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Separation of root and microbial respiration in wetland soil 
 

Abstract 

 Soil respiration is a group of complex and interconnected processes which run in plant 

roots, soil microorganisms and soil fauna. Soil fauna release only a small portion of total CO2 

production (approximately 5%), whereas plant roots and microbial respiration produce the 

largest portion (95%). Respiration is affected mainly by temperature and moisture. Total soil 

carbon balance is an important parameter because CO2 released from soil affects global 

climate significantly.  

 It is difficult to measure root and microbial respiration separately and to calculate 

their portions of the total soil respiration. Therefore we suggest to evaluate the root and 

microbial respiration ratio in our project. We will measure soil respiration in the field 

regularly and evaluate seasonal pattern of soil respiration in the study site, which is wetland 

meadow. We will also estimate the SOM-derived CO2 portion of total soil respiration in this 

field experiment. In addition, we will set up a mesocosm experiment with seedlings of Carex 

acuta. Nutrient input and water level effect on soil respiration will be studied. The effect of 

eutrophication will be also investigated. The results should increase our knowledge about 

carbon cycling through plants and microorganisms. This information will subsequently allow 

us to calculate total carbon balance of the whole ecosystem and to follow C fluxes. 
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1 Review 

1.1   Introduction 
Plant and soil microbial community respiration are the processes that are intensly studied. 

Since carbon dioxide forms 60% of greenhouse gases, if water vapour is not considered, 

understanding of its fluxes becomes very important in relation to global warming. Soils 

generally are one of the biggest active C pools. Among them wetland soils store about one 

quarter of total C stored in soils in the world and so they are very important pools of C which 

may be released to the atmosphere if the ecosystems are disrupted (Gorgham, 1998). The C 

balance of ecosystems is strongly affected by their management. Recently drainage and 

eutrophication of wetland ecosystems are the most serious threats affecting their functioning. 

Both drainage and eutrophication affect soil processes directly through effect on microbial 

processes but also indirectly through change in plant community species composition, plant 

biomass production and roots exudation. The total C flux from soil is a sum of animal, plant 

roots and microbial respiration. Separation of microbial and root respiration is difficult but an 

important task which allows us to calculate and to understand C fluxes through plants and 

soil microbial community. This knowledge is necessary for the calculation of C balance and 

C fluxes through the whole ecosystem. 

1.1.1 Biochemistry of aerobic respiration process 
Respiration is a metabolic pathway of catabolic activity carried out by organisms. In 

other words respiration is a biological oxidation of organic matter (OM) which runs while 

oxygen works as an electron acceptor (oxidant) and a certain amount of energy is released. 

(2,879kJ from one glucose molecule). The reaction of glucose being used as a substrate is 

described by the formula: C6H12O6 + 6O2 → 6CO2 + 6H2O. When oxygen becomes limiting, 

other oxidants replace it and only the respiration of some microorganisms can occur (Reddy 

& DeLaune, 2008). 

The whole aerobic process starts by organic polymers decomposition provided by 

hydrolysis enzymes. Subsequently, monomers are transported into the cytosol of cell where 

glycolysis runs (glucose transition into 2 pyruvate molecules). There are 2 molecules of ATP 

(adenosine triphosphate) as a form of conserved chemical energy produced from one glucose 

molecule during glycolysis (Reddy & DeLaune, 2008). 

Pyruvate decarboxylation comes as the next step in respiration processes. Pyruvate 

decarboxylation leads to acetyl-CoA which is the starting substance for the TCA cycle 

(Trycarboxylic acid cycle). TCA cycle is also called Kreb´s Cycle or Citric Acid Cycle and 
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 occurs in the matrix of mitochondrions (Reddy & DeLaune, 2008). Intermediate products of 

TCA cycle follow in order: citrate is formatted after acetyl-CoA combines with oxalacetate, 

subsequently isocitrate, 2-ketoglutarate, succinyl CoA, succinate and fumarate are processed. 

The cycle is completed through malate back into oxalacetate. CO2 molecules are released 

within reactions of TCA cycle until OM is completely converted into CO2 (Hill, 1997). 

The last process of the whole respiration complex is oxidative phosphorylation occurring 

beside the respiratory chain in the inner membrane of mitochondrion. There are electrons 

released, during the above described reactions, and are transported across four protein 

complexes into the terminal acceptor (White, 2007), which is oxygen in aerobic conditions 

(Hall et al., 1982). The reaction of oxygen being reduced by electrons acceptance is 

described by the formula: O2 + 4e- + 4H+ → 2H2O. The main goal of this proceeding is to 

reverse oxidation of NADH into NAD+, which can be used in TCA cycle or other metabolic 

pathways as a reductant again (Reddy & DeLaune, 2008). 

