and longitude of point to reverse geocode. Cluster’s
centroid coordinates are used in this project

∙ osm_type=W - query for node name ”way“

∙ zoom=18 - level of detail, where 0 is country and 18 is house/building

∙ polygon_geojson=1 - output geometry of result in geojson format

∙ addressdetails=1 - include a breakdown of the address into elements to response

35

Chapter 6

Evaluation

This chapter provides an overview of experiments performed on the implemented modules
described in Chapter 5. First, the description of experimental datasets will be provided.
Secondly, the main goal and workflow of experiments will be described. Thirdly, evaluation
of the experimental datasets distribution will be shown using the OPTICS reachability
graph. Finally, the ST-DBSCAN results and semantic locations discovery module will be
evaluated.

6.1 Datasets
The implementation was tested on two datasets. The first dataset contains of a real data
from GPS sensors of taxis within Beijing. The second one is a synthetic dataset of simulated
cars driving on the street network of Berlin. More detailed overview of both datasets are
listed below.

T-Drive trajectory dataset

T-Drive trajectory dataset1 contains the GPS trajectories of 10 357 taxis during the period
of Feb. 2 to Feb. 8, 2008 within Beijing. The total number of GPS records is 17,5 million.
The total distance of the trajectories reaches to 9 million kilometres. The original dataset
consists of smaller .txt files which for the purpose of experiments were merged into one
.csv file. The file size of the merged dataset is 824 Mb. There were no further corrections
of this dataset.

BerlinMOD

Berlin MOD dataset2 is a benchmark data created using the Secondo DBMS3 generator
software and is a result of people’s behaviour simulation, commuting between homes, work
and leisure time places within the street network of Berlin. The experimental dataset
contains data for 6 days of simulation, 447 vehicles with 2 969 652 GPS records in total and
has a size of 273 Mb. The dataset was used as it is, without any additional corrections.

1https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
2http://dna.fernuni-hagen.de/secondo/BerlinMOD/BerlinMOD.html
3http://dna.fernuni-hagen.de/secondo/

36

6.2 Results

6.2.1 Goals and workflow

Our goal is to discover semantic locations in small areas with high density of parked vehicles
in relatively short interval of time. We want to exclude cases where cars are parked in
residential areas (e.g. private cars over night) or near working places for a long period of
time and places with high throughput like gas stations. Therefore, short stop duration (from
20 minutes to 3 hours) and small area (up to 400 meters) will be considered in this work.
This would lay the foundation for possible data mining, e.g. identification of frequently
visited areas in the city or most popular parking areas near significant locations.

The workflow of experiment is as follows:

∙ The stops extraction from trajectories will be conducted before clustering. This step
is supposed to limit the total amount of GPS points to cluster and filter the duration
of stops which are interesting for the analysis. In case of a big amount of stop
points (more than 10 000), filtering by days will be applied to reduce computational
complexity.

∙ Identification of the clustering structure will be performed with the OPTICS algo-
rithm in order to choose appropriate parameters for the next step

∙ Clustering of trajectories’ stops using the ST-DBSCAN algorithm

∙ Discovery of semantic locations for each cluster

∙ Project results on a map

6.2.2 Identifying the clustering structure

Identification of clustering structure for both datasets was conducted using the OPTICS
algorithm. For evaluation of points ordering in the dataset, two combinations were used: i)
small generating distance 𝜀 between points with bigger 𝑀𝑖𝑛𝑃𝑡𝑠 and ii) bigger generating
distance 𝜀 with smaller 𝑀𝑖𝑛𝑃𝑡𝑠. Results for various parameters of 𝜀− 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 and
𝑀𝑖𝑛𝑃𝑡𝑠 for temporal, spatial and spatial temporal dimensions are presented below.

T-Drive trajectory dataset

The T-Drive trajectory dataset is a large dataset, which needs a certain data reduction.
After empirical evaluation of the data in the dataset, it was noticed that GPS points by
some vehicles were reported with 10 - 20 minutes intervals. Therefore, the minimal limit
for the stop duration should be higher than those values to filter out incorrect GPS records.
For the experiment the data was filtered by stop duration within an 𝑡𝑚𝑖𝑛 = 1 hour and 𝑡𝑚𝑎𝑥

= 3 hours interval. The analysis was performed separately for 3 consequent days (Feb. 2
- Feb. 4, 2008). The average amount of stops per each day is around 5 000 reported in
average by 3 500 taxis.

