
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

RATING LOG EVENTS USING REPUTATION
AND ANOMALY SCORES
VYUŽITÍ REPUTAČNÍHO SKÓRE A SKÓRE ANOMÁLIÍ PRO HODNOCENÍ UDÁLOSTÍ

V LOGOVACÍCH SOUBORECH

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. JAN ZBOŘIL
AUTOR PRÁCE

SUPERVISOR doc. Ing. PETR MATOUŠEK, Ph.D., M.A.
VEDOUCÍ PRÁCE

BRNO 2024

Institut: Department of Information Systems (DIFS)

Student: Zbořil Jan, Bc.

Programme: Information Technology and Artificial Intelligence

Specialization: Computer Networks

Category: Networking

Academic year: 2023/24

Assignment:

1. Get familiar with methods for computing reputation and anomaly scores of network nodes. Based on
your literature research and log files observation, choose log event attributes which are suitable for
computing these scores.

2. Based on your supervisor's recommendation, analyze available log datasets. Pre-process log events
into the form suitable for score computation.

3. Propose and implement functions for calculating an anomaly score and a reputation score of
network nodes. Select a way how to set attribute weights in the scoring function.

4. Implement a reputation system with long-term computation of a reputation score and an anomaly
score based on retrieved log events.

5. Validate your results with respect to other reputation systems, e.g., CESNET Nerd, Cisco Talos, etc.
6. Demonstrate on real data how calculated scores can be employed in log events rating in order to

reduce false alarms.

Literature:
• Dulaunoy, A., Wagener, G., Iklody, A., Mokaddem, S., & Wagner, C. An indicator scoring method

for misp platforms. In The Networking Conference TNC (Vol. 18), 2018.
• Bartoš, V., Žádník, M, Habib, E.S., Vasilomanolakis, E: Network entity characterization and attack

prediction, Future Generation Computer Systems, Volume 97, 2019, ISSN 0167-739X.
• Bartoš, V.: Reputation score, dokumentace k systému NERD dostupná na URL

https://github.com/CESNET/NERD/wiki/Reputation-score [srpen 2023].
• Henriques, J.; Caldeira, F.; Cruz, T.; Simões, P. Combining K-Means and XGBoost Models for

Anomaly Detection Using Log Datasets. Electronics, 2020, 9, 1164.
• Mehta, S., Kothuri, P., Garcia, D.L.: Anomaly Detection for Network Connection Logs, 2018,

1812.01941, arXiv.
• Catillo, M., Pecchia, A., Villano, U.: AutoLog: Anomaly detection by deep autoencoding of system

logs, Expert Systems with Applications, Volume 191, 2022,
116263, ISSN 0957-4174.

Requirements for the semestral defence:
Point 1 to 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Matoušek Petr, doc. Ing., Ph.D., M.A.

Head of Department: Kolář Dušan, doc. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 17.5.2024

Approval date: 30.10.2023

Master's Thesis Assignment
154624

Rating Log Events using Reputation and Anomaly ScoresTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
The current amount of data flowing through computer networks cannot be monitored by
individuals. This data is also being saved by IDS or IPS systems to logs, which grow ever
faster. The goal is thus to automatically reduce the amount of such logs, for them to contain
only the most valuable information. Rating scores, such as anomaly score or a reputation
scores, are valid metrics for determining whether the information (i.e., log event) is valuable
or not.

The goal of this thesis is to explore the current state of methods used for anomaly
detection and reputation scoring. And to propose a solution on how to use data captured
in the logs of network analysers like Suricata to detect anomalies in the traffic and score
network nodes. A complete solution from data processing, scoring using methods for com-
putation of reputation score and anomaly detection, and result interpretation, is developed
and demonstrated on real-world data. A way of reducing the amount of log events by using
the calculated scores is demonstrated. A resulting method of combining both scores to
automatically rate the log events is demonstrated and explained on examples of the real
scored data. Possible future uses of the results are discussed.

Abstrakt
Pro administrátory, bezpečnostní inženýry a síťové experty je nemožné sledovat současné
množství dat proudící v počítačových sítích. Komplexní systémy jako IDS nebo IPS jsou
navrženy tak, aby kromě své primární funkce také ukládaly síťový provoz. Cílem této práce
je automaticky redukovat počet záznamů v lozích generovaných těmito systémy tak, aby
obsahovaly pouze nejdůležitější informace. Anomální a reputační skóre představují metriky
pro rozhodování tohoto problému - zda je záznam v logu důležitý či nikoliv.

Cílem práce je prozkoumat současný stav metod běžně používaných pro tyto účely
a navrhnout řešení, jak využít data síťových analyzátorů, jako je Suricata, k detekci anomálií
v provozu a ohodnocení reputace síťových uzlů. Je vyvinuto kompletní řešení od zpracování
dat, výpočtu skóre, redukce velikosti logů výběrem důležitých záznamů, a interpretace
výsledků. Řešení je demonstrováno na reálných datech. Jsou diskutovány možnosti využití
výsledků a použitých metod, jejich možné vylepšení a možné rozšíření v budoucích pracech.

Keywords
anomaly detection, PCA, Principal Component Analysis, reputation score, network traffic
logs

Klíčová slova
detekce anomálíí, PCA, Analýza hlavních komponent, reputační skóre, logy síťového provozu

Reference
ZBOŘIL, Jan. Rating Log Events using Reputation
and Anomaly Scores. Brno, 2024. Master’s thesis. Brno University of Technology, Faculty
of Information Technology. Supervisor doc. Ing. Petr Matoušek, Ph.D., M.A.

Rozšířený abstrakt
V dnešních počítačových sítích proudí větší množství dat než kdykoliv předtím. Zatímco při
dřívějších objemech dat bylo možné síťový provoz zkoumat buď manuálně, nebo s použitím
jednoduchých skriptů nebo analyzátorů, dnes je nutné data agregovat, filtrovat a admi-
nistrátorům zpřístupnit jen ucelené shrnující informace nebo jen ty nejdůležitější informace
v plné podobě.

Síťové monitorovací systémy typu IDS nebo IPS nemohou detekovaný provoz agregovat
a vytvářet statistiky bez ukládání – logování – celého provozu. Tyto logy jsou pak cenným
zdrojem kompletních informací i pro jiné účely. V této práci je využité právě záznamů
v lozích generovaných nástrojem Suricata.

Práce navrhuje metodu redukce logů síťového provozu pomocí kombinace metody pro
detekci anomálií v síťovém provozu a metody pro výpočet reputace síťových uzlů. V teo-
retických kapitolách představuje problematiku anomálií v síťovém provozu, jejich dělení dle
současné literatury a různé metody používané pro jejich detekci. Podrobněji je popsána
Analýza hlavních komponent (Principal Component Analysis, PCA). Tato metoda se řadí
mezi statistické metody pro detekci anomálií. V práci je vysvětlen její matematický základ
a způsoby použití. Práce poté představuje proces převodu detekovaných anomálií na číselné
skóre.

Následuje pojednání o reputačních systémech. Před samotným vysvětlením jejich funkci-
onality se diplomová práce věnuje pojmům důvěra a důvěryhodnost, jelikož představují
základní premisu na níž se reputační systémy zakládají. Rozvedena je myšlenka použití
zmíněných pojmů v on-line prostředí. Kapitola o reputačních systémech následně popisuje
základní prerekvizity pro vytvoření funkčního systému, běžně používané architektury a ko-
munikaci v rámci reputačního sytému, jež má svá opodstatněná specifika oproti jiných
systémům.

Mnoho konkrétních případů využití různých metod pro detekci anomálií a výpočtu rep-
utačního skóre je představeno v kapitole o souvisejících pracích. U každého z představených
článků je metoda zhodnocena a deklarováno případné využití znalostí či inspirace daným
článkem v rámci této diplomové práce.

Pro zjištění, kterou metodu použít pro výpočet skóre, a které hodnoty obsažené ve
vstupních logovacích souborech jsou vhodné pro zpracování, byla vyhotovena analýza dos-
tupného datové sady. Jedná se o data skládající se z rozšířených NetFlow záznamů ve
formátu EVE JSON1. Data byla generována ze síťového provozu na Fakultě informačních
technologií Vysokého učení technického v Brně po dobu tří měsíců na přelomu roků 2022
a 2023. V analýze bylo poukázáno na nejčastěji se vyskytující vzory v chování a zajímavé
aspekty chování některých stanic (IP adres). Byly popsány a dále demonstrovány datové
záznamy vhodné pro další zpracování.

Před samotným výpočtem obou skóre a ohodnocením logů proběhlo předzpracování
logů ze systému Suricata tak, aby byla data vhodná pro později použité metody. Data
podstoupila proces výběru vhodných dimenzí, převod z kategorických dat na numerická
a normalizaci do intervalu <0,1>.

Popisu konkrétní implementace detekce anomálií pomocí metody učení bez učitele PCA
a automatickému zvolení prahové hodnoty se věnuje kapitola o implementaci řešení. Byly
navrženy a popsány dvě metody využívající PCA pro detekci anomálií. Jedna z nich, za-
ložená na rozdělení vstupní datové sady podle časové značky jednotlivých záznamů, byla

1Suricata EVE JSON format - https://docs.suricata.io/en/latest/output/eve/eve-json-output.html, ac-
cessed [2024-03-02]

https://docs.suricata.io/en/latest/output/eve/eve-json-output.html

dále použitá pro hodnocení logovacích záznamů podle vypočítaného skóre. V rámci této
metody je popsána kompletní metodika od výběru odlehlých bodů pro pozdější ověření
spolehlivosti metody, přes rozdělení datové sady na trénovací a testovací část, proces učení
modelu, iterativní hledání nejlepšího prahu, až po demonstraci výsledků pro zvolené ex-
perimentální logy. Následuje popis procesu ohodnocení logovacích událostí pomocí vypočí-
taného skóre a demonstrace procesu redukce velikosti původních logů.

V práci je popsána implementace metody výpočtu reputačního skóre včetně všech
matematických vzorců. Je popsán proces volby vhodných dat z originálních logů systému
Suricata. Každý výpočet je odůvodněn - proč je využitý, a jak se jeho zahrnutí do celkového
výpočtu reputačního skóre promítá do koncového skóre.

Práce je zakončená pojednáním o provedených experimentech s výslednými logovacími
soubory zmenšenými o nezajímavé záznamy. K rozhodnutí, zda je záznam důležitý nebo ne,
bylo rozhodnuto právě pomocí anomálního a reputačního skóre pro každou IP adresu. Do
práce je zahrnuto vysvětlení průběhu obou skóre v čase a jejich vzájemné závislosti. Jsou
popsány záznamy ohodnocené jako anomální spolu s odůvodněním, proč je model právě
takto označil. Následuje porovnání vytvořeného řešení s již existujícími programy a návrh
na budoucí možná rošíření práce či její uplatnění.

Výsledkem práce je vytvořený proces ohodnocení záznamů a redukce záznamů originál-
ních logů systému Suricata pomocí dvou skóre pro každou zdrojovou IP adresu – anomál-
ního a reputačního. Obě skóre se mění v čase v závislosti na síťovém provozu vykazovaném
každou konkrétní IP adresou.

Rating Log Events using Reputation
and Anomaly Scores

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by me, the
author, under the supervision of doc. Ing. Petr Matoušek, Ph.D., M.A. I have listed all the
literary sources, publications and other sources, which were used during the preparation of
this thesis.

. .
Jan Zbořil

May 15, 2024

Acknowledgements
For those, who were with me and no longer are.

Contents

1 Introduction 3

2 Introduction to Anomaly Detection and Scoring 5
2.1 Anomalies in network traffic . 5

2.1.1 Traffic Anomaly Types . 6
2.2 Detection methods . 7

2.2.1 Statistical Methods . 7
2.2.2 Principal Component Analysis . 8
2.2.3 Other Methods for Anomaly Detection from Logs 10
2.2.4 Choosing a Method . 11

2.3 Anomaly Scoring . 11
2.4 Anomaly Detection Related Work . 11

2.4.1 K-Means and XGBoost Models . 11
2.4.2 K-Prototype and K-Nearest Neighbours 12
2.4.3 k-NN, Isolation Forests, Local Outlier Factor 13
2.4.4 Deep Autoencoder . 14
2.4.5 DBSCAN . 15
2.4.6 Survey on Network Anomaly Detection 15

2.5 Summary . 16

3 Introduction to Reputation Systems 17
3.1 Trust in a Real Life Scenarios . 17
3.2 Trust in Online World . 18

3.2.1 Systems for User Ratings . 18
3.3 Reputation systems . 20

3.3.1 Architecture of Reputation Systems 21
3.3.2 Communication in Reputation Systems 22
3.3.3 Examples of Reputation Systems . 23

3.4 Summary . 26

4 Dataset Analysis 27
4.1 Introduction to the Dataset . 27

4.1.1 EVE JSON logs . 27
4.1.2 Statistical Logs . 28
4.1.3 Suricata Syslog . 28

4.2 Data Exploration . 29
4.2.1 Flow Event Type . 32
4.2.2 MQTT Event Type . 33

1

4.2.3 DNS Event Type . 34
4.2.4 TLS and HTTP Event Types . 35
4.2.5 Anomaly and Alert Event Type . 35
4.2.6 Grouping by IP Adresses . 37

4.3 Summary . 40

5 Design of a System for Anomaly and Reputation Scoring 41
5.1 Anomaly Detection . 41

5.1.1 Data Preprocessing for Anomaly Detection 41
5.1.2 Categorical Data Transformation and Normalization for Anomaly De-

tection . 46
5.1.3 Scoring Method for Anomaly Detection 47
5.1.4 Log Size Reduction Using Anomaly Score 53

5.2 Scoring Method for Reputation . 53
5.2.1 Data Pre-processing for Reputation Scoring 53
5.2.2 Daily Reputation Scoring . 54
5.2.3 Overall Reputation Scoring . 57

5.3 Flow of Data After Scoring . 58
5.4 Summary . 60

6 Experiments and Discussion 61
6.1 Validating Reputation Score Against Existing Solutions 61
6.2 On Changes of the Reputation Score in Time 63
6.3 On Anomalies Found in Reduced Logs . 66
6.4 On Correlation Between Anomalies and Reputation 69
6.5 Using Reputation Score to Enhance Reduced Logs 70
6.6 Performance Testing . 73
6.7 Environment Preparations . 75
6.8 Summary . 77

7 Future Work and Conclusion 78
7.1 Future Work . 78
7.2 Conclusion . 79

Bibliography 80

A Contents of the included storage media 85

2

Chapter 1

Introduction

In these days, the amount of data sent across computer networks is larger than ever. Net-
work engineers, system administrators and security personnel can no longer manually pro-
cess quantity of data, and thus rely more on various software solutions including intrusion
detection systems (IDS), intrusion prevention systems (IPS), next generation firewalls, and
other kinds of network analysers and threat detectors.

The use of such solutions and the computation capabilities of modern hardware enable
us to develop more intriguing solutions which help the aforementioned personnel to better
comprehend data presented to them, better visualize it, or show previously hidden patterns
and connections in the data. This understanding in turn leads to better management,
design, and security of the managed networks. The modern software solutions not only
produces alerts, but also generate very informative logs in semi-standardized format. These
logs can be simple records of a system operation, or detailed records showing all information
the system used to perform its tasks.

This thesis utilizes the detailed traffic logs of a Suricata system1 to perform anomaly
detection and to calculate reputation rating score for IP endpoints detected in traffic flowing
through the Suricata instance. The goal of this thesis is to rate events generated by Suricata
based on an anomaly score and a reputation score computed from the data present in
Suricata logs. The anomaly score can be used to choose only events diverging from the
usual network traffic. Such selection can greatly reduce the number of events from an
amount, which could not be manually inspected by a human administrator, to a feasible
number of events to monitor. The analysis of this anomalous events can be made easier by
matching these events with a reputation score. If an anomalous event presents itself with
a good reputation score, it represents a low severity event for an administrator. However,
if an anomaly event has a negative reputation, then an administrator should be concerned
with such an event.

Means to reach the specified goal include an analysis of available data, its preprocessing,
anomaly detection using a Principal Component Analysis method. Results of anomaly
scoring are then matched against the original logs to select only the anomalous events.
Reputation score is calculated by a custom method and matched to anomalous events.

This work is organized as follows. Chapter 2 explains concepts of anomalies in network
traffic, why are computer scientist interested in them and what useful information they pro-
vide, together with currently known means to detect them. Methods for anomaly detection
and related work in this field are presented in the chapter. Chapter 3 talks about trust

1Suricata IDS: https://suricata.io, accessed [2024-01-20]

3

https://suricata.io

and reputation in online environments, as well as in the real world. It explains differences
and similarities between them and shows the principles of modern network reputation sys-
tems. Examples of real world reputation systems are shown for demonstration. Chapter 4
explores the dataset of the Suricata IDS logs available for purposes of this thesis. It points
to interesting data patterns and vindicates the choices made for feature extraction. Chap-
ter 5 talks about proposed system architecture, its capabilities and methods used to process
data, detect anomalies and rate network nodes. It renders real world results obtained by
applying methods to an example dataset. Experiments showing the application of achieved
result are presented in Chapter 6. It discusses the achieved results, ways of utilising both
the anomaly and reputation scores to score the log events, comparison of calculated repu-
tation score to state-of-the-art systems, contribution of this thesis to the current research
space, and proposes possibilities of future research in the area of anomaly detection and
reputation scoring. The final Chapter 7 summarizes the work done in scope of the master’s
thesis.

4

Chapter 2

Introduction to Anomaly
Detection and Scoring

The objective of this chapter is to provide the reader with an introduction to the problematic
of rating nodes in a network through analysing their behaviour. It defines terms anomaly,
and anomaly score. It explains methods and procedures used in the real world to detect
anomalies, and which are used for anomaly scoring in this thesis. In Section 2.1, the term
anomaly and its various understandings are explained. Section 2.2 talks about various
methods used for anomaly detection.

2.1 Anomalies in network traffic
In order to detect anomalies, one must first understand the term anomaly. The term
itself is not concretely defined. In the work of Fernandez et al. [20], multiple definitions
are listed: Anomaly is “an observation (or a subset of observations) which appears to be
inconsistent with the remainder of that set of data, “patterns in data not conforming to
a well-defined notion of normal behaviour, anomalies are unusual and significant changes
in a network’s traffic levels, which can often span multiple links, non-conforming interesting
patterns compared to the well-defined notion of normal behaviour. In [35], an anomaly is
a deviation from the expected (normal, regular) state or behaviour. In some studies [48],
researchers considers attacks to be anomalous and a non-attack behaviour not conforming
to normal state as non-anomalous.

In the context of thesis, an anomaly is a deviation from the expected (normal, regular)
state or behaviour. It is not differentiated between a malicious or non-malicious traffic,
but between a normal state and deviations from this normal state. A downside of this
approach is that genuine traffic with low periodicity may be tagged as anomalous. This
can happen, for example, if we have traffic records for university information system with
baseline created during summer and students then register to courses at the beginning of
September. The anomaly detection system can flag this traffic as anomalous when compared
to the baseline computed during the summer, although the students’ registration represents
non-malicious traffic.

5

2.1.1 Traffic Anomaly Types

In his survey, Fernandez et al. [20] say that there are many types of network anomalies.
Networks anomalies can be separated into two main categories: a) by their nature, and b)
by their causal aspect.

Anomaly Nature Based Categorization

Categorization based on nature of anomalies relies on the way how they are characterized.
It uses the context of a point in its dataset to determine the anomalousness of such a point.
Detection methods which search for nature based anomalies are not concerned with outer
sources, causes of the anomalies, nor intents of the original sender of the data.

These anomalies can be separated in three subcategories: a) point anomalies, b) collec-
tive anomalies, and c) contextual anomalies:

a) Point anomalies are the fundamental ones. A data point becomes a point anomaly, if
its values significantly differs from the rest of points included in a dataset.

b) a collective anomaly consists of a group of data deviating from a normal state. If only
one of the data point in the group is taken in account, it is not considered anoma-
lous. However, repeated occurrences of the same point anomaly can be considered
a contextual anomaly.

c) a contextual anomaly is considered anomalous based on the state of a system. For
detection of contextual anomalies, two sets of data are needed. One of the sets
defines a context in which anomalies are to be detected (e.g., time series of normal
behaviour during a day). The other set consists of data points to be examined for
presence of anomalies (e.g., data collected in one day, to be matched against the
normal behaviour).

Anomaly Causal Aspect Based Categorization

As the category name implies, this categorization relies on the cause of the anomalies. It
also distinguishes between malicious and non-malicious intents. Because not all anoma-
lous points are representants of an attack, they can be grouped into categories [4]: a)
operational/misconfiguration/failure events, b) flash crowd/legitimate but abnormal use,
c) measurement anomalies, d) network abuse anomalies/malicious attacks:

a) These are non-malicious events, typically caused by hardware or software failure,
bugs, human errors, bad configurations, or non-sufficient system resources.

b) Flash crowds are large floods in traffic, which occur when rapid growth of users
attempts to access a specific network resource, causing a dramatic surge in server
load [20]. They occur when more users access a network resource than the resource
can handle. The course registration example is a legitimate but abnormal use.

c) Measurement are caused by problem during data collection, resulting in a skewed or
missing baseline data.

d) Network abuse anomalies are anomalies caused by malicious intents of original data
senders. They seek to disrupt, destroy or deny network devices, servers, and other
resources. They are threats trying to perform a security incident or breach.

6

2.2 Detection methods
Currently, many methods for anomaly detection are used. It cannot be said which method
is the best, as all of them have an optimal use case and are targeted to be used in different
scenarios.

Popular methods and algorithms for anomaly detection includes [20, 34]:

• Statistical methods commonly apply probabilistic models. Examples are: Wavelet
Analysis, Principal Component Analysis, Hidden Markov Models, etc.

• Clustering methods group objects into distinct clusters of object based on their sim-
ilar behaviours or attributes. Examples are: K-means, DBSCAN, BIRCH, Gaussian
Mixture Model, etc.

• Finite state machine methods use a finite automata model of computation to model
a network behaviour.

• Classification-based methods use machine learning to classify traffic as anomalous or
not anomalous. Examples are: naive Bayesian, Support Vector Machines, Neural
Networks, K-nearest Neighbours, Decision Trees, etc.

• Evolutionary computation methods are inspired by biology. Examples are: Particle
Swarm Optimization, Artificial Immune Systems, Genetic Programming, etc.

• Hybrid methods combine previously mentioned methods or their parts to create new
anomaly detection systems.

Although all listed methods can be used to detect anomalies from system logs, next
sections talk primarily about statistical methods. Other methods are then described briefly.
This is done because of the author’s familiarity with these methods, and due to statistical
methods being tested and proved to be working by many researches (see Section 2.4). This
is also a reason for choosing a statistical method for anomaly detection in this thesis.

2.2.1 Statistical Methods

Statistical methods rely on probabilistic methods to define normal network behaviour.
When using these methods, an anomaly generally does not mean a detected attack. These
methods detect changes in traffic, whether it is an attack or not. Most methods define
a hard threshold to separate anomalous data point and the normal ones. The main concern
when using statistical methods is how to determine the optimal values of the threshold for
a model in order not to produce unsatisfying amount of false positives [20].

Statistical (and others) methods can process diverse kinds of input data formats and
sources such as IP flow [24], NetFlow [31], Firewall and IDS logs [14], TCP dump [57],
SNMP [41], system logs, etc. Validation metric is also not standardized, and lots of re-
searchers use different ones. Metrics range from packet count, through false positive rate,
recall scores, correlation coefficients, to linear regression [20].

Advantages of statistical methods include intrinsic capability to detect anomalies better
than other methods, ability to adapt and learn the expected behaviour of a network. They
do not need any priori information about the environment [20].

Disadvantages include a possibility for an attack to be included in the training data and,
as such, the model learns its pattern as the normal state of a network. Statistical models

7

often require a significant portion of time for their training, as well as plenty of training
data coming from the tested system before they reach operationality. A static quality of
the threshold may not yield satisfactory results in the real world, where conditions often
change.

The fact that these methods cannot distinguish between reasons for changes in traffic
data, and thus, cannot differentiate attack from an increased amount of non-malicious traffic
can be considered both advantage or disadvantage, depending on the desired outcome.

2.2.2 Principal Component Analysis

With its invention in 1906 by Karl Pearson [32], the Principal Component Analysis (PCA)
is one of the oldest and widely used method to drastically reduce datasets dimensionality
while most original information is preserved [26]. The PCA method achieves this by deriving
new uncorrelated variables which maximize variance from the original dataset. These new
variables are called Principal Components. The lossy nature of PCA can be used to detect
anomalies in network traffic. The reduced variance of a PCA model fitted to normal data
points cannot explain some outlier values, and thus they can be marked as anomalous.

Mathematical explanation of PCA

Assume dataset 𝐷 with 𝑝 numerical dimensions and 𝑛 total observation. This data can be
represented by 𝑛×𝑝 matrix X or 𝑛 observation vectors 𝑥1, . . . , 𝑥𝑝. The PCA methods aims
to find linear combinations of X having the maximal possible variance. These combinations
are calculated by

∑︀𝑝
𝑗=1 𝑎𝑗x𝑗 = Xa, where vector a is a vector of constants 𝑎1, . . . , 𝑎𝑝. The

variance of a combination is then given by 𝑣𝑎𝑟(Xa) = a′Sa, where a′ is a transposed vector
a and S is a covariance matrix of the dataset. The solution thus lays in maximizing the
a′Sa by finding optimal values of vector a.

Requiring the vectors to be unit-norm is necessary for finding a well-defined solution.
Thus, the maximizing of a′Sa can be rewritten as a′Sa−𝜆(a′a− 1), where 𝜆 is a Lagrange
multiplier. After differentiation of a′Sa−𝜆(a′a−1) = 0 with respect to a, we get Sa−𝜆a =
0 ⇔ Sa = 𝜆a. It can be deducted, that a must be an eigenvector and 𝜆 the eigenvalue of
covariance matrix S.

With matrix S shape being 𝑝× 𝑝, it has 𝑝 eigenvalues 𝜆1, 𝜆2, . . . , 𝜆𝑝. Their eigenvectors
can be defined to form an orthonormal set of vectors. It can be shown with Lagrange
multiplier method, that a set of eigenvectors of a matrix S is the solution to getting 𝑝 new
combinations Xa𝑘 =

∑︀𝑝
𝑗=1 𝑎𝑗𝑘x𝑗 , which are uncorrelated with previous linear combinations.

These linear combinations Xa𝑘 are named principal components of the original dataset 𝐷.
Values of vector Xa𝑘 are called PC score and values of eigenvectors a𝑘 are called PC
loadings [26].

