
B R N O UNIVERSITY OF T E C H N O L O G Y

Faculty of Electrical Engineering
and Communication

M A S T E R ' S THESIS

Brno, 2020 Be. Lukas Balazevic

T
BRNO UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

SECURITY MECHANISMS OF OS ANDROID UTILIZING
THE KOTLIN LANGUAGE
MECHANISMY ZABEZPEČENÍ OS ANDROID S VYUŽITÍM JAZYKA KOTLIN

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. Lukáš Balaževič
AUTOR PRÁCE

SUPERVISOR Ing. Kryštof Zeman, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

Master's Thesis
Master's study field Commun ica t ions and Informatics

Department of Telecommunications

Student: Be. Lukáš Balaževič ID: 186416

Year of
study:

2 Academic year: 2019/20

TITLE O F THESIS :

Security mechanisms of OS Android utilizing the Kotlin language

INSTRUCTION:

The target of this diploma thesis is a comprehensive study of security mechanisms of an Android O S , together

with options on how to secure communication between the O S , users and remote server (i.e., Cloud storage) in

mobile applications that are utilizing the Kotlin language. This knowledge will be further implemented in a sample

application. The theoretical part will be dedicated to in detail description of security mechanisms theory, with

emphasis on novel cryptographic methods (i.e., elliptic curves), together with "best practices" of Android O S

mobile development (utilization of Android KeyCha in , Dependency Injection, Reactive programming, etc.).

Furthermore, this knowledge will be implemented in a sample application, which is serving as verification of their

validity. The outcome of this thesis will be an in-detail overview of current security mechanisms together with their

ideal implementation procedures and a working sample application for O S Android that demonstrates them.

R E C O M M E N D E D L I T E R A T U R E :

[1] Kotlin documentation [online], 2019. [cit. 2019-09-16]. Dostupne z: https://kotlinlang.org/docs/tutorials/kotlin-

android.html

[2] J E M E R O V , Dmitry a Svetlana ISAKOVA, [2017]. Kotlin in action. Shelter Island, NY: Manning Publications Co.

ISBN 978-161-7293-290.

The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

Date of project
specification:

3.2.2020 Deadline for submission: 1.6.2020

Supervisor: Ing. Kryštof Zeman, Ph.D.

prof. Ing. Jiří Mišurec, C S c .
Subject Council chairman

WARNING:

https://kotlinlang.org/docs/tutorials/kotlin-

ABSTRACT
Mobile devices are a novelty in technological history. With technology that is evolving
at such a rapid pace and growth in use, it is necessary to pay attention to security. This
diploma thesis deals with the analysis of the security mechanisms used in the Android
OS and the communication between the Android OS and the remote server. The aim
is to examine these mechanisms and test which cryptographic methods and procedures
are most advantageous in terms of security with regard to efficiency. This knowledge
was used to create a demonstration system that uses selected security mechanisms and
cryptographic methods.

KEYWORDS
Android, Android security, M V V M , Cryptography, RSA, EC, Digital signature, JWT ,
Microservices, gRPC, Kubernetes, Istio, Docker

ABSTRAKT
Mobilné zariadenia sú v rámci technologickej histórie novinka a pri technológii, ktorá
sa vyvíja tak rapídnym tempom a rastom používania je nutné dbať na zabezpečenie.
Táto diplomová práca sa zaoberá rozborom bezpečnostných mechanizmov používaných
v Android OS a komunikáciou medzi OS Android a vzdialeným serverom. Cieľom je
preskúmať tieto mechanizmy a otestovať aké kryptografické metódy a postupy je naj
výhodnejšie používať z hľadiska bezpečnosti s ohľadom na efektivitu. Tieto znalosti boli
použité pre vytvorenie demonštračného systému, ktorý využíva vybrané zabezpečovacie
mechanizmy a kryptografické postupy.

KĽÚČOVÉ SLOVÁ
Android, Zabezpečenie Androidu, M V V M , Kryptografia, RSA, EC, Digitálny podpis,
JWT, Mikroslužby, gRPC, Kubernetes, Istio, Docker

BALAŽEVIČ, Lukáš. Security mechanisms of OS Android utilizing the Kotlin language.
Brno, 2020, 107 p. Master's Thesis. Brno University of Technology, Faculty of Electri
cal Engineering and Communication, Department of Telecommunications. Advised by
Ing. Zeman Kryštof, Ph.D.

ROZŠÍŘENÝ ABSTRAKT
Smartfóny sú jedny z najrýchlejšie sa rozvíjajúcich a bežne dostupných technologií.
S rýchlym rastom užívateľskej základne a softvérových funkcií sa otázky bezpečnosti
stávajú relevantnějšími. Užívatelia používajú smartfóny častejšie na riadenie každo
denných úloh, ako sú e-mail, internetové bankovníctvo a mobilné platby. Všetky tie
to úlohy si vyžadujú citlivé užívateľské údaje, ktoré sa vo väčšine prípadov ukladajú
priamo do smartfónu. Vďaka zariadeniu, ktoré prichádza všade kam používateľ a
ktoré obsahuje citlivé údaje, sa bezpečnosť musela vyvinúť nad úroveň zabezpečenia
stolného počítača. Výrobcovia mobilných telefónov a vývojáři aplikácií musia zais
tiť bezproblémové prostredie pre všetkých používateľov (dokonca aj pre tých, ktorí
nie sú odborníkmi v oblasti zabezpečenia alebo sa nimi nechcú priamo zaoberať)
implementovat bezpečnostné opatrenia na ochranu údajov používateľov, a to aj v
situácií pri krádeži smartfónu.

Cieľom tejto diplomovej práce je vysvetliť model zabezpečenia smartfónov v ope
račnom systéme Android a porovnať existujúce kryptografické protokoly, ktoré An-
droid OS podporuje. Ďalším cieľom je na základe získaných teoretických znalostí
a výsledkov z testovania implementovat ukážkový systém, ktorý preukáže reálne
použitie týchto bezpečnostných mechanizmov a bude klásť dôraz na overené prak
tiky pri implementácií.

Prvá kapitola popisuje vývoj smartfónov a predstavuje systém Android, systém
verzií systému Android a spôsob distribúcie aplikácií v ekosystéme Android OS.

Druhá kapitola popisuje, z ktorých častí sa model zabezpečenia systému Android
skladá, ich účel a spôsob práce s inými systémovými komponentmi, aby poskyto
vali sofistikované zabezpečenie používateľských údajov. Okrem popisu jednotlivých
komponentov a vysvetlení na čo slúžia, je v tejto kapitole kladený dôraz na ukážky
aké kryptografické operácie Android podporuje a ako ich je možné použiť.

Tretia časť je založená na teórii opísanej v druhej časti. Sumarizuje výsledky
získané z referenčnej aplikácie, v ktorej bolo implementovaných a vykonaných 280
testov. Použité testovacie prípady pokrývajú väčšinu kryptografických operácií,
ktoré je možné vykonávať v systéme Android. Ich hlavným cieľom bolo vyhod
notiť výpočtový čas každej kryptografickej operácie. Výsledky boli ďalej spracované
a vizualizované v tepelných mapách a stĺpcovom grafe. Na základe výsledkov sa
dospelo k záveru, že nie všetky predpoklady boli splnené. Napríklad v niekto
rých prípadoch bolo šifrovanie RSA rýchlejšie ako šifrovanie AES . Tento prípad
je možné vidieť u zariadení Google Pixel X L , Motorola Moto G Plus, L G Nexus
5X a ďalšími. Určité staršie modely zariadení vykonávajú niektoré kryptografické
algoritmy rýchlejšie ako novšie zariadenia. Príkladom tohto správania sú zariade
nia H T C One M9 (20 nm procesor) a Samsung Galaxy A5 (14nm procesor) ak
na týchto dvoch zariadeniach porovnáme vytváranie RSA alebo E C kľúča tak v

každom prípade je H T C One M9 rýchlejší. To je možné vysvetliť hardvérovou
podporou určitých kryptografických algoritmov. Po analýze výsledkov a zohľad
nením širokého spektra zariadení, ktoré sú podporované boli vybrané algoritmy,
ktoré sú vhodné a optimálne pre implementáciu aplikácie, ktorá využíva kryp
tografické operácie. Ohľad sa bral hlavne na to, aby daný algoritmus bol vykonávaný,
čo v najmenšom časovom rozmedzí na všetkých zariadeniach. Vybrané algoritmy
sú AES256/GCM/NoPadding pre symetrické šifrovanie, SHA512withRSA2048/PSS
pre digitálny podpis a RSA3072/OAEPWithSHA512AndMGFlPadding pre asymet
rické šifrovanie.

Posledná štvrtá časť popisuje systém SecNote. Systém SecNote je implemen
tácia kompletného riešenia, ktoré demonštruje bezpečnostné mechanizmy systému
Android a osvedčené postupy ako ich implementovat. V tejto kapitole je tak
tiež popísanej ako implementovat bezpečnú komunikáciu medzi aplikáciou Android
a cloudovým systémom. Cloudový systém je riadený pomocou Kubernetes a Is
tia. Bežia tu tri mikro-služby s tromi databázami. Systém SecNote demonštruje
bezpečnostné mechanizmy, ako napríklad:

• B i o m e t r i c k é overenie - Aplikácia vyžaduje pre funkčnosť, aby telefónne
zariadenie bolo bezpečné, čiže musí mať nastavený minimálne PIN a v ideál
nom prípade biometrické overenie. V prípade, že ani jeden z mechanizmov nie
je nastavený, aplikácia vyžiada od používateľa, aby si dané overenie nastavil
ak chce aplikáciu naďalej používať. Vždy je možné, ako záložný mechanizmus
overenia použiť PIN v prípade, že by sa biometrický senzor pokazil alebo inak
by znemožil používateľovi sa týmto spôsobom overiť. Po overení používateľa
sa otvorí časové okno, v ktorom je možné používať kryptografický materiál ap
likácie, ktorý je využívaný na podpisovanie žiadosti, šifrovanie a dešifrovanie
poznámok, šifrovanie úložiska.

• Časovo o b m e d z e n é p r ih l á sen ie - Existujú 2 časové okná, a to okno ak
tívnej interakcie, ktoré využíva prístupový token s dobou platnosti 5 minút a
obnovovací token, ktorý platí 7 dní. Po uplynutí piatich minút sa aplikácia
pokúsi obnoviť prístupový token pomocou obnovovacieho tokenu. Ak použí
vateľ nepoužíva aplikáciu dlhšie, ako 7 dní je z aplikácie odhlásený a musí sa
znova prihlásiť.

• S p ô s o b p r e z e n t á c i e identi ty v cloudovom r iešení - Pri daných požia
davkách používateľ neposiela priamo v parametroch svoje ID, ale namiesto
toho si služby získavajú ID užívateľa z J W T tokenu, ktorý je pripojený do
kontextu požiadavku. Týmto spôsobom je zaručené, že sa v skutočnosti jedná
o daného užívateľa, pretože tokeny sú digitálne podpísané.

• D ig i t á lny podpis p o ž i a d a v k o u - Každý požiadavok, ktorý je odoslaný z
aplikácie na dátové služby je digitálne podpísaný používateľom v aplikácií.

Podpis sa overuje na strane serveru, aby sa zaručilo, že parametre požiadavku
neboli zmenené.

• Šifrovanie a dešifrovanie úda jov - Používateľ môže jednotlivé poznámky,
ktoré sú v aplikácií šifrovať a dešifrovať pomocou kľúčov, ktoré si v aplikácií
vytvorí. Tieto kľúče nikdy neopustia T E E systém takže nie je možné, aby
poznámky dešifroval dakto iný, než používateľ na svojom zariadení.

• Vytvorenie b e z p e č n é h o k a n á l a medzi ap l ikác iou a c loudom - Aplikácia
komunikuje s cloudovým riešením pomocou gRPC protokolu. Medzi apliká
ciou a cloudovým systémom je vytvorený zabezpečený gRPCs kanál, ktorý je
chránený pomocou TLS. Certifikát je registrovaný na doménu secnote.space
a o jej platnosť a obnovu sa stará zautomatizovaný systém, ktorý beží na
cloudovom riešení.

V tejto práci bol popísaný komplexný model zabezpečenie systému Android. Boli
rozobraté detailne jednotlivé komponenty tohto systému ich funkcionalita a úloha.
Následne bola vytvorená aplikácia, ktorá testuje pomocou 280 testov kryptogragické
operácie, ktoré sú podporované v systéme Android. Na základe výsledkov z aplikácie
bola vytvorená vizualizácia týchto výsledkov, z ktorej boli odvodené závery aké al
goritmy je najvýhodnejšie použiť pri implementácii aplikácie. Na základe rozobranej
teórie a výsledkov z aplikácie bol implemtovaný ukážkový systém, tvorený z Android
aplikácie a troch mikro-služieb, ktoré bežia na cloude. Tento systém demonštruje
jednotlivé bezpečnostné mechanizmy a ukazuje, ako je ich možné implementovat.

DECLARATION

I declare that I have written the Master's Thesis titled "Security mechanisms of OS

Android utilizing the Kotlin language" independently, under the guidance of the advisor

and using exclusively the technical references and other sources of information cited in

the thesis and listed in the comprehensive bibliography at the end of the thesis.

As the author I furthermore declare that, with respect to the creation of this Master's

Thesis, I have not infringed any copyright or violated anyone's personal and/or ownership

rights. In this context, I am fully aware of the consequences of breaking Regulation § 11

of the Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of

any breach of rights related to intellectual property or introduced within amendments to

relevant Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009

Coll., Section 2, Head VI, Part 4.

Brno

author's signature

A C K N O W L E D G E M E N T

I want to thank my supervisor, Mr. Ing. Zeman Kryštof, Ph.D. for professional guidance,

consultations, patience, and always fast feedback for my work. I would also like to thank

my parents for their continued support and faith in me. And last but not least, I would

like to thank my girlfriend who, despite the stressful finishing weeks, always stood by me

and helped me as much as possible.

Contents

Int roduct ion 25

I T h e o r y 26

1 M o b i l e devices 27
1.1 History 27
1.2 Android 28

1.2.1 Versions 29
1.2.2 Application distribution 29

2 A n d r o i d security overview 31
2.1 Authentication 31

2.1.1 Cryptographic key storage and service provider 31
2.1.2 Authentication mechanisms 31
2.1.3 Credential enrolment 32
2.1.4 Authentication 32

2.2 Gatekeeper 33
2.2.1 Architecture 34
2.2.2 Request throttling 35

2.3 Biometrics 35
2.3.1 Biometric architecture 36

2.4 Keystore 37
2.5 Supported cryptographic primitives 38

2.5.1 Key generation 39
2.5.2 Import and export of asymmetric keys 42
2.5.3 Encryption and decryption using an asymmetric key 43
2.5.4 Digital signature and verification of signature 45
2.5.5 Import of raw symmetric keys 47
2.5.6 Encryption and decryption using an symetric key 47

2.6 Key access control 48
2.7 Hardware vs. software enforcement 49
2.8 Trusty T E E 49

I I R e s u l t s 50

3 Cryptographic algorithms comparison 51

3.1 Creation of asymmetric key 51
3.2 Encryption using an asymmetric key 52
3.3 Decryption using an asymmetric key 52
3.4 Digital signature 52
3.5 Verification of digital signature 53
3.6 Creation of symmetric key 53
3.7 Encryption using an symmetric key 53
3.8 Decryption using an symmetric key 54

4 Hands-on implementat ion 55
4.1 System overview 55
4.2 Service architecture 56
4.3 Authentication service 57

4.3.1 Sing In 57
4.3.2 Sign Up 58
4.3.3 Sign Out 58
4.3.4 Renew token 58
4.3.5 Request verification 58
4.3.6 Security mechanisms 59

4.4 Note service 62
4.5 Permission service 62

4.5.1 Get notes 63
4.5.2 Add or update note 63
4.5.3 Delete note 63
4.5.4 Security mechanisms 63

4.6 SecNote application 64
4.6.1 Architecture 65
4.6.2 Networking 67
4.6.3 Login 68
4.6.4 Pin 70
4.6.5 Notes 72
4.6.6 Note 72
4.6.7 Categories 73
4.6.8 Encryption 77
4.6.9 Profile 79

4.6.10 Security mechanisms 80

5 Conclus ion 87

Bib l iography 89

Lis t of symbols, physical constants and abbreviations 91

Lis t of appendices 93

A Benchmark results 95

B Content of the enclosed C D 107

List of Figures
1.1 Smartphone OS evolution 27
1.2 Mobile vs Desktop market share 28
1.3 Distribution of Android versions 29
1.4 Supported devices with minumum SDK 30
2.1 Authentication flow 33
2.2 Gatekeeper communication diagram 34
2.3 Biometrie architecture 37
4.1 Secnote system overview 55
4.2 Service startup 56
4.3 Authentication service 57
4.4 Note service 62
4.5 Secnote application flow 65
4.6 Application architecture 66
4.7 Login and pin set up screens 69
4.8 Pin-screen in all three states with lock screen 71
4.9 Notes screen 73
4.10 Note screen 74
4.11 Categories screen 75
4.12 Encryption screen 77
4.13 Profile screen 79
A . l Asymmetric key creation 95
A.2 Encryption using R S A / E C B with PKCS1 or O A E P Padding 96
A.3 Encryption using R S A / E C B / O A E P w i t h S H A and M G F 1 Padding . . 96
A.4 Decryption using R S A / E C B with PKCS1 or O A E P Padding 97
A.5 Decryption using R S A / E C B / O A E P w i t h S H A and M G F 1 Padding . . 97
A.6 Signature using RSA with MD5 98
A.7 Signature using RSA or E C without hash function 98
A.8 Signature using RSA or E C with S H A l 99
A.9 Signature using RSA or E C with SHA224 99
A.10 Signature using RSA or E C with SHA256 100
A . 11 Signature using RSA or EC with SHA384 100
A.12 Signature using RSA or EC with SHA512 101
A . 13 Verification using RSA with MD5 101
A . 14 Verification using RSA or E C without hash function 102
A. 15 Verification using RSA or E C with S H A l 102
A. 16 Verification using RSA or E C with SHA224 103
A.17 Verification using RSA or E C with SHA256 103

A. 18 Verification using RSA or E C with SHA384 104
A. 19 Verification using RSA or E C with SHA512 104
A.20 Symmetric key creation 105
A.21 Encryption with AES 105
A.22 Decryption with AES 106

List of Tables
2.1 Biometrie accept rates 36
2.2 Supported KeyGenerator algorithms with AndroidKeyStore provider 40
2.3 Supported KeyPairGenerator algorithms with AndroidKeyStore provider 41
2.4 Supported RSA variants for encryption and decryption 44
2.5 Supported algorithms for signing and verification 46
3.1 Devices used for benchmarking 51

Listings
2.1 KeyGenerator init methods 40
2.2 AES Key generation 41
2.3 Retrive AES key from keystore 41
2.4 E C Key pair generation 42
2.5 RSA key and certificate generation 42
2.6 Import of RSA private key 43
2.7 Export of EC public key 43
2.8 Generate RSA Key for encryption and decryption 44
2.9 Enrypt data with RSA 45
2.10 Decrypt data with RSA 45
2.11 Generate E C Key for sign and verify 45
2.12 Sign data with E C D S A 46
2.13 Verify data with E C D S A 46
2.14 Import of AES key 47
2.15 Enrypt data with AES 48
2.16 Decrypt data with AES 48
4.1 J W T Claims creation 59
4.2 Eliptic curve key creation 60
4.3 J W T token creation 60
4.4 Parsing of J W T token 60
4.5 J W T token signature verification 60
4.6 J W T token expiration verification 61
4.7 Request signature verification 61
4.8 Digest verification 64
4.9 gRPC Android channel 68
4.10 gRPC Stub 68
4.11 Email and password validation 68
4.12 Device security validation 69
4.13 Category synchronization interactor call 74
4.14 Category synchronization interactor call 74
4.15 Invert state of category 76
4.16 Set new categories for note 76
4.17 Set new categories for note 76
4.18 List all aliases from keystore 78
4.19 Key selection 78
4.20 Key creation 79
4.21 Biometric library dependency 80

4.22 BiometricPrompt dependencies in PinFragmentModule 80
4.23 BiometricPrompt result 81
4.24 BiometricPrompt 81
4.25 Digital signature key generation 82
4.26 PermissionServiceManager - getNotes() method 82
4.27 CryptoHelper - hashMessageQ method 83
4.28 ServiceManager - executeWithMetadataQ method 83
4.29 Signature creation 83
4.30 CreateOrUpdateNotelnteractor build method 84
4.31 CryptoHelper encryptData method 84
4.32 CryptoHelper decryptData method 84

Introduction
Smartphones are one of the most rapidly evolving and widely available technologies.
With the fast growth in user base and software features, security questions become
more relevant. Users are using smartphones more frequently to manage daily tasks
such as email, internet banking, and mobile payments. A l l these tasks require sensi
tive user data, which in most saved directly on the smartphone. With the
device that comes everywhere where the user goes and also contains sensitive data,
security had to evolve beyond a desktop PC's security level. To provide a seamless
experience for all users (even the ones who are not proficient in security, or do not
want to deal with it directly), mobile manufacturers and application developers need
to implement security measures that protect users' data, even in smartphone theft
situations.