The dataset contains a big amount of stop points and therefore we can easily set up
bounds for 𝑀𝑖𝑛𝑃𝑡𝑠 to 20 - 50 points. First experiment was done with a short temporal
distance 20 minutes between stops and a high number of points in a cluster 𝑀𝑖𝑛𝑃𝑡𝑠 = 50.
The reachability plot (Fig. 6.1a) shows several big clusters (≈ 5) and smaller ones. With a
bigger time interval equal to 1 hour and a smaller number of points 𝑀𝑖𝑛𝑃𝑡𝑠 = 20, the stops

37

were grouped into two large clusters (Fig. 6.1b). Based on these results we can come to a
conclusion that for better separated clusters by the temporal dimension we should consider
smaller time intervals with a high enough value of 𝑀𝑖𝑛𝑃𝑡𝑠.

(a) smaller generating distance 𝜀 = 20 minutes, 𝑀𝑖𝑛𝑃𝑡𝑠 = 50

(b) bigger generating distance 𝜀 = 1 hour, 𝑀𝑖𝑛𝑃𝑡𝑠 = 20

Figure 6.1: Temporal OPTICS algorithm results for the T-drive dataset

The second experiment was performed for the spatial dimension. As initially we are
not interested in big areas, it is worth to choose a generating distance in bounds of 0.2 - 1
kilometres. The reachability plot for a smaller generating distance 𝜀 = 500 metres (6.2a)
shows better separated clusters, while the reachability plot for a bigger generating distance
(6.2b) 𝜀 = 800 metres does not indicate about a clear separation - there are some large
clusters (≈ 6) and a lot of smaller ones. Based on these results we can conclude that the
dataset is sensitive to changes of the spatial distance value as it did not change significantly
in both experiments, while the number of points was reduced twice their initial value.

The last experiment was done for two dimensions - spatial and temporal. We attempted
to combine small generating distances of 𝜀 from the previous results, but there was no such
clustering, which would satisfy those conditions. Since the small spatial distance plays a
more important role, we can increase the 𝜀 value for the temporal dimension and decrease
the minimal number of points 𝑀𝑖𝑛𝑃𝑡𝑠. Results plotted in graph 6.3 show an almost
identical dataset distribution for both dimensions, which means that both parameter values
can be used in the discovering clusters step.

38

(a) smaller generating distance 𝜀 = 500 m, 𝑀𝑖𝑛𝑃𝑡𝑠 = 30

(b) bigger generating distance 𝜀 = 800 m, 𝑀𝑖𝑛𝑃𝑡𝑠 = 15

Figure 6.2: Spatial OPTICS algorithm results for the T-drive dataset

39

(a) smaller generating distance 𝜀− 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 (blue) = 200 m, 𝜀− 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 (pink) = 1 hour, 𝑀𝑖𝑛𝑃𝑡𝑠 = 10

(b) bigger generating distance 𝜀− 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 (blue) = 500 m, 𝜀− 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 (pink) = 2 hours, 𝑀𝑖𝑛𝑃𝑡𝑠 = 20

Figure 6.3: Spatial Temporal OPTICS algorithm results for the T-drive dataset

BerlinMOD

The dataset contains 99 302 stops in total, but for the purpose of this experiment the stops
duration was limited to 𝑡𝑚𝑖𝑛 = 20 minutes and 𝑡𝑚𝑎𝑥 = 3 hours. This reduced the amount
of stops to 1 620 and the number of trajectories to 434. As the dataset is not as big as the
previous one, the bounds for 𝑀𝑖𝑛𝑃𝑡𝑠 could be smaller. In this experiment a range of 4 - 8
points will be considered.

The first experiment was conducted with the temporal dimension and, as illustrated
on the reachability plots Fig. 6.4 (a, b), the temporal dimension is not sensitive to 𝜀 and
𝑀𝑖𝑛𝑃𝑡𝑠 parameter’s change. Next, the dataset distribution by the spatial dimension was
analysed. For a smaller generating distance of 𝜀 = 400 metres and a high number of 𝑀𝑖𝑛𝑃𝑡𝑠
= 7 only few clusters can be found (Fig. 6.5a). Therefore either the generating distance
should be bigger or the number of 𝑀𝑖𝑛𝑃𝑡𝑠 has to be decreased. The reachability plot
configured with the parameter of a bigger generating distance 𝜀 = 800 metres (Fig. 6.5b)
does not have defined silhouettes of valleys and it is difficult to figure out the approximate
number of clusters as no large clusters were detected.