When the resulting linear combinations are sorted in descending order by their corre-
sponding eigenvalues, then the first component explains the most variance of the original
data, while each next principal component explains less variance. Ratio of explained vari-
ance 𝑉XAk

of a principal component XAk can be obtained by calculating (2.1).

𝑉XAk
=

𝜆𝑘∑︀𝑝
𝑗=1 𝜆𝑗

. (2.1)

Dimensionality reduction of the original dataset is performed by keeping only a prede-
fined number of components with greatest explained variance.

8

PCA for anomaly detection

The first few principal components contain most information and explain the biggest per-
centage of a data sample variance. They are strongly related to features having large
variances [48]. This means that most data samples in the original dataset have their values
explainable by the first components. The outliers in these components normally match to
outliers in some dimension of the original data.

The last principal components, e.g., those with lowest amount of explained variance,
usually have vastly different values for data points, which are anomalous in regard to
the correlation in the original dataset. These anomalies represent more subtle anomalies,
which cannot be detected using the major principal components. If most of the variance
of a sample is explained by the latter components, then that sample is suspected to be an
outlier [48].

Shyu et al. [48] proposed anomaly detection based on the aforementioned criteria. First,
they calculated the PCA components, scores, eigenvectors, and eigenvalues. They then
classified a data point as anomalous when it matched Equation (2.2). A data point was
considered normal if it fulfilled conditions in (2.3):

𝑞∑︁
𝑖=1

𝑦2𝑖
𝜆𝑖

> 𝑐1 ∨
𝑝∑︁

𝑖=𝑝−𝑟+1

𝑦2𝑖
𝜆𝑖

> 𝑐2 (2.2)

𝑞∑︁
𝑖=1

𝑦2𝑖
𝜆𝑖
≤ 𝑐1 ∧

𝑝∑︁
𝑖=𝑝−𝑟+1

𝑦2𝑖
𝜆𝑖
≤ 𝑐2 (2.3)

where 𝑐1, 𝑐2 are predefined thresholds, 𝑦𝑖 is the PC score of a component 𝑖 and 𝑙𝑎𝑚𝑏𝑑𝑎𝑖
is the eigenvalue of a component 𝑖.

Jeff Prosise proposed a method based on the inherent data loss when transforming
a dataset to a PCA reduced form with less dimensionality [42]. The PCA transformation
to lower number of dimensions is reversible, although a reverse-transformed dataset is only
an approximation of the original one. One can thus first apply PCA on the dataset, and
subsequently apply reverse transform on the reverse dataset. The loss of information be-
tween the original dataset and reverse transformed dataset (accuracy) is tight to a number
of PCA components used and ratio of explained variance. The outlier data points should
exhibit a larger values of loss, since the PCA model cannot keep as much information
about such data point. This is caused by the low amount of explained variance of the
major components, and on the other hand, a high mount of explained variance of the minor
ones.

Prosise calculates the loss of information between normal and transformed data point
using mean square error method. The hard decision whether a point is anomalous is made
by comparing the loss value and a predefined threshold. Threshold can be set manually
based on an educated guess, or it can be based on other researches. A threshold finding
algorithm can be used if the data is labelled or pseudo-labelled.

Mahalanobis distance

Because of the vulnerability of PCA to outliers in training data, it is necessary to remove
such data points from the training dataset. A metric is needed to separate between normal
and outlier data. While many distances like Euclidean distance or Canberra metric are
often used for measuring similarity between points, the Mahalanobis distance represents

9

a distance between two points in multivariate space. This feature is exploited for outlier
detection, because datasets normally contain multiple dimensions which can be, and often
are, correlated [50].

The Mahalanobis distance measures the distance between a point and a statistical distri-
bution while taking into account correlations between variables in the dataset. It represents
a distance between a (generally multidimensional) point 𝑥, and a distribution with the mean
vector of a distribution 𝜇 and covariance matrix S. The general formula for calculating
Mahalanobis distance is:

𝐷2 = (𝑥− 𝜇)𝑇S−1(𝑥− 𝜇) (2.4)

where 𝐷2 is squared Mahalanobis distance, S−1 is an inverse covariance matrix of a data
distribution and 𝑇 represents a transposition.

Mahalanobis distance can be applied on dataset extracted from log files which is not
labelled. A subset of such dataset, consisting of records with the highest Mahalanobis
distance relative to the rest of it, can be proclaimed to contain outlier records. The equation
and facts provided in this section are taken from [19].

2.2.3 Other Methods for Anomaly Detection from Logs

Methods for anomaly detection from system logs vary primarily by the means of extraction
of features from the logs and the nature of such selected features. If individual features,
which can be represented by a number or a character string, are extracted from the logs,
then clustering methods, or statistical methods are often used. Clustering methods can be
used in conjunction with decision trees algorithms to improve the overall efficiency of an
algorithm.

Clustering

Clustering methods can be used to group log events based on the proximity of data point
to each other. The proximity is measured by a distance (Euclidean, Mahalanobis). Normal
events should all be grouped into a large cluster, while the anomalous points too different to
be a part of a normal cluster are either grouped together into a smaller cluster, or scattered
around the normal cluster. Events in the smaller cluster can be declared anomalous or be
subject to further examination [25].

Decision Trees

Decision trees, an example of a supervised learning method, create a tree of decision nodes
and solution leaves. A data point is classified by traversing the decision nodes from the root
of a tree until it reaches one of the leaves with the final class. Tree boosting algorithms use
an additive model to build multiple trees in order to build a final decision forest iteratively.

Autoencoders

Another method for feature extraction is to parse individual log lines into chunks of uniform
length and tokenizing these chunks into terms. In [15], authors counted the number of
individual terms in chunks and developed a method to score a chunk based on the number
of terms in it. These scores form a normative baseline of the autoencoder, a form of
feedforward neural network where the output layer has the same dimension as the input

10

layer. After the learning phase, an autoencoder is able to threshold reconstructed scores
on its output, and thus differentiate between anomalous and normal log chunks. Chunks
not included in the baseline cannot be restored by the autoencoder, so they achieve a large
reconstruction error rate.

DBSCAN

Both the tokenization of log records and extraction of features can be used simultaneously.
Alghamdi et al. [1] used the tokenized values as another dimensions together with extracted
features to train DBSCAN clustering algorithm. They do not use the resulting clusters for
anomaly detection, but for further processing, pattern extraction and behavioural analysis.

2.2.4 Choosing a Method

An important factor for method choosing is the availability of annotated datasets. When
having access to an annotated dataset with correctly assigned labels, researchers usually
select from supervised learning methods, like in [52]. On the other hand, if researches study
real life data without labels, they must either use semi-supervises methods, like Catillo et
al. [15] did, or unsupervised methods, which were used by Mehta et al. in [36].

2.3 Anomaly Scoring
The act of anomaly scoring tries to express the anomalies detected by aforementioned
methods via a numeric value. These values can be derived from various numbers available
after the detection. a relative number, e.g. ratio between count of anomalous point in
a dataset and a total dataset size, can server as a score.

When using machine learning methods for detection, metrics and scoring described
in [44] can be used to both rate the success of anomaly classifiers, and to compute anomaly
scores and perceived confidence in the detection. These methods include Confusion matri-
ces, F1 scores, Recall, Precision, etc.

If a result of the scoring method can be represented as a number, such metric can serve as
the final score. In case the value does not fall into the interval <0,1>, then a normalization
might prove useful. A normalized score can also be represented as a percentage. Whether
a score of 1 or 100 % means a totally anomalous event or an event with no anomalies
depends on the intention of an author.

2.4 Anomaly Detection Related Work
Many works were created to solve the problem of anomaly detection. The vast amount
of existing papers show that there is not a single solution for this task. This is given by
a diverse nature of both input data and desired results presented in the research. This
section provides a brief look into possible solutions used today.

2.4.1 K-Means and XGBoost Models

João Henriques [25] with his colleagues used the K-Means method and the gradient tree
boosting algorithm XGBoost for anomaly detection in a dataset of HTTP traffic, which is

11

not annotated. The dataset used is the NASA-HTTP dataset1. For the use of unlabelled
dataset, authors decided to work with unsupervised methods.

They first used K-Means clustering method to separate HTTP records into binary cat-
egories (normal/anomalous). Then they utilised the gradient tree boosting algorithm XG-
Boost to generate a decision tree which allows to quickly categorize new incoming data.

Given the large size of the data, they decided to first extract features of the HTTP
logs. These are day, month, year, hour, minute, second, operation, page, method, day of
week, IP address, length, and response. These selected features were later used for training
of a Scalable K-Means++ model proposed by Bahmani in [2]. The final decision between
anomalous and normal cluster was based on the size of respective clusters, where the cluster
with smaller amount of data points were declared anomalous.

They then applied the XGBoost algorithm to create a binary decision on data pseudo-
labelled by the K-Means algorithm. This step is crucial to quickly determine the nature of
data points coming in the future without re-calculating the entire clusters again. Instead
of implementing the models by hand, the Dask2 Python library, which already includes the
parallelized version of algorithms, was used.

They did not explicitly state achieved model recall or rate of false-positives, only stating
that the used XGBoost model labelled 100 % of events clustered into the anomaly cluster
using K-Means correctly. The advantage of their method lies in creation of a decision tree,
which reduces resources necessary for classification of new data points.

Features extracted from the raw HTTP logs by the authors (especially the day of the
week, hour, minute features) inspired the set of features extracted for the anomaly scoring
in this thesis. As the presented methods belong to the category of unsupervised learning,
and they do not require labelled dataset, they were a valid option for use in this thesis.
The final decision was however in favour of the PCA method, mainly for its simplicity, and
no need for combining more methods (clustering and decision trees) for the classification.

2.4.2 K-Prototype and K-Nearest Neighbours

Zhaoli Liui et al. [33] proposed an integrated method for anomaly detection from massive
system logs using K-prototype clustering and K-Nearest Neighbours classification algo-
rithms. They argue, that using these methods is appropriate, because it allows to detect
anomalies without any priori information. Thus, even new, previously undetected, anoma-
lies can be found.

They divided the process of detection into five distinct steps: 1) log collection, 2) feature
extraction, 3) clustering, 4) filtering, 5) refinement. Note, that steps one and two are usually
necessary in any anomaly detection, no matter of the used method.

They processed system logs from more than 50 servers, from which 10 features split into
two categories (logging activity, session statistics) were selected. Their dataset was mainly
unlabelled, except for logs from one target server. Logs of this target sever were labelled
in coordination with security engineers, who performed scheduled attacks targeting the
server. These labelled logs were used for evaluation. These features range from usernames
used for legged sessions, through session lifetime to a frequency of file operations during
a user’s session. Since these features include both numerical and categorical attributes,
they chose the K-prototype algorithm to calculate clusters. Upon the inspection of the
returned clusters, they proclaimed large, dense clusters as normal and filtered them out

1NASA-HTTP dataset: https://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html, accessed [2024-01-20]
2Dask library: https://www.dask.org, accessed [2024-01-20]

12

https://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
https://www.dask.org

before taking the next steps. The chosen threshold T for this decision is 𝑇 = 𝑛/𝐾, where
n is the event count and K is the number of clusters. Clusters with more events than T
are considered normal and discarded. They managed to reduce the dataset size by more
than 70 % by the application of this simple filter.

From information about spatial properties of every data point obtained by the clustering,
they calculated two distances per data point. The first distance value represents the distance
between a given data point and a centre of the cluster to which the data point belongs.
Second value is the distance between a data point and a data point nearest to it. They
used only these two distances as features for training a k-NN classifier on a reduced dataset.
They argue that using the K-prototype algorithm only yields non-desirable results in terms
of precision and false positives, while calculation k-NN with entire dataset as input is time-
consuming.

They demonstrate, with graphs, that their proposed solution results are more precise
than using only one of the methods, while also being fairly time efficient. They evaluated
their combined method on several datasets using the precision, recall, and false alarm
metrics. In all their experiments, the precision stayed above 90 %, false alarm rates were
below 2.5 %, and they maintained the recall values above 0.85.

Although they used different source of data and tried to achieve different goal than
what the goal of this thesis is (user activity vs. network traffic), the anomaly detection
system proposed by Zhaoli Liui et al. could be also used for other purposes. Especially
, the filtration of potential anomaly candidate is transferable into the settings of network
anomaly detection, given the enormous amount of traffic needed to be processed. However,
this approach is viable only when using a combination of methods like the authors did
(K-Means + K-NN), which limits its potential.

As their logs are mainly focused on device access and performed operations, their fea-
tures are not transferable to the work of this thesis. The use of k-NN method is also not
possible in this thesis, as labelled dataset is necessary for its training.

2.4.3 k-NN, Isolation Forests, Local Outlier Factor

Mehta, Kothuri and Garcia published a paper concerning detection of anomalies from net-
work connection logs [36]. They utilised multiple distributed architectures and systems to
collect connection logs and to analyse them. From network connection logs collected in the
network of CERN3, primarily kept stored for audit, performance monitoring and alerting,
they extracted features for later modelling using one of the techniques, that were demon-
strated in the paper. The feature selection was aided by first reducing the dimensionality
of the dataset using Principal Component Analysis (PCA, see Section 2.2.2) and Singular
Vector Decomposition (SVD).

Arguing, that only an unlabelled dataset was available to them, they chose to explore
possibilities of unsupervised learning. Four distinct models were fitted with preprocessed
data: k-NN, isolation forests, local outlier factor, and one-class support vector machine.
Demonstration of results for every approach was shown. Their results are meant as a proof-
of-concept before implementing a system for real world use at CERN.

They admitted, that their approach was not able to correctly classify all connections-e.g.,
connections from legitimate users detected outside working hours were marked as anoma-
lous. It can be polemized, if such events are desired to be marked normal or anomalous.

3Conseil Européen pour la Recherche Nucléaire (European Organization for Nuclear Research)

13

The general division of anomaly detection methods and types of anomalies, as well as
a use of the PCA and SVD methods for dimensionality reduction decribed by the authors,
represent valuable knowledge in the scope of this thesis in terms of determining what
methods are best utilised for unlabelled/labelled data. However, not much information
is given about feature selection, model training, detailed interpretation of results, or even
metrics for result evaluation. No direct comparisons can thus be made.

2.4.4 Deep Autoencoder

AutoLog is a name of the system developed by Catillo et al. [15]. They took a different
approach than extracting features manually. Their solution for data extraction was to split
log lines into tokens, and then using a predefined mathematical formula to score chunks:
batches of data of equal length consisting of several tokens. Chunks score is computed by
the sum of entropies of all terms found in the chunk. Entropy of a term is computed against
a database of normative chunks.

They used these scores to train a deep autoencoder, a type of neural network consisting
of an encoder part (creating a compressed representation of an input) and a decoder (re-
constructing original input from the compressed represenation of data). An autoencoder
is able to reconstruct input scores on its output. The reconstruction is, however, never
perfect, resulting in a loss of information. The loss of information is given by a nature of
an autoencoder. It is able to best reconstruct data similar to data, on which it was trained.
Data unseen during the training phase cannot be represented by the encoder part of the
neural network, and it cannot be thus reconstructed by the decoder part. For scores not
seen in the training dataset, the autoencoder is not able to reconstruct them with minimal
loss. This fact enables researchers to separate anomalies from normal traffic.

They tested their solution with several configurations of neural network and validated
the model on four datasets: a proprietary industrial system logs, a microservices system
logs, public supercomputing system logs, and logs of Apache Hadoop cluster. They also
evaluated results from five other methods together with their Autolog in a comparative
study.

The authors leveraged the fact that their dataset is labeled, to compute evaluation
metrics for unsupervised learning methods, which they tested against the same dataset as
AutoLog was trained on. Methods used in the comparison were: Isolation Forest, One-
Class SVM, a decision tree, and a vanilla autoencoder (autoencoder consisting of only one
hidden layer between the input and the output layer). All methods was evaluated using
the F1 score, Precision, and Recall metrics. AutoLog outperformed all other methods,
with decisions trees being almost always second in performance, not more than six percent
behind.

This paper demonstrated that other methods for anomaly detection in log files exist
and that they are successful if used correctly, and paired with a suitable dataset. The main
observable advantage of this method is its functionality with many heterogeneous types
of log files. The structured labelled logs available and the very different approach taken
by the authors of this paper and the one presented in this thesis make it difficult to draw
significant connections between the AutoLog paper and this thesis. The main parallel found
is the way the PCA method is utilised in this thesis and the way in which an autoencoder
works. The PCA is used in two runs on the same data - for a transform from a high
dimensional dataset to a dataset made of few features only. Reversed PCA is the applied

14

on his reduced dataset, and the original dataset is reconstructed with inherent error. This
process resembles an autoencoder.

2.4.5 DBSCAN

Alghamdi and Reger [1] designed a framework for the pattern extraction from heterogenous
log files provided in the SoTM34 log dataset4, labeled by the authors with help of existing
analyses of the SoTM34 dataset. Their aim was to use these pattern for multi-stage threat
detection.

They developed a strategy for behaviour analysis based on logs. For data preprocess-
ing, they use a mix of both methods showed in the aforementioned papers — AutoLog [15]
and Henriques’ paper [25]. They utilize both tokenized strings from log lines, and numeric
features extracted from the logs. These features are unique for different protocol-specific
log files. The number of extracted features varies between four and twenty-five, depend-
ing on the specific log file chosen, as the dataset contains multiple logs (HTTP Access,
HTTP Error, HTTP SSL Error, SYSLOG Messages, SYSLOG Secure, SYSLOG Mail, and
SNORT). After normalizing the numerical values in the dataset with min-max scaler to
place all values in the range between zero and one, clustering is performed using the DB-
SCAN algorithm on the behavioural features—they differentiated between static features
like IP addresses and behavioural features obtained by log tokenization. DBSCAN was
run on the behavioural features to capture the specific behaviour of threats. The static
features were later combined with DBSCAN results to create a well specified threat records
for alerting in a custom developed Action Center.

They evaluated achieved results using the following tests: Homogeneity Completeness,
V-measure, Adjusted Rand Index (ARI) and Adjusted Mutual Info (AMI). These tests were
chosen by the authors, because ”evaluating the performance of clustering algorithms is not
as straightforward as classification algorithms where precision and recall are calculated by
counting the number of errors and correct classified data points based on a priori knowledge
of actual labels“. Alghamdi’s method achieved more than 90% rates in most tests of the
well-known SotM34 dataset. Only results under the 90 % mark were of the Syslog Mail
and Syslog Messages log files. Here, the methods achieved 82-87 % in ARI and AMI. They
did not explain this lower rates for Syslog.

Features selected by the authors from the HTTP logs were inspirational for the selec-
tion of features for both anomaly detection and reputation rating in the theses. Fields
extractable from the HTTP events, like Referrer or User Agent provide useful information
which can decide whether the event is anomalous or whether a malicious intent is present
in the data.

2.4.6 Survey on Network Anomaly Detection

Fernandez and his colleagues [20] published a comprehensive survey on network anomaly
detection. They defined a set of goals to describe in their study, as they felt other similar
studies focused too much on a specific area. They first defined the term anomaly and de-
scribed existing categories of anomalies based either on their nature or their cause. Network
data types were listed and explained, as each research in the field prefers to use different
sources for their datasets. As the anomaly detection is often used in IDSs, they also talked
about these systems. In the chapter about different detection techniques and methods, they

4Scan of the Month, Scan 34: https://honeynet.onofri.org/scans/scan34/, accessed [2024-02-20]

15

https://honeynet.onofri.org/scans/scan34/

explained in detail groups of detection methods based on the main principle of the method.
These are the groups referred to in Section 2.2. For each category, they talk about several
studies and research, which used such methods. They also created comprehensive tables
comparing those studies for each category. Their knowledge was cited in the theoretical
chapters of this thesis. Information provides in this paper influenced the final selection
of the PCA method for use in this thesis, as the PCA is suitable to be paired with large
dataset of unlabelled data, and it is able to detect point anomalies in data.

2.5 Summary
This chapter described anomalies in network traffic using various definitions, as no one
concrete definition exists. It explained the term anomaly in the scope of this thesis (meaning
not normal, while intent of a deviation does not matter). Anomaly types and methods for
anomaly detection were discussed. More text was dedicated to statistical methods and its
representant, the Principal Component Analysis, for its use in the practical part of the
thesis. Other methods were spoken of shortly. Mahalanobis distance for outlier marking
was introduced, along with other methods one might use to find anomalies. A suggestion
to transforming results of a method into the final anomaly score was brought up. Related
work in anomaly detection provided information about existing solutions. An insight into
what methods are suitable for a desired goal and the best matched dataset properties for
the method was brought forward. Commentary about usefulness of the related papers for
this thesis was provided.

16

Chapter 3

Introduction to Reputation
Systems

Because of the general availability of Internet connectivity, and its global interconnected
nature, any node connected to it can establish connections to any other connected node (if
mechanisms such as network address translation (NAT) are not considered). This leads to
plenty of communications, where one side does not necessarily know the identity of the entity
at the other end of a connection. Without the familiarity, the node or its user cannot easily
determine intentions of the other side and the integrity of its services. Publicly available
data usable for rating endpoints accessible via the Internet can be a useful resource helping
with a defined problem.

This chapter explains the problematic of calculating reputation scores and shows the
new and current methods used to deal with this technique. It provides a context to fully
comprehend the reasons why the scoring of network IP addresses is important and why the
reputation of network nodes represents an ongoing academic and business effort.

The chapter starts with a description of trust in the real world, as the core principles
of it can be, and often are, brought over to the digital world.

3.1 Trust in a Real Life Scenarios
In the real life, where a person has physical relations with other people or businesses
(entities), one can rely on (trust) another person or community for their opinion on the
entity, which signifies the reputation of an entity.

Thus, the term trust can be defined in many ways, but with the similar notion. Jøsang
et al. [28] defines two types of trust — Reliability trust 3.1.1 and Decision trust 3.1.2.

Definition 3.1.1 (Reliability trust). Trust is the subjective probability by which an indi-
vidual, A, expects that another individual, B, performs a given action on which its welfare
depends.

Definition 3.1.2 (Decision trust). Trust is the extent to which one party is willing to
depend on something or somebody in a given situation with a feeling of relative security,
even though negative consequences are possible.

It can be concluded from these definitions, that trust is a relation between two entities,
a truster (the one who trust), and a trustee (the one who is trusted). If a trustee proves
to the truster, that they can be trusted, they become trustworthy. Trust as a relation is

17

asymmetric and transitive. If a node a trusts a node B, which trusts a node C, then the
node a trusts node C, if node B refers C to A. This is called a derived trust by [28]. The
behaviour is shown in Figure 3.1. In this figure, party B trusts party C. If B refers C to A,
then a can trust C.

Figure 3.1: Transitive property of the trust relation. Image taken from [35].

According to Slee [49], there exists a third party to the system of trusters and trustees,
and its name is an opportunists. An opportunist is an entity seeking to deceive potential
trusters by mimicking signs or signals of trustworthiness, although it is not trustworthy.
Gambetta [22] says, that the existence of opportunists creates a problem of secondary trust.
The question of trust then becomes Can I trust the signs of trustworthiness of the trustee,
rather than Can I trust the trustee. He argues, that this problem almost always accompanies
the primary one.

a signal, mentioned above, is an action or a sign, which is easy to display by a trustworthy
person, but difficult or impossible for an opportunist/untrustworthy entity to display. If
a signal, which would discriminate between these two groups of entities, does not exist, then
no effective mode of differentiating trustworthy persons and opportunist can be found.

3.2 Trust in Online World
The entity in the online world with which is being communicated cannot be assessed using
previous experiences, especially when the connection between two nodes happens for the
first time. Also, unlike the real life, it is not so easy to ask many other users or nodes for
referrals of other nodes.

3.2.1 Systems for User Ratings

For interactions spanning both the online and the real world, there exist rating or scoring
systems enabling users to rank various services and give their feedback in forms of written
comments, numeric scores, stars, points, and other techniques. This feedback is called
rating. Examples of such systems can be found on e-commerce sites, restaurant review
webs, film databases, home sharing platforms, etc.

If a system is used primarily for a one-sided rating, meaning that the rating can be
comprehended as an asymmetric relation, then the system is not much susceptible to op-
portunists or speculators. There is no reaction to feedback by the reviewed side, either
because it is a non-living entity like a film or a product. In these systems, there is a low
chance for a user to get something in return, thus the user does not feel pressured to give
dishonest reviews.

The issue of fabricated or biased reviews become an adamant issue for so-called peer-
to-peer internet reputation systems or businesses operating within a sharing economy [49].
When a receiving side do not have the ability or will to reply (restaurant review, online

18

marketplace review), there is a possibility of user receiving an offer from the counterpart to
change their original rating. This can mean editing an original review or even its deletion
in exchange for a free meal (if we are speaking about restaurant review) or a discount for
the next order. In this case, the seeming trustworthiness of a rated entity is increased
by deleting a negative rating, while in reality, its trustworthiness should be decreased.
The entity becomes an opportunist by mimicking the signals of trustworthiness, i.e., good
reviews.

This problem is even more increased when referring to services, where both parties are
affected by potential negative review. These are best represented by home or car sharing
platforms like Airbnb or OuiCar. While using such services, users often encounter reviews
biased to one of the edges of possible rating. The review providing rating in the middle
of the scale are often missing. This is caused by a phenomenon called a response bias [56]
seen in Figure 3.2. Review 3.2a is a review for a smartphone at one of the largest online
retailers in Czechia, while 3.2b is a review of wireless headphones from a known Chinese
marketplace. These reviews can be non-reflecting of reality, because users leaving a review
might be influenced by the other side—either by a common agreement of both sides to leave
positive feedback, or as a fear of later retaliation. Described conditions can lead to a rating
system which is not useful to an end user. It does not provide enough signals of trust, on
which user can decide, whether he will become a truster or not.

(a) (b)

Figure 3.2: Response bias in a customer reviews.

Trust management

At the end of the 80s and beginning of the 90s of the last century, there emerged first
mechanisms aimed at mimicking the trust dynamics of the physical world. Under the
term trust management, we can imagine systems like Pretty Good Privacy (PGP) or X.509
standard [23]. The problem with these solution lies in their static nature. While the
reputation of an entity changes through time in real life, in these systems, it becomes
unchanging during a predetermined period of time. Trust management systems can be
considered as the first predecessors of reputation systems of today.

The PGP system creates a so-called web of trust, and it is mainly used for authentication
of humans for email services. In cryptography, this means that there is no single point of
trust. Instead, trust is a transitive relation, resembling the relationship between physical
world entities. An entity using PGP gradually builds its network of other trusted entities
(their public keys), either by directly trusting someone’s public key or by trusting a new
key, which is signed by an already trusted key (indirect trust). The idea is that with the
number of users growing, the chance of having a middle man user (B) who the original user

19

(A) trusts and who, at the same time, trusts another user (C) grows. This premise is based
on a well known phenomenon called the small world problem [55]. The user a can then
trust the public key of user C. Entities in this model can become opportunists, when they
acquire a private key of another entity, thus being able to act in their name.