This thesis aims to explain the security model on smartphones using the Android
OS and to compare existing cryptographic protocols. The first chapter describes
the evolution of smartphones and presents the Android OS, the Android versioning
system, and how applications are distributed within the Android OS ecosystem.
The second chapter describes what parts the Android security model is composed
of, their purpose, and how they work with other system components to provide
sophisticated security for user data. The third chapter visualizes and summarizes the
results obtained from the created benchmark application. Last, the fourth chapter
describes the SecNote system, which is implemented based on knowledge gained from
the theory and results obtained from tests. The SecNote system showcases practical
usage of security mechanisms and best practices on how to implement them.

25

Part I

Theory

1 Mobile devices
A Mobile device, or by some called a handheld computer, is a computing device that
can function independently and is small amply to hold and manipulate in hand.
Inbuilt L C D or O L E D flatscreen with integrated touch input is one of the many
standard features from the feature-rich diverse set. Mobile devices usually connect
to the Internet and communicate with other devices that can be far from each other.
Devices located nearby each other can communicate by Wi-F i , Bluetooth, or NFC.
They can bear single or multiple integrated cameras and, in most powered
by lithium batteries. Security is an essential part of mobile devices, and in order to
satisfy current security standards, mobile devices can include biometric sensors and
specialized hardware for cryptographic operations. The manufacturer chooses the
operating system used on the mobile device, and it can range from small embedded
systems to robust feature-rich ecosystems. A smartphone is a special derivation of
the mobile device, which this thesis deals with a more significant deal.

1.1 History

I B M made the first smartphone and released it to the public on August 16, 1994.
I B M Simon Personal Communicator os simply I B M Simon, was the first P D A that
included features for telephony.

/ \
BlackBerry 5810

2002
BlackBerry O S 3.6

/ \
BlackBerry 5810

2002
BlackBerry O S 3.6

x
^ ^ ^ ^

r HTC Dream
2008

L J
AnexTEK SP230 1

2004
r HTC Dream

2008

L J
AnexTEK SP230 1

2004

Fig. 1.1: Smartphone OS evolution

From the days of I B M Simon, more than ten years passed before we got to the
modern days of IOS or Android smartphones. Figure 1.1 shows evolution history
from days of I B M Simon to the days of the first Android smartphone in the year 2008.

27

Blackberry OS, Symbian OS, and Windows Mobile OS attempted to established
a modern standard of smartphone OS yet still failed. The change came in 2007
with the introduction of Apple iPhone. This concept was further followed by the
introduction of the first Android phone in 2008. iPhone and Android are, to this day,
the most successful operating systems and own majority market share. Sucess of
smartphones can be proven by increasing market share 1.2, which has been increasing
since the first smartphone appeared. In August 2016, mobile devices' and desktop
computers had equal market share. Since September 2016, mobile devices hold
dominance in market share besides a few months where the market share was equal
or slightly under the desktop market share.

Desktop vs. Mobile

— Desktop — Mobile

100

Date

Fig. 1.2: Mobile vs Desktop market share [1]

1.2 Android

Android is an open-source software stack that can run on a broad arrangement
of devices from embedded, and smartwatches to mobile phones, tablets, and cars.
Android is designed so that there is no central point of failure. The resulted platform
is available to manufacturers to create products that improve the mobile experience
for users.

28

1.2.1 Versions

Android defines the version using three things: code name, version number, and
A P I level. Besides the first release of Android, which does not have the code name,
all other versions have code names inspired by confectionery and are alphabetically
ordered. The release of Android 10 brings many changes. One of the changes lies
within the code naming convention. Android 10 brings an end to names inspired
from confectionery, and instead, code names are named with Android prefix and
version number, so Android 10, Android 11. The version number is used as a
software versioning number. A P I version is increased with every new release of
Android API . Diagram 1.3 states the market share of devices using the given Android
version. Diagram 1.4 indicates how many devices will be supported by the developed

4.2.x Jelly Bean
15%

4.4 KitKat
6.9%

5 Lollipop
3.0%

5.1 Lollipop
11.5%

8 Oreo
12.9%

7.1 Nougat
7.8%

Fig. 1.3: Distribution of Android versions [2]

application if the minimum supported SDK level is chosen as given Android API .

1.2.2 Application distribution

Android application can have two formats: A P K and A A B . A A B is a newer format
that supports dynamic delivery. The dynamic delivery feature provides the possi
bility for users to download only part of the application that is important for their
device os version, which means a smaller application size for users to download [3].

After the successful upload of A P K or A A B to the store, the user can download
the application from the store. There are many stores from which users can download
applications, but Google officially supports only one store. Google Play is an official
application store made and curated by Google. It is by far the safest way to get
applications for Android. Every application submitted to the Google Play store is

Platform versions May 7, 2019

9 Pie

11.4%

29

100 99.7 99.4 9 8 2 M J g f i ^

89.3

Android version

• 2.3.7 • 4.0.4 • 4.1.x • 4.2.x • 4.3 • 4.4 • 5 • 5.1 6 • 7 • 7.1 8 8.1 9

Fig. 1.4: Supported devices with minumum SDK [2]

subjected to automation tests, and if any indication of safety concerns arise, the
application is submitted to manual testing. Service that handles application testing
is named Google play protect. Google Play Protect provides on-device and cloud-
based protection [4].

30

2 Android security overview

Google works tightly with developers and device manufacturers to incorporate industry-
leading security features to the Android and keep the ecosystem safe. This approach
resulted in a robust security model implemented in the Android ecosystem [5]. The
following sections are targeted at the android security model and principles descrip
tion. Furthermore, it provides an in-depth description of necessary components
together with their purpose and relations between them.

2.1 Authentication

The android ecosystem has to ensure that the user's data are safe and secure. Au
thentication mechanisms are leveraged to provide this kind of assurance and forbid
unauthenticated users' access. Android uses the concept of user-authentication-
gated cryptographic keys that require cryptographic key storage, cryptographic key
service provider, and user authenticator [6].

2.1.1 Cryptographic key storage and service provider

Cryptographic key storage is responsible for storing cryptographic keys. Android
Keystore occupies a position of cryptographic hardware-backed key-storage. A ser
vice provider provides standard cryptographic routines on top of keys provided by
cryptographic key storage. Keymaster is an implementation of a cryptographic ser
vice provider [6].

2.1.2 Authentication mechanisms

The primary purpose of authentication mechanisms is to attest to users' presence
and/or successful authentication. These mechanisms are implemented in Gate
keeper, Fingerprint, and BiometricPrompt classes. The Fingerprint class supports
fingerprint authentication, but only up to Android P, which corresponds to API
below 29. Starting with the Android P, BiometricPrompt should be utilized for user
authentication using the fingerprint or additional biometrics. The BiometricPrompt
itself is a single integration point for biometric authentication of any kind. A l l these
components communicate their authentication state to the Keystore service through
an authenticated channel [6].

31

2.1.3 Credential enrolment

On the first boot of the device after a factory reset, all authenticators are prepared
to receive credential enrollments from the user. A user must initially enroll a PIN,
pattern, or password with Gatekeeper. Otherwise, an application that uses security
features won't work correctly and prompt the user to enroll with Gatekeeper. Ini
tial enrolment with a Gatekeeper creates a randomly generated, 64-bit user secure
identifier (SID) that serves as an identifier for the user and as a binding token for
the user's cryptographic routines. The SID is cryptographically bound to the user's
security chosen measure [6].

A n attacker won't be able to change or access the user's credentials unless he
knows explicitly the user's PIN, pattern, or password that depends on what the user
has chosen on enrolment. Under normal conditions, the Android framework does
not allow an untrusted enroll, but it is possible to force it. In this case, if existing
credentials are not provided, the new credentials are enrolled with an entirely random
User SID. The attacker can access the device, but keys created under the old user
SID are permanently lost. This procedure is known as an untrusted enroll. A user
who wants to replace a credential propperly must exhibit an existing credential. If a
current credential is verified successfully, the user SID associated with the existing
credential is transferred to the new credential, enabling the user to keep accessing
keys after changing a credential [6].

2.1.4 Authentication

A user that successfully set up credentials and were provided with user SID can
start authenticating. Authentication is a process where the user uses created cre
dentials by providing a PIN, pattern, or password to verify his identity against the
Android system. Diagram 2.1 is an example of how the user authenticates with user
authenticators using a T E E . A n example with T E E is chosen because it is the most
common system configuration by the date of writing this thesis.

Every user authenticator has a dedicated deamon. PIN, pattern, or password
uses LockSettingsService, which sends requests to gatekeeperd. Biometrics-based
authentication on android devices below Android P calls FingerprintService. Fin
gerprint Service requests fingerprintd. Biometrics-based authentication on android
devices running Android P and above requests BiometricPrompt. BiometricPrompt
requests biometric manager, which requests appropriate biometric daemon. A user
provides an authentication method, and the associated service requests the asso
ciated daemon. The daemon sends data to its counterpart, which generates an
AuthToken. Fingerprint deamon listens for fingerprint event. After fingerprintd
receives fingerprint event, it sends data to Fingerprint in a T E E . If authentication

32

in T E E succeeds, Fingerprint in T E E sends an auth token signed with auth token
H M A C key to fmgerprintd in Android OS. For PIN, pattern, or password, the flow
is similar with just different used service and deamon. After deamon receives signed
token, it passes auth token to the Keystore service through an extension to the
Keystore service's Binder interface. The Keystore service passes the auth tokens to
Keymaster and verifies them using the key. The key is shared with the Gatekeeper,
Fingerprint, and other supported biometric T E E components. Keymaster trusts the
timestamp in the token as the last authentication time and bases decision if to allow
an app to use the key on it [6].

7
PIN

PATTERN
P A S S W O R D

Fingerprint
request

gatekeeperd

0 *

keystore service

0

* 0
fingerprintd

B I
0

Trusted execution environment (TEE) O S

0

r

i - — •
Fingerprint

AuthToken H M A C key

Fig. 2.1: Authentication flow [6]

2.2 Gatekeeper

Gatekeeper, as an authentication notion, consists of two parts. Gatekeeper deamon
referred to as gatekeeperd that lives in an Android OS and Gatekeeper that lives
in Trusted Execution Environment (TEE). Gatekeeper's primary intent is to verify
password, pattern, or PIN via an H M A C that is backed by a secret hardware key.
Gatekeeper can refuse to verify a password, pattern, or PIN if it is presented with

33

consequence failed attempts to authenticate. In this case, Gatekeeper throttles au
thentication requests and timeouts next requests based on the count of the previous
failed attempts.

After a success password, pattern, or PIN verification, Gatekeeper uses T E E -
derived shared secret to sign an authentication attestation that is sent back to
gatekeeperd. Gatekeeperd sends this key to the hardware-backed Keystore. Au
thentication attestation is a sign for Keystore that the app can use application
created keys [7].

2.2.1 Architecture

How gatekeeper elements communicate between themselves is described in diagram
2.2. Lock setting service makes requests via binder interface to gatekeeper deamon,
which gives the Android framework APIs access to the H A L implementation. The
android framework can use the gatekeeper daemon to communicate with Gatekeeper
in T E E via H A L implementation to authenticate the user's password, pattern, or
PIN [7].

Fig. 2.2: Gatekeeper communication diagram [7]

34

H A L implementation must be able to enroll and verify a password, pattern, or
PIN. Every H A L implementation must fulfill an enroll and verify functions from the
gatekeeper header file. Gatekeeper T E E must fulfill the system gatekeeper header.
Those are conditions for gatekeeper implementation. Based on these conditions, a
device manufacturer or system administrator can alter other parts of the gatekeeper
system and can use any T E E OS to implement Gatekeeper as long as the T E E
has access to a hardware-backed key and a secure monotonic clock that ticks in
suspend. In most cases, phones use The Trusty operating system, which is an
open-source implementation of T E E by Google. T E E Gatekeeper, Keymaster, and
other T E E components use a shared secret key that they share via the internal IPC
system. Sharing the secret key is not dangerous, so Gatekeeper does not save or
cache this key and requests it every time from Keymaster via IPC. Key is used to
derive an H M A C key to enroll and verify passwords. This derived key is kept solely
in Gatekeeper [7].

2.2.2 Request throttling

The request-throttling feature provides additional security measurements against
brute-force attacks. Without a request-throttling, an attacker would be able to crack
user passwords/PIN if the password/PIN is not complicated enough. Gatekeeper
H A L implementation can return timeout in milliseconds. The timeout informs the
client not to call Gatekeeper again until after the timeout has elapsed and refuses to
serve any incoming request in the timeout period. Before every password verification
or enroll, Gatekeeper writes a failure counter. If the password verification succeeds,
the Gatekeeper clears the failure counter. The procedure mentioned above prevents
attacks that prevent throttling by disabling the fastened M M C (eMMC) after issu
ing a verify or enroll call. Failure counter is written to secure storage on devices
supporting secure storage. If the device does not support file-based encryption or
secure storage is too slow, implementation can use Replay Protected Memory Block
(RPMB) [7].

2.3 Biometrics

Biometrics allows authenticating users securely in Android OS. The most used bio
metrics are fingerprint and face detection. Any other type of biometric can be
added to biometric authentications in case it meets security specifications and have
a deficient rating of false positives. Imposter Accept Rate (IAR), Spoof Accept Rate
(SAR), and False Accept Rate (FAR) metrics are measured to determine if biometric
meet the requirements [8].

35

F A R metric defines how often a model mistakenly accepts a randomly chosen
incorrect input. Before Android 8.1, that is A P I 27, F A R was only known and use
matric to measure biometric modalities security. Even though it is the most used
metric, let alone, it does not provide adequate information to assess how well the
model stands up to targeted attacks [9].

Android 8.1 introduces IAR and SAR metrics that aim to improve biometric
security. IAR metric is the chance that a biometric model accepts input that is
meant to mimic a known good sample. SAR metric is the chance that a biometric
model accepts a previously recorded, known good sample. Android defines three base
levels of biometric sensor security: strong, weak, and convenience. By default, every
sensor is classified as a convenience. Additional requirements need to be fulfilled by
the sensor to be classified as weak or strong. These additional requirements are a
combination of the three accept rates - FAR, IAR, and SAR [9].

Android open-source project releases compatibility definition with every android
A P I version. Compatibility definition defines requirements that the device must
meet in order for devices to be compatible with a specific Android A P I version. One
of the requirements of compatibility definition is for biometric sensors. Table 2.1
provide accept rates for Android 10.

Classification F A R I A R S A R
Convenience - - -

Weak 0.002% 20% 20%
Strong 0.002% 7% 7%

Tab. 2.1: Biometric accept rates [10]

Additional requirements are needed from the sensor to be assigned to a weak
or strong category. A weak sensor must have a hardware-backed Keystore imple
mentation and perform all biometric authentication outside Android kernel such as
T E E . A strong sensor must have all features of a weak sensor, and additionally
must challenge the user for the recommended primary authentication PIN, pattern,
or password once every 72 hours or less [10].

2.3.1 Biometric architecture

As the Android platform evolves, security measurements evolve with it, Fingerprint-
Manager, BiometricPrompt, BiometricManager are the result of android evolution.
FingerprintManager is oldest and deprecated since Android P. His successor is Bio
metricPrompt that is available on Android P and higher. BiometricManager has

36

been introduced in Android Q and offers a method to check which biometric meth
ods are available to the user. How different biometric classes interact with the
Android system is described in diagram 2.3.

Apps

I

11

HWBinder
; r

<Biometric> vendor implementation

• Application 1 Framework API | Vendor

• Suppor library API J System vendor

Fig. 2.3: Biometric architecture [10]

FingeprintManager only accepts fingerprints as biometric authentication. As a
new biometric methods rose, this was an obstacle to good user experience. Instead
of creating a new manager for every biometric, FingeprintManager was marked
as deprecated. BiometricPrompt has been introduced to the community as the
successor to FingeprintManager as a single entry point for biometric authentication.
BiometricPrompt uses a default setting that the user can set in phone settings in
the security section.

Android provides interfaces and header files to implement biometric methods.
The concrete implementation is the device manufacturer's role. To guarantee that
users and developers have a seamless biometric experience, device manufacturers
have to integrate biometric stack with BiometricPrompt. Any biometric method
that is about to be integrated with BiometricPrompt must meet the strength re
quirements defined by C D D [8].

2.4 Key store

Keystore A P I provides storage for cryptographic keys and certificates. To provide
hardware-backed cryptography, Keystore leverages T E E Keymaster implementation [11].