In total, the yield of energy coming from respiration processes is 38 ATPs and only 40% 

of released energy is conserved (approximately 1,140 kJ). The rest of energy is unleashed as 

heat (Reddy & DeLaune, 2008).  

1.2   Soil respiration 
Soils are pools of carbon storage and annually release enough carbon to impact global 

climate (Bowden et al., 1993). Soil respiration is the largest part of ecosystem respiration 

(Ryan & Law, 2005). Three CO2 sources of total soil respiration are distinguished and 

described in this chapter: microbial respiration, root respiration and soil fauna. 

1.2.1   Microbial respiration 
Besides the aerobic respiration described above, microbes get energy through a few 

anaerobic processes as well. In general, carbon dioxide is released from the soil within a few 

processes running in anaerobic conditions which are: fermentation, methanogenesis, and 

respiration of nitrate, manganese, iron, and sulfate. Microbial anaerobic respiration (MAnR) 

differs in the electron acceptor. Oxygen as the terminal acceptor in aerobic conditions is 

replaced by nitrate, Mn(IV), Fe(III), sulfate, carbon dioxide or simple organic compounds in 

anoxic conditions. A yield of energy reached by MAnR is lower than energy profit from 

aerobic respiration. Compounds which don´t require initial oxygenation are preferred to 

become substrate in MAnR. Anaerobic conditions cause accumulation of reduced substances 

as methane, sulfides, volatile fatty acids, ferrous iron, manganous manganese, ammonium 

nitrogen, and hydrogen in the soil (Reddy & DeLaune, 2008). Another way how microbes 
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 produce CO2 is fermentation, which is an anoxic process of monomer transformation into 

fatty acids, alcohols, CO2 and H2 in soil (Glissmann & Conrad, 2000). The energy yield of 

fermentation is also significantly smaller (8 ATPs from one glucose molecule) in comparison 

to the aerobic respiration (38 ATPs from one glucose molecule) (Scandalios, 1993). 

Methanogenesis is another process of anaerobic conversion of plant materials (1% of 

assimilates from photosynthesis) into CO2 and CH4, which is provided by syntrophic 

associations of microbes and leads to energy yield (Thauer, 1998).  

1.2.2   Plant respiration (root respiration) 
 In comparison to the microbial respiration (MR), using photosynthates as substrates 

root respiration (RR) runs as a direct release of carbon, which is fixed through 

photosynthesis (Cheng et al., 1993). Poorter et al. (1990) found a correlation between root 

respiration and unit of root dry weight in his experiment with 24 plant species. Fast growing 

species produce 2,7 times more CO2 per unit of total plant dry weight than typical slow 

growing species. Fast growing species spent 8 -19% of fixed CO2 in root respiration and 

allocate 18% of assimilated carbon into the root biomass. Slow growing species respire 

proportionally more of daily fixed carbon in contrast to the fast growing ones (Poorter et al., 

1990). Root respiration follows seasonal patterns in which respiration decreases in winter 

time (from November to March) depending on the plant species (Edwards, 1991). 54-90% of 

annual CO2 emissions from soil are released during the growing season which starts in the 

middle of May and ends in the middle of September (Bond-Lamberty et al., 2004). Root 

respiration varies among roots with different diameters where finest and smallest roots can 

respire 2,4 - 3,4 times more than bigger roots. Root respiration also declines with the depth 

in which the roots are placed. The measurement of sugar maple has shown the respiration of 

surface roots (0-10cm depths) is 40% greater than deeper roots (Pregitzer et al., 1998). 

1.2.3   Fauna respiration  
There are mesofauna and macrofauna considered as soil fauna in this chapter. Their main 

characteristic is the body size, which is bigger in comparison to soil microfauna. Mesofauna 

organisms are defined in size 0,1 – 2 mm, and macrofauna are animals bigger than 1 cm 

(Lavelle et al., 1997). The account of soil fauna in the total soil respiration is only 5% 

(Chapin et al., 2002). The most important function of soil fauna is mixing plant residues, 

making available substrate for microorganisms and stimulation of microbial activity in soil 

(Reichstein & Beer, 2008). Soil macrofauna increases the translocation of organic matter in 

soil into the mineral layer, what results in higher microbial respiration and biomass (Frouz et 
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 al., 2006). Since the portion of CO2 produced by soil macrofauna is so small it will not be 

considered furthermore in this review. 

1.2.4   Ratio of plant, microbial and fauna respiration in soil 
Total soil respiration is the sum of root respiration (RR), rhizomicrobial respiration 

(RMR), and microbial respiration of root-free soil (MRRFS). Kelting et al. (1998) measured 

following numbers: RR = 32%, RMR = 20%, and MRRFS = 48%. Cheng et al. (1993) found 

the portions for RR and RMR 40,6 and 59,4%, respectively. Wang et al. (2006) estimated 

contribution of RR into the TSR in the range from 38% to 76%. However MR seems to 

dominate in total CO2 efflux from soil.   

