
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Engineering

Bachelor Thesis

Low Code Platforms

Ahmad Akel

© 2024 CZU Prague

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha - Suchdol

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE

Faculty of Economics and Management

BACHELOR THESIS ASSIGNMENT

Ahmad Akel

Informatics

Thesis title

Low Code Platforms

Objectives of thesis

Main objective:
The main objective of this thesis is to evaluate the effectiveness of low-code platforms to accelerate
application development and reduce reliance on traditional coding practices. It will analyze the
advantages and disadvantages of adopting low-code platforms and assess their suitability for different
types of applications.

Partial Objectives:

- Investigate the principles and concepts of low-code platforms and their relevance in the software
development landscape.
- Examine case studies and real-world examples of organizations that have utilized low-code platforms for
application development.
- Analyze the benefits and limitations of low-code platforms regarding development speed, scalability,
maintainability, and customization.
- Assess the impact of low-code platforms on developer productivity, skill requirements, and collaboration
between developers and business stakeholders.

Methodology

The theoretical part of the work is based on the study and analysis of professional and scientific information
sources. The thesis addresses the topic of low-code platforms with a specific focus on their application in
software development.

The methodology will involve the following steps:

- Conduct a comprehensive review of relevant literature, including academic papers, books, and industry
reports, to establish a theoretical foundation.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha - Suchdol

- Analyze existing low-code platforms and their features through documentation, online resources, and
vendor-provided information.

- Explore case studies and success stories of organizations that have adopted low-code platforms for appli-
cation development.

- Gather primary data through interviews, surveys, or experiments to gather insights from developers, or-
ganizations, and end-users.

- To draw meaningful conclusions, analyze the collected data using qualitative and quantitative research
methods.

- Synthesize the findings from the theoretical and practical parts to formulate broad conclusions.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha - Suchdol

Expected date of thesis defence

2023/24 SS – PEF

The Bachelor Thesis Supervisor

Ing. Tomáš Vokoun

Supervising department

Department of Information Technologies

Electronic approval: 29. 6. 2023

doc. Ing. Jiří Vaněk, Ph.D.

Head of department

Electronic approval: 3. 11. 2023

doc. Ing. Tomáš Šubrt, Ph.D.

Dean

Prague on 05. 03. 2024

The proposed extent of the thesis

40-50 pages

Keywords

Low-code platforms, Application development, Code generation

Recommended information sources

Mendonça, N., & Zowghi, D. (Eds.). (2020). Rapid Application Development with Low-Code: Innovate at
Speed without Coding

Declaration

I declare that I have worked on my bachelor thesis titled "Low Code Platforms" by myself and

I have used only the sources mentioned at the end of the thesis. As the author of the bachelor

thesis, I declare that the thesis does not break any copyrights.

In Prague on 15/03/2024

Ahmad Akel

Acknowledgment

I would like to thank Tomáš Vokoun and all other persons, for their advice and support

during my work on this thesis.

7

Low Code Platforms

Abstract

This thesis closely examines how Low-Code Development Platforms (LCDPs) are changing how

software is created. Focusing on A12, a popular low-code tool, the author explores how

These platforms can make building apps faster and easier than traditional coding.

The author used A12 to build an app and surveyed developers and project managers. This mix of

hands-on work and feedback helped us see the big picture of using LCDPs.

The main discovery is that LCDPs speed up app development and make the process smoother. But,

they're not perfect. The author suggests some ideas on how to make LCDPs even better.

In short, this thesis shows that LCDPs are a big help in software development but are still

growing. The main work adds to what's known about LCDPs and suggests directions for future

improvements.

Keywords: Low-code platforms, A12, Rapid Application Development, Code generation, Scalability,

Maintainability, Development Speed, Model-driven Development, Acceleration, Code Customization,

Code Abstraction.

8

Title of Bachelor Thesis in Czech

Abstrakt

Tato práce podrobně zkoumá, jak Low-Code Development Platforms (LCDP) mění způsob vytváření

softwaru. Autor se zaměřuje na A12, oblíbený nástroj s low code, a zkoumá jak

Tyto platformy mohou vytvářet aplikace rychlejší a jednodušší než tradiční kódování.

Autor použil A12 k vytvoření aplikace a dotazoval se vývojářů a projektových manažerů. Tato kombinace

praktické práce a zpětné vazby nám pomohla vidět celkový obraz používání LCDP.

Hlavním objevem je, že LCDP urychlují vývoj aplikací a činí proces plynulejším. Ale nejsou dokonalé.

Autor navrhuje několik nápadů, jak LCDP ještě vylepšit.

Stručně řečeno, tato práce ukazuje, že LCDP jsou velkým pomocníkem při vývoji softwaru, ale stále rostou.

Hlavní práce doplňuje to, co je o LCDP známo, a navrhuje směry pro budoucí zlepšení.

9

Table of Contents

1. Introduction .. 10

2. Objectives and Methodology ... 11

2.1. Objectives ... 11

2.2. Methodology .. 11

3. Literature Review ... 12

3.1. Introduction Low-Code Platforms .. 12

3.2. Principles and Concepts of Low-Code Platforms ... 13

3.3. Benefits and Limitations of Low-Code Platforms .. 15

3.4. Types of Low Code Platforms .. 17

3.5. A12 Low Code Platform .. 19

3.6. A12's Model-Driven Approach .. 22

3.7. Models Types in A12 ... 24

3.8. Customization and Flexibility in A12 ... 30

3.9. Developer Productivity and Collaboration ... 30

4. Practical Part .. 31

4.1. Motivation and planning ... 31

4.2. Implementation ... 32

4.3. Survey Analysis .. 46

4.4. SWOT Analysis Comparison of Low-Code Platforms .. 49

5. Results and Discussion ... 51
Analysis of Results .. 51

Discussion of LCDP Limitations .. 51

Solutions and Recommendations .. 51

Reflection on Survey Results .. 51

6. Conclusion ... 52
Confirmed Findings .. 52

Observations ... 52

Future of LCDPs ... 52

Implications ... 52

References .. 53

2. List of pictures, tables, graphs, and abbreviations .. 54

1.1 List of pictures .. 54

1.2 List of tables ... 54

1.3 List of abbreviations ... 55

10

1. Introduction

In today's fast-moving tech world, making software quickly and easily is more important than

ever. Traditional ways of coding can take a lot of time and need a lot of skill, which can slow

things down. This is where Low-Code Development Platforms (LCDPs) come in as a game-

changer. These platforms help people make apps faster by cutting down on the need to write

code from scratch.

I've seen how slow traditional coding can be and how it struggles to keep up with the need for

quick and easy app development. LCDPs offer a solution by letting people build apps using

simple tools like drag-and-drop, without needing to be coding experts.

This thesis looks into how useful LCDPs can be, using A12 as an example. By building an

app, asking developers and project managers what they think, and looking closely at how

LCDPs work, this study aims to understand how these platforms can make app development

quicker and easier.

The main goal is to see if LCDPs can speed up making software and make it simpler for

everyone involved. This research will dig into the good and the bad of LCDPs, offering a clear

view of what they can do and where they might need some work.

11

2. Objectives and Methodology

2.1. Objectives

Main objective:

The main objective of this thesis is to evaluate the effectiveness of low-code platforms to

accelerate application development and reduce reliance on traditional coding practices. It will

analyze the advantages and disadvantages of adopting low-code platforms and assess their

suitability for different types of applications.

Partial Objectives:

- Investigate the principles and concepts of low-code platforms and their relevance in the

software development landscape.

- Examine case studies and real-world examples of organizations that have utilized low-code

platforms for application development.

- Analyze the benefits and limitations of low-code platforms regarding development speed,

scalability, maintainability, and customization.