37

Before Android 6.0, Keystore A P I had a simple hardware-backed A P I for signing and
verification operations. In Android 6.0, Keymaster features were extended to imple
ment a more comprehensive array of capacities provided by the Keystore. Keystore
features added in Android 6.0 are:

• symmetric cryptographic primitives, AES, H M A C ,
• access control system for hardware-backed keys,
• a usage control scheme to allow key usage to be limited, to mitigate the risk

of security compromise due to misuse of keys,
• an access control scheme to enable restriction of keys to specified users, clients,

and a defined time range.
Android 7.0 introduced Keymaster 2, which adds support for key attestation and

version binding [12]. In Keymaster 1, apps or remote servers cannot reliably verify
if keys are known to be in hardware-backed storage. To mitigate this, Keymaster 2
introduced key attestation. Key attestation provides a way to securely decide if an
asymmetric key pair is hardware-backed, what constraints are applied to its usage,
and what the properties of the key are [13].

Version binding binds keys to the operating system and patch level version.
Version binding ensures that an attacker who discovers a weakness in an old version
of the system or T E E software cannot roll a device back to the vulnerable version
and use keys created with the newer version. Also, when a key with a given version
and patch level is used on a device that has been upgraded to a newer version or
patch level, the key is upgraded before it can be used. The previous version of the
key is invalidated [12].

Android 8.0 introduced Keymaster 3, which extends Keymaster 2's attestation
feature to support ID attestation. ID attestation is optional and provides the possi
bility to bind keys to the device hardware such as phone ID (IMEI / MEID), device
serial number, or a product name. Also, Keymaster 3 transitioned from old-style
C-structure H A L to C++ H A L interface generated from a new Hardware Interface
Definition Language (HIDL) [12].

Android 9.0 introduced Keymaster 4, which adds support for embedded Secure
Elements (SE), secure key import, 3DES encryption, changes to version binding, so
it allows independent version updates for boot.img and system.img [12].

2.5 Supported cryptographic primitives

Cryptographic primitives are well-established, low-level cryptographic algorithms
[14]. Keystore supports various categories of cryptographic primitives:

• Hash function
• Symmetric key cryptography

38

• Asymmetric key cryptography
Cryptographic primitives are often used to build cryptographic protocols. Keystore
leverages cryptographic primitives to provide feature-rich cryptographic operations,
which includes but are not limited to:

• Key generation
• Import and export of asymmetric keys
• Import of raw symmetric keys
• Asymmetric encryption and decryption with appropriate padding modes
• Digital signature and verification
• Symmetric encryption and decryption in appropriate modes, including an

A E A D mode
• Generation and verification of symmetric message authentication codes
• Random number generation

The key purpose, padding, access control constraints, or any other protocol element,
is defined on a key generation or import, and it is permanently bound to the key.
The protocol elements bound to the key ensures the key cannot be used in any
other way. Random number generation is not exposed to the public API , and it is
used internally for the generation of keys, initialization vectors, random padding,
and other elements of secure protocols that require randomness. Keystore can be
utilized as a provider and used with supported algorithms, which are:

• Cipher
• KeyGenerator
• KeyFactory
• KeyPairGenerator
. Mac
• Signature
• SecretKeyFactory

2.5.1 Key generation

To generate a key, KeyGenerator or KeyPairGenerator class can be used. KeyGen
erator provides the functionality of the symmetric key generator. KeyPairGenerator
provides the functionality of the asymmetric key generator.

KeyGenerator

There are two ways to generate a key with a KeyGenerator: in an algorithm-
independent manner, and an algorithm-specific manner. The difference between
them is generator initialization. In listing, 2.1 are listed all initialization methods
of KeyGenerator. Init methods that do not use AlgorithmParameterSpec are an

39

algorithm-independent. AlgorithmParameterSpec init method is used in situations
where a set of algorithm-specific parameters already exists. In case the user does
not use any of the provided init methods, the provider specified at creation must
supply a default initialization.
/ / A l g o r i t h m - I n d e p e n d e n t I n i t i a l i z a t i o n
f u n i n i t (r a n d o m : S e c u r e R a n d o m)
f u n i n i t (k e y s i z e : I n t)

f u n i n i t (k e y s i z e : I n t , r a n d o m : S e c u r e R a n d o m)
/ / A l g o r i t h m - S p e c i f i c I n i t i a l i z a t i o n
f u n i n i t (p a r a m s : A l g o r i t h m P a r a m e t e r S p e c)
f u n i n i t (

p a r a m s : A l g o r i t h m P a r a m e t e r S p e c ,

r a n d o m : S e c u r e R a n d o m

)

Listing 2.1: KeyGenerator init methods

Supported algorithms of KeyGenerator are listed in table 2.2.

Algorithm Supported API Levels Notes
AES 23+ Supported sizes: 128, 192, 256

HmacSHAl 23+
Supported sizes: 8-1024 (inclusive), must be multiple of 8
Default size: 160

HmacSHA224 23+
Supported sizes: 8-1024 (inclusive), must be multiple of 8
Default size: 224

HmacSHA256 23+
Supported sizes: 8-1024 (inclusive), must be multiple of 8
Default size: 256

HmacSHA384 23+
Supported sizes: 8-1024 (inclusive), must be multiple of 8
Default size: 384

HmacSHA512 23+
Supported sizes: 8-1024 (inclusive), must be multiple of 8
Default size: 512

Tab. 2.2: Supported KeyGenerator algorithms with AndroidKeyStore provider

Example of key generation with KeyGenerator

Listing 2.2 shows how to generate AES symmetric key in Galois/Counter Mode
(GCM), which's purpose is encryption and decryption with no encryption padding.
AndroidKeyStore is defined as the KeyGenerator provider, so the creation of the
key occurs in the hardware-backed Keystore. Other constraints can be applied to
the KeyGenParameterSpec builder. SetUserAuthenticationRequired and SetUser-
AuthenticationValidityDurationSeconds can be applied to the builder, to condition
the key retrieval to the time window starting from the last unlock of the phone or
user can be prompted directly in application to authorize via LockScreen.

40

v a l k e y G e n e r a t o r — K e y G e n e r a t o r

. g e t I n s t a n c e (" A E S " , " A n d r o i d K e y S t o r e ")
v a l k e y G e n P a r a m e t er S pec —

K e y G e n P a r a m e t e r S p e c . B u i l d e r (
" A E S _ K E Y _ A L I A S " ,

K e y P r o p e r t i e s . P U R P O S E _ E N C R Y P T
o r

K e y P r o p e r t i e s . P U R P O S E _ D E C R Y P T

)
. s e t B l o c k M o d e s (K e y P r o p e r t i e s . B L O C K _ M O D E _ G G M)
. s e t E n c r y p t i o n P a d d i n g s (

K e y P r o p e r t i e s . E N C R Y P T I O N _ P A D D I N G _ N O N E

)
. s e t K e y S i z e (2 5 6)
. b u i l d ()

k e y G e n e r a t o r . i n i t (k e y G e n P a r a m e t e r S p e c)
v a l s e c r e t K e y — k e y G e ne r a t o r . ge n e r a t e K e y ()

Listing 2.2: AES Key generation

The key can be retrieved from AndroidKeyStore 2.3. AndroidKeyStore is initi
ated via a static function in the Keystore object, whereas type is passed Android
KeyStore after the creation load() method is called on object to initialize KeyStore.
Load method loads Keystore using the given LoadStoreParameter, which can be
null. After KeyStore is initialized key can be retrieved by calling getKeyQ method.
Key alias passed to getKeyQ must be the same as an alias during the key creation.

v a l k e y s t o r e — K e y S t o r e . g e t l n s t a n c e (" A n d r o i d K e y S t o r e ")

. a p p l y { l o a d (n u l l) }

v a l s e c r e t K e y — k e y s t o r e . get K e y (" AES_KEY_ ALI AS " , n u l l)

Listing 2.3: Retrive AES key from keystore

KeyPairGenerator

As in KeyGenerator, there are two ways to generate a key pair: in an algorithm-
independent manner, or an algorithm-specific manner. The difference between them
is explained in section 2.5.1. Supported algorithms are listed in the Tab 2.3.

Algorithm Supported API Levels Notes
DSA 19-22

E C 23+
Supported sizes: 224, 256, 384, 521
Supported named curves: P-224 (secp224rl), P-521 (aka secp521rl).
P-256 (aka secp256rl and prime256vl), P-384 (aka secp384rl),

Supported sizes: 512, 768, 1024, 2048, 3072, 4096

R S A 18+ Supported public exponents: 3, 65537

Default public exponent: 65537

Tab. 2.3: Supported KeyPairGenerator algorithms with AndroidKeyStore provider

41

Example of key pair generation with KeyPairGenerator

Listing 2.4 shows how to generate an E C key pair whose purpose is encryption and
decryption. Key can be used only by an authenticated user in time window of 5
minutes from the last successful authentication. AndroidKeyStore is defined as the
KeyPairGenerator provider, so the creation of the key pair occurs in the hardware
backed Keystore.
v a 1 k p g = K e y P a i r G e n e r a t o r . g e t l n s t a n c e (

K e y P r o p e r t i e s . K E Y _ A L G O R m T M _ E C ,

" A n d r o i d K e y S t o r e "

)
v a l p a r a m e t e r S p e c : K e y G e n P a r a m e t e r S p e c —

K e y G e n P a r a m e t e r S p e c . B u i l d e r (
" E C _ K E Y " ,
K e y P r o p e r t i e s . P U R P O S E _ E N C R Y P T
o r
K e y P r o p e r t i e s . P U R P O S E _ D E C R Y P T

)
. s e t U s e r A u t h e n t i c a t i o n R e q u i r e d (t r u e)

. s e t U s e r A u t h e n t i c a t i o n V a l i d i t y D u r a t i o n S e c o n d s (3 0 0)

. b u i l d ()

k p g . i n i t i a l i z e (p a r a m e t e r S p e c)

v a l k p — k p g . g e n e r a t e K e y P a i r Q

Listing 2.4: E C Key pair generation

2.5.2 Import and export of asymmetric keys

Keystore supports the import of public and private key pairs in DER-encoded
PKCS8 format, without password-based encryption. Export is only supported for
public keys in X.509 format. Two different tags are used for origin to distinguish
imported keys from securely generated keys. Imported keys use tag imported, and
securely generated keys use tag generated.

Example of RSA private key import

PrivateKey instance and X.509 certificate for the public key corresponding to the
private key represented as an X509Certificate instance are needed to import a private
key into KeyStore. KeyStore abstraction does not support storing private keys
without a certificate. Listing 2.5 shows how to generate RSA private key in D E R
format and X.509 certificate for public key.
o p e n s s l g e n r s a —out p r i v a t e k e y . pern 2048

o p e n s s l p k c s 8 — t o p k 8 — i n f o r m P E M — o u t f o r m D E R

— i n p r i v a t e k e y .pern

— o u t p r i v a t e k e y . d e r

— n o c r y p t

o p e n s s l r e q —new — x5 09 —key p r i v a t e k e y . pern

— o u t p u b l i c k e y . c e r

—days 365

Listing 2.5: RSA key and certificate generation

For demonstration purposes, key and certificate files are directly imported to the
raw resources of the application. Listing 2.6 shows how to convert D E R encoded

42

private key with X.509 public-key certificate into the PrivateKey and Certificate
instances, which are used to import private-key into KeyStore. Even though it is
possible to import externally generated keys into Keystore, it is not recommended
to do so. Private-key is exposed to the main memory and, therefore, can be abused

by an attacker.
1 v a'. p r i v B y t e A r r a y —

2 r e s o u r c e s . o p e n R a w R e s o u r c e (R r a w . p r i v a t e k e y)

3 . r e a d B y t e s ()
4 v a'. s p e c =

5 P K C S 8 E n c o d e d K e y S p e c (p r i v B y t e A r r a y)

6 v a'. k f — K e y F a c t o r y . g e t l n s t a n c e ("RSA ")

7 v a'. p r i v K e y —

8 k f . g e n e r a t e P r i v a t e (s p e c) a s R S A P r i v a t e K e y

9 v a'. p u b l i c I n p u t S t re a m —

10 r e s o u r c e s . o p e n R a w R e s o u r c e (R r a w . p u b l i c k e y)
11 v a'. c e r t — C e r t i f i c a t e F a c t o r y

12 . g e t l n s t a n c e ("X.509")

13 . g e n e r a t e C e r t i f i c a t e (

14 p u b l i c l n p u t S t r e a m

15)
16 v a'. ks — K e y S t o r e . g e t l n s t a n c e (" A n d r o i d K e y S t o r e ")

17 . a p p l y { l o a d (n u l l) }

18 ks . s e t K e y E n t r y (

19 " M y I m p o r t e d R s a K e y " ,

20 p r i v K e y ,

21 n u l l ,

22 a r r a y O f (c e r t))

23 v a'. p r i v a t e K e y —
24 k s . g e t K e y ("MyImportedRsaKey" , n u l l)

Listing 2.6: Import of RSA private key

Example of public key export

The export of the public key is straightforward. Listing 2.7 shows how to get private
entry from Keystore and its certificate. Certificate can be converted to byte array
or base64 string and sent to the recipient. Note that private key entry contains a
private key field, which holds a reference to the private key. No sensitive pieces of
information that could let to abuse of the key are not presented in private key entry.

1

2

3
4
!>
(i
7
«
9

10

v a l e n t r y = kS . g e t E n t r y (" E C _ K E Y " , n u l l)

a s K e y S t o r e . P r i v a t e K e y E n t r y

v a l c e r t i f i c a t e — e n t r y , c e r t i f i c a t e a s X 5 0 9 C e r t i f i c a t e

v a l b a s e 6 4 c e r t — B a s e 6 4 . e n c o d e T o S t r i n g (

c e r t i f i c a t e . e n c o d e d , B a s e 6 4 . N O _ W R A P

)
v a l b a s e 6 4 P u b K e y — B a s e 6 4 . e n c o d e T o S t r i n g (

c e r t i f i c a t e . p u b l i c K e y . e n c o d e d , B a s e 6 4 . N O _ W R A P

)

Listing 2.7: Export of E C public key

2.5.3 Encryption and decryption using an asymmetric key

RSA in different modes and padding settings is the only asymmetric algorithm that
can be used on Android to encrypt and decrypt data safely. At the time of writing
this thesis, no other asymmetric algorithm is supported. In table 2.4 are listed

43

all combinations of encryption modes and paddings. Additionally, all combinations
support all RSA key sizes that can KeyPairGenerator generate, (512, 768, 1024,
2048, 3072, 4096) bits. Cipher class is used to encrypt and decrypt data. Listing
2.8 shows how to generate RSA key for R S A / E C B / P K C S l P a d d i n g transformation
used in Cipher.
v a l k p g = K e y P a i r G e n e r a t o r . g e t l n s t a n c e (

K e y P r o p e r t i e s . K E Y _ A L G O R J T H M _ R S A ,

" A n d r o i d K e y S t o r e "

)
v a l p a r a m e t e r S p e c : K e y G e n P a r a m e t e r S p e c —

K e y G e n P a r a m e t e r S p e c . B u i l d e r (

"RSA_KEY" ,

K e y P r o p e r t i e s . P U R P O S E _ E N C R Y P T

o r

K e y P r o p e r t i e s . P U R P O S E _ D E C R Y P T

)
. s e t B l o c k M o d e s (K e y P r o p e r t i e s . B L O C K _ M O D E _ E C B)

. s e t E n c r y p t i o n P a d d i n g s (

K e y P r o p e r t i e s . E N C R Y P T I O N _ P A D D L N G _ R S A _ P K C S 1

)
. b u i l d ()

k p g . i n i t i a l i z e (p a r a m e t e r S p e c)
v a l k p — k p g . g e n e r a t e K e y P a i r Q
v a l kS = K e y S t o r e . g e t l n s t a n c e (" A n d r o i d K e y S t o r e ")

. a p p l y { l o a d (n u l l) }

v a l e n t r y = k S . g e t E n t r y (" R S A _ K E Y " , n u l l)
a s K e y S t o r e . P r i v a t e K e y E n t r y

Listing 2.8: Generate RSA Key for encryption and decryption

A l g o r i t h m Supported (A P I Levels)
RSA/ECB/NoPadding 18+

R S A / E C B / P K C S l P a d d i n g 18+
R S A / E C B / O A E P W i t h S H A - l A n d M G F l P a d d i n g 23+

RSA/ECB/OAEPWithSHA-224AndMGFlPadding 23+
RSA/ECB/OAEPWithSHA-256AndMGFlPadding 23+
RSA/ECB/OAEPWithSHA-384AndMGFlPadding 23+
RSA/ECB/OAEPWithSHA-512AndMGFlPadding 23+

RSA/ECB/OAEPPadd ing 23+

Tab. 2.4: Supported RSA variants for encryption and decryption

Example of RSA data encryption and decryption

Listing 2.9 shows how to encrypt data with the RSA key in E C B mode with PKCS1
padding. Cipher is initialized with the transformation R S A / E C B / P K C S l P a d d i n g ,
which corresponds to the RSA key. The mode is set to encryption, and the encryp
tion key is the public key of RSA. Data input is in a byte array format. To encrypt
data, doFinal(l) method is called. The result is a byte array of encrypted data.

44

1 v a l d a t a T o E n c r y p t = "VUT THESI S " . t o B y t e A r r a y ()

2

3 v a l e n c r y p t ed D at a : B y t e A r r a y —

4 C i p h e r . g e t l n s t a n c e (" RSA/ECB / PKCS1 P a d d i n g ")
5 . r u n {

(i i n i t (
7 C i p h e r . E N C R Y P T _ M O D E ,

e n t r y , c e r t i f i c a t e . p u b l i c K e y

9)
10 d o F i n a l (d a t a T o E n c r y p t)

11 }

Listing 2.9: Enrypt data with RSA

1 v a l d a t a —

C i p h e r , g e t I n s t a n c e (" RSA/ECB / PKCS 1 P a d d i n g ")
3 . r u n {

i n i t (C i p h e r . D E C R Y P T _ M O D E , e n t r y . p r i v a t e K e y)

5 d o F i n a l (e n c r y p t e d D a t a)

6 } . l e t { S t r i n g (i t) }

Listing 2.10: Decrypt data with RSA

The private key of RSA is used to decrypt the data. Listing 2.10 shows the
decryption approach. Cipher instance is initialized with the same transformation as
which data were encrypted. The mode is set to decryption, and the decryption key
is the private key of RSA. Method doFinal(l) is called with passed cryptogram as
a parameter. The result is a byte array that can be converted to the string format.

2.5.4 Digital signature and verification of signature

RSA, EC , DSA can be used in different modes and padding settings. Table 2.5
shows all different configurations that can be used for signature and verification.
Listing 2.11 shows how to generate an elliptic curve key pair with SHA512 digest
for signing and verification.

