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Abstract 
The current amount of data flowing through computer networks cannot be monitored by 
individuals. This data is also being saved by IDS or IPS systems to logs, which grow ever 
faster. The goal is thus to automatically reduce the amount of such logs, for them to contain 
only the most valuable information. Rating scores, such as anomaly score or a reputation 
scores, are valid metrics for determining whether the information (i.e., log event) is valuable 
or not. 

The goal of this thesis is to explore the current state of methods used for anomaly 
detection and reputation scoring. And to propose a solution on how to use data captured 
in the logs of network analysers like Suricata to detect anomalies in the traffic and score 
network nodes. A complete solution from data processing, scoring using methods for com­
putation of reputation score and anomaly detection, and result interpretation, is developed 
and demonstrated on real-world data. A way of reducing the amount of log events by using 
the calculated scores is demonstrated. A resulting method of combining both scores to 
automatically rate the log events is demonstrated and explained on examples of the real 
scored data. Possible future uses of the results are discussed. 

Abstrakt 
Pro administrátory, bezpečnostní inženýry a síťové experty je nemožné sledovat současné 
množství dat proudící v počítačových sítích. Komplexní systémy jako IDS nebo IPS jsou 
navrženy tak, aby kromě své primární funkce také ukládaly síťový provoz. Cílem této práce 
je automaticky redukovat počet záznamů v ložích generovaných těmito systémy tak, aby 
obsahovaly pouze nejdůležitější informace. Anomální a reputační skóre představují metriky 
pro rozhodování tohoto problému - zda je záznam v logu důležitý či nikoliv. 

Cílem práce je prozkoumat současný stav metod běžně používaných pro tyto účely 
a navrhnout řešení, jak využít data síťových analyzátorů, jako je Suricata, k detekci anomálií 
v provozu a ohodnocení reputace síťových uzlů. Je vyvinuto kompletní řešení od zpracování 
dat, výpočtu skóre, redukce velikosti logů výběrem důležitých záznamů, a interpretace 
výsledků. Řešení je demonstrováno na reálných datech. Jsou diskutovány možnosti využití 
výsledků a použitých metod, jejich možné vylepšení a možné rozšíření v budoucích pracech. 
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Rozšířený abstrakt 
V dnešních počítačových sítích proudí větší množství dat než kdykoliv předtím. Zatímco při 
dřívějších objemech dat bylo možné síťový provoz zkoumat bud manuálně, nebo s použitím 
jednoduchých skriptů nebo analyzátorů, dnes je nutné data agregovat, filtrovat a admi­
nistrátorům zpřístupnit jen ucelené shrnující informace nebo jen ty nejdůležitější informace 
v plné podobě. 

Síťové monitorovací systémy typu IDS nebo IPS nemohou detekovaný provoz agregovat 
a vytvářet statistiky bez ukládání - logování - celého provozu. Tyto logy jsou pak cenným 
zdrojem kompletních informací i pro jiné účely. V této práci je využité právě záznamů 
v ložích generovaných nástrojem Suricata. 

Práce navrhuje metodu redukce logů síťového provozu pomocí kombinace metody pro 
detekci anomálií v síťovém provozu a metody pro výpočet reputace síťových uzlů. V teo­
retických kapitolách představuje problematiku anomálií v síťovém provozu, jejich dělení dle 
současné literatury a různé metody používané pro jejich detekci. Podrobněji je popsána 
Analýza hlavních komponent (Principal Component Analysis, P C A ) . Tato metoda se řadí 
mezi statistické metody pro detekci anomálií. V práci je vysvětlen její matematický základ 
a způsoby použití. Práce poté představuje proces převodu detekovaných anomálií na číselné 
skóre. 

Následuje pojednání o reputačních systémech. Před samotným vysvětlením jejich funkci­
onality se diplomová práce věnuje pojmům důvěra a důvěryhodnost, jelikož představují 
základní premisu na níž se reputační systémy zakládají. Rozvedena je myšlenka použití 
zmíněných pojmů v on-line prostředí. Kapitola o reputačních systémech následně popisuje 
základní prerekvizity pro vytvoření funkčního systému, běžně používané architektury a ko­
munikaci v rámci reputačního sytému, jež má svá opodstatněná specifika oproti jiných 
systémům. 

Mnoho konkrétních případů využití různých metod pro detekci anomálií a výpočtu rep­
utačního skóre je představeno v kapitole o souvisejících pracích. U každého z představených 
článků je metoda zhodnocena a deklarováno případné využití znalostí či inspirace daným 
článkem v rámci této diplomové práce. 

Pro zjištění, kterou metodu použít pro výpočet skóre, a které hodnoty obsažené ve 
vstupních logovacích souborech jsou vhodné pro zpracování, byla vyhotovena analýza dos­
tupného datové sady. Jedná se o data skládající se z rozšířených NetFlow záznamů ve 
formátu E V E J S O N 1 . Data byla generována ze síťového provozu na Fakultě informačních 
technologií Vysokého učení technického v Brně po dobu tří měsíců na přelomu roků 2022 
a 2023. V analýze bylo poukázáno na nejčastěji se vyskytující vzory v chování a zajímavé 
aspekty chování některých stanic (IP adres). Byly popsány a dále demonstrovány datové 
záznamy vhodné pro další zpracování. 

Před samotným výpočtem obou skóre a ohodnocením logů proběhlo předzpracování 
logů ze systému Suricata tak, aby byla data vhodná pro později použité metody. Data 
podstoupila proces výběru vhodných dimenzí, převod z kategorických dat na numerická 
a normalizaci do intervalu <0,1>. 

Popisu konkrétní implementace detekce anomálií pomocí metody učení bez učitele P C A 
a automatickému zvolení prahové hodnoty se věnuje kapitola o implementaci řešení. Byly 
navrženy a popsány dvě metody využívající P C A pro detekci anomálií. Jedna z nich, za­
ložená na rozdělení vstupní datové sady podle časové značky jednotlivých záznamů, byla 

1 Suricata E V E J S O N formát - https://docs.suricata.io/en/latest/output/eve/eve-json-output.html, ac-
cessed [2024-03-02] 
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dále použitá pro hodnocení logovacích záznamů podle vypočítaného skóre. V rámci této 
metody je popsána kompletní metodika od výběru odlehlých bodů pro pozdější ověření 
spolehlivosti metody, přes rozdělení datové sady na trénovací a testovací část, proces učení 
modelu, iterativní hledání nejlepšího prahu, až po demonstraci výsledků pro zvolené ex­
perimentální logy. Následuje popis procesu ohodnocení logovacích událostí pomocí vypočí­
taného skóre a demonstrace procesu redukce velikosti původních logů. 

V práci je popsána implementace metody výpočtu reputačního skóre včetně všech 
matematických vzorců. Je popsán proces volby vhodných dat z originálních logů systému 
Suricata. Každý výpočet je odůvodněn - proč je využitý, a jak se jeho zahrnutí do celkového 
výpočtu reputačního skóre promítá do koncového skóre. 

Práce je zakončená pojednáním o provedených experimentech s výslednými logovacími 
soubory zmenšenými o nezajímavé záznamy. K rozhodnutí, zda je záznam důležitý nebo ne, 
bylo rozhodnuto právě pomocí anomálního a reputačního skóre pro každou IP adresu. Do 
práce je zahrnuto vysvětlení průběhu obou skóre v čase a jejich vzájemné závislosti. Jsou 
popsány záznamy ohodnocené jako anomální spolu s odůvodněním, proč je model právě 
takto označil. Následuje porovnání vytvořeného řešení s již existujícími programy a návrh 
na budoucí možná rošíření práce či její uplatnění. 

Výsledkem práce je vytvořený proces ohodnocení záznamů a redukce záznamů originál­
ních logů systému Suricata pomocí dvou skóre pro každou zdrojovou IP adresu - anomál­
ního a reputačního. Obě skóre se mění v čase v závislosti na síťovém provozu vykazovaném 
každou konkrétní IP adresou. 



R a t i n g L o g E v e n t s u s i n g R e p u t a t i o n 

a n d A n o m a l y S c o r e s 

Declaration 
I hereby declare that this Master's thesis was prepared as an original work by me, the 
author, under the supervision of doc. Ing. Petr Matousek, Ph.D., M . A . I have listed all the 
literary sources, publications and other sources, which were used during the preparation of 
this thesis. 

Jan Zbořil 
May 15, 2024 

Acknowledgements 
For those, who were with me and no longer are. 



Contents 

1 Introduction 3 

2 Introduction to Anomaly Detection and Scoring 5 
2.1 Anomalies in network traffic 5 

2.1.1 Traffic Anomaly Types 6 
2.2 Detection methods 7 

2.2.1 Statistical Methods 7 
2.2.2 Principal Component Analysis 8 
2.2.3 Other Methods for Anomaly Detection from Logs 10 
2.2.4 Choosing a Method 11 

2.3 Anomaly Scoring 11 
2.4 Anomaly Detection Related Work 11 

2.4.1 K-Means and XGBoost Models 11 
2.4.2 K-Prototype and K-Nearest Neighbours 12 
2.4.3 k-NN, Isolation Forests, Local Outlier Factor 13 
2.4.4 Deep Autoencoder 14 
2.4.5 D B S C A N 15 
2.4.6 Survey on Network Anomaly Detection 15 

2.5 Summary 16 

3 Introduction to Reputation Systems 17 
3.1 Trust in a Real Life Scenarios 17 
3.2 Trust in Online World 18 

3.2.1 Systems for User Ratings 18 
3.3 Reputation systems 20 

3.3.1 Architecture of Reputation Systems 21 
3.3.2 Communication in Reputation Systems 22 
3.3.3 Examples of Reputation Systems 23 

3.4 Summary 26 

4 Dataset Analysis 27 
4.1 Introduction to the Dataset 27 

4.1.1 E V E JSON logs 27 
4.1.2 Statistical Logs 28 
4.1.3 Suricata Syslog 28 

4.2 Data Exploration 29 
4.2.1 Flow Event Type 32 
4.2.2 M Q T T Event Type 33 

1 



4.2.3 DNS Event Type 34 
4.2.4 T L S and H T T P Event Types 35 
4.2.5 Anomaly and Alert Event Type 35 
4.2.6 Grouping by IP Adresses 37 

4.3 Summary 40 

5 Design of a System for Anomaly and Reputation Scoring 41 
5.1 Anomaly Detection 41 

5.1.1 Data Preprocessing for Anomaly Detection 41 
5.1.2 Categorical Data Transformation and Normalization for Anomaly De­

tection 46 
5.1.3 Scoring Method for Anomaly Detection 47 
5.1.4 Log Size Reduction Using Anomaly Score 53 

5.2 Scoring Method for Reputation 53 
5.2.1 Data Pre-processing for Reputation Scoring 53 
5.2.2 Daily Reputation Scoring 54 
5.2.3 Overall Reputation Scoring 57 

5.3 Flow of Data After Scoring 58 
5.4 Summary 60 

6 Experiments and Discussion 61 
6.1 Validating Reputation Score Against Existing Solutions 61 
6.2 On Changes of the Reputation Score in Time 63 
6.3 On Anomalies Found in Reduced Logs 66 
6.4 On Correlation Between Anomalies and Reputation 69 
6.5 Using Reputation Score to Enhance Reduced Logs 70 
6.6 Performance Testing 73 
6.7 Environment Preparations 75 
6.8 Summary 77 

7 Future Work and Conclusion 78 
7.1 Future Work 78 

7.2 Conclusion 79 

Bibliography 80 

A Contents of the included storage media 85 

2 



Chapter 1 

Introduction 

In these days, the amount of data sent across computer networks is larger than ever. Net­
work engineers, system administrators and security personnel can no longer manually pro­
cess quantity of data, and thus rely more on various software solutions including intrusion 
detection systems (IDS), intrusion prevention systems (IPS), next generation firewalls, and 
other kinds of network analysers and threat detectors. 

The use of such solutions and the computation capabilities of modern hardware enable 
us to develop more intriguing solutions which help the aforementioned personnel to better 
comprehend data presented to them, better visualize it, or show previously hidden patterns 
and connections in the data. This understanding in turn leads to better management, 
design, and security of the managed networks. The modern software solutions not only 
produces alerts, but also generate very informative logs in semi-standardized format. These 
logs can be simple records of a system operation, or detailed records showing all information 
the system used to perform its tasks. 

This thesis utilizes the detailed traffic logs of a Suricata system 1 to perform anomaly 
detection and to calculate reputation rating score for IP endpoints detected in traffic flowing 
through the Suricata instance. The goal of this thesis is to rate events generated by Suricata 
based on an anomaly score and a reputation score computed from the data present in 
Suricata logs. The anomaly score can be used to choose only events diverging from the 
usual network traffic. Such selection can greatly reduce the number of events from an 
amount, which could not be manually inspected by a human administrator, to a feasible 
number of events to monitor. The analysis of this anomalous events can be made easier by 
matching these events with a reputation score. If an anomalous event presents itself with 
a good reputation score, it represents a low severity event for an administrator. However, 
if an anomaly event has a negative reputation, then an administrator should be concerned 
with such an event. 

Means to reach the specified goal include an analysis of available data, its preprocessing, 
anomaly detection using a Principal Component Analysis method. Results of anomaly 
scoring are then matched against the original logs to select only the anomalous events. 
Reputation score is calculated by a custom method and matched to anomalous events. 

This work is organized as follows. Chapter 2 explains concepts of anomalies in network 
traffic, why are computer scientist interested in them and what useful information they pro­
vide, together with currently known means to detect them. Methods for anomaly detection 
and related work in this field are presented in the chapter. Chapter 3 talks about trust 

1 Suricata IDS: https://suricata.io, accessed [2024-01-20] 
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and reputation in online environments, as well as in the real world. It explains differences 
and similarities between them and shows the principles of modern network reputation sys­
tems. Examples of real world reputation systems are shown for demonstration. Chapter 4 
explores the dataset of the Suricata IDS logs available for purposes of this thesis. It points 
to interesting data patterns and vindicates the choices made for feature extraction. Chap­
ter 5 talks about proposed system architecture, its capabilities and methods used to process 
data, detect anomalies and rate network nodes. It renders real world results obtained by 
applying methods to an example dataset. Experiments showing the application of achieved 
result are presented in Chapter 6. It discusses the achieved results, ways of utilising both 
the anomaly and reputation scores to score the log events, comparison of calculated repu­
tation score to state-of-the-art systems, contribution of this thesis to the current research 
space, and proposes possibilities of future research in the area of anomaly detection and 
reputation scoring. The final Chapter 7 summarizes the work done in scope of the master's 
thesis. 
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Chapter 2 

Introduction to Anomaly 
Detection and Scoring 

The objective of this chapter is to provide the reader with an introduction to the problematic 
of rating nodes in a network through analysing their behaviour. It defines terms anomaly, 
and anomaly score. It explains methods and procedures used in the real world to detect 
anomalies, and which are used for anomaly scoring in this thesis. In Section 2.1, the term 
anomaly and its various understandings are explained. Section 2.2 talks about various 
methods used for anomaly detection. 

2.1 Anomalies in network traffic 

In order to detect anomalies, one must first understand the term anomaly. The term 
itself is not concretely defined. In the work of Fernandez et al. [20], multiple definitions 
are listed: Anomaly is "an observation (or a subset of observations) which appears to be 
inconsistent with the remainder of that set of data, "patterns in data not conforming to 
a well-defined notion of normal behaviour, anomalies are unusual and significant changes 
in a network's traffic levels, which can often span multiple links, non-conforming interesting 
patterns compared to the well-defined notion of normal behaviour. In [35], an anomaly is 
a deviation from the expected (normal, regular) state or behaviour. In some studies [48], 
researchers considers attacks to be anomalous and a non-attack behaviour not conforming 
to normal state as non-anomalous. 

In the context of thesis, an anomaly is a deviation from the expected (normal, regular) 
state or behaviour. It is not differentiated between a malicious or non-malicious traffic, 
but between a normal state and deviations from this normal state. A downside of this 
approach is that genuine traffic with low periodicity may be tagged as anomalous. This 
can happen, for example, if we have traffic records for university information system with 
baseline created during summer and students then register to courses at the beginning of 
September. The anomaly detection system can flag this traffic as anomalous when compared 
to the baseline computed during the summer, although the students' registration represents 
non-malicious traffic. 

5 



2.1.1 Traffic Anomaly Types 

In his survey, Fernandez et al. [20] say that there are many types of network anomalies. 
Networks anomalies can be separated into two main categories: a) by their nature, and b) 
by their causal aspect. 

Anomaly Nature Based Categorization 

Categorization based on nature of anomalies relies on the way how they are characterized. 
It uses the context of a point in its dataset to determine the anomalousness of such a point. 
Detection methods which search for nature based anomalies are not concerned with outer 
sources, causes of the anomalies, nor intents of the original sender of the data. 

These anomalies can be separated in three subcategories: a) point anomalies, b) collec­
tive anomalies, and c) contextual anomalies: 

a) Point anomalies are the fundamental ones. A data point becomes a point anomaly, if 
its values significantly differs from the rest of points included in a dataset. 

b) a collective anomaly consists of a group of data deviating from a normal state. If only 
one of the data point in the group is taken in account, it is not considered anoma­
lous. However, repeated occurrences of the same point anomaly can be considered 
a contextual anomaly. 

c) a contextual anomaly is considered anomalous based on the state of a system. For 
detection of contextual anomalies, two sets of data are needed. One of the sets 
defines a context in which anomalies are to be detected (e.g., time series of normal 
behaviour during a day). The other set consists of data points to be examined for 
presence of anomalies (e.g., data collected in one day, to be matched against the 
normal behaviour). 

Anomaly Causal Aspect Based Categorization 

As the category name implies, this categorization relies on the cause of the anomalies. It 
also distinguishes between malicious and non-malicious intents. Because not all anoma­
lous points are representants of an attack, they can be grouped into categories [4]: a) 
operational/misconfiguration/failure events, b) flash crowd/legitimate but abnormal use, 
c) measurement anomalies, d) network abuse anomalies/malicious attacks: 

a) These are non-malicious events, typically caused by hardware or software failure, 
bugs, human errors, bad configurations, or non-sufficient system resources. 

b) Flash crowds are large floods in traffic, which occur when rapid growth of users 
attempts to access a specific network resource, causing a dramatic surge in server 
load [20]. They occur when more users access a network resource than the resource 
can handle. The course registration example is a legitimate but abnormal use. 

c) Measurement are caused by problem during data collection, resulting in a skewed or 
missing baseline data. 

d) Network abuse anomalies are anomalies caused by malicious intents of original data 
senders. They seek to disrupt, destroy or deny network devices, servers, and other 
resources. They are threats trying to perform a security incident or breach. 