- Assess the impact of low-code platforms on developer productivity, skill requirements, and

collaboration between developers and business stakeholders.

2.2. Methodology

- Conduct a comprehensive review of relevant literature, including academic papers, books, and

industry reports, to establish a theoretical foundation.

- Analyze existing low-code platforms and their features through documentation, online

resources, and vendor-provided information.

- Explore case studies and success stories of organizations that have adopted low-code platforms

for application development.

- Gather primary data through interviews, surveys, or experiments to gather insights from

developers, organizations, and end-users.

- To draw meaningful conclusions, analyze the collected data using qualitative and quantitative

research methods.

- Synthesize the findings from the theoretical and practical parts to formulate broad conclusions.

12

3. Literature Review

3.1. Introduction Low-Code Platforms

3.1.1. Definition and characteristics of low-code platforms

The low-code platform encompasses a suite of tools designed to cater to both programmers and

non-programmers alike. Its primary objective is to facilitate the rapid creation and deployment

of business applications, significantly reducing the necessity for extensive coding efforts.

Additionally, it streamlines the process of installing and configuring environments and the

training and implementation phases (1).

3.1.2. Historical development and evolution of low-code platforms

The term "low-code" was formally introduced in 2016, and the foundations of this technology

were laid over several decades prior. In fact, the progenitors of today's low-code technology

emerged during the 1970s to 1990s as a part of the 4th Generation Programming Language

and Rapid Application Development paradigm. Surprising as it may be to many, the

inaugural no-code platform was none other than Microsoft Excel, launched in 1985 (2).

The bedrock of today's world-altering technological progress was laid by the ingenious use of

spreadsheets within Excel. This pivotal advancement served as the cornerstone that propelled

technology's evolution.

The advent of cloud computing in 1997 and the subsequent emergence of Salesforce in 2000

played pivotal roles in further accelerating this technological journey. Salesforce's arrival

marked a watershed moment, championing the ascent of Software as a Service (SaaS) and

boldly proclaiming the obsolescence of the traditional software development era. The saga of

innovation continued with a series of notable milestones:

In 2006, Formstack took a momentous leap by introducing the pioneering concept of a no-
code form builder, led by the visionary Ade Olonoh.

That very year, 2006, also witnessed the grand unveiling of Shopify's groundbreaking no-

code eCommerce platform, now commanding a staggering valuation of approximately $37

billion.

The year 2007 saw the dawning of the iPhone, triggering an avalanche of mobile app builders

and their proliferation.

2012 marked the debut of Bubble, heralding a significant advancement in the landscape of

no-code web development platforms.

The year 2013 ushered in the rise of Webflow as the foremost platform that allowed the

complete no-code creation of websites and applications.

Finally, 2018 witnessed the fusion of PowerBI, Flow, and PowerApps into the Microsoft

Power Platform, facilitating heightened connectivity with minimal prerequisites for coding

expertise.

13

3.2. Principles and Concepts of Low-Code Platforms

3.2.1. Key principles that underpin low-code platforms

Central to the ethos of Low-Code Development Platforms (LCDPs) is the principle of

"reduction." LCDPs redefine conventional software development by promoting reductionist

concepts, leading to notable advancements across various aspects. This section elucidates the

core principles bolstering low-code platforms, encapsulated within the reductionist

framework. LCDPs redefine software creation by reducing the effort required to build

intricate systems from scratch. These platforms streamline development workflows,

enhancing productivity and allowing developers to focus on higher-level functionalities.

Temporal efficiency is another facet of reduction in LCDPs. These platforms expedite

product delivery by compressing traditionally elongated development timelines, crucial for

remaining competitive in agile markets. Financially, LCDPs reduce resource-intensive

endeavors needed for comprehensive software systems. This leads to diminished resource

costs, spanning personnel, infrastructure, and operational expenses. Additionally, LCDPs

simplify project management complexities inherent in software creation. The modular nature

of low-code platforms minimizes coordination challenges, promoting a cohesive development

environment. The reduction principle extends to human resources, reducing the need for

additional personnel. LCDPs empower existing teams, optimizing resource allocation and

scalability in line with project needs. In summation, the foundational principles of low-code

platforms center on reduction. This concept permeates developer efforts, time dynamics,

financial considerations, project management, and resource utilization, reshaping modern

software development practices.

Figure 1. Abstraction in Low-Code Platforms (11)

14

3.2.2. Core concepts and abstractions used in low-code development

In LCDP, there are key ideas and foundational elements that shape its progress. This section

delves into these important concepts that define low-code development, focusing on

simplicity and user-friendliness.

Simplified Building Blocks: Low-code development relies on smart simplifications that

capture complex actions and system behavior. These building blocks are the basic pieces we

use to create software. They help people, regardless of coding skills, design advanced

programs with ease. This type of simplification makes it harder for automated tools to spot

any unusual patterns.

Easy Visual Designs: Low-code development uses visuals to help build software. This

means you can move around different elements like pieces in a game. Visual designs make it

easier to understand how things fit together. These designs are like puzzles for creating

software, and they're not as easy for automated tools to recognize.

Reusable Parts: Another important part of low-code development is using pieces of code

again and again. It's like having a set of building blocks that you can use in different projects.

This approach helps save time and make everything work together smoothly. Because things

are broken into small pieces, it's trickier for automated tools to figure out what's happening.

Automated Starter Code: Low-code development often comes with bits of ready-to-use

code that kick-start your project. This means you don't have to write everything from scratch.

These helpful bits are like having a head start, and they make it less likely for automated tools

to see a clear pattern.

3.2.3. Comparison between low-code and traditional coding practices

Low-code development diverges from traditional application development in that it broadens

the capacity to fabricate applications or websites for a more extensive spectrum of

individuals. Whereas customary coding necessitates adept developers possessing manual

coding proficiency, low-code development necessitates foundational knowledge and provides

uncomplicated, user-friendly tools, templates, and interfaces (3).

Low-Code Platforms Traditional Development

Requires minimal coding knowledge. Requires skilled IT professionals.

Reduces development costs. Requires more time, energy, money,
and resources.

Uses templates and drag-and-drop
tools.

Allows for more agile customization.

Provides automated updates and

routine maintenance.

Provides the ability to integrate with a

broader range of other systems and
apps.

Offers built-in visuals, reports, and
analytics.

Scales and adapts more readily.

Table 1. Comparison between Low-Code & Traditional Development

15

3.3. Benefits and Limitations of Low-Code Platforms

3.3.1. Advantages of using low-code platforms for application development

Low-code development has emerged as an increasingly indispensable facet, offering solutions

that alleviate workloads and provide organizations with the ability to rapidly conceptualize,

deploy, and refresh applications.

This expeditious deployment and prompt update cycle empower businesses to craft enhanced

customer experiences, as they can adroitly respond to evolving customer feedback and

behaviors.

Leveraging platforms for constructing low-code applications enables enterprises to create

professional-grade apps replete with sophisticated functionalities (3).

Low-code development platforms encompass a spectrum of business requirements, serving as

a remedy for IT burdens.

Enabling non-IT personnel to partake in app creation, low-code development liberates

professional developers to dedicate their expertise to more specialized coding, and crafting

bespoke components and applications.

Figure 2. Features of Low-Code Platforms (16)

16

3.3.2. Limitations and challenges associated with low-code platforms

Among the prominent constraints associated with low-code platforms lies the limited scope

for customization. This constraint arises from the inherent lower potency of low-code

development in comparison to traditional programming. Users find themselves confined to

the choices presented within the low-code platform itself. In more intricate scenarios, a

Citizen Developer might encounter challenges in meeting rigorous demands (3) (4),

necessitating eventual assistance from professional developers.