1

2

3

4

!)

(i

7

«

9
10
11

12

13

14

15

16
17
18

19

v a l k p g = K e y P a i r G e n e r a t o r . g e t I n s t a n c e (
K e y P r o p e r t i e s . K E Y _ A L G O P J T H M _ E C ,

" A n d r o i d K e y S t o r e "

)
v a l p a r a m e t e r S p e c : K e y G e n P a r a m e t e r S p e c —

K e y G e n P a r a m e t e r S p e c . B u i l d e r (
" E C _ K E Y " ,

K e y P r o p e r t i e s . P U R P O S E _ S I G N
o r
K e y P r o p e r t i e s . P U R P O S E _ V E P J F Y

)
. s e t D i g e s t s (K e y P r o p e r t i e s . D I G E S T _ S H A 5 1 2)
. b u i l d ()

k p g . i n i t i a l i z e (p a r a m e t e r S p e c)
v a l k p — k p g . g e n e r a t e K e y P a i r ()
v a l kS — K e y S t o r e . g e t I n s t a n c e (" A n d r o i d K e y S t o r e ")

. a p p l y { l o a d (n u l l) }
v a l e n t r y = k S . g e t E n t r y (" E C _ K E Y " , n u l l)

a s K e y S t o r e . P r i v a t e K e y E n t r y

Listing 2.11: Generate E C Key for sign and verify

45

Algorithm Supported (API Levels)
MD5withRSA 18+

NONEwithECDSA 23+
NONEwithRSA 18+
SHAlwithDSA 19-22

SHAlwithECDSA 19+
SHAlwithRSA 18+

SHAlwithRSA/PSS 23+
SHA224withDSA 20-22

SHA224withECDSA 20+
SHA224withRSA 20+

SHA224withRSA/PSS 23+
SHA256withDSA 19-22

SHA256withECDSA 19+
SHA256withRSA 18+

SHA256withRSA/PSS 23+
SHA384withDSA 19-22

SHA384withECDSA 19+
SHA384withRSA 18+

SHA384withRSA/PSS 23+
SHA512withDSA 19-22

SH A512withECDS A 19+
SHA512withRSA 18+

SHA512withRSA/PSS 23+

Tab. 2.5: Supported algorithms for signing and verification

Example of ECDSA data signing and verification

Listing 2.12 shows how to sign data with the E C key with SHA512 digest. Signature
is initialized with the transformation SHA512withECDSA. The signature key is the
private key of EC. Data that should be signed are passed to the method update(l).
The sign method is called to sign data. The result is a byte array.
v a l d a t a T o S i g n = " VUT THESIS" . t o B y t e A r r a y ()

v a l s i g n a t u r e : B y t e A r r a y —

S i g n a t u r e . g e t I n s t a n c e (" S H A 5 1 2 w i t h E C D S A ")
. r u n {

i n i t S i g n (e n t r y . p r i v a t e K e y)
u p d a t e (d a t a T o S i g n)
s i g n ()

}

Listing 2.12: Sign data with E C D S A

The certificate of the public key of E C is used to verify the signature. Listing
2.13 shows how to verify a signature. A signature instance is initialized with the
same transformation used to sign the data. Method verify(l) is called to verify the
signature passed to the method. Data which signature belong to are passed to the
method update(l). The result is a boolean that indicates if the signature is valid.

46

1 v a l v a l i d : B o o l e a n —

S i g n a t u r e . g e t l n s t a n c e (" SHA512wi thECDS A ")

3 . r u n {

i n i t V e r i f y (e n t r y . c e r t i f i c a t e)

5 u p d a t e (d a t a T o S i g n)

6 v e r i f y (s i g n a t u r e)

- }

Listing 2.13: Verify data with E C D S A

2.5.5 Import of raw symmetric keys

The import process of symmetric keys is much more straightforward than the import
process of asymmetric keys. The symmetric key is wrapped into SecretKeyEntry
and imported directly to the KeyStore. Listing 2.14 shows an example of how to
import AES key with additional key properties definition.

1 f u n i m p o r t A E S K e y (b y t e A r r : B y t e A r r a y) {

2 v a l s p e c — S e c r e t K e y S p e c (

3 b y t e A r r , 0 ,

4 b y t e A r r . s i z e , "AES")

5 v a l kS = K e y S t o r e . g e 11 n s t a n c e (" Andro i dKey St ore ")

6 . a p p l y { l o a d (n u l l) }

7 k S . s e t B n t r y (

8 " Imported_AES " ,

9 K e y S t o r e . S e c r e t K e y E n t r y (s p e c) ,

10 K e y P r o t e c t i o n . B u i l d e r (

11 K e y P r o p e r t i e s . P U R P O S E _ E N C R Y P T

12 o r

13 K e y P r o p e r t i e s . P U R P O S E _ D E C R Y P T)

14 . s e t B l o c k M o d e s (

15 K e y P r o p e r t i e s . B L O C K _ M O D E _ G C M

16)
17 . s e t E n c r y p t i o n P a d d i n g s (

18 K e y P r o p e r t i e s . E N C R Y P T I O N _ P A D D I N G _ N O N E

19)
20 . b u i l d ()
21)
22 }

Listing 2.14: Import of AES key

2.5.6 Encryption and decryption using an symetric key

AES in different modes and padding settings is the only symmetric algorithm that
can be used on android to encrypt and decrypt data safely. At the time of writing
this thesis, no other symmetric algorithm is supported. In table 2.4 are listed all
combinations of encryption modes and paddings. Additionally, all combinations
support all A E S key sizes that can KeyGenerator generate, (128, 192, 256) bits.
Cipher class is used to encrypt and decrypt data. Listing 2.2 shows how to generate
AES key for AES/GCM/NoPadding transformation used in Cipher.

Listing 2.15 shows how to encrypt data with the AES key in G C M mode with
no padding. Cipher is initialized with the transformation AES/GRCM/NoPadding ,
which corresponds to the AES key purpose. The mode is set to encryption. Data
input is in a byte array format. To encrypt data, doFinal(l) method is called. The

47

result is a byte array of encrypted data. To be able to decrypt cryptogram, the
initialization vector of Cipher must be saved for later use.
v a l d a t a T o E n c r y p t = " VUT THESIS" . t o B y t e A r r a y ()

v a l c i p h e r — C i p h e r . g e t l n s t a n c e (" A E S / GCM/NoP a d d i n g ")

v a l e n c r y p t ed D at a : B y t e A r r a y —

c i p h e r

. r u n {

i n i t (

C i p h e r . E N C R Y P T _ M O D E ,

e n t r y . s e c r e t K e y

)
d o F i n a l (d a t a T o E n c r y p t)

}
v a l v e c t o r — c i p h e r , i v

Listing 2.15: Enrypt data with AES

Listing 2.16 shows the decryption process. Cipher instance is initialized with the
same transformation as which data were encrypted. The mode is set to decryption,
and the GCMParameterSpec is initialized with the initialization vector and autho
rization tag. Method doFinal(l) is called with passed cryptogram as a parameter.
The result is a byte array that can be converted to the string format.
v a l s p e c = G C M P a r a m e t e r S p e c (1 2 8 , v e c t o r)

v a l d a t a —

C i p h e r . g e t I n s t a n c e (" A E S / G C M / N o P a d d i n g ")

. r u n {

i n i t (

C i p h e r . D E C R Y P T _ M O D E ,

e n t r y . s e c r e t K e y , s p e c

)
d e - F i n a l (e n c r y p t e d D a t a)

} . l e t { S t r i n g (i t) }

Listing 2.16: Decrypt data with AES

2.6 Key access control

Hardware-based keys let alone are not secure enough, if an attacker could use them
at will. Access control was introduced to add another security layer on to the
hardware-based keys, and the Keystore must enforce access controls. Authorization
list of tag/value pairs is a definition of access controls. Authorization tags are 32-
bit integers, and the values are a variety of types. Authorization tags are defined
at the key creation, and any attempt to modify tags after creation results in key
deprecation so that any cryptographic operation will fail. Some tags can be defined
multiple times. If and when can tag be used multiple times is defined in concrete tag
definition. After the user-defined authorization tag, the key master adds additional
tags, such as whether the key has rollback protection and encodes the final list to
the returned key blob.

Some of the authorization tags are KeyPurpose tags to define the purpose of
the created key: encrypt, decrypt, verify, e.t.c. The expiration date of the key, key

48

size, user authentication required, and many more can be defined at the creation to
define access-list.

2.7 Hardware vs. software enforcement

Secure hardware applications vary in implementations, and not all support the same
set of features. To support this variety of approaches, Keymaster distinguishes be
tween secure and non-secure world access control enforcement, or hardware and
software enforcement, respectively. Even though not all secure hardware implemen
tations are the same. The base set of features supported on all implementations
are:

• Enforce the exact matching of all authorizations. Authorization lists in key
blobs exactly match the authorizations returned during key generation, in
cluding ordering. Any mismatch causes an error diagnostic.

• Declare the authorizations whose semantic values are enforced.
The A P I mechanism for declaring hardware-enforced authorizations divides the

authorization list into two sub-lists, hardware-enforced and software-enforced. Based
on what the secure hardware can enforce, it places the appropriate values in each
sub-list.

2.8 Trusty T E E

Trusted Execution Environment is provided by Trusty, which is a secure Operation
System. T E E runs parallel to the Android OS, and it is on the same processor as
the Android OS, but it is isolated from the Android OS by hardware and software.
T E E can use the full power of the primary processor and memory. T E E isolation
protects it from malicious applications that could be installed by the user. The
Trusty use Trustzone on an A R M processor and Intel's Virtualization Technology
on x86 platform.

49

Part II

Results

3 Cryptographic algorithms comparison

This chapter utilizes information from chapter 2 to create a benchmark application
for cryptographic algorithms. The application contains 280 benchmark tests that
measure the run time of cryptographic algorithms on 16 different devices listed in
Tab 3.1. This chapter presents the processed results from the benchmark applica
tion.

Manufacturer Model ('hipset C P U R A M [GB] Android

Google Pixel 3a Qualcomm SDM670 Smipdi'iigon 670 (10 nm) Octa-corc (2x2.0 GHz 360 Gold k 6x1.7 GHz Kryo 360 Silver) 4 10

Google Pixel X L Qualcomm MSM8996 Snapdragon 821 (14 nm) Quad-core (2x2.15 GHz Kryo k 2x1.6 GHz Kryo) 4 10

L G G6 Qualcomm M S M S ' W kl;.. 1 . r , K21 (14 nm) Quad-core (2x2.35 GHz Kryo k 2x1.6 GHz Kryo) 4 9

L G Nexus 5X Qualcomm MSM8992 Snapdragon 808 (20 nm) Hcxa-core (1x1. 1 GHz Conex-Ar>3 >V 2x1.8 GHz Cortcx-A57) 2 8.1

Samsung Galaxy A5 Exynos 7880 (14 nm) Octa-corc 1.9 GHz Cortex-A53 3 8

Asus Zcnfonc 3 max Mcdiatck MT6737M (28 nm) Quad-core 1.25 GHz Cortcx-A53 2 7

H T C One M9 Qualcomm MSM8991 Stifipdr;-^"" MO (20 nm) Octa-corc (4x1.5 GHz Cortcx-A53 k 4x2.0 GHz Cortcx-A57) 3 7

IIUiHVCi P9 lite HiSilicon Kirin 650 (16 nm) Octa-corc (lxL>.i) (IIIz (on ex-A53 k 4x1.7 GHz Cortcx-A53) 3 7

Samsung Galaxy S6 Exynos 7420 Octa (14 nm) Octa-corc (1x2.1 CIIz Conex-A57 k 4x1.5 GHz Cortcx-A53) 3 7

Mot orolii Moto G5 Plus Qualcomm MSM^ir.3 Snapdragon 625 (14 nm) Octa-corc 2.0 GHz Cortcx-A53 4 8.1

Siimsunc Xotcl0+ Exynos 9825 (7 nm) OcUt-coiv (1^.73 CIIz Motigoo*' M l >V L'xL'. 1 CIIz Cortox-A?:, ,V 1x1. !l (IIIz ('ort rx-Ar,7,) 12 9

OnePlus 7 Pro Qualcomm SDM855 Snapdragon 855+ (7 nm) Octa-corc (1x2.96 GHz Kryo 485 k 3x2.42 GHz Kryo 485 4x1.78 GHz Kryo 485) 8 10

Huawei P201ito HiSilicon Kirin 659 (16 nm) Octa-corc (4x2.36 GHz Cortcx-A53 k 4x1.7 GHz Cortcx-A53) 4 9

OnePlus 6 Qualcomm SDM845 Snapdragon 845 (10 nm) Octa-corc (4x2.8 GHz Kryo 385 Gold k 4x1.7 GHz Kryo 385 Silver) 8 10

Siimsunc CnUtxv S<! • Exynos 9810 (10 nm) Octa-corc (1x2.7 CIIz Mongoose M3 k 4x1.8 GHz Cortcx-A55) 6 9

Samsung SlOc Exynos 9820 (8 nm) Octa-corc (2x2.73 GHz Mongoose M l >V L'xL'.:il CIIz CorU'x-A?r. >V 1x1.<ir. CIIz Cortex-A55) 8 9

Tab. 3.1: Devices used for benchmarking

3.1 Creation of asymmetric key

Asymmetric key creation benchmark measures run-time of the creation of an asym
metric key. Measured key types are RSA and E C in different key size variations.

With increasing key size, the computation complexity of the algorithm increase
as well. So with the greater key size, longer run times are expected than with smaller
key sizes. The heat map A . l summarizes the results for asymmetric key creation.
The results, in most coherent with the assumption that with increased
key size, run time also increases. RSA algorithm results approve this assumption
across all devices. With the E C algorithm, if we compare run times of EC224 and
EC256 across devices, results show that on six devices, greater key size resulted in
shorter run times, which is the opposite of assumption. A small difference between
the key size used in algorithms could cause this. Another assumption is that the
E C key generation is faster than the RSA key generation due to E C keys can be a
lot smaller than RSA keys and still have the same level of security. Results show
that overall run times of E C are a lot lower than run times of RSA, which confirms
the original assumption.

51

3.2 Encryption using an asymmetric key

Encryption using asymmetric key is currently supported only for RSA, as mentioned
in Section 2.5.3. RSA for encryption can be used in eight different variations. The
difference between them is in used padding mode. Android Keystore and also general
Java Keystore do not implement E C B mode for RSA, so encrypt ion/decrypt ion
can be used only on data that are smaller than key size. Interestingly encryption
modes have in their name E C B even though it is not implemented. Heat maps A.3
and A.2 indicate that the most consistent run time across devices is achieved by
R S A / E C B / P K C S 1 Padding variation. PKCSlPadding adds the least overhead of
all supported padding schemes (at least 11 bytes). O A E P padding adds even more
overhead. O A E P padding scheme needs two hash functions with different properties
to operate. One hash function should map arbitrary sized input to fixed-size output.
Another hash function map arbitrary sized input to arbitrarily sized output. Such
a hash function is called "mask generation function" (MFG). O A E P adds at least 42
bytes, which is 31 bytes more than minimum on PKCS1 Padding. Results confirm
assumptions, and a general run time of schemes using O A E P padding is longer than
in the case of PKCS1 schemes. Samsung Galaxy S6 on all encryption schemes shows
significantly slower encryption with used key size 4096bits. Huawei P9 Lite and Asus
Zenphone 3 M A X , when used with O A E P padding, results in slower run times than
other devices. From a security standpoint, it is recommended to use O A E P padding
scheme. Result comparison of algorithms using the O A E P padding scheme shows
the best value brings RSA3072/OAEPWithSha-512AndMGFlPadding.

3.3 Decryption using an asymmetric key

Same as in the case of asymmetric key encryption, RSA is the only supported algo
rithm. The general assumption is that decryption should be slower. Encryption has
the advantage that the public exponent is generally relatively small. The private
exponent used for decryption is larger, so the decryption of data is slower operation.
Results in heat maps A.5 and A.4 summarizes results and confirm the assumption
that the data decryption is in the most implementations of RSA is slower than en
cryption. The same algorithm achieves overall best run time as in case of encryption
that is R S A / E C B / P K C S l P a d d i n g .

3.4 Digital signature

Unlike asymmetric key encryption and decryption, digital signature is supported by
RSA and EC. Benchmark tests are divided into categories by hash function that the

52

RSA or E C utilizes. Comparing heat maps A.6, A.7 shows that the MD5 hash func
tion adds almost none overhead to the signature algorithm compared to the signature
algorithm without hash function. Signature algorithms using SHA hash function,
listed in A.8, A.9, A.10,A.11, A.12, have longer run time than signature algorithms
using MD5 or none hash function. The run time difference between signature algo
rithms using the SHA hash function is minimal. Result comparison of algorithms
using the SHA hash function shows the best value brings SHA512withRSA2048/PSS.

3.5 Verification of digital signature

Benchmark tests are divided into the same categories as in digital signature. Results
are listed in heat maps A . 13, A. 14, A . 15, A . 16, A . 17, A. 18 ,A.19. The difference in
run time between verification algorithms using the SHA hash function is the same
as in digital signature minimal. Overall, RSA has a lover run time than E C unlike
digital signature where E C has the lower run time.

3.6 Creation of symmetric key

Symmetric key creation benchmark measures run-time of the creation of the sym
metric key. The measured key type is AES in different key sizes. With increasing
key size, the computation complexity of the algorithm increase as well. So with the
greater key size, longer run times are expected than with smaller key sizes. The bar
chart A.20 summarizes the results for symmetric key creation. Run time difference
on devices Google Pixel 3A, Huawei P20 Lite, L G Nexus 5X, Google Pixel X L are
expected. On other devices, run times are equal, or run time is not increasing with
increased key size. Hardware optimizations can cause this, or it can be a statistical
error.

3.7 Encryption using an symmetric key

AES is the only algorithm supported for symmetric encryption in different key sizes
and variants. Results in heat map A.21 show that run time stays consistent on
the device across all variants and key sizes. Compared to the RSA encryption run
times, AES encryption run times are slower in most cases. This can be caused by
small data size used to benchmark encryption (smaller than RSA key size). Based
on results and security standpoint AES256/GCM/NoPadding brings the best value.

53

3.8 Decryption using an symmetric key

Same as in the case of symmetric key encryption, AES is the only supported algo
rithm. The assumption is that decryption and encryption should be roughly equal
due to the same key used for both operations. Compared to the RSA decryption,
AES decryption should be faster. Results in heat map A.22 show overall slower run
times than symmetric encryption run times, which do not confirm the assumption
of equal run times. Compared to the RSA decryption run time, AES decryption run
time is faster, and this confirms the assumption.