The X.509 is a centralised, public key infrastructure system, where no web of trust exists.
A hierarchy of certification authorities (CAs) signs certificates for all involved parties. The
entities cannot, like in PGP, sign each other keys. When a user wants to verify the certificate
of another entity, it sees the certificate of the entity, which is signed by a private key of some
certification authority. The user has a list of public keys of authorities, which he implicitly
trusts. Keys of authorities can be provided by an operating system or a web browser.
Signatures of the original certificates are validated using these keys. The certificate might
also be signed by an intermediate CA, whose signature is signed by CA on a higher level
of hierarchy. The user validates the certificates, starting at the bottom, until he finds
a certificate which is signed by a CA they trust, or the certificate chain ends without
successful validation. It is not trusted in this case.

3.3 Reputation systems
The aforementioned techniques and mechanisms are useful for authentication of user and
network nodes. They do not, however, measure the reliability of a node by its behaviour.
Academics and industry need a solution to quickly obtain and possibly share information
about behaviour of nodes in a network. Fortunately, the enormous amount of data, or more
often - metadata and packet headers, flowing through today’s network can be automati-
cally captured, stored, analysed and shared via multiple specialised platforms using specific
protocols; thus a network reputation system is created.

For a reputation system to work correctly, it must have these properties [43]:

• long-lived entities that inspire an expectation of future interaction,

• capturing and distribution of feedback about current interactions (such information
must be visible in the future), and

• use of feedback to guide trust decisions.

It also needs to have an information appropriate for a reputation measurement in a given
application, a metric for a calculation, and a risk rating. For this, a reputation system
uses various algorithms which, in turn, use both present and historical data. A reputation
system should be resistant against attempted manipulations [35].

With the information above, a reputation system can be defined as follows:

Definition 3.3.1 (Network reputation system). a network reputation system is a com-
putational system, which applies different methods and metrics on its inputs to produce
a reputation score (rating) of a network node.

Reputation systems are considered a prevention security measure, as they cannot stop
a security incident which already happened. IP addresses of a potential attacker can,
however, be put onto a black list based on the reputation system recommendation and thus
stop the attack before even starting.

20

3.3.1 Architecture of Reputation Systems

Each reputation system is different, with its creators preferring different methods to achieve
results fitted to their exact needs. However, similarities can be found between all of them.
Jøsang [28] says that there are two main types of reputation systems architecture: a)
a centralised system, and b) a distributed system:

a) These systems consist of a centralized computation node and a network of agents. The
central node utilises non-stop streams of ratings coming from each agent. The system
computes reputation based on the input streams and other information available to
it, like past transaction. A centralized system is shown in Figure 3.3a.

b) Distributed systems have no central node. Each distributed entity calculates its own
score based on its own obtained ratings. It then shares the scores with other nodes in
the distributed system. The system consists of two fundamental parts: a distributed
communication protocol, and a scoring method. This dynamic form of reputation sys-
tem is commonly used in peer-to-peer networks for rating reliability of a the node [35].
a distributed system is shown in Figure 3.3b.

(a) Centralized reputation system.
(b) Distributed reputation system.

Figure 3.3: Two architectures of reputation systems [35].

Regardless of the chosen architecture, a reputation system as a whole consists of agents,
a reputation system core with rating functions and/or heuristics, and a database of rated
nodes/entities. The relations between these components are shown in Figure 3.4. Note
that in real world examples, some components can be merged into one entity with the same
functionality.

Information gathered from agents alone is not sufficeient to calculate a reputation score.
Thus, supplementary data are to be added into the calculation process. This includes:

• logs or events from IPSs, IDSs, honeypots, probes, or firewalls,

• lists of malign IP addresses, domains, or autonomous systems,

• spam detectors,

• white lists,

• traffic information consisting of IP addresses, domain names, user agents, URLs, etc.,

• online databases like DNS, Whois, geolocation, etc.

21

Figure 3.4: An architecture of a general reputation system. [35].

3.3.2 Communication in Reputation Systems

RFC 7070 [9] proposes an architecture/solution for allowing one to request reputation-
related data over the Internet. The aim of this document is to simplify the interchange of
information of reputation scores across the Internet.

It defines a Reputation client, an entity seeking to obtain a reputation score of a given
content (e.g., email) based on an identifier (e.g., sender’s domain). A Reputation service
then responds to the query with data. It also gathers data from agents and uses these
scores to compute scores.

RFC 7072 [11] specifies a format for interchange of information between entities defined
in RFC 7070. This format defines a template URI scheme, which serves as a query by a repu-
tation client to a reputation service. Proposed schema in this RFC is http://service/app-
lication/subject/assertion. Example of filled schema is: http://reputation.com/
email/baddomain.com/spam. This query asks the reputation.com server to send infor-
mation about the baddomain.com regarding spam emails originating from that domain.

a Reputon is a format of answer returned in response to a query to a reputation service.
It is defined in RFC 7071 [10]. It serializes the reputation scores computed by the service.
The returned document is of the application/reputon+json. An example of a rated
object as a reputon is located below:

Content-Type: application/reputon+json

{
"application": "baseball",
"reputons": [

{
"rater": "baseball-reference.example.com",
"assertion": "strong-hitter",
"rated": "Alex Rodriguez",
"rating": 0.4,
"confidence": 0.2,
"sample-size": 50000

}
]

}

22

This data example is extracted from the original RFC 7071. It shows, that 50 000 people
rated Alex Rodriguez, a baseball player, as mediocre strong hitter. Confidence value of 0.2
tells that there was not a consensus between the reputation agents.

3.3.3 Examples of Reputation Systems

This section deals with the design of reputation systems. Reputation systems used in the
real world differs in the goal they want to active. This also affects the calculation methods
of scores in different systems. Systems like PageRank are designed to rank web pages,
while others (e.g., CESNET Network Entity Reputation Database (NERD)) aims to build
a constantly-updated database of the known malicious network entities [6].

PageRank

PageRank system [12] appeared in 1998 at Stanford University. The goal of this system
is not to rank network nodes, but web pages. Created by Larry Page and Sergey Brin,
it later became the base for Google search engine. The authors represented web pages,
interconnected by hypertext, by an oriented graph. The PageRank algorithm calculates
a score for a web page 𝐴 using the formula shown in Equation (3.1):

𝑃𝑅(𝐴) = (1− 𝑑) + 𝑑(
𝑛∑︁

𝑖=1

𝑃𝑅(𝑇𝑖)

𝐶(𝑇𝑖)
) (3.1)

In this equation, the result is score 𝑃𝑅(𝐴) of page 𝐴. 𝑑 represents a damping-factor.
𝑇𝑖 is a page with a link to page 𝐴. 𝐶(𝑇𝑖) is the number of links leading out of the page 𝑇𝑖.
Index 𝑖 ranges from one to 𝑛, where 𝑛 is the total number of pages with links to the page
𝐴.

Rating web pages using this formula ensures, that a page can have a high PageRank if
there are many pages that point to it, or if there are some pages that point to it and have
a high PageRank.

Beta Reputation System

Audun Jøsang and Roslan Ismail [27] published an article about the Beta Reputation Sys-
tem. This reputation system was developed to be used either separately or to be integrated
into e-commerce applications. The main idea of their work is to utilise the beta probability
density function to represent probabilities of binary events. Beta distribution 𝑓(𝑝|𝛼, 𝛽) rep-
resents a probability 𝑝 of a positive event based on the values of parameters 𝛼, 𝛽. Function
𝑓(𝑝|𝛼, 𝛽) can be then represented via the gamma function:

𝑓(𝑝|𝛼, 𝛽) = 𝑝𝛼−1(1− 𝑝)𝛽−1

𝐵(𝛼, 𝛽)
(3.2)

𝐵(𝛼, 𝛽) =
Γ(𝛼)Γ(𝛽)

Γ(𝛼+ 𝛽)
, 𝐸(𝑝) =

𝛼

𝛼+ 𝛽
(3.3)

Each target entity (the one which needs to be rated) collects ratings from reputation agents.
Positive ratings can be denoted by 𝑟 = 𝛼−1, while negative ratings are denoted as 𝑠 = 𝛽−1.
A reputation function of entity 𝑇 based on experiences 𝑟𝑇 and 𝑠𝑇 is:

𝜙(𝑝|𝛼, 𝛽) = Γ(𝑟𝑇 + 𝑠𝑇 + 2)

Γ(𝑟𝑇 + 1) + Γ(𝑠𝑇 + 1)
· 𝑝𝑟𝑇 · (1− 𝑝)𝑠𝑇 (3.4)

23

Reputation score 𝑅𝑒𝑝 of 𝑇 is represented as normalized mean 𝐸 of the distribution in
interval <0,1>:

𝑅𝑒𝑝𝑇 (𝑟𝑇 , 𝑠𝑇) = (𝐸(𝜙(𝑝|𝛼, 𝛽)))− 0.5) · 2 =
𝑟𝑇 − 𝑠𝑇

𝑟𝑇 + 𝑠𝑇 + 2
(3.5)

They then define a method of discounting (a feedback from highly rated agents should be
considered more significant than feedback from badly rated agents) and forgetting (newer
feedback should carry more weight than an older feedback). They show how these two
methods can be integrated into the Beta Reputation System. Authors also demonstrated
the system performance in relation to varying settings of weight of feedback, feedback value,
discount values, and forgetting factor.

As the Beta Reputation System scoring is based on a positive and negative feedback
from agents, it could be used to rate network nodes with agent modifications. An agent
would have to be able to provide the feedback about each transaction with network node.
The feedback could be derived from conclusions made about the transaction. For example,
if the transaction was a download of a file from web server, and an antivirus running on
the agent would find the hash of the downloaded file in a database of malicious software,
the feedback would be negative.

Due to the need of increased capabilities of agents participating in the rating process,
and the intended use of the system (e-commerce), the Beta Reputation System was not
selected for use in this thesis.

Cisco Talos

Cisco Talos is a threat intelligence group inside the Cisco Security ecosystem. The Rep-
utation Center of this group provides access to expansive threat data and related informa-
tion [54]. It provides an IP and Domain Reputation Center—real-time threat detection
network, which collects data from web, email, firewall, and IPS services. A simple web
client1 allows users to query the database of the Reputation Center for an IP address, URL,
or a file hash. Talos maintains not only a network reputation centre, but also a database of
files. Outputs from the file reputation system are used in Cisco firewalls or Snort products.
Cisco also provides a list of naming convention patterns of malicious files, a list of content,
and threat categories used by Talos to classify websites and attacks. Data presented by
Talos is updated every three hours.

CESNET Network Entity Reputation Database (NERD)

NERD (Network Entity Reputation Database) is a reputation system developed by the
CESNET - a Czech NREN. NERD is a service which aims to gather, aggregate and pro-
vide all the available information about known malicious network entities (mostly IP ad-
dresses) [7].

The NERD software rates entity records represented by a set of attributes. Currently,
an entity can be an IP address, BGP prefixes, autonomous systems, IP blocks, and organi-
zations. Attributes are then dividend into two main classes: 1. primary data, 2. secondary
data.

1. Primary data describing malicious activities of a given entity. Currently sourced from
Warden (a system for efficient sharing information about detected events [17]).

1Talos Reputation Center: https://www.talosintelligence.com/reputation_center, accessed [2024-02-23]

24

https://www.talosintelligence.com/reputation_center

2. Secondary data, represented by all other data somehow related to the ranked entity.
They can be computed by NERD, like a reputation score, or sourced from external
sources like domain names, geolocation, whether an IP is in a blocklist.

NERD stores records of IP addresses for a limited time. If a record comes from Warden,
then it is deleted after 14 days without alert. The time period increases to 180 day when
MISP database2 is a source of an alert.

Two scores are computed by NERD to rate network entities. The first one is the
Future Misbehavior Probability (FMP) score developed by Bartoš et al. [5]. It uses deep
learning techniques based on various gradient boosting decision trees to determine a score
representing an estimated probability that the rated entity will behave viciously in the
near future. Authors selected features from data of the Warden system, that were collected
across three months (September-November 2017). Their entire dataset contains 155 million
alerts for more than five million IP addresses. The base features are as follows:

1. number of alerts in the last day

2. total number of connection attempts (attack volume) in the last day

3. number of detectors reporting the address in the last day

4. number of alerts in the last week

5. total number of connection attempts (attack volume) in the last week

6. number of detectors reporting the address in the last week

7. EWMA (Exponential Weighted Moving Average) of number of alerts per day over the
last week

8. EWMA of total number of connection attempts per day over the last week

9. EWMA of a binary signal expressing presence of an alert (0 or 1) in each day over
the last week

10. time from the last alert (in days)

11. average interval between alerts within the last week (in days, infinity if less than two
alerts were reported)

12. median of intervals between alerts within the last week (in days, infinity if less than
two alerts were reported)

Other features from secondary sources are added to this list, to complete a dataset with
a total of 42 features. Because of the significant imbalance of the dataset, they sampled the
normal class of data, which resulted in smaller training datasets. A non-linear transforma-
tion of data was then applied. Preprocessed data was used for model fitting of four models.
Chosen models consisted of two neural networks (with two and three hidden layers, each
with 58 nodes, a rectified linear unit used as activation function) and two gradient boost-
ing decision trees (100 or 200 trees with max depth of three and seven). A mean square
error was used as a metric to model performance evaluation. The score always falls into

2MISP project homepage: https://www.misp-project.org, accessed [2024-02-24]

25

https://www.misp-project.org

the range <0,1>, where zero is the best possible score, and one represents the worst case
prediction. A gradient boosting decision tree model consisting of 200 trees proved as the
best, with more than 80 % of detected threats, while keeping the false positive rate under 10
% on the testing dataset. The dataset was labelled and composed of alerts received in the
Warden system. Authors note, that the false positive data point does not necessarily mean
blacklisting a legitimate IP address, the address may still be malicious, just not attacking
any of the monitored networks within the prediction window. Taking a resulting FMP score
from the predictions and combining it with a predefined threshold or a specified number of
worst IP addresses, can be used to generate a blacklist which can be used in a near future
of a score calculation to block traffic proven to be malicious by the model. Authors show
the hit rates of blacklist generated from the FMP score. Hit rates range from 100 % when
using a blacklist of 100 top scored IP addresses, to 43 % when using a 2 000 address long
blacklist.

Before the FMP score was implemented, a simpler method for reputation score was
used by NERD. This reputation score was calculated as a weighted average of daily scores
covering the last 14 days. Daily score is represented by the following formula:

𝑅𝑖𝑝
𝑑 = (1− 1

2𝐸𝑑
) · (1− 1

2𝐷𝑑
) (3.6)

where 𝑅𝑖𝑝
𝑑 is the daily reputation score of an IP address 𝑖𝑝, 𝐸𝑑 is the number of alerts

reported in Warden for a given day 𝑑 with the IP address 𝑖𝑝 as a source. 𝐷𝑑 is a number
of unique detectors that reported alerts 𝐸𝑑.

The method used for reputation scoring in this thesis is inspired by this NERD formula.

3.4 Summary
This chapter introduced a reader into the problematics of trust and reputation. It showed
how trust can be defined in both real and virtual world. Examples of trust management
systems were demonstrated. An introduction to reputation systems was presented, and
architectures of such systems discussed. The chapter then talked about a working model of
a communication of a reputation system proposed in several RFCs. Real world examples of
used reputation systems were provided to show the vast differences between offerings from
various subjects in this field.

26

Chapter 4

Dataset Analysis

This chapter introduces a reader to the provided dataset used for the calculation of anomaly
and reputation scores. The origin of the dataset and its form are shown. It explores the
available data and describes it in various ways, including graphs, histograms, timelines, or
text descriptions. Interesting data features are pointed out.

4.1 Introduction to the Dataset
Our dataset contains logs from the Suricata IDS. Suricata is an open sourced project under
the Open Information Security Foundation (OISF). It serves as an Intrusion Detection
System (IDS), Intrusion Prevention System (IPS), and Network Security Monitoring engine.

The original, non-processed raw dataset includes:

• Extensible Event Format (EVE) JSON logs with statistical, flow and protocol data,

• statistical logs,

• Suricata system logs.

These logs are generated in real time from traffic directed into the device with a running
Suricata instance. The instance used to capture study data operates on the premise of the
Faculty of Information Technology, Brno University of Technology. Data for the analysis
were captured from the 25th October 2022 to 31st January 2023. A subset of data consisting
of a week from 1st November to 7th November 2023 was chosen for initial data exploration.

4.1.1 EVE JSON logs

EVE is an abbreviation of Extensible Event Format [53]. It represents a way to generate
a single format for various events, which are then saved into one JSON log. This log includes
alerts, anomalies, metadata, file info and protocol specific records. Network traffic captured
and processed by Suricata is saved into EVE logs in the form of NetFlow data extended
with information provided by Suricata itself (e.g. signature based alerts).

The EVE output is configurable by YAML configuration file. Suricata administrator
can define which events are to be logged and the extent of supplementary data for each
event. All records in EVE logs contain a timestamp, flow identifier, input interface, event
type, source and destination information, and a dictionary with event type specific data.

27

Logs and configuration file example can be found in the Suricata official documentation1.
a general record in the EVE logs is a JSON record. An anonymized version of a record
(MAC and IP addresses) looks like follows:
{"timestamp":"2023-01-21T07:53:42.119299+0100","flow_id":1265033423671534,
"in_iface":"eth","event_type":"flow","src_ip":"X.X.X.X",
"src_port":53844,"dest_ip":"Y.Y.Y.Y","dest_port":21027,"proto":"UDP",
"app_proto":"failed","flow":{"pkts_toserver":1,"pkts_toclient":0,
"bytes_toserver":487,"bytes_toclient":0,
"start":"2023-01-21T07:53:12.119022+0100","end":"2023-01-21T07:53:12.119022+0100",
"age":0,"state":"new","reason":"timeout","alerted":false},"ether":
{"dest_macs":["aa:aa:aa:aa:aa:aa"],"src_macs":["bb:bb:bb:bb:bb:bb"]},
"host":"suricata-XXX"}

The record above keeps information about a flow which was reported by Suricata on
2023-01-21 at 07:53:42. Its ID can be used to match this record with another record with
the same ID but different event type, which provides protocol specific information. There
can be zero or more of such records. The flow originates from X.X.X.X:53844, while its
destination is Y.Y.Y.Y:21027. Because of the failed value for the app_proto field, there is
not another record with the same ID holding detailed information in the same log file. Failed
means that Suricata was not able to infer the correct L4 protocol from the traffic. Valid
protocols for the app_proto are: Alert, Anomaly, HTTP, DNS, FTP, FT_DATA, TLS,
TFTP, SMB, BITTORRENT-DHT, SSH, Flow, RDP, RFB, MQTT, HTTP2, PGSQL,
IKE, Modbus, QUIC, and DHCP. Data under the flow dictionary contains statistics about
the given flow, together with the time of detection of the first and last packets of the given
flow. The host field signifies the hostname of a device running the Suricata IDS.

4.1.2 Statistical Logs

Statistical log files are distinct log files generated by Suricata and comprising tables con-
taining statistical data computed from the EVE logs. Each log record is a table, that starts
with the timestamp and uptime the creation. Each table row contains a counter name (e.g.
decoder.bytes), a value identifier (e.g., Total, Detect, RxPcapem21, FlowManagerThread,
etc.) and the corresponding value. By default, these statistics are saved into stats.log file
and a new table with statistics is appended to the log every eight seconds. Despite the fact
that the data contained within these logs can demonstrate long-term trends, the statistical
logs are not used for anomaly nor reputation scoring. If a need for such statistics arises
during the scoring, they are easy to calculate from the dataset provided for scoring.

An example of statistical log records is shown in Table 4.1. Only few table rows are
shown. The table shows its creation timestamp. Statistics are grouped by a broader
category. For example, both number of detected bytes and packets belong to the decoder
category. Note that the counters shown in the table depend on the Suricata settings and
are unique for every Suricata instance.

4.1.3 Suricata Syslog

Systems logs of Suricata on the capturing probes utilize the widely available systemd logging
capabilities. They consist of records showing the correct operational state of the running

1Suricata EVE logs format: https://docs.suricata.io/en/latest/output/eve/eve-json-output.html, ac-
cessed [2024-01-20]

28

https://docs.suricata.io/en/latest/output/eve/eve-json-output.html

Date: 10/25/2022 – 19:21:21 (uptime: 0d, 00h 00m 08s)
Counter TM Name Value
capture.kernel_packets Total 80
decoder.pkts Total 82
decoder.bytes Total 8064
decoder.max_pkt_size Total 216
flow.tcp Total 1
flow.icmpv4 Total 1
flow.wrk.spare_sync Total 2
flow.mgr.full_hash_pass Total 1
flow.spare Total 9800
tcp.memuse Total 2424832
flow.memuse Total 7474304

Table 4.1: Statistical log record example.

program, with the expected severities ranging from informational records to critical failure
reports. These logs include records ranging from the information about used memory,
operations of various system components, to information about parsing downloaded attack
signatures. These files were not used for further processing and scoring, as they provide
information about the Suricata itself instead of the network traffic needed for scoring.
Examples of these log records are listed below:

29/11/2022 -- 17:46:16 - <Error> - [ERRCODE: SC_ERR_AFP_READ(191)] - Interface
’enp2s0’ is down

29/11/2022 -- 17:46:16 - <Warning> - [ERRCODE: SC_ERR_AFP_CREATE(190)] - Couldn’t
init AF_PACKET socket, retrying soon

29/11/2022 -- 17:46:16 - <Info> - All AFP capture threads are running.
29/11/2022 -- 17:46:17 - <Info> - Interface ’eth1’ is back
29/11/2022 -- 17:46:17 - <Info> - Interface ’eth2’ is back
29/11/2022 -- 17:48:09 - <Notice> - Signal Received. Stopping engine.
29/11/2022 -- 17:48:09 - <Info> - time elapsed 113.431s
29/11/2022 -- 17:48:09 - <Info> - Alerts: 0
29/11/2022 -- 17:48:10 - <Info> - cleaning up signature grouping structure...

complete
29/11/2022 -- 17:48:10 - <Notice> - Stats for ’eth1’: pkts: 676, drop: 0 (0.00%),

invalid chksum: 0

4.2 Data Exploration
Most addresses in following sections, including this, are anonymized because of the data
originate from a private network. If any address is kept non-anonymized, it is a public IP
address outside the BUT range.

Because of the great amount of data captured by Suricata during the three months of
operation, only a subset of data was selected for the exploration. A chosen part of logs
was captured between 1st November 2022 and 7th November 2022. This amount of data
is considered sufficient, as it spans enough days to contain and explain longer trends, e.g.,
traffic difference between work days and weekends. A longer duration was not selected

29

Day Number of Events
2022-11-01, Tuesday 199 644
2022-11-02, Wednesday 343 995
2022-11-03, Thursday 319 702
2022-11-04, Friday 170 997
2022-11-05, Saturday 33 567
2022-11-06, Sunday 40 446
2022-11-07, Monday 170 284

Table 4.2: Number of events per day.

due to the increased difficulty in processing a greater volume of data. During these seven
days, 931.4 MiB of logs with 1 354 665 EVE records were captured. The size of the entire
dataset spanning 92 days is 17.4 GB accounting for 11 237 669 Suricata flow records. These
flow records contain information about 547,229 GB transmitted through the network and
analysed by Suricata. These and further statistics for the selected week are shown in
Table 4.2. The 5th and 6th November 2022 are Saturday and Sunday respectively, which
can explain the lower amount of captured events.

For many common protocols, the generated EVE logs do not only include the flow
information (source/destination IP addresses and ports, bytes to/from, packets to/from,
etc.), but also specific detailed records containing protocol-specific information. These
records are linked to their corresponding flow with the use of the same ID for both records.
A value of mandatory event_type field signifies whether the record is a generic flow or
protocol specific record.

Events captured in each day and separated by the event_type are demonstrated in
Figures 4.1a and 4.1b. Legend colours from Figure 4.1a apply to both Figures 4.1a and 4.1b.
Most data transmitted is made of flow event type. This behaviour is expected, as the flow
records are created for all records, even those without any specific protocol detected. The
most utilized specific protocol is MQTT. The high presence of this protocol is due to the
specific environment in which the dataset was collected. DNS makes a significant portion
of all records. Rise of the SSH events during the weekend between 5th and 6th November
together with reduction in other traffic is not surprising. As personnel working at the
faculty during weekdays are not present at the faculty, user generated content like DNS is
falling. On the other hand, remote SSH connections are more prevalent.

Figure 4.2 shows the cumulative amount of records of each event type across the explo-
ration period. It is clear, that the number of flow records outnumber all other event types.
This is mainly caused by the fact, that every flow ID has at least one flow records, and it
can have zero or more records of another type. MQQT follows the lead with 443 000 events.
DNS, TLS, HTTP and SSH come next as examples of user generated traffic. Fileinfo event
type is closely tied to HTTP. Fileinfo describes files downloaded by HTTP in more detail.

Features for anomaly detection were selected from the most prominent events. These
are flow, mqtt, dns, tls, and http event types. Description of data belonging to this list of
types together with features derived from them is provided in the following sections.

30

Tuesday
2022-11-01

Wednesday
2022-11-02

Thursday
2022-11-03

Friday
2022-11-04

Saturday
2022-11-05

Sunday
2022-11-06

Monday
2022-11-07

Date

0.0

50000.0

100000.0

150000.0

200000.0

250000.0

300000.0

350000.0

Nu
m

be
r o

f e
ve

nt
s

Number of various event types per day

anomaly
dcerpc
dhcp
dns
fileinfo
flow
http
ikev2
mqtt
sip
snmp
ssh
tftp
tls

(a) Events and their types captured in the exploration period.

Tuesday
2022-11-01

Wednesday
2022-11-02

Thursday
2022-11-03

Friday
2022-11-04

Saturday
2022-11-05

Sunday
2022-11-06

Monday
2022-11-07

Date

0.0

500.0

1000.0

1500.0

2000.0

Nu
m

be
r o

f e
ve

nt
s

Number of various event types per day (without the most frequent)
anomaly
dcerpc
dhcp
dns
fileinfo
flow
http

ikev2
mqtt
sip
snmp
ssh
tftp
tls

(b) Less represented events and types (badly seen in Figure 4.1a) captured during the period.

Figure 4.1: Number of events and their types throughout days.