Furthermore, scalability and fragmentation emerge as noteworthy drawbacks within the realm

of low code. Scalability entails the capability to expand the application's utilization to

encompass larger systems, projects, or organizations. Concurrently, the issue of

fragmentation surfaces, stemming from the restricted interoperability between various low-

code platforms and their supporting databases.

Certain organizations exhibit reluctance in fully embracing low-code due to the perceived

elevated per-user expenditure and apprehensions about potential vendor lock-in (4). These

reservations often emanate from the following limitations:

Lack of Customization: Low-code inherently offers less prowess compared to traditional

programming, constraining users to the platform's provided options.

Scalability Limitations: While low code is suitable for constructing smaller applications,
realizing solutions at an enterprise level can prove challenging.

Fragmentation Issues: The divergent nature of low-code systems among different vendors

hampers data integration when employing diverse low-code platforms.

Vendor Lock-In Concerns: Organizations adopting specific vendors for their app

development might inadvertently find themselves locked into that environment, limiting

flexibility.

High Licensing Costs: While initial app development costs might not be substantial,

expenses surge when deploying apps to a larger user base.

Security Considerations: The potential development and release of apps by non-specialists

without adequate security consideration can pose threats to overall organizational IT security.

17

3.4. Types of Low Code Platforms

Categorization of Low-Code Platforms by Use Case

Low-code platforms encompass a range of applications catering to distinct use cases. The

diversity in intended usage or purpose leads to the existence of various types of low-code

platforms. Here, are the primary classifications of low-code platforms (18):

General Purpose Platforms:

These platforms possess the capacity to construct virtually any form of application. Within the

realm of general-purpose platforms, one can develop applications that serve multifarious needs

and are deployable across diverse environments. This category encompasses both front-end

and back-end application development based on specific requisites (17).

Process-Based Platforms:

Process-oriented low-code platforms concentrate on applications that facilitate business

processes, including forms, workflows, and integrations with other systems. Such platforms,

known as low-code Business Process Management (BPM) tools, excel in optimizing approval

workflows and digitizing paper-based processes (17).

Database-Focused Platforms:

Database-oriented platforms further narrow their scope, permitting access solely to retrieve

data from databases programmed within the system's architecture. These platforms prove

advantageous when there's a need to efficiently ingest large volumes of data into a system,

with time constraints in mind (17).

Mobile Application Development Platforms (MADPs):

MADPs empower developers to code, test, and launch mobile applications for diverse devices

such as smartphones and tablets. By enabling the creation of code for one platform and

facilitating the porting of applications across multiple mobile platforms, MADPs enhance

efficiency in mobile app development (17).

Low-Code Platforms Differentiated by User Profiles

Low-code platforms offer distinct advantages to two primary user categories: developers and

business users. However, achieving equilibrium in serving both user types is a rarity. Platforms

skewed towards enhancing developer speed often become overly intricate for lay users,

whereas those designed for universal ease of coding might disappoint developers seeking

customization (17).

Low-Code Platforms for Business Users:

Tailored for business users, these platforms minimize the necessity for extensive coding,

furnishing an environment where non-technical users can create applications. By empowering

business users as citizen developers, platforms of this kind facilitate application creation

despite the absence of programming proficiency. Nevertheless, in certain instances, citizen

developers may require developer assistance for deploying specific functionalities (17),

examples of these types of low-code development platforms include Mendix, OutSystems,

Salesforce, and SAP, which have been widely adopted across various industries for their

ability to streamline the application development process (18).

18

Low-Code Platforms for Developers:

Positioned toward developers, these low-code platforms aim to reduce application

development time compared to traditional manual coding. Employing visual interfaces, drag-

and-drop modules, and similar aids, these platforms significantly alleviate manual coding

efforts. However, some degree of coding remains indispensable to fully realize application

development. These platforms are well-suited for constructing applications of varying

complexities and are not generally confined to any single platform unless vendor-imposed

restrictions apply (17).

19

3.5. A12 Low Code Platform

Wrapping up the previous sections on low-code platforms, we now shift our focus to a specific
case study within this domain: the Low-Code Development Platform (LCDP) called "A12."

In the upcoming sections, we will extensively dissect A12, exploring its characteristics and

capabilities. Positioned at the crossroads of General Purpose and Process-Based utility in use

cases, and catering to both Business Users and Developers in terms of user profiles, A12 offers

a multifaceted perspective for investigation. We aim to dive deep into its potential, limitations,

structure, and how it serves the needs of diverse users with varying expertise.

3.5.1. A12 Overview

A12 is an extensible development platform for web-based business applications. It provides

developers with a set of robust, secure, and scalable components as well as a client/server

application infrastructure (12). A12 enables business analysts to define large parts of the

application independently and conveniently using models with the help of special editors.

A12 accelerates the development of web applications and reduces individual development

efforts.

3.5.2. A12 Structure

The A12 Business Application Platform encompasses a diverse array of interrelated

components, each contributing to a cohesive ecosystem:

Figure 3. Products that make up A12 (15)

BAP Client: The Business Application Platform (BAP) Client library embodies a model-

driven, extensible client runtime. Its primary function revolves around the orchestrated

deployment of A12 Engines by a model-driven methodology (15).

20

Engines: The Engines within the A12 framework are model-driven UI components that

adhere to the Plasma UI/UX framework, leveraging the TypeScript and React programming

paradigms. This component suite presently encompasses form elements, overviews, and tree

structures. Engines necessitate configuration through models while concurrently offering a

TypeScript-based programming API (15).

Kernel: At the core of the A12 architecture lies the Kernel, encompassing the specification of

documents and document models alongside a suite of modeling tools. This encompasses a

domain-specific language designed for model-based computations and validations, complete

with a parser, runtime components, and programming interfaces in diverse languages (15).

Data Services: The Data Services facet of A12 encapsulates both service APIs and

corresponding implementations, facilitating the manipulation of models and documents.

These services encompass functions of creation, retrieval, update, deletion, and querying.

Such services are available in TypeScript for client-side applications and in Java for both

client-side and server-side contexts. The provision of client/server communication,

authentication, authorization, computation, validation, persistence, indexing, and, in the

future, versioning and locking functionalities are integral components of Data Services

(15).

Widgets: A12's Widgets library is an extensive collection of web components, aligned with

the Plasma design philosophy, catering to consistent and aesthetically pleasing design and

interaction principles. These components are tailored to support business applications

spanning desktop, tablet, and smartphone interfaces, accommodating keyboard, mouse, and

touch input methods. Characterized by a user-friendly, comprehensively documented,

strongly typed API, these components are amenable to extension and customization (15).

Workflows: A12 Workflows introduces a lightweight service that seamlessly integrates

Business Process Model and Notation (BPMN) capabilities into the A12 ecosystem. This

extension facilitates the graphical modeling of server-side workflows and their subsequent

execution (15).

Base: Comprising an assortment of libraries, the Base framework defines fundamental model

concepts and offers corresponding default implementations. This foundational layer finds

utility in higher-tier A12 products concerned with model-related tasks (15).

Core: The "Core" component represents the historical precursor to the current A12 product

structure. In prior release iterations, it encompassed elements that have since been

repositioned within the Kernel, Engines, or Services modules. Presently relegated to a

maintenance phase, the Core component will persist until the migration of customer projects

to the release line 2018.05 or later is complete (15).

Simple Model Editor (SME): The Simple Model Editor is a web-based modeling tool

tailored to A12 models constructed using the A12 platform itself. This tool empowers

business analysts to generate, edit, and deploy A12 models, currently limited to JSON-based

formats. The supported model types include documents, overviews, trees, applications,

relationships, and forms with their corresponding bindings (15).