54

4 Hands-on implementation

The hands-on implementation chapter leverages the theory described in chapter 2
and results from chapter 3, to showcase modern security features that can be used to
implement a secure Android application. To properly showcase how these security
features can be used, the SecNote system is implemented. The system consists
of the Android application and cloud solution. How independent elements in the
system communicate with each other is described in Section 4.1. After an overview
of the system, the separate components are thoroughly described together with their
security mechanisms.

4.1 System overview

The system's mission is to deliver user notes between the Android application and
cloud solution securely. The system comprises the Android application, Authenti
cation service, Permission service, and Note service. Communication diagram is
shown on Fig 4.1. Diagram showcases where separate components belong and how

Public network

Keystore API SecNote App:

A uth Service !

+ signlri(CrederitialsRequest|: C red entialsRespo rise
+ signUpl Credentials Request! : Credentials Response
+ renewToken(RenewRequest): CredentialsResponse
+ signOut(Request|: Response
+ verify(Request| : VerifyResponse

|gRPC

PermissionsService !

+ getNotes(Request| : NoteResponse
+ addO r UpdateNotel Not eO per at bn Request!: NoteResponse
+ deleteNote(DeleteRequest|: NoteResponse

Note Service

+ get Notes (Note Request | : I
+ ere ateNote (NoteO per at bn Request | : Note
+ updateNote(NoteOperationRequest!: Note
+ deleteNotel Delete Request | : Response

Accessible only from ;
TEE Public network

MongoDB

Accessible only from server

Fig. 4.1: Secnote system overview

accessible they are. The cloud solution is based on microservice architecture. It
allows the system to be rapidly developed and scaled as needed. To deploy and
manage microservices on cloud effectively, Kubernetes with the Istio service mesh is
used. The application communicates with the cloud gateway through the channel.
Channel is secured with TLS, and it is terminated on ingress gateway. Due to the
single cluster solution, for faster response times, it is easier to terminate TLS on
the gateway and let communication inside the cluster be unencrypted. Communica
tion between application and cloud and also between microservices itself is based on

55

gRPC. gRPC is a modern R P C framework that uses H T T P / 2 for transport and seri
alizes data with the protocol buffers. Protocol buffers are Google's language-neutral
mechanism for serializing structured data.

4.2 Service architecture

This section describes common architectural patterns between authentication, per
mission, and note services. A l l three services are written in go language as gRPC
microservice. The file structure of the project is kept consistent, so navigation be
tween different project source code is reasonably similar. The runnable portion of
the code, the main, is located in the cmd folder. The main is exactly the same on
all three services besides the provided service implementation. Fig 4.2 shows the
code execution of the main. This process describes the startup of the service. To

Create
network listener

—Generate component- Service
implementaiton

Start G R P C server

Register service
implementation on

grpc server

Serve server on
created listener

Fig. 4.2: Service startup

implement the gRPC server, proto file needs to be defined so the interface of the
service can be generated and implemented. Proto files are located in the A P I folder.
The internal folder encapsulates all code that is related to service and is not meant
to be included in other services. Concrete implementation of methods that are gen
erated from the proto file is located in the internal/service folder. Dependencies are
provided through the Wire. The Wire is GO library used to manage dependency
injection at compile time. A l l components that are intentioned to be provided have
module file in which provide method is implemented. This method tells to Wire
how to provide that particular dependency. After the service is implemented, the
docker image is built. A docker deamon needs the definition of the image, which is
provided with the Dockerfile. Dockerfile of the service is located in the build folder.

56

Features described in this section are common between all three services used in the
SecNote system, so the next section will describe what methods service contains and
how those methods are implemented.

4.3 Authentication service

The authentication service is used to authenticate the user in the SecNote system.
The user can use this service to log in to the service or create a new account. In ad
dition to these features that are visible to the end-user, the service is used to extend
the user's login and to verify the user's requests. The ability to verify user requests
increases system security and prevents the so-called man-in-the-middle attack. A l l
features are shown in Fig 4.3. How the individual features are implemented will be
described in this section.

Authentication service

+ signln(CredentialsRequest): CredentialsResponse
+ signUp(CredentialsRequest): CredentialsResponse
+ renewToken(RenewRequest): CredentialsResponse
+ signOut(Request): Response
+ verify(Request): VerifyResponse

Fig. 4.3: Authentication service

4.3.1 Sing In

The R P C method is used to sign-in a user to an existing account. The parameter of
the method is a structure called CredentialsRequest. The fields of the structure are
email, password, and key. Email and password are used to verify that the user has
the correct access data and thus is allowed access to the system. The key is an RSA
public key in P E M format encoded with base64 and is tied to the user at login. By
associating the key with the user account when signing-in, we protect the system
from account sharing. If the user logs in under the same account on another device,
then after the access token expires, the user will be logged out of the device because
the recovery of the access token using the recovery token fails due to a different
RSA key associated with the account. This is a useful feature for systems that offer
their service free of charge for an individual, but if you want to use the service with
more people, the service is charged. If the login details are correct and the key is
in the correct format, the user's CredentialsResponse structure is returned. The

57

CredentialsResponse structure contains a J W T structure. The J W T token serves
as a representation of the user when interacting with the SecNote system. How a
J W T token is created and used is described in Section 4.3.6.

4.3.2 Sign Up

The R P C method is used to create a user account. The procedure is similar to
sign-in, but instead of verifying that the credentials match the credentials saved in
the database, it verifies that the user does not exist and if not, a new user account
is created. As in the case of the sign-in method, the key is tied to the user account,
and the use case is the same. The return type of the method is the same as in the
case of login.

4.3.3 Sign Out

The sign-out is one of three methods with which the user interacts directly. Unlike
sign-in and sign-up, when using the sign-out method, the user must provide access
token in addition to the input parameters in the context of the R P C method. This
ensures that an unauthorized user cannot sign-out the user from the system. The
input parameters are empty in this case. The id of the user to be signed-out is
obtained from the access token. After verification of the validity of the access token,
the key that is bound to the user is deleted, and an empty structure is returned.
The empty response indicates to the application that the logout was successful.

4.3.4 Renew token

The R P C method is used to create a new access token for the user. The access
token is valid for 5 minutes. After expiration, it is necessary to renew the token so
that the user is not signed out of the application. The token can be renewed using a
renewal token, which is valid for seven days and is intended for renewal of the access
token. The RSA key that is part of the renewal token is compared to the key that
is bound to the user, and if the token is valid and the keys match, new access token
and renew token are created and returned to the user using the CredentialsResponse
structure.

4.3.5 Request verification

The Verify R P C method is used to verify the signature of the request. A signature,
token, and digest are extracted from the request context to verify the request sig
nature. This R P C method is used primarily by other cloud services. The user can

58

also verify his request, but within the business logic, it does not make sense, and
this method is not used for this purpose. Before the service calls the Verify R P C
method, it verifies that the digest matches the digest created from the request. If
the digests do not match, the error is returned to the user, and the Verify method
is not executed. How exactly the signature verification is implemented is explained
in Section 4.3.6.

4.3.6 Security mechanisms

This section describes in more detail the security techniques used in the R P C meth
ods of the Authentication Service. These techniques include creating a J W T token,
verifying the token, and verifying the request signature. Where these techniques are
used has been described in the sections mentioned above.

Token creation

As mentioned, the J W T token represents the user in the system. The token is
digitally signed by the server, so it is not possible to change data placed in the
token. When the user sign-in, sign-up or renew an access token, then an access
token and a renewal tokens are created. The J W T token contains claims that are
divided into public and private claims, and the creation of those claims is on Listing
4.1. One of the fields in the private claims is the key, and this is the public key of
the user, which was used as a method parameter when logging in or creating the
account.
c u r r e n t T i m e :— t i m e . Now ()

a c c e s s P u b l i c C l a i m s :— j w t . C l a i m s {

I s s u e r : I s s u e r V a l u e ,

I s s u e d A t : j w t . N e w N u m e r i c D a t e (c u r r e n t T i m e) ,

E x p i r y : j w t . N e w N u m e r i c D a t e (c u r r e n t T i m e . A d d (E x p i r a t i o n T i m e A c c e s s V a l u e))

}

a c c e s s P r i v a t e C l a i m s :— map [s t r i n g] i n t e r f a c e {}{

U s e r l d K e y : i d ,

A c c e s s T o k e n K e y : t r u e ,

R e f r e s h T o k e n K e y : f a l s e ,

P u b l i c K e y K e y : k e y ,

}

Listing 4.1: J W T Claims creation

As mentioned, the J W T tokens are signed by the server in order for the token to be
signed, the server must generate an elliptic curve key. Listing 4.2 shows how a key is
generated using elliptic curves and then used to create a JwtCrypto structure. This
structure is later used to obtain a signer. After creating the structure and claims,
the server can create a token. The process of creation of token from claims using
signer is shown in Listing 4.3. The renewal token is created in the same way. The

59

difference is in the type of token that is set in the private claims and the expiration
time.

1 f u n c P r o v i d e S i g n e d () * m o d e l . J wt C r y pt o {

2 e c d s a K e y , :— e c d s a . G e n e r a t e K e y (e l l i p t i c . P 5 2 1 Q , r a n d . R e a d e r)

3 k e y :— j o s e . S i g n i n g K e y { A l g o r i t h m : j o s e . E S 5 1 2 , K e y e c d s a K e y }

4 v a r o p t i o n s — j o s e . S i g ne r O p t i o n s { }

5 o p t i o n s . W i t h T y p e (" JWT")

6 e c S i g n e r , e r r : — j o s e . N e w S i g n e r (k e y , & o p t i o n s)

7 i f e r r != n i l {

8 p a n i c (e r r)

9 }
10
11 r e t u r n femodel . J w t C r y p t o {
12 S i g n e r : e c S i g n e r ,

13 K e y : e c d s a K e y ,

14 }
15 }

Listing 4.2: Eliptic curve key creation

1 b u i l d e r :— j w t . S i g n e d (r e p o s i t o r y . J w t C r y p t o . S i g n e r)

. C l a i m s (a c c e s s P u b l i c C l a i m s)

. C l a i m s (a c c e s s P r i v a t e C l a i m s)
4 a c c e s s T o k e n , e r r :— b u i l d e r . C o m p a c t S e r i a l i z e ()

Listing 4.3: J W T token creation

Token verification

Token verification is performed at each request where user data is handled. Before
any token operation is performed, the token must be parsed from the string into the
JSONWebToken structure. How to convert a token from a string to a structure is
shown in Listing 4.4.
f u n c (r e p o s i t o r y * C r y p t o R e p o s i t o r y) P a r s e J W T T o k e n (t o k e n s t r i n g) (* j w t . J S O N W e b T o k e n , e r r o r) {

parsed J W T , e r r :— j w t . P a r s e S i g n e d (t o k e n)
i f e r r ! = n i l {

e r r — t o o l s . C o n v e r t E r r o r (c o d e s . U n a u t h e n t i c a t e d , " C a n ' t p a r s e JWT t o k e n " , e r r)
r e t u r n n i l , e r r

}
r e t u r n p a r s e d J W T , n i l

}

Listing 4.4: Parsing of J W T token

After the token is parsed, the server tries to verify the token signature. The signature
is verified using the public key of the elliptic curve. If the signature is valid, claims
are obtained from the token. This process is shown in Listing 4.5.

10

t y p e J W T C l a i m s map [s t r i n g] i n t e r f a c e ! }

f u n c (r e p o s i t o r y * C r y p t o R e p o s i t o r y) G e t J W T C l a i m s (t o k e n * j wt . J S O N W e b T o k e n) (J W T C l a i m s , e r r o r) {
c l a i m s := make (J W T C l a i m s)

e r r :— t o k e n . C l a i m s (& r e p o s i t o r y . J w t C r y p t o . K e y . P u b l i c K e y , feclaims)
i f e r r != n i l {

e r r — t o o l s . C o n v e r t E r r o r (c o d e s . A b o r t e d , " C a n ' t d e s e r i a l i z e c l a i m s from JWT t o k e n " , e r r)
r e t u r n n i l , e r r

}
r e t u r n c l a i m s , n i l

}

Listing 4.5: J W T token signature verification

60

The procedure that has been performed so far ensures that the data in the token
have not been altered. The server can now verify that the token is of the correct
type and that the token is still valid, in other words, that the expiration time has
not exceeded the current time. If these conditions succeed, the token is evaluated
as valid. Otherwise, an error is returned to the user, and the action the user tried
to perform is invalid. The whole procedure is shown in Listing 4.6.

1

2

3

4

!>

(i

7

«

9
10
11

12

13
14

15

16

f u n c (r e p o s i t o r y * C r y p t o R e p o s i t o r y) V e r i f y J W T (t o k e n * j w t . J S O N W e b T o k e n , i s R e f r e s h T o k e n b o o l) e r r o r

c l a i m s , e r r :— r e p o s i t o r y . G e t J W T C l a i m s (t o k e n) / / R e t u r n s f o r m a t t e d e r r o r

i f e r r != n i l {

r e t u r n e r r

}
i f c l a i m s [R e f r e s h T o k e n K e y] ! = i s R e f r e s h T o k e n {

r e t u r n t o o l s . C r e a t e E r r o r (c o d e s . I n v a l i d A r g u m e n t , "Token i s i n i n v a l i d t y p e ")

}

e x p i r a t i o n :— i n t 6 4 (c l a i m s [E x p i r a t i o n T i m e K e y] . (f l o a t 6 4))

i f t i m e . Now () . A f t e r (t i m e . U n i x (e x p i r a t i o n , 0)) {

r e t u r n s t a t u s . E r r o r (c o d e s . U n a u t h e n t i c a t e d , "token i s e x p i r e d ")

}

r e t u r n n i l

Listing 4.6: J W T token expiration verification

Request signature verification

Up to this point, the server has determined which user it is according to the token
and that the data in the token has not been modified. However, the server has
not yet ruled out whether the token was stolen, and now the attacker is trying to
retrieve or change the user's data. In order for the server to prevent this scenario,
each request is protected by the user's digital signature.
f u n c (r e p o s i t o r y * C r y p t o R e p o s i t o r y) V e r i f y R e q u e s t S i g n a t u r e (

t o k e n * j wt . J S O N W e b T o k e n , e n c o d e d M e s s a g e s t r i n g ,
s i g n a t u r e s t r i n g , e n c o d e d T o k e n s t r i n g) (b o o l , e r r o r) {

h e a d e r s , e r r :— r e p o s i t o r y . G e t J W T C l a i m s (t o k e n) / / R e t u r n s f o r m a t t e d e r r o r
i f e r r ! = n i l {

r e t u r n f a l s e , e r r

}
p u b K e y R a w :— h e a d e r s [P u b l i c K e y K e y] . (s t r i n g)

p u b K e y , e r r :— r e p o s i t o r y . P a r s e K e y (p u b K e y R a w) / / R e t u r n s forma t t ed e r r o r

i f e r r ! = n i l {

r e t u r n f a l s e , e r r

}
s i g n , e r r :— b a s e 6 4 . S t d E n c o d i n g . D e c o d e S t r i n g (s i g n a t u r e)

i f e r r ! = n i l {

e r r — t o o l s . C o n v e r t E r r o r (c o d e s . I n v a l i d A r g u m e n t , " I n v a l i d s i g n a t u r e base64 e n c o d i n g " , e r r)

r e t u r n f a l s e , e r r

}
m e s s age B y t e :— [] b y t e (e n c o d e d M e s s a g e)
t o k e n B y t e :— [] b y t e (e n c o d e d T o k e n)
s h a 5 1 2 H a s h := s h a 5 1 2 . New ()
s h a 5 1 2 H a s h . W r i t e (a p p e n d (m e s s a g e B y te , t o k e n B y t e . . .))
h a s h :— s h a 5 1 2 H a s h . S u m (n i l)
e r r = r s a . V e r i f y P K C S l v l 5 (p u b K e y , c r y p t o . S H A 5 1 2 , h a s h , s i g n)
i f e r r ! = n i l {

e r r — t o o l s . C o n v e r t E r r o r (c o d e s . U n a u t h e n t i c a t e d , " I n v a l i d s i g n a t u r e , e r r)
r e t u r n f a l s e , e r r

>

r e t u r n t r u e , n i l

Listing 4.7: Request signature verification

61

A signature, token, and digest are obtained from the context of the R P C method.
Before the signature verification method is called in the authentication service, the
service that wants to verify the signature validates whether the digest in context is
identical to the digest created from the request body. A n RSA public key is obtained
from the token to verify the digital signature. The body of the signed message is
created from a digest and a token. This ensures that the request comes from the
token owner. Such a message is then hashed with the SHA512 algorithm. If the
result after the signature verification is equal to the created hash, the message is
valid, and the signature is valid. The whole process can be seen in Listing 4.7.

4.4 Note service

The service provides C R U D operations on notes. The service does not know who
the individual notes belong to, and service is used primarily to perform C R U D
operations on the notes. The R P C methods that the service provides in the cloud
system also correspond to this. The user does not have direct access to this service,
and they use it through the permission service. This means that the service cannot
be accessed outside the cloud. The methods that the service provides are shown in
Listing 1.0, and the service primarily only manages database queries and formats
errors in the event of a mistake, for these reasons, the specific methods will not be
described further in the text.

NoteService

+ getNotes(NoteRequest): NoteResponse
+ createNote(NoteOperationRequest): Note
+ updateNote(NoteOperationRequest): Note
+ deleteNote(DeleteRequest): Response

Fig. 4.4: Note service

4.5 Permission service

The permission service serves as the primary point for the user in the SecNote
system with which the user interacts. The service stores information about the user's
mapping to notes and communicates with authentication services and note services.
The user can use this service to manage their notes. The following sections describe
how the individual methods are implemented and how they use other services in the
system to provide information for the user.

62

4.5.1 Get notes

In order for the service to provide all the notes that belong to the user, the permission
service must communicate with the authentication services and the note services.
The permission service first verifies that the digest from the request context equals
the digest created from the request body. If this check passes, then the service sends a
request to the authentication service to verify the token and signature of the request.
After confirming the identity of the applicant and the request credibility, the service
will start the process for obtaining notes. Notes are stored in the note service, but
the information which notes belong to whom is stored in the permission service.
So, the permission service first obtains information about which notes belong to the
user from its database. According to the received note identifiers, it gathers data
from the note service and provides it to the user.

4.5.2 Add or update note

As with the getNotes() method, the token and signature of the request are verified
using the authentication service. The input parameter for AddOrUpdateNoteQ is
the NoteOperationRequest structure that wraps the note. The server checks the
id of the note in the NoteOperationRequest, and if the id is empty, the server will
assume that it is a new note, and it will try to create it. Otherwise, if the id is
specified, it will be assumed that the note already exists and tries to edit it. In case
of note creation createNoteQ is called on note service, and after success, execution
permission service creates a mapping of the user to the newly created note. In case
of note update, permission service check if the user owns the note and if the user
owns it, and it executes updateMethodQ on note service. In either case, after the
action is executed AddOrUpdateNoteQ returns the newly modified or created note
to the user.