31

102 103 104 105 106

Number of events

flow
mqtt
dns
tls

http
ssh

fileinfo
anomaly

dhcp
sip

snmp
ikev2

dcerpc
tftp

Ev
en

t t
yp

e

612365
443000

165584
36023

7098
6863

4721
1280
1192

595
119

89
55

30

Number of various event types

Figure 4.2: Observed number of events per type

4.2.1 Flow Event Type

In Figure 4.2, the flow event type is the most frequent (brown colour in the figure). This
observation is supported by two important factors:

1. For each record with an event type value other than flow, there exists a record with
flow event type and the same flow ID. General information about the flow is stored in
the flow record, whereas the protocol specific values are located in the log row with
that particular event type.

2. There is only one record with flow value of the event type, when Suricata is not able
to infer application protocol of the flow.

Distribution of flows based on the amount of transferred bytes is demonstrated in Fig-
ure 4.3a. The same distribution in terms of transferred packets is shown in Figure 4.3b.
Note the logarithmic scale of the Y axis. It is clear, that the dataset contains many short
flows. This increases a possibility, that the proposed anomaly detector can flag longer
flows as anomalous, if the data is not pre-processed or normalized accordingly. Both flow
counts in bytes and packets are selected features for the developed anomaly detector, as
they provide an insight into the general shape of the traffic.

The longest flows in both bytes and packets in Figure 4.3 are caused mainly by MQTT
flows, which often last for multiple days. Suricata considered the continuing MQTT con-
versations as a one flow, instead of splitting it into more flows. Other large flows are mainly
HTPP and TLS flows, which downloaded large files.

32

0 1 2 3 4 5 6 7 8 9
Bytes in a flow 1e8

101

103

105
Fl

ow
 c

ou
nt

Distribution of bytes in flows
to server
to client

(a) Histogram of flows by number of bytes in
a flow

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Number of packets in a flow 1e6

101

103

105

Fl
ow

 c
ou

nt

Distribution of packet counts in flows
to server
to client

(b) Histogram of flows by number of packets in
a flow

Figure 4.3: Flow distribution. Note that X scale (108, 106).

publish 38.6%
(170891)

pingresp

31.7%
(140535)

pingreq
29.7%

(131402)

MQTT packet types

publish
pingresp
pingreq

Figure 4.4: MQTT message types in explored data.

4.2.2 MQTT Event Type

The MQTT protocol takes the second place when measuring by number of flows (see Fig-
ure 4.2, despite the fact that the traffic is generated by only six distinct devices. The
MQTT is a message oriented transport protocol based on the publish/subscribe model. It
is designed to be used as a common communication protocol between various Internet of
Things (IoT) devices or other Machine to Machine (M2M) contexts [3]. Captured traffic
consisted of messages exchanged between two control PCs and four smart appliances, such
as an air quality measuring unit, coffee machine or a refrigerator. Percentages for vari-
ous MQTT events are shown in 4.4. Three most occurring message types are distributed
uniformly. Note, that only message types with more than 1 000 occurrences are shown in
the graph. Messages with lower number of occurrences are not shown in the figure. These
are: connect, connack, subscribe and suback. Only 38.6 % of all MQTT flows are used to
carry useful data—these have the publish type. All MQTT communication originated and
terminated at two nodes in the internal BUT network.

33

For the records with MQTT event type are prevalent in the dataset, features extracted
from MQTT are used for anomaly detection.

4.2.3 DNS Event Type

The top queried DNS servers and their top queried addresses for resource records of all
types are shown in Table 4.3. Two devices in the original dataset (A.A.A.A, B.B.B.B)
served as a prominent DNS servers. For this reason, DNS type and flags were extracted as
features for anomaly detection dataset. Deviation from the commonly seen DNS related
values could be thus predicted by the model.

Dest. IP Query Query Count Dest. IP Query Query Count
A.A.A.A aaa.com 27 D.D.D.D bbb.cz 669

iii.com 13 aaa.com 468
bbb.cz 12 iii.com 252
ccc.com 9 ddd.com 219
ddd.com 9 lll.cz 202

B.B.B.B eee.com 1 E.E.E.E aaa.com 6
fff.cz 1 mmm.com 4
ggg.com 1 nnn.com 4
hhh.com 1 ooo.cz 4

C.C.C.C bbb.cz 193 ppp.com 4
aaa.com 117
iii.com 75
ddd.com 65
kkk.com 56

Table 4.3: Top DNS queries in examination dataset.

Source IP No. Flows
A.A.A.A 94567
B.B.B.B 66164
fe80::1 4167
E.E.E.E 254
fe80::2 217
fe80::3 63

Table 4.4: Top DNS talker source addresses based on number of flows.

The top talkers by source IP address are shown in Table 4.4. Information in DNS logs
can be used for both anomaly detection and reputation scoring. Counts of various DNS
events, queries, and answers all can be used as features for anomaly detection. For example,
if an endpoint normally queries the name A.A.A.A, and suddenly switches to B.B.B.B, the
anomaly detection can potentially flag this as an anomaly, if the change is relatively drastic
to the rest of the dataset, depending on the features used for model training.

For reputation score, information about queried domains can be utilized to penalize the
resulting scores, if given domains are listed in a well-known source of blocked, malicious,

34

or unethical domains. By using domain geolocation, the score can be dropped if a node
is located in a country with known security risks, or if it predominantly communicates
with other nodes from these countries. This also applies to domains known for spreading
misinformation, hoaxes, or which takes part in informational cyberwarfare. Lists of blocked
domains, like the Current List of Administratively Disabled Domains2 by cz.nic, rankings
like National Cyber Security Index3 or studies including the one by Comparitech [8], can
be used as source of such information. Scanning attacks can be detected from DNS logs by
tracing the patterns in a node behaviour. If a node suddenly queries a DNS server for all
resource records for a particular domain, this could suggest that a form of network scanning
is in progress.

For the large amount of DNS data in the exploration dataset, DNS related fields were
chosen as features for the anomaly detection.

4.2.4 TLS and HTTP Event Types

Due to the encryption used by TLS, internal content of messages cannot be learned from
this traffic. Indirect methods, like geolocation or information obtained from certificates,
can be used for primarily for purposes of reputation rating.

For unencrypted HTTP, features like the HTTP content type can be used in anomaly
detection. User agent field is valuable for both anomaly and reputation scoring. A node,
using predominantly one agent and then switching to another one, can possibly trigger an
anomaly alert. User agent strings can be utilized for reputation scoring. Some tools for
network reconnaissance like Nikto include string Nikto in the requests generated by Nikto
by default [21]. It can be argued for lowering the reputation score for nodes performing
network reconnaissance. Detecting an old, outdated user agent, vulnerable to modern
threats, creates a reason for lowering the node reputation score. However, user agent
strings can be easily changed and manipulated with by an eventual attacker, and thus
relying solely on them is not advised. Today, modern web browsers hide or send false user
agent strings to deflect possible blockings of webpages or their incorrect rendering [58].

Features extractable from HTTP logs including hostname, user agent, content type,
method, orstatus can be used as an input for anomaly detection model.

Similarly to queried domains in DNS, target hostnames or URLs can be used to detect
connection to questionable or malicious websites. Common attacks against web servers,
including SQL injection often includes malicious payload in the application/x-www-form-
urlencoded format. Searching for common patterns in URLs can thus help to better
evaluate the final reputation score.

4.2.5 Anomaly and Alert Event Type

There were not many occurrences of the anomaly or alert event type records present in the
span of one week, for which the data analysis was concluded. Anomaly and alert records are
thus evaluated for the entirety of the original dataset (25th October 2022 to 31th January
2023). During this time, a total of 26 896 anomaly records were detected together with
1 827 alert records. It is important to mention, that anomalies as reported by Suricata
are not the same anomalies as understood in the context of this thesis. Anomalies in this

2Czech: aktuálně administrativně vyřazené domény: https://www.nic.cz/page/4310/aktualne-
administrativne-vyrazene-domeny/ accessed [2024-04-02]

3National Cyber Security Index: https://ncsi.ega.ee/ncsi-index/ accessed [2024-04-02]

35

https://www.nic.cz/page/4310/aktualne-administrativne-vyrazene-domeny/
https://www.nic.cz/page/4310/aktualne-administrativne-vyrazene-domeny/
https://ncsi.ega.ee/ncsi-index/

Prot. Anomaly Event Count
HTTP REQUEST_AUTH_UNRECOGNIZED 732

REQUEST_BODY_UNEXPECTED 76
UNABLE_TO_MATCH_RESPONSE_TO_REQUEST 75
MISSING_HOST_HEADER 30
REQUEST_HEADER_HOST_INVALID 8
REQUEST_LINE_INCOMPLETE 5

IKEV2 WEAK_CRYPTO_AUTH 816
WEAK_CRYPTO_DH 775
WEAK_CRYPTO_PRF 410
WEAK_CRYPTO_ENC 52
WEAK_CRYPTO_NODH 11

SMB NEGOTIATE_MALFORMED_DIALECTS 23
MALFORMED_DATA 7

SMTP APPLAYER_DETECT_PROTOCOL_ONLY_ONE_DIRECT. 10
SSH INVALID_BANNER 19956

LONG_KEX_RECORD 447
APPLAYER_DETECT_PROTOCOL_ONLY_ONE_DIRECT. 21
APPLAYER_MISMATCH_PROTOCOL_BOTH_DIRECT. 3

TLS CERTIFICATE_INVALID_DER 3376
INVALID_RECORD_TYPE 23
INVALID_SSL_RECORD 23
ERROR_MESSAGE_ENCOUNTERED 12
APPLAYER_MISMATCH_PROTOCOL_BOTH_DIRECTIONS 2

Table 4.5: Anomaly records reported by Suricata.

thesis are data points not conforming to a normal state of traffic. Suricata anomalies are
flows, for which Suricata could not find a matching signature, or which somehow violate
the expected communication patterns.

The anomalies are grouped into six groups by the application protocol. All reported
anomaly events are shown in Table 4.5. The table shows all records which were marked
anomalous by Suricata. They are grouped by the application protocol used. HTTP anoma-
lies generally relate to malformed packet. IKEV2 alerts are caused by the use of insufficient
cryptography. Most SSH anomalies are caused by the invalid SSH banner. This event is
caused by the SSH banner having characters deemed invalid by Suricata.

Alert records are generated by Suricata if the traffic is matched against any signatures
loaded into the Suricata program. The signature records can also contain data about an
attack source and destination, as well as metadata such as affected operating systems.
Detected alerts, their categories, signatures, and counts are shown in Table 4.6. For the
alerts, six unique alert signatures separated into three categories were reported by Suricata.
The categories are: Attempted Denial of Service, Detection of a Network Scan and Generic
Protocol Command Decode. For example, the most common signature in the Attempted
Denial of Service category implies, that there could be potential denial-of-service attack
using SSDP protocol in the network.

Two features for anomaly detection are based on the anomaly and alert event types.
These are category of an alert and L4 protocol pro anomaly.

36

Category Signature Name Count
Attempted Denial
of Service

ET DOS Possible SSDP Amplification Scan in Progress 110

ET DOS Possible NTP DDoS Inbound Frequent Un-
Authed MON_LIST Requests IMPL 0x03

9

ET DOS Possible NTP DDoS Inbound Frequent Un-
Authed MON_LIST Requests IMPL 0x02

2

Detection of a Net-
work Scan

ET SCAN Zmap User-Agent (Inbound) 6

Generic Protocol
Command Decode

ET INFO WinHttp AutoProxy Request wpad.dat Possible
BadTunnel

1694

ET ATTACK_RESPONSE Possible IPMI 2.0 RAKP Re-
mote SHA1 Password Hash Retrieval RAKP message 2
status code Unauthorized Name

6

Table 4.6: Alert records reported by Suricata.

4.2.6 Grouping by IP Adresses

The events cannot only be differentiated by event type, but also by other log fields such
as source or destination addresses for analysis based on endpoints; or ports, if analysis
per protocol is desired. For the purpose of computing the reputation and anomaly scores,
the most important feature is the source IP address, since it is the main differentiator for

2022-11-01 2022-11-02 2022-11-03 2022-11-04 2022-11-05 2022-11-06 2022-11-07 2022-11-08
Time

A.A.A.0
B.B.B.0
C.C.C.0
D.D.D.0
E.C.E.0
F.E.F.0

G.F.G.0
G.G.H.0
H.H.I.0

I.I.J.0
I.I.K.0
J.J.L.0

K.K.M.0
L.I.C.0

M.L.N.0
M.L.O.0
N.M.L.0
N.N.P.0
O.O.E.0
P.P.Q.0

Q.Q.R.0
R.R.S.0
S.S.T.0
T.T.U.0
U.U.V.0
V.R.W.0
V.V.X.0
V.V.Y.0
V.V.Z.0

V.V.AA.0
V.V.BB.0

W.W.CC.0
X.G.DD.0

Y.X.EE.0
Y.X.FF.0
Y.X.D.0

Y.L.GG.0
Z.Y.HH.0
AA.Z.II.0

BB.AA.JJ.0
CC.BB.KK.0
CC.CC.LL.0

DD.DD.DD.0
EE.EE.MM.0

FF.FF.NN.0
GG.GG.OO.0
HH.HH.PP.0

S
u
b
n
e
t

a
d
d
re

ss

Communications of top 50 /24 subnets by number of flows

flow

fileinfo

ssh

sip

dns

anomaly

tftp

dhcp

mqtt

snmp

tls

http

ikev2

dcerpc

Figure 4.5: Top 50 source IP addresses ordered by the number of flows.

37

2022-11-01 2022-11-02 2022-11-03 2022-11-04 2022-11-05 2022-11-06 2022-11-07 2022-11-08
Time

A.A.A.0
D.D.D.0

TT.BB.GG.0
E.MM.MM.0
E.WW.HH.0
E.XX.DD.0

E.JJ.KK.0
E.TT.AA.0

SS.YY.EE.0
SS.AA.FF.0
SS.CC.II.0

VV.EE.LL.0
F.E.F.0

G.F.G.0
G.WW.CC.0
H.NN.UU.0

NN.QQ.XX.0
II.II.QQ.0

I.I.J.0
I.I.K.0
J.J.L.0

OO.RR.YY.0
M.L.N.0
M.L.O.0
N.M.L.0
P.P.Q.0

MM.PP.WW.0
EE.OO.VV.0

LL.LL.Z.0
PP.SS.ZZ.0

S.S.T.0
T.ZZ.I.0
V.V.X.0
V.V.Y.0
V.V.Z.0

V.V.AA.0
V.V.BB.0

W.W.CC.0
X.G.DD.0

UU.DD.JJ.0
Y.X.EE.0
Y.L.GG.0

Z.MM.TT.0
Z.Y.HH.0
AA.Z.II.0

CC.BB.KK.0
JJ.JJ.RR.0

KK.KK.SS.0
QQ.UU.BB.0

RR.VV.A.0

S
u
b
n
e
t

a
d
d
re

ss

Communications of top 50 /24 subnets by amount of src bytes

Figure 4.6: Top 50 source IP addresses ordered by the total number of bytes.

which an anomaly score can be computed - e.g. the score is computed for each IP address
separately.

Figure 4.5 shows the top 50 IPv4 addresses by number of detected flows. The shade
levels in the figure show the density of flows (darker colour represents more flows during
a time period), while the colour of a data point corresponds to an EVE log event type.
Data in this figure show great contrast between traffic from various IP addresses. Grouping
records by IP addresses enables to calculate scores for every address separately without
contaminating each other. This is valuable specifically for a pair of addresses defined by
different behaviour. For example: Traffic from T.T.U.0 in the figure consists mainly of the
fileinfo event type. If an SSH flow, previously unseen for this address, suddenly appears,
anomaly detection should flag this event as anomalous for a given IP address.

However, problems could rise if the anomaly score was computed for all IP addresses
as a whole. For example, the presence of many SSH flows in traffic of address A in the
training data could result in marking SSH flow of address B as normal, although address
B normally does not send any SSH traffic.

For B.B.B.0 or T.T.U.0, there were no flows detected at 2022-11-06 and 22-11-07. These
days were Saturday and Sunday. The model should consider weekend traffic of these ad-
dresses as anomalies. If the anomaly score was computed from all addresses, then there
could be addresses which communicated during the weekend. The model could then fail to
detect the weekend traffic B.B.B.0 or T.T.U.0 as anomalies.

Figure 4.6 demonstrates top 50 IPv4 addresses by number of sent bytes. Shade levels
show density of flows. The size of a data point represents the amount of bytes sent in one
flow. Note, that the presence of an IP address in the figure do not necessarily mean, that the

38

address communicated throughout the entire examination period. For example, flows from
the WW.GG.YY.B were detected only on the 1st November, in a span of eight minutes.
However, the number of flows was greater than the number of flows of WW.JJ.RR.A, which
communicated for an entire week. See Figure 4.7 as a reference. Figure 4.7a shows quick
and isolated burst of flows, while 4.7b demonstrates continuous communication. For nodes,
which do not communicate uniformly, the longer time window might be needed to evaluate
their behaviour. The importance of average byte count in a flow can also serve as a feature,
as they provide yet another metric trackable in time.

(a) WW.GG.YY.B communicated for eight min-
utes only.

(b) WW.JJ.RR.A communicated each day dur-
ing a week.

Figure 4.7: Two different behaviours of an endpoint communication pattern.

The values illustrated for IP addresses in Figures 4.5 and 4.6, such as time distribution
of flows, number of bytes, or detected events can be used as input for score calculation. The
calculation can be carried out either for a) single IP address or b) range of IP addresses:

a) An IP address of an end node yields more precise results, if there is enough data
about a node. When data is sparse, it might be impossible to calculate the score at
all, or the calculated value might not be entirely representative of the real behaviour
of the node. This can be mitigated by using an aggregation of addresses by subnets,
described in b.

b) The network address together with a prefix or netmask clearly describes a range of
IP addresses. The anomaly or reputation score is then calculated for a block of IP
addresses. Data from all included nodes is used for a score calculation, reducing the
need for having extensive data for each endpoint. The technique works well for smaller
subnets, which usually belong to a single organization. This aggregation cannot
be done indefinitely. Large aggregation would group many autonomous systems.
Calculating the score from large networks can result in skewed results. The optimal
network range can vary depending on the desired outcome. The size of the optimal
range is to be decided by testing, and is specific to an environment.

Possible use of aggregation is shown in Figure 4.8. The figure shows communication
of addresses which participated in a port scanning attack. The attack cannot be inferred
from the traffic data or the figure alone. All IP addresses in the figure demonstrate similar
traffic patterns. These addresses can thus be aggregated and treated as a single subnet.
Traffic originates from subnet 89.248.165.0/24. This subnet belongs, according to WHOIS
database, to Recyber project. The Recyber project web4 claims that its intentions are not
malicious. Whether is this statement true or not, the nodes in this subnet are caught doing
network scans. Thus, the calculated reputation score should, in theory, be reduced. In this

4Recyber project: https://www.recyber.net accessed [2024-04-02]

39

https://www.recyber.net

Figure 4.8: Traffic originating from 89.248.165.0/24 subnet.

case, aggregating nodes to a subnet with /24 prefix results in no data loss since all nodes
belonging to that /24 subnet are demonstrating essentially the same traffic. The calculated
score should have higher weight, since more data points were used for the calculations.

4.3 Summary
This chapter demonstrates the nature of Suricata dataset used in this thesis for model
training and testing. It described data of which the dataset consists. Suricata EVE logs
containing enhanced flow data were described. Most present event types in the data were
presented to a reader with selected examples, graphs, tables, and commentary. Features
extracted from EVE logs for model training were discussed for event types described in the
chapter. Sensitive data shown in this chapter were first anonymized. The presented analysis
explains nuances and thoughts behind selecting precisely these features. It was important
to carry out this analysis, for the selection of the features, understanding of the dataset
and evaluation of results according to the training data would be impossible without it.
The number of flows per protocol, distribution of flow lengths and security related data is
necessary for the result evaluation.

40

Chapter 5

Design of a System for Anomaly
and Reputation Scoring

Chapter describes the inner workings of the proposed system in detail, including its general
architecture, data preprocessing and manipulation, calculating the desired anomaly and
reputation scores, to ranking the log file events using the score. The comparison of selected
methods for anomaly processing is demonstrated, even though the final system uses only
the best performing solution.

5.1 Anomaly Detection
This section talks about processes which had to be done to compute anomaly scores and
to pick out anomalous events from Suricata EVE logs. It starts with a description of
preprocessing steps, goes through transformation and normalization, the scoring method
itself, and it finally demonstrates the way of reducing the amount of log events using the
calculated scores (Section 5.1.4). All steps concerning anomaly detection described in this
section are seen in Figure 5.1. References to this figure are made throughout the following
paragraphs. The calculation is split into two main parts. Data preprocessing has the green
background in the figure, while the scoring itself is blue.

5.1.1 Data Preprocessing for Anomaly Detection

This section aims to introduce a reader to the process of extracting useful information from
raw Suricata logs. This data is then normalized and processed by the score calculating
procedures.

The features to extract were chosen in order to contain valuable information while re-
ducing the dataset size for further processing by scoring functions. Chosen features were
of two main categories — categorical and quantitative. The categorical attributes are later
converted into quantitative feature, since many algorithms and processes for anomaly de-
tection (like k-means) require quantitative data only. During log extraction, there is no
appropriate way to normalize data, because normalization typically works over an entire
dataset. Only a subset of a dataset is available at a given time during the feature extrac-
tion. The entire dataset is available later, after the whole extraction of data from logs is
completed.

The feature selection was based on features, which were selected by authors referred
about in Section 2.4, in works by Henriques et al. (Sec. 2.4.1), Zhaoli et al. (Sec. 2.4.2),

41

Data Collection

Feature Extraction Categorical
Transformation

Drop Singular
Columns

Feature
Normalization

Data Pre-processing

Computing
Mahalanobis

Distance
Outlier Trimming Train/Test Splitting Model Fitting Searching for Optimal

Threshold

Anomaly Scoring

Score Computation

Log Event Rating Log Size Reduction

Figure 5.1: Processing pipeline for anomaly detection

Mehta et al. (Sec. 2.4.3), and Catillo et al. (Sec. 2.4.4). Importance of features as perceived
by the author also played a role.

Extraction Algorithm

The selected algorithm for data extraction is simple. It iteratively reads data from logs
stored in a predefined location. For each of these log, an internal dictionary called flows
is created. The log file is then scanned line by line. Data is extracted from each line and
stored in the aforementioned flows dictionary with the flow_id as a key, and it is filled with
information depending on the event_type value of the record. The fact that all records
adhere to standardized format across the dataset enables to select features deterministically.

Every flow inside the log file has at least one record. If the record type of the flow is
flow, then general properties of this flow are stored in the flows dictionary and the type
is set as flow. General features are listed in Table 5.1. Number of packets and bytes sent
towards the server and towards the client are flow specific features. The Suricata system
determines the correct direction by port numbers.

a source IP address is later used as an identifier, for which a score is computed. Day,
hour, and duration features cannot be directly extracted from log records, but are computed
from items included in the log record. The extraction of an hour in a day and a weekday
name/number is considered important as the traffic size generally differs in various days of
a week.

a record belongs to a specific protocol or special type, if its type is not flow. For each
protocol with considerable amount of traffic (see Figures 4.1a and 4.1b) or a protocol with
interesting data inside. protocol specific features are added to the correct item in the flows
dictionary. It is important to know, that Suricata can produce more than one record with
the same flow ID. If it detects no particular protocol, a record of type flow is generated. If
a protocol is found, it creates the general flow record and a protocol specific record with

42

Feature Feature type
Type Categorical
Day (in a week) Quantitative
Hour Quantitative
Source port Categorical
Destination port Categorical
Application protocol Categorical
Number of packets sent to the server (Source IP) Quantitative
Number of packets sent to the client (Destination IP) Quantitative
Number of bytes sent to the server (Source IP) Quantitative
Number of bytes sent to the client (Destination IP) Quantitative
Source IP address Categorical
Flow duration Quantitative

Table 5.1: Flow specific features

the same flow ID. This was utilised to map protocol specific values to general values already
existing in the flows dictionary and vice versa. The list of chosen protocol specific values
with explanation is shown in Table 5.2.

Protocol/special type Feature Feature type
HTTP Hostname Categorical

User agent Categorical
Content type Categorical
Method Categorical
Status Categorical
Length Quantitative

DNS Flags Categorical
Type Categorical

MQTT Host Categorical
Message type Categorical

Anomaly Protocol Categorical
Alert Category Categorical

Table 5.2: Protocol specific and special features

After all records in a log file were processed and assigned to the corresponding key
in the flows dictionary, this dictionary is sent to a procedure which converts it to CSV
records, and saves it as CSV files in a predetermined location. CSV files are created
separately for each source IP address per date. Thus, one IP address have more CSV files
when it communicates within more days. The naming convention for the resulting CSV is
YYYY_MM_DD_IP_anomaly.csv. If a CSV file for a given IP address and day already
exists, new records are only converted to CSV format and appended to an existing file.

The formalised algorithm for log data extraction is demonstrated in Algorithm 1. Note
that in the resulting program, the algorithm is further divided into multiple functions and
includes more conditions for filtering unwanted lines, etc. Statistical records described in
Section 4.1.2 are an example of unwanted lines.

43

In the picture of data processing pipeline in Figure 5.1, feature extraction is at the
beginning.

Algorithm 1 Data extraction from logs
𝐿← 𝑙𝑖𝑠𝑡(𝑙𝑜𝑔_𝑓𝑖𝑙𝑒𝑠) ◁ Load all log files
𝑆 ← 𝑙𝑖𝑠𝑡(𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙_𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) ◁ Init list of proto. specific features
𝑇 ← 𝑙𝑖𝑠𝑡(𝑓𝑙𝑜𝑤_𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) ◁ Init list of flow specific features
for 𝑙 ∈ 𝐿 do ◁ For each log file 𝑙 in all logs 𝐿

𝐹 ← {} ◁ Init flow dictionary 𝐹
𝑅← 𝑙𝑖𝑛𝑒𝑠(𝑙) ◁ Load all lines in log file 𝑙
for 𝑟 ∈ 𝑅 do ◁ For all log lines 𝑟

if 𝑟.𝑓𝑙𝑜𝑤_𝑖𝑑 not in 𝐹 then ◁ Init new item in 𝐹 dict. Flow ID = key
𝐹.𝑓𝑙𝑜𝑤_𝑖𝑑← 𝑟.𝑓𝑙𝑜𝑤_𝑖𝑑

else if 𝑟.𝑒𝑣𝑒𝑛𝑡_𝑡𝑦𝑝𝑒 = 𝑓𝑙𝑜𝑤 then ◁ Add flow specific features to the records
𝐹.𝑓𝑙𝑜𝑤_𝑖𝑑.𝑎𝑡𝑡𝑟 ← 𝑟.𝑇

else𝑟.𝑒𝑣𝑒𝑛𝑡_𝑡𝑦𝑝𝑒 ∈ 𝑆 ◁ Add protocol specific features to the records
𝐹.𝑓𝑙𝑜𝑤_𝑖𝑑.𝑎𝑡𝑡𝑟 ← 𝑟.𝑆

end if
end for
𝐶 ← 𝑡𝑜_𝑐𝑠𝑣(𝐹) ◁ Transfrom flow dictionary 𝐹 to CSV
𝑠𝑎𝑣𝑒_𝑡𝑜_𝑑𝑖𝑠𝑘(𝐶) ◁ Save CSV to disk

end for

Working Example

Examples of original records in a Suricata generated log and the corresponding line in the
output in the CSV file are listed below.