1.3   Carbon dioxide emission from soil   
There are a few types of gas transport from the soil into the atmosphere. There will be 

described (i) advective flux, (ii) molecular diffusion, (iii) bulk flow, (iv) ebullition, and (v) 

transport through vascular tissue in this chapter. (i) Advective flux runs in a soil pressure 

gradient caused by external forces (f.e. atmosphere pumping). Viscose gas flows from the 

point of higher pressure into the point of lower pressure. (ii) Molecular diffusion is the flux 

which runs under isothermal and isobaric conditions, dependent on molecular weights of 

transported gases and temperature. (iii) Bulk flow consists of molecular and nonequimolar 

diffusion. Nonequimolar diffusion is caused by different molecular weights of components 

and is nonsegregative, what means gas components are not separated in contrast to molecular 

diffusion. Lighter gases have higher velocities than heavier gas molecules resulting in a 

pressure gradient (Scanlon et al., 2002). (iv) Ebullition is a transport way of water insoluble 

gases from soil through the water column into the atmosphere (Casper et al., 2000).            

(v) Vascular transport through tissue has opposite direction of oxygen respiratory 

consumption path. The entrance of gas into the aerenchyma tissue of plant is facilitated by 

diffusion gradient between soil and atmosphere. Thermo-osmosis is way of gas conductance 

through plants which occurs if there is temperature difference between interior and exterior 

(Joabsson et al, 1999).      

1.4   Organic matters as source for microbial respiration  
SOM consists of microbial biomass, plant and animal derived organic compounds and 

newly deposited litter (Kuzyakov et al., 2000). There are two fractions of SOM in the soil: 

resistant fraction, which consists of humic material complied of clay minerals and labile 

fraction, which consists of plant material and is rapidly processed by decomposition 
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 (Schlesinger, 1997). The main sources of labile fraction compounds are: dead roots and 

dead aboveground biomass (litter) (Hernández & Hobbie, 2010), which both consist mainly 

of cellulose, holocellulose (cellulose and hemicellulose), lignin, and tannins (Kögel-

Knabner, 2002). Root exudates are also a main source found in labile fraction compounds 

which can be divided into two groups: water-soluble compounds (for instance sugars, amino 

acids, organic acids, hormones and vitamines) and water-insoluble compounds (cell walls 

and mucilage) (Cheng et al., 1993). Meadow plants transfer 30-50% of carbon assimilates to 

the soil (Kuzyakov, 2001). Up to 30% of net photosynthetic production can be consumed by 

rhizosphere respiration (Cheng et al., 1993). The decomposition differs in its rate and need of 

enzymes usage by each compound. There is usually no need of extracellular enzymes for 

root exudates uptake by microbes unlike the plant litter containing polymers, which are 

hardly decomposable (Weintraub et al., 2007). Lignin:N ratio influences a decay rate of 

SOM. If the ratio lignin:N in litter increases, the rate of decomposition decreases (Melillo et 

al., 1982). The same relation runs among C:N and C:P, where with their increase the 

respiration rate decreases (Gnankambary et al., 2008). Microbial activity depends on plant 

organic matter inputs into the soil, which differs according to the plant community 

composition and plant productivity (Waldrop & Firestone, 2006).  

1.5   Controlling factors of plant respiration  
Respiration rate among plant species is variable (Lambers et al., 1991). Fast growing 

plant species have higher respiration in comparison to slow-growing ones due to their lower 

specific respiratory costs of root growth and ion uptake (Poorter et al., 1991). Bigger root 

biomass has also potential to enhance root respiration and subsequently higher litter offeres 

more substrate for microbial respiration (Pregitzer et al., 2008). On the other site high soil 

CO2 concentration reduces root respiration (Qi et al., 1994).  

Respiration regulation reflects the demand for energy and carbohydrate supply. There are 

three ways of respiration regulation: (i) partitioning electrons between cytochrome oxidase 

pathway (COP) and alternative oxidase pathway (AOP), (ii) regulation of glycolysis and 

electron transport, and (iii) two internal NADH dehydrogenases (Lambers et al., 1991). (i) 

COP accounts for around 90% of the respiratory carbon consumption and the remaining 10% 

belong to AOP which is mainly used under stress conditions (Florez-Sarasa et al., 2007). 