4.5.3 Delete note

When deleting a note, the procedure is very similar to updating a note. The server
checks the J W T token and the signature of the request, and if this information is
valid, the server checks whether the user owns the note he wants to delete. If all
checks are successful, a request is sent to the note service for the note to be deleted,
and the ownership record in the permission service is also removed.

4.5.4 Security mechanisms

This section describes the implementation details of the security mechanism im
plemented in the SecNote application. These techniques include application lock,

63

binding the keys to the user, encryption, decryption, and digital signature of re
quests. Previous chapters described the application screen by screen for a better
picture where these security mechanisms come into play and how to leverage them
to make the application more secure.

Digest verification

The digest check is related to the verification of the signature of the request. The
server must verify the digest so that the user does not create a request signature
and then changes the data in the request body just before sending it. This use case
would evaluate the signature as valid, but in reality, the signature would not match
the request body. So to verify digest, the permission service converts the request
to a byte array and passes the result to the ProxyMedataFromContext() method.
In Listing 4.8 is shown implementation of the ProxyMedataFromContext method.
The request that was converted to a byte array is used to create a hash using the
SHA512 algorithm, which is subsequently encoded using base64. The string created
in this way is compared with the digest that was obtained from the context of the
request. In case the digests are equal, the metadata of request is proxied to the
verify method of authentication service to verify the signature of the request and
J W T validity.

!)
10
11
12
13
14
15

16
17

18

19

20
21

22

f u n c P r o x y M e d a t a F r o m C o n t e x t (c o n t e x t c o n t e x t . C o n t e x t , r e q u e s t [] b y t e) (c o n t e x t . C o n t e x t , e r r o r) {

m d , ok :— m e t a d a t a . F r o m l n c o m i n g C o n t e x t (c o n t e x t)

md — m d . C o p y Q

d i g e s t :— md . G e t (D i ges t K e y)

i f l e n (d i g e s t) = 0 {

r e t u r n n i l , C r e a t e E r r o r (c o d e s . F a i l e d P r e c o n d i t i o n , " C a n ' t get metadata from c o n t e x t ")

}

h a s h e d := s h a 5 1 2 . N e w ()

h a s h e d . W r i t e (r e q u e s t)

o u t p u t :— h a s h e d . Sum(n i l)

r e q u e s t D i g e s t :— b a s e 6 4 . S t d E n c o d i n g . E n c o d e T o S t r i n g (o u t p u t)

i f d i g e s t [0] !— r e q u e s t D i g e s t {
r e t u r n n i l , C r e a t e E r r o r (c o d e s . F a i l e d P r e c o n d i t i o n , "Diges t i s not equa l to r e q u e s t body")

}

i f ! o k {

r e t u r n n i l , C r e a t e E r r o r (c o d e s . U n a u t h e n t i c a t e d , " C a n ' t get metadata from c o n t e x t ")

}
r e t u r n m e t a d a t a . N e w O u t g o i n g C o n t e x t (c o n t e x t , md) , n i l

Listing 4.8: Digest verification

4.6 SecNote application

SecNote is native Android application where security is the priority, and the ap
plication allows users to manage notes, add different categories to the notes, and
also encrypt them. Different security mechanisms are implemented to ensure that

64

users' notes are appropriately protected. Besides local security mechanism, notes are
synchronized into cloud so secure communication between mobile device and cloud
system is also implemented. The application is the entry point for the end-user into
the SecNote system. Principles that are universal and applicable to all screens will
be explained inside the Architecture Section 4.6.1. Flow of the application is shown
in Fig 4.5. In the following sections, the application's functionality will be divided
based on its screens and further described.

Please authorize devíc'

SecNote

Fig. 4.5: Secnote application flow

4.6.1 Architecture

The application is based on M V V M [15] architecture and uses the Arkitekt library[16],
which fallows M V V M architecture and adds base components that are then used to
implement the application. Arkitekt is an open-source library with MIT Licence.
Fig 4.6 showcase abstract application architecture. Every screen in the application
is built upon principles shown in Fig 4.6, and every component will be briefly de
scribed depending on their use. A l l components create together architecture, which

65

allows easy navigation through the code and supports the robustness of resulting
application. The application can run on any Android device with Android 6.0 or
higher. The application needs to communicate with the remote A P I so notes can be
synchronized to the server. How application established connection and what kind
of communication is used is explained in the networking Section 4.6.2.

Layout

Binding

Fragment

—observe changes—

-observe events-

LiveData % ViewState

— i r~
Start action Result

» Store

ApiManager

EncryptedSharePreferences

RoomDatabase

Model/Repository

Fig. 4.6: Application architecture

Fragment

The Fragment represents the UI portion of the application and also inherits from
BaseBindingFragment from Arkitekt library. BaseBindingFragment sets up data-
binding from Fragment layout and also sets up dagger dependencies to be injected.
If the screen has defined events, the Fragment can observe the events and react
depending on the event type. The Fragment has direct access to the view-model.

View

The view is an interface that represents actions that can be called on the Fragment.
This is useful when a fragment contains a recycler view, and the view holder requires
action to be executed after on click on it. In that case, the view can be provided by
the dagger to the adapter, which provides it to the view holder. This way, actions
can be called from view holders on a fragment without the need to provide the full
accessibility of Fragment.

ViewModel

The role of ViewModel is to encapsulate business logic from the Fragment. Besides
its architectural intent, it also implements BaseCrViewModel from Arkitekt library,

66

which provides coroutine scope bound to view-model scope. This scope is used by
interactors and ensures the clean up of resources and calls in case of scope destroy
event.

ViewState

ViewState is a representation of the screen. A l l data that are displayed on screen or
are related to the screen are persisted in ViewState. Data representation is presented
in live data, which can be observed in the Fragment. ViewState is persisted in
ViewModel, so the ViewState is not destroyed on lifecycle changes of Fragment.

Events

In the M V V M architecture, ViewModel should not be able to communicate directly
with the Fragment. ViewModel should be clueless, which Fragment is using the
ViewModel. Based on these principles, events can be defined and send from the
ViewModel. The Fragment can than observe the view-model events and react based
on the type of event.

Interactors

Interactors encapsulate domain logic. There are two base classes Coroutinelnterac-
tor and Flowlnteractor. Coroutinelnteractor emits a single result, and Flow Inter-
actor emits a stream of results. Interactors are executed on background executors,
which frees the main thread from heavy background work. Concrete interactors are
injected into the view-model and executed at will.

4.6.2 Networking

SecNote application is based on the premise that the user can get access to the
notes if he has a knowledge of authentication credentials. The application needs
to communicate with the remote A P I to implement these features. The SecNote
application communicates with the Authentication 4.3 and Permission 4.5 service.
These services run on gRPC protocol, that is based on H T T P / 2 , which means that
all communication is multiplexed through the single channel. Listing 4.9 shows
the declaration of the channel that is located in NetworkModule. In line seven is
used useTransportSecurityQ method. This method enforces that all communication
through this channel needs to be under the TLS. TSL secures the communication
channel, so the communication between the application and remote A P I is secure.
gRPC service is defined by a proto file. Proto file is a file that declares all the
messages that can be sent to the service and all the R P C that service contains. So,

67

in contrast with REST API , gRPC is a type-safe. On build type compiler generates
gRPC client builder that can be used to build a client for service. To build a client,
application needs to provide a channel that was created on Listing 4.9.

© P r o v i d e s

© S i n g l e t o n

f u n p r o v i d e C h a n n e l (© A p p l i c a t i o n C o n t e x t c o n t e x t : C o n t e x t) : C h a n n e l — A n d r o i d C h a n n e l B u i l d e r
. f o r T a r g e t (C o n s t a n t s . N e t w o r k . U R L)

. c o n t e x t (c o n t e x t)

. i d l e T i m e o u t (C o n s t a n t s . N e t w o r k . I D L E _ . T I M E O U T , T i m e U n i t M I N U T E S)

. u s e T r a n s p o r t S e c u r i t y ()

. b u i l d ()

Listing 4.9: gRPC Android channel

Listing 4.10 shows how to use generated builder to build stub for services. After a
stub is built, the application can call an R P C that is defined in the proto file.

© P r o v i d e s
© S i n g l e t o n
f u n p r o v i d e A u t h S t u b (c h a n n e l : C h a n n e l) —

A u t h S e r v i c e G r p c K t . A u t h S e r v i c e C o r o u t i n e S t u b (c h a n n e l)

© P r o v i d e s
© S i n g l e t o n

f u n p r o v i d e P e r m i s s i o n S t u b (c h a n n e l : C h a n n e l) —
P e r m i s s i o n S e r v i c e G r p c K t . P e r m i s s i o n S e r v i c e C o r o u t i n e S t u b (c h a n n e l)

Listing 4.10: gRPC Stub

4.6.3 Login

Users can create a new account with sign up or sign in into an existing account. Fig
4.7 shows login UI where the user enters login credentials, which are composed of
email and password, and selects which action would like to perform.

Validation

Before sign in or sign up action is executed, in both cases, the input is validated
with the same method validatelnputQ shown on Listing 4.11.

p r i v a t e f u n v a l i d a t e l n p u t (a c t i o n : () —> U n i t) {

v a l i s E m a i l V a l i d — P a t t e r n s . E M ATT, A D D R ESS . m a t c h e r (v i e w S t a t e . e m a i l . v a l u e) . m a t c h e s ()

v a l i s P a s s w o r d V a l i d — v i e w S t a t e . p a s s w o r d , v a l u e . i s N o t B l a n k ()

v i e w S t a t e . e m a i l E r r o r . v a l u e — i f (i s E m a i l V a l i d . n o t ())
r e s o u r c e s . g e t S t r i n g (R . s t r i n g . g e n e r a l e m a i l e r r o r) e l s e ""

v i e w S t a t e . p a s s w o r d E r r o r . v a l u e — i f (i s P a s s w o r d V a l i d . n o t ())

r e s o u r c e s . g e t S t r i n g (R . s t r i n g . g e n e r a l p a s s w o r d e r r o r) e l s e ""

i f (i s E m a i l V a l i d i s P a s s w o r d V a l i d) {

a c t i o n ()

}

Listing 4.11: Email and password validation

Email and password edit text fields are bound to the ViewState so the method can
access the values inserted by the user. Email is checked if it matches the pattern,

68

• • • 6:30 ©

SecNote

(a) Login screen (b) P in set up screen

Fig. 4.7: Login and pin set up screens

and the password is checked if it is not empty. If both conditions are valid than the
provided action is executed. Otherwise, an error is shown to the user.

Device security

After input validation, application checks if the device is secure. By secure, it
means the device has set up P I N / P A T T E R N / P A S S W O R D . This can be validated
with the KeyguardManager that has method isDeviceSecureQ 4.12. If the device
is not secure, NavigateToPinEvent is sent from the view-model with the value of
PinState.PIN SET. After the event is observed in the Fragment, the PinFragment
is started with the PIN SET argument 4.6.4. In the case that the device is secured,
the method proceeds with the action, which can be Signln or SingUp.

1 p r i v a t e f u n c h ec k I f D e v i c e I s S e c u r e (a c t i o n : () - > U n i t) {

2 i f (I k e y g u a r d M a n a g e r . i s D e v i c e S e c u r e) {

3 s e n d E v e n t (N a v i g a t e T o P i n E v e n t (P i n S t a t e P I N _ S E T))

4 } e l s e {
5 a c t i o n ()

6 }
7 }

Listing 4.12: Device security validation

69

Sign Up

The sign-up action creates a new user account. After input and device security
validation, SignUpInteractor is executed. Interactor generates new RSA key pair.
This RSA key is used for request signing and verification. Before the password is
sent to the server, salt is added to the password. Salt is a sequence of characters that
is added to a user's password to increase security against dictionary attacks. After
the salt is added, the result is hashed with the SHA512 hash function. To create
new account, signUpQ R P C is executed on Authentication service. Parameters for
the call are email, password, and public RSA key. On successful account creation,
access and renew tokens are returned as a response. Tokens are saved into encrypted
shared preferences. Interactor on success callback is called, and NavigateToPinEvent
is sent with the argument PinState.AUTHORISE. After the event is observed in the
Fragment, the PinFragment is started with the A U T H O R I S E argument 4.6.4.

Sign In

The sign-in action gets the existing user account. Flow with sign-in is the same as
in sign-up. The difference is that the Signlnlnteractor is executed, and inside the
interactor signlnQ R P C is executed on Authentication service. Other flow from key
creation to the event sent is the same.

4.6.4 Pin

The screen has three states consisting of PIN_SET, AUTHORIZE, REAUTHO
RIZE. The initial state is set by an argument with which the screen is started.
Screens in all three states can be seen in Fig 4.8.

The PIN_SET state screen informs the user that the lock screen is not set on
this device. It needs to be set up so the application can function correctly. The
"Set PIN" button navigates the user to the device settings where the user can set
the lock screen of the device. Only the login screen can start a pin-screen with an
initial state of PIN_SET. In other use cases, if the user removes a lock screen from
the device after the login, app-generated keys will be invalidated and unusable. The
application will automatically log out the user from the application and show him
a login screen where on login attempt user will be prompt to the pin-screen. If
the user sets up the lock screen, application will return the user to the login screen
where he can continue with the authentication process.

The AUTHORIZE state screen initially opens the lock screen. The security
mechanism informs the user that he needs to authorize to unlock cryptographic
material. By authorizing, the user unlocks keys saved in Keystore for a 5-minute

70

SecNote

9:06 O # * a , I

SecNote

(a) State A U T H O R I Z E (b) State R E A U T H O R I Z E

(c) Lock screen (d) State P I N _ S E T

Fig. 4.8: Pin-screen in all three states with lock screen

time window. If a user tries to go back or fail the authorization, the app will show
infographics to the user that he needs to authorize to continue. Screen with the
initial state of AUTHORIZE is invoked right after login or if the user is already
signed in after app startup.

The REAUTHORIZE state screen informs the user that a 5-minutes time win
dow had expired, and he needs to authorize again to unlock cryptographic material.

71

The difference between AUTHORIZE and REAUTHORIZE state is that the REAU
THORIZE state does not open initially lock screen but instead, informs the user
what happened and what he needs to do next in order to use application. This
behavior is implemented due to the use case of how a screen with state REAUTHO
RIZE is opened. If the user tries to do some in-app action after the expiration of
a 5-minutes window pin-screen with the initial state of REAUTHORIZE is opened.
Users can invoke the lock screen with the Authorize button and, after successful
authorization, continue where left off in the application.

4.6.5 Notes

The notes-screen displays all notes that belong to the signed-in user, and also serves
as the primary navigation component from where the user can navigate to the other
screens. Notes are loaded from the room database and synchronized from remote
permission service into the room database. Synchronization is invoked by onResume
call from fragment lifecycle call. If the user interacts with the application longer
than 5 mins and tries to invoke the synchronization, pin-screen with an argument of
R E A U T H O R I Z A T I O N will be shown. From the notes screen, the user can navigate
to note detail, profile, and preview of encryption keys. At the bottom right of the
screen floating action button, navigates the user to note screen without id argument,
which corresponds to note creation. Notes are displayed in raw form, which means
when a note is encrypted user sees only the encrypted text body and readable title.
Fig 4.9 shows the empty state of notes screen and also screen with content where
one of the notes is encrypted, and the other one is not. By clicking on the note, the
application navigates to the note screen.

4.6.6 Note

In the note-screen Fig. 4.10, the user can create a new note or edit an existing
note. In which of two states screen opens depends on noteld argument. If noteld
argument is provided, the corresponding note will be preloaded on the screen. The
note is observed from the local room database. Any update to note will propagate
to the UI immediately. If the note is encrypted, the application will try to decrypt
it and show the results to the user. The decryption of note is conditioned by user
authorization and can be done only in authorize 5-minute window. Otherwise, pin-
screen with argument R E A U T H O R I Z A T I O N will be shown to the user. Changes
made by users are not immediately saved. Instead, the user is notified that he made
some changes and can save the note with the floating action button. If the user tries
to navigate back without saving dialog is open that informs the user if he leaves
this screen, all unsaved changes will be discarded. Notes can be added to categories

72

(a) Empty state (b) Content

Fig. 4.9: Notes screen

that are created by the user. On the bottom of the screen is a chip with the text
"Add Category". By clicking on the chip, application navigates to the categories
screen. As mentioned earlier, the user can encrypt the note. Encryption can be
done by clicking on the lock icon in the bottom app bar, which opens the encryption
key selection screen. Right next to the lock icon is the bin icon, which deletes the
current note and returns the user to the notes-screen.

4.6.7 Categories

The categories screen displays all categories created by the user. The user can
manage categories corresponding to the note by selecting and deselecting individual
categories. The new category can be added by clicking on the floating action button
on the bottom of the screen. The categories screen is started with argument select-
edCategories. The argument serves for categories synchronization and pre-selection
of categories.

Synchronization of categories

Upon view model creation, the onStart lifecycle call is called. In this call, Sync-
Categorylnteractor is executed. The categories screen is started with the argument
selectedCategories that contains selected categories for currently selected note. This
argument is also a mandatory parameter for the SyncCategorylnteractor, as listed

73

Thesis

Just do it.

Ideas Add Category

Title

Body

(a) Note with pending changes (b) New note

Fig. 4.10: Note screen

in Listing 4.13. The SyncCategorylnteractor check if provided categories are cre
ated in the room database, and if not, it creates them after successful categories
synchronization application can guarantee that selected categories are created and
can be shown in the UI.

o v e r r i d e f u n o n S t a r t () {

• f v i e w S t a t e . s e l e c t e d C a t e j ; o r i e s . v a l u e . i s N o t E m p t y ()) {

s y n c C a t e g o r y l n t e r a c t o r . i n i t (v i e w S t a t e . s e l e c t e d C a t e g o r i e s . v a l u e . t o L i s t ()) . e x e c u t e {
g e t C a t e g o r i e s ()

}
} e s e {

g e t C a t e g o r i e s ()

}
}

Listing 4.13: Category synchronization interactor call

The application needs to load them from the room database to the ViewState to
show categories in the UI. This is the purpose of GetCategoriesInteractor executed
in the success callback of SyncCategorylnteractor Listing 4.14.

p r i v a t e f u n g e t C a t e g o r i e s () {

g e t C a t e g o r i e s I n t e r a c t o r . e x e c u t e (

o n N e x t — {

v i e w S t a t e . c a t e g o r i e s , v a l u e = i t

v i e w S t a t e . l o a d i n g . v a l u e = f a l s e

}
)

}

Listing 4.14: Category synchronization interactor call

74

(a) Empty state (b) Content

(c) Selected (d) New

Fig. 4.11: Categories screen

SyncCategorylnteractor observers categories saved in the room database and changes
are propagated to the UI by calling onNext callback on every change to the cate
gories. This guarantees that newly created categories are shown into the UI without
the need for result mechanism implementation from the create categories screen.