40

(a) smaller generating distance 𝜀 = 30 minutes, 𝑀𝑖𝑛𝑃𝑡𝑠 = 8

(b) bigger generating distance 𝜀 = 1 hour, 𝑀𝑖𝑛𝑃𝑡𝑠 = 4

Figure 6.4: Temporal OPTICS algorithm results for the BerlinMOD dataset

41

(a) smaller generating distance 𝜀 = 400 meters, 𝑀𝑖𝑛𝑃𝑡𝑠 = 7

(b) bigger generating distance 𝜀 = 800 meters, 𝑀𝑖𝑛𝑃𝑡𝑠 = 4

Figure 6.5: Spatial OPTICS algorithm results for the BerlinMOD dataset

The last experiment with two dimensional data was conducted for a smaller generating
distance 𝜀 = 400 metres and 𝑀𝑖𝑛𝑃𝑡𝑠 = 4. The reachability plot in Fig. 6.6a shows only
a very few clusters. The followed up test with increasing just one parameter of 𝜀 to 2
kilometres gives better results. In general, based on the OPTICS reachability plot outputs,
we can come to a conclusion that this dataset is not appropriate for clustering in order to
discover semantic locations as it requires a high 𝜀 parameter value for the spatial dimension
to discover clusters.

42

(a) smaller generating distance 𝜀− 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = 400 m (blue), 𝜀− 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = 1 hour(pink), 𝑀𝑖𝑛𝑃𝑡𝑠 = 4

(b) bigger generating distance 𝜀− 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = 2 km (blue), 𝜀− 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = 1 hour (pink), 𝑀𝑖𝑛𝑃𝑡𝑠 = 4

Figure 6.6: Spatial Temporal OPTICS algorithm results for the BerlinMOD dataset

6.2.3 Clustering and semantic locations discovery

In this step of the analysis, the clustering algorithm is applied to datasets with parameters
evaluated in the previous chapter. Followed up semantic locations discovery was performed
to provide clusters with semantic context.

T-drive dataset

For the T-drive dataset the following clustering parameters were used: 𝜀-temporal = 1
hour, 𝜀-spatial = 200 metres and 𝑀𝑖𝑛𝑃𝑡𝑠 = 10 points. The clustering algorithm applied
for Feb. 2 - Feb. 4, 2008 finds various number of clusters per day (on average 5 - 11) in
different districts of Beijing, but some clusters are daily detected in the same areas. These
clusters are represented in Fig. 6.7 - Fig. 6.8.

Clusters in Fig. 6.7a are located in approximately 2 kilometres to the Crowne Plaza
Beijing International Airport. Since the area is the same, the points are grouped into two
clusters by the time dimension - taxis from the one cluster were parked there during the
afternoon hours (13:00 - 15:00), while another group of taxis was parked during the evening
hours (17:00 - 22:00) on Feb. 2. On Feb. 3 evening hour and afternoon hour clusters are
merged together and an additional cluster in the morning hours (10:00 - 11:00) is discovered
in this area. On Feb. 4 only one large cluster is detected containing taxis’ stops in time

43

interval 13:00 - 23:00. Analysing the time intervals in clusters, it is possible to make an
assumption that the detected area is actively used by taxis for parking, but as this area
does not adjoin any significant place, the discovered semantic location is the street name
with the name of the district.

Clusters in Fig. 6.7b discovered on Santaishan Road contain taxis’ stops, which on Feb.
2 occurred during the afternoon hours (13:00 - 14:00, 16:00 - 16:30) and during the evening
hours (18:00 - 19:00). On Feb. 3 taxis’ stops are grouped by morning hours 9:00 - 10:00
and afternoon hours within intervals 13:00 - 13:30, 15:00 - 16:00. On Feb. 4 there are three
groups of taxis’ stops in time intervals 05:30 - 06:30, 09:00 - 11:00 and 13:00 - 14:00. Short
time intervals can signalize traffic jams in this area.