G 



2.2 Detection methods 

Currently, many methods for anomaly detection are used. It cannot be said which method 
is the best, as all of them have an optimal use case and are targeted to be used in different 
scenarios. 

Popular methods and algorithms for anomaly detection includes [20, 34]: 

• Statistical methods commonly apply probabilistic models. Examples are: Wavelet 
Analysis, Principal Component Analysis, Hidden Markov Models, etc. 

• Clustering methods group objects into distinct clusters of object based on their sim­
ilar behaviours or attributes. Examples are: K-means, D B S C A N , B I R C H , Gaussian 
Mixture Model, etc. 

• Finite state machine methods use a finite automata model of computation to model 
a network behaviour. 

• Classification-based methods use machine learning to classify traffic as anomalous or 
not anomalous. Examples are: naive Bayesian, Support Vector Machines, Neural 
Networks, K-nearest Neighbours, Decision Trees, etc. 

• Evolutionary computation methods are inspired by biology. Examples are: Particle 
Swarm Optimization, Artificial Immune Systems, Genetic Programming, etc. 

• Hybrid methods combine previously mentioned methods or their parts to create new 
anomaly detection systems. 

Although all listed methods can be used to detect anomalies from system logs, next 
sections talk primarily about statistical methods. Other methods are then described briefly. 
This is done because of the author's familiarity with these methods, and due to statistical 
methods being tested and proved to be working by many researches (see Section 2.4). This 
is also a reason for choosing a statistical method for anomaly detection in this thesis. 

2.2.1 Statistical Methods 

Statistical methods rely on probabilistic methods to define normal network behaviour. 
When using these methods, an anomaly generally does not mean a detected attack. These 
methods detect changes in traffic, whether it is an attack or not. Most methods define 
a hard threshold to separate anomalous data point and the normal ones. The main concern 
when using statistical methods is how to determine the optimal values of the threshold for 
a model in order not to produce unsatisfying amount of false positives [20]. 

Statistical (and others) methods can process diverse kinds of input data formats and 
sources such as IP flow [24], NetFlow [31], Firewall and IDS logs [14], T C P dump [57], 
S N M P [41], system logs, etc. Validation metric is also not standardized, and lots of re­
searchers use different ones. Metrics range from packet count, through false positive rate, 
recall scores, correlation coefficients, to linear regression [20]. 

Advantages of statistical methods include intrinsic capability to detect anomalies better 
than other methods, ability to adapt and learn the expected behaviour of a network. They 
do not need any priori information about the environment [20]. 

Disadvantages include a possibility for an attack to be included in the training data and, 
as such, the model learns its pattern as the normal state of a network. Statistical models 
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often require a significant portion of time for their training, as well as plenty of training 
data coming from the tested system before they reach operationality. A static quality of 
the threshold may not yield satisfactory results in the real world, where conditions often 
change. 

The fact that these methods cannot distinguish between reasons for changes in traffic 
data, and thus, cannot differentiate attack from an increased amount of non-malicious traffic 
can be considered both advantage or disadvantage, depending on the desired outcome. 

2.2.2 Principal Component Analysis 

With its invention in 1906 by Kar l Pearson [32], the Principal Component Analysis (PCA) 
is one of the oldest and widely used method to drastically reduce datasets dimensionality 
while most original information is preserved [26]. The P C A method achieves this by deriving 
new uncorrelated variables which maximize variance from the original dataset. These new 
variables are called Principal Components. The lossy nature of P C A can be used to detect 
anomalies in network traffic. The reduced variance of a P C A model fitted to normal data 
points cannot explain some outlier values, and thus they can be marked as anomalous. 

Mathematical explanation of P C A 

Assume dataset D with p numerical dimensions and n total observation. This data can be 
represented by n xp matrix X or n observation vectors x\,..., xp. The P C A methods aims 
to find linear combinations of X having the maximal possible variance. These combinations 
are calculated by X^?=i a i x i = Xa, where vector a is a vector of constants a i , . . . , ap. The 
variance of a combination is then given by war(Xa) = a'Sa, where a' is a transposed vector 
a and S is a covariance matrix of the dataset. The solution thus lays in maximizing the 
a'Sa by finding optimal values of vector a. 

Requiring the vectors to be unit-norm is necessary for finding a well-defined solution. 
Thus, the maximizing of a'Sa can be rewritten as a'Sa — A (a'a — 1), where A is a Lagrange 
multiplier. After differentiation of a'Sa — A(a'a — 1) = 0 with respect to a, we get Sa — Aa = 
0 44> Sa = Aa. It can be deducted, that a must be an eigenvector and A the eigenvalue of 
covariance matrix S. 

With matrix S shape being p x p, it has p eigenvalues A i , A 2 , . . . , A p . Their eigenvectors 
can be defined to form an orthonormal set of vectors. It can be shown with Lagrange 
multiplier method, that a set of eigenvectors of a matrix S is the solution to getting p new 
combinations Xa^ = Y^=i ajfcxj> which are uncorrelated with previous linear combinations. 
These linear combinations Xa& are named principal components of the original dataset D. 
Values of vector Xa& are called PC score and values of eigenvectors a& are called PC 
loadings [26]. 

When the resulting linear combinations are sorted in descending order by their corre­
sponding eigenvalues, then the first component explains the most variance of the original 
data, while each next principal component explains less variance. Ratio of explained vari­
ance V x A k of a principal component X A ^ can be obtained by calculating (2.1). 

VXAk = (2-1) 

Dimensionality reduction of the original dataset is performed by keeping only a prede­
fined number of components with greatest explained variance. 
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P C A for anomaly detection 

The first few principal components contain most information and explain the biggest per­
centage of a data sample variance. They are strongly related to features having large 
variances [48]. This means that most data samples in the original dataset have their values 
explainable by the first components. The outliers in these components normally match to 
outliers in some dimension of the original data. 

The last principal components, e.g., those with lowest amount of explained variance, 
usually have vastly different values for data points, which are anomalous in regard to 
the correlation in the original dataset. These anomalies represent more subtle anomalies, 
which cannot be detected using the major principal components. If most of the variance 
of a sample is explained by the latter components, then that sample is suspected to be an 
outlier [48]. 

Shyu et al. [48] proposed anomaly detection based on the aforementioned criteria. First, 
they calculated the P C A components, scores, eigenvectors, and eigenvalues. They then 
classified a data point as anomalous when it matched Equation (2.2). A data point was 
considered normal if it fulfilled conditions in (2.3): 

where c i , C 2 are predefined thresholds, yi is the P C score of a component i and lambdai 
is the eigenvalue of a component i. 

Jeff Prosise proposed a method based on the inherent data loss when transforming 
a dataset to a P C A reduced form with less dimensionality [42]. The P C A transformation 
to lower number of dimensions is reversible, although a reverse-transformed dataset is only 
an approximation of the original one. One can thus first apply P C A on the dataset, and 
subsequently apply reverse transform on the reverse dataset. The loss of information be­
tween the original dataset and reverse transformed dataset (accuracy) is tight to a number 
of P C A components used and ratio of explained variance. The outlier data points should 
exhibit a larger values of loss, since the P C A model cannot keep as much information 
about such data point. This is caused by the low amount of explained variance of the 
major components, and on the other hand, a high mount of explained variance of the minor 
ones. 

Prosise calculates the loss of information between normal and transformed data point 
using mean square error method. The hard decision whether a point is anomalous is made 
by comparing the loss value and a predefined threshold. Threshold can be set manually 
based on an educated guess, or it can be based on other researches. A threshold finding 
algorithm can be used if the data is labelled or pseudo-labelled. 

Mahalanobis distance 

Because of the vulnerability of P C A to outliers in training data, it is necessary to remove 
such data points from the training dataset. A metric is needed to separate between normal 
and outlier data. While many distances like Euclidean distance or Canberra metric are 
often used for measuring similarity between points, the Mahalanobis distance represents 

(2.2) 

(2.3) 
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a distance between two points in multivariate space. This feature is exploited for outlier 
detection, because datasets normally contain multiple dimensions which can be, and often 
are, correlated [50]. 

The Mahalanobis distance measures the distance between a point and a statistical distri­
bution while taking into account correlations between variables in the dataset. It represents 
a distance between a (generally multidimensional) point x, and a distribution with the mean 
vector of a distribution \x and covariance matrix S. The general formula for calculating 
Mahalanobis distance is: 

D2 = (x- n)TS-\x- n) (2.4) 

where D2 is squared Mahalanobis distance, S _ 1 is an inverse covariance matrix of a data 
distribution and T represents a transposition. 

Mahalanobis distance can be applied on dataset extracted from log files which is not 
labelled. A subset of such dataset, consisting of records with the highest Mahalanobis 
distance relative to the rest of it, can be proclaimed to contain outlier records. The equation 
and facts provided in this section are taken from [19]. 

2.2.3 Other Methods for Anomaly Detection from Logs 

Methods for anomaly detection from system logs vary primarily by the means of extraction 
of features from the logs and the nature of such selected features. If individual features, 
which can be represented by a number or a character string, are extracted from the logs, 
then clustering methods, or statistical methods are often used. Clustering methods can be 
used in conjunction with decision trees algorithms to improve the overall efficiency of an 
algorithm. 

Clustering 

Clustering methods can be used to group log events based on the proximity of data point 
to each other. The proximity is measured by a distance (Euclidean, Mahalanobis). Normal 
events should all be grouped into a large cluster, while the anomalous points too different to 
be a part of a normal cluster are either grouped together into a smaller cluster, or scattered 
around the normal cluster. Events in the smaller cluster can be declared anomalous or be 
subject to further examination [25]. 

Decision Trees 

Decision trees, an example of a supervised learning method, create a tree of decision nodes 
and solution leaves. A data point is classified by traversing the decision nodes from the root 
of a tree until it reaches one of the leaves with the final class. Tree boosting algorithms use 
an additive model to build multiple trees in order to build a final decision forest iteratively. 

Autoencoders 

Another method for feature extraction is to parse individual log lines into chunks of uniform 
length and tokenizing these chunks into terms. In [15], authors counted the number of 
individual terms in chunks and developed a method to score a chunk based on the number 
of terms in it. These scores form a normative baseline of the autoencoder, a form of 
feedforward neural network where the output layer has the same dimension as the input 
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layer. After the learning phase, an autoencoder is able to threshold reconstructed scores 
on its output, and thus differentiate between anomalous and normal log chunks. Chunks 
not included in the baseline cannot be restored by the autoencoder, so they achieve a large 
reconstruction error rate. 

D B S C A N 

Both the tokenization of log records and extraction of features can be used simultaneously. 
Alghamdi et al. [1] used the tokenized values as another dimensions together with extracted 
features to train D B S C A N clustering algorithm. They do not use the resulting clusters for 
anomaly detection, but for further processing, pattern extraction and behavioural analysis. 

2.2.4 Choosing a Method 

A n important factor for method choosing is the availability of annotated datasets. When 
having access to an annotated dataset with correctly assigned labels, researchers usually 
select from supervised learning methods, like in [52]. On the other hand, if researches study 
real life data without labels, they must either use semi-supervises methods, like Catillo et 
al. [15] did, or unsupervised methods, which were used by Mehta et al. in [36]. 

2.3 Anomaly Scoring 

The act of anomaly scoring tries to express the anomalies detected by aforementioned 
methods via a numeric value. These values can be derived from various numbers available 
after the detection, a relative number, e.g. ratio between count of anomalous point in 
a dataset and a total dataset size, can server as a score. 

When using machine learning methods for detection, metrics and scoring described 
in [44] can be used to both rate the success of anomaly classifiers, and to compute anomaly 
scores and perceived confidence in the detection. These methods include Confusion matri­
ces, Fl scores, Recall, Precision, etc. 

If a result of the scoring method can be represented as a number, such metric can serve as 
the final score. In case the value does not fall into the interval <0,1>, then a normalization 
might prove useful. A normalized score can also be represented as a percentage. Whether 
a score of 1 or 100 % means a totally anomalous event or an event with no anomalies 
depends on the intention of an author. 

2.4 Anomaly Detection Related Work 

Many works were created to solve the problem of anomaly detection. The vast amount 
of existing papers show that there is not a single solution for this task. This is given by 
a diverse nature of both input data and desired results presented in the research. This 
section provides a brief look into possible solutions used today. 

2.4.1 K-Means and X G B o o s t Models 

Joao Henriques [25] with his colleagues used the K-Means method and the gradient tree 
boosting algorithm XGBoost for anomaly detection in a dataset of H T T P traffic, which is 
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not annotated. The dataset used is the N A S A - H T T P dataset . For the use of unlabelled 
dataset, authors decided to work with unsupervised methods. 

They first used K-Means clustering method to separate H T T P records into binary cat­
egories (normal/anomalous). Then they utilised the gradient tree boosting algorithm X G -
Boost to generate a decision tree which allows to quickly categorize new incoming data. 

Given the large size of the data, they decided to first extract features of the H T T P 
logs. These are day, month, year, hour, minute, second, operation, page, method, day of 
week, IP address, length, and response. These selected features were later used for training 
of a Scalable K-Means+-1- model proposed by Bahmani in [2]. The final decision between 
anomalous and normal cluster was based on the size of respective clusters, where the cluster 
with smaller amount of data points were declared anomalous. 

They then applied the XGBoost algorithm to create a binary decision on data pseudo-
labelled by the K-Means algorithm. This step is crucial to quickly determine the nature of 
data points coming in the future without re-calculating the entire clusters again. Instead 
of implementing the models by hand, the Dask 2 Python library, which already includes the 
parallelized version of algorithms, was used. 

They did not explicitly state achieved model recall or rate of false-positives, only stating 
that the used XGBoost model labelled 100 % of events clustered into the anomaly cluster 
using K-Means correctly. The advantage of their method lies in creation of a decision tree, 
which reduces resources necessary for classification of new data points. 

Features extracted from the raw H T T P logs by the authors (especially the day of the 
week, hour, minute features) inspired the set of features extracted for the anomaly scoring 
in this thesis. As the presented methods belong to the category of unsupervised learning, 
and they do not require labelled dataset, they were a valid option for use in this thesis. 
The final decision was however in favour of the P C A method, mainly for its simplicity, and 
no need for combining more methods (clustering and decision trees) for the classification. 

2.4.2 K-Prototype and K-Nearest Neighbours 

Zhaoli L iu i et al. [33] proposed an integrated method for anomaly detection from massive 
system logs using K-prototype clustering and K-Nearest Neighbours classification algo­
rithms. They argue, that using these methods is appropriate, because it allows to detect 
anomalies without any priori information. Thus, even new, previously undetected, anoma­
lies can be found. 

They divided the process of detection into five distinct steps: 1) log collection, 2) feature 
extraction, 3) clustering, 4) filtering, 5) refinement. Note, that steps one and two are usually 
necessary in any anomaly detection, no matter of the used method. 

They processed system logs from more than 50 servers, from which 10 features split into 
two categories (logging activity, session statistics) were selected. Their dataset was mainly 
unlabelled, except for logs from one target server. Logs of this target sever were labelled 
in coordination with security engineers, who performed scheduled attacks targeting the 
server. These labelled logs were used for evaluation. These features range from usernames 
used for legged sessions, through session lifetime to a frequency of file operations during 
a user's session. Since these features include both numerical and categorical attributes, 
they chose the K-prototype algorithm to calculate clusters. Upon the inspection of the 
returned clusters, they proclaimed large, dense clusters as normal and filtered them out 

1 N A S A - H T T P dataset: h t tps : / / i ta .ee . lb l .gov/h tml /cont r ib /NASA-HTTP.html , accessed [2024-01-20] 
2 Dask library: https://www.dask.org, accessed [2024-01-20] 
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before taking the next steps. The chosen threshold T for this decision is T = n/K, where 
n is the event count and K is the number of clusters. Clusters with more events than T 
are considered normal and discarded. They managed to reduce the dataset size by more 
than 70 % by the application of this simple filter. 

From information about spatial properties of every data point obtained by the clustering, 
they calculated two distances per data point. The first distance value represents the distance 
between a given data point and a centre of the cluster to which the data point belongs. 
Second value is the distance between a data point and a data point nearest to it. They 
used only these two distances as features for training a k -NN classifier on a reduced dataset. 
They argue that using the K-prototype algorithm only yields non-desirable results in terms 
of precision and false positives, while calculation k-NN with entire dataset as input is time-
consuming. 

They demonstrate, with graphs, that their proposed solution results are more precise 
than using only one of the methods, while also being fairly time efficient. They evaluated 
their combined method on several datasets using the precision, recall, and false alarm 
metrics. In all their experiments, the precision stayed above 90 %, false alarm rates were 
below 2.5 %, and they maintained the recall values above 0.85. 

Although they used different source of data and tried to achieve different goal than 
what the goal of this thesis is (user activity vs. network traffic), the anomaly detection 
system proposed by Zhaoli Liui et al. could be also used for other purposes. Especially 
, the filtration of potential anomaly candidate is transferable into the settings of network 
anomaly detection, given the enormous amount of traffic needed to be processed. However, 
this approach is viable only when using a combination of methods like the authors did 
(K-Means + K - N N ) , which limits its potential. 

As their logs are mainly focused on device access and performed operations, their fea­
tures are not transferable to the work of this thesis. The use of k -NN method is also not 
possible in this thesis, as labelled dataset is necessary for its training. 

2.4.3 k - N N , Isolation Forests, Local Outlier Factor 

Mehta, Kothuri and Garcia published a paper concerning detection of anomalies from net­
work connection logs [36]. They utilised multiple distributed architectures and systems to 
collect connection logs and to analyse them. From network connection logs collected in the 
network of C E R N 3 , primarily kept stored for audit, performance monitoring and alerting, 
they extracted features for later modelling using one of the techniques, that were demon­
strated in the paper. The feature selection was aided by first reducing the dimensionality 
of the dataset using Principal Component Analysis (PCA, see Section 2.2.2) and Singular 
Vector Decomposition (SVD). 

Arguing, that only an unlabelled dataset was available to them, they chose to explore 
possibilities of unsupervised learning. Four distinct models were fitted with preprocessed 
data: k-NN, isolation forests, local outlier factor, and one-class support vector machine. 
Demonstration of results for every approach was shown. Their results are meant as a proof-
of-concept before implementing a system for real world use at C E R N . 

They admitted, that their approach was not able to correctly classify all connections-e.g., 
connections from legitimate users detected outside working hours were marked as anoma­
lous. It can be polemized, if such events are desired to be marked normal or anomalous. 