75

Category selection and deselection

Category can be selected or deselected by clicking on the chip. Depending on the
state of the selected chip, the state needs to be inverted and added or removed from
note selected categories. By clicking on the chip, invertStateQ method from view-
model is called. Implementation of invertStateQ is shown on Listing 4.15. After
the modification of selected categories, the ChangeCategoriesEvent is sent to the
CategoriesFragment to set new categories for the selected note.

f u n i n v e r t S t a t e (c a t e g o r y : C a t e g o r y S e l e c t i o n) {

v i e w S t a t e . s e l e c t e d C a t e g o r i e s . v a l u e = i f (c a t e g o r y , s e l e c t e d) {

v i e w S t a t e . s e l e c t e d C a t e g o r i e s . v a l u e . a p p l y { r e m o v e (c a t e g o r y . n a m e) }
} e l s e {

v i e w S t a t e . s e l e c t e d C a t e g o r i e s . v a l u e . a p p l y { a d d (c a t e g o r y . name) }

}
s e n d E v e n t (C h a n g e C a t e g o r i e s E v e n t (

N o t e C a t e g o r i e s (

v i e w S t a t e . s e l e c t e d C a t e g o r i e s . v a l u e . t o L i s t ()
)

))
}

Listing 4.15: Invert state of category

In the CategoriesFragment event is observed Listing 4.17, and newly selected cate
gories are saved as a result under the CATEGORIES_CHANGE key for the previous
fragment in back stack.

o b s e r v e E v e n t (C h a n g e C a t e g o r i e s E v e n t : : c l a s s) {
s e t R e s u l t (C o n s t a n t s . N o t e . C A T E G O R I E S _ C H A N G E , i t . r e s u l t)

}

Listing 4.16: Set new categories for note

New category creation

To create a new category, the user enters the category name into the edit text input.
Edit text input is bi-directionally bound to the live data in ViewState. To confirm
the category creation user clicks on the "Add Category" button, which calls the
createCategoryQ method 4.17 in the view model. The CreateCategorylnteractor
creates a new category with the name entered into the input. After the successful
creation of the category user is returned back to the category-screen.

f u n c r e a t e C a t e g o r y Q {
v a 1 n a m e — v i e w S t a t e . name . v a l u e
i f (name . i s N o t B l a n k ()) {

C r e a t e C a t e g o r y l n t e r a c t o r . i n i t (n a m e) . e x e c u t e (
o n S u c c e s s = {

s e n d E v e n t (N a v i g a t e B a c k)

}
)

}
}

Listing 4.17: Set new categories for note

76

4.6.8 Encryption

Encryption screen helps the user to manage AES keys, which can be used to encrypt
and decrypt notes. Usage of a key is conditioned by the authorization window opened
by user authorization for five minutes. Keys are saved and loaded from Keystore. By
clicking on a key, the user select and deselect key for encryption and decryption of
the note. The user can choose the length of the AES key and alias. The encryption
screen is started with argument alias. The alias argument serves for the pre-selection
of the key.

(a) Empty state (b) Content (c) Selected key

(d) Key creation

Fig. 4.12: Encryption screen

77

Keystore aliases

For the user to be able to select the key from the Keystore, the application needs
to be able to list all saved keys by defined aliases. Keystore A P I provides method
aliasesQ, which returns the list of all saved aliases in the Keystore. The application
needs to filter out from this list device key, which is used for request signing and
encrypted shared preferences key, which is used to encrypt and decrypt data saved
in shared preferences. Implementation is shown on Listing 4.18.

f u n g e t K e y s t o r e A l i a s e s Q — k e y s t o r e . a l i a s e s () . t o L i s t ()
. filter {

i t != C o n s t a n t s . S e c u r i t y . D E V I C E _ U S E R _ K E Y & &

i t != M a s t e r K e y s . A E S 2 5 6 _ G C M _ S P E C . k e y s t o r e A 1 i a s

}

Listing 4.18: List all aliases from keystore

Key selection and deselection

The key can be selected or deselected by clicking on the key alias in the list. De
pending on the state of the selected key, the state needs to be inverted and set
as a result of the previous note fragment. By clicking on the key onKeySelection()
method from view-model is called Listing 4.19. The KeySelectionEvent is sent to the
EncryptionFragment with the name of alias with which note should be encrypted.
If the alias is the empty string, that means encryption is removed from the note.

f u n o n K e y S e l e c t i o n (a l i a s : S t r i n g) {
v i e w S t a t e . s e l e c t e d . v a l u e — i f (v i e w S t a t e . s e l e c t e d . v a l u e =— a 1 a s) {

} e l s e {

}
s e n d E v e n t (K e y S e l e c t i o n E v e n t (v e w S t a t e . s e l e c t e d . v a l u e))

}

Listing 4.19: Key selection

New key creation

The user can generate AES keys for encryption and decryption of notes and can
choose between AES128, AES192, AES256. To tell the difference and also tell the
application which key should be used for different notes, the user assign aliases to
all keys on their creation. Listing 4.20 shows how keys are generated in code. The
mode chosen for the AES key is G C M with no padding. By setting randomize
encryption to true, KeyStore ensures that each time such a key is used, a new
randomized initialization vector is generated and used for encryption. This vector
must be provided to the KeyStore during decryption for decryption to be successful.

78

g e n e r a t e E n c r y p t i o n K e y (a l i a s : S t r i n g , k e y S i z e : I n t) {
v a l k e y G e n e r a t o r — K e y G e n e r a t o r

. g e t l n s t a n c e (C o n s t a n t s . S e c u r i t y . A E S , C o n s t a n t s . S e c u r i t y . K E Y S T O R E)
v a l k e y G e n P ar a m e t er S pec —

K e y G e n P a r a m e t e r S p e c . B u i l d e r (a l i a s , K e y P r o p e r t i e s . P U R P O S E _ E N C R Y P T

o r K e y P r o p e r t i e s . P U R P O S E _ D E C R Y P T)

• a p p l y {
s e t B l o c k M o d e s (K e y P r o p e r t i e s . B L O C K _ M O D E _ G C M)
s e t E n c r y p t i o n P a d d i n g s (K e y P r o p e r t i e s . E N C R Y P T I O N _ P A D D r N G _ N O N E)
se t R a n d o m i z ed E n c r y p t io n R e q u i r e d (t r u e)
s e t U s e r A u t h e n t i c a t i o n R e q u i r e d (t r u e)
s e t U s e r A u t h e n t i c a t i o n V a l i d i t y D u r a t i o n S e c o n d s (

C o n s t a n t s . S e c u r i t y . D E V I C E _ A U T H O R I Z A T I O N _ W I N D O W

)
}
. s e t K e y S i z e (k e y S i z e)
. b u i l d ()

k e y G e n e r a t o r . i n i t (k e y G e n P a r a m e t e r S p e c)
k e y G e n e r a t o r . g e n e r a t e K e y ()

Listing 4.20: Key creation

4.6.9 Profile

The profile screen 4.13 shows the email of the signed-in user and provides a sign-out
button for the user to sign-out from the application. On the click of the sign-out
button, the method signOutQ in the view model is called. In the signOutQ method
SignOutlnteractor is executed. The SignOutlnteractor uses the authentication ser
vice to call the signOut() method. Upon successful response from the server, the
access and renew tokens are removed from the application and the user is redirected
to the login screen.

Fig. 4.13: Profile screen

79

4.6.10 Security mechanisms

This section describes the implementation details of the security mechanism. Pre
vious chapters described the application screen by screen for a better picture where
these security mechanisms come into play and how to leverage them to make the
application more secure.

Application lock

Application lock is useful when only the user that sets the device lock mechanism
should be able to enter the application content or when the application needs to
bind cryptographic keys with the application lock. Both use cases are used in Sec-
Note. If the user doesn't have set P I N / P A T T E R N / P A S S W O R D application needs
to confront the user that it is mandatory to set it before continuing. Optionally,
the user can set biometric unlock, and then P I N / P A T T E R N / P A S S W O R D serves
as a backup. How biometric works on Android is described in Section 2.3. The con
clusion of Section 2.3 is that the application needs to use two different mechanisms
for biometric authentication, FingerprintManager, and BiometricManager. Instead
of implementing two different approaches in SecNote, Google's androidx.biometric
library (in short xbiometric) can be used instead. Xbiometric encapsulates the logic
for both FingerprintManager and BiometricPrompt, and depends on the device An
droid version. The library executes the appropriate code. Xbiometric is not part of
the standard Android library and needs to be added to the application. This can
be done by adding Gradle dependency as shown on Listing 4.21.
i m p l e m e n t a t i o n (" andr o i dx . b i o me t r i e : b i o m e t r i c : 1 .0 . 1")

Listing 4.21: Biometric library dependency

To show BiometricPrompt to the user, application needs to provide BiometricPrompt-
Info, BiometricCallback, and Executor Service. This dependencies are provided by
PinFragmentModule that is shown on Listing 4.22.

@ P r o v i d e s

f u n c a l l b a c k (f r a g m e n t : P i n F r a g m e n t) — B i o m e t r i c C a l l b a c k (f r a g m e n t)

© P r o v i d e s

f u n b i o m e t r i c P r o m p t l n f o (r e s o u r c e s : R e s o u r c e s) — B i o m e t r i c P r o m p t . P r o m p t l n f o . B u i l d e r ()

. s e t T i t l e (r e s o u r c e s . g e t S t r i n g (R . s t r i n g . g e n e r a l l o c k s c r e e n t i t l e))

. s e t S u b t i t l e (r e s o u r c e s . g e t S t r i n g (R . s t r i n g . g e n e r a l l o c k s c r e e n s u b t i t l e))

. s e t D e v i c e C r e d e n t i a l A l l o w e d (t r u e)

. b u i l d ()

@ P r o v i d e s

f u n e x e c u t o r () — E x e c u t o r s . n e w S i n g l e T h r e a d E x e c u t o r ()

© P r o v i d e s

f u n b i o m e t r i c P r o m p t (f r a g m e n t : P i n F r a g m e n t ,
c a l l b a c k : B i o m e t r i c C a l l b a c k , e x e c u t o r : E x e c u t o r S e r v i c e) —

B i o m e t r i c P r o m pt (f r a g m e n t , e x e c u t o r , c a l l b a c k)

Listing 4.22: BiometricPrompt dependencies in PinFragmentModule

80

The BiometricPromptlnfo sets the dialog title message, body message, and by set
ting setDeviceCredentialAllowedQ to true dialog will offer the possibility to authenti
cate with the backoff mechanism in case the biometric authentication is not available
for the user at the moment. The ExecutorService manages on which thread will be
BiometricCallback called. The BiometricCallback provides a way of communication
with the calling PinFragment. In the case of authentication success, error, or failure,
the appropriate method is called to inform the application about the result.

PinFragment implements BiometricCallbacklnterface, which is used in Biomet
ricCallback to proxy calls from BiometricCallbacklnterface to the Authentication-
Callback from xbiometric library. AuthenticationCallback can't be directly extended
in PinFragment due to the reason AuthenticationCallback is an abstract class, and
PinFragment is already extending BaseBindingFragment from Arkitekt library.

o v e r r i d e f u n o n A u t h e n t i c a t i o n E r r o r (e r r o r C o d e : I n t , e r r S t r i n g : C h a r S e q u e n c e) —

r u n O n U I T h r e a d {

v i e w S t a t e . l o a d i n g , v a l u e = f a l s e

}

o v e r r i d e f u n o n A u t h e n t i c a t i o n S u c c e e d e d (r e s u l t : B i o m e t r i c P r o m p t . A u t h e n t i c a t i o n R e s u l t) —
r u n O n U I T h r e a d {

v i e w M o d e l . c h e c k S t a t e ()

}

o v e r r i d e f u n o n A u t h e n t i c a t i o n F a i l e d () — r u n O n U I T h r e a d {

v i e w S t a t e . l o a d i n g , v a l u e = f a l s e

}

Listing 4.23: BiometricPrompt result

In PinFragment, when AuthenticateDeviceEvent is observed, BiometricPrompt and
BiometricPromptlnfo are lazily injected and used to show lock mechanism appro
priate for the Android version as shown on Listing 4.24. Listing 4.23 shows callback
implementation in PinFragment. One of these methods is called to notify PinFrag
ment about the result from BiometricPrompt.
c l a s s P i n F r a g m e n t : B ase B i n d i n g F r a g m e n t < P i n V i e w M o d e l , P i n V i e w S t a t e , F r a g m e n t P i n B i n d i n g > () ,

P i n V i e w , B i o m e t r i c C a l l b a c k l n t e r f a c e {

© I n j e c t l a t e i n i t v a r b i o m e t r i c P r o m p t : B i o m e t r i c P r o m p t

© I n j e c t l a t e i n i t v a r p r o m p t l n f o : B i o m e t r i c P r o m p t . P r o m p t l n f o

o v e r r i d e f u n o n V i e w C r e a t e d (v i e w : V i e w , s a v e d l n s t a n c e S t a t e : B u n d l e ?) {

o b s e r v e E v e n t (A u t h e n t i c a t e D e v i c e E v e n t : : c l a s s) {

b i o m e t r i c P r o m p t . a u t h e n t i c a t e (p r o m p t l n f o)

}

}

Listing 4.24: BiometricPrompt

Request signing

Section 4.6.3 describes how user sign-in or sing-up into the application and how the
public key of the generated RSA key pair is sent with the credentials to the server.

81

On successful response, the J W T access token and renew token is obtained in the
application. This J W T tokens have embedded public key into them that was sent
with the login credentials to the server. The public key is used for verification of
the digital signature. Tokens are digitally signed by the server, so any modifications
to them would result in a failed response from the server. This ensures that the
J W T tokens are bind to the device that was used to sign-in or sign-up. Attempt to
use this tokens on another device would fail with the cause of the missing private
RSA key that is stored in the device Keystore. So to summarize, J W T is used to
identify the user on the server and also provides users public key to the server with
which server can verify provided request signatures created by the user. Listing
4.25 shows how the application generates the RSA key for digital signature and how
the public key is extracted and converted to P E M format encoded into base64. To
use this key user needs to be authenticated, authentication is enforced by setUser-
AuthenticationRequiredQ on line nine, which means he needs to use the application
lock. After unlocking the device and becoming authenticated application opens a
5-minutes time window where the user can use the key. How long the window is
defined on line ten with setUserAuthenticationValidityDurationSeconds(). The key
generation is invoked on every attempt to sign-up or sign-in.

f u n g e n e r a t e K e y () : S t r i n g {

v a l p a r a m s — K e y G e n P a r a m e t er S pec
. B u i l d e r (

C o n s t a n t s . S e c u r i t y . D E V I C E _ U S E R _ K B Y ,

K e y P r o p e r t i e s . P U R P O S E _ S I G N o r K e y P r o pe r t i e s . P U R P O S E _ V E R I F Y

)
. s e t D i g e s t s (K e y P r o p e r t i e s . D I G E S T _ S H A 5 1 2)

. s e t K e y S i z e (C o n s t a n t s . S e c u r i t y . D E V I C E _ U S E R _ K E Y _ S I G _ S I Z E)

. s e t U s e r A u t h e n t i c a t i o n R e q u i r e d (t r u e)

. s e t U s e r A u t h e n t i c a t i o n V a l i d i t y D u r a t i o n S e c o n d s (

C o n s t a n t s . S e c u r i t y . D E V I C E _ A U T H O R I Z A T I O N _ W I N D O W)

. s e t S i g n a t u r e P a d d i n g s (K e y P r o p e r t i e s . S I G N A T U R E _ P A D D I N G _ R S A _ P K C S 1)

. b u i l d ()

k e y P a i r G e n e r a t o r . i n i t i a l i z e (p a r a m s)

v a l k P = k e y P a i r G e ne r a t o r . g e ne r a t e K e y P a i r ()

v a l e n c o d e d — B a s e E n c o d i n g . b a s e 6 4 () . e n c o d e (k P . p u b l i c . e n c o d e d)
v a l p e m = " $ P E M _ K E Y _ R R E F I X \ n $ e n c o d e d \ n $ P E M _ K E Y _ P O S F I X "

r e t u r n e n c o d e B a s e 6 4 (pem . t o B y t e A r r a y ())

}

Listing 4.25: Digital signature key generation

After the key is successfully generated, and the user is successfully signed-in into
the application, all onwards requests to the server are digitally signed. Listing 4.26
shows getNotesQ method in PermissionServiceManager.

s u s p e n d f u n g e t N o t e s Q — e x e c u t e A p i C a l l {

v a l r e q u e s t = R e q u e s t . n e w B u i l d e r () . b u i l d ()
v a l d i g e s t — c r y p t o H e l p e r . h a s h M e s s a g e (r e q u e s t . t o B y t e A r r a y ())
c l i e n t

. e x e c u t e W i t h M et a d a t a (d i g e s t)

. g e t N o t e s (r e q u e s t)

}

Listing 4.26: PermissionServiceManager - getNotesQ method

82

In the method getNotesQ request body is hashed with the SHA512 algorithm and
encoded with base64 encoding, this process is shown on Listing 4.27. Hash is passed
as a parameter to the method executeWithMetadataQ, which implementation is
shown in Listing 4.28.

f u n h a s h M e s s a g e (m e s s a g e : B y t e A r r a y) : S t r i n g —

M e s s a g e D i g e s t . g e t l n s t a n c e (C o n s t a n t s . S e c u r i t y . H A S H _ A L G) . r u n {
u p d a t e (m e s s a g e)
e n c o d e B a s e 6 4 (d i g e s t ())

}

Listing 4.27: CryptoHelper - hashMessage() method

s u s p e n d f u n < T : A b s t r a c t S t u b < T » T . e x e c u t e W i t h M e t a d a t a (r e q u e s t : S t r i n g) : T {

v a l t o k e n = t o k e n S t o r e . g e t A c c e s s T o k e n () ?: ""
v a l t o B e S i g n — r e q u e s t . t o B y t e A r r a y () + t o k e n . t o B y t e A r r a y ()

v a l s i g n a t u r e — c r y p t o H e l p e r . s i g n A n d E n c o d e D a t a B a s e 6 4 (t o B e S i g n)

v a l h e a d e r — M e t a d a t a ()

h e a d e r . p u t (M e t a d a t a . K e y . o f (" A u t h o r i z a t i o n " , M e t a d a t a . A S C n _ S T R T N G _ M A R S H A L L E R) , t o k e n)
h e a d e r . p u t (M e t a d a t a . K e y . o f (" D i g e s t " , M e t a d a t a . A S C I I _ S T R I N G _ M A R S H A L L E R) , r e q u e s t)
h e a d e r . p u t (M e t a d a t a . K e y . o f (" S i g n a t u r e " , M e t a d a t a . A S C I I _ S T R I N G _ M A R S H A L L E R) , s i g n a t u r e)

M e t a d a t a U t i l s . a t t a c h H e a d e r s (

t h i s ,
h e a d e r

)
}

Listing 4.28: ServiceManager - executeWithMetadataQ method

At this point, the application has all the necessary information to create the meta
data. Individual information is gradually added to the metadata, and this process
can be seen in Listing 4.28. First, the Authorization value is added to the meta
data. Below the Authorization field is the value of the J W T token. Subsequently,
the Digest value is added, which represents the value of the hashed request body.
Signature is added as the last value. Signature is a combination of digest and J W T
token. These two values are combined together, and then a hash is created from
them, which is digitally signed by the RSA private key. Creation of signature is
shown on Listing 4.29.

f u n s i g n A n d E n c o d e D a t a B a s e 6 4 (d a t a : B y t e A r r a y) : S t r i n g {

v a l e n t r y = k e y s t o r e . g e t K e y (C o n s t a n t s . S e c u r i t y . D E V I C E _ U S E R _ K E Y ,
r e t u r n S i g n a t u r e . g e t l n s t a n c e (C o n s t a n t s . S e c u r i t y . D E V I C E _ U S E R _ K E Y .