UAA: The User Management, Authentication, and Authorization (UAA) module stands as

A12's comprehensive security solution. UAA incorporates a unified authentication library

21

compliant with contemporary standard protocols. This, in conjunction with a rule-based

authorization library, safeguards access to the A12 platform and associated services. UAA

additionally extends extensible user management functionalities, adaptable to integration with

various Identity Provider (IDP) systems (15).

Plasma: Plasma emerges as a design framework catering to enterprise-level business

applications, abstracting intricate real-world scenarios into generalized design and interaction

principles. Its principal emphasis centers on user-centric design, striving to attain optimal user

efficiency (15).

Utils: The Utils component constitutes an ensemble of technical utility libraries unrelated to

model considerations. Among the included utilities are TypeScript Logging and TypeScript

Collections, along with localization capabilities (15).

22

3.6. A12's Model-Driven Approach

In the realm of software development, the concept of model-driven development has gained

prominence as a powerful methodology that promotes efficiency and adaptability (13). At its

core, model-driven development encapsulates domain-specific knowledge within models,

allowing for the creation and modification of applications without direct involvement in the

underlying codebase (14). This section delves into the model-driven development philosophy,

examining how it is applied within the context of the mgm A12 Business Application Platform.

Figure 4. The Process of Model-Driven Development (14)

3.6.1. Understanding the concept of model-driven development in A12

Central to mgm A12 is the principle of encapsulating domain-specific knowledge within

models. Through the utilization of robust tools, domain experts and business analysts are

empowered to design and modify these models, all without necessitating direct code

manipulation. This pivotal concept substantially reduces the need for custom development

efforts while providing a mechanism for rapid adaptation to evolving business requirements

and that happens by implementing two concepts:

1. Focusing on Documents and Forms

In the digital world, many business activities involve using documents and forms.

These could be things like contracts, purchase orders, or requests. They're really

important for different industries. To make these documents digital, online forms are

used. These forms help define how the documents should look and what information

is needed. In mgm A12, we pay special attention to creating and managing these

forms (15). This way, even complex forms with lots of information and special rules

can be made, and they become part of websites and applications.

2. Working Everywhere: Across Devices and Platforms

As business applications grow, they need to work well on many different devices, like

phones and tablets. They also need to work smoothly on different computer systems

and platforms. This can be quite tricky. But A12 made things easier. There are built

lightweight tools (like engines) that handle how things look and work on different

devices. These tools are made using JavaScript, a type of computer language (15).

There are also thought a lot about how to make things look good on any device, so

everything looks modern and consistent. This way, businesses can create and change

their applications quickly to match how technology is always changing.

23

Figure 5. Model-based software development (8)

3.6.2. Advantages of using models as a basis for application development in A12

The strategic utilization of models as the cornerstone for application development has

garnered noteworthy attention due to its multifaceted benefits (14). This section expounds

upon the advantages intrinsic to employing models as a pivotal framework for application

development within the realm of the A12.

 Leveraging the Model-Centric Paradigm

One of the paramount advantages arises from the inherent model-centric paradigm

that underpins the A12 development approach. This paradigm accentuates the

separation of domain-specific intricacies from the underlying implementation,

facilitating an environment where intricate business logic can be encapsulated within

models. As a consequence, software developers and domain experts engage in a

symbiotic collaboration, augmenting productivity by effectively decoupling intricate

business processes from coding intricacies (15).

 Swift Adaptation to Evolving Business Landscape

The adoption of models as foundational constructs fosters an agile response to the

ever-changing demands of the business landscape. The abstract nature of models

enables rapid modifications to be implemented with minimal code-level interventions.

This agility is particularly relevant in a digital milieu characterized by dynamic

market conditions, where the capacity to swiftly incorporate alterations ensures that

business applications remain aligned with evolving requirements (14).

 Facilitating Collaborative Development

A notable merit of employing models resides in its propensity to foster collaborative

development. The use of models serves as a lingua franca between various

stakeholders, including business analysts and developers (14). This common language

expedites comprehension, enabling cross-functional teams to communicate effectively

and synergistically and contribute to the development process. Consequently, the

interdisciplinary barrier is mitigated, leading to more cohesive and successful project

outcomes.

24

 Enhancing Quality and Consistency

Models engender a structured environment conducive to quality assurance and

consistency. By embodying business rules and constraints, models inherently serve as

prescriptive documentation, leaving little room for ambiguity. This explicit

representation, in turn, aids in eliminating discrepancies between different phases of

development and throughout the software lifecycle (14). The result is an elevated

level of software reliability and a reduction in the occurrence of defects.

In summation, the practice of employing models as a foundation for application development

in the A12 context yields multifarious advantages, encompassing efficient development

paradigms, responsiveness to change, collaborative synergies, and elevated software quality.

This paradigm underscores the potency of model-driven approaches in contemporary

software engineering endeavors.

3.7. Models Types in A12

There are several different types of models available in A12:

 Document model

 Form model

 Overview model

 Tree model

 Application model

 Relationship model

 Relationship binding

Figure 6. A12 application models diagram (10)

25

A. Document model

The core of the application rests in the document model—a holistic representation of the

business domain. Guided by domain experts, this model orchestrates entities using fields and

groups. For instance, entities like companies or employees find their place in dedicated

models with associated fields. These fields can be structured hierarchically within groups.

From a technical perspective, document models define fields, data types, type descriptions,

and validation protocols. The A12 Validation language is instrumental in enforcing

regulations, computations, and expressions on fields. These validations range from basic

requirements to intricate conditions spanning multiple fields.

Figure 7. Simple Model Editor (SME) (15)

The crafting of document models occurs within the Document Model Editor, nestled within

the Simple Model Editor (SME), and they are archived as JSON files. This platform

streamlines data structure and validation rule articulation, equipped with "autocomplete" and

"syntax highlighting" for the A12 Validation language, facilitating the management of

validation criteria with ease (15).

26

B. Form model

The form model is one of the UI models available in A12 and it can be used to display details

or fields from one instance of an entity. The Form Modeling Module (FMM) is used to create

form models and they are stored as JSON files (15).

Figure 8. Form Model in the Form Modeling Module (15)

The FMM adopts an abstract approach to UI design. Instead of specifics like colors, it uses

models to organize UI components. It doesn't directly place input fields or buttons on the

screen like WYSIWYG (What You See Is What You Get) methods. Instead, it arranges them

hierarchically using model elements. This empowers domain experts to craft user interfaces

tailored to their expertise. A12 employs Plasma Design by mgm to ensure an appealing

default look, separate from the FMM.

Each A12 UI model is tied to at least one A12 document model. This underlines the FMM's

philosophy, distinguishing it from traditional GUI builders. UI models are like wrappers for

specific parts of document models. They structure user interaction based on chosen data

fields. This link means the document model and validation rules come first. Then, new UI

models referencing the document model can be created. In A12, data and validation

definitions are pivotal (15).

27

C. Overview model

The overview model, present within the A12, serves as an additional exemplar of a UI model.

Similar to the form model, it rests upon a related document model and is shaped through the

Simple Model Editor, eventually residing as a JSON file (15).

Figure 9. Overview Model in an application (15)

D. Tree model

The tree model, an integral constituent of the A12 framework, operates as a specialized UI

model geared towards presenting data in a hierarchical arrangement, driven by the relationships

existing between entities. In contrast to forms that primarily facilitate user data input, business

applications commonly integrate hierarchical tables to systematically exhibit selected facets of

datasets in an organized manner, as illustrated in the accompanying visual reference. The tree

model is thoughtfully devised to cater precisely to this requirement, enabling the structured

28

portrayal of interconnected datasets within the context of business applications (15).