In the following flow records, only flow specific features were populated, as the event
type is flow. Other features are populated with the default value of -1. Suricata was not
able to determine the specific application protocol of this flow. This record was saved into
the EVE log due to a timeout in communication. Flow timeouts are described in the official
documentation1

{
"timestamp": "2022-10-26T17:03:16.577697+0200",
"flow_id": 1885783963288316,
"in_iface": "eth",
"event_type": "flow",
"src_ip": "X.X.X.X",
"src_port": 58921,
"dest_ip": "Y.Y.Y.Y",
"dest_port": 5355,
"proto": "UDP",
"app_proto": "failed",
"flow": {

"pkts_toserver": 2,
"pkts_toclient": 0,

1Flow Timeouts in official Suriacata documentation: https://docs.suricata.io/en/latest/configuration/-
suricata-yaml.html#flow-time-outs, accessed [2024-04-02]

44

https://docs.suricata.io/en/latest/configuration/suricata-yaml.html#flow-time-outs
https://docs.suricata.io/en/latest/configuration/suricata-yaml.html#flow-time-outs

"bytes_toserver": 150,
"bytes_toclient": 0,
"start": "2022-10-26T16:59:13.344828+0200",
"end": "2022-10-26T16:59:13.766202+0200",
"age": 0,
"state": "new",
"reason": "timeout",
"alerted": false

}
}

a resulting CSV line and its header is:

type,day,hour,src_port,dest_port,app_proto,pkts_toserver,pkts_toclient,
bytes_toserver,bytes_toclient,duration,http_hostname,http_user_agent,
http_content_type,http_method,http_status,http_length,dns_flags,dns_type,
mqtt_host,mqtt_type,anomaly_proto,alert_category,ip

flow,1,2,58921,5355,failed,2,0,150,0,0.421374,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,X.X.X.X

The following record of TCP flow has the application protocol was determined. The
protocol of the flow is HTTP, which corresponds to the destination port 80. Protocol
specific features are under the http key. Flow specific features are not populated when the
extraction algorithm encounters an HTTP record. They are populated when a flow record
with the same flow ID is processed.

{
"timestamp": "2022-10-26T17:10:22.821458+0200",
"flow_id": 229369739830515,
"in_iface": "eth",
"event_type": "http",
"src_ip": "X.X.X.X",
"src_port": 49528,
"dest_ip": "Y.Y.Y.Y",
"dest_port": 80,
"proto": "TCP",
"tx_id": 8,
"http": {

"hostname": "registry.npmjs.org",
"url": "/@web-types%2Fvue-router",
"http_user_agent": "JetBrains IDE",
"http_content_type": "text/plain",
"http_method": "GET",
"protocol": "HTTP/1.1",
"status": 301,
"redirect": "https://registry.npmjs.org/@web-types%2Fvue-router",
"length": 0

}
}

a resulting CSV line (header is same as in the previous example):

45

http,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,registry.npmjs.org,JetBrains IDE,
text/plain,GET,301,0,-1,-1,-1,-1,-1,-1,X.X.X.X

5.1.2 Categorical Data Transformation and Normalization for Anomaly
Detection

Data prepared by the data processing module are loaded into a Pandas2 DataFrame struc-
ture for each IP address, since scoring is done per IP address basis. Each data point is
assigned its date value obtained from its CSV file name.

When data is loaded from the CSV files into the scoring module, few operations have to
be done before any score calculation or application of machine learning algorithms can be
applied to the data. Categorical data has to be transformed to numerical (quantitative).
Python Scikit Learn (henceforth Scikit) library, especially the OrdinalEncoder class3, is
used to convert all categorical dimensions to numeric values (list of integers). This method
maps all occurrences of one category value in a dimension to a unique integer value ranging
from 0 to 𝑛, where 𝑛 is the number of unique values in the original dimension. Example
data transformation by ordinal encoding is shown in Table 5.3a and Table 5.3b. Ordinal
encoding algorithm is written in Algorithm 2.

(a) Data before ordinal encoding

Source Port Dest. Port L4 Prot.
54484 443 tls
53510 53 dns
53510 53 dns
54485 443 tls
4322 53 dns

(b) Data after ordinal encoding

Source Port Dest. Port L4 Prot.
45974 234 14
44903 317 3
44903 317 3
45975 234 14
33584 317 3

Table 5.3: Ordinal encoding. Data are a subset of a real dataset - explaining the high values
of transformed data.

If there is any column in the input dataset with a singular value, it is dropped before
further calculation. Such data would not have by its nature any impact upon the anomaly
detection and it would interfere with the next steps (calculation of Mahalanobis distance).

After the categorical to numeric conversion, data normalization has to be carried out.
Normalization is done with Scikit included method sklearn.preprocessing.normalize,
with the results being in the L2 norm. L2 normalization is performed along the individual
features. An L2 norm (Euclidean norm) is calculated by Formula (5.1) for each dimension
in dataset 𝐷. (dimension is a synonym to feature). 𝑛 is the number of records in the
dimension. A normalized value 𝑥𝑑𝑛 for a data point 𝑥 ∈ 𝐷 for dimension 𝑑 is given as
a fraction of its value and L2 norm of the corresponding dimension (5.2). Norm of vector
x is often written as ||x||. Equations and notation taken from [13].

All these operations are shown in the first row (green) in the pipeline diagram 5.1.
2Pandas library: https://pandas.pydata.org, accessed [2024-01-20]
3sklearn.preprocessing.OrdinalEncoder documentation:

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html, accessed
[2024-01-20]

46

https://pandas.pydata.org
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html

Algorithm 2 Ordinal Encoding
Require: x ◁ List of values to be converted

𝐼 ← [] ◁ Init empty list
for (𝑖 = 0; 𝑖 < 𝑙𝑒𝑛(x); 𝑖++) do

if 𝑥𝑖 /∈ 𝐼 then
𝐼.𝑎𝑝𝑝𝑒𝑛𝑑(𝑥𝑖) ◁ Pupulate list 𝐼 with unique values from x

end if
end for
𝐶 ← [] ◁ Init empty list for output
for (𝑖 = 0; 𝑖 < 𝑙𝑒𝑛(x); 𝑖++) do

𝐶𝑖 ← 𝐼.𝑖𝑛𝑑𝑒𝑥(𝑥𝑖)) ◁ Position of key 𝑥𝑖 in list 𝐼 is the converted value.
end for
return 𝐶

||𝑑||2 =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

𝑥2𝑖 (5.1)

𝑥𝑑𝑛 =
𝑥𝑑
||𝑑||2

(5.2)

5.1.3 Scoring Method for Anomaly Detection

The Principal Component Analysis (PCA) unsupervised learning method was chosen to
determine anomalous points in the dataset. Two anomaly scoring approaches utilising
PCA were implemented and tested. Each approach comes with both its strengths and
weaknesses. These approaches are the PCA bulk method and PCA time based method.
After evaluating both methods, the PCA time based method was chosen as for the final
detection system.

Theoretical principles of PCA method are discussed in section 2.2.2. The entirety of
operations in steps performed on transformed data leading to final score are shown in the
second row (blue) of the pipeline Figure 5.1.

PCA Time Based Method

The main idea of this method is to split the sorted dataset into two parts by date. One
part being for the training, or observing data; and the other part for testing, and validating
data.

Split ratio of the dataset was set to 2/3. For one month (30 days) of data, there would be
20 days from which the model learns the normal state of traffic. Outliers are first stripped
out of the training data. PCA model provided by sklearn.decomposition.PCA is fitted
with the training data. Fitted model is then tested against testing data to detect anomalies.
Testing data is composed of the other third of data (last 10 days in a month).

Outlier Trimming Using Mahalanobis Distance

The PCA method results are highly vulnerable to any presence of outliers in the training
data, because such outliers are main contributing factors in variances, covariances, and

47

correlations [48]. To include these data points in the calculation have an impact on the
solution — especially for components explaining the most variance in the data. For these
reasons, outliers were trimmed out from the training data before PCA model fitting.

Data points were deemed outliers based on the Mahalanobis distance, see Section 2.2.2
for detailed explanation of the metric. Mahalanobis distance was chosen for its suitability
for multivariate data. Euclidean distance could also be used, it is, however, not suitable for
data with correlated features [40]. Mahalanobis distance was also successfully used together
with PCA by Shyu et al. [48]. The metric value for the specific use case of outlier trimming
is calculated for each data point 𝑥𝑖 in the dataset 𝐷 by the formula (5.3),

𝑑2𝑖 (𝑥𝑖,𝑥) = (𝑥𝑖 − 𝑥)𝑇S−1
𝐷 (𝑥𝑖 − 𝑥) (5.3)

where 𝑥𝑖 is a data point selected from all data points 𝑋, 𝑋 = (𝑥1,𝑥2, . . . ,𝑥𝑛), and
𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑝) where 𝑝 is the number of dimensions. 𝑥 is the mean vector of
dimensions of dataset 𝐷, 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑝). The matrix S−1

𝐷 is the inverse covariation
matrix of 𝐷. The equation is taken from [19].

The distance is calculated for all points, no matter if a given point belongs into the
training or testing dataset. The entire dataset is then sorted in descending order by calcu-
lated Mahalanobis distance. The 𝑌 percentile of top values is marked as outliers. 𝑌 = 0.5
was chosen as it proved to yield best results in the testing. The model was experiencing the
least amount of false positives and false negatives when using this value. Other values were
tested, but they did not provide better results than 𝑌 = 0.5. This value was also used by
Shyu et al. [48] for outlier trimming before using PCA to detect anomalies in their paper.

Outliers with high Mahalanobis distance were trimmed out from the training dataset
and left in the testing dataset. These point were labelled as outliers in the testing dataset,
which enables evaluation of results. For one moth of data, the first 20 days would be
trimmed off the outliers. They would stay present in the latter 10 days.

PCA Model Fitting and Anomaly Scoring

a PCA model provided by Scikit sklearn.decomposition.PCA class was fitted by the
training data. The best value for the number of principal components kept in the resulting
dataset was decided to be two. The number of principal components to keep was determined
by testing. Hyperparameter testing report is located in later sections.

Steps demonstrated in Algorithm 3 needs to be performed to calculate anomaly score.
PCA is linear dimensionality reduction using Singular Value Decomposition of the data to
project it to a lower dimensional space.[47]. As PCA is a linear transformation, an inverse
operation to a dimensionality reduction exists. This inverse transformation creates a matrix
with the original number of dimensions.

The PCA model is fitted using the training dataset. This step computes the predefined
amount of principal components. The selected number of components is two, as a model
with two components yielded the best results. Model fitting is the only step required in the
training phase.

Several steps need to be performed to obtain anomaly score. The testing dataset can
be represented as a matrix 𝑋 composed of rows of the dataset (matrix rows) and dimen-
sions/features of the dataset (matrix columns). The testing dataset in the form of matrix
𝑋 is projected on the principal components learned during the training phase. New matrix
𝑌 is the result of this transformation. 𝑌 keeps the same number of rows as 𝑋, but it has

48

lower number of columns than 𝑋. The number of columns of 𝑌 is equal to a number of
principal components specified during the training phase.

The matrix 𝑌 then serves as input for inverse transformation. The inverse transform
can be written as a dot product of 𝑌 and matrix of principal components. Application of
the inverse transformation creates a matrix 𝑋′, which has the same shape as 𝑋. If the
number of principal components during training was equal to the number of dimensions
of 𝑋, then the inverse transformation would be lossless. Because a smaller number of
principal components was chosen for training, there was inherent loss of information during
transformation of 𝑋 to 𝑌 , and 𝑌 to 𝑋′.

The loss of information can be represented by the mean square error between the cor-
responding data point values in the original (𝑋) and inverse transformed (𝑋′) dataset.
A mean square error (5.4) is computed for each corresponding pair of data points 𝑥 =
(𝑥1, 𝑥2, . . . , 𝑥𝑛),𝑥 ∈ 𝑋 and 𝑥′ = (𝑥′1, 𝑥

′
2, . . . , 𝑥

′
𝑛),𝑥

′ ∈ 𝑋′. These values form a loss vector
𝑙 = (𝑙𝑖, 𝑙2, . . . , 𝑙𝑛), where 𝑛 is the dataset size. In equation (5.4), 𝑛 is a number of dimensions
of dataset 𝑋′, 𝑥𝑖𝑗 is the value of dimension 𝑗 of original data point 𝑥𝑖, and 𝑥′𝑖𝑗 is the value
of dimension 𝑗 of inverse transformed data point 𝑥′𝑖. Equation (5.4) taken from [51]

𝑙𝑖 =

𝑛∑︁
𝑗=1

(𝑥𝑖𝑗 − 𝑥′𝑖𝑗)
2 (5.4)

Algorithm 3 PCA Anomaly Detection - Time based method
Require: Preprocessed numeric normalized dataset 𝐷, PCA number of components 𝑛𝑐,

Set of outliers 𝑂 in 𝐷
𝑠𝑝𝑙𝑖𝑡← 2

3 of all days in dataset
𝑡𝑟𝑎𝑖𝑛← {𝑥 : 𝑥 ∈ 𝐷,𝑥.𝑑𝑎𝑡𝑒 < 𝑠𝑝𝑙𝑖𝑡, 𝑥 /∈ 𝑂}
𝑡𝑒𝑠𝑡← {𝑥 : 𝑥 ∈ 𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑥.𝑑𝑎𝑡𝑒 ≥ 𝑠𝑝𝑙𝑖𝑡}
𝑝𝑐𝑎← 𝑃𝐶𝐴(𝑛𝑐).𝑓𝑖𝑡(𝑡𝑟𝑎𝑖𝑛) ◁ Fits PCA model to training data
for each 𝑥 ∈ 𝐷 do ◁ 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑝); 𝑝 = number of dimensions in 𝐷

𝑦 ← 𝑝𝑐𝑎.𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑥) ◁ Apply dimesion reduction for sample 𝑥
𝑥′ ← 𝑝𝑐𝑎.𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑦) ◁ Approximate original 𝑥
𝑙𝑥 =

∑︀𝑝
𝑖=1(𝑥𝑖 − 𝑥′′𝑖)

2 ◁ Sum accross all dimensions
end for
𝑙𝑛 ← 𝑙−𝑚𝑖𝑛(𝑙)

𝑚𝑎𝑥(𝑙)−𝑚𝑖𝑛(𝑙) ◁ Loss min-max normalization
𝑡← 𝑚𝑎𝑥(𝑙𝑛) · 12 ◁ Threshold is one half of max value in 𝑙𝑛
𝑏𝑡, 𝑏𝑚← 𝐼𝑡𝑒𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑙𝑛, 𝑡, 𝑂,𝐷) ◁ Get best threshold, confusion matrix, see Alg 4
return 𝑏𝑡, 𝑏𝑚

a threshold value needs to be calculated, for deciding, whether a data point is anomalous.
If a loss value of the point exceeds the threshold, it is considered an anomaly. Because PCA
method cannot determine the best threshold value itself unlike other methods for anomaly
detection [46, 47], an iterative method for optimal threshold setting was developed. First,
all loss values 𝑙𝑖 ∈ 𝑙 are normalized to <0,1> range using Min-Max normalization with the
following formula:

𝑙𝑖𝑛𝑜𝑟𝑚 =
𝑙𝑖 − 𝑙𝑚𝑖𝑛

𝑙𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛
(5.5)

49

The iterative threshold searching algorithm is demonstrated in Algorithm 4. The al-
gorithm expects the initial value of the threshold, a vector of losses, testing dataset and
records labelled as outliers in the testing dataset. The initial threshold value is set to one
half of the maximal loss value.

Iteratively, for many threshold values, data points are marked anomalous or normal
based on comparison of their loss value and the value of the threshold. Next, a confusion
matrix4 is computed from the thresholded data and the outlier labelled values. Outlier
marking was done in the data preprocessing step. If the sum of false negatives and false
positives is smaller than the recorded best value, the best value is overwritten; and the
current threshold value is considered the best threshold value.

If a number of false positives is smaller than the number of false negative, then the
threshold is too large and is divided by two for the next iteration. If a number of false
positives is larger than the number of false negative, then the threshold is too small, and
it is increased by its half in the next iteration. Algorithm iterates over various threshold
values, unless the difference between the best threshold and the threshold in the current
iteration is less than 10−10, or the number of iteration reaches 100.

The condition for loop completion was tested for more than 500 unique IP addresses.
None of these testing runs experienced result improvements after iteration 46.

Algorithm 4 Iterative threshold
Require: initial threshold 𝑡𝑖, anomaly labelled data 𝑂, normalized loss vector 𝑙𝑛, testing

dataset 𝐷
𝑏𝑡← 𝑡𝑖
𝑏𝑚← ∅
𝑡← 𝑡𝑖
while |𝑏𝑡− 𝑡| < 10−10 or 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≤ 100 do

𝑎← ∀𝑥 ∈ 𝐷

{︂
𝑎𝑥 ← 𝑡𝑟𝑢𝑒 𝑓𝑜𝑟 𝑙𝑥 ∈ 𝑙𝑛 > 𝑡
𝑎𝑥 ← 𝑓𝑎𝑙𝑠𝑒 𝑓𝑜𝑟 𝑙𝑥 ∈𝑛≤ 𝑡

𝑐𝑚← 𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥(𝑎,𝑎𝑙)
if 𝑐𝑚[0][1] + 𝑐𝑚[1][0] < 𝑏𝑚[0][1] + 𝑏𝑚[1][0] then ◁ false negatives + false positives

𝑏𝑡← 𝑡
𝑏𝑚← 𝑐𝑚

end if
if 𝑐𝑚[0][1] < 𝑐𝑚[1][0] then ◁ false positives ≤ false negatives → 𝑡 too large

𝑡 = 𝑡
2

else
𝑡 = 𝑡+ 𝑡

2
end if

end while
return 𝑏𝑡, 𝑏𝑚

The unknown ratio between outlier points in the training and testing dataset is one of
the main advantages of this method. All outliers are labelled during the outlier separation.
A pseudo-labelled dataset is acquired, which can be used to compute detection ratings such

4sklearn.metrics.confusion_matrix documentation:
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html, accessed [2024-
01-20]

50

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html

as a confusion matrix. Therefore, the model cannot be tuned in such a way that it is
overfitted and has no false negatives or false positives.

PCA Time Method Example

This method was tested on a dataset created from Suricata logs for data originating from
one station located in the BUT network gathered during every day in January 2023. The
dataset contains a total of 1 942 372 preprocessed log events and 24 dimensions.

After disregarding of dimensions with only one unique value, dimension number dropped
to 19. Top 0.5 % of data points were selected by the highest Mahalanobis distance and
marked as outliers. Total amount of 9 712 values were marked.

Whether a data point fell into the training or testing dataset depended on its date. If
the date was 2023-01-21 or lower, and the data point was not marked as anomalous, the
data point was added into the training dataset. The data point was included in the training
dataset otherwise. The size of the training dataset was 1 525 604, and the testing dataset
contained 408 221 samples.

Two principal components were computed from the training dataset. PCA transforma-
tions described above were performed on the testing dataset. Loss values were calculated
for every testing data point. The maximal observed loss value was 0,663 while the lowest
one was 3.99 · 10−10.

After the loss values were normalized, the iterative algorithm selected the best threshold.
The iterative algorithm selected the best confusion matrix (Figure 5.2) and corresponding
threshold of 7.62939453125 · 10−6. The F1 Score of the best model for this dataset is 0,82,
while precision 0,95 and recall is 0,72. Out of 1 065 outliers in the training dataset, the
model detected 842 of them as anomalous. The entire calculation without dataset loading
took approximately 45 seconds on a system equipped with AMD Ryzen 5 1600 CPU and
16 GB of DDR4 2666 MHz RAM.

Figure 5.2: Confusion matrix for the example dataset.

51

PCA Hyperparameter tuning

To yield the best possible results, hyperparameters had to be selected. Hyperparameters
are parameters whose values control the learning process and determine the values of model
parameters that a learning algorithm ends up learning. Hyperparameters are selected by
a programmer. [38]. Hyperparameters have to be chosen before model application, they
cannot be manipulated afterwards. It is crucial to pick the best fitting values at the start.

The exhaustive combinations of hyperparameters and their effects on resulting model
accuracy are demonstrated in Table 5.4. mle option in the No. Components column denotes
the use of automatic choice of dimensionality for PCA by Thomas P. Minka [37]. Singular
Value Decomposition (SVD) Solver hyperparameter selects the method used for decompo-
sition of the dataset (matrix) into the principal components. Whiten specifies, whether the
computed principal components are whitened or not. Whitening transformation transforms
vectors of values with a known covariance matrix into new vectors, whose covariances are
eliminated and variance normalized. [45]. Number of selected PCA components is the most
dominant hyperparameter. Other parameters, shown in the table, have no influence on the
computed scores. These parameters were thus left at their default settings.

No. Components Whiten SVD Solver F1 FN+FP
2 True, False arpack, randomized, full, auto 0.82 361
1 True, False arpack, randomized, full, auto 0.82 371
3 True, False arpack, randomized, full, auto 0.81 382
4 True, False arpack, randomized, full, auto 0.81 382
5 True, False arpack, randomized, full, auto 0.81 382
8 True, False arpack, randomized, full, auto 0.79 412
7 True, False arpack, randomized, full, auto 0.77 442
9 True, False arpack, randomized, full, auto 0.75 492
6 True, False arpack, randomized, full, auto 0.72 516
10 True arpack 0.62 639
mle True, False auto, full 0.62 640
10 True randomized, full, auto 0.62 640
10 False arpack, randomized, full, auto 0.62 640

Table 5.4: F1 Scores and false negatives + positives with respect to PCA hyperparameters.
Hyperparameters form the table header. Multiple options in one cell signifies, that any of
the listed values can be used to obtain the same results.

PCA Bulk Method

PCA bulk method differs by the means of dividing the dataset into training and testing
parts. PCA bulk method uses the entire dataset for both the training and testing. Two
copies of the dataset thus have to be created.

Outliers are computed using Mahalanobis distance in the same way as was done in the
Time method. The outliers are then removed from the training dataset, and they are kept
in the testing dataset with the outlier label. The process of model training remains the
same as for the Time method. Anomaly scoring is then done for the entire dataset, which
contains all data including outliers. The scoring process is equal to the Time based method.

52

Using this method yields worse results, as even recent data points are included in the
training dataset. Model is not able to detect anomalies caused by the difference in the
recent and old traffic.

5.1.4 Log Size Reduction Using Anomaly Score

One of the goals of this thesis is to rate log events using the anomaly scores. This goal is
achieved by linking the results of anomaly detection back to the dataset source—the logs.
Each record rated by the anomaly scorer can be traced back to its original log file, thanks
to having a full path to the original log and flow ID available for it. Since more lines of the
log file can report different information about the same flow (see Chapter 4), usage of the
flow ID as a key is preferable than using the line number of a record as a key. Inclusion of
statistical logs in the Suricata EVE logs further complicates the line number approach, as
these lines would be need to filtered out.

First, a dictionary (associative array) of flow IDs and original log paths as keys was
created for each rated IP address. A calculated score, a threshold and a hard decision,
whether the record with given ID is anomalous or not, were stored as values in this data
structure. The original logs are then read into a dictionary and indexed by flow ID. Rated
flows are matched against records in the original log files. If a match is found, information
about anomaly is added to that record.

All lines of the log, no matter if they contain anomalies or not, can be saved into
a file. There is also an option for saving only the anomalous records. Enabling the option
greatly reduces the size of the output logs compared to their original counterparts. Often,
the reduced logs contain only a handful of the original amount of records, decreasing the
amount of records from hundreds of thousands to tenths of records. The largest difference
in a number of records in original and reduced log file was more than 424 000, when the
original file contained 424 133 of records, and the final file only 82 of lines. The largest
log contained 379 records after reduction, while its original consisted of 15 809 records.
Complete report of the testing is in Section 6.5.

5.2 Scoring Method for Reputation
Section describes all the necessary steps taken to compute a final reputation score from
Suricata EVE logs. Suricata, the producer of logs, thus plays a role of an agent, which
collects, preprocesses and provides data to the reputation system, which is the central
node. The central node then computes the final score from preprocessed data available
to it. This section talks about the preprocessing of data, computing daily score, which is
symbolises a building step in computation of the final score, and the method for achieving
the final reputation score for a network node from daily scores.

5.2.1 Data Pre-processing for Reputation Scoring

Suricata EVE logs provide data usable for calculation of a reputation score. This data can
be divided into two categories – directly applicable information, and information which has
to be combined with another external information in order to create a valid metric. this
metric could be then used in a formula for scoring. Data for direct score computation are
extracted from log events with the Anomaly or Alert event types.

53

Anomaly protocol, type, and event features are saved for the anomaly event type.
Anomaly protocol is a string representing an L7 protocol of a given record. Type pro-
vides information about the cause of such anomaly record. Type can be of the following
values: decode, stream or app layer [39]. Event is the most important of anomaly fields, as it
represents the decoded name of the anomaly. Names decoded in the exploration dataset are
described in Section 4.2.5. Again, it is important to mention, that the Anomaly event type
of EVE logs represents different data than the anomalies scored by the method proposed
in this thesis.

Alert-related events contain three useful features – alert signature, alert category, and
alert severity. Alert signature is a text string containing a brief description of a given alert.
Signatures used by Suricata are being periodically downloaded from an online database
and loaded into Suricata processing engine. Examples of such signatures are described in
Section 4.2.5.

Different signatures, belonging to the same topic/category have the same Alert category
value. Alert severity is a number ranging from one to 255, although mainly values from one
to four are used5. The lower the number, the greater severity of an alert is.

Information about DNS and HTTP events are indirect features used for reputation scor-
ing. Indirect features are features, which values are not available in the dataset. They are
obtained from external sources. All DNS queries coming from an IP address are examined
during the pre-processing phase. Two features are populated by DNS data. These features
are type of query (A, AAA, TXT, etc.), and the queried host name. HTTP host name,
URL, and user agent features are collected for HTTP events.

CSV file composed of the aforementioned features is created for an IP address and date.
The reputation scoring module then reads these CSV files into a Pandas dataframe.