. r u n {

i n i t S i g n (e n t r y)
u p d a t e (d a t a)
e n c o d e B a s e 6 4 (s i g n ())

}
}

Listing 4.29: Signature creation

Note encryption and decryption

Section 4.6.8 describes how encryption and decryption keys are created and selected
to encrypt and decryp the note. Trigger for note encryption is the selection of the

n u l l) a s P r i v a t e K e y

_ S I G _ A L G)

83

key and on click on the save button in the note screen. The save action executes
CreateOrUpdateNotelnteractor. Before the note is sent to the server, the note body
is encrypted with the key that is saved in the Keystore under provided alias. Listing
4.30 shows implementation of CreateOrUpdateNotelnteractor build method.

o v e r r i d e s u s p e n d f u n b u i l d () : N o t e R e s p o n s e {

i f (e n c r y p t e d —— t r u e) {

b o d y — c r y p t o H e l p e r . e n c r y p t D a t a (a l i a s , b o d y)

}
v a l r e s p o n s e = p e r m i s s i o n S e r v i c e M a n a g e r

. c r e a t e O r U p d a t e N o t e (p r o t o t y p e , i d , t i t l e , b o d y , c a t e g o r i e s , e n c r y p t e d , a l i a s)

v a l n o t e s — r e s p o n s e . n o t e s L i s t .map { i t . c o n v e r t T o R o o m N o t e () }

n o t e S t o r e . s y n c N o t e s (n o t e s)

r e t u r n r e s p o n s e

Listing 4.30: CreateOrUpdateNotelnteractor build method

The method encryptDataQ is responsible for note encryption. Parameters of the
method are alias of the key and note body. The implementation of the method is
shown on Listing 4.31.

f u n e n c r y p t D a t a (a l i a s : S t r i n g , d a t a : S t r i n g) : S t r i n g {
v a l k e y — k e y s t o r e . g e t K e y (a l i a s , n u l l)

r e t u r n C i p h e r . g e t l n s t a n c e (C o n s t a n t s . S e c u r i t y . A E S _ A L G) . r u n {
i n i t (

C i p h e r . E N C R Y P T _ M O D E ,

k e y

)
v a l e n c r y p t e d — d o F i n a l (d a t a . t o B y t e A r r a y ())

v a l v e c t o r = i v

" $ { e n c o d e B a s e 6 4 (e n c r y p t e d) } $ { E N C R Y P T I 0 N _ D E L I M I T E R > $ { e n c o d e B a s e 6 4 (v e c t o r) } "

}
}

Listing 4.31: CryptoHelper encryptData method

Method encryptDataQ encrypt the note with the "AES/GCM/NoPadding" algo
rithm. As mentioned when creating the key, one of the constraints set to the key
is to enforce the random initialization vector generation on every encryption. The
same initialization vector needs to be provided in case of a decryption of the note.
Otherwise, decryption will fail. For that reason, the body of the note is saved as
the concatenated text of encrypted text, divider, and vector. After that, the note is
sent to the remote A P I and persisted on the server.

f u n d e c r y p t D a t a (a l i a s : S t r i n g , d a t a : S t r i n g) : S t r i n g {

v a
v a
v a
v a
v a

s p l i t = d a t a , s p l i t (E N C R Y P T I O N D E L I M I T E R)

e n c r y p t e d D a t a — d e c o d e B a s e 6 4 (s p l i t , first ())

v e c t o r — d e c o d e B a s e 6 4 (s p l i t , s e c o n d ())

k e y — k e y s t o r e . g e t K e y (a l i a s , n u l l) ?: t h r o w I l l e g a l S t a t e E x c e p t i o n (" M i ss i n g key")

s p e c — G C M P a r a m e t e r s pec (1 2 8 , v e c t o r)

r e t u r n C i p h e r . g e t l n s t a n c e (C o n s t a n t s . S e c u r i t y . A E S _ A L G) . r u n {

i n i t (

C i p h e r . D E C R Y P T _ M O D E ,

k e y ,

s p e c

)
S t r i n g (d o F i n a l (e n c r y p t e d D a t a))

}

Listing 4.32: CryptoHelper decryptData method

84

The decryption of the note is occurring in GetNotelnteractor. Listing 4.32 shows
decryptDataQ method that is started in GetNotelnteractor. In case the note is
encrypted, the interactor decrypts the body and replaces the encrypted body with
the decrypted version. The body is split with the encryption delimiter to obtain
encrypted body and initialization vector. Before using any of the information, it
needs to be decoded from base64 to ByteArray after which the raw initialization
vector and body are passed to Cipher to obtain the decrypted body of the note.

85

5 Conclusion

This thesis aimed to describe the security mechanisms used in the Android OS and
the communication between the Android OS and the remote server. The goal was
divided into several parts of the diploma thesis. The first section, where the history
of mobile devices and the Android system is presented, serves as an introduction to
the reader as to why it is necessary to fiddle with security. The thesis introduces
the components that make up the security model of Android OS and the role of
individual components after stating why it is necessary to address the security of
applications. This theory regarding what makes up the Android security model is
presented in the second section. In addition to the introduction of components, this
section also presents code snippets that describe how to use cryptographic algorithms
and procedures that the Android system provides.

The third section is based on the theory described in the second section. It
summarizes the results obtained from the benchmark application in which 280 tests
have been implemented. The utilized test cases cover most of the cryptographic
operations that can be performed on the Android system. Their primary goal was
to evaluate each cryptographic operation's computational time and its suitability for
application use. The results were further processed and visualized in heatmaps and
a bar graph. Based on the results, it was concluded that not all assumptions were
met. For example, RSA encryption was, in some cases, faster than A E S encryption.
Some older models of devices with the older processor units perform some of the
cryptographic algorithms faster than newer devices with the newer processor units.
This could be explained with the hardware acceleration for concrete cryptographic
algorithms. By taking into account the various devices that are supported, and after
analyzing the result, specific cryptographic algorithms were selected that are suit
able and optimal for the implementation of an application that utilizes cryptographic
operations. Selected algorithms are AES256/GCM/NoPadding for symmetric en
cryption, SHA512withRSA2048/PSS for digital signature, and
RSA3072/OAEPWithSHA512AndMGFlPadding for asymmetric encryption.

Last, the fourth section describes the SecNote system. The SecNote system is
an implementation of a complete solution that demonstrates the Android system's
security mechanisms and best practices on how to implement them, as well as how
to implement secure communication between the Android application and the cloud
system. The cloud system is managed using Kubernetes and Istio service mesh and
runs three micro-services with three databases. The SecNote system demonstrates
security mechanisms such as biometric user authentication, time-limited login, how
to present identity in a cloud solution, creating a secure channel between the appli
cation and the cloud, data encryption and decryption, and more.

87

Overall, this work offers a theoretical evaluation of the android security model, a
comparison of options in a test environment, and a complete solution where various
security mechanisms can be seen in practice. The primary area for improvement is
in the cloud solution. It would be possible to set cluster-wide authentication policy
rules instead of a specific service. This would reduce the amount of information
transmitted and queries to the authentication service. Instead of ordinary J W T
tokens, a more complex system could be used to authenticate and authorize users,
such as OpenlD. Currently, the solution assumes that it is deployed in a single
cluster. The work could be extended to a multicluster solution where it would be
necessary to add mTLS between individual services.

88

Bibliography
[1] StatCounter [online] [cit. 2019-12-20]. Desktop vs mobile market share

worldwide. U R L : https : //gs . statcounter. com/platform-market-share/
desktop-mobile/worldwide/#monthly-201309-201909.

[2] Android Developers [online] [cit. 2019-12-20]. Distribution dashboard. U R L :
https://developer.android.com/about/dashboards.

[3] Android Developers [online] [cit. 2019-12-20]. About android app bundles. U R L :
https://developer.android.com/guide/app-bundle.

[4] Google Developers [online] [cit. 2019-12-20]. Play protect. U R L : https://
developers.google.com/android/play-protect.

[5] Android Open Source Project [online] [cit. 2019-12-20]. Secure an android de
vice. U R L : https://source.android.com/security/.

[6] Android Open Source Project [online] [cit. 2019-12-20]. Authentication. U R L :
https://source.android.com/security/authentication.

[7] Android Open Source Project [online] [cit. 2019-12-20]. Gatekeeper. U R L :
https://source.android.com/security/authentication/gatekeeper.

[8] Android Open Source Project [online] [cit. 2019-12-20]. Biometrics. U R L :
https://source.android.com/security/biometric.

[9] Android Open Source Project [online] [cit. 2019-12-20]. Measuring biometric
unlock security. U R L : https://source.android.com/security/biometric/

measure#metrics.

[10] Android Open Source Project [online] [cit. 2019-12-20]. Android 10 com
patibility definition. U R L : https://source.android.com/compatibility/
android-cdd.

[11] René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker, and Nick Kralevich.
The android platform security model. arXiv preprint arXiv:1904-05572, 2019.

[12] Android Open Source Project [online] [cit. 2019-12-20]. Hardware-backed key-
store. U R L : https://source.android.com/security/keystore.

[13] Android Open Source Project [online] [cit. 2019-12-20]. Key and id attestation.
U R L : https://source.android.com/security/keystore/attestation.

89

https://developer.android.com/about/dashboards
https://developer.android.com/guide/app-bundle
https://source.android.com/security/
https://source.android.com/security/authentication
https://source.android.com/security/authentication/gatekeeper
https://source.android.com/security/biometric
https://source.android.com/security/biometric/
https://source.android.com/compatibility/
https://source.android.com/security/keystore
https://source.android.com/security/keystore/attestation

[14] Alfred J Menezes, Jonathan Katz, Paul C Van Oorschot, and Scott A Vanstone.
Handbook of applied cryptography. C R C press, 1996.

[15] M Brett, Pollice Gary, and West David. Head first object-oriented analysis and
design. O'Reilly, 338:349, 2006.

[16] Futuredapp. futuredapp/arkitekt, Mar 2020. U R L : https://github.com/
futuredapp/arkitekt.

90

https://github.com/

List of symbols, physical constants and abbre-
viations
I C P Interprocess communication
P I N Personal identification number
SID User Secure ID
T E E Trusted execution environment
H M A C Keyed-hash message authentication code

OS Operating system
e M M C Embedded Multi Media Card
R P M B Replay Protected Memory Block
I A R Imposter Accept Rate
S A R Spoof Accept Rate
F A R False Accept Rate
C D D Android Compatibility Definition Document
H A L Hardware Abstraction Layer
H I D L Hardware Interface Definition Language
I M E I International Mobile Equipment Identity
M E I D Mobile equipment identifier
T L S Transport Layer Security
H T T P Hypertext Transfer Protocol
g R P C gRPC Remote Procedure Calls
M V V M Model-view-viewmodel
A P I Application Programming Interface

U I User interface
R E S T Representational state transfer
J S O N JavaScript Object Notation
J W T JSON Web Token
C R U D Create, Read, Update, Delete

91

List of appendices

A Benchmark results 95

B Content of the enclosed C D 107

93

A Benchmark results

Fig. A . l : Asymmetric key creation

95

8s,„ f j ,

%c. V» V V °% V %c. V V °s

^
S
 <-Qj, f

c
 f

c
 f

c
 f

c
 <-Qf f

c
 f

c
 f

c % % %«, x » x » % %> %> X X % V V V "ov- X- v . %*.
* * % % %

Algorithm

Fig. A.2: Encryption using R S A / E C B with PKCS1 or O A E P Padding

Fig. A.3: Encryption using R S A / E C B / O A E P w i t h S H A and MGF1 Padding

96

Fig. A.4: Decryption using R S A / E C B with PKCS1 or O A E P Padding

\ \ \ *
% Ct}'u

-3* s f c

X... V,.
« 4 , ^ ^

Fig. A.5: Decryption using R S A / E C B / O A E P w i t h S H A and M G F 1 Padding

97

Fig. A.6: Signature using RSA with MD5

Fig. A . 7: Signature using RSA or E C without hash function

98

9.73

34,85

3.25

10.24

19.71

26.69

70.11

25.81

51.40

23.15

26.57

27.89

33.32

52.46

20.54

161.97

8.95

41.55

7.58

15.11

46.62

30.46

83.40

20.29

54.94

61.82

29.67

36.83

44.21

17.20

52.78

13.58

26.22

78.50

42.77

90.44

31.34

60.79

59.68

39.93

60.87

66.26

75.91 122.67

36.57 60.46

204.10 281.27

42.64

31.80

22.29

9.59

10.79

21.74

49.23

1635

38.87

13.21

21.92

12.24

25.18

6.20

41.32

21.72

12.72

14.75

23.76

56.28

12.82

42.31

15.43

23.03

14.20

26.54

6.75

14.72

90.87

73.89

49.62

25.85

21.74

14.38

26.27

54.79

14.86

24.80

18.93

29.61

79.35

16.92

92.45

294.78

173.24

118.55

35.52

3733

53.76

61.36

220.62

30.22

110.17

884.22 g

493.99

224.69 735.75

379.71 871.63

63.23 94.69

185.28 396.28

156.20 516.62

60.19 125.11

296.90 822.66

68.31 125.59

69.50 136.68

130.69

144.89 306.86

432.97 95123

50.27 74.57

155.32 241.72

46.58

32.09

19.87

9.97

12.58

23.51

50.04

17.50

51.64

14.91

21.94

12.80

2476

16.97

14.79

90.07

54.49

39.10

22.91

13.88

15.45

26.66

56.26

19.49

43.08

16.80

22.61

14.79

26.77

7.39

14.52

90.97

78.11

48.43

24.92

22.09

15.26

31.65

5453

14.26

49.34

18.42

24.03

17.09

30.02

81.99

14.25

92.50

303.66

171.66

81.21

121.96

37.17

82.99

84.11

29.68

117.86

35.88

37.63

54.62

61.99

211.67

30.65

110.36

887.13

491.21

328.55

380.22

63.40

200.78

160.98

61.71

296.96

69.90

70.01

132.31

80.13

434.82

51.69

155.74

5amsung Galaxy A5

Google Pixel XL

HTC One M9

Motorola Moto G Plus

5amsung S1 Oe

LG Nexus 5X

Huawei P20 Lite

OnePlus 7 Pro

LG G6

5amsung GalaxyS9+

OnePlus 6

Huawei P9 Lite

Google Pixel 3A

5amsung Galaxy S6

5amsung Note10+

Asus Zenphone 3 MAX

n>A, ~rtq ~ma ~na ~% ~% ~rta 7 ~rta 7 '^A 7 >7A 7 >7A 7 rta 7 ~rta 7 <Va 7 14 7

%-A %-A %A %A %A %A %-A X * %A %A %A %A %A X X X
'<X fi%fi-fc 'V^ ty? °W T<W *W *W *W 'v>a~ /|fii»- *w

X X X X X X ^ X X X x
Algor i thm

Fig. A.8: Signature using RSA or E C with S H A l

Fig. A.9: Signature using RSA or E C with SHA224

99

%? J V J - V J V J - V J V J - V J V J V
%.A V , %. Xj, % . -V. -V, X*. %>, % . % . *

%,„ v v . x x x x

Fig. A . 10: Signature using RSA or E C with SHA256

Fig. A . 11: Signature using RSA or E C with SHA384

100

Fig. A . 12: Signature using RSA or E C with SHA512

g Notel 0+

Asus Zenphone 3 MAX

MD5withRSA512 MD5withRSA768 MD5withRSA1024 MD5withRSA2048

A lgor i thm

MD5withRSA3072 MD5withRSA4096

Fig. A . 13: Verification using RSA with MD5

101

Xg.
V . %, St. S

"V. "V.

Fig. A . 14: Verification using RSA or E C without hash function

Fig. A . 15: Verification using RSA or E C with S H A l

102

Fig. A . 16: Verification using RSA or E C with SHA224

Fig. A . 17: Verification using RSA or E C with SHA256

103

Fig. A . 18: Verification using RSA or E C with SHA384

Fig. A . 19: Verification using RSA or E C with SHA512

104

Fig. A.20: Symmetric key creation

0.93 1.22 1.38

8.32 8.56 8.37

0.51 0.56 0.51

1.75 2.24 1.74

2.63 3.26 2.62

2.14 2.74 2.14

0.98 0.63 1.26

8.69 9.32 8.31

0.63 0.77 0.51

2.41 2.77 2.66

2.69 2.55 2.79

2.15 2.20 2.17

1.13 1.13 1.11

8.56 8.53 8.68

0.49 0.57 0.59

2.44 2.46 2.38

2.70 2.43 2.57

2.57 2.62 2.12

0.61 1.12 0.93

8.46 9.05 8.42

0.45 0.59 0.65

2.11 2.24 1.75

3.17 2.80 2.90

2.52 2.15 2.20

0.58 0.62 1.20

8.61 8.41 8.55

0.48 0.62 0.45

1.77 2.46 1.73

2.70 3.18 2.79

2.11 3.04 2.15

1.51 1.18 0.66

8.33 9.03 8.40

0.50 0.54 0.54

2.43 1.85 1.77

2.75 2.92 2.72

2.22 2.13 2.13

Fig. A.21: Encryption with AES

105

Fig. A.22: Decryption with AES

106

B Content of the enclosed CD
root folder of enclosed CD

Android source code of Android applications
— Benchmarks source code of benchmark application
— SecNote source code of SecNote application

— Benchmark results python scrips for processing and results
Server source code of microservices and deployment configuration

_ Authservice source code of Authentication service
_ Noteservice source code of Note service

— Permissionservice source code of Permission service
— Deployment Kubernetes and Istio yaml files

— SecNote.apk Runnable application for Android OS
Instructions Instructions how to try application

107