(a) (b)

Figure 6.7: Clusters discovered with parameter 𝑀𝑖𝑛𝑃𝑡𝑠 = 10

Another group of clusters is shown in Fig. 6.8a for the Feb. 3. With the clustering
parameter 𝑀𝑖𝑛𝑃𝑡𝑠 = 10 only two overlapping clusters are discovered, but with decreasing
𝑀𝑖𝑛𝑃𝑡𝑠 to 7, three more clusters are detected. Overlapping clusters differ by time, within
one cluster taxis’ stops during the morning hours 09:00 - 10:30 are detected, within another
cluster taxis’ stops are found at night hours in the interval 01:00 - 03:00. On Feb. 4 again
two overlapping clusters are discovered in the time intervals 02:30 - 04:00 and 09:00 - 10:00.

The last one group of clusters is detected on Lianhuachi East Road and is shown in Fig.
6.8b. Two clusters on the left differ by the time intervals of 18:30 - 19:30 and 21:30 - 22:30.
Another group on the right is clustered by the time intervals 07:00 - 08:00, 21:00 - 22:00
and 23:30 - 00:30. On Feb. 4 three clusters are detected in this area in the time intervals
16:30 - 17:00, 20:40 - 21:40 and 23:00 - 00:50.

For all described clusters the discovered semantic locations are names of roads or streets
with districts, which are represented on a map as line segments geometry. There are no
significant locations discovered within bounding boxes of clusters by the Overpass provider
as taxis were mostly detected either on the road standing in a traffic jam or parked in some
residential area. Therefore the reverse geocoding technique by Nominatim was applied to
obtain the semantic locations nearby the points of the clusters’ centroids.

44

(a) (b)

Figure 6.8: Clusters discovered with parameter 𝑀𝑖𝑛𝑃𝑡𝑠 = 7

BerlinMOD dataset

The clustering for the Berlin MOD dataset was done with the following parameters: 𝜀-
temporal = 1 hour, 𝜀-spatial = 400 metres and 𝑀𝑖𝑛𝑃𝑡𝑠 = 4 points. The evaluation of these
parameters in the previous chapter produces only a few discovered clusters. Increasing the
𝜀-spatial would significantly change the situation, but it contradicts our goal to discover
semantic locations in small areas.

The total amount of discovered clusters is four. These clusters are shown in Fig. 6.9 -
Fig. 6.10 with their bounding boxes, points and discovered semantic locations.

(a) (b)

Figure 6.9: Clusters’ bounding boxes with points discovered with parameter 𝑀𝑖𝑛𝑃𝑡𝑠 = 4

45

It is obvious, that 𝜀-spatial = 400 metres is already quite a big distance to discover
semantic locations, which adjoin the particular cluster. The dataset consisting of 434
trajectories appears to be too small for the density-clustering analysis and discovery of
semantic locations. Nevertheless, we can see a different pattern in discovered locations in
comparison to the T-drive dataset. As clusters were detected in the city, it was possible
to obtain the geometry and names of significant locations nearby. The cluster in Fig. 6.9a
contains a marketplace and a parking area, in Fig. 6.9b are two different parking areas, a
theatre, a school and a courthouse, in Fig. 6.10a two large parking areas and a smaller one
were detected and in Fig. 6.10b are three parking areas and a school.

(a) (b)

Figure 6.10: Clusters’ bounding boxes with points discovered with parameter 𝑀𝑖𝑛𝑃𝑡𝑠 = 4

46

Chapter 7

Conclusion

Thesis conclusion

In this work, we proposed a framework for trajectory data preprocessing to discover seman-
tic locations in raw trajectories. The framework consists of two central modules: discovering
interesting physical locations by utilizing a density-based algorithm and semantic enrich-
ment of trajectories by querying the online GIS database OpenStreetMap via Overpass API
and Nominatim API.

The framework utilizes the idea of semantic-enhanced clustering [10], but is based on
the spatio-temporal clustering algorithm ST-DBSCAN. It allows to eliminate scenarios of
discovering clusters in regions which have high throughput (e.g. gas stations), but are not
densely filled. Another benefit results from using the bounding box of discovered clusters
to query semantic locations nearby. This approach reduces the amount of queries sent to
online databases which are usually generated by the reverse-geocoding method described
in 3.2.3. Besides, the response returned from the online database will contain accurate
data on buildings’ street addresses and does not depend on availability of yellow pages web
resource.