5.2.2 Daily Reputation Scoring

When CSV files are loaded, few settings have to be set before the scoring can be carried
out. a date, for which a reputation score is to be computed, has to be defined. Interval of
days needs to be selected. Data in this interval is used to calculate a reputation score for
the previously chosen date. The last day of the interval must be the day, for which a score
is computed. The scoring date can be set to the last date detected in the data, static date,
or the date of calculation. The default value for the number of days from which to calculate
the score has been set to fourteen. Fourteen was chosen as it captures the effects of ageing,
and the 14 day interval is short enught, to be shown in figures. Supporting data which
help to score the indirect events are downloaded from online sources and appropriate data
structures are populated.

a daily reputation score is calculated for each source IP address detected in the data.
The source IP address represents the original sender of the traffic detected by Suricata. It
is therefore evident that the source IP address should be used as the identifier of an entity
to be scored.

Daily score is a value representing the reputation score of a node computed from events
recorded during one day. Daily score ranges from zero to one. The formula for calculation
of the daily score is described by equation 5.6:

5Priority values used in Suricata rules: https://docs.suricata.io/en/suricata-
6.0.0/rules/meta.html#priority, accessed [2024-02-19]

54

https://docs.suricata.io/en/suricata-6.0.0/rules/meta.html#priority
https://docs.suricata.io/en/suricata-6.0.0/rules/meta.html#priority

Figure 5.3: Relation between Sum of Daily Parameters and Daily Reputation Score. Both
variables are dimensionless.

𝑆𝑑𝑎𝑖𝑙𝑦 = 1− 1

1.05(𝑊𝐴𝑁𝑃𝐴𝑁 +𝑊𝐴𝐿𝑃𝐴𝐿 +𝑊𝐷𝑁𝑆𝑃𝐷𝑁𝑆 +𝑊𝐻𝑇𝑇𝑃𝑃𝐻𝑇𝑇𝑃)
(5.6)

where 𝑃𝐴𝑁 is the parameter obtained from anomaly records, 𝑃𝐴𝐿 is the parameter
computed from alerts records, 𝑃𝐷𝑁𝑆 represents the DNS parameter and 𝑃𝐻𝑇𝑇𝑃 is the
HTTP parameter. 𝑊𝐴𝑁 is the weight given to anomaly parameter, 𝑊𝐴𝐿 is the weight of
alert parameter, 𝑊𝐷𝑁𝑆 represents weight for DNS parameter and 𝑊𝐻𝑇𝑇𝑃 is the weight of
HTTP parameter. Weights are dynamic parameters, which can be changed in settings. For
the testing, weights were set to a default value of zero.

The constant value of 1.05 as the base was chosen for the parameters of the resulting
curve shown in Figure 5.3. If the sum of daily parameters equals 50, the Daily reputation
score is 0.913. The daily score reaches 0.99, when the sub score is 94. For the available
dataset, this curve was able to differentiate between bad and good IP addresses. It was
also suitable for keeping the reputation score stable, if a node behaved badly repeatedly,
across multiple days. Results of the reputation scoring using the value of 1.05 are discussed
in Section 6.2.

The value of daily reputation score ranges from zero to one. A score of zero represents
a normally behaving IP address, without the presence of events which could lead to reputa-
tion score degradation. The more the score approaches a value of one, the more reputation
it lost.

Methods for computing parameters are described below:

Alert Parameter

For computing the alert parameter 𝑃𝐴𝐿, set 𝑈 of unique signatures of all alerts detected
during a day 𝐴 is created. A sum of severities of all detected alerts is computed. Severities
are inverted, since an event with severity value of one is the most dangerous. Suricata uses
severity values between zero and four. The inverted severity value 𝑆−1

𝑖 for alert 𝐴𝑖 ∈ 𝐴 is
thus calculated as 𝑆−1

𝑖 = 5 − 𝑆𝑖, where 𝑆𝑖 is the severity of an alert 𝐴𝑖. The formula is
shown in Equation (5.7).

𝑃𝐴𝐿 = |𝑈 | ·
|𝐴|∑︁
𝑖=1

(5− 𝑆𝑖) (5.7)

55

Anomaly Parameter

Anomaly parameter is computed from the list of anomalies detected in one day 𝐿. A set 𝑆
is created from list 𝐿, so every anomaly in the set is unique. Anomaly parameter is then
obtained by multiplication of the magnitude of set 𝑆 with length of list 𝐿. The formula is
shown in Equation (5.8).

𝑃𝐴𝑁 = |𝐿| · |𝑆| (5.8)

DNS Parameter

DNS features extracted from the EVE logs represent together with HTTP dimension data
which cannot be used on its own to compute reputation score. To be useful, they need
to be matched with other information, not directly included in the logs. This additional
information can be in form of various block listst. During the scorer initialization phase,
lists of malign domains are downloaded from online sources. Chosen lists are:

• Current List of Administratively Disabled Domains6 by cz.nic. This list is maintained
by the .cz domain registry. It includes .cz domains, which are currently administra-
tively disabled due to various problems, including failed inspection of correctness of
records of a registered domain, based on the verdict of law enforcement authorities,
court decision, breaking registration rules of cz.nic, or decision of other public author-
ities (like customs administration). The list is refreshed hourly. As of February 2024,
it contained 1464 domains. This list was chosen to be used for reputation scoring,
as the original Suricata was deployed on premise of Brno University of Technology,
located in Czechia.

• Bad referrers7 list created for the Nginx Bad Bot and User-Agent Blocker, Spam
Referrer Blocker, Anti DDoS, Bad IP Blocker and WordPress Theme Detector Blocker
project. This list contains, for example:

– Bad Referrers
– Spam Bots and Bad Bots
– Vulnerability scanners
– E-mail harvesters
– Content scrapers
– Aggressive bots that scrape content
– Government surveillance bots
– Botnet Attack Networks (Mirai)

The list is cooperatively maintained by several contributors via a GitHub reposi-
tory [29], where a detailed description of the list, and its usage is located. Public can
open a pull request to contribute changes to the list. The list contains more than
7 100 domains (February 2024).

6Current List of Administratively Disabled Domains: https://www.nic.cz/page/4310/aktualne-
administrativne-vyrazene-domeny/, accessed [2024-02-04]

7Bad referrers list: https://github.com/mitchellkrogza/nginx-ultimate-bad-bot-blocker/blob/master/-
_generator_lists/bad-referrers.list, accessed [2024-02-04]

56

https://www.nic.cz/page/4310/aktualne-administrativne-vyrazene-domeny/
https://www.nic.cz/page/4310/aktualne-administrativne-vyrazene-domeny/
https://github.com/mitchellkrogza/nginx-ultimate-bad-bot-blocker/blob/master/_generator_lists/bad-referrers.list
https://github.com/mitchellkrogza/nginx-ultimate-bad-bot-blocker/blob/master/_generator_lists/bad-referrers.list

Other lists might be used. For example, a bad domain list of Polish CERT Polska
team [16], which belongs under NASK (Research and Academic Computer Network). This
list contains more than 1 760 000 blocked domains as of February 2024. The list is available
in multiple formats including CSV, JSON, or plain text. It is updated every five minutes.
Submissions to the list are reported either by Polish telecommunication companies or by
the public via a web form. Each submission is verified by at least two people from the
CERT Polska.

This list was not used in reputation scoring due to its sheer size, since processing such
a long list greatly impacted the run time of reputation scoring.

Hostnames in DNS queries included in the dataset are matched against the specified
lists. If any match is found, the number of malicious events 𝑁 is increased by one, and
the host name is added into a set of unique matched host names 𝑆. DNS parameter is
computed as a product of number of malign events with a length of the host name set, as
seen in Equation (5.9).

𝑃𝐷𝑁𝑆 = |𝑆| ·𝑁 (5.9)

HTTP Parameter

HTTP parameter is computed similarly to the DNS parameter. Both lists referred to
in the DNS section are also used for HTTP scoring. HTTP parameter is also affected
by the user agent feature extracted from logs. HTTP user agent is a string symbolizing
a program/script/utility which accessed the desired resource. There are lists of known
malicious user agents, like the list [30] belonging to the same project as the one Bad referrers
list from DNS scoring. The list contains more than 650 user agents (February 2024).

This list contains known web crawlers, bots, indexer software, web server scanners like
Nikto or agents known to be used for other non-desired activities, like the Mozlila (sic)
agent [18].

Set of malicious hostnames 𝑆ℎ is populated with hostnames detected in the logs, which
were also found in any of the list of bad hostnames. A number of bad hostnames 𝑁ℎ is
increased by one each time a nad hostname is found.

a set of bad referrers 𝑆𝑟 is populated in the same way as list 𝑆ℎ is. Number of detected
bad referrers 𝑁𝑟 is also increased each time a bad referrer is found in a dataset.

Complete formula for HTTP parameter is shown in Equation (5.10)

𝑃𝐻𝑇𝑇𝑃 = (𝑁𝑟 +𝑁ℎ) · (|𝑆𝑟|+ |𝑆ℎ|) (5.10)

5.2.3 Overall Reputation Scoring

When a daily score is computed for all days in the selected interval of days for traffic of
a given IP address, one final reputation score has to be calculated for that IP address. The
score is represented by the weighted average of daily scores. The final score 𝑆𝑓 can be thus
written as equation 5.11:

𝑆𝑓 =

∑︀𝑛
𝑖=1(𝑖)𝑆𝑖∑︀𝑛

𝑖=1 𝑖
(5.11)

where 𝑆𝑓 is the resulting score. Day coefficient 𝑖 ranges from one to 𝑛, where 𝑛 is the
size of the interval of days. The oldest day is 𝑖 = 1, while the latest day has coefficient
𝑖 = 𝑛. 𝑆𝑖 then represents the score for a given day. The way of indexing days in the sum

57

operators ensures correct weighting of daily scores from the oldest, the least important,
to the latest, the most important score. Assigning larger coefficient for more recent days
ensures the correct ageing of the reputation score. Reputation score ageing is linear in this
case.

On Interpretation of Reputation Score

There are two schools of though as to how a reputation score should be interpreted. Rep-
utation score ranges from zero to one in both cases. However, the issue lies in determining
which end of the value spectrum represents a positive rating and which represents a negative
one. Currently, as the score computation is done, the value of zero represents a normally
behaving network node, and a score near one means that the node has negative reputation.
Since the method of scoring in this thesis is inspired by CESNET NERD system, where
the same approach is used, it was decided to keep this interpretation of the score. Sys-
tems representing the other way of rating (e.i., higher score equals better reputation) are
represented by the PageRank algorithm, or the SenderScore8 (reputation of email senders).
Cisco Talos uses words to describe the reputation (poor, neutral, good).

On Normalization of Reputation Score

When dealing with real world data, there is large chance of obtaining an unbalanced dataset.
This raises a question whether to normalize data before scoring. Without any normalization,
and using the number of alerts for scoring, the final reputation score of IP address X with
10 alerts and 10 000 total events would be the same as a score of IP address Y with 10 alert
from 11 total events. If normalization takes place, then the address Y has much worse score
than address X, although it participated in the same amount of malicious behaviour.

There were few considerations that had to be taken in account when designing a method
for reputation scoring. First, only alerts, anomalies, or events that might lead to worsening
of the resulting scores are extracted from the logs into the reputation dataset. Other traffic
is not included in the dataset. Secondly, when an IP address produces just one event,
reputation of such node should be decreased, no matter how large the amount of its positive
historical data is. This scenario could emerge if, for example, a previously trustworthy node
gets infected by a virus and starts to act maliciously. Moreover, a reliance on historical data
is incorporated into the scoring function via the weighted average of scores from the past X
days. Normalizing the dataset would, in this case, lead to stricter division between already
rated IP addresses. It would be harder for an IP address to change its reputation score in
time, as the great number of historical data would hide the recent changes in behaviour.
This method of scoring also disallows the use of techniques to artificially keep the score low
while performing malicious actions, like sending a large amount of artificially generated,
but non-malicious traffic together with a much smaller amount of malicious flows.

For the reasons stated above, it was decided not to normalize the dataset.

5.3 Flow of Data After Scoring
For the entire process of scoring, matching scores to original logs, and log size reduction, the
scoring system needs to load of preprocessed data, to score all entities (flows for anomaly

8SenderScore portal for email reputation: https://senderscore.org/assess/get-your-score/, accessed [2024-
02-20]

58

https://senderscore.org/assess/get-your-score/

detection, IP addresses for reputation), to save the scores to temporary files and then match
computed scores to records in original logs. This process is shown in Figure 5.4.

Start

Load All Preprocessed Files

Score Anomalies

Score Reputation

EVE-Date-
TimeEVE-Date-
TimeEVE-Date-Time

Reputation

{
IP: {
 - reputation score
 - calc_date
 - last_scored_day
 - daily_scores: {}
}
{
IP: {
 - reputation score
 - calc_date
 - last_scored_day
 - daily_scores: {}
} Add Score To Logs End

{
 flow_id: {
 - anomaly_score
 - is_anomaly
 - threshold
 }
}
{
 flow_id: {
 - anomaly_score
 - is_anomaly
 - threshold
 }
}Score

Dictionary

Figure 5.4: Flow of data from loading preprocessed data to saving reduced logs

The system is designed to perform every needed action only once, without cycles. First,
preprocessed files are read from disk. The directory from which to read is specified in the
settings file. The reading can be customised by specifying a date, from which to read data.
Loading of datasets for both anomaly scoring and reputation scoring is done. Separate
datasets are created for each IP address. Datasets are represented by Pandas Dataframe.

Anomaly scoring is performed after data is loaded. After an anomaly score is computed
for flows of one IP address, these scores are saved into a dictionary of scores. The anomaly
scores are saved with under the following compound key: original log file name, flow ID.
An example of this dictionary key is eve-2023-01-22-01_53.json, 188194883355008.

Reputation score is computed after the anomaly score. Results of the reputation scoring
are also saved into the same dictionary as the anomalies. Reputation score is saved under
the reputation_score.json, IP address key.

Temporary files are created from the dictionary. One file is created per the primary
key of the dictionary, e.g., eve-2023-01-22-01_53.json, eve-2023-01-22-02_53.json, . . . ,
reputation_score.json files are created.

When matching calculated scores with original logs for reduction of records, first repu-
tation scores are read from the reputation_score.json. The program then iterates over the
pairs of original logs and files with scores. Anomaly scores are added to corresponding flow
IDs in the original log. Reputation score is added to all flows with matching source IP

59

address. Finally, flow records with both scores above the threshold are saved into reduced
log files.

Because of the reputation_score.json file, it is possible to read reputation scores without
having to read all reduced logs. Location of all files can be specified in the settings file.

5.4 Summary
This chapter was split into two thematic sections, each talking about the specific imple-
mentation of an anomaly detection system, or a reputation system. In the anomaly part,
it went through the process of feature extraction, with explanation of why given features
were selected. Transformation of data from categorical to numerical values was described
before explaining the normalization to L2 form. Since the available dataset was unlabelled,
it was necessary to create pseudo-labels. This was achieved with outlier trimming. Outliers
were detected using Mahalanobis distance. Two methods for anomaly detection based on
the unsupervised PCA method were proposed. The method achieving better results (PCA
time based method) was described with a practical evaluation on a testing dataset. Hyper-
parameter tuning for the PCA model was presented. In the end, the anomaly score was
used to enhance the original EVE JSON logs.

a scoring method for reputation was proposed and implemented. The section about
reputation scoring talked about the specifics of feature extraction for reputation, and the
preprocessing of extracted data. It then describes the daily reputation scoring with mathe-
matical formulas and presents parameters, of which the daily score is composed of. Reasons
for using the various parameters were explained. The mathematical notion of computing
the final reputation score from daily scores was shown. The discussion encompassed the
interpretation of the resulting reputation score, as well as the contentions regarding whether
a reputation score should be normalized.

60

Chapter 6

Experiments and Discussion

The aim of this chapter is to look critically at the resulting scores and reduce logs. Expla-
nations of given behaviour of the scoring methods are provided by a commentary, figures,
and tables. The chapter is divided into thematic groups, each dealing with one particular
question or topic. The following topics are described: validation of reputation score against
other working reputation systems, how the reputation score changes in time, the nature
of anomalies detected by the developed system, whether there exists a correlation between
anomalies and reputation, performance testing, and finally, how both scores are used to
reduce amount of Suricata events in logs.

6.1 Validating Reputation Score Against Existing Solutions
Validation of reputation scores by comparison to other existing solutions is not easy, as
the available data from online sources are often changing in time or they are calculated
from recent historical records. The expectation prior to the writing of this section was
that the reputation scores derived from the testing data would have been incomparable to
those calculated by other tools. The reasoning is that the behaviour of Internet nodes has
naturally changed from January 2023 to March 2024.

It was thus surprising, when a number of IP addresses scored by method developed for
this thesis was also flagged with high reputation score by NERD1. in March 2024. Few of the
scored addresses also have poor email sender reputation by Talos2. Selected IP addresses
and their computed reputation scores are shown in Table 6.1. IP addresses from BUT IP
address space are anonymized. Records above the dividing line are addresses belonging to
a group of worst performing addresses. Their score in the table is the highest recorded score
of respective address. Records below the line are addresses, which were rated by the system
developed in this thesis, and which were rated as bad by NERD. These addresses reach high
scores in NERD, because of their long lasting problematic behaviour. They are present in
many black lists as reported by NERD. On the other hand, the presence of communication
in the testing dataset was minimal, which explains their low reputation. The long list of
Other column for IP address 190.171.189.85 stands for: The address is present in nine black
lists, it participates in network scanning, it has ports 22, 25, 53, 80, 443 opened. There were
also unauthorised automated login attempts incoming from that address. My reputation
scoring did not assign worse score to 190.171.189.85, as there was not enough bad traffic

1NERD IP Search: https://nerd.cesnet.cz/nerd/ips/, accessed [2024-03-23]
2Talos Reputation Center: https://www.talosintelligence.com/reputation_center, accessed [2024-02-24]

61

https://nerd.cesnet.cz/nerd/ips/
https://www.talosintelligence.com/reputation_center

So
ur

ce
IP

M
y

ex
pe

rim
en

ts
N

ER
D

sy
st

em
-1

2.
3.

20
24

Ta
lo

s
sy

st
em

-1
2.

3.
20

24
C

om
pu

te
d

Sc
or

e*
D

at
e

Sc
or

e
A

dd
ed

La
st

A
ct

iv
ity

O
th

er
W

eb
R

ep
.

Bl
oc

k
Li

st
Em

ai
l

R
ep

.
V

.V
.B

B.
Q

Q
0.

90
80

57
14

.1
2.

20
22

-
-

-
-

-
-

-
76

.2
23

.9
2.

16
5

0.
61

82
65

14
.1

2.
20

22
-

20
24

-0
3-

09
-

1
lis

t,
44

3
-

-
-

13
.2

48
.2

12
.1

11
0.

59
48

67
16

.1
2.

20
22

-
20

24
-0

2-
16

-
1

lis
t,

44
3

-
-

-
V

.V
.B

B.
LL

0.
30

21
43

18
.1

2.
20

22
-

-
-

-
-

-
-

V
.V

.B
B.

V
V

0.
21

82
69

12
.1

2.
20

22
-

-
-

-
-

-
-

13
9.

59
.1

52
.2

02
0.

21
06

07
17

.1
2.

20
22

0.
00

0
20

24
-0

1-
01

20
24

-0
2-

26
3

lis
ts

,S
ca

n,
22

,8
0

-
Ex

pi
re

d
-

14
1.

94
.1

10
.9

0
0.

20
14

45
08

.1
2.

20
22

0.
00

0
20

24
-0

1-
01

20
24

-0
2-

26
4

lis
ts

,S
ca

n,
22

,8
06

9
-

Ex
pi

re
d

-

16
5.

23
2.

69
.1

56
0.

14
15

05
21

.1
2.

20
22

0.
00

0
20

24
-0

1-
01

20
24

-0
2-

26
4

lis
ts

,S
ca

n,
22

,8
06

9
-

Ex
pi

re
d

-

17
8.

60
.2

04
.5

0
0.

11
76

10
13

.1
2.

20
22

-
-

-
-

-
Ex

pi
re

d
Po

or
18

6.
12

2.
17

7.
11

7
0.

10
59

49
06

.1
2.

20
22

-
-

-
-

-
Ex

pi
re

d
-

14
9.

20
2.

74
.3

7
0.

09
68

94
01

.0
1.

20
23

-
20

24
-0

3-
11

-
3

lis
ts

-
Ex

pi
re

d
-

57
.1

28
.1

1.
39

0.
07

28
59

22
.1

2.
20

22
0.

58
2

20
23

-1
1-

19
20

24
-0

3-
12

8
lis

ts
,S

ca
n,

22
,8

0,
11

1,
80

81
U

nt
ru

st
ed

Ye
s

-

43
.1

38
.1

7.
15

1
0.

06
33

09
05

.1
2.

20
22

-
-

-
-

-
-

Po
or

10
1.

43
.1

10
.1

29
0.

06
33

09
18

.1
2.

20
22

-
20

24
-0

3-
11

-
1

bl
ac

kl
ist

-
Ex

pi
re

d
-

19
2.

14
5.

12
7.

42
0.

00
68

03
19

.1
2.

20
22

0.
76

4
20

23
-0

8-
15

20
24

-0
3-

12
5

lis
ts

,S
ca

n
U

nt
ru

st
ed

Ye
s

-
13

9.
28

.2
18

.3
4

0.
00

68
03

27
.1

2.
20

22
0.

50
0

20
23

-1
1-

02
20

24
-0

3-
12

7
lis

ts
,S

ca
n

-
Ex

pi
re

d
Po

or
91

.2
07

.1
75

.1
54

0.
00

68
03

03
.1

2.
20

22
0.

65
2

20
21

-1
1-

23
20

24
-0

3-
12

7
lis

ts
,S

ca
n

-
Ex

pi
re

d
-

18
5.

24
5.

86
.2

26
0.

00
68

03
22

.1
2.

20
22

0.
75

0
20

21
-0

9-
09

20
24

-0
3-

12
10

lis
ts

,S
ca

n,
12

3
-

Ex
pi

re
d

Po
or

19
0.

17
1.

18
9.

85
0.

00
68

03
14

.1
2.

20
22

0.
04

45
20

23
-1

0-
27

20
24

-0
3-

12
9

lis
ts

,S
ca

n,
Lo

gi
n

at
te

m
pt

s,
22

,2
5,

53
,

80
,4

43
,s

el
f-s

ig
n.

,i
ot

,
eo

l,
da

ta
ba

se
,s

ta
rt

tls

-
Ex

pi
re

d
-

Ta
bl

e
6.

1:
C

om
pa

ra
tiv

e
st

ud
y

of
re

pu
ta

tio
n

ov
er

di
ffe

re
nt

re
pu

ta
tio

n
sy

st
em

s.
*N

ot
e:

th
e

be
st

sc
or

e
=

0
(t

ru
st

wo
rt

hy
no

de
),

th
e

wo
rs

t
sc

or
e

=
1

(t
ot

al
ly

un
tr

us
te

d
no

de
)

62

detected in Suricata. NERD has larger database of traffic where this address is probably
more prominent. The self-signed, iot, eol-product, database, starttls options originate from
Shodan’s InternetDB3.

The table shows information gathered from NERD and Talos for each address. Both
NERD and Talos queries were made on 12th March 2024. If the address has a record in
the NERD Added column, but is missing in NERD Last Activity, then it was never rated
by NERD with a reputation score above zero, however the address is present in one of the
block lists used by NERD. If the score is zero, the node took part in an offensive behaviour,
however the model did not make a decision to increase the score. Information provided in
the NERD Other column includes the number of blacklists in which the address is present,
a list of ports opened on the machine, and other parameters, like Scan, which means that
the IP address certainly participated in a kind of scanning attack. The three Talos columns
describe the labels placed upon the IP address by Talos system. Expired in the Block List
column signifies, that the address was once on a Talos black list, but was later removed
from it. If that column does not have a value, the address never was on any Talos black
list.

The reputation scoring of the thesis marked 68 addresses belonging to 87.236.176.0/24
network. Ten of these records ended with a non-zero reputation score. The score was
however small, i.e., smaller than 10−3. All of these 68 records are present in NERD. NERD
evaluated them with scores between 0.207 and 0.436. All were added in NERD in September
2022 and scanning activities of all were recorded in March 2024. All these addresses are
included in at least seven block lists.

This experiment proved the correctness of the chosen method for reputation scoring,
as the results are comparable to other existing solutions. Both the developed method and
existing solutions are able to mark the same IP addresses as malicious.

6.2 On Changes of the Reputation Score in Time
Looking at the reputation score in the span of multiple weeks, or even months, gives a better
picture of what the score represents. Reputation score was computed for all IP addresses
for all days in December 2022, and January 2023. Defaults settings of the scoring functions
were used for evaluation in this section. The default settings are:

• The number of days (daily scores) used for calculation of the overall score: 14

• The weight of all sub scores: 1

Reputation scores of top 300 IP addresses by number of flows, of which only 130 were
outside BUT, were evaluated. From these, only two addresses achieved score other than
zero. This means, that 298 IP addresses had recorded events, which could potentially led
to a reputation score increase. Resulting reputation score for such address was thus zero.
Two addresses with most recorded flows and non-zero reputation score were V.V.BB.QQ
and V.V.BB.VV. These also happen to figure in the list of ten addresses with the highest
sum of reputation score across the examined time period, and are thus shown in Figure 6.1.
V.V.BB.QQ and V.V.BB.VV addresses are in the V.V.BB.0/24 subnet which belongs to
the top 50 subnets based on number of flows. V.V.BB.QQ and V.V.BB.VV are thus also
represented in Figure 4.5 in Section 4.2.6.