3 Consei l Europeen pour la Recherche Nucleaire (European Organization for Nuclear Research) 
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The general division of anomaly detection methods and types of anomalies, as well as 
a use of the P C A and SVD methods for dimensionality reduction decribed by the authors, 
represent valuable knowledge in the scope of this thesis in terms of determining what 
methods are best utilised for unlabelled/labelled data. However, not much information 
is given about feature selection, model training, detailed interpretation of results, or even 
metrics for result evaluation. No direct comparisons can thus be made. 

2.4.4 Deep Autoencoder 

AutoLog is a name of the system developed by Catillo et al. [15]. They took a different 
approach than extracting features manually. Their solution for data extraction was to split 
log lines into tokens, and then using a predefined mathematical formula to score chunks: 
batches of data of equal length consisting of several tokens. Chunks score is computed by 
the sum of entropies of all terms found in the chunk. Entropy of a term is computed against 
a database of normative chunks. 

They used these scores to train a deep autoencoder, a type of neural network consisting 
of an encoder part (creating a compressed representation of an input) and a decoder (re­
constructing original input from the compressed represenation of data). A n autoencoder 
is able to reconstruct input scores on its output. The reconstruction is, however, never 
perfect, resulting in a loss of information. The loss of information is given by a nature of 
an autoencoder. It is able to best reconstruct data similar to data, on which it was trained. 
Data unseen during the training phase cannot be represented by the encoder part of the 
neural network, and it cannot be thus reconstructed by the decoder part. For scores not 
seen in the training dataset, the autoencoder is not able to reconstruct them with minimal 
loss. This fact enables researchers to separate anomalies from normal traffic. 

They tested their solution with several configurations of neural network and validated 
the model on four datasets: a proprietary industrial system logs, a microservices system 
logs, public supercomputing system logs, and logs of Apache Hadoop cluster. They also 
evaluated results from five other methods together with their Autolog in a comparative 
study. 

The authors leveraged the fact that their dataset is labeled, to compute evaluation 
metrics for unsupervised learning methods, which they tested against the same dataset as 
AutoLog was trained on. Methods used in the comparison were: Isolation Forest, One-
Class S V M , a decision tree, and a vanilla autoencoder (autoencoder consisting of only one 
hidden layer between the input and the output layer). A l l methods was evaluated using 
the Fl score, Precision, and Recall metrics. AutoLog outperformed all other methods, 
with decisions trees being almost always second in performance, not more than six percent 
behind. 

This paper demonstrated that other methods for anomaly detection in log files exist 
and that they are successful if used correctly, and paired with a suitable dataset. The main 
observable advantage of this method is its functionality with many heterogeneous types 
of log files. The structured labelled logs available and the very different approach taken 
by the authors of this paper and the one presented in this thesis make it difficult to draw 
significant connections between the AutoLog paper and this thesis. The main parallel found 
is the way the P C A method is utilised in this thesis and the way in which an autoencoder 
works. The P C A is used in two runs on the same data - for a transform from a high 
dimensional dataset to a dataset made of few features only. Reversed P C A is the applied 
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on his reduced dataset, and the original dataset is reconstructed with inherent error. This 
process resembles an autoencoder. 

2.4.5 D B S C A N 

Alghamdi and Reger [1] designed a framework for the pattern extraction from heterogenous 
log files provided in the SoTM34 log dataset'1, labeled by the authors with help of existing 
analyses of the SoTM34 dataset. Their aim was to use these pattern for multi-stage threat 
detection. 

They developed a strategy for behaviour analysis based on logs. For data preprocess­
ing, they use a mix of both methods showed in the aforementioned papers — AutoLog [15] 
and Henriques' paper [25]. They utilize both tokenized strings from log lines, and numeric 
features extracted from the logs. These features are unique for different protocol-specific 
log files. The number of extracted features varies between four and twenty-five, depend­
ing on the specific log file chosen, as the dataset contains multiple logs ( H T T P Access, 
H T T P Error, H T T P SSL Error, S Y S L O G Messages, S Y S L O G Secure, S Y S L O G Mail , and 
SNORT). After normalizing the numerical values in the dataset with min-max scaler to 
place all values in the range between zero and one, clustering is performed using the D B ­
S C A N algorithm on the behavioural features—they differentiated between static features 
like IP addresses and behavioural features obtained by log tokenization. D B S C A N was 
run on the behavioural features to capture the specific behaviour of threats. The static 
features were later combined with D B S C A N results to create a well specified threat records 
for alerting in a custom developed Action Center. 

They evaluated achieved results using the following tests: Homogeneity Completeness, 
V-measure, Adjusted Rand Index (ARI) and Adjusted Mutual Info (AMI). These tests were 
chosen by the authors, because evaluating the performance of clustering algorithms is not 
as straightforward as classification algorithms where precision and recall are calculated by 
counting the number of errors and correct classified data points based on a priori knowledge 
of actual labels". Alghamdi's method achieved more than 90% rates in most tests of the 
well-known SotM34 dataset. Only results under the 90 % mark were of the Syslog Mai l 
and Syslog Messages log files. Here, the methods achieved 82-87 % in A R I and A M I . They 
did not explain this lower rates for Syslog. 

Features selected by the authors from the H T T P logs were inspirational for the selec­
tion of features for both anomaly detection and reputation rating in the theses. Fields 
extractable from the H T T P events, like Referrer or User Agent provide useful information 
which can decide whether the event is anomalous or whether a malicious intent is present 
in the data. 

2.4.6 Survey on Network Anomaly Detection 

Fernandez and his colleagues [20] published a comprehensive survey on network anomaly 
detection. They defined a set of goals to describe in their study, as they felt other similar 
studies focused too much on a specific area. They first defined the term anomaly and de­
scribed existing categories of anomalies based either on their nature or their cause. Network 
data types were listed and explained, as each research in the field prefers to use different 
sources for their datasets. As the anomaly detection is often used in IDSs, they also talked 
about these systems. In the chapter about different detection techniques and methods, they 

4 Scan of the Month, Scan 34: https://honeynet.onofri.org/scans/scan34/, accessed [2024-02-20] 
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explained in detail groups of detection methods based on the main principle of the method. 
These are the groups referred to in Section 2.2. For each category, they talk about several 
studies and research, which used such methods. They also created comprehensive tables 
comparing those studies for each category. Their knowledge was cited in the theoretical 
chapters of this thesis. Information provides in this paper influenced the final selection 
of the P C A method for use in this thesis, as the P C A is suitable to be paired with large 
dataset of unlabelled data, and it is able to detect point anomalies in data. 

2.5 Summary 

This chapter described anomalies in network traffic using various definitions, as no one 
concrete definition exists. It explained the term anomaly in the scope of this thesis (meaning 
not normal, while intent of a deviation does not matter). Anomaly types and methods for 
anomaly detection were discussed. More text was dedicated to statistical methods and its 
representant, the Principal Component Analysis, for its use in the practical part of the 
thesis. Other methods were spoken of shortly. Mahalanobis distance for outlier marking 
was introduced, along with other methods one might use to find anomalies. A suggestion 
to transforming results of a method into the final anomaly score was brought up. Related 
work in anomaly detection provided information about existing solutions. A n insight into 
what methods are suitable for a desired goal and the best matched dataset properties for 
the method was brought forward. Commentary about usefulness of the related papers for 
this thesis was provided. 
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Chapter 3 

Introduction to Reputation 
Systems 

Because of the general availability of Internet connectivity, and its global interconnected 
nature, any node connected to it can establish connections to any other connected node (if 
mechanisms such as network address translation (NAT) are not considered). This leads to 
plenty of communications, where one side does not necessarily know the identity of the entity 
at the other end of a connection. Without the familiarity, the node or its user cannot easily 
determine intentions of the other side and the integrity of its services. Publicly available 
data usable for rating endpoints accessible via the Internet can be a useful resource helping 
with a defined problem. 

This chapter explains the problematic of calculating reputation scores and shows the 
new and current methods used to deal with this technique. It provides a context to fully 
comprehend the reasons why the scoring of network IP addresses is important and why the 
reputation of network nodes represents an ongoing academic and business effort. 

The chapter starts with a description of trust in the real world, as the core principles 
of it can be, and often are, brought over to the digital world. 

3.1 Trust in a Real Life Scenarios 

In the real life, where a person has physical relations with other people or businesses 
(entities), one can rely on {trust) another person or community for their opinion on the 
entity, which signifies the reputation of an entity. 

Thus, the term trust can be defined in many ways, but with the similar notion. J0sang 
et al. [28] defines two types of trust — Reliability trust 3.1.1 and Decision trust 3.1.2. 

Definition 3.1.1 (Reliability trust). Trust is the subjective probability by which an indi­
vidual, A , expects that another individual, B , performs a given action on which its welfare 
depends. 

Definition 3.1.2 (Decision trust). Trust is the extent to which one party is willing to 
depend on something or somebody in a given situation with a feeling of relative security, 
even though negative consequences are possible. 

It can be concluded from these definitions, that trust is a relation between two entities, 
a truster (the one who trust), and a trustee (the one who is trusted). If a trustee proves 
to the truster, that they can be trusted, they become trustworthy. Trust as a relation is 
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asymmetric and transitive. If a node a trusts a node B, which trusts a node C, then the 
node a trusts node C, if node B refers C to A . This is called a derived trust by [28]. The 
behaviour is shown in Figure 3.1. In this figure, party B trusts party C. If B refers C to A , 
then a can trust C. 

Alice 41. _ B o b Claire 

Figure 3.1: Transitive property of the trust relation. Image taken from [35]. 

According to Slee [49], there exists a third party to the system of trusters and trustees, 
and its name is an opportunists. A n opportunist is an entity seeking to deceive potential 
trusters by mimicking signs or signals of trustworthiness, although it is not trustworthy. 
Gambetta [22] says, that the existence of opportunists creates a problem of secondary trust. 
The question of trust then becomes Can I trust the signs of trustworthiness of the trustee, 
rather than Can I trust the trustee. He argues, that this problem almost always accompanies 
the primary one. 

a signal, mentioned above, is an action or a sign, which is easy to display by a trustworthy 
person, but difficult or impossible for an opportunist/untrustworthy entity to display. If 
a signal, which would discriminate between these two groups of entities, does not exist, then 
no effective mode of differentiating trustworthy persons and opportunist can be found. 

3.2 Trust in Online World 

The entity in the online world with which is being communicated cannot be assessed using 
previous experiences, especially when the connection between two nodes happens for the 
first time. Also, unlike the real life, it is not so easy to ask many other users or nodes for 
referrals of other nodes. 

3.2.1 Systems for User Ratings 

For interactions spanning both the online and the real world, there exist rating or scoring 
systems enabling users to rank various services and give their feedback in forms of written 
comments, numeric scores, stars, points, and other techniques. This feedback is called 
rating. Examples of such systems can be found on e-commerce sites, restaurant review 
webs, film databases, home sharing platforms, etc. 

If a system is used primarily for a one-sided rating, meaning that the rating can be 
comprehended as an asymmetric relation, then the system is not much susceptible to op­
portunists or speculators. There is no reaction to feedback by the reviewed side, either 
because it is a non-living entity like a film or a product. In these systems, there is a low 
chance for a user to get something in return, thus the user does not feel pressured to give 
dishonest reviews. 

The issue of fabricated or biased reviews become an adamant issue for so-called peer-
to-peer internet reputation systems or businesses operating within a sharing economy [49]. 
When a receiving side do not have the ability or will to reply (restaurant review, online 
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marketplace review), there is a possibility of user receiving an offer from the counterpart to 
change their original rating. This can mean editing an original review or even its deletion 
in exchange for a free meal (if we are speaking about restaurant review) or a discount for 
the next order. In this case, the seeming trustworthiness of a rated entity is increased 
by deleting a negative rating, while in reality, its trustworthiness should be decreased. 
The entity becomes an opportunist by mimicking the signals of trustworthiness, i.e., good 
reviews. 

This problem is even more increased when referring to services, where both parties are 
affected by potential negative review. These are best represented by home or car sharing 
platforms like Airbnb or OuiCar. While using such services, users often encounter reviews 
biased to one of the edges of possible rating. The review providing rating in the middle 
of the scale are often missing. This is caused by a phenomenon called a response bias [56] 
seen in Figure 3.2. Review 3.2a is a review for a smartphone at one of the largest online 
retailers in Czechia, while 3.2b is a review of wireless headphones from a known Chinese 
marketplace. These reviews can be non-reflecting of reality, because users leaving a review 
might be influenced by the other side—either by a common agreement of both sides to leave 
positive feedback, or as a fear of later retaliation. Described conditions can lead to a rating 
system which is not useful to an end user. It does not provide enough signals of trust, on 
which user can decide, whether he will become a truster or not. 
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Figure 3.2: Response bias in a customer reviews. 

Trust management 

At the end of the 80s and beginning of the 90s of the last century, there emerged first 
mechanisms aimed at mimicking the trust dynamics of the physical world. Under the 
term trust management, we can imagine systems like Pretty Good Privacy (PGP) or X.509 
standard [23]. The problem with these solution lies in their static nature. While the 
reputation of an entity changes through time in real life, in these systems, it becomes 
unchanging during a predetermined period of time. Trust management systems can be 
considered as the first predecessors of reputation systems of today. 

The P G P system creates a so-called web of trust, and it is mainly used for authentication 
of humans for email services. In cryptography, this means that there is no single point of 
trust. Instead, trust is a transitive relation, resembling the relationship between physical 
world entities. A n entity using P G P gradually builds its network of other trusted entities 
(their public keys), either by directly trusting someone's public key or by trusting a new 
key, which is signed by an already trusted key (indirect trust). The idea is that with the 
number of users growing, the chance of having a middle man user (B) who the original user 
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(A) trusts and who, at the same time, trusts another user (C) grows. This premise is based 
on a well known phenomenon called the small world problem [55]. The user a can then 
trust the public key of user C. Entities in this model can become opportunists, when they 
acquire a private key of another entity, thus being able to act in their name. 

The X.509 is a centralised, public key infrastructure system, where no web of trust exists. 
A hierarchy of certification authorities (CAs) signs certificates for all involved parties. The 
entities cannot, like in P G P , sign each other keys. When a user wants to verify the certificate 
of another entity, it sees the certificate of the entity, which is signed by a private key of some 
certification authority. The user has a list of public keys of authorities, which he implicitly 
trusts. Keys of authorities can be provided by an operating system or a web browser. 
Signatures of the original certificates are validated using these keys. The certificate might 
also be signed by an intermediate C A , whose signature is signed by C A on a higher level 
of hierarchy. The user validates the certificates, starting at the bottom, until he finds 
a certificate which is signed by a C A they trust, or the certificate chain ends without 
successful validation. It is not trusted in this case. 

3.3 Reputation systems 

The aforementioned techniques and mechanisms are useful for authentication of user and 
network nodes. They do not, however, measure the reliability of a node by its behaviour. 
Academics and industry need a solution to quickly obtain and possibly share information 
about behaviour of nodes in a network. Fortunately, the enormous amount of data, or more 
often - metadata and packet headers, flowing through today's network can be automati­
cally captured, stored, analysed and shared via multiple specialised platforms using specific 
protocols; thus a network reputation system is created. 

For a reputation system to work correctly, it must have these properties [43]: 

• long-lived entities that inspire an expectation of future interaction, 

• capturing and distribution of feedback about current interactions (such information 
must be visible in the future), and 

• use of feedback to guide trust decisions. 

It also needs to have an information appropriate for a reputation measurement in a given 
application, a metric for a calculation, and a risk rating. For this, a reputation system 
uses various algorithms which, in turn, use both present and historical data. A reputation 
system should be resistant against attempted manipulations [35]. 

Wi th the information above, a reputation system can be defined as follows: 

Definition 3.3.1 (Network reputation system), a network reputation system is a com­
putational system, which applies different methods and metrics on its inputs to produce 
a reputation score (rating) of a network node. 

Reputation systems are considered a prevention security measure, as they cannot stop 
a security incident which already happened. IP addresses of a potential attacker can, 
however, be put onto a black list based on the reputation system recommendation and thus 
stop the attack before even starting. 
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3.3.1 Architecture of Reputation Systems 

Each reputation system is different, with its creators preferring different methods to achieve 
results fitted to their exact needs. However, similarities can be found between all of them. 
J0sang [28] says that there are two main types of reputation systems architecture: a) 
a centralised system, and b) a distributed system: 

a) These systems consist of a centralized computation node and a network of agents. The 
central node utilises non-stop streams of ratings coming from each agent. The system 
computes reputation based on the input streams and other information available to 
it, like past transaction. A centralized system is shown in Figure 3.3a. 

b) Distributed systems have no central node. Each distributed entity calculates its own 
score based on its own obtained ratings. It then shares the scores with other nodes in 
the distributed system. The system consists of two fundamental parts: a distributed 
communication protocol, and a scoring method. This dynamic form of reputation sys­
tem is commonly used in peer-to-peer networks for rating reliability of a the node [35]. 
a distributed system is shown in Figure 3.3b. 
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Figure 3.3: Two architectures of reputation systems [35]. 

Regardless of the chosen architecture, a reputation system as a whole consists of agents, 
a reputation system core with rating functions and/or heuristics, and a database of rated 
nodes/entities. The relations between these components are shown in Figure 3.4. Note 
that in real world examples, some components can be merged into one entity with the same 
functionality. 

Information gathered from agents alone is not sumceient to calculate a reputation score. 
Thus, supplementary data are to be added into the calculation process. This includes: 

• logs or events from IPSs, IDSs, honeypots, probes, or firewalls, 

• lists of malign IP addresses, domains, or autonomous systems, 

• spam detectors, 

• white lists, 

• traffic information consisting of IP addresses, domain names, user agents, URLs , etc., 

• online databases like DNS, Whois, geolocation, etc. 
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Figure 3.4: A n architecture of a general reputation system. [35]. 

3.3.2 Communication in Reputation Systems 

R F C 7070 [9] proposes an architecture/solution for allowing one to request reputation-
related data over the Internet. The aim of this document is to simplify the interchange of 
information of reputation scores across the Internet. 

It defines a Reputation client, an entity seeking to obtain a reputation score of a given 
content (e.g., email) based on an identifier (e.g., sender's domain). A Reputation service 
then responds to the query with data. It also gathers data from agents and uses these 
scores to compute scores. 