The proposed approach was implemented as a standalone Java application designed in
REST (Representational State Transfer) architectural style and provides following features:

∙ Discover places with vehicle’s stops

∙ Evaluate the stops distribution in the dataset and discover dense regions in raw tra-
jectories by clustering vehicles’ stops

∙ Discover semantic places nearby the dense regions with the ability to filter them

∙ Project clustering results with discovered semantic locations on a map

The implemented solution was tested on two different datasets - a database of taxis’
trips in Beijing and synthetically generated data of vehicles’ trips in Berlin. The clustering
results are dependent on input parameters and therefore the implemented heuristics for
evaluating the dataset distribution appeared to be very helpful in choosing the optimal
parameters for the clustering. Since the setting of appropriate inputs is also dependent
on the data analysis goals, it was easier to detect the smallest spatial 𝜀 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑
value for each dataset, where clustering is possible. Evaluation of the semantic locations
discovery module shows that discovered locations are dependent on the nature of objects in
the dataset. Semantic locations discovered for taxis mostly contain names of roads, streets

47

and districts, while the second dataset contains the names and addresses of buildings, where
vehicles’ stops were detected.

Potential extensions and profitability in future work

The framework was developed in a way that it can become a part of data mining pro-
cess, which requires trajectories integrated with semantic context. For example, studying
behaviour patterns in street traffic or scene partitioning depending on frequently visited
areas in the city. The application allows to export prepared data in JSON (JavaScript
Object Notation) format, which is a lightweight data-interchange format. Although ini-
tially the developed framework was not intended to use as a traffic jams discovery tool,
during experiments on real dataset with taxis, some possible traffic problems on roads were
discovered.

The framework can be improved in terms of implementation of automatic techniques
of the cluster-order analysis, OPTICS-𝜉, which is able to identify start-of-cluster and end-
of-cluster values and then combines matching regions into clusters. It will significantly
improve the dataset distribution analysis by the reachability plot. Another improvement
can be made in the semantic locations discovery by putting more strict conditions on queries
to the OpenStreetMap services or by defining a dictionary containing special categories of
required semantics. Sufficient improvement can be made in terms of performance by running
the OPTICS and the ST-DBSCAN algorithms in parallel.

48

Bibliography

[1] Alon, J.; Sclaroff, S.; Kollios, G.; et al.: Discovering clusters in motion time-series
data. In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE
Computer Society Conference on, vol. 1. IEEE. 2003. pp. I–I.

[2] Alvares, L. O.; Bogorny, V.; Kuijpers, B.; et al.: Towards semantic trajectory
knowledge discovery. Data Mining and Knowledge Discovery. vol. 12. 2007.

[3] Alvares, L. O.; Fernandes, J. A.; Macedo, D.; et al.: A model for enriching trajectories
with semantic geographical information. In in ‘ACM-GIS’, ACM. Press. 2007.

[4] Alvares, L. O.; Loy, A. M.; Renso, C.; et al.: An algorithm to identify avoidance
behavior in moving object trajectories. Journal of the Brazilian Computer Society.
vol. 17, no. 3. 2011: pp. 193–203.

[5] Andrienko, G.; Andrienko, N.; Rinzivillo, S.; et al.: Interactive visual clustering of
large collections of trajectories. In Visual Analytics Science and Technology, 2009.
VAST 2009. IEEE Symposium on. IEEE. 2009. pp. 3–10.

[6] Ankerst, M.; Breunig, M. M.; Kriegel, H.-P.; et al.: OPTICS: ordering points to
identify the clustering structure. In ACM Sigmod record, vol. 28. ACM. 1999. pp.
49–60.

[7] Benkert, M.; Gudmundsson, J.; Hübner, F.; et al.: Reporting flock patterns.
Computational Geometry. vol. 41, no. 3. 2008: pp. 111–125.

[8] Birant, D.; Kut, A.: ST-DBSCAN: An algorithm for clustering spatial–temporal
data. Data & Knowledge Engineering. vol. 60, no. 1. 2007: pp. 208–221.

[9] Bogorny, V.; Kuijpers, B.; Alvares, L. O.: ST-DMQL: a semantic trajectory data
mining query language. International Journal of Geographical Information Science.
vol. 23, no. 10. 2009: pp. 1245–1276.

[10] Cao, X.; Cong, G.; Jensen, C. S.: Mining significant semantic locations from GPS
data. Proceedings of the VLDB Endowment. vol. 3, no. 1-2. 2010: pp. 1009–1020.