3190.171.189.85 record in Shodan’s InternetDB: https://www.shodan.io/host/190.171.189.85, accessed
[2024-03-12]

63

https://www.shodan.io/host/190.171.189.85

2
0

2
2

-1
1

-2
8

2
0

2
2

-1
1

-3
1

2
0

2
2

-1
2

-0
2

2
0

2
2

-1
2

-0
4

2
0

2
2

-1
2

-0
6

2
0

2
2

-1
2

-0
8

2
0

2
2

-1
2

-1
0

2
0

2
2

-1
2

-1
2

2
0

2
2

-1
2

-1
4

2
0

2
2

-1
2

-1
6

2
0

2
2

-1
2

-1
8

2
0

2
2

-1
2

-2
0

2
0

2
2

-1
2

-2
2

2
0

2
2

-1
2

-2
4

2
0

2
2

-1
2

-2
6

2
0

2
2

-1
2

-2
8

2
0

2
2

-1
2

-3
0

2
0

2
3

-0
1

-0
1

2
0

2
3

-0
1

-0
3

2
0

2
3

-0
1

-0
5

2
0

2
3

-0
1

-0
7

2
0

2
3

-0
1

-0
9

2
0

2
3

-0
1

-1
1

2
0

2
3

-0
1

-1
3

2
0

2
3

-0
1

-1
5

2
0

2
3

-0
1

-1
7

2
0

2
3

-0
1

-1
9

2
0

2
3

-0
1

-2
1

2
0

2
3

-0
1

-2
3

2
0

2
3

-0
1

-2
5

2
0

2
3

-0
1

-2
7

2
0

2
3

-0
1

-2
9

2
0

2
3

-0
1

-3
1

Date

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
R

e
p
u
ta

ti
o
n
 S

co
re

Reputation Score of Worst Performing IP Addresses

V.V.BB.QQ

WW.AA.SS.PP

UU.T.TT.KK

V.V.BB.LL

V.V.BB.VV

OO.RR.LL.TT

S.H.WW.XX

CC.QQ.YY.HH

HH.F.ZZ.SS

MM.AA.AA.NN

Figure 6.1: Time series of reputation score for the worst performing IP addresses.

V.V.BB.QQ has the worst reputation score of all tested IP addresses, with more than
350 000 events reported by Suricata in December 2022 and January 2023 (all records, no
matter if malicious, anomalous, or normal). During the rising phase in Figure 6.1, from the
start of December to 12th December, daily scores of V.V.BB.QQ were always above 0.7.
Because of the formula taking scores of previous days into account, the score rose slower
than that. The rise of the score and values of daily scores are demonstrated in Table 6.2.
The table shows the cumulative property of the overall score, especially during the phase
of score rising.

The overall reputation score raises slowly than the daily scores might suggest. This
slow increase is explained by the use of weighted average of daily scores in the computation
of the final score. Although the daily scores have values near one, the overall score raises
slowly, approximately by 0.1 per day.

The fact is, that one day of bad behaviour cannot worsen the reputation score of a given
IP address to its maximum. The bad behaviour should have to persist across multiple days
for the score to reach its worst value, 12 days, by values presented in Figure 6.1. This
figure also demonstrates the gradual fall of the overall score when no malicious events are
recorded for several days.

V.V.BB.VV address is another address from the BUT address space. With the total of
1 943 000 EVE records, it belongs to IP addresses with the most records. Even though it
has more records than V.V.BB.QQ, it keeps better reputation score.

Figure 6.2 shows score timeline for selected IP addresses. These addresses were chosen,
because their reputation score is very small, but it is not zero. Reputation scores of these
IP addresses demonstrate the change that happens, if only one alert is received for a given
IP address during multiple days. The slower slope of reputation score after the peak values
shows ageing of the score. Note the y scale, when making comparisons to Figure 6.1. The

64

Day 2022-12-01 2022-12-02 2022-12-03 2022-12-04 2022-12-05
Reputation Score 0.000 0.101 0.202 0.322 0.418
Daily Score 0.000 0.705 0.757 0.949 0.843

Day 2022-12-06 2022-12-07 2022-12-08 2022-12-09 2022-12-10
Reputation Score 0.518 0.613 0.697 0.770 0.835
Daily Score 0.928 0.965 0.958 0.944 0.964

Day 2022-12-11 2022-12-12
Reputation Score 0.867 0.899
Daily Score 0.790 0.858

Table 6.2: Reputation score and daily scores of V.V.BB.QQ IP address.

highest shown y value in Figure 6.2 is 0.009, while the maximal value in Figure 6.1 is above
0.9.

An objection to the scoring method can be brought upon analysing data in Figures 6.1
and 6.2. One might argue, that the reputation score is high for V.V.BB.QQ because of its
large amount of traffic compared to other IP addresses (36 000 flow records in EVE logs).
The counterargument to this statement is that there were also other IP addresses in the
dataset with similar or higher volume of traffic but much lower occurrence of misbehaviour.
They are 298 addresses out of 300, which are discussed at the beginning of this section.
V.V.BB.VV with 1 943 000 events is the example. With more than 50 times the number

2
0

2
2

-1
1

-2
8

2
0

2
2

-1
1

-3
1

2
0

2
2

-1
2

-0
2

2
0

2
2

-1
2

-0
4

2
0

2
2

-1
2

-0
6

2
0

2
2

-1
2

-0
8

2
0

2
2

-1
2

-1
0

2
0

2
2

-1
2

-1
2

2
0

2
2

-1
2

-1
4

2
0

2
2

-1
2

-1
6

2
0

2
2

-1
2

-1
8

2
0

2
2

-1
2

-2
0

2
0

2
2

-1
2

-2
2

2
0

2
2

-1
2

-2
4

2
0

2
2

-1
2

-2
6

2
0

2
2

-1
2

-2
8

2
0

2
2

-1
2

-3
0

2
0

2
3

-0
1

-0
1

2
0

2
3

-0
1

-0
3

2
0

2
3

-0
1

-0
5

2
0

2
3

-0
1

-0
7

2
0

2
3

-0
1

-0
9

2
0

2
3

-0
1

-1
1

2
0

2
3

-0
1

-1
3

2
0

2
3

-0
1

-1
5

2
0

2
3

-0
1

-1
7

2
0

2
3

-0
1

-1
9

2
0

2
3

-0
1

-2
1

2
0

2
3

-0
1

-2
3

2
0

2
3

-0
1

-2
5

2
0

2
3

-0
1

-2
7

2
0

2
3

-0
1

-2
9

2
0

2
3

-0
1

-3
1

Date

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

R
e
p
u
ta

ti
o
n
 S

co
re

Reputation Score of Selected IP Addresses

FF.GG.PP.QQ

KK.PP.XX.MM

KK.PP.XX.WW

PP.UU.SS.EE

V.PP.BB.KK

Figure 6.2: Time series of reputation score for selected IP addresses.

65

of events than V.V.BB.QQ, it has a better reputation score. Other arguments for using
absolute numbers without normalization for scoring can be found in Section 5.2.3.

6.3 On Anomalies Found in Reduced Logs
Because of using unlabelled dataset for anomaly detection, a problem of validation arises.
Since no predefined labels could be used to determine why a given point is marked as
anomalous or normal by the model, a post-scoring analysis on the logs containing the
computed score had to be done. Another reason for the necessity of performing this analysis
is the nature of anomalies that the model tries to detect. Anomalies detected by the
developed system are not malicious. Detected anomalies of the IP address represent data
points, which are not in line with the past traffic of the given IP address. The analysis thus
tries to evaluate the relation between the new and old traffic of the same IP address.

Because the anomaly score is computed for each IP address separately and the resulting
score is normalized for every address, it does not make sense to compare scores or anomaly
rates of multiple addresses together. The same applies to the threshold. Each IP address
has different threshold for each day, which makes them incomparable. Threshold is different
for each day, because it is calculated by an algorithm each day, and because the model is
recomputed each day in order to include recent data. The algorithm tries to minimize the
sum of false negatives and false positives. The algorithm is further described in Section 5.1.3.

Only log records of V.V.BB.VV address are taken into account for the analysis, as
dataset made out of records with this address as source address was used for the model
performance evaluation in Chapter 5. This IP address also has enough traffic, so its score
should not be skewed by lack of data samples. Recorded events of V.V.BB.VV address
for the last seven days of January 2023 are demonstrated in Figure 6.3. Most of the log
events happened during the day, after 12:00. This behaviour is visible in the figure, when
the events with such time have the lowest anomaly scores. Be mindful of the logarithmic
Y axis, when examining the figure. For the large size of a dataset, the figure is composed
of every tenth records (1:10) sampling.

The triangular shape created by events each day (in Figure 6.3) is caused by the amount
of recorded events in various hours of the day. For example, between the 10th and 20th
January (dates included in the training data), the mean of hour in a day is 11.86 with
a deviation of 4.418 hours. Histogram of hour values across training data is shown in
Figure 6.4. The values centred around noon with slight skew to the right in the histogram
explain why the anomaly score in Figure 6.3 is the lowest each day at noon.

The following paragraphs explain the annotated anomalies in Figure 6.3:

A: Most of the events on 25th January with score lower than 10−4 are TLS flows with
a long duration and large amount of transferred bytes and packets. The amount
of packets sent or received ranges from several hundred to ten thousand. Duration
of these flows are longer than 11 000 seconds. When compared to data shown in
Chapter 4, Figure 4.3, it is clear why these flows reported higher anomaly scores.
The score, however, did not exceed the threshold by much — by 10−2 at most.
Events with anomaly score in the range 10−4 - 10−3 consist of TLS or Flow records.
Two of these anomalies were also caused by SSH connections to TCP port 22110. 125
records with this destination port were found in the original data. Total amount of
ssh connection in the training data is 416, while the training data consisted of more
than 1 400 000 records. SSH being such a small portion of the overall training data

66

Figure 6.3: Log events of V.V.BB.VV for seven final days of January 2023. Threshold
values are marked with red horizontal lines. Events with anomaly scores higher than the
threshold are marked as anomalous by the model. Note the logarithmic scale on Y axis.
Data in this figure are sampled in 1:10 ratio.

can explain, why such data points could be marked as anomalous. All of these flows
also had longer duration than the most other flows in the training data.

B: The cluster with anomaly score value of 10−2 was in the entirety composed of 18 608
records with the same flow ID. These were MQTT records all captured during one
second — at 04:16:05. 32 907 packets were sent from V.V.BB.VV, and it received
21 511 packets. 4.6 MB of traffic belonging to this stream was reported by Suricata.
In 1 412 104 total records in the training data, only 416 records are MQTT. Most
values for packets sent and received in the training data were below 1 000. This
stream also had extremely long duration. Suricata reports, that this stream begun
on 20th January at 04:54:50, and ended on 25th January at 04:15:36. After the end
of this stream, one flow record and 18 608 MQTT records with conversation details
were saved into the EVE JSON log, all with the same timestamp. This one long flow
lasted for 42 964 seconds, which definitely surpasses the normal value measured for
a flow duration. In the training data, the mean duration of a flow was 40,32, while
its median was under one second.

C: Three most prominent anomaly clusters appeared on 31st January. All of these clus-
ters are formed by MQTT flows with exceptionally large number of records in the

67

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour of the day

0

10000

20000

30000

40000

50000

60000

70000

80000

Nu
m

be
r o

f e
ve

nt
s

Number of events in each hour of the day
Mean

Figure 6.4: Histogram showing the distribution of records based on an hour of a day in the
training data

.

EVE logs and long durations. The most prominent cluster (C) is composed of five
different flows with the same anomaly score score of 0.043. Each of these flows was
composed of more than 42 000 MQTT events, and each lasted for 947 188 seconds
(10.96 days). All of them also sent and received similar number of packets and bytes.
This explains their very similar anomaly scores. The only difference between the flows
was a source port and the fact, that each flow sent information about a different device
(two computers, a coffee machine, a refrigerator, and a network bridge). Nature of
these streams is similar to the MQTT stream from 25th January, thus an explanation,
why these streams are anomalous, is also the same.

D: Two streams near the 10−2 mark on the Y axis are also MQTT streams similar
to the aforementioned ones. In comparison to the streams mentioned above, they
demonstrate lower anomaly scores because of their shorter duration — 511 515 and
409 889 seconds. These two streams transferred information about a wireless access
point and another coffee machine.

E: The anomalies detected on 31st January near the threshold line could be marked
as false positives, as the difference between their anomaly score and the threshold
is less than 10−5. These flows are mainly of the HTTP or SSH type. All HTTP
endpoints are websites belonging to Microsoft. Examples of endpoint hostnames are
1d.tlu.dl.delivery.mp.microsoft.com or b.c2r.ts.cdn.office.net. All connections were
made using the Microsoft-Delivery-Optimization/10.1 user agent.
The most anomalous stream of 31st January is not shown in Figure 6.3 due to the
sampling of the plot. This TLS flow lasted for 441 seconds and 5 397 920 bytes were
downloaded from releases.nixos.org (151.101.2.217). No other TLS record with re-
leases.nixos.org as destination was found in the training data. Median of duration
of 606 982 events in training data with destination port 443 was 1,73 seconds. The

68

mean of duration is 128,11 seconds. Only 15 860 out of 606 982 were longer than this
stream.

6.4 On Correlation Between Anomalies and Reputation
Since the very beginning of a work on this thesis, the question, whether the anomalous and
reputation scores are related, has been present. a theoretical answer to this question lies in
definitions of the two computed scores.

The anomaly score is defined as a metric of how much the traffic in differs from traffic
originating from the same IP address in the past. The reputation score represents the
trustworthiness of the host. The trustworthiness in the developed system is represented
amount of malicious traffic sent by the IP address during the last two weeks.

Given these two interpretations of the term anomaly score and reputation score, the
hypothesis is that these scores should not present a high degree of positive correlation. It
can be argued, that the correlation of the two scores might, in fact, be negative. This
hypothesis can be explained by the following scenario: If a reputation score is high, it
means that the source IP address must sustain a long-lasting malicious or non-trustworthy
behaviour. Long-lasting trend of behaviour implies that the anomaly score for such IP
address should be low. Low value of the reputation score does not imply any specific value
of the anomaly score. Traffic of an IP address can be changing its behaviour, thus increasing
the anomaly score. A change in behaviour does not necessarily mean that the behaviour
before or after this change was malicious.

If the anomalies were considered as malicious behaviour or threats, instead of a simple
change of behaviour, the correlation of both scores should be positive. Both scores would
then play a similar way, both scoring a level of bad patterns found in traffic. Each would
just use a different method to do so.

Figure 6.5: Reputation and anomaly scores for all scored IP addresses (markers) during 10
continuous days.

69

The predicted relation of the two scores is proven by experiments. Logs were rated for
seven days with both an anomaly and a reputation score. Scores were then extracted from
the logs for each IP address and plotted in Figures 6.5 and 6.6. Figure 6.5 shows all detected
scores across ten days. Colours represent the day on which the log events were recorded, and
the day for which both scores have been calculated. Symbols in the plot represent different
IP addresses which were scored. Figure 6.6 illustrates the same experiment, except that it
only shows data points, with values of both scores that were not zero. These figures clearly
show that there is no significant correlation between the anomaly and the reputation scores.

0.00 0.25 0.50 0.75
Anomaly Score

0.00

0.25

0.50

0.75

Re
pu

ta
tio

n
Sc

or
e

141.94.110.90
AS: 0.34
RS: 0.20

61.177.173.24
AS: 0.08
RS: 0.01

Correlation of Anomaly Score and Reputation Score
(only non-zero scores)

Date
2022-12-08
2022-12-09
2022-12-10
2022-12-11
2022-12-12
2022-12-13
2022-12-14
2022-12-15
2022-12-16
2022-12-17

Figure 6.6: Reputation and anomaly scores for all scored IP addresses (markers) during 10
continuous days. Only records, for which neither of the scores was zero, are shown.

The two data points, which show certain amount of correlation, represent addresses
141.94.110.90 and 61.177.173.24. Reputation score of 0.2 of 141.94.110.90 address is caused
by a series of invalid banner events generated on 2022-11-25, 2022-11-29, 2022-12-02, 2022-
12-05, 2022-12-06, 2022-12-07, and 2022-12-08. The address is shown in Figure 6.6 on
2022-12-08, as no traffic originating from that address has been captured in the later days.
Anomaly score value of 0.34 means a non-negligible deviation from absolutely normal be-
haviour of the given IP address, which is however below the threshold for that IP address
on 2022-12-08. Threshold value for that day/IP is 0.5. It is the default threshold value, the
model did not however find any better threshold.

IP address 141.94.110.90 is not shown in Figure 6.1, as it may have a significant repu-
tation score, however, the total sum of scores within multiple days is lower than of which
addresses shown in Figure 6.1.

6.5 Using Reputation Score to Enhance Reduced Logs
When the anomalous log events are found and extracted from the original logs, a person
responsible for the log monitoring (usually a system administrator) still needs to observe
these anomalous events to decide, whether a source of such events poses a risk to the

70

installed infrastructure and if an action needs to be taken or not. Even if the amount of
time spent by going through logs is greatly reduced, new process is still not fully automated.

Partial or complete automation can be achieved by matching resulting reputation scores
of source IP addresses with source IP addresses found in the log records. Now, when
an anomalous record is paired with a reputation score, the job of an administrator is
simplified. An administrator can now look just into one source of data (reduced logs with
anomaly/reputation scores) to determine a follow-up action. In order to achieve trustworthy
and reliable matches, it is important to match log events with a correct reputation score
based on the timestamp. An example of a resulting log record with anomaly and reputation
score is shown below:
{’anomaly_score’: {’anomaly_score’: 0.0013219913112075053,

’is_anomaly’: True,
’threshold’: 2.383783149425184e-05},

’app_proto’: ’failed’,
’dest_ip’: ’V.V.BB.VV’,
’dest_port’: 21027,
’ether’: {’dest_macs’: [’ff:ff:ff:ff:ff:ff’],

’src_macs’: [’XX:XX:XX:XX:XX:XX’]},
’event_type’: ’flow’,
’flow’: {’age’: 0,

’alerted’: False,
’bytes_toclient’: 0,
’bytes_toserver’: 485,
’end’: ’2023-01-31T23:53:12.120033+0100’,
’pkts_toclient’: 0,
’pkts_toserver’: 1,
’reason’: ’timeout’,
’start’: ’2023-01-31T23:53:12.120033+0100’,
’state’: ’new’},

’flow_id’: 2072079663140589,
’host’: ’XXXX’,
’in_iface’: ’XXXXX’,
’proto’: ’UDP’,
’reputation’: {’calc_date’: ’2024-02-22 18:13:21.074152’,

’daily_scores’: {’2023-01-18’: 0.0,
’2023-01-19’: 0.0,
’2023-01-20’: 0.0,
’2023-01-21’: 0.0,
’2023-01-22’: 0.0,
’2023-01-23’: 0.0,
’2023-01-24’: 0.0,
’2023-01-25’: 0.0,
’2023-01-26’: 0.0,
’2023-01-27’: 0.0,
’2023-01-28’: 0.323160637971313,
’2023-01-29’: 0.0,
’2023-01-30’: 0.0,
’2023-01-31’: 0.0},

’last_scored_day’: ’2023-01-31’,
’score’: 0.03627313283351473},

’src_ip’: ’V.V.BB.VV’,
’src_port’: 53844,
’timestamp’: ’2023-01-31T23:53:42.121035+0100’}

71

This log record shows an example of an event rated with both the anomaly and repu-
tation scores. anomaly_score and reputation fields show the scores added by the system.
Because the value of anomaly score is higher than the threshold, this record is considered
anomalous. Reputation score for V.V.BB.VV was computed on 2024-02-22. Reputation
score of 0.036 was computed for 2023-01-31 Records from 2023-01-18 to 2023-01-31 were
used for the calculation of overall reputation score. Daily reputation score was zero for all
days except 2023-01-28. 2023-01-28 was the only day when a malicious event was detected
by Suricata.

Because all anomalous events have their reputation scores available in the log event and
because both the anomaly and reputation scores are numeric, it is possible to develop an
automatic process which determines the action to be taken. This automation can utilise
static predefined thresholds to make decisions or a machine learning model can be developed
to calculate more complex threshold rules.

During a testing period between 8th December 2022 and 17th December 2022, 727 602
Suricata log records were rated using anomaly score. Out of the 727 602 records, 4 542 were
classified as anomalous, as seen in Table 6.3. When observed over the ten days of testing,
there are 454 anomalous events per day by average. This amount of alerts is still higher
than optimal amount for an administrator to check. An administrator would probably
ignore these alerts if he had to investigate 454 events per day.

Number of Events % of All
All records 727 602 100.00
Non Anomaly 723 060 99.38
Anomaly 4 542 0.62

Table 6.3: Number of anomalous records detected by the developed system. Records from
logs between 8th December 2022 and 17th December 2022.

30% of 727 602 records has a source IP address with the reputation score equal to zero.
This means that no bad or malicious behaviour has been detected for these addresses.
505 274 records have been linked to source IP addresses, which did not behave well. This is
demonstrated in Table 6.4. When the threshold of acceptable reputation score is increased,
less records produce alerts. 13% of all 727 602 records is kept, if the reputation score of the
sender IP address is above 0.3.

Number of Events % of All
All records 727 602 100.00
Reputation = 0 222 328 30.56
Reputation > 0 505 274 69.44
Reputation >= 0.1 503 925 69.26
Reputation >= 0.2 386 337 53.10
Reputation >= 0.3 100 714 13.84

Table 6.4: The number of events with various values of reputation score. Events with
a reputation score equal to zero are non malicious. The records are from the logs between
8th December 2022 and 17th December 2022.

72

Number of Events % of All % of Anomalous
All records 727 602 100.00 -
Anomaly & Reputation = 0 2 616 0.36 57.60
Anomaly & Reputation > 0 1 926 0.26 42.40
Anomaly & Reputation >= 0.1 1 904 0.26 41.92
Anomaly & Reputation >= 0.2 1 444 0.20 31.79
Anomaly & Reputation >= 0.3 743 0.10 16.36

Table 6.5: The number of anomalous records left after application of a reputation score.
The records are from logs between 8th December 2022 and 17th December 2022.

Table 6.5 demonstrates the effect of combination of the reputation score and anomaly
score during the testing period between 8th December 2022 and 17th December 2022. When
combining anomalous events with reputation score calculated for a source IP address, the
number of reported alerts is be significantly reduced. As the reputation score does not
have any threshold computed by the reputation scoring algorithm, an administrator has to
determine the value of threshold. Four threshold values were tested on the dataset. First,
a reputation threshold was set to zero. This setting is not viable for the real world use,
as it would produce alerts for records belonging to IP addresses with excellent behaviour.
Then, reputation scores greater than zero, 0.1, 0.2, and 0.3 were tested. The number of
reported events gradually declined to the point when it reached 743 reported events out
of 4 542 anomalous events. Reputation score threshold of 0.3, reports 16 % of anomalous
points only, which is 74 events per day, when divided over 10 testing days. The process of
rating log events using anomaly and reputation scores has been able to reduce the number
of events in the original log file to mere 0.1 % of the original number.

Anomalies detected by the implemented system represent data points which are distant
to data included in the training dataset. They are thus unexpected, strange, abnormal
relatively to the rest of the data. It is not possible to detect these anomalies by simply
observing the dataset of Suricata EVE logs. These anomalies do not signify an invalid
behaviour. Invalid behaviour is reported in the the Suricata EVE logs in the built in
Anomaly event type. Suricata documentation4 describes the Anomaly event type as follows:
Events with type ”anomaly“ report unexpected conditions such as truncated packets, packets
with invalid values, events that render the packet invalid for further processing or unexpected
behaviours. Anomalies reported by Suricata are mainly syntactic, meaning that for example,
that the syntactic parsing of an packet ended with an error (Suricata encountered invalid
character, etc.).

6.6 Performance Testing
Performance testing of anomaly detection and evaluation of original log events was per-
formed by repeated running of the entire process of data processing, model training,
anomaly detection, and matching the resulting scores back to events in the original logs for
V.V.BB.VV address. This IP address proved to be the best candidate as it contains more
than 1 900 000 records, and it thus provides enough space for dataset shrinking. For each of

4Suricata documentation, anomaly event type:https://docs.suricata.io/en/latest/output/eve/eve-json-
format.html#event-type-anomaly, accessed [2024-04-15]

73

https://docs.suricata.io/en/latest/output/eve/eve-json-format.html#event-type-anomaly
https://docs.suricata.io/en/latest/output/eve/eve-json-format.html#event-type-anomaly

the six tests, a portion of training and testing data was deleted from the dataset. The first
test consisted of three repeated runs of the scoring program with dataset with 1 943 118
records. Next tests used subsets of the dataset used in the first test. A subset of the
original dataset containing only 230 209 records was used in the last test. For each dataset
reduction, records from the first five days were removed. The first test thus contained data
from 2023-01-01 to 2023-01-31, the second test contained records from 2023-01-06 to 2023-
01-31. The last test contained records from 2023-01-25 to 2023-01-31. The time needed
for extraction of features from the original logs is not taken into account for the testing,
as that process is carried out once per log file, and it includes all IP addresses detected in
that file. Limiting the extraction to the V.V.BB.VV only is not possible without serious
changes of the code.

Detailed duration for each step of the computing pipeline are shown in Table 6.6. The
table shows the average duration of the subtask over the three runs performed for each test.
Most time is spent by modifying EVE logs with the computed score, as this process has
to load all log files and assign the score to each record with matching flow ID. Calculation
of Mahalanobis distance, which takes from 22% (smallest dataset) to 44% (largest dataset)
of the execution, is the longest part of the entire calculation. The process of model fitting
and following anomaly scoring accounts to 5-12% of the entire duration without the final
log size reduction. The reduction in time for the Anomaly Score Calculation and Scoring
Log Events rows for the test no. 6 is explained by data points included in the training and
testing datasets of test no. 6. The cluster of 18 608 flow records shown in Figure 6.3 under
letter a belongs to the training dataset of test no. 6. This cluster belongs to testing dataset
for the other tests. Because this large cluster of records is not in the testing dataset of test
6, the scoring of the testing dataset and matching these scores to the original log files takes
less time.

Test Number 1 2 3 4 5 6
No. Records (Train+Test) 1943118 1590700 1238500 923721 425633 230209
Numeric Conversion 3.41 2.81 2.21 1.67 0.84 0.40
Ordinal Encoding 5.68 4.75 3.77 2.88 1.44 0.78
Drop Singular Cols 0.95 0.78 0.62 0.51 0.28 0.13
Normalization 0.16 0.13 0.11 0.08 0.03 0.02
Mahalanobis Distance 28.95 24.00 18.31 13.64 6.35 3.51
Outlier Trimming 1.26 0.96 0.71 0.50 0.19 0.10
Splitting Train/Test 1.04 0.81 0.63 0.47 0.21 0.12
Removing Temp Cols 0.10 0.08 0.07 0.06 0.03 0.02
PCA Model Fitting 2.70 2.18 1.56 1.15 0.04 0.02
Anomaly Score Calc. 3.42 3.41 3.44 3.42 3.45 1.94
Scoring Log Events 14.22 14.41 14.14 14.24 14.25 8.19
Reducing Logs 108.33 111.21 112.73 111.85 114.46 114.78
Total Time, No Log Reduce 65.65 57.28 47.88 40.36 28.02 15.67
Total Time 173.98 168.49 160.61 152.21 142.48 130.45

Table 6.6: Duration of a program execution for data preprocessing, anomaly detection, and
enhancing the original logs. All measurements are in seconds.

74

Figure 6.7: Time needed to score events in the original logs in relation to the amount of
events in the dataset.