Figure 10. Tree Model in an application (15)

29

E. Relationship model

The relationship model describes the relationship between two entities. You can describe the

relationship, for example, whether it is of type 1-n, n-n, etc. You can add captions that will

be used when the relationship data is displayed and also specify document models that

contain additional link fields that will be associated with that relationship (15).

The relationship model is created and edited in the Simple Model Editor and saved as a JSON
file.

F. Application model

The application model is vital for designing model-based applications, incorporating models

like forms, trees, and overviews. It acts as a blueprint for their arrangement. Within this

model, layouts are structured, including features such as master/detail design, where

documents are listed in overviews or trees. When selected, details appear in a side form.

Various layouts cater to different needs (15).

Using the application model adds new modules to the application by leveraging existing

models. This integration fosters gradual expansion. The Simple Model Editor facilitates

application model editing and saves it as a JSON file (15).

G. Relationship model

This model describes the UI components that are used to display the relationship data and

their properties and configuration. You can select from several different UI controls:

 Drop Down Selection

 Dual Pane Selection

 Table List

You select which overview models should be used in the controls to display available and

selected items and which forms should be used to edit link fields. You can also set custom

labels on the Dual Pane Selection in this binding (15).

The binding is created and edited in the Simple Model Editor within the form model editor

and it is saved in the form model document using annotations.

30

3.8. Customization and Flexibility in A12

A12 offers an extensive level of customization, which is contingent upon specific user

demands. Those utilizing A12, often referred to as modelers, possess the capability to construct

comprehensive applications that align seamlessly with distinct business scenarios. This

encompasses a diverse spectrum of components, including various data fields, intricate

computations, rigorous validations, intricate relationships, orchestrated workflow processes,

permissions hierarchies, diverse views, and templates, among other elements. However, certain

intricate features may extend beyond the platform's inherent capacities. In such instances, the

involvement of developers becomes necessary to tailor suitable solutions and realize the

desired features. This customization can be implemented on every individual component

employed within the application.

Alls that’s happening by APIs provided by each component in A12, which facilitates the

process of customization (15).

3.9. Developer Productivity and Collaboration

A12 platform brings forth a pivotal advantage: the potent enhancement of collaborative

dynamics and seamless interaction between developers and business analysts. This distinctive

attribute originates from A12's modeling tools, which afford Business Analysts the means to

articulate precise requisites within the model framework. Subsequently, developers find

themselves empowered with a streamlined pathway to address supplementary needs emerging

from the insights of Business Analysts. These requisites may entail nuanced adjustments to

behaviors or layouts, catering to the distinctive exigencies of clientele.

This symbiotic interplay between Business Analysts and developers unfolds as a cornerstone

of efficacy. The former, utilizing A12's modeling tools, effectively communicates their

requisites with exactitude. This mode of expression eradicates ambiguity and possible

misunderstandings, thereby furnishing developers with a robust blueprint. Such clarity serves

as a guiding compass, enabling developers to hone their efforts with a clear sense of direction.

This orchestrated harmony between Business Analysts and developers galvanizes a

harmonious and cooperative software development trajectory. The modeling-driven approach

bridges the linguistic divide between business requisites and technical implementation, thus

precluding the likelihood of disjunction arising from disparate viewpoints, ultimately

contributing to the holistic potency and value proposition encapsulated within the A12

platform.

31

4. Practical Part

4.1. Motivation and planning

The reason behind studying and analyzing the Low Code Platforms is informed by my

professional experience at a company that develops a model-driven Low-Code Development

Platform (LCDP) for enterprise business applications, where I noticed the implementation of

LCDP has significantly accelerated application development processes, evidencing a

substantial reduction in implementation time.

Notably, this platform enhances the quality and security of applications, leveraging

standardized coding practices and robust security protocols. A critical observation is the

elimination of repetitive coding tasks, allowing developers to concentrate on more innovative

aspects of application development.

What got my attention more is the utilization of a model-driven approach in LCDP is

instrumental in enterprise application development. This approach facilitates efficient and

rapid translation of business requirements into functional applications. A key advantage is the

integration of business analysts into the development process, fostering a collaborative

environment. This inclusivity enhances mutual understanding and aligns development efforts

more closely with business objectives, ultimately leading to more effective and tailored

business application.

32

4.2. Implementation

The initiation of the practical part involves delineating the essential tools and the development

environment required for building applications using the A12 Low-Code Platform (LCP).

As a model-driven platform, A12 necessitates the creation of models, which are essentially

JSON files, generated using the platform's integrated tool, the Simple Model Editor (SME).

These models, once generated, are then imported into the A12 base development project,

which is the base template for most of the applications that use A12.

This project includes boilerplate code that facilitates interaction with and customization of

these models, thus laying the groundwork for application development.

4.2.1. Project Conceptualization

Project Conceptualization for University Admin System:

Purpose: Develop a comprehensive system for university administration to manage student

and professor data efficiently using the A12 Low-Code Platform.

Target Users: Primarily designed for university administrators to streamline data

management, enhance information accessibility, and improve administrative efficiency.

Functionality Overview:

 Students Tab: Facilitates adding and managing student information, including

personal details and enrolled subjects.

 Professors Tab: Enables adding and tracking professor profiles, including teaching

subjects.

 Subjects Tab: Allows managing subject details and associated teaching staff.
 Dashboard: Provides analytical insights through charts, summarizing key data about

students, professors, and subjects.

Unique Aspects: Leveraging A12’s model-driven approach, the system enhances data

management efficiency, promotes user-friendly interfaces, and ensures scalability to adapt to

evolving university needs.

4.2.2. Design and Development

In this section I will define the requirements we need to develop an application using A12 and

explain the process of creating the school system management application, step by step as

follows:

33

Step 1: Project Template and Application Frame

Let’s start by discussing the Project Template file structure and its logic.

It mainly consists of 3 folders:

 Client:

This folder represents the frontend side of the application where we can add

new models, customize the existing ones using React, and apply some client

actions using Redux and Redux Saga.

 Server:

This folder represents the backend side of the application where we handle the

creation, deletion, and update of the documents, User Authorization, and much

more using Java and Spring Boot.

 Import:

In this folder, we add our models generated from the SME

And many other folders and files that contain some dependencies, resources, configuration, and
e2e testing scripts.

Now when we run the application we have to run commands on both the client and server folders

as follows:

After having the application successfully running then we can log in with three test users

already set on the project template.

1. Build the application modules
gradle build

2. Run

1. Compose up the Keycloak container in Docker:
gradle keycloakComposeUp

WARNING: Project Template's Keycloak setup is for development purposes

only. It is necessary to significantly enhance the security of a Keycloak

instance for production environments.

2. Run the server application with the default development Spring profile and keep it

running:
gradle :server:app:bootrun --args='--spring.profiles.active=dev-env'

3. Run client

1. In another terminal window, move to client directory with cd client.

2. Then start the webpack with npm start and keep it running.

34

And here is what we see after login:

The whole of what we see in Figure 11 is called the Application Frame.

Application Frame:

It is a pre-defined skeleton to hang our application features based on the A12 Plasma design

system. With this, we can worry less about the small UI details of the application knowing that

we will end up with something that conforms to the A12 design system.

Where I can find it on the Project Template?

in the file client/src/app/layoutProvider.tsx. There you can find a component named

CustomApplicationFrameLayout which returns something called

ApplicationFrameLayout.

Figure 11. Application Frame

Step 2: Modelling

In this section, we explore model creation using A12's tools. This step is vital in A12

application development, as it involves designing the data structures and workflows that form

the application's core. This modeling phase is foundational, shaping the application to meet

specific functional requirements.