AOP doesn´t lead to adenosine triphosphate (ATP) syntesis what causes energetical 

efficiency of respiration decreases (Saisho et al., 2001). (ii) Glycolysis enzymes are activated 

by adenylates (ATP, ADP) (Lambers et al., 1991). Respiration decreases with high 
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 ATP:ADP ratio when there is low energy demand (Loef et al., 2001). (iii) Rotenon-resistant 

NADH dehydrogenase is prefered in case of the high NADH/NAD ratio or low ADP 

availability to rotenon-sensitive NADH dehydrogenase which has the advantage because it 

couples with proton extrusion and subsequently creates the proton gradient to fuel ATP 

synthase through the membrane of mitochondrions (Lambers et al.,1991). 

Environmental conditions influence root respiration and can be divided into abiotic and 

biotic factors. (Lambers et al., 1991).  

Abiotic factors correspond to the nutrients supply and different soil conditions (Lambers 

et al., 1991). (i) Nutrients supply significantly influences RR rate. RR weakly correlates with 

net N mineralization (Chapin, 1980). RR decreases in case of nitrogen deficiency because 

energy demand on nitrogen uptake is low therefore there is no need of RR increase to gain 

more energy for nitrogen uptake (Lehmeier et al., 2010). Phosphate deficiency doesn´t cause 

change of RR rate but changes factors controlling RR rate (Wanke et al., 1998). RR can 

increase from a potassium deficiency causing a large energy demand on potassium uptake 

(Singh, Blanke, 2000). (ii) Acidification changes root medium where reduces H+ release from 

roots while ATPase is active. RR increases immediately after pH starts decrease to adapt on 

a low soil pH until H+ starts to be released again in a few hours. The main reason is to 

support ATPase activity in the environment where nutrients become less soluble due to 

lower pH. RR decreases at critical pH value (3,5 - 4 depending on species) when growth is 

inhibited and there is no ATP demand (Yan et al., 1992). (iii) Different species response 

variously on salinity and drought. In case salinity influences a species, root respiration is 

enhanced. When growth is inhibited subsequently also respiration decreases. Plant 

adaptations costs to saline environment are likely small in the contrary to highly salt-

sensitive glycophytes (Lambers et al., 1991). (iv) RR decreases in water stress and the 

electron transport can be shifted from COP into AOP depending on species. RR becomes an 

important energy source in cases of water stress because photosynthesis rapidly decreases 

under these conditions (Ribas-Carbo et al., 2005). (v) RR rises as an exponential function of 

temperature (Smith et al., 2003) and depends on respiratory coefficient Q10. Warm-

acclimated and cold-acclimated species are distinguished (Lambers et al., 1991). The 

acclimation is considered the moment when homeostasis occurs (Atkin et al., 2000).  

(vi) Low RR rate in poor light intensity is explained by low metabolic activity of roots 

(Lambers et al., 1991). But RR rate is influenced mainly by changing temperature. Higher 

light intensity also increases temperature and RR magnification follows (Lötscher & Gayler, 

2005). (vii) Last factor influencing RR rate is partial pressure. The value of critical oxygen 
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 pressure occures when oxygen in media is depleted. Such RR decrease was measured when 

oxygen partial pressure fell below 0,5-4,5 kPa (Armstrong et al., 2009).  

Biotic factors are the second group of agents influencing RR. Symbiotic and parasitic 

organisms are considered as biotic factors (Lambers et al., 1991). Rhizobium is one example 

of symbiotic organisms which create nodules on roots and supply fixed atmospheric 

nitrogen. The respiration of nodules is five times higher than RR what provides enough 

energy for N2 fixation. Nodules take up to 23% daily produced photosynthates from plant in 

return to provide nitrogen (Lambers et al.,1991). Mycorrhizal roots respire more than 

nonmicorrhizal ones (Snellgrove et al., 1982). The second group of biotic factors is parasitic 

organisms, which cause increase in RR by attacked plants in order to fill the higher energy 

demand (Haigh et al., 1991).  

1.6   Controlling factors of microbial respiration  
The main factors of microbial respiration are: (i) moisture, (ii) temperature, (iii) oxygen 

and alternative acceptors availability, (iv) OM availability, and (v) nutrients availability. 

(i) Moisture is a major factor influencing HR. Extremely low or high moisture reduces 

HR through changing aeration status (Li et al., 2006). The HR dependence on moisture 

follows Gaussian form. The water level conditions in peatlands affect the temperature 

sensitivity of HR. Bacteria are more sensitive to the low moisture and higher temperature 

condition in comparison to fungi (Mäkiranta et al., 2009). (ii) Temperature sensitivity is 

expressed by quotient Q10 defined as “a factor by which CO2 production increases for a 10°C 

increase in temperature” (Fierer et al., 2006). HR rises exponentially usually up to 35°C but 

an HR rate increase was observed up to 55° C in tropical forests (Holland et al., 2000). There 

rapid declination of HR rate was observed up to 20% after a few first days of increased HR in 

the experiment of Townsend et al. (1997). This change is explained by depletion of available 

substrate, which is light fraction of SOM, and switch to flux derived from resistant SOM 

fraction (Townsend et al., 1997). Substrate availability becomes a key determinant of HR 

response to temperature in this moment (Holland et al., 2000). 90% of temporal HR variation 

was explained by temperature variation (Minkkinen, 2007). (iii) Oxygen availability to the 

individual cell should be considered in evaluation of microbial response to the oxygen input. 