[11] Ester, M.; Kriegel, H.-P.; Sander, J.; et al.: A density-based algorithm for discovering
clusters in large spatial databases with noise. In Kdd, vol. 96. 1996. pp. 226–231.

[12] Gaffney, S.; Smyth, P.: Trajectory clustering with mixtures of regression models. In
Proceedings of the fifth ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM. 1999. pp. 63–72.

49

[13] Kalnis, P.; Mamoulis, N.; Bakiras, S.: On discovering moving clusters in
spatio-temporal data. In SSTD, vol. 3633. Springer. 2005. pp. 364–381.

[14] Krumm, J.: Trajectory Analysis for Driving. In Computing with Spatial Trajectories.
2011.

[15] Lee, J.-G.; Han, J.; Li, X.; et al.: TraClass: trajectory classification using hierarchical
region-based and trajectory-based clustering. Proceedings of the VLDB Endowment.
vol. 1, no. 1. 2008: pp. 1081–1094.

[16] Lee, J.-G.; Han, J.; Whang, K.-Y.: Trajectory clustering: a partition-and-group
framework. In Proceedings of the 2007 ACM SIGMOD international conference on
Management of data. ACM. 2007. pp. 593–604.

[17] Li, Y.; Han, J.; Yang, J.: Clustering moving objects. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM.
2004. pp. 617–622.

[18] Liu, J.; Wolfson, O.; Yin, H.: Extracting semantic location from outdoor positioning
systems. In Mobile Data Management, 2006. MDM 2006. 7th International
Conference on. IEEE. 2006. pp. 73–73.

[19] Mazimpaka, J. D.; Timpf, S.: Trajectory data mining: A review of methods and
applications. Journal of Spatial Information Science. vol. 2016, no. 13. 2016: pp.
61–99.

[20] Nanni, M.; Pedreschi, D.: Time-focused clustering of trajectories of moving objects.
Journal of Intelligent Information Systems. vol. 27, no. 3. 2006: pp. 267–289.

[21] Palma, A. T.; Bogorny, V.; Kuijpers, B.; et al.: A clustering-based approach for
discovering interesting places in trajectories. In Proceedings of the 2008 ACM
symposium on Applied computing. ACM. 2008. pp. 863–868.

[22] Parent, C.; Spaccapietra, S.; Renso, C.; et al.: Semantic trajectories modeling and
analysis. ACM Computing Surveys (CSUR). vol. 45, no. 4. 2013: page 42.

[23] Rama, B.; Jayashree, P.; Jiwani, S.: A survey on clustering current status and
challenging issues. International Journal on computer science and engineering. vol. 2,
no. 9. 2010: pp. 2976–2980.

[24] Zheng, Y.: Trajectory Data Mining: An Overview. ACM Transaction on Intelligent
Systems and Technology. September 2015.
Retrieved from: https://www.microsoft.com/en-us/research/publication/
trajectory-data-mining-an-overview/

50

https://www.microsoft.com/en-us/research/publication/trajectory-data-mining-an-overview/
https://www.microsoft.com/en-us/research/publication/trajectory-data-mining-an-overview/

Appendix A

DVD content

The attached CD contains:

∙ sminer_source - source files, as can be obtained from the GitHub repository1

∙ sminer_executable - folder with executable application, contains readme.txt manual

∙ datasets - datasets for experiments

∙ thesis.pdf - text of the thesis in .pdf format

∙ thesis_latex - LaTex source files

1https://github.com/annaostroukh/SMiner

51

Appendix B

Manual

B.1 Dataset configuration
1. Click on the Configuration tab. There are two options available:

(a) Choose one option for preconfigured test datasets.
(b) Input order of columns for custom dataset in corresponding input fields. Note,

that ordering starts from 0.

2. Click on Save button.

B.2 Extraction of stops
1. Click on the Extract stops tab.

2. Click Browse to select the dataset from your computer.

3. Click Upload.

4. Input required minimum duration of stops in minutes to the corresponding input field.
Optionally, input maximum duration of stops in minutes.

5. Click Extract stops.

6. Optionally select interval in days for which analysis is going to be conducted. Click
Submit.

B.3 OPTICS reachability plot
1. Click on the OPTICS reachability plot tab. There are input fields for three types

of reachability plots available:

(a) Temporal plot.
(b) Spatial plot.
(c) Spatial Temporal plot.