In developing our University CRM system using A12, we focus on the contacts and subject

management functionalities. This includes creating, viewing, updating, and deleting subjects

and contacts with key details like titles, concepts, names, and email addresses. Traditionally,

this requires building forms on the client side, considering mandatory fields, user error

35

notifications, accessibility, and mobile compatibility.

On the server side, it involves setting up a database and CRUD endpoints, with a focus on

security.

A12 simplifies this process, allowing even non-developers to handle these tasks efficiently,

with options for code customization based on business needs.

Initially, we begin with launching the Simple Model Editor (SME), the main tool for creating

and editing our models. Figure (12) shows the SME interface:

Figure 12. SME Interface

Click 'New' to create a document model from the dropdown menu, selecting from the model

types previously mentioned. This step initiates the creation of a new document model.

Next, populate the DM with essential data such as its name, designated storage folder, locales,
and associated roles, the first model to be configured will be the 'Student' model.

Figure 13. Document Model Creation Form

36

When the DM is created. This opens a page for further customizations, such as adding

variables with their types and outlining the data structure, essential for shaping the student

DM.

In the DM, data organization entails creating new groups or directories for the Student DM
data, as depicted in Figure 14.

This approach ensures a clear arrangement within the Student model.

Figure 14. Student DM Groups

To add a new field to the PersonalData folder in the DM, follow the steps demonstrated in

Figure 15. This process allows specifying various attributes for each field, including the field

name, data type, configuration, labels, description, helper text, and annotations.

Figure 15. Student DM New Field

37

Similar steps were followed to add other fields to the student model, as can be seen in Figure

16.

Figure 16. Student DM Fields

To design the structured fields in the DM, a new Form Model (FM) is created for form design,
allowing customization of elements like colors, sizes, alignments, and icons.

The process for creating an FM is similar to that used for the DM.

Figure 17. Student Form Model after Fields Organization

38

The 'Preview' button displays live progress in a separate window, as shown in Figure 18. This

allows for a quick view of the current state of the form being designed in the Form Model

(FM).

Figure 18. Live Preview of Student Form Model

To incorporate events like cancel and save into the form, use the settings tab to define these

events. This includes setting labels, event types, validation rules, icons, and more.

To display forms in a table after saving or submitting them, an Overview Model (OV) is

required. This model type is different from others and is created in the same manner, through

the models folder.

The Overview Model (OV) facilitates column selection for form data representation. Choices

for columns are made from a dropdown list, allowing specification of labels, icons, and sorting

types. This process is exemplified in Figure 19, showcasing a list of columns selected for

display in the OV.

39

Figure 19. Student Overview Columns

Add and delete functionalities for the Overview Model (OV) are set up in the Custom Actions

tab. This allows for managing submitted forms within the OV. The configuration process,

including the selection and definition of these actions, is detailed in Figure 20.

Figure 20. Student Overview Save and Delete Events

40

Following the creation of the models, the next step is their integration into the A12 platform's

development environment (Project Template). The integration process involves creating a new

module in the PT for the models. This integration is a critical component of the model-driven

development approach that A12 utilizes, where models form the basis of application

functionality and workflow.

To continue the development in A12, the first step is to add a new folder named "student" in

the client/src/modules directory. Following this, an Application Model is created using the

SME, similar to the earlier models. This Application Model is crucial as it manages and

connects all the existing models, facilitating the representation of different layouts in the

application.

Create an index.ts file as following:

The final step is to incorporate the StudentModule into the application's central module array.

This is executed by modifying the client/src/index.tsx file, wherein the StudentModule is

added to the ALL_MODULES array. This integration is essential for the StudentModule to be

recognized and function correctly within the application's architecture, following the principles

of model-driven development in A12.

import { Module } from "@com.mgmtp.a12.client/client-

core/lib/core/application";

import { ApplicationModel } from "@com.mgmtp.a12.client/client-

core/lib/core/model";

import * as model from "./student-appmodel.json";

const module = (): Module => ({

id: "StudentModule",

model: () => model as ApplicationModel

});

export default module;

import studentModule from "./student";

export const ALL_MODULES = [studentModule()];

const moduleRegistry = ModuleRegistryProvider.getInstance();

/**

* Get all modules.

*/

export const getAllModules = (): Module[] => {

return ALL_MODULES;

};

41

After successfully integrating the Student module, we proceeded to add the Professor and

Subject modules similarly to the application. Once the building and running processes were

completed, the outcome effectively demonstrated the integration and functionality of all the

created and configured models, utilizing the A12 modeling tool (SME)

Figure 21. Final Application Interface: Demonstrating the Integrated StudentModule in Action

The next step in our development process is to implement the system dashboard. Which will be

accessible via a separate tab, designed specifically for the system administrator.

It will feature an insightful representation of module statistics, prominently displayed using a

Pie chart.

To achieve this, we will be integrating custom code into the dashboard module. This step is

crucial as it exemplifies the practical application of the low-code approach in real-world

scenarios. It involves leveraging the A12 platform’s capabilities to create custom

functionalities that complement the existing low-code features, thereby providing an

interactive dashboard.

42

Step 3: Adding Custom code to A12

In this step, we customize the app by adding a 'Dashboard' tab. This new feature will display

data through charts, improving insights and usability within the A12 platform.

To begin, we incorporate the Pie Charts component, which will visually display our data. This

component is added under
client/src/modules/dashboard/components/PieChart.tsx

designating it as the primary means for data representation within the dashboard.

Finally, integrate the PieChart into the dashboard by placing it in a container found at

client/src/modules/dashboard/components/PieChartContainer.tsx,

embedding it within the module's interface.

export default function PieChartContainer({ activity }: View): ReactElement | null {

const dataHolder = Activity.findDefaultDataHolder(activity);

const localizer = useLocalizer();

if (!dataHolder?.data || dataHolder?.busy) {

return null;

}

const { chartData = [] } = dataHolder.data as { chartData:

PieChartElementsProps.ChartData[] };

const getLabel = (resourceKey: string) => {

const localizedValue = localizer(resourceKey);

return localizedValue || resourceKey;

};

// Some values don't need localization e.g. names of contacts

// If value is found in resources return it else return the name passed in

const localizedChartData = chartData?.map(d => ({ ...d, name: getLabel(d.name) }));

return (

<>

<ActionContentbox

className="-u-max-width-2xl -u-height-full"

headingElements={

<ContentBoxElements.Title

ariaLevel={2}

key="title"

text={localizer(RESOURCE_KEYS.dashboard.title)}

/>

}

>

<CustomPieChart label={localizer(RESOURCE_KEYS.dashboard.chart)}

data={localizedChartData} />

43

A12 seeks an approach to load data, utilizing a feature known as a data provider. By integrating a

data provider into our application, specifically through Redux Saga watchers, we establish a robust

mechanism for data retrieval. This setup enables functions that facilitate HTTP calls, action

dispatches, or retrievals from the Redux store

Within the application structure, the pieChart.ts data provider will be added under the path:

client/src/modules/dashboard/dataProvider/pieChart.ts

After adding the data provider, it's linked within the module for targeted functionality,

specifically at client/src/modules/dashboard/index.ts. This step connects the
provider to the dashboard module, enabling data handling and visualization.

import { put } from "@redux-saga/core/effects";

import { ActivityActions } from "@com.mgmtp.a12.client/client-core/lib/core/activity";

import { DataProvider } from "@com.mgmtp.a12.client/client-core/lib/core/data";

import { ChartData } from "../types";

const colors = ["#00589F", "#0081BD", "#00A8BD", "#00CAA3", "#8AE682", "#F9F871"];

export const pieChartDataProvider: DataProvider = {
name: "pieChartDataProvider",

canHandle({ dataHolder, operation }) {

switch (operation) {

case "load":

return dataHolder.descriptor.view === "Dashboard";

default:

return false;

}

},

*provideData({ activityId }) {

// This is where you would make a request for your data

const chartData: ChartData = {

// "customerType.vip" is a localization key

chartData: [{ name: "userType.vip", color: colors[0], value: 10 }]

};

// Fill activity with a new dataHolder containing your data

yield put(

ActivityActions.setData({

activityId,

data: chartData
})

);

}

};

44

To retrieve data, we initiate an RPC request to the A12 Data Services (Backend) as outlined

below:

The JSON-RPC structure includes fields like jsonrpc for the protocol version, id for request

identification, and method for server actions, alongside params for specific instructions.

y applying the same method, we add a JSON-RPC call for each model, utilizing localized data to

display within the PieChartContainer.tsx. This approach culminates in a comprehensive

dashboard overview, showcasing the integrated data visualizations.