R F C 7072 [11] specifies a format for interchange of information between entities defined 
in R F C 7070. This format defines a template URI scheme, which serves as a query by a repu­
tation client to a reputation service. Proposed schema in this R F C is h t t p : / / s e r v i c e / a p p -
l i c a t i o n / s u b j e c t / a s s e r t i o n . Example of filled schema is: http://reputation.com/ 
email/baddomain.com/spam. This query asks the reputation.com server to send infor­
mation about the baddomain.com regarding spam emails originating from that domain. 

a Reputon is a format of answer returned in response to a query to a reputation service. 
It is defined in R F C 7071 [10]. It serializes the reputation scores computed by the service. 
The returned document is of the a p p l i c a t i o n / r e p u t o n + j s o n . A n example of a rated 
object reputon is located below: 

Content-Type: application/reputon+json 

{ 
"application": "baseball", 
"reputons": [ 
{ 

"rater": "baseball-reference.example.com", 
"assertion": "strong-hitter", 
"rated": "Alex Rodriguez", 
"rating": 0.4, 
"confidence": 0.2, 
"sample-size": 50000 

} 
] 

} 
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This data example is extracted from the original R F C 7071. It shows, that 50 000 people 
rated Alex Rodriguez, a baseball player, as mediocre strong hitter. Confidence value of 0.2 
tells that there was not a consensus between the reputation agents. 

3.3.3 Examples of Reputation Systems 

This section deals with the design of reputation systems. Reputation systems used in the 
real world differs in the goal they want to active. This also affects the calculation methods 
of scores in different systems. Systems like PageRank are designed to rank web pages, 
while others (e.g., C E S N E T Network Entity Reputation Database (NERD)) aims to build 
a constantly-updated database of the known malicious network entities [6]. 

PageRank 

PageRank system [12] appeared in 1998 at Stanford University. The goal of this system 
is not to rank network nodes, but web pages. Created by Larry Page and Sergey Brin, 
it later became the base for Google search engine. The authors represented web pages, 
interconnected by hypertext, by an oriented graph. The PageRank algorithm calculates 
a score for a web page A using the formula shown in Equation (3.1): 

PR(A) = (l-d) + d ( J 2 ^ ^ ) (3-1) 
i=i 

In this equation, the result is score PR(A) of page A. d represents a damping-factor. 
Ti is a page with a link to page A. C(Tj) is the number of links leading out of the page Tj. 
Index i ranges from one to n, where n is the total number of pages with links to the page 
A. 

Rating web pages using this formula ensures, that a page can have a high PageRank if 
there are many pages that point to it, or if there are some pages that point to it and have 
a high PageRank. 

Beta Reputation System 

Audun J0sang and Roslan Ismail [27] published an article about the Beta Reputation Sys­
tem. This reputation system was developed to be used either separately or to be integrated 
into e-commerce applications. The main idea of their work is to utilise the beta probability 
density function to represent probabilities of binary events. Beta distribution f(p\a, j3) rep­
resents a probability p of a positive event based on the values of parameters a, j3. Function 
f(p\a,/3) can be then represented via the gamma function: 

/ M « f l = P BiJ) m 

n , „. T(a)T(B) . a , 

Each target entity (the one which needs to be rated) collects ratings from reputation agents. 
Positive ratings can be denoted by r = a — 1, while negative ratings are denoted as s = ft—1. 
A reputation function of entity T based on experiences VT and ST is: 

^ ' a - f f l = r ( ^ i H r ( t T

2 )

+ i ) - ^ - ( 1 - r t ' r < 3 ' 4 ) 
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Reputation score Rep of T is represented as normalized mean E of the distribution in 
interval <0,1>: 

RepT(rT, sT) = (E(<p(p\a, /?))) - 0.5) • 2 = ^ — ^ (3.5) 

They then define a method of discounting (a feedback from highly rated agents should be 
considered more significant than feedback from badly rated agents) and forgetting (newer 
feedback should carry more weight than an older feedback). They show how these two 
methods can be integrated into the Beta Reputation System. Authors also demonstrated 
the system performance in relation to varying settings of weight of feedback, feedback value, 
discount values, and forgetting factor. 

As the Beta Reputation System scoring is based on a positive and negative feedback 
from agents, it could be used to rate network nodes with agent modifications. A n agent 
would have to be able to provide the feedback about each transaction with network node. 
The feedback could be derived from conclusions made about the transaction. For example, 
if the transaction was a download of a file from web server, and an antivirus running on 
the agent would find the hash of the downloaded file in a database of malicious software, 
the feedback would be negative. 

Due to the need of increased capabilities of agents participating in the rating process, 
and the intended use of the system (e-commerce), the Beta Reputation System was not 
selected for use in this thesis. 

Cisco Talos 

Cisco Talos is a threat intelligence group inside the Cisco Security ecosystem. The Rep­
utation Center of this group provides access to expansive threat data and related informa­
tion [54]. It provides an IP and Domain Reputation Center—real-time threat detection 
network, which collects data from web, email, firewall, and IPS services. A simple web 
client1 allows users to query the database of the Reputation Center for an IP address, U R L , 
or a file hash. Talos maintains not only a network reputation centre, but also a database of 
files. Outputs from the file reputation system are used in Cisco firewalls or Snort products. 
Cisco also provides a list of naming convention patterns of malicious files, a list of content, 
and threat categories used by Talos to classify websites and attacks. Data presented by 
Talos is updated every three hours. 

C E S N E T Network Entity Reputation Database (NERD) 

N E R D (Network Entity Reputation Database) is a reputation system developed by the 
C E S N E T - a Czech N R E N . NERD is a service which aims to gather, aggregate and pro­
vide all the available information about known malicious network entities (mostly IP ad­
dresses) [7]. 

The N E R D software rates entity records represented by a set of attributes. Currently, 
an entity can be an IP address, B G P prefixes, autonomous systems, IP blocks, and organi­
zations. Attributes are then dividend into two main classes: 1. primary data, 2. secondary 
data. 

1. Primary data describing malicious activities of a given entity. Currently sourced from 
Warden (a system for efficient sharing information about detected events [17]). 

1 Talos Reputation Center: https://www.talosintelligence.com/reputation_center, accessed [2024-02-23] 
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2. Secondary data, represented by all other data somehow related to the ranked entity. 
They can be computed by N E R D , like a reputation score, or sourced from external 
sources like domain names, geolocation, whether an IP is in a blocklist. 

N E R D stores records of IP addresses for a limited time. If a record comes from Warden, 
then it is deleted after 14 days without alert. The time period increases to 180 day when 
MISP database2 is a source of an alert. 

Two scores are computed by N E R D to rate network entities. The first one is the 
Future Misbehavior Probability (FMP) score developed by Bartos et al. [5]. It uses deep 
learning techniques based on various gradient boosting decision trees to determine a score 
representing an estimated probability that the rated entity will behave viciously in the 
near future. Authors selected features from data of the Warden system, that were collected 
across three months (September-November 2017). Their entire dataset contains 155 million 
alerts for more than five million IP addresses. The base features are as follows: 

1. number of alerts in the last day 

2. total number of connection attempts (attack volume) in the last day 

3. number of detectors reporting the address in the last day 

4. number of alerts in the last week 

5. total number of connection attempts (attack volume) in the last week 

6. number of detectors reporting the address in the last week 

7. E W M A (Exponential Weighted Moving Average) of number of alerts per day over the 
last week 

8. E W M A of total number of connection attempts per day over the last week 

9. E W M A of a binary signal expressing presence of an alert (0 or 1) in each day over 
the last week 

10. time from the last alert (in days) 

11. average interval between alerts within the last week (in days, infinity if less than two 
alerts were reported) 

12. median of intervals between alerts within the last week (in days, infinity if less than 
two alerts were reported) 

Other features from secondary sources are added to this list, to complete a dataset with 
a total of 42 features. Because of the significant imbalance of the dataset, they sampled the 
normal class of data, which resulted in smaller training datasets. A non-linear transforma­
tion of data was then applied. Preprocessed data was used for model fitting of four models. 
Chosen models consisted of two neural networks (with two and three hidden layers, each 
with 58 nodes, a rectified linear unit used as activation function) and two gradient boost­
ing decision trees (100 or 200 trees with max depth of three and seven). A mean square 
error was used as a metric to model performance evaluation. The score always falls into 

2 M I S P project homepage: https://www.misp-project.org, accessed [2024-02-24] 
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the range <0,1>, where zero is the best possible score, and one represents the worst case 
prediction. A gradient boosting decision tree model consisting of 200 trees proved as the 
best, with more than 80 % of detected threats, while keeping the false positive rate under 10 
% on the testing dataset. The dataset was labelled and composed of alerts received in the 
Warden system. Authors note, that the false positive data point does not necessarily mean 
blacklisting a legitimate IP address, the address may still be malicious, just not attacking 
any of the monitored networks within the prediction window. Taking a resulting F M P score 
from the predictions and combining it with a predefined threshold or a specified number of 
worst IP addresses, can be used to generate a blacklist which can be used in a near future 
of a score calculation to block traffic proven to be malicious by the model. Authors show 
the hit rates of blacklist generated from the F M P score. Hit rates range from 100 % when 
using a blacklist of 100 top scored IP addresses, to 43 % when using a 2 000 address long 
blacklist. 

Before the F M P score was implemented, a simpler method for reputation score was 
used by N E R D . This reputation score was calculated as a weighted average of daily scores 
covering the last 14 days. Daily score is represented by the following formula: 

= (1 - i) • (1 - i ) (3-6) 

where RlJ is the daily reputation score of an IP address ip, E^ is the number of alerts 
reported in Warden for a given day d with the IP address ip as a source. is a number 
of unique detectors that reported alerts E^. 

The method used for reputation scoring in this thesis is inspired by this N E R D formula. 

3.4 Summary 

This chapter introduced a reader into the problematics of trust and reputation. It showed 
how trust can be defined in both real and virtual world. Examples of trust management 
systems were demonstrated. A n introduction to reputation systems was presented, and 
architectures of such systems discussed. The chapter then talked about a working model of 
a communication of a reputation system proposed in several RFCs . Real world examples of 
used reputation systems were provided to show the vast differences between offerings from 
various subjects in this field. 
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Chapter 4 

Dataset Analysis 

This chapter introduces a reader to the provided dataset used for the calculation of anomaly 
and reputation scores. The origin of the dataset and its form are shown. It explores the 
available data and describes it in various ways, including graphs, histograms, timelines, or 
text descriptions. Interesting data features are pointed out. 

4.1 Introduction to the Dataset 

Our dataset contains logs from the Suricata IDS. Suricata is an open sourced project under 
the Open Information Security Foundation (OISF). It serves as an Intrusion Detection 
System (IDS), Intrusion Prevention System (IPS), and Network Security Monitoring engine. 

The original, non-processed raw dataset includes: 

• Extensible Event Format (EVE) JSON logs with statistical, flow and protocol data, 

• statistical logs, 

• Suricata system logs. 

These logs are generated in real time from traffic directed into the device with a running 
Suricata instance. The instance used to capture study data operates on the premise of the 
Faculty of Information Technology, Brno University of Technology. Data for the analysis 
were captured from the 25th October 2022 to 31st January 2023. A subset of data consisting 
of a week from 1st November to 7th November 2023 was chosen for initial data exploration. 

4.1.1 E V E J S O N logs 

E V E is an abbreviation of Extensible Event Format [53]. It represents a way to generate 
a single format for various events, which are then saved into one JSON log. This log includes 
alerts, anomalies, metadata, file info and protocol specific records. Network traffic captured 
and processed by Suricata is saved into E V E logs in the form of NetFlow data extended 
with information provided by Suricata itself (e.g. signature based alerts). 

The E V E output is configurable by Y A M L configuration file. Suricata administrator 
can define which events are to be logged and the extent of supplementary data for each 
event. A l l records in E V E logs contain a timestamp, flow identifier, input interface, event 
type, source and destination information, and a dictionary with event type specific data. 
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Logs and configuration file example can be found in the Suricata official documentation . 
a general record in the E V E logs is a JSON record. A n anonymized version of a record 
( M A C and IP addresses) looks like follows: 

{"timestamp":"2023-01-21T07:53:42.119299+0100","flow_id":1265033423671534, 
"in_iface":"eth","event_type":"flow","src_ip":"X.X.X.X", 
"src_port":53844,"dest_ip":"Y.Y.Y.Y","dest_port":21027,"proto":"UDP", 
"app_proto":"failed","flow":{"pkts_toserver":1,"pkts_toclient":0, 
"bytes_toserver":487,"bytes_toclient":0, 
"start":"2023-01-21T07:53:12.119022+0100","end":"2023-01-21T07:53:12.119022+0100", 
"age":0,"state":"new","reason":"timeout","alerted":false},"ether": 
{"dest_macs":["aa:aa:aa:aa:aa:aa"],"src_macs":["bb:bb:bb:bb:bb:bb"]}, 
"host":"suricata-XXX"} 

The record above keeps information about a flow which was reported by Suricata on 
2023-01-21 at 07:53:42. Its ID can be used to match this record with another record with 
the same ID but different event type, which provides protocol specific information. There 
can be zero or more of such records. The flow originates from X.X.X.X:53844, while its 
destination is Y.Y.Y.Y:21027. Because of the failed value for the app_proto field, there is 
not another record with the same ID holding detailed information in the same log file. Failed 
means that Suricata was not able to infer the correct L4 protocol from the traffic. Valid 
protocols for the app_proto are: Alert, Anomaly, H T T P , DNS, F T P , F T D A T A , T L S , 
T F T P , S M B , B I T T O R R E N T - D H T , SSH, Flow, RDP, R F B , M Q T T , H T T P 2 , P G S Q L , 
I K E , Modbus, QUIC, and D H C P . Data under the flow dictionary contains statistics about 
the given flow, together with the time of detection of the first and last packets of the given 
flow. The host field signifies the hostname of a device running the Suricata IDS. 

4.1.2 Statistical Logs 

Statistical log files are distinct log files generated by Suricata and comprising tables con­
taining statistical data computed from the E V E logs. Each log record is a table, that starts 
with the timestamp and uptime the creation. Each table row contains a counter name (e.g. 
decoder.bytes), a value identifier (e.g., Total, Detect, RxPcapem21, FlowManagerThread, 
etc.) and the corresponding value. By default, these statistics are saved into stats.log file 
and a new table with statistics is appended to the log every eight seconds. Despite the fact 
that the data contained within these logs can demonstrate long-term trends, the statistical 
logs are not used for anomaly nor reputation scoring. If a need for such statistics arises 
during the scoring, they are easy to calculate from the dataset provided for scoring. 

A n example of statistical log records is shown in Table 4.1. Only few table rows are 
shown. The table shows its creation timestamp. Statistics are grouped by a broader 
category. For example, both number of detected bytes and packets belong to the decoder 
category. Note that the counters shown in the table depend on the Suricata settings and 
are unique for every Suricata instance. 

4.1.3 Suricata Syslog 

Systems logs of Suricata on the capturing probes utilize the widely available systemd logging 
capabilities. They consist of records showing the correct operational state of the running 

1 Suricata E V E logs format: https://docs.suricata.io/en/latest/output/eve/eve-json-output.html, ac­
cessed [2024-01-20] 
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Date: 10/25/2022 - 19:21:21 (uptime: Od, 00h 00m 08s) 
Counter T M Name Value 

capture.kernel_packets Total 80 
decoder.pkts Total 82 
decoder.bytes Total 8064 
decoder.max_pkt_size Total 216 
flow.tcp Total 1 
flow.icmpv4 Total 1 
flow. wrk. spare_sync Total 2 
flow. mgr. full_hash_pass Total 1 
flow, spare Total 9800 
tcp.memuse Total 2424832 
flow.memuse Total 7474304 

Table 4.1: Statistical log record example. 

program, with the expected severities ranging from informational records to critical failure 
reports. These logs include records ranging from the information about used memory, 
operations of various system components, to information about parsing downloaded attack 
signatures. These files were not used for further processing and scoring, as they provide 
information about the Suricata itself instead of the network traffic needed for scoring. 
Examples of these log records are listed below: 

29/11/2022 — 17:46:16 - <Error> - [ERRC0DE: SC_ERR_AFP_READ(191)] - Interface 
'enp2s0' i s down 

29/11/2022 — 17:46:16 - <Warning> - [ERRC0DE: SC_ERR_AFP_CREATE(190)] - Couldn't 
i n i t AF_PACKET socket, r e t r y i n g soon 

29/11/2022 — 17:46:16 - <Info> - A l l AFP capture threads are running. 
29/11/2022 — 17:46:17 - <Info> - Interface 'ethl' i s back 
29/11/2022 — 17:46:17 - <Info> - Interface 'eth2' i s back 
29/11/2022 — 17:48:09 - <Notice> - Signal Received. Stopping engine. 
29/11/2022 — 17:48:09 - <Info> - time elapsed 113.431s 
29/11/2022 — 17:48:09 - <Info> - Al e r t s : 0 
29/11/2022 — 17:48:10 - <Info> - cleaning up signature grouping structure... 

complete 
29/11/2022 — 17:48:10 - <Notice> - Stats for 'e t h l ' : pkts: 676, drop: 0 (0.007,), 

i n v a l i d chksum: 0 

4.2 Data Exploration 

Most addresses in following sections, including this, are anonymized because of the data 
originate from a private network. If any address is kept non-anonymized, it is a public IP 
address outside the B U T range. 

Because of the great amount of data captured by Suricata during the three months of 
operation, only a subset of data was selected for the exploration. A chosen part of logs 
was captured between 1st November 2022 and 7th November 2022. This amount of data 
is considered sufficient, as it spans enough days to contain and explain longer trends, e.g., 
traffic difference between work days and weekends. A longer duration was not selected 
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Day Number of Events 

2022-11-01, Tuesday 
2022-11-02, Wednesday 

199 644 
343 995 
319 702 
170 997 
33 567 
40446 

170 284 

2022-11-03, Thursday 
2022-11-04, Friday 
2022-11-05, Saturday 
2022-11-06, Sunday 
2022-11-07, Monday 

Table 4.2: Number of events per day. 

due to the increased difficulty in processing a greater volume of data. During these seven 
days, 931.4 M i B of logs with 1 354 665 E V E records were captured. The size of the entire 
dataset spanning 92 days is 17.4 G B accounting for 11 237 669 Suricata flow records. These 
flow records contain information about 547,229 G B transmitted through the network and 
analysed by Suricata. These and further statistics for the selected week are shown in 
Table 4.2. The 5th and 6th November 2022 are Saturday and Sunday respectively, which 
can explain the lower amount of captured events. 

For many common protocols, the generated E V E logs do not only include the flow 
information (source/destination IP addresses and ports, bytes to/from, packets to/from, 
etc.), but also specific detailed records containing protocol-specific information. These 
records are linked to their corresponding flow with the use of the same ID for both records. 
A value of mandatory event_type field signifies whether the record is a generic flow or 
protocol specific record. 