The electron flux goes mainly via AOP which alters COP under the conditions with low 

oxygen availability. Oxygen works as a terminal electron acceptor in respiratory chain under 

aerobic conditions (Alexeeva et al., 2002). Pure oxygen is toxic to the heterotrophs. 

Organisms are sensitive to oxygen only in early stages of their growth, but they become less 
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 sensitive after first established growth (Gundersen, 1966). (iv) SOM and MR are strongly 

influenced by ecosystems or dominant plant species. MR declines rapidly with the soil depth 

in all ecosystems which is connected to the organic carbon availablity. The most of available 

organic carbon is located in the top layer of soil. Only about 30% of total organic carbon was 

observed 8 cm below the soil surface. Subsequently MR decreased rapidly (Fang & 

Moncrieff, 2005). The surface layer of OM is the biggest source of substrate for MR, but if 

this SOM is relocated into the belowground it becomes less available (Li et al., 2006).         

(v) The most important nutrients for HR are nitrogen and phosphorus if microbes are not 

limited by soil organic carbon. MR generally follows the pattern of microbial biomass 

(Tiunov & Scheu, 1999). However, microbial biomass can be reduced by nitrogen 

fertilization (Lee & Jose, 2003).  

1.7   Methods for soil respiration measurement  
The criteria for selection of the best method used to distinguish microbial and plant 

respiration in total CO2 efflux from soil are: (i) The less disturbance of ecosystem the better 

technique it is. (ii) Ability to separate as many CO2 sources as possible (RR, RMR, SOM-

derivered CO2,...). (iii) Universality for applications into the different ecosystems. (iv) 

Method should provide reproductive and reliable results. (v) The equipment, maintenance 

and analysis should be reachable in acceptable costs (Kuzyakov, 2006). There are two main 

groups of methods: non-isotopic and isotopic ones.  

CO2 released from the soil is measured in chambers using gas chromatography (GC) 

(Raich et al., 1990) or infrared gas analyzer (IRGA) (Bowden et al., 1993). GC  is more 

expensive and difficult and needs more equipment, but can be used for tracing of more gases 

(N2O, CH4, CO2) (Raich et al., 1990). IRGA can be connected into the portable chambers and 

each measurement takes less than 2 min. Another way of CO2 flux measurement is passive 

CO2 absorption in an alkali trap which takes a longer time (usually 24 hours). Total CO2-C in 

alkali traps is determined by titration of the NaOH solution by HCl from pH 8,3 to 3,7 after 

precipitation with BaCl2 (Jensen et al., 1996).  

1.7.1   Non-isotopic methods:  
Several non-isotopic methods are used: (i) root exclusion technique, (ii) trenching, (iii) 

shading and clipping, (iv) component integration, (v) excised roots, (vi) regression technique, 

and (vii) substrate induced respiration. Methods (i)-(vi) can be used for separation of RMR, 

and SOM-derived CO2 (which includes MRRFS and MR) (Kuzyakov, 2006).  
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 (i) “Root exclusion technique” uses removal of roots from examined soil (to the depth 

of 30 cm) (Hanson et al., 2000). This method may be applied both in situ and under field 

conditions. The disadvantage is strong disruption of soil and therefore budgets and cycling of 

C, N and H2O are strongly affected (Kuzyakov, 2006). (ii) In “trenching method”  soil is cut 

around to kill all roots which remain in soil and where a physical barrier is installed to keep a 

root growth out of the block (Li et al., 2006). The measurement of respiration should be done 

after most of roots are decomposed (approximately one to two years). Subsequently 

respiration of soil without roots is compared with unaffected control blocks (Sayer & Tanner, 

2010). The disadvantage of this method is that measurement can be affected by 

decomposition of dead root mass remaining in soil (Bowden et al., 1993). (iii) “Shading and 

clipping”  methods are based on shading of plants or clipping of plant aboveground parts in 

grasslands. It causes photosynthesis in leaves halts and assimilates aren´t transported into the 

roots anymore. Exudation of assimilates also stops (Kuzyakov & Larinova, 2005). The 

disadvantage is that microbial respiration of previously produced rhizodeposits are not 

eliminated (Kuzyakov, 2006). (iv) “Component integration” is technique based on a 

mechanical separation of rhizosphere soil, nonrizosphere soil, selected roots and washed 

roots from the soil sample. The removal of soil from roots is done by hands or it is washed 

with water (Sapronov & Kuzyakov, 2007). Big losses of fine roots is a disadvantage of this 

method (Larinova et al., 1988). Then all subsamples are incubated separately (Sapronov & 