2. Input values into corresponding input fields. The description of input fields is provided
below:

52

(a) Epsilon (maximum temporal distance in minutes) - sets the neighbour-
hood value for the temporal dimension. For example, for the value set to 20
minutes, the reachability plot will display the dataset distribution, where 20 is
the maximum reachability distance on the Y axis.

(b) Epsilon (maximum distance in km) - sets the neighbourhood value for the
spatial dimension. For example, for the value set to 0.4 km, the reachability
plot will display the dataset distribution, where 0.4 is the maximum reachability
distance on the Y axis.

(c) Minimum amount of data points - sets the required minimum amount of
stops in a cluster.

3. Click on the corresponding button near the plot settings.

B.4 ST-DBSCAN clustering
1. Click on the Extract semantic locations tab.

2. Input values into the corresponding input fields:

(a) Epsilon of temporal distance in minutes - sets the neighbourhood value for
the temporal dimension.

(b) Epsilon of spatial distance in km - sets the neighbourhood value for the
spatial dimension.

(c) Minimum amount of data points - sets the required minimum amount of
stops in a cluster.

For example, settings of 20 minutes, 0.4 km and 5 points will discover clusters, where
the distance between adjoining vehicles is equal to or less than 0.4 km and the time
difference between vehicles’ stop points is equal to or less than 20 minutes. A group
of points will be considered as a cluster when this group contains an amount of points
equal to or more than 5.

3. Click the Run ST-DBSCAN button.

B.5 Semantic locations discovery
Semantic locations discovery is available on the Extract semantic locations tab after
discovery of clusters.

1. Optionally put required distance in kilometres to extend clusters’ bounding boxes
boundaries. If no value is set, the semantic locations which are inside and intersect
the bounding box are discovered.

2. Click the Extract all locations button to extract locations for all clusters in a list or
click the Extract semantic locations link near the corresponding cluster to extract
locations of a particular cluster.

53

3. Click the View locations link to see the discovered locations.
In the appeared modal window select a location or multiple locations (holding Shift
button). Move selected locations to the Chosen locations column of the modal
window. Click on the Save changes button to save selected locations.

4. Click on the Show map button to display a map. There are options available for the
data visualization on a map:

(a) Show clusters’ area - shows circle areas of clusters where the centre of the
circle is a cluster’s centroid.

(b) Show clusters’ points - shows points in a cluster.
(c) Show bounding boxes of clusters - shows rectangular bounding boxes of

clusters.
(d) Show stops info - shows information about stops in clusters containing the

location, moving object ID, stop ID and duration of the stop.
(e) Show locations’ geometry - shows geometry of semantic locations.

5. Click on the Export clusters’ data to JSON button to export the clustering result
integrated with semantics to a JSON file.

54

	Introduction
	Semantic trajectories and preprocessing methods of moving objects data
	Semantic trajectories
	Trajectory data preprocessing techniques
	Noise reduction
	Data compression
	Data clustering

	Trajectory data mining tasks
	Clustering
	Classification
	Prediction
	Non-semantic trajectory knowledge discovery
	Semantic-based trajectory knowledge discovery

	Approaches of preprocessing trajectories for integrating semantics
	Discovering physical locations
	ST-DBSCAN: Spatial-Temporal DBSCAN
	TRACLUS: TRAjectory CLUStering
	T-OPTICS: Trajectory Ordering Points

	Semantic enrichment of trajectories
	Algorithm SMoT: Stops and Moves of Trajectories
	Algorithm CB-SMoT: Clustering-Based SMoT
	Reverse geocoding method

	Design of the trajectory data preprocessing framework
	Trajectories segmentation
	Discovering places of interest
	Distance function
	Computing the cluster centroid
	Parameters evaluation heuristic

	Semantic enrichment of trajectories
	Semantic locations discovery
	Annotating trajectories with semantics

	Implementation
	GUI overview
	Architecture
	Implementation of the OPTICS algorithm
	Data structure
	Processing the dataset

	Semantic locations discovery
	Implementation of the ST-DBSCAN algorithm
	Implementation of semantic locations discovery

	Evaluation
	Datasets
	Results
	Goals and workflow
	Identifying the clustering structure
	Clustering and semantic locations discovery

	Conclusion
	Bibliography
	DVD content
	Manual
	Dataset configuration
	Extraction of stops
	OPTICS reachability plot
	ST-DBSCAN clustering
	Semantic locations discovery