Events captured in each day and separated by the event_type are demonstrated in 
Figures 4.1a and 4.1b. Legend colours from Figure 4.1a apply to both Figures 4.1a and 4.1b. 
Most data transmitted is made of flow event type. This behaviour is expected, as the flow 
records are created for all records, even those without any specific protocol detected. The 
most utilized specific protocol is M Q T T . The high presence of this protocol is due to the 
specific environment in which the dataset was collected. DNS makes a significant portion 
of all records. Rise of the SSH events during the weekend between 5th and 6th November 
together with reduction in other traffic is not surprising. As personnel working at the 
faculty during weekdays are not present at the faculty, user generated content like DNS is 
falling. On the other hand, remote SSH connections are more prevalent. 

Figure 4.2 shows the cumulative amount of records of each event type across the explo­
ration period. It is clear, that the number of flow records outnumber all other event types. 
This is mainly caused by the fact, that every flow ID has at least one flow records, and it 
can have zero or more records of another type. M Q Q T follows the lead with 443 000 events. 
DNS, T L S , H T T P and SSH come next as examples of user generated traffic. Fileinfo event 
type is closely tied to H T T P . Fileinfo describes files downloaded by H T T P in more detail. 

Features for anomaly detection were selected from the most prominent events. These 
are flow, mqtt, dns, tls, and http event types. Description of data belonging to this list of 
types together with features derived from them is provided in the following sections. 
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Number of various event types per day 

Tuesday Wednesday Thursday Friday Saturday Sunday Monday 
2022-11-01 2022-11-02 2022-11-03 2022-11-04 2022-11-05 2022-11-06 2022-11-07 

Date 

(a) Events and their types captured in the exploration period. 

Number of various event types per day (without the most frequent) 

Tuesday Wednesday Thursday Friday Saturday Sunday Monday 
2022-11-01 2022-11-02 2022-11-03 2022-11-04 2022-11-05 2022-11-06 2022-11-07 

Date 

(b) Less represented events and types (badly seen in Figure 4.1a) captured during the period. 

Figure 4.1: Number of events and their types throughout days. 
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Number of various event types 

01 
Q . 

^ fileinfo 

a anomaly 

||612365 

443000 

Number of events 

Figure 4.2: Observed number of events per type 

4.2.1 Flow Event Type 

In Figure 4.2, the flow event type is the most frequent (brown colour in the figure). This 
observation is supported by two important factors: 

1. For each record with an event type value other than flow, there exists a record with 
flow event type and the same flow ID. General information about the flow is stored in 
the flow record, whereas the protocol specific values are located in the log row with 
that particular event type. 

2. There is only one record with flow value of the event type, when Suricata is not able 
to infer application protocol of the flow. 

Distribution of flows based on the amount of transferred bytes is demonstrated in Fig­
ure 4.3a. The same distribution in terms of transferred packets is shown in Figure 4.3b. 
Note the logarithmic scale of the Y axis. It is clear, that the dataset contains many short 
flows. This increases a possibility, that the proposed anomaly detector can flag longer 
flows as anomalous, if the data is not pre-processed or normalized accordingly. Both flow 
counts in bytes and packets are selected features for the developed anomaly detector, as 
they provide an insight into the general shape of the traffic. 

The longest flows in both bytes and packets in Figure 4.3 are caused mainly by M Q T T 
flows, which often last for multiple days. Suricata considered the continuing M Q T T con­
versations as a one flow, instead of splitting it into more flows. Other large flows are mainly 
H T P P and T L S flows, which downloaded large files. 

32 



Distribution of bytes in flows 
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Figure 4.3: Flow distribution. Note that X scale (108, 106). 

MQTT p a c k e t t y p e s 

A 
38.6% 

(170891) 

publish 
pingresp 
pingreq 

29.7% 
(131402) 

Figure 4.4: M Q T T message types in explored data. 

4.2.2 M Q T T Event Type 

The M Q T T protocol takes the second place when measuring by number of flows (see Fig­
ure 4.2, despite the fact that the traffic is generated by only six distinct devices. The 
M Q T T is a message oriented transport protocol based on the publish/subscribe model. It 
is designed to be used as a common communication protocol between various Internet of 
Things (IoT) devices or other Machine to Machine (M2M) contexts [3]. Captured traffic 
consisted of messages exchanged between two control PCs and four smart appliances, such 
as an air quality measuring unit, coffee machine or a refrigerator. Percentages for vari­
ous M Q T T events are shown in 4.4. Three most occurring message types are distributed 
uniformly. Note, that only message types with more than 1 000 occurrences are shown in 
the graph. Messages with lower number of occurrences are not shown in the figure. These 
are: connect, connack, subscribe and suback. Only 38.6 % of all M Q T T flows are used to 
carry useful data—these have the publish type. A l l M Q T T communication originated and 
terminated at two nodes in the internal B U T network. 
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For the records with M Q T T event type are prevalent in the dataset, features extracted 
from M Q T T are used for anomaly detection. 

4.2.3 D N S Event Type 

The top queried DNS servers and their top queried addresses for resource records of all 
types are shown in Table 4.3. Two devices in the original dataset ( A . A . A . A , B .B .B .B) 
served as a prominent DNS servers. For this reason, DNS type and flags were extracted as 
features for anomaly detection dataset. Deviation from the commonly seen DNS related 
values could be thus predicted by the model. 

Dest. IP Query Query Count Dest. IP Query Query Count 

A . A . A . A aaa.com 27 D.D.D.D bbb.cz 669 
iii.com 13 aaa.com 468 
bbb.cz 12 iii.com 252 
ccc.com 9 ddd.com 219 
ddd.com 9 lll.cz 202 

B . B . B . B eee.com 1 E . E . E . E aaa.com 6 
fff.cz 1 mmm.com 4 
ggg.com 1 nnn.com 4 
hhh.com 1 ooo.cz 4 

c . c . c . c bbb.cz 193 ppp.com 4 
aaa.com 117 
iii.com 75 
ddd.com 65 
kkk.com 56 

Table 4.3: Top DNS queries in examination dataset. 

Source IP No. Flows 

A . A . A . A 94567 
B . B . B . B 66164 
fe80::l 4167 
E . E . E . E 254 
fe80::2 217 
fe80::3 63 

Table 4.4: Top DNS talker source addresses based on number of flows. 

The top talkers by source IP address are shown in Table 4.4. Information in DNS logs 
can be used for both anomaly detection and reputation scoring. Counts of various DNS 
events, queries, and answers all can be used as features for anomaly detection. For example, 
if an endpoint normally queries the name A . A . A . A , and suddenly switches to B . B . B . B , the 
anomaly detection can potentially flag this as an anomaly, if the change is relatively drastic 
to the rest of the dataset, depending on the features used for model training. 

For reputation score, information about queried domains can be utilized to penalize the 
resulting scores, if given domains are listed in a well-known source of blocked, malicious, 
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or unethical domains. By using domain geolocation, the score can be dropped if a node 
is located in a country with known security risks, or if it predominantly communicates 
with other nodes from these countries. This also applies to domains known for spreading 
misinformation, hoaxes, or which takes part in informational cyberwarfare. Lists of blocked 
domains, like the Current List of Administratively Disabled Domains 2 by cz.nic, rankings 
like National Cyber Security Index 3 or studies including the one by Comparitech [8], can 
be used as source of such information. Scanning attacks can be detected from DNS logs by 
tracing the patterns in a node behaviour. If a node suddenly queries a DNS server for all 
resource records for a particular domain, this could suggest that a form of network scanning 
is in progress. 

For the large amount of DNS data in the exploration dataset, DNS related fields were 
chosen as features for the anomaly detection. 

4.2.4 T L S and H T T P Event Types 

Due to the encryption used by TLS, internal content of messages cannot be learned from 
this traffic. Indirect methods, like geolocation or information obtained from certificates, 
can be used for primarily for purposes of reputation rating. 

For unencrypted H T T P , features like the H T T P content type can be used in anomaly 
detection. User agent field is valuable for both anomaly and reputation scoring. A node, 
using predominantly one agent and then switching to another one, can possibly trigger an 
anomaly alert. User agent strings can be utilized for reputation scoring. Some tools for 
network reconnaissance like Nikto include string Nikto in the requests generated by Nikto 
by default [21]. It can be argued for lowering the reputation score for nodes performing 
network reconnaissance. Detecting an old, outdated user agent, vulnerable to modern 
threats, creates a reason for lowering the node reputation score. However, user agent 
strings can be easily changed and manipulated with by an eventual attacker, and thus 
relying solely on them is not advised. Today, modern web browsers hide or send false user 
agent strings to deflect possible blockings of webpages or their incorrect rendering [58]. 

Features extractable from H T T P logs including hostname, user agent, content type, 
method, oistatus can be used as an input for anomaly detection model. 

Similarly to queried domains in DNS, target hostnames or URLs can be used to detect 
connection to questionable or malicious websites. Common attacks against web servers, 
including SQL injection often includes malicious payload in the application/x-www-f orm-
urlencoded format. Searching for common patterns in URLs can thus help to better 
evaluate the final reputation score. 

4.2.5 Anomaly and Alert Event Type 

There were not many occurrences of the anomaly or alert event type records present in the 
span of one week, for which the data analysis was concluded. Anomaly and alert records are 
thus evaluated for the entirety of the original dataset (25th October 2022 to 31th January 
2023). During this time, a total of 26 896 anomaly records were detected together with 
1 827 alert records. It is important to mention, that anomalies as reported by Suricata 
are not the same anomalies as understood in the context of this thesis. Anomalies in this 

2 Czech: ak tuá lně adminis t ra t ivně vyřazené domény: https://www.nic.cz/page/4310/aktualne- 
administrativne-vyrazene-domeny/ accessed [2024-04-02] 

3 Nat iona l Cyber Security Index: https://ncsi.ega.ee/ncsi-index/ accessed [2024-04-02] 
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Prot. Anomaly Event Count 
H T T P R E Q U E S T _ A U T H _ U N R E C O G N I Z E D 732 

R E Q U E S T B O D Y U N E X P E C T E D 76 
U N A B L E _ T O _ M A T C H _ R E S P O N S E _ T O _ R E Q U E S T 75 
M I S S I N G _ H O S T _ H E A D E R 30 
R E Q U E S T H E A D E R H O S T I N V A L I D 8 
R E Q U E S T L I N E I N C O M P L E T E 5 

I K E V 2 W E A K C R Y P T O _ A U T H 816 
W E A K _ C R Y P T O _ D H 775 
W E A K C R Y P T O _ P R F 410 
W E A K C R Y P T O _ E N C 52 
W E A K C R Y P T O N O D H 11 

S M B N E G O T I A T E M A L F O R M E D D I A L E C T S 23 
M A L F O R M E D D A T A 7 

S M T P A P P L A Y E R D E T E C T P R O T O C O L O N L Y O N E D I R E C T . 10 
SSH INVALID B A N N E R 19956 

L O N G _ K E X _ R E C O R D 447 
A P P L A Y E R D E T E C T P R O T O C O L O N L Y O N E D I R E C T . 21 
A P P L A Y E R M I S M A T C H P R O T O C O L B O T H D I R E C T . 3 

T L S C E R T I F I C A T E I N V A L I D D E R 3376 
I N V A L I D R E C O R D T Y P E 23 
i N V A L I D _ S S L _ R E C O R D 23 
E R R O R _ M E S S A G E E N C O U N T E R E D 12 
A P P L A Y E R M I S M A T C H P R O T O C O L B O T H D I R E C T I O N S 2 

Table 4.5: Anomaly records reported by Suricata. 

thesis are data points not conforming to a normal state of traffic. Suricata anomalies are 
flows, for which Suricata could not find a matching signature, or which somehow violate 
the expected communication patterns. 

The anomalies are grouped into six groups by the application protocol. A l l reported 
anomaly events are shown in Table 4.5. The table shows all records which were marked 
anomalous by Suricata. They are grouped by the application protocol used. H T T P anoma­
lies generally relate to malformed packet. I K E V 2 alerts are caused by the use of insufficient 
cryptography. Most SSH anomalies are caused by the invalid SSH banner. This event is 
caused by the SSH banner having characters deemed invalid by Suricata. 

Alert records are generated by Suricata if the traffic is matched against any signatures 
loaded into the Suricata program. The signature records can also contain data about an 
attack source and destination, as well as metadata such as affected operating systems. 
Detected alerts, their categories, signatures, and counts are shown in Table 4.6. For the 
alerts, six unique alert signatures separated into three categories were reported by Suricata. 
The categories are: Attempted Denial of Service, Detection of a Network Scan and Generic 
Protocol Command Decode. For example, the most common signature in the Attempted 
Denial of Service category implies, that there could be potential denial-of-service attack 
using SSDP protocol in the network. 

Two features for anomaly detection are based on the anomaly and alert event types. 
These are category of an alert and L4 protocol pro anomaly. 
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Category Signature Name Count 
Attempted Denial E T DOS Possible SSDP Amplification Scan in Progress 110 
of Service 

E T DOS Possible N T P DDoS Inbound Frequent Un- 9 
Authed M O N _ L I S T Requests I M P L 0x03 
E T DOS Possible N T P DDoS Inbound Frequent Un- 2 
Authed M O N _ L I S T Requests I M P L 0x02 

Detection of a Net­ E T S C A N Zmap User-Agent (Inbound) 6 
work Scan 
Generic Protocol E T INFO WinHttp AutoProxy Request wpad.dat Possible 1694 
Command Decode BadTunnel 

E T A T T A C K R E S P O N S E Possible IPMI 2.0 R A K P Re­ 6 
mote SHA1 Password Hash Retrieval R A K P message 2 
status code Unauthorized Name 

Table 4.6: Alert records reported by Suricata. 

4.2.6 Grouping by IP Adresses 

The events cannot only be differentiated by event type, but also by other log fields such 
as source or destination addresses for analysis based on endpoints; or ports, if analysis 
per protocol is desired. For the purpose of computing the reputation and anomaly scores, 
the most important feature is the source IP address, since it is the main differentiator for 

C o m m u n i c a t i o n s o f t o p 5 0 / 2 4 s u b n e t s b y n u m b e r o f f l o w s 

A. A.A.O 
B. B.B.O 
C. C.C.O 
D. D.D.O 
E. C.E.O 

F.E.F.O 
G. F.G.O 

G.G.H.O 
H. H.1.0 
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O.O.E.O 
P.P.Q.O 

Q.Q.R.O 
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V.V.Y 0 

V.V.Z.O 
V.V.AA.O 
V.V.BB.O 
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Figure 4.5: Top 50 source IP addresses ordered by the number of flows. 
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C o m m u n i c a t i o n s o f t o p 50 / 2 4 s u b n e t s by a m o u n t o f src b y t e s 
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Figure 4.6: Top 50 source IP addresses ordered by the total number of bytes. 

which an anomaly score can be computed - e.g. the score is computed for each IP address 
separately. 

Figure 4.5 shows the top 50 IPv4 addresses by number of detected flows. The shade 
levels in the figure show the density of flows (darker colour represents more flows during 
a time period), while the colour of a data point corresponds to an E V E log event type. 
Data in this figure show great contrast between traffic from various IP addresses. Grouping 
records by IP addresses enables to calculate scores for every address separately without 
contaminating each other. This is valuable specifically for a pair of addresses defined by 
different behaviour. For example: Traffic from T.T.U.O in the figure consists mainly of the 
fileinfo event type. If an SSH flow, previously unseen for this address, suddenly appears, 
anomaly detection should flag this event as anomalous for a given IP address. 

However, problems could rise if the anomaly score was computed for all IP addresses 
as a whole. For example, the presence of many SSH flows in traffic of address A in the 
training data could result in marking SSH flow of address B as normal, although address 
B normally does not send any SSH traffic. 

For B.B.B.O or T.T.U.O, there were no flows detected at 2022-11-06 and 22-11-07. These 
days were Saturday and Sunday. The model should consider weekend traffic of these ad­
dresses as anomalies. If the anomaly score was computed from all addresses, then there 
could be addresses which communicated during the weekend. The model could then fail to 
detect the weekend traffic B.B.B.O or T.T.U.O as anomalies. 

Figure 4.6 demonstrates top 50 IPv4 addresses by number of sent bytes. Shade levels 
show density of flows. The size of a data point represents the amount of bytes sent in one 
flow. Note, that the presence of an IP address in the figure do not necessarily mean, that the 
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address communicated throughout the entire examination period. For example, flows from 
the W W . G G . Y Y . B were detected only on the 1st November, in a span of eight minutes. 
However, the number of flows was greater than the number of flows of W W . J J . R R . A , which 
communicated for an entire week. See Figure 4.7 as a reference. Figure 4.7a shows quick 
and isolated burst of flows, while 4.7b demonstrates continuous communication. For nodes, 
which do not communicate uniformly, the longer time window might be needed to evaluate 
their behaviour. The importance of average byte count in a flow can also serve as a feature, 
as they provide yet another metric trackable in time. 

Communications of WW.GG.YYB Communications of WW.JJ.RR.A 
0) 
>• 

> 
LU 

•• • vc> vO l ,.0* ..06,

 vtf> vofe

 vo> vo* 
0 o - ^ o ^ " t P 5 " cf>* o»* rO>^ cd>X rcD-X rd>^ ccD-X cd>X cd>X 

0\" 0\° 0\° 0\° Q\° 0\° «\° 0\° Q\° ^ -jO1

 a0l- -jp1 t.01-
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(a) W W . G G . Y Y . B communica ted for eight m i n - (b) W W . J J . R R . A communica ted each day dur-
utes only. ing a week. 

Figure 4.7: Two different behaviours of an endpoint communication pattern. 

The values illustrated for IP addresses in Figures 4.5 and 4.6, such as time distribution 
of flows, number of bytes, or detected events can be used as input for score calculation. The 
calculation can be carried out either for a) single IP address or b) range of IP addresses: 

a) A n IP address of an end node yields more precise results, if there is enough data 
about a node. When data is sparse, it might be impossible to calculate the score at 
all, or the calculated value might not be entirely representative of the real behaviour 
of the node. This can be mitigated by using an aggregation of addresses by subnets, 
described in b. 

b) The network address together with a prefix or netmask clearly describes a range of 
IP addresses. The anomaly or reputation score is then calculated for a block of IP 
addresses. Data from all included nodes is used for a score calculation, reducing the 
need for having extensive data for each endpoint. The technique works well for smaller 
subnets, which usually belong to a single organization. This aggregation cannot 
be done indefinitely. Large aggregation would group many autonomous systems. 
Calculating the score from large networks can result in skewed results. The optimal 
network range can vary depending on the desired outcome. The size of the optimal 
range is to be decided by testing, and is specific to an environment. 