Kuzyakov, 2007). Rooted soil incubation is compared to root-free soil to gain RR value as a 

difference (Larinova et al., 1988). Total CO2 efflux is calculated as a sum of CO2 production 

from separated subsamples, which are multiplicated by the weights of components (Sapronov 

& Kuzyakov, 2007). (v) The method “respiration by excised roots” works with physical 

removal of roots from the soil sample. In comparison to root exclusion technique, this 

method is executed only under the controlled laboratory conditions. This method is a short 

version of component integration technique but only root respiration is measured in this case 

(Burton & Pregitzer, 2003). Manual brushing or shaking is preferred to the root washing in 

this method because small rests of soil remaining on roots doesn´t significantly increase the 

measured root respiration (Kuzyakov & Larinova, 2005). The large disturbance followed by 

a strong CO2 flush as a reaction to injuries is a disadvantage of this method (Kuzyakov, 

2006). (vi) “Regression technique” is method which estimates linear relationship between 

root respiration and the biomass of roots where the CO2 evolution from the soil is the 

dependent variable. The relatively low R2 (determination coefficient) in high root biomass 

variation is a disadvantage (Kucera & Kirkham, 1971). The decrease of root respiration rate 
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 during aging has to be taken in account in method evaluation (Volder et al., 2004). (vii) 

“Substrate induced respiration” (SIR) is based on the principle of glucose or other 

compound addition as the respiratory substrate which strongly increases MR. The 

measurement is provided 2-4 hours after glucose addition. The assumption glucose addition 

doesn´t increase RR has to be taken into account and is based on the fact, that glucose 

solution concentration is below the carbohydrates concentration in roots (0,5 – 5% or 5-50 

mg/g) (Larinova et al., 2006). This technique can be used for separation of RR and RMR 

(Kuzyakov,2006).  

1.7.2   Isotopic methods: 
 (i) “Modelling of 14CO2 efflux dynamics” has two alternatives: continuous and pulse 

labelling with 14C or 13C isotopes. The labelled 14CO2 is supplied through the air flushed into 

the chamber in “continuous labelling” method (Whipps & Lynch, 1983). This method has a 

few difficulties: maintenance of constant isotope ratios over long time period and stable 

moisture sustainment are complicated (Kuzyakov, 2006). The 14CO2 is assimilated by plants 

and then 14CO2 released from soil is measured - it is the product of both RR and MR 

(Kuzyakov, 2001). “The pulse labelling” can be used for estimation of recently assimilated C 

contribution into the total soil CO2 efflux (Kuzyakov, 2006). The non-labelled (12C) glucose 

can be added as a substrate for MR to restrict consumption of labelled exudates by 

rhizosphere microbes and subsequent release of 14CO2 through MR (Cheng et al., 1993). Its 

calculation is simple because we know the exact amount of supplied (14C) isotope (Kuzyakov 

et al., 2001). At first 14CO2 is released through RR. CO2 produced by microorganisms starts 

with some delay so these two components can be separated (Kuzyakov et a., 1999).             

(ii) “ Exudate elution method” is an isotopic technique based on measurement of 14C  

labelled exudates eluted from soil before microorganisms start to utilize them. Root exudates 

are decomposed by microorganisms due to their energy-richness and easy availability in soil, 

which is why measurement should be done before decomposition starts (Kuzyakov & 

Siniakina, 2001). Exudates are eluted by water-air mixture and subsequently collected into 

the flask separately from alkali CO2 traps. Plants are grown in 14CO2 or 13CO2 atmosphere in 

order to distinguish CO2 coming from RMR and RR (Kuzyakov & Larinova, 2005). Labelled 

CO2 originates from root respiration and is blown out. This is only one method that uses 

physical separation of CO2 flows, but RR can be strongly overestimated while 

rhizodeposition is underestimated (Kuzyakov, 2006).    
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1.8   Conclusion  

CO2 is produced by plants, microfauna, mesofauna, and macrofauna in soil. Both soil 

mesofauna and macrofauna participate in total soil respiration only by 5% (Chapin et al., 

2002) and therefore are negligible if total CO2 flux in soil is determined. CO2 is produced 

through aerobic respiration, anaerobic respiration, fermentation and methanogeneses (Reddy 

& DeLaune, 2008). Total soil respiration is distinguished into three components: root 

respiration (RR), rhizomicrobial respiration (RMR), and basal respiration (microbial 

respiration of root free soil, MRRFS) (Kuzyakov, 2006). In average, following portions of 

each component respiration were found in scientific studies: 32% for RR, 20% for RMR, and 

48% for MRRFS (Kelting et al., 1998).  