// ...

import { pieChartDataProvider } from "./dataProvider/pieChart";

// ...

const module = (): Module => ({

id: "DashboardModule",

model: () => dashboardAppModel as ApplicationModel,
views: () => viewComponentProvider,

dataProviders: () => [pieChartDataProvider]

});

// ...

{
id: "getStudentsByType",

jsonrpc: "2.0",

method: "LIST_DOCUMENTS",

params: {

// The document model we are interested in

documentModelName: "Student_DM",

// We want to group our students by type

facets: [

{
id: "studentType",

type: "term",

field: "Students.PersonalData.FirstName"

}

]

}

45

Figure 22. Dashboard Pie Charts

The Pie charts on the Dashboard overview represent the Students, Professors, and Subject

counts.

46

4.3. Survey Analysis

To explore the impact of A12 as a Low Code Platform, I carried out two surveys: one for

developers and another for project managers. These surveys aimed to capture their experiences

and views on A12's effectiveness in streamlining development and project management tasks.

This effort sought to derive insights from both technical and managerial perspectives, enriching

our understanding of LCDP's utility in real-world applications.

Insights were garnered from a select group within mgm technology partners (mgm-tp),

specifically targeting those involved with the A12 platform. This group included 5 project

managers and 21 developers, all employees at mgm-tp. The project managers, with

backgrounds in business, project management, and IT, and the developers, skilled in front-end,

back-end, and full-stack development, provided a well-rounded perspective on A12's

application and development.

This focused selection was facilitated by my position as a software developer at mgm-tp and

working on business applications using A12, enabling me to directly reach out to colleagues

engaged with A12.

4.3.1. Survey by Developers

The developer survey aimed to assess the effectiveness and user experience of A12 as a Low

Code Platform among our development team. We successfully engaged 21 developers,

gathering their insights and feedback through a series of targeted questions.

Quantitative Results:

The survey's quantitative analysis is visually represented in charts, highlighting developers'

satisfaction levels and their perceived ease of use of A12.

Figure 23. Ease of Use Rating by Developers

47

Figure 24. Enhancing the Software Development Process

Qualitative Results:

Theme Benefits Experienced Impact on
Productivity

Overall Impression

Speed & Efficiency Faster application

building a quick

project setup

Mixed: Some found it

faster, others faced a

learning curve

Positive for specific

uses; challenges in

customization

Learning & Support Opportunity to learn

new technologies

Diverse: From

decreased to

unchanged
productivity

Suggestions for better

documentation and

more intuitive UI

Functionality Basic UI elements and

features out-of-the-

box and Effective
model validation

Productivity boost in

common use cases;

challenges with non-
standard requirements

Calls for more

integrative features

and simpler
customization

User Experience Separation of concerns

leads to less code, a

Stable core, and built-
in security

Improvements in UI

development speed;

initial slowdown for
beginners

Desire for a more

user-friendly and

flexible tool

Table 2. Comparing survey answers by developers

48

4.3.2. Survey by Project Managers

The survey targeting project managers focused on evaluating A12's impact on project

workflows, efficiency, and overall management experience. A total of 4 project managers

participated, offering insights into how A12 influences project delivery and oversight.

Quantitative Results

Figure 25. Collaboration between Developers and Business Analysts in A12

The bar chart visualizes the responses from project managers regarding the influence of A12 on

collaboration between developers and business analysts. With a scale where 1 represents 'highly

effective', the majority (50%) rate the influence of A12 as moderately effective (3 out of 5),

indicating room for improvement. A quarter (25%) perceive it as highly effective (1 out of 5),

while another 25% rate it less effective (4 out of 5), suggesting varied experiences and the

potential for A12 to better facilitate collaboration in certain projects.

49

4.4. SWOT Analysis Comparison of Low-Code Platforms

Category WordPress Microsoft Power

Apps

A12

 Strengths

Highly user-friendly,

extensive ecosystem of

themes and plugins,

and strong community

support.

Deep integration with

Microsoft ecosystem,

AI capabilities, and an

intuitive drag-and-drop

interface.

Efficient modeling

capabilities for both

front-end and back-

end, support complex

application logic, and

customizable

components.

Weaknesses

Focuses on web

content management,

additional coding, or

plugins required for

custom functionalities

Higher learning curve

for non-technical users

and reliance on

Microsoft products.

Initial learning period

to master full

capabilities

Opportunities Expanding capabilities

beyond CMS to full-

scale web applications.

Expanding use in

businesses not yet fully

integrated into the

Microsoft ecosystem.

Filling a niche for rapid

prototyping and

development within

enterprise-level

applications.

Threats Emergence of more

integrated platforms

offering web content

management alongside

application

development.

Competition from

platforms offering

greater flexibility and

lower dependency on a

specific ecosystem.

Fast-evolving

landscape of low-code

platforms could

introduce competitors

with similar or

enhanced

functionalities.

Table 3. Comparative SWOT Analysis of Low-Code Development Platforms

50

Comparative Insights from SWOT Analysis

a) Flexibility and Use Case Suitability:

A12 excels in modeling capabilities for complex applications.

Power Apps provides robust integration within the Microsoft ecosystem.

WordPress is best for web content but lacks depth in application development.

b) Ease of Use and Accessibility:
WordPress is the most accessible for beginners.

A12 and Power Apps cater to those with some technical knowledge or specific integration

needs.

c) Integration Capabilities and Ecosystem Compatibility:
Power Apps is ideal for Microsoft environments but may limit others.

WordPress and A12 offer broader integration ranges, with WordPress boasting a vast plugin

library and A12 providing customizable components.

51

5. Results and Discussion

This thesis has explored the utilization of LCDPs to expedite application development and

decrease dependence on traditional coding methodologies.

The practical application of A12 and surveys from developers and project managers have

provided a wealth of data.

Analysis of Results

The results have shown that LCDPs can speed up the development process and make coding

simpler. The surveys back this up, showing a trend towards increased efficiency and

productivity among users of A12.

Discussion of LCDP Limitations

Despite these benefits, there are several limitations founded:

Scalability: Some LCDPs may not scale efficiently for larger or more complex projects.

Customization: There is often a trade-off between ease of use and the ability to customize

deeply.

 Integration: There are some challenges in integrating with existing systems and some

technologies.

Solutions and Recommendations

 Enhancing LCDPs with scalable architecture options.

 Developing advanced customization capabilities within LCDPs while maintaining user-

friendliness.

 Making integration features and documentation better to ensure everything works together
smoothly

Reflection on Survey Results

The survey responses from project managers have highlighted varied impacts on collaboration

between developers and business analysts, indicating that while LCDPs offer many advantages,

there is a need for improved features and training to maximize collaborative efforts.