Possible use of aggregation is shown in Figure 4.8. The figure shows communication 
of addresses which participated in a port scanning attack. The attack cannot be inferred 
from the traffic data or the figure alone. A l l IP addresses in the figure demonstrate similar 
traffic patterns. These addresses can thus be aggregated and treated as a single subnet. 
Traffic originates from subnet 89.248.165.0/24. This subnet belongs, according to WHOIS 
database, to Recyber project. The Recyber project web 1 claims that its intentions are not 
malicious. Whether is this statement true or not, the nodes in this subnet are caught doing 
network scans. Thus, the calculated reputation score should, in theory, be reduced. In this 

4 Recyber project: https://www.recyber.net accessed [2024-04-02] 
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Figure 4.8: Traffic originating from 89.248.165.0/24 subnet. 

case, aggregating nodes to a subnet with /24 prefix results in no data loss since all nodes 
belonging to that /24 subnet are demonstrating essentially the same traffic. The calculated 
score should have higher weight, since more data points were used for the calculations. 

4.3 Summary 

This chapter demonstrates the nature of Suricata dataset used in this thesis for model 
training and testing. It described data of which the dataset consists. Suricata E V E logs 
containing enhanced flow data were described. Most present event types in the data were 
presented to a reader with selected examples, graphs, tables, and commentary. Features 
extracted from E V E logs for model training were discussed for event types described in the 
chapter. Sensitive data shown in this chapter were first anonymized. The presented analysis 
explains nuances and thoughts behind selecting precisely these features. It was important 
to carry out this analysis, for the selection of the features, understanding of the dataset 
and evaluation of results according to the training data would be impossible without it. 
The number of flows per protocol, distribution of flow lengths and security related data is 
necessary for the result evaluation. 
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Chapter 5 

Design of a System for Anomaly 
and Reputation Scoring 

Chapter describes the inner workings of the proposed system in detail, including its general 
architecture, data preprocessing and manipulation, calculating the desired anomaly and 
reputation scores, to ranking the log file events using the score. The comparison of selected 
methods for anomaly processing is demonstrated, even though the final system uses only 
the best performing solution. 

5.1 Anomaly Detection 

This section talks about processes which had to be done to compute anomaly scores and 
to pick out anomalous events from Suricata E V E logs. It starts with a description of 
preprocessing steps, goes through transformation and normalization, the scoring method 
itself, and it finally demonstrates the way of reducing the amount of log events using the 
calculated scores (Section 5.1.4). A l l steps concerning anomaly detection described in this 
section are seen in Figure 5.1. References to this figure are made throughout the following 
paragraphs. The calculation is split into two main parts. Data preprocessing has the green 
background in the figure, while the scoring itself is blue. 

5.1.1 Data Preprocessing for Anomaly Detection 

This section aims to introduce a reader to the process of extracting useful information from 
raw Suricata logs. This data is then normalized and processed by the score calculating 
procedures. 

The features to extract were chosen in order to contain valuable information while re­
ducing the dataset size for further processing by scoring functions. Chosen features were 
of two main categories — categorical and quantitative. The categorical attributes are later 
converted into quantitative feature, since many algorithms and processes for anomaly de­
tection (like k-means) require quantitative data only. During log extraction, there is no 
appropriate way to normalize data, because normalization typically works over an entire 
dataset. Only a subset of a dataset is available at a given time during the feature extrac­
tion. The entire dataset is available later, after the whole extraction of data from logs is 
completed. 

The feature selection was based on features, which were selected by authors referred 
about in Section 2.4, in works by Henriques et al. (Sec. 2.4.1), Zhaoli et al. (Sec. 2.4.2), 
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Figure 5.1: Processing pipeline for anomaly detection 

Mehta et al. (Sec. 2.4.3), and Catillo et al. (Sec. 2.4.4). Importance of features as perceived 
by the author also played a role. 

Extraction Algorithm 

The selected algorithm for data extraction is simple. It iteratively reads data from logs 
stored in a predefined location. For each of these log, an internal dictionary called flows 
is created. The log file is then scanned line by line. Data is extracted from each line and 
stored in the aforementioned flows dictionary with the f low_id as a key, and it is filled with 
information depending on the event_type value of the record. The fact that all records 
adhere to standardized format across the dataset enables to select features deterministically. 

Every flow inside the log file has at least one record. If the record type of the flow is 
flow, then general properties of this flow are stored in the flows dictionary and the type 
is set as flow. General features are listed in Table 5.1. Number of packets and bytes sent 
towards the server and towards the client are flow specific features. The Suricata system 
determines the correct direction by port numbers. 

a source IP address is later used as an identifier, for which a score is computed. Day, 
hour, and duration features cannot be directly extracted from log records, but are computed 
from items included in the log record. The extraction of an hour in a day and a weekday 
name/number is considered important as the traffic size generally differs in various days of 
a week. 

a record belongs to a specific protocol or special type, if its type is not flow. For each 
protocol with considerable amount of traffic (see Figures 4.1a and 4.1b) or a protocol with 
interesting data inside, protocol specific features are added to the correct item in the flows 
dictionary. It is important to know, that Suricata can produce more than one record with 
the same flow ID. If it detects no particular protocol, a record of type flow is generated. If 
a protocol is found, it creates the general flow record and a protocol specific record with 
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Feature Feature type 

Type Categorical 
Day (in a week) Quantitative 
Hour Quantitative 
Source port Categorical 
Destination port Categorical 
Application protocol Categorical 
Number of packets sent to the server (Source IP) Quantitative 
Number of packets sent to the client (Destination IP) Quantitative 
Number of bytes sent to the server (Source IP) Quantitative 
Number of bytes sent to the client (Destination IP) Quantitative 
Source IP address Categorical 
Flow duration Quantitative 

Table 5.1: Flow specific features 

the same flow ID. This was utilised to map protocol specific values to general values already 
existing in the flows dictionary and vice versa. The list of chosen protocol specific values 
with explanation is shown in Table 5.2. 

Protocol/special type Feature Feature type 

H T T P Hostname Categorical 
User agent Categorical 
Content type Categorical 
Method Categorical 
Status Categorical 
Length Quantitative 

DNS Flags Categorical 
Type Categorical 

M Q T T Host Categorical 
Message type Categorical 

Anomaly Protocol Categorical 
Alert Category Categorical 

Table 5.2: Protocol specific and special features 

After all records in a log file were processed and assigned to the corresponding key 
in the flows dictionary, this dictionary is sent to a procedure which converts it to C S V 
records, and saves it as C S V files in a predetermined location. C S V files are created 
separately for each source IP address per date. Thus, one IP address have more C S V files 
when it communicates within more days. The naming convention for the resulting C S V is 
YYYY_MM_DD_IP_anomaly.csv. If a C S V file for a given IP address and day already 
exists, new records are only converted to C S V format and appended to an existing file. 

The formalised algorithm for log data extraction is demonstrated in Algorithm 1. Note 
that in the resulting program, the algorithm is further divided into multiple functions and 
includes more conditions for filtering unwanted lines, etc. Statistical records described in 
Section 4.1.2 are an example of unwanted lines. 

43 



In the picture of data processing pipeline in Figure 5.1, feature extraction is at the 
beginning. 

Algorithm 1 Data extraction from logs 

L <— list(log_files) 
S <— list(protocol_specific_features) 
T <— list(flow_specific_features) 
for I G L do 

F^{} 
R •(— lines(l) 
for r G R do 

if r.flow_id not in i 7 then 
F.flow_id <— r.flow_id 

else if r.event_type = flow then 
F.flow_id.attr <— r.T 

elser.event_type G 5 > 
F.flow_id.attr <— r.5 

end if 
end for 
C <- fo_csv(F) 
save_fo_<ii,sA;(C) 

end for 

> Load all log files 
> Init list of proto. specific features 

> Init list of flow specific features 
> For each log file I in all logs L 

> Init flow dictionary F 
> Load all lines in log file I 

> For all log lines r 
> Init new item in F diet. Flow ID = key 

> Add flow specific features to the records 

Add protocol specific features to the records 

> Transfrom flow dictionary F to C S V 
> Save C S V to disk 

Working Example 

Examples of original records in a Suricata generated log and the corresponding line in the 
output in the C S V file are listed below. 

In the following flow records, only flow specific features were populated, as the event 
type is flow. Other features are populated with the default value of - 1 . Suricata was not 
able to determine the specific application protocol of this flow. This record was saved into 
the E V E log due to a timeout in communication. Flow timeouts are described in the official 
documentation1 

{ 
"timestamp": " 2 0 2 2 - 1 0 - 2 6 T 1 7 : 0 3 : 1 6 . 5 7 7 6 9 7 + 0 2 0 0 " , 
"flow_id": 1885783963288316, 
" i n _ i f a c e " : "eth", 
"event_type": "flow", 
" s r c _ i p " : "X.X.X.X", 
"src_port": 58921 , 
"dest_ip": "Y.Y.Y.Y", 
"dest_port": 5355 , 
"proto": "UDP", 
"app_proto": " f a i l e d " , 
"flow": { 

"pkts_toserver": 2 , 
"pkts_toclient": 0 , 

1 F l o w Timeouts in official Suriacata documentation: https://docs.suricata.io/en/latest/configuration/-
suricata-yaml.html#flow-time-outs, accessed [2024-04-02] 
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"bytes_toserver": 150, 
"bytes_toclient": 0, 
"st a r t " : "2022-10-26T16:59:13.344828+0200", 
"end": "2022-10-26T16:59:13.766202+0200", 
"age": 0, 
"state": "new", 
"reason": "timeout", 
"alerted": f a l s e 

} 
} 

a resulting C S V line and its header is: 

type,day,hour,src_port,dest_port,app_proto,pkts_toserver,pkts_toclient, 
bytes_toserver,bytes_toclient,duration,http_hostname,http_user_agent, 
http_content_type,http_method,http_status,http_length,dns_flags,dns_type, 
mqtt_host,mqtt_type,anomaly_proto,alert_category,ip 

flow,1,2,58921,5355,failed,2,0,150,0,0.421374,-1,-1,-1,-1,-1,-1,-1,-1, 
-1,-1,-1,-1,X.X.X.X 

The following record of T C P flow has the application protocol was determined. The 
protocol of the flow is H T T P , which corresponds to the destination port 80. Protocol 
specific features are under the ht tp key. Flow specific features are not populated when the 
extraction algorithm encounters an H T T P record. They are populated when a flow record 
with the same flow ID is processed. 

{ 
"timestamp": "2022-10-26T17:10:22.821458+0200", 
"flow_id": 229369739830515, 
" i n _ i f a c e " : "eth", 
"event_type": "http", 
" s r c _ i p " : "X.X.X.X", 
"src_port": 49528, 
"dest_ip": "Y.Y.Y.Y", 
"dest_port": 80, 
"proto": "TCP", 
"t x _ i d " : 8, 
"http": { 

"hostname": "registry.npmjs.org", 
" u r l " : "/0web-types°/.2Fvue-router" , 
"http_user_agent": "JetBrains IDE", 
"http_content_type": "text/plain", 
"http_method": "GET", 
"protocol": "HTTP/1.1", 
"status": 301, 
"redirect": "https://registry.npmjs.org/@web-types°/02Fvue-router", 
"length": 0 

} 
} 

a resulting C S V line (header is same as in the previous example): 
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http,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,registry.npmjs.org,JetBrains IDE, 
text/plain,GET,301,0,-l,-l,-l,-l,-l,-l,X.X.X.X 

5.1.2 Categorical Data Transformation and Normalization for Anomaly 
Detection 

Data prepared by the data processing module are loaded into a Pandas 2 DataFrame struc­
ture for each IP address, since scoring is done per IP address basis. Each data point is 
assigned its date value obtained from its C S V file name. 

When data is loaded from the C S V files into the scoring module, few operations have to 
be done before any score calculation or application of machine learning algorithms can be 
applied to the data. Categorical data has to be transformed to numerical (quantitative). 
Python Scikit Learn (henceforth Scikit) library, especially the OrdinalEncoder class3, is 
used to convert all categorical dimensions to numeric values (list of integers). This method 
maps all occurrences of one category value in a dimension to a unique integer value ranging 
from 0 to n, where n is the number of unique values in the original dimension. Example 
data transformation by ordinal encoding is shown in Table 5.3a and Table 5.3b. Ordinal 
encoding algorithm is written in Algorithm 2. 

(a) Data before ordinal encoding (b) Data after ordinal encoding 

Source Port Dest. Port L4 Prot. Source Port Dest. Port L4 Prot. 

54484 443 tls 45974 234 14 
53510 53 dns 44903 317 3 
53510 53 dns 44903 317 3 
54485 443 tls 45975 234 14 
4322 53 dns 33584 317 3 

Table 5.3: Ordinal encoding. Data are a subset of a real dataset - explaining the high values 
of transformed data. 

If there is any column in the input dataset with a singular value, it is dropped before 
further calculation. Such data would not have by its nature any impact upon the anomaly 
detection and it would interfere with the next steps (calculation of Mahalanobis distance). 

After the categorical to numeric conversion, data normalization has to be carried out. 
Normalization is done with Scikit included method s k l e a r n . p r e p r o c e s s i n g . n o r m a l i z e , 
with the results being in the L2 norm. L2 normalization is performed along the individual 
features. A n L2 norm (Euclidean norm) is calculated by Formula (5.1) for each dimension 
in dataset D. (dimension is a synonym to feature), n is the number of records in the 
dimension. A normalized value Xdn for a data point x £ D for dimension d is given as 
a fraction of its value and L2 norm of the corresponding dimension (5.2). Norm of vector 
x is often written as ||x||. Equations and notation taken from [13]. 

A l l these operations are shown in the first row (green) in the pipeline diagram 5.1. 

2 Pandas library: https://pandas.pydata.org, accessed [2024-01-20] 
3sklearn.preprocessing. OrdinalEncoder documentation: 

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing. OrdinalEncoder. html, accessed 
[2024-01-20] 
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Algorithm 2 Ordinal Encoding 

> List of values to be converted 
> Init empty list 

+ +) do 
if Xi ^ / then 

I.append(xi) > Pupulate list / with unique values from x 
end if 

end for 

+ +) do 
> Init empty list for output 

Ci <— I.index(xi)) 
end for 
return C 

> Position of key Xi in list / is the converted value. 

n 

\\d\\ 2 (5.1) 
i=l 

\\d\h 
(5.2) 

5.1.3 Scoring Method for Anomaly Detection 

The Principal Component Analysis (PCA) unsupervised learning method was chosen to 
determine anomalous points in the dataset. Two anomaly scoring approaches utilising 
P C A were implemented and tested. Each approach comes with both its strengths and 
weaknesses. These approaches are the PCA bulk method and PCA time based method. 
After evaluating both methods, the PCA time based method was chosen as for the final 
detection system. 

Theoretical principles of P C A method are discussed in section 2.2.2. The entirety of 
operations in steps performed on transformed data leading to final score are shown in the 
second row (blue) of the pipeline Figure 5.1. 

P C A Time Based Method 

The main idea of this method is to split the sorted dataset into two parts by date. One 
part being for the training, or observing data; and the other part for testing, and validating 
data. 

Split ratio of the dataset was set to 2/3. For one month (30 days) of data, there would be 
20 days from which the model learns the normal state of traffic. Outliers are first stripped 
out of the training data. P C A model provided by sklearn.decomposition.PCA is fitted 
with the training data. Fitted model is then tested against testing data to detect anomalies. 
Testing data is composed of the other third of data (last 10 days in a month). 

Outlier Trimming Using Mahalanobis Distance 

The P C A method results are highly vulnerable to any presence of outliers in the training 
data, because such outliers are main contributing factors in variances, covariances, and 
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correlations [48]. To include these data points in the calculation have an impact on the 
solution — especially for components explaining the most variance in the data. For these 
reasons, outliers were trimmed out from the training data before P C A model fitting. 

Data points were deemed outliers based on the Mahalanobis distance, see Section 2.2.2 
for detailed explanation of the metric. Mahalanobis distance was chosen for its suitability 
for multivariate data. Euclidean distance could also be used, it is, however, not suitable for 
data with correlated features [40]. Mahalanobis distance was also successfully used together 
with P C A by Shyu et al. [48]. The metric value for the specific use case of outlier trimming 
is calculated for each data point Xi in the dataset D by the formula (5.3), 

d%(xi,x) = (xi - x)TS]D

1(xi-x) (5.3) 

where Xi is ct dcttct point selected, from 8,11 dcttct points X., X — ( ^ 1 5 *^2t • • • •> 
), and 

xi = (xn, Xi2, • • •, XiP) where p is the number of dimensions, x is the mean vector of 
dimensions of dataset D, x = (a_,a_ ; • • • ,xp). The matrix S ,̂1 is the inverse covariation 
matrix of D. The equation is taken from [19]. 

The distance is calculated for all points, no matter if a given point belongs into the 
training or testing dataset. The entire dataset is then sorted in descending order by calcu­
lated Mahalanobis distance. The Y percentile of top values is marked as outliers. Y = 0.5 
was chosen as it proved to yield best results in the testing. The model was experiencing the 
least amount of false positives and false negatives when using this value. Other values were 
tested, but they did not provide better results than Y = 0.5. This value was also used by 
Shyu et al. [48] for outlier trimming before using P C A to detect anomalies in their paper. 

Outliers with high Mahalanobis distance were trimmed out from the training dataset 
and left in the testing dataset. These point were labelled as outliers in the testing dataset, 
which enables evaluation of results. For one moth of data, the first 20 days would be 
trimmed off the outliers. They would stay present in the latter 10 days. 
P C A Model Fitting and Anomaly Scoring 

a P C A model provided by Scikit sklearn.decomposition.PCA class was fitted by the 
training data. The best value for the number of principal components kept in the resulting 
dataset was decided to be two. The number of principal components to keep was determined 
by testing. Hyperparameter testing report is located in later sections. 

Steps demonstrated in Algorithm 3 needs to be performed to calculate anomaly score. 
P C A is linear dimensionality reduction using Singular Value Decomposition of the data to 
project it to a lower dimensional space. [47]. As P C A is a linear transformation, an inverse 
operation to a dimensionality reduction exists. This inverse transformation creates a matrix 
with the original number of dimensions. 

The P C A model is fitted using the training dataset. This step computes the predefined 
amount of principal components. The selected number of components is two, as a model 
with two components yielded the best results. Model fitting is the only step required in the 
training phase. 

Several steps need to be performed to obtain anomaly score. The testing dataset can 
be represented as a matrix X composed of rows of the dataset (matrix rows) and dimen­
sions/features of the dataset (matrix columns). The testing dataset in the form of matrix 
X is projected on the principal components learned during the training phase. New matrix 
Y is the result of this transformation. Y keeps the same number of rows as X, but it has 
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lower number of columns than X. The number of columns of Y is equal to a number of 
principal components specified during the training phase. 