The most important factors influencing RR are plant species, abiotic factors (temperature, 

moisture, nutrient supply etc.), and biotic factors (symbionts and parasites). MR is affected 

especially by moisture, temperature, organic substrate availability, oxygen supply, nutrients 

and (Lambers et al., 1991). 

  RR and RMR together create an interconnected and complex system, therefore their 

separation is very difficult. The measurement and the separation of total soil respiration are 

hardly executable by only one method and therefore combination of two or more methods 

seems to be the best solution (Kuzyakov & Larinova, 2005). Regression technique seems to 

be the most suitable method for separation of basal respiration (MRRFS) from total soil 

respiration in situ. Pulse labelling and 14CO2 efflux dynamics modelling is probably the best 

method to separate RR and RMR (in mesocosm, under laboratory conditions). However, all 

above mentioned methods have some disadvantages and failures. There is a need for 

development of a new approach to exact RR and MR ratio determination. 
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2 Aims of the project 

1) to choose or develop the best suitable method for partitioning of respiration of plant roots 

and soil microorganisms  

2) to determine root-derived and SOM-derived CO2 efflux and their ratio in wet meadow 

soil 

3) to determine effect of eutrophication and water level on soil respiration 

3 Hypotheses 

1) According to the reviewed literature, “regression technique” and “modeling of 14CO2 

efflux dynamics” (pulse variant) are the most suitable methods for SOM and plant 

derived respiration.  

2) Two thirds of soil respiration will originate in microorganisms, and one third in roots. 

However, the ratio of roots to microbial respiration will not be stable but will change with 

plant phenology and it will also depend on other factors like available organic substrate, 

temperature, moisture etc.  

3) Root respiration will rise with temperature and it will follow the exponential function. 

4) Soil respiration rate will decrease with the water level will increase. 

4 Approach 
4.1   Study site  

The research will be done on wet meadow “Záblatské Louky” located in the Třeboň 

Basin Biosphere Reserve (TBBR), South Bohemia, Czech Republic. The study site is on 

peaty soils. It is subjected to several-weeks-long shallow flooding or summer drought 

occasionally. The altitude is 426 m above sea level. Carex acuta is the dominant of sedge 

meadow Záblatské louky. 

The fertiliser NPK will be added into four experimental plots, each on the area 15 x 15m. 

The fertiliser will be applied in form of solution, twice a year. Respiration rate will be 

compared with unfertilized plots.  
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4.2   Methods   

4.2.1   Field measurement 

Regression technique will be used in the field. Regression technique is based on linear 

correlation of root biomass and root respiration rate which was firstly described by Kucera 

and Kirkham (1971). Measurement of emitted CO2 will be done according to Wang et al. 

(2005), using static chambers equipped with infrared gas analyser. We will measure soil  

respiration rate regularly twice a month. 

Twenty-four chambers will be installed into the study site at least 1 day before 

measurement. Twelve chambers will be placed on the fertilised plots and the other twelve 

will be placed on the unfertilised plots. The measurements will always be done on the same 

fertilised plots and compared to the same unfertilised ones (plots will be marked). Data will 

not be collected in the time when soil will remain frozen in 10 cm surface layer. The chamber 

will be cylindrical 10cm in diameter and will be placed on the ground without aboveground 

parts of vegetation. Temperature and moisture will be recorded continually using datalogers 

at 2 cm soil depth and 5 cm above the soil surface. Roots will be extracted from experimental 

plots (into 20 cm depth) in the end of vegetation season, oven dried at 70°C for 24 hours and 

weighed.  

Correlation analysis will be done to determine relationship between soil CO2 evolution 

and biomass of roots. The y-intercept of the linear regression between soil surface CO2 efflux 

and root biomass will be the value of soil basal respiration (microbial respiration of soil 

unaffected by plant roots). The temperature dependency model of Lloyd and Taylor (1994) 

will be used for data analysis. Model works with two different respiration rates which are 

dependent on various temperatures and transfers them into the form in which they are 

comparable. The calculation of the net soil respiration will be done within this model.  

4.2.2   Mesocosm experiment 
Modelling of 14CO2 efflux dynamics will be done under the laboratory controlled 

conditions. The pulse variant of measurement will be used in mesocosm experiment 

according to the scenario of Cheng et al. (1993). The seedlings of Carex acuta will be grown 

in the soil from study site. When the seedlings are big enough, they will be transplanted into 

the PVC containers (5 x 5 x 15 cm) provided by air inlet tubing at the top and air tubing at 

the bottom. Containers will be filled with soil from the study site. The labelling apparatus 

will be organised according to Cheng et al. (1993), as the Fig.1 shows. 
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Fig.1. Equipment setting for 14C pulse labelling of plant shoots respiration and tracing of 

below-ground 14CO2 evolution (according to Cheng et al., 1993). 