Figure 6.7 shows the relation between the application runtime and the number of events
in the dataset. The plot consists of two lines. The blue one includes time needed to update
events in the log files with the computed score. As this process always has to traverse the
entire set of log files, its runtime is not impacted by the amount of events in the dataset. For
this reason, the figure also shows a trend without the final log alteration, which is marked
in orange. The plot shows that the scoring process scales linearly with the dataset size.
Datasets with more than 2 000 000 data points were not tested due to hardware limitations.

Reputation scoring was not included in this testing, as the impact of it on the entire
runtime is negligible.

Performance testing was done on a system equipped with Intel i5-8265U CPU and 16 GB
of RAM. All log files, temporary files and program were stored on Intel SSDPEKNW512G8H
SSD.

6.7 Environment Preparations
The Suricata EVE logs are highly configurable. As seen in the EVE JSON output section
of the Suricata documentation5, every event type defined can be selected to be included
or excluded in those logs. Event types have configurable parameters, which further specify
data fields included in a log record.

5EVE JSON Output documentation: https://docs.suricata.io/en/latest/output/eve/eve-json-
output.html, accessed [2024-04-15]

75

https://docs.suricata.io/en/latest/output/eve/eve-json-output.html
https://docs.suricata.io/en/latest/output/eve/eve-json-output.html

In order for the detection system developed for this work, the following types and fields
need to be included in records of the EVE JSON logs:

• Flow event type

– src_port
– dest_port
– app_proto
– pkts_toserver
– pkts_toclient
– bytes_toserver
– bytes_tocli
– event_type
– timestamp

• DNS event type

– flags
– type
– dns_rrname
– dns_rrtype

• HTTP event type

– hostname
– http_method
– http_user_agent
– http_url
– length
– status
– url

• MQTT event type

– host
– pingresp | publish | pingreq | connect | subscribe | suback | connack | disconnect

• Anomaly event typee

– app_proto
– type
– event

• Alert event type

– category

76

– severity
– signature

If any of the needed values are not present in the EVE JSON log given as the output
for the system, the value will be filled with default value. Computation of anomaly and
reputation score is performed, and the logs are reduced. However, the performance of the
detection will be worse, as not all possible information is provided to the models. Examples
of compatible record formats are shown in Section 5.1.1.

6.8 Summary
This chapter presented the results of the developed methods, discussed them, raised ques-
tions related to the methods or results, and tried to answer them. Validation of computed
reputation score against other reputation systems (NERD, Talos) was included in Sec-
tion 6.1. The developed system was able to detect malicious IP addresses, which were also
reported by other tools, thus the developed system corresponds with existing solutions.

In 6.2, the practical implications of computing the reputation score from data gathered
across multiple weeks was demonstrated. The relation between the daily sub scores and the
overall reputation score was shown. The section explained, why reputation score cannot
reach its worst possible values, if a network node behaved badly for only one day. Conditions
leading to the rise or fall of the reputation score in time were brought up and demonstrated
in figures.

Section 6.3 talked about the nature of detected anomalies and it provided explanations,
why some points were selected as anomalies by the model. Examples of training data
provided a background as to why the model acted as it did. The anomalies were shown in
a figure together with non-anomalous points to show the differences. Selected anomalies
were discussed. An analysis of why some data points are considered anomalous by the
model was performed and described. The most anomalous flows were those with extremely
log duration spanning multiple days. SSH flows with non-standard SSH ports were also
detected as anomalies.

The relation between anomaly and reputation score was demonstrated and explained
in 6.4. No significant correlation between both scores was found. This lack of correlation is
in line with the hypothesis that if an IP address keeps a stable reputation score over time,
then its behaviour is stable (not anomalous).

The result of combining anomaly and reputation scores into an automated alert re-
duction system was described 6.5. The positive real world results were presented. The
developed system was able to reduce the initial 727 602 records to 743 records, which repre-
sents only 0.1% of the original number. The major goal of the thesis—the log reduction—is
thus reached.

The complexity of the scoring method was assessed in Section 6.6. It was shown, that
some actions like the computation of Mahalanobis distance, has worse time complexity than
other parts of the calculation, and that it is the major contributor to the final runtime of
the program. The final matching of computed scores to records in the original logs does
not depend on the number of rated flows, as all logs have to be searched through for the
needed flow IDs.

77

Chapter 7

Future Work and Conclusion

This chapter concludes the work with an overview of the achieved results, its contributions,
and potential future extensions and improvements upon the developed scoring methods.

7.1 Future Work
Although this thesis studied the assigned problematics thoroughly, there remain possible
considerations or extensions for this work.

An extension to this work can be developed. This extension will automatically infer
the best possible future action, such as create a firewall rule blocking an IP address, based
on the calculated scores or log events which were marked as anomalous, events with bad
reputation score, or both. The method could use statically defined rules, or it could utilize
machine learning to determine the best steps.

The current approach to the anomaly detection could be brought over to a future work,
which will try different options for some steps in the computation pipeline. The main idea
of the process should remain the same. The PCA method used for anomaly detection could
be exchanged for other methods. Methods for unsupervised learning belonging to different
categories could be tested and evaluated. Clustering methods like DBSCAN or K-means
are some of the methods that can be used. Nonlinear variations of PCA or other nonlinear
methods might prove better results, depending on the nature of the input dataset. Machine
learning models could be a valid alternative to the mathematical functions used to calculate
the reputation score.

Other possible experiments include keeping the methods, but changing the preprocessing
— especially the way of transforming categorical to numeric attribute. A suitable conversion
technique might be the One Hot Encoder. This encoder transfers one column (a feature)
into many columns. The number of newly created columns is equal to by the number of
unique values of the original feature. Each of the new columns is populated by values zero
and one only. The value of a data point in the column 𝑥 is one, if the value of the original
feature was 𝑥. Values in other created columns of that data point remain at zero.

The current way of extracting data from the Suricata EVE logs creates a data points
from the individual records. An alternative approach for the data extraction would be
to utilise sliding time windows and aggregating multiple records into a single data point.
Detection can be then performed on a dataset composed of these windows, instead of
observing individual records. This approach would be better suitable to detect collective

78

anomalies in the data. Collective anomalies are defined in Section 2.1.1. The currently used
approach is more suitable for a point anomaly detection.

7.2 Conclusion
In this master’s thesis, a method for rating log events using a reputation and anomaly
scores was proposed. The implemented method showed how log events from systems like
Suricata can be used to train machine learning models for anomaly detection. It also shows
how a reputation score can be computed from detected alerts or by combining information
from logs with external data.

An anomaly detection system from system logs containing network traffic data was pro-
posed, implemented and evaluated. The proposed model based on the statistical detection
method, Principal Component Analysis, proved to be a good classifier for detection. Prin-
ciples of modern anomaly detection in network traffic and commonly used methods for this
case were described and brought forth to the reader. Available data from Suricata IDS
instance running at the Faculty of Information Technology, Brno University of Technology,
was analysed, and the set of features best describing them was extracted. The PCA model
for anomaly detection was trained with selected features on a subset of available data for
data originating from one preselected IP address (representing a network node), and tuned
to yield the best possible results. The tweaked model was then used for evaluating the rest
of IP addresses included in the available dataset.

Records of alerts and protocol anomalies found in the original logs were used together
with other extracted data (HTTP and DNS records) to implement a scoring function for
reputation. The reputation score starts at a baseline and is worsened every time an entity
(i.e., an IP address) presents itself with a malicious or unwanted behaviour. Information
that was not accessible in the original logs, such as diverse block lists of hosts or user agents,
was utilized to enhance the scoring process. A proposed method of matching a reputation
score to the original logs, together with an anomaly score, can serve as the base for an
entirely automatic way of deciding, whether a given IP address is malicious, or if it is
behaving extraordinarily. In that case, a system administrator can proceed with more
in-depth exploration of traffic originating from such address and derive conclusions.

These two scores were matched to correct records in the original dataset, composed of
enhanced NetFlow records generated by the Suricata tool. The matching was done by IP
address and a date. A reduction of these log files by including only records with scores
above a specified threshold was proposed, implemented and demonstrated. From more
than 720 000 log events, only 743 anomalous events with bad reputation remained. Log
records were reduced to 0.1% of their original number. Experiments and analysis of the
results were conducted and observed behaviour of scores was explained. Nature of the
anomalies was discussed and it was shown, why the PCA model marked some points as
anomalies. Experiments about the stability of reputation score, relation between anomaly
and reputation scores, and the performance of the scoring methods were carried out. A quick
glance at the possible future work based on this thesis was presented.

79

Bibliography

[1] Alghamdi, A. A. and Reger, G. Pattern Extraction for Behaviours of Multi-Stage
Threats via Unsupervised Learning. In: 2020 International Conference on Cyber
Situational Awareness, Data Analytics and Assessment (CyberSA). 2020, p. 1–8.

[2] Bahmani, B., Moseley, B., Vattani, A., Kumar, R. and Vassilvitskii, S.
Scalable K-Means++. Proc. VLDB Endow. VLDB Endowment. mar 2012, vol. 5,
no. 7, p. 622–633. ISSN 2150-8097.

[3] Banks, A., Briggs, E., Borgendale, K. and Gupta, R. MQTT Version 5.0
[online]. 5th ed. Burlington, US: OASIS, March 2019, 2019-03-07 [cit. 2023-09-28].
Available at: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

[4] Barford, P., Kline, J., Plonka, D. and Ron, A. A Signal Analysis of Network
Traffic Anomalies. Proceedings of the 2nd Internet Measurement Workshop (IMW
2002). september 2002.

[5] Bartos, V., Zadnik, M., Habib, S. M. and Vasilomanolakis, E. Network entity
characterization and attack prediction. Future Generation Computer Systems. 2019,
vol. 97, p. 674–686. ISSN 0167-739X. Available at:
https://www.sciencedirect.com/science/article/pii/S0167739X18307799.

[6] Bartoš, V. Network Entity Reputation Database (NERD): Database of malicious
entities on the Internet and everything we know about them. [online]. 2020 [cit.
2024-02-20]. Available at: https://nerd.cesnet.cz.

[7] Bartoš, V. User Guide. 2023 [cit. 2024-02-21]. Available at:
https://github.com/CESNET/NERD/wiki/User-Guide.

[8] Bischoff, P. Which countries have the worst (and best) cybersecurity? Global
rankings [online]. Comparitech Limited, Jan 2024 [cit. 2024-01-21]. Available at:
https://www.comparitech.com/blog/vpn-privacy/cybersecurity-by-country/.

[9] Borenstein, D. N. S. and Kucherawy, M. An Architecture for Reputation
Reporting [RFC 7070]. RFC Editor, november 2013. DOI: 10.17487/RFC7070.
Available at: https://www.rfc-editor.org/info/rfc7070.

[10] Borenstein, D. N. S. and Kucherawy, M. A Media Type for Reputation
Interchange [RFC 7071]. RFC Editor, november 2013. DOI: 10.17487/RFC7071.
Available at: https://www.rfc-editor.org/info/rfc7071.

[11] Borenstein, D. N. S. and Kucherawy, M. A Reputation Query Protocol [RFC
7072]. RFC Editor, november 2013. DOI: 10.17487/RFC7072. Available at:
https://www.rfc-editor.org/info/rfc7072.

80

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.sciencedirect.com/science/article/pii/S0167739X18307799
https://nerd.cesnet.cz
https://github.com/CESNET/NERD/wiki/User-Guide
https://www.comparitech.com/blog/vpn-privacy/cybersecurity-by-country/
https://www.rfc-editor.org/info/rfc7070
https://www.rfc-editor.org/info/rfc7071
https://www.rfc-editor.org/info/rfc7072

[12] Brin, S. and Page, L. The Anatomy of a Large-Scale Hypertextual Web Search
Engine. Computer Networks. 1998, vol. 30, p. 107–117. Available at:
http://www-db.stanford.edu/~backrub/google.html.

[13] Brownlee, J. Gentle Introduction to Vector Norms in Machine Learning [online].
Oct 2021 [cit. 2024-04-02]. Available at:
https://machinelearningmastery.com/vector-norms-machine-learning/.

[14] Camacho, J., Pérez Villegas, A., García Teodoro, P. and Maciá
Fernández, G. PCA-based multivariate statistical network monitoring for anomaly
detection. Computers & Security. 2016, vol. 59, p. 118–137. ISSN 0167-4048.

[15] Catillo, M., Pecchia, A. and Villano, U. AutoLog: Anomaly detection by deep
autoencoding of system logs. Expert Systems with Applications. 2022, vol. 191,
p. 116263. ISSN 0957-4174.

[16] CERT Polska. List of malicious domains [online]. NASK, 2020 [cit. 2024-02-21].
Available at: https://cert.pl/en/posts/2020/03/malicious_domains/.

[17] CESNET, z. s. p. o.. Warden [online]. 2017 [cit. 2024-02-20]. Available at:
https://warden.cesnet.cz/en/index.

[18] Cid, D. The Mysterious Mozlila User Agent bot [online]. Trunc, a NOC.org company,
2022 [cit. 2024-02-18]. Available at:
https://trunc.org/learning/the-mozlila-user-agent-bot.

[19] Dodge, Y. Mahalanobis Distance. In: The Concise Encyclopedia of Statistics. New
York, NY: Springer New York, 2008, p. 325–326. ISBN 978-0-387-32833-1.

[20] Fernandes, G., Rodrigues, J. J. P. C., Carvalho, L. F., Al Muhtadi, J. F.
and Proença, M. L. A comprehensive survey on network anomaly detection.
Telecommunication Systems. Mar 2019, vol. 70, no. 3, p. 447–489. ISSN 1572-9451.

[21] Fyffe, R. Open Source Active Reconnaissance (Red Team) [online]. CrowdStrike,
mar 2016 [cit. 2023-12-26]. Available at:
https://www.crowdstrike.com/blog/open-source-active-reconnaissance-red-team/.

[22] Gambetta, D. Can We Trust Trust? In: Gambetta, D., ed. Trust: Making and
Breaking Cooperative Relations. Blackwell, 1988, p. 213–237.

[23] Grandison, T. and Sloman, M. A Survey of Trust in Internet Applications. IEEE
Communications Surveys and Tutorials. Jan 2000, vol. 3, p. 2–16.

[24] Hamdi, M. and Boudriga, N. Detecting Denial-of-Service attacks using the wavelet
transform. Computer Communications. 2007, vol. 30, no. 16, p. 3203–3213. ISSN
0140-3664. Special Issue: Advances in Communication Networking.

[25] Henriques, J., Caldeira, F., Cruz, T. and Simões, P. Combining K-Means and
XGBoost Models for Anomaly Detection Using Log Datasets. Electronics. 2020,
vol. 9, no. 7. ISSN 2079-9292. Available at:
https://www.mdpi.com/2079-9292/9/7/1164.

81

http://www-db.stanford.edu/~backrub/google.html
https://machinelearningmastery.com/vector-norms-machine-learning/
https://cert.pl/en/posts/2020/03/malicious_domains/
https://warden.cesnet.cz/en/index
https://trunc.org/learning/the-mozlila-user-agent-bot
https://www.crowdstrike.com/blog/open-source-active-reconnaissance-red-team/
https://www.mdpi.com/2079-9292/9/7/1164

[26] Jolliffe, I. T. and Cadima, J. Principal component analysis: a review and recent
developments. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences. 2016, vol. 374, no. 2065, p. 20150202.

[27] Josang, A. and Ismail, R. The beta reputation system. In: Citeseer. Proceedings of
the 15th bled electronic commerce conference. 2002, vol. 5, p. 2502–2511.

[28] Jøsang, A., Ismail, R. and Boyd, C. A survey of trust and reputation systems for
online service provision. Decision Support Systems. 2007, vol. 43, no. 2, p. 618–644.
ISSN 0167-9236. Emerging Issues in Collaborative Commerce.

[29] Krog, M. Bad-referrers.list. 2023 [cit. 2024-02-18]. Available at:
https://github.com/mitchellkrogza/nginx-ultimate-bad-bot-blocker/blob/master/
_generator_lists/bad-referrers.list.

[30] Krog, M. Bad-user-agents.list. 2023 [cit. 2024-02-18]. Available at:
https://github.com/mitchellkrogza/nginx-ultimate-bad-bot-blocker/blob/master/
_generator_lists/bad-user-agents.list.

[31] Lakhina, A., Crovella, M. and Diot, C. Diagnosing Network-Wide Traffic
Anomalies. In: Proceedings of the 2004 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications. New York, NY, USA:
Association for Computing Machinery, 2004, p. 219–230. SIGCOMM ’04. ISBN
1581138628.

[32] Li, D. and Liu, S. Chapter 4 - Water Quality Evaluation. In: Li, D. and Liu, S.,
ed. Water Quality Monitoring and Management. Academic Press, 2019, p. 113–159.
ISBN 978-0-12-811330-1.

[33] Liu, Z., Qin, T., Guan, X., Jiang, H. and Wang, C. An Integrated Method for
Anomaly Detection From Massive System Logs. IEEE Access. 2018, vol. 6,
p. 30602–30611.

[34] Madhulatha, T. An Overview on Clustering Methods. IOSR Journal of
Engineering. May 2012, vol. 2.

[35] Matoušek, P. Reputační systémy [online]. 1st ed. Brno: Brno University of
Technology, 2023 [cit. 2023-10-02]. Available at: https:
//moodle.vut.cz/pluginfile.php/579752/mod_resource/content/1/pds-reputace.pdf.

[36] Mehta, S., Kothuri, P. and Garcia, D. L. Anomaly Detection for Network
Connection Logs. ArXiv. 2018, abs/1812.01941.

[37] Minka, T. P. Automatic choice of dimensionality for PCA. 1st ed. Cambridge, MA,
USA: M.I.T. Media Laboratory Perceptual Computing Section, Dec 2000.

[38] Nyuytiymbiy, K. Parameters and Hyperparameters in Machine Learning and Deep
Learning [online]. Towards Data Science, dec 2020 [cit. 2023-12-23]. Available at:
https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac.

[39] OISF. 17.1.2. Eve JSON Format. OISF, 2024. Available at: https://
docs.suricata.io/en/latest/output/eve/eve-json-format.html#event-type-anomaly.

82

https://github.com/mitchellkrogza/nginx-ultimate-bad-bot-blocker/blob/master/_generator_lists/bad-referrers.list
https://github.com/mitchellkrogza/nginx-ultimate-bad-bot-blocker/blob/master/_generator_lists/bad-referrers.list
https://github.com/mitchellkrogza/nginx-ultimate-bad-bot-blocker/blob/master/_generator_lists/bad-user-agents.list
https://github.com/mitchellkrogza/nginx-ultimate-bad-bot-blocker/blob/master/_generator_lists/bad-user-agents.list
https://moodle.vut.cz/pluginfile.php/579752/mod_resource/content/1/pds-reputace.pdf
https://moodle.vut.cz/pluginfile.php/579752/mod_resource/content/1/pds-reputace.pdf
https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac
https://docs.suricata.io/en/latest/output/eve/eve-json-format.html#event-type-anomaly
https://docs.suricata.io/en/latest/output/eve/eve-json-format.html#event-type-anomaly

[40] Prabhakaran, S. Mahalanobis Distance: Understanding the math with examples
(python) [online]. Statistics How To, 2024 [cit. 2023-12-07]. Available at:
https://www.machinelearningplus.com/statistics/mahalanobis-distance/.

[41] Proença, M. L., Coppelmans, C., Bottoli, M., Alberti, A. and Mendes, L. S.
The Hurst Parameter for Digital Signature of Network Segment. In: Souza, J. N. de,
Dini, P. and Lorenz, P., ed. Telecommunications and Networking - ICT 2004.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, p. 772–781. ISBN
978-3-540-27824-5.

[42] Prosise, J. PCA-based anomaly detection. 2021 [cit. 2023-12-04]. Available at:
https://github.com/jeffprosise/Machine-Learning/blob/master/Anomaly%
20Detection%20(PCA).ipynb.

[43] Resnick, P., Zeckhauser, R., Friedman, E. and Kuwabara, K. Reputation
Systems. Communications of the ACM. 2000, vol. 43, no. 12, p. 45–48.

[44] Rácz, A., Bajusz, D. and Héberger, K. Multi-Level Comparison of Machine
Learning Classifiers and Their Performance Metrics. Molecules. 2019, vol. 24, no. 15.
ISSN 1420-3049. Available at: https://www.mdpi.com/1420-3049/24/15/2811.

[45] Sadeghi, S. Whitening transformation [online]. 1st ed. Windsor, ON, Canada:
University of Windsor, 2024 [cit. 2024-04-02]. Available at:
https://jlu.myweb.cs.uwindsor.ca/8380/Whitening_transformation.pdf.

[46] scikit-learn developers. 2.7. Novelty and Outlier Detection [online]. scikit-learn,
2007-2023 [cit. 2023-11-26]. Available at:
https://scikit-learn.org/stable/modules/outlier_detection.html.

[47] scikit-learn developers. Sklearn.decomposition.PCA [online]. scikit-learn,
2007-2023 [cit. 2023-11-26]. Available at: https:
//scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html.

[48] Shyu, M.-L., Chen, S., Sarinnapakorn, K. and Chang, L. A Novel Anomaly
Detection Scheme Based on Principal Component Classifier. Proceedings of
International Conference on Data Mining. Jan 2003.

[49] Slee, T. Some obvious things about internet reputation systems [online]. Feb 2016
[cit. 2023-09-28]. Available at: http://tomslee.net/2013/09/some-obvious-things-
about-internet-reputation-systems.html.

[50] StatisticsHowTo.com. Mahalanobis Distance: Simple Definition, Examples
[online]. machinelearningplus, 2023 [cit. 2024-04-02]. Available at:
https://www.statisticshowto.com/mahalanobis-distance/.

[51] Stewart, Ken. Mean squared error (MSE) [online]. Encyclopædia Britannica, Inc.,
2024 [cit. 2024-02-04]. Available at:
https://www.britannica.com/science/mean-squared-error.

[52] Subba, B., Biswas, S. and Karmakar, S. A Neural Network based system for
Intrusion Detection and attack classification. In: 2016 Twenty Second National
Conference on Communication (NCC). 2016, p. 1–6.

83

https://www.machinelearningplus.com/statistics/mahalanobis-distance/
https://github.com/jeffprosise/Machine-Learning/blob/master/Anomaly%20Detection%20(PCA).ipynb
https://github.com/jeffprosise/Machine-Learning/blob/master/Anomaly%20Detection%20(PCA).ipynb
https://www.mdpi.com/1420-3049/24/15/2811
https://jlu.myweb.cs.uwindsor.ca/8380/Whitening_transformation.pdf
https://scikit-learn.org/stable/modules/outlier_detection.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
http://tomslee.net/2013/09/some-obvious-things-about-internet-reputation-systems.html
http://tomslee.net/2013/09/some-obvious-things-about-internet-reputation-systems.html
https://www.statisticshowto.com/mahalanobis-distance/
https://www.britannica.com/science/mean-squared-error

[53] Suricata project contributors. Eve JSON Format [online]. 2023 [cit.
2023-09-28]. Available at:
https://docs.suricata.io/en/latest/output/eve/eve-json-output.html.

[54] Systems, C. Reputation Center [online]. 2024 [cit. 2024-02-20]. Available at:
https://www.talosintelligence.com/reputation.

[55] Travers, J. and Milgram, S. An Experimental Study of the Small World Problem.
Sociometry. [American Sociological Association, Sage Publications, Inc.]. 1969,
vol. 32, no. 4, p. 425–443. ISSN 00380431.

[56] Tsekouras, D. The Effect of Rating Scale Design on Extreme Response Tendency
in Consumer Product Ratings. International Journal of Electronic Commerce.
Routledge. 2017, vol. 21, no. 2, p. 270–296.

[57] Yeung, D. S., Jin, S. and Wang, X. Covariance-Matrix Modeling and Detecting
Various Flooding Attacks. IEEE Transactions on Systems, Man, and Cybernetics -
Part A: Systems and Humans. 2007, vol. 37, no. 2, p. 157–169.

[58] Ødegaard, R. User Agent Changes [online]. Vivaldi Technologies, dec 2019 [cit.
2023-12-26]. Available at: https://vivaldi.com/blog/user-agent-changes/.

84

https://docs.suricata.io/en/latest/output/eve/eve-json-output.html
https://www.talosintelligence.com/reputation
https://vivaldi.com/blog/user-agent-changes/

Appendix A

Contents of the included storage
media

/
lerras_agent/

agent/
agent_settings.yaml
install_agent.sh
README.md
requirements.txt
service/

lerras_core/
core/
core_settings.yaml
README.md
requirements.txt

lerras_experiments/
thesis_latex_source/
README.md
thesis.pdf
nextloud_link.txt

85

	Introduction
	Introduction to Anomaly Detection and Scoring
	Anomalies in network traffic
	Traffic Anomaly Types

	Detection methods
	Statistical Methods
	Principal Component Analysis
	Other Methods for Anomaly Detection from Logs
	Choosing a Method

	Anomaly Scoring
	Anomaly Detection Related Work
	K-Means and XGBoost Models
	K-Prototype and K-Nearest Neighbours
	k-NN, Isolation Forests, Local Outlier Factor
	Deep Autoencoder
	DBSCAN
	Survey on Network Anomaly Detection

	Summary

	Introduction to Reputation Systems
	Trust in a Real Life Scenarios
	Trust in Online World
	Systems for User Ratings

	Reputation systems
	Architecture of Reputation Systems
	Communication in Reputation Systems
	Examples of Reputation Systems

	Summary

	Dataset Analysis
	Introduction to the Dataset
	EVE JSON logs
	Statistical Logs
	Suricata Syslog

	Data Exploration
	Flow Event Type
	MQTT Event Type
	DNS Event Type
	TLS and HTTP Event Types
	Anomaly and Alert Event Type
	Grouping by IP Adresses

	Summary

	Design of a System for Anomaly and Reputation Scoring
	Anomaly Detection
	Data Preprocessing for Anomaly Detection
	Categorical Data Transformation and Normalization for Anomaly Detection
	Scoring Method for Anomaly Detection
	Log Size Reduction Using Anomaly Score

	Scoring Method for Reputation
	Data Pre-processing for Reputation Scoring
	Daily Reputation Scoring
	Overall Reputation Scoring

	Flow of Data After Scoring
	Summary

	Experiments and Discussion
	Validating Reputation Score Against Existing Solutions
	On Changes of the Reputation Score in Time
	On Anomalies Found in Reduced Logs
	On Correlation Between Anomalies and Reputation
	Using Reputation Score to Enhance Reduced Logs
	Performance Testing
	Environment Preparations
	Summary

	Future Work and Conclusion
	Future Work
	Conclusion

	Bibliography
	Contents of the included storage media