The matrix Y then serves as input for inverse transformation. The inverse transform 
can be written as a dot product of Y and matrix of principal components. Application of 
the inverse transformation creates a matrix X', which has the same shape as X. If the 
number of principal components during training was equal to the number of dimensions 
of X, then the inverse transformation would be lossless. Because a smaller number of 
principal components was chosen for training, there was inherent loss of information during 
transformation of X to Y, and Y to X'. 

The loss of information can be represented by the mean square error between the cor­
responding data point values in the original {X) and inverse transformed {X') dataset. 
A mean square error (5.4) is computed for each corresponding pair of data points x = 
(xi, X2, • • •, xn), x £ X and x' = (x^, x'2, • • •, x'n), x' G X'. These values form a loss vector 
I = (h,h, • • • ,ln), where n is the dataset size. In equation (5.4), n is a number of dimensions 
of dataset X', Xij is the value of dimension j of original data point Xi, and x'^ is the value 
of dimension j of inverse transformed data point x\. Equation (5.4) taken from [51] 

n 

k = ^2(xij - x'i:j)2 (5.4) 

Algorithm 3 P C A Anomaly Detection - Time based method 
Require: Preprocessed numeric normalized dataset D, P C A number of components nc, 

Set of outliers O in D 
split «— | of all days in dataset 
train <— {x : x G D, x.date < split, x ^ O} 
test <— {x : x G dataset, x.date > split} 
pea <— PCA(nc). fit(train) > Fits P C A model to training data 
for each x G D do > x = {x\,X2, • • •, xp); p = number of dimensions in D 

y <— pca.transform(x) > Apply dimesion reduction for sample x 
x' <— pca.reverseTransf ormiy) o Approximate original x 
lx = Yli=i(xi ~ xi)2 Sum accross all dimensions 

end for 
ln < l~,Tn{l) m 0 Loss min-max normalization 
" max(l)—min(l) 

t <— max(ln) • \ o Threshold is one half of max value in ln 

bt, bra <— IterThreshold{ln, t, O, D) > Get best threshold, confusion matrix, see Alg 1 return bt, bm 

a threshold value needs to be calculated, for deciding, whether a data point is anomalous. 
If a loss value of the point exceeds the threshold, it is considered an anomaly. Because P C A 
method cannot determine the best threshold value itself unlike other methods for anomaly 
detection [46, 47], an iterative method for optimal threshold setting was developed. First, 
all loss values h £ I are normalized to <0,1> range using Min-Max normalization with the 
following formula: 

j H I vain /- f-s. 
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The iterative threshold searching algorithm is demonstrated in Algorithm 4. The al­
gorithm expects the initial value of the threshold, a vector of losses, testing dataset and 
records labelled as outliers in the testing dataset. The initial threshold value is set to one 
half of the maximal loss value. 

Iteratively, for many threshold values, data points are marked anomalous or normal 
based on comparison of their loss value and the value of the threshold. Next, a confusion 
matrix 1 is computed from the thresholded data and the outlier labelled values. Outlier 
marking was done in the data preprocessing step. If the sum of false negatives and false 
positives is smaller than the recorded best value, the best value is overwritten; and the 
current threshold value is considered the best threshold value. 

If a number of false positives is smaller than the number of false negative, then the 
threshold is too large and is divided by two for the next iteration. If a number of false 
positives is larger than the number of false negative, then the threshold is too small, and 
it is increased by its half in the next iteration. Algorithm iterates over various threshold 
values, unless the difference between the best threshold and the threshold in the current 
iteration is less than 1 0 - 1 0 , or the number of iteration reaches 100. 

The condition for loop completion was tested for more than 500 unique IP addresses. 
None of these testing runs experienced result improvements after iteration 46. 

Algorithm 4 Iterative threshold 
Require: initial threshold U, anomaly labelled data O, normalized loss vector ln, testing 

dataset D 
bt <— U 
bm <— 0 
t <- U 
while \bt — t\ < 1 0 - 1 0 or iterations < 100 do 

cm <— confusionMatrix(a, al) 
if cm[0][l] + cm[l][0] < 6m[0][l] + 6m[l][0] then > false negatives + false positives 

bt <- t 
bm <— cm 

end if 
if cm[0][l] < cm[l][0] then > false positives < false negatives —>• t too large 

t = t+l 
end if 

end while 
return bt, bm 

The unknown ratio between outlier points in the training and testing dataset is one of 
the main advantages of this method. A l l outliers are labelled during the outlier separation. 
A pseudo-labelled dataset is acquired, which can be used to compute detection ratings such 

4sklearn.metrics.confusion matrix documentation: 
https: / /scikit-learn. org/stable/modules/generated/sklearn. metrics .confusion matrix, html, accessed [2024-
01-20] 

ax <— true for lx € ln > t 
ax <- false for lx en< t 

t = -
1 2 else 
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as a confusion matrix. Therefore, the model cannot be tuned in such a way that it is 
overfitted and has no false negatives or false positives. 

P C A Time Method Example 

This method was tested on a dataset created from Suricata logs for data originating from 
one station located in the B U T network gathered during every day in January 2023. The 
dataset contains a total of 1 942 372 preprocessed log events and 24 dimensions. 

After disregarding of dimensions with only one unique value, dimension number dropped 
to 19. Top 0.5 % of data points were selected by the highest Mahalanobis distance and 
marked as outliers. Total amount of 9 712 values were marked. 

Whether a data point fell into the training or testing dataset depended on its date. If 
the date was 2023-01-21 or lower, and the data point was not marked as anomalous, the 
data point was added into the training dataset. The data point was included in the training 
dataset otherwise. The size of the training dataset was 1 525 604, and the testing dataset 
contained 408 221 samples. 

Two principal components were computed from the training dataset. P C A transforma­
tions described above were performed on the testing dataset. Loss values were calculated 
for every testing data point. The maximal observed loss value was 0,663 while the lowest 
one was 3.99 • 10" 1 0 . 

After the loss values were normalized, the iterative algorithm selected the best threshold. 
The iterative algorithm selected the best confusion matrix (Figure 5.2) and corresponding 
threshold of 7.62939453125 • 1 0 - 6 . The F l Score of the best model for this dataset is 0,82, 
while precision 0,95 and recall is 0,72. Out of 1 065 outliers in the training dataset, the 
model detected 842 of them as anomalous. The entire calculation without dataset loading 
took approximately 45 seconds on a system equipped with A M D Ryzen 5 1600 C P U and 
16 G B of DDR4 2666 MHz R A M . 
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Figure 5.2: Confusion matrix for the example dataset. 
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P C A Hyperparameter tuning 

To yield the best possible results, hyperparameters had to be selected. Hyperparameters 
are parameters whose values control the learning process and determine the values of model 
parameters that a learning algorithm ends up learning. Hyperparameters are selected by 
a programmer. [38]. Hyperparameters have to be chosen before model application, they 
cannot be manipulated afterwards. It is crucial to pick the best fitting values at the start. 

The exhaustive combinations of hyperparameters and their effects on resulting model 
accuracy are demonstrated in Table 5.4. mle option in the No. Components column denotes 
the use of automatic choice of dimensionality for P C A by Thomas P. Minka [37]. Singular 
Value Decomposition (SVD) Solver hyperparameter selects the method used for decompo­
sition of the dataset (matrix) into the principal components. Whiten specifies, whether the 
computed principal components are whitened or not. Whitening transformation transforms 
vectors of values with a known covariance matrix into new vectors, whose covariances are 
eliminated and variance normalized. [45]. Number of selected P C A components is the most 
dominant hyperparameter. Other parameters, shown in the table, have no influence on the 
computed scores. These parameters were thus left at their default settings. 

No. Components Whiten SVD Solver F l F N + F P 

2 True, False arpack, randomized, full, auto 0.82 361 
1 True, False arpack, randomized, full, auto 0.82 371 
3 True, False arpack, randomized, full, auto 0.81 382 
4 True, False arpack, randomized, full, auto 0.81 382 
5 True, False arpack, randomized, full, auto 0.81 382 
8 True, False arpack, randomized, full, auto 0.79 412 
7 True, False arpack, randomized, full, auto 0.77 442 
9 True, False arpack, randomized, full, auto 0.75 492 
6 True, False arpack, randomized, full, auto 0.72 516 
10 True arpack 0.62 639 
mle True, False auto, full 0.62 640 
10 True randomized, full, auto 0.62 640 
10 False arpack, randomized, full, auto 0.62 640 

Table 5.4: F l Scores and false negatives + positives with respect to P C A hyperparameters. 
Hyperparameters form the table header. Multiple options in one cell signifies, that any of 
the listed values can be used to obtain the same results. 

P C A Bulk Method 

P C A bulk method differs by the means of dividing the dataset into training and testing 
parts. P C A bulk method uses the entire dataset for both the training and testing. Two 
copies of the dataset thus have to be created. 

Outliers are computed using Mahalanobis distance in the same way as was done in the 
Time method. The outliers are then removed from the training dataset, and they are kept 
in the testing dataset with the outlier label. The process of model training remains the 
same as for the Time method. Anomaly scoring is then done for the entire dataset, which 
contains all data including outliers. The scoring process is equal to the Time based method. 

52 



Using this method yields worse results, as even recent data points are included in the 
training dataset. Model is not able to detect anomalies caused by the difference in the 
recent and old traffic. 

5.1.4 Log Size Reduction Using Anomaly Score 

One of the goals of this thesis is to rate log events using the anomaly scores. This goal is 
achieved by linking the results of anomaly detection back to the dataset source—the logs. 
Each record rated by the anomaly scorer can be traced back to its original log file, thanks 
to having a full path to the original log and flow ID available for it. Since more lines of the 
log file can report different information about the same flow (see Chapter 4), usage of the 
flow ID as a key is preferable than using the line number of a record as a key. Inclusion of 
statistical logs in the Suricata E V E logs further complicates the line number approach, as 
these lines would be need to filtered out. 

First, a dictionary (associative array) of flow IDs and original log paths as keys was 
created for each rated IP address. A calculated score, a threshold and a hard decision, 
whether the record with given ID is anomalous or not, were stored as values in this data 
structure. The original logs are then read into a dictionary and indexed by flow ID. Rated 
flows are matched against records in the original log files. If a match is found, information 
about anomaly is added to that record. 

A l l lines of the log, no matter if they contain anomalies or not, can be saved into 
a file. There is also an option for saving only the anomalous records. Enabling the option 
greatly reduces the size of the output logs compared to their original counterparts. Often, 
the reduced logs contain only a handful of the original amount of records, decreasing the 
amount of records from hundreds of thousands to tenths of records. The largest difference 
in a number of records in original and reduced log file was more than 424 000, when the 
original file contained 424 133 of records, and the final file only 82 of lines. The largest 
log contained 379 records after reduction, while its original consisted of 15 809 records. 
Complete report of the testing is in Section 6.5. 

5.2 Scoring Method for Reputation 

Section describes all the necessary steps taken to compute a final reputation score from 
Suricata E V E logs. Suricata, the producer of logs, thus plays a role of an agent, which 
collects, preprocesses and provides data to the reputation system, which is the central 
node. The central node then computes the final score from preprocessed data available 
to it. This section talks about the preprocessing of data, computing daily score, which is 
symbolises a building step in computation of the final score, and the method for achieving 
the final reputation score for a network node from daily scores. 

5.2.1 Data Pre-processing for Reputation Scoring 

Suricata E V E logs provide data usable for calculation of a reputation score. This data can 
be divided into two categories - directly applicable information, and information which has 
to be combined with another external information in order to create a valid metric, this 
metric could be then used in a formula for scoring. Data for direct score computation are 
extracted from log events with the Anomaly or Alert event types. 
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Anomaly protocol, type, and event features are saved for the anomaly event type. 
Anomaly protocol is a string representing an L7 protocol of a given record. Type pro­
vides information about the cause of such anomaly record. Type can be of the following 
values: decode, stream or app layer [39]. Event is the most important of anomaly fields, as it 
represents the decoded name of the anomaly. Names decoded in the exploration dataset are 
described in Section 4.2.5. Again, it is important to mention, that the Anomaly event type 
of E V E logs represents different data than the anomalies scored by the method proposed 
in this thesis. 

Alert-related events contain three useful features - alert signature, alert category, and 
alert severity. Alert signature is a text string containing a brief description of a given alert. 
Signatures used by Suricata are being periodically downloaded from an online database 
and loaded into Suricata processing engine. Examples of such signatures are described in 
Section 4.2.5. 

Different signatures, belonging to the same topic/category have the same Alert category 
value. Alert severity is a number ranging from one to 255, although mainly values from one 
to four are used 5. The lower the number, the greater severity of an alert is. 

Information about DNS and H T T P events are indirect features used for reputation scor­
ing. Indirect features are features, which values are not available in the dataset. They are 
obtained from external sources. A l l DNS queries coming from an IP address are examined 
during the pre-processing phase. Two features are populated by DNS data. These features 
are type of query (A, AAA, TXT, etc.), and the queried host name. HTTP host name, 
URL, and user agent features are collected for H T T P events. 

C S V file composed of the aforementioned features is created for an IP address and date. 
The reputation scoring module then reads these C S V files into a Pandas dataframe. 

5.2.2 Daily Reputation Scoring 

When C S V files are loaded, few settings have to be set before the scoring can be carried 
out. a date, for which a reputation score is to be computed, has to be defined. Interval of 
days needs to be selected. Data in this interval is used to calculate a reputation score for 
the previously chosen date. The last day of the interval must be the day, for which a score 
is computed. The scoring date can be set to the last date detected in the data, static date, 
or the date of calculation. The default value for the number of days from which to calculate 
the score has been set to fourteen. Fourteen was chosen as it captures the effects of ageing, 
and the 14 day interval is short enught, to be shown in figures. Supporting data which 
help to score the indirect events are downloaded from online sources and appropriate data 
structures are populated. 

a daily reputation score is calculated for each source IP address detected in the data. 
The source IP address represents the original sender of the traffic detected by Suricata. It 
is therefore evident that the source IP address should be used as the identifier of an entity 
to be scored. 

Daily score is a value representing the reputation score of a node computed from events 
recorded during one day. Daily score ranges from zero to one. The formula for calculation 
of the daily score is described by equation 5.6: 

5 Pr io r i t y values used in Suricata rules: https://docs.suricata.io/en/suricata-
6.0.0/rules/meta.html#priority, accessed [2024-02-19] 
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Dai ly R e p u t a t i o n S c o r e 
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S u m o f Da i ly P a r a m e t e r s 

Figure 5.3: Relation between Sum of Daily Parameters and Daily Reputation Score. Both 
variables are dimensionless. 

where PAN is the parameter obtained from anomaly records, PAL is the parameter 
computed from alerts records, PDNS represents the DNS parameter and PHTTP is the 
H T T P parameter. WAN is the weight given to anomaly parameter, WAL is the weight of 
alert parameter, WDNS represents weight for DNS parameter and WHTTP is the weight of 
H T T P parameter. Weights are dynamic parameters, which can be changed in settings. For 
the testing, weights were set to a default value of zero. 

The constant value of 1.05 as the base was chosen for the parameters of the resulting 
curve shown in Figure 5.3. If the sum of daily parameters equals 50, the Daily reputation 
score is 0.913. The daily score reaches 0.99, when the sub score is 94. For the available 
dataset, this curve was able to differentiate between bad and good IP addresses. It was 
also suitable for keeping the reputation score stable, if a node behaved badly repeatedly, 
across multiple days. Results of the reputation scoring using the value of 1.05 are discussed 
in Section 6.2. 

The value of daily reputation score ranges from zero to one. A score of zero represents 
a normally behaving IP address, without the presence of events which could lead to reputa­
tion score degradation. The more the score approaches a value of one, the more reputation 
it lost. 

Methods for computing parameters are described below: 

Alert Parameter 
For computing the alert parameter PAL, set U of unique signatures of all alerts detected 
during a day A is created. A sum of severities of all detected alerts is computed. Severities 
are inverted, since an event with severity value of one is the most dangerous. Suricata uses 
severity values between zero and four. The inverted severity value S 1 " 1 for alert Ai £ A is 
thus calculated as S^1 = 5 — Si, where Si is the severity of an alert Ai. The formula is 
shown in Equation (5.7). 

1 
(5.6) 

1.05(WANPAN + WALPAL + WDNSPDNS + WHTTPPHTTP) 

(5.7) 
i=l 
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Anomaly Parameter 

Anomaly parameter is computed from the list of anomalies detected in one day L. A set S 
is created from list L, so every anomaly in the set is unique. Anomaly parameter is then 
obtained by multiplication of the magnitude of set S with length of list L. The formula is 
shown in Equation (5.8). 

PAN = \L\ • \S\ (5.8) 

DNS Parameter 

DNS features extracted from the E V E logs represent together with H T T P dimension data 
which cannot be used on its own to compute reputation score. To be useful, they need 
to be matched with other information, not directly included in the logs. This additional 
information can be in form of various block listst. During the scorer initialization phase, 
lists of malign domains are downloaded from online sources. Chosen lists are: 

• Current List of Administratively Disabled Domains6 by cz.nic. This list is maintained 
by the .cz domain registry. It includes .cz domains, which are currently administra­
tively disabled due to various problems, including failed inspection of correctness of 
records of a registered domain, based on the verdict of law enforcement authorities, 
court decision, breaking registration rules of cz.nic, or decision of other public author­
ities (like customs administration). The list is refreshed hourly. As of February 2024, 
it contained 1464 domains. This list was chosen to be used for reputation scoring, 
as the original Suricata was deployed on premise of Brno University of Technology, 
located in Czechia. 

• Bad referrers' list created for the Nginx Bad Bot and User-Agent Blocker, Spam 
Referrer Blocker, Anti DDoS, Bad IP Blocker and WordPress Theme Detector Blocker 
project. This list contains, for example: 

— Bad Referrers 

— Spam Bots and Bad Bots 

— Vulnerability scanners 

— E-mail harvesters 

— Content scrapers 

— Aggressive bots that scrape content 

— Government surveillance bots 

— Botnet Attack Networks (Mirai) 

The list is cooperatively maintained by several contributors via a GitHub reposi­
tory [29], where a detailed description of the list, and its usage is located. Public can 
open a pull request to contribute changes to the list. The list contains more than 
7100 domains (February 2024). 