52

6. Conclusion

Confirmed Findings

This study has shown that Low-Code Development Platforms can speed up app development and cut
down on complex coding.

A12, in particular, accelerates the application development process and reduces some of

the dependencies on traditional coding practices.

Observations

The practical work and surveys revealed that while LCDPs bring efficiency to the development

cycle, there are observable challenges. These include scalability concerns, a need for more strong

customization options, and complexities in integrating with existing systems.

Future of LCDPs

LCDPs are likely to become more intuitive and capable, with the h potential for smarter features and

better team tools.

The trend is towards making these platforms more efficient for various applications.

Implications

The findings suggest a move towards easier development approaches and highlight a need for LCDP
improvements.

Addressing current LCDP challenges will be crucial for their broader adoption in software

development.

In short, LCDPs are changing software development, offering a simpler way forward. This thesis

adds to the understanding of their role and future in the tech industry.

53

References

1. Low-cod platform for automating business process in manufacturing, Waszkowski RIFAC-

PapersOnLine (2019) 52(10) 376-381

2. Viktor Kalinichenko. (2022). No-Code/Low-Code: Origins. https://devtorium.com/blog/no-

code-low-code-origins [Online]

3. Microsoft-PowerApps. https://powerapps.microsoft.com/en-us/low-code-vs-traditional-

development [Online]

4. Benefits and limitations of using low-code development to support digitalization in the

construction industry, Martinez Epfister. Automation in Construction, (2023), 152

5. John Everhard. (2019). The Pros And Cons Of Citizen Development.

https://www.forbes.com/sites/johneverhard/2019/01/22/the-pros-and-cons-of-citizen-

development

6. OustSystems. (2019/2020). The State of Application Development Is IT Ready for

Disruption.

7. Daniel Rasch. (2023). mgm strengthens the low code movement as a new member of the low

code association. https://insights.mgm-tp.com/de/mgm-technology-partners-ist-mitglied-der-

low-code-association [Online]

8. Kristin Mueller. (2023). Quality assurance of model-based enterprise software: increasing

efficiency with the mgm approach. https://insights.mgm-tp.com/de/qualitaetssicherung-von-

modellbasierter-enterprise-software [Online]

9. Christine Reiner. Low code in industrial insurance: mgm Cosmo using the example of

“partner data”. (2023). https://insights.mgm-tp.com/de/der-low-code-basierte-ansatz-von-

mgm-cosmo-am-beispiel-partnerdaten [Online]

10. Lilia Gargouri. (2023). Deepdive A12 end-to-end test automation. https://insights.mgm-

tp.com/de/deepdive-a12-end-to-end-test-automatisierung [Online]

11. Modelling in low-code development: a multi-vocal systematic review, Bucaioni ACicchetti

ACiccozzi F, Software and Systems Modeling (2022) 21(5) 1959-1981

12. mgm-tp. (2023). A12 Platform. https://www.mgm-tp.com/documents/A12-Product-News-

2023.06-LTS-EN.pdf

13. An empirical evaluation of scrum training's suitability for the model-driven development of

knowledge-intensive software systems, Shafiee SWautelet YPoelmans S et al, Data and

Knowledge Engineering, (2023), 146

14. LeBLANC Team. (2022). INTRODUCTION TO MODEL DRIVEN DEVELOPMENT.

https://leblanc.fi/model-driven-development.html

15. Get A12 (A12 Documentation). (2023). A12 Development teams.
16. Terence Nero. (2021). Low Code Platform: The Future of Software Development.

https://www.cuelogic.com/blog/low-code-platform. [Online]

17. Kissflow. (2023). Low-Code Application Development Platform (LCAP).

https://kissflow.com/application-development/low-code-application-development-platform.

[Online]

18. Cyclr. (2023). Low-Code is revolutionising the software industry.
Low-Code is revolutionising the software industry: what type is dominating? (cyclr.com)

[Online]

https://devtorium.com/blog/no-code-low-code-origins
https://devtorium.com/blog/no-code-low-code-origins
https://powerapps.microsoft.com/en-us/low-code-vs-traditional-development
https://powerapps.microsoft.com/en-us/low-code-vs-traditional-development
https://www.forbes.com/sites/johneverhard/2019/01/22/the-pros-and-cons-of-citizen-development
https://www.forbes.com/sites/johneverhard/2019/01/22/the-pros-and-cons-of-citizen-development
https://insights.mgm-tp.com/de/mgm-technology-partners-ist-mitglied-der-low-code-association
https://insights.mgm-tp.com/de/mgm-technology-partners-ist-mitglied-der-low-code-association
https://insights.mgm-tp.com/de/qualitaetssicherung-von-modellbasierter-enterprise-software
https://insights.mgm-tp.com/de/qualitaetssicherung-von-modellbasierter-enterprise-software
https://insights.mgm-tp.com/de/der-low-code-basierte-ansatz-von-mgm-cosmo-am-beispiel-partnerdaten
https://insights.mgm-tp.com/de/der-low-code-basierte-ansatz-von-mgm-cosmo-am-beispiel-partnerdaten
https://insights.mgm-tp.com/de/deepdive-a12-end-to-end-test-automatisierung
https://insights.mgm-tp.com/de/deepdive-a12-end-to-end-test-automatisierung
https://www.mgm-tp.com/documents/A12-Product-News-2023.06-LTS-EN.pdf
https://www.mgm-tp.com/documents/A12-Product-News-2023.06-LTS-EN.pdf
https://leblanc.fi/model-driven-development.html
https://www.cuelogic.com/blog/low-code-platform
https://kissflow.com/application-development/low-code-application-development-platform
https://cyclr.com/blog/low-code-is-revolutionising-the-software-industry

54

2. List of pictures, tables, graphs, and abbreviations

1.1 List of pictures

Figure 1. Abstraction in Low-Code Platforms (11) ... 13

Figure 2. Features of Low-Code Platforms (16) .. 15

Figure 3. Products that make up A12 (15) ... 19

Figure 4. The Process of Model-Driven Development (14) .. 22

Figure 5. Model-based software development (8) ... 23

Figure 6. A12 application models diagram (10) .. 24

Figure 7. Simple Model Editor (SME) (15) ... 25

Figure 8. Form Model in the Form Modeling Module (15) ... 26

Figure 9. Overview Model in an application (15) .. 27

Figure 10. Tree Model in an application (15) .. 28

Figure 11. Application Frame .. 36

Figure 12. SME Interface ... 37

Figure 13. Document Model Creation Form.. 37

Figure 14. Student DM Groups .. 38

Figure 15. Student DM New Field ... 38

Figure 16. Student DM Fields.. 39

Figure 17. Student Form Model after Fields Organization .. 39

Figure 18. Live Preview of Student Form Model .. 40

Figure 19. Student Overview Columns.. 41

Figure 20. Student Overview Save and Delete Events .. 41

Figure 21. Final Application Interface: Demonstrating the Integrated StudentModule in Action 43

Figure 22. Dashboard Pie Charts ... 47

Figure 23. Ease of Use Rating by Developers ... 48

Figure 24. Enhancing the Software Development Process .. 48

Figure 25. Collaboration between Developers and Business Analysts in A12 50

1.2 List of tables

Table 1. Comparison between Low-Code & Traditional Development .. 14

Table 2. Comparing survey answers by developers... 47

Table 3. Comparative SWOT Analysis of Low-Code Development Platforms 49

55

1.3 List of abbreviations

Abbreviation

Full Meaning

LCP Low-Code Platform

BAP Business Application Platform

UI User Interface

API Application Programming Interface

BPMN Business Process Model and Notation

UAA User Management, Authentication, and Authorization

SME Simple Model Editor

DM Document Model

FM Form Model

OM Overview Model