 

The treatment will be: (i) soil with glucose solution addition, (ii) soil with deionized 

water addition, (iii) soil with fertiliser addition and (iv) the variant with higher water level. 

The temperature of air in containers will be maintained constantly at 22°C in all variants. The 

measurement will be done five times in each variant of treatment.  

(i – ii) Glucose (or deionized water as a control variant) will be added 1 hour before pulse 

labelling. Glucose will be added in order to restrict microbial consumption of labelled 

assimilates released by roots. It will cause preferential use of unlabelled glucose by microbes 

and therefore 14CO2 flux from the soil should originate in root respiration. RMR is partially 

included in RR measurement, because organisms living in the rhizosphere consume root 

exudates and subsequently respire also labelled 14CO2. Roots are independent on the 

unlabelled glucose addition. 

(iii) Ten plants of Carex acuta will be grown in fertilised soil. The NPK solution will be 

added regularly during watering of experimental plants.  

(iv) Water level will be maintained just on the soil surface in containers for the fourth 

treatment variant of mesocosm experiment. 
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  Each container with plant will be sealed with the mixture of vaseline and paraffin in 

order to sealed containers will be a closed systems. The separation of soil respiration from 

shoots respiration will be done in this way. Air flow will be maintained at the rate of 50 cm3 

min-1. Labelled CO2 will be added in form of NaH14CO3 solution injected into the flask with 

acid. After NaH14CO3 injection to the flask CO2 will be released to the inner atmosphere of 

the chamber. 10-min pulse labelling of experimental plants will be done.  

The incubation time after labelling will be 30 minutes. After that 14CO2 evolved from 

container will be trapped by continually pumping room air (50 cm3 min-1 flow rate). The air 

will pass through the ethanolamine scintilation mixture. Scintilation mixture will be changed 

each 10 min. 14CO2 released from containers will be measured 5 hours continually. Counting 

will be provided directly by liquid scintillation counter (Beckman LS 3801). After 

measurement will be done, soil will be removed from the containers. Soluble 14C in the soil 

will be extracted in 0,5M K2SO4 solution. Radioactivity will be measured via liquid 

scintillation counting. Remaining roots and shoots will be washed in tap water and oven-

dried at 70°C. All root and shoot samples will be pulverized in a ball mill and subsequently 

radioactivity analysis will be provided by liquid scintillation after combusting in an OX-300 

Biological Oxidizer. The amounts of labelled carbon in soil, roots, shoots and air in the 

chamber will be summarized and will give a scheme of carbon balance. 

4.3   Time schedule 

 

 2012 2013 2014 2015 

Field experiment 
preparation 

                

CO2 measurement in the 
field 

                

Data from field 
experiment evaluation 

                

Mesocosm experiment 
preparation 

                

Mesocosm experiment 
measurement 

                

Data from mesocosm 
experiment evaluation 

                
 

Results presentation                 
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4.4   Finances 

 
Consumables: material for analyses – chemicals (glucose, NaH14CO3, K2SO4, vaseline and 

paraffin), laboratory equipment, equipment for field work, pots, seeds 

Salary expenses: salary of the half-time employer and people who will help with sampling 

and analyses 

Overhead: is set as 15% from all consumables and salary expenses 

Travel expenses: traveling to the study site and sample transport, travel expenses for 

participation in conference  

Services: expenses for company, which will make field chambers, pots and chamber costs 

for mesocosm experiment, equipment repairs, posters printing, conference fees 

5 Expected research results 
The major impact of the project will include: 

o New information about the microbial and plant respiration rates in wetland soil and 

quantification of C fluxes through plant and soil.  

o Assessment of eutrophication effect on soil respiration in wetland soil.  

o Evaluation of water level effect on soil respiration in wetland soil. 

 

The results should increase our knowledge about carbon cycling through plants and 

microorganisms in soil. This information will allow us to calculate total carbon balance of 

the whole ecosystem and to follow C fluxes (like C assimilation, exudation, respiration etc.) 

through ecosystem components (vegetation, microorganisms, soil). The project will also 

have practical implication regarding wetland management in order to maintain wetlands as 

carbon pool. 

 

 2012 
(thousands CZK) 

2013 
(thousands CZK) 

2014 
(thousands CZK) 

2015 
(thousands CZK) 

Consumables 100 100 100 250 
Salary expenses 100 100 100 100 

Overhead 30 30 30 60 
Travel expenses 10 10 10 30 

Services 10 5 200 50 
Total/year  250 245 440 490 

Total 1 425 
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