6 Current List of Administratively Disabled Domains: https://www.nic.cz/page/4310/aktualne-
administrativne-vyrazene-domeny/, accessed [2024-02-04] 

7 B a d referrers list: https://github.com/mitchellkrogza/nginx-ultimate-bad-bot-blocker/blob/master/-
_generator_lists/bad-referrers.list, accessed [2024-02-04] 
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Other lists might be used. For example, a bad domain list of Polish CERT Polska 
team [16], which belongs under N A S K (Research and Academic Computer Network). This 
list contains more than 1 760 000 blocked domains as of February 2024. The list is available 
in multiple formats including CSV, JSON, or plain text. It is updated every five minutes. 
Submissions to the list are reported either by Polish telecommunication companies or by 
the public via a web form. Each submission is verified by at least two people from the 
C E R T Polska. 

This list was not used in reputation scoring due to its sheer size, since processing such 
a long list greatly impacted the run time of reputation scoring. 

Hostnames in DNS queries included in the dataset are matched against the specified 
lists. If any match is found, the number of malicious events iV is increased by one, and 
the host name is added into a set of unique matched host names S. DNS parameter is 
computed as a product of number of malign events with a length of the host name set, as 
seen in Equation (5.9). 

PDNS = \S\ • N (5.9) 

H T T P Parameter 

H T T P parameter is computed similarly to the DNS parameter. Both lists referred to 
in the DNS section are also used for H T T P scoring. H T T P parameter is also affected 
by the user agent feature extracted from logs. HTTP user agent is a string symbolizing 
a program/script/utility which accessed the desired resource. There are lists of known 
malicious user agents, like the list [30] belonging to the same project as the one Bad referrers 
list from DNS scoring. The list contains more than 650 user agents (February 2024). 

This list contains known web crawlers, bots, indexer software, web server scanners like 
Nikto or agents known to be used for other non-desired activities, like the Mozlila (sic) 
agent [18]. 

Set of malicious hostnames Sh is populated with hostnames detected in the logs, which 
were also found in any of the list of bad hostnames. A number of bad hostnames is 
increased by one each time a nad hostname is found. 

a set of bad referrers Sr is populated in the same way as list Sh is. Number of detected 
bad referrers Nr is also increased each time a bad referrer is found in a dataset. 

Complete formula for H T T P parameter is shown in Equation (5.10) 

PHTTP = (Nr + Nh)-(\Sr\ + \Sh\) (5.10) 

5.2.3 Overall Reputation Scoring 

When a daily score is computed for all days in the selected interval of days for traffic of 
a given IP address, one final reputation score has to be calculated for that IP address. The 
score is represented by the weighted average of daily scores. The final score Sf can be thus 
written as equation 5.11: 

Sf = E ^ n

m (5.11) 

where Sf is the resulting score. Day coefficient i ranges from one to n, where n is the 
size of the interval of days. The oldest day is i = 1, while the latest day has coefficient 
i = n. Si then represents the score for a given day. The way of indexing days in the sum 
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operators ensures correct weighting of daily scores from the oldest, the least important, 
to the latest, the most important score. Assigning larger coefficient for more recent days 
ensures the correct ageing of the reputation score. Reputation score ageing is linear in this 
case. 

On Interpretation of Reputation Score 

There are two schools of though as to how a reputation score should be interpreted. Rep­
utation score ranges from zero to one in both cases. However, the issue lies in determining 
which end of the value spectrum represents a positive rating and which represents a negative 
one. Currently, as the score computation is done, the value of zero represents a normally 
behaving network node, and a score near one means that the node has negative reputation. 
Since the method of scoring in this thesis is inspired by C E S N E T N E R D system, where 
the same approach is used, it was decided to keep this interpretation of the score. Sys­
tems representing the other way of rating (e.i., higher score equals better reputation) are 
represented by the PageRank algorithm, or the SenderScore8 (reputation of email senders). 
Cisco Talos uses words to describe the reputation (poor, neutral, good). 

On Normalization of Reputation Score 

When dealing with real world data, there is large chance of obtaining an unbalanced dataset. 
This raises a question whether to normalize data before scoring. Without any normalization, 
and using the number of alerts for scoring, the final reputation score of IP address X with 
10 alerts and 10 000 total events would be the same as a score of IP address Y with 10 alert 
from 11 total events. If normalization takes place, then the address Y has much worse score 
than address X , although it participated in the same amount of malicious behaviour. 

There were few considerations that had to be taken in account when designing a method 
for reputation scoring. First, only alerts, anomalies, or events that might lead to worsening 
of the resulting scores are extracted from the logs into the reputation dataset. Other traffic 
is not included in the dataset. Secondly, when an IP address produces just one event, 
reputation of such node should be decreased, no matter how large the amount of its positive 
historical data is. This scenario could emerge if, for example, a previously trustworthy node 
gets infected by a virus and starts to act maliciously. Moreover, a reliance on historical data 
is incorporated into the scoring function via the weighted average of scores from the past X 
days. Normalizing the dataset would, in this case, lead to stricter division between already 
rated IP addresses. It would be harder for an IP address to change its reputation score in 
time, as the great number of historical data would hide the recent changes in behaviour. 
This method of scoring also disallows the use of techniques to artificially keep the score low 
while performing malicious actions, like sending a large amount of artificially generated, 
but non-malicious traffic together with a much smaller amount of malicious flows. 

For the reasons stated above, it was decided not to normalize the dataset. 

5.3 Flow of Data After Scoring 

For the entire process of scoring, matching scores to original logs, and log size reduction, the 
scoring system needs to load of preprocessed data, to score all entities (flows for anomaly 

8SenderScore portal for email reputation: littps://senderscore.org/assess/get-your-score/, accessed [2024-
02-20] 
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detection, IP addresses for reputation), to save the scores to temporary files and then match 
computed scores to records in original logs. This process is shown in Figure 5.4. 

Load All Preprocessed Files 

Score Anomalies 

Score Reputation 

{ 
f lowjd: { 
- anomaly_score 
- is_anomaly 
- threshold 
> 

> 

{ 
f lowjd: { 
- anomaly_score 
- is_anomaly 
- threshold 
} 

Score } 

Dictionary Dictionary 
{ 
IP:{ 
- reputation score 
- calc_date 
- last_scored_day 
- daily scores: {} 

> 

{ 
IP:{ 
- reputation score 
- calc_date 
- last_scored_day 
- daily scores: {} 

> 

EVE-Date-Time 

Reputation 

> f \ 1 

Add Score To Logs 

Figure 5.4: Flow of data from loading preprocessed data to saving reduced logs 

The system is designed to perform every needed action only once, without cycles. First, 
preprocessed files are read from disk. The directory from which to read is specified in the 
settings file. The reading can be customised by specifying a date, from which to read data. 
Loading of datasets for both anomaly scoring and reputation scoring is done. Separate 
datasets are created for each IP address. Datasets are represented by Pandas Dataframe. 

Anomaly scoring is performed after data is loaded. After an anomaly score is computed 
for flows of one IP address, these scores are saved into a dictionary of scores. The anomaly 
scores are saved with under the following compound key: original log file name, flow ID. 
A n example of this dictionary key is eve-2023-01-22-01_53.json, 188194883355008. 

Reputation score is computed after the anomaly score. Results of the reputation scoring 
are also saved into the same dictionary as the anomalies. Reputation score is saved under 
the reputation_score.json, IP address key. 

Temporary files are created from the dictionary. One file is created per the primary 
key of the dictionary, e.g., eve-2023-01-22-01_53.json, eve-2023-01-22-02_53.json, 
reputation_score.json files are created. 

When matching calculated scores with original logs for reduction of records, first repu­
tation scores are read from the reputation_score.json. The program then iterates over the 
pairs of original logs and files with scores. Anomaly scores are added to corresponding flow 
IDs in the original log. Reputation score is added to all flows with matching source IP 
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address. Finally, flow records with both scores above the threshold are saved into reduced 
log files. 

Because of the reputation_score.json file, it is possible to read reputation scores without 
having to read all reduced logs. Location of all files can be specified in the settings file. 

5.4 Summary 

This chapter was split into two thematic sections, each talking about the specific imple­
mentation of an anomaly detection system, or a reputation system. In the anomaly part, 
it went through the process of feature extraction, with explanation of why given features 
were selected. Transformation of data from categorical to numerical values was described 
before explaining the normalization to L2 form. Since the available dataset was unlabelled, 
it was necessary to create pseudo-labels. This was achieved with outlier trimming. Outliers 
were detected using Mahalanobis distance. Two methods for anomaly detection based on 
the unsupervised P C A method were proposed. The method achieving better results ( P C A 
time based method) was described with a practical evaluation on a testing dataset. Hyper-
parameter tuning for the P C A model was presented. In the end, the anomaly score was 
used to enhance the original E V E JSON logs. 

a scoring method for reputation was proposed and implemented. The section about 
reputation scoring talked about the specifics of feature extraction for reputation, and the 
preprocessing of extracted data. It then describes the daily reputation scoring with mathe­
matical formulas and presents parameters, of which the daily score is composed of. Reasons 
for using the various parameters were explained. The mathematical notion of computing 
the final reputation score from daily scores was shown. The discussion encompassed the 
interpretation of the resulting reputation score, as well as the contentions regarding whether 
a reputation score should be normalized. 
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Chapter 6 

Experiments and Discussion 

The aim of this chapter is to look critically at the resulting scores and reduce logs. Expla­
nations of given behaviour of the scoring methods are provided by a commentary, figures, 
and tables. The chapter is divided into thematic groups, each dealing with one particular 
question or topic. The following topics are described: validation of reputation score against 
other working reputation systems, how the reputation score changes in time, the nature 
of anomalies detected by the developed system, whether there exists a correlation between 
anomalies and reputation, performance testing, and finally, how both scores are used to 
reduce amount of Suricata events in logs. 

6.1 Validating Reputation Score Against Exist ing Solutions 

Validation of reputation scores by comparison to other existing solutions is not easy, as 
the available data from online sources are often changing in time or they are calculated 
from recent historical records. The expectation prior to the writing of this section was 
that the reputation scores derived from the testing data would have been incomparable to 
those calculated by other tools. The reasoning is that the behaviour of Internet nodes has 
naturally changed from January 2023 to March 2024. 

It was thus surprising, when a number of IP addresses scored by method developed for 
this thesis was also flagged with high reputation score by N E R D 1 , in March 2024. Few of the 
scored addresses also have poor email sender reputation by Talos 2. Selected IP addresses 
and their computed reputation scores are shown in Table 6.1. IP addresses from B U T IP 
address space are anonymized. Records above the dividing line are addresses belonging to 
a group of worst performing addresses. Their score in the table is the highest recorded score 
of respective address. Records below the line are addresses, which were rated by the system 
developed in this thesis, and which were rated as bad by N E R D . These addresses reach high 
scores in N E R D , because of their long lasting problematic behaviour. They are present in 
many black lists as reported by N E R D . On the other hand, the presence of communication 
in the testing dataset was minimal, which explains their low reputation. The long list of 
Other column for IP address 190.171.189.85 stands for: The address is present in nine black 
lists, it participates in network scanning, it has ports 22, 25, 53, 80, 443 opened. There were 
also unauthorised automated login attempts incoming from that address. M y reputation 
scoring did not assign worse score to 190.171.189.85, as there was not enough bad traffic 

X N E R D IP Search: https://nerd.cesnet.cz/nerd/ips/, accessed [2024-03-23] 
2 Talos Reputation Center: https://www.talosintelligence.com/reputation center, accessed [2024-02-24] 
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Source IP 
My experiments N E R D system - 12. 3. 2024 Talos system - 12. 3. 2024 

Source IP 
Computed 

Score* 
Date Score Added Last 

Activity 
Other Web 

Rep. 
Block 
List 

Email 
Rep. 

V . V . B B . Q Q 0.908057 14.12.2022 - - - - - - -
76.223.92.165 0.618265 14.12.2022 - 2024-03-09 - 1 list, 443 - - -
13.248.212.111 0.594867 16.12.2022 - 2024-02-16 - 1 list, 443 - - -
V . V . B B . L L 0.302143 18.12.2022 - - - - - - -
V . V . B B . V V 0.218269 12.12.2022 - - - - - - -
139.59.152.202 0.210607 17.12.2022 0.000 2024-01-01 2024-02-26 3 lists, Scan, 

22, 80 
- Expired -

141.94.110.90 0.201445 08.12.2022 0.000 2024-01-01 2024-02-26 4 lists, Scan, 
22, 8069 

- Expired -

165.232.69.156 0.141505 21.12.2022 0.000 2024-01-01 2024-02-26 4 lists, Scan, 
22, 8069 

- Expired -

178.60.204.50 0.117610 13.12.2022 - - - - - Expired Poor 
186.122.177.117 0.105949 06.12.2022 - - - - - Expired -
149.202.74.37 0.096894 01.01.2023 - 2024-03-11 - 3 lists - Expired -
57.128.11.39 0.072859 22.12.2022 0.582 2023-11-19 2024-03-12 8 lists, Scan, Untrusted Yes -

22, 80, 111, 8081 
43.138.17.151 0.063309 05.12.2022 - - - - - - Poor 
101.43.110.129 0.063309 18.12.2022 - 2024-03-11 - 1 blacklist - Expired -
192.145.127.42 0.006803 19.12.2022 0.764 2023-08-15 2024-03-12 5 lists, Scan Untrusted Yes -
139.28.218.34 0.006803 27.12.2022 0.500 2023-11-02 2024-03-12 7 lists, Scan - Expired Poor 
91.207.175.154 0.006803 03.12.2022 0.652 2021-11-23 2024-03-12 7 lists, Scan - Expired -
185.245.86.226 0.006803 22.12.2022 0.750 2021-09-09 2024-03-12 10 lists, Scan 123 - Expired Poor 
190.171.189.85 0.006803 14.12.2022 0.0445 2023-10-27 2024-03-12 9 lists, Scan, 

attempts, 22, 
Login 
25, 53, 

- Expired -

80, 443, self-sign., iot, 
eol, database starttls 

Table 6.1: Comparative study of reputation over different reputation systems. *Note: the best score = 0 (trustworthy node), the worst 
score = 1 (totally untrusted node) 



detected in Suricata. N E R D has larger database of traffic where this address is probably 
more prominent. The self-signed, iot, eol-product, database, starttls options originate from 
Shodan's InternetDB 3. 

The table shows information gathered from N E R D and Talos for each address. Both 
N E R D and Talos queries were made on 12th March 2024. If the address has a record in 
the NERD Added column, but is missing in NERD Last Activity, then it was never rated 
by N E R D with a reputation score above zero, however the address is present in one of the 
block lists used by N E R D . If the score is zero, the node took part in an offensive behaviour, 
however the model did not make a decision to increase the score. Information provided in 
the NERD Other column includes the number of blacklists in which the address is present, 
a list of ports opened on the machine, and other parameters, like Scan, which means that 
the IP address certainly participated in a kind of scanning attack. The three Talos columns 
describe the labels placed upon the IP address by Talos system. Expired in the Block List 
column signifies, that the address was once on a Talos black list, but was later removed 
from it. If that column does not have a value, the address never was on any Talos black 
list. 

The reputation scoring of the thesis marked 68 addresses belonging to 87.236.176.0/24 
network. Ten of these records ended with a non-zero reputation score. The score was 
however small, i.e., smaller than 1 0 - 3 . A l l of these 68 records are present in N E R D . N E R D 
evaluated them with scores between 0.207 and 0.436. A l l were added in N E R D in September 
2022 and scanning activities of all were recorded in March 2024. A l l these addresses are 
included in at least seven block lists. 

This experiment proved the correctness of the chosen method for reputation scoring, 
as the results are comparable to other existing solutions. Both the developed method and 
existing solutions are able to mark the same IP addresses as malicious. 

6.2 On Changes of the Reputation Score in Time 

Looking at the reputation score in the span of multiple weeks, or even months, gives a better 
picture of what the score represents. Reputation score was computed for all IP addresses 
for all days in December 2022, and January 2023. Defaults settings of the scoring functions 
were used for evaluation in this section. The default settings are: 

• The number of days (daily scores) used for calculation of the overall score: 14 

• The weight of all sub scores: 1 

Reputation scores of top 300 IP addresses by number of flows, of which only 130 were 
outside B U T , were evaluated. From these, only two addresses achieved score other than 
zero. This means, that 298 IP addresses had recorded events, which could potentially led 
to a reputation score increase. Resulting reputation score for such address was thus zero. 
Two addresses with most recorded flows and non-zero reputation score were V . V . B B . Q Q 
and V . V . B B . V V . These also happen to figure in the list of ten addresses with the highest 
sum of reputation score across the examined time period, and are thus shown in Figure 6.1. 
V . V . B B . Q Q and V . V . B B . V V addresses are in the V .V.BB.0 /24 subnet which belongs to 
the top 50 subnets based on number of flows. V . V . B B . Q Q and V . V . B B . V V are thus also 
represented in Figure 4.5 in Section 4.2.6. 

3190.171.189.85 record in Shodan's InternetDB: https://www.shodan.io/host/190.171.189.85, accessed 
[2024-03-12] 
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Figure 6.1: Time series of reputation score for the worst performing IP addresses. 

V . V . B B . Q Q has the worst reputation score of all tested IP addresses, with more than 
350 000 events reported by Suricata in December 2022 and January 2023 (all records, no 
matter if malicious, anomalous, or normal). During the rising phase in Figure 6.1, from the 
start of December to 12th December, daily scores of V . V . B B . Q Q were always above 0.7. 
Because of the formula taking scores of previous days into account, the score rose slower 
than that. The rise of the score and values of daily scores are demonstrated in Table 6.2. 
The table shows the cumulative property of the overall score, especially during the phase 
of score rising. 

The overall reputation score raises slowly than the daily scores might suggest. This 
slow increase is explained by the use of weighted average of daily scores in the computation 
of the final score. Although the daily scores have values near one, the overall score raises 
slowly, approximately by 0.1 per day. 

The fact is, that one day of bad behaviour cannot worsen the reputation score of a given 
IP address to its maximum. The bad behaviour should have to persist across multiple days 
for the score to reach its worst value, 12 days, by values presented in Figure 6.1. This 
figure also demonstrates the gradual fall of the overall score when no malicious events are 
recorded for several days. 

V . V . B B . V V address is another address from the B U T address space. Wi th the total of 
1943 000 E V E records, it belongs to IP addresses with the most records. Even though it 
has more records than V . V . B B . Q Q , it keeps better reputation score. 

Figure 6.2 shows score timeline for selected IP addresses. These addresses were chosen, 
because their reputation score is very small, but it is not zero. Reputation scores of these 
IP addresses demonstrate the change that happens, if only one alert is received for a given 
IP address during multiple days. The slower slope of reputation score after the peak values 
shows ageing of the score. Note the y scale, when making comparisons to Figure 6.1. The 
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Day 2022-12-01 2022-12-02 2022-12-03 2022-12-04 2022-12-05 

Reputation Score 0.000 0.101 0.202 0.322 0.418 
Daily Score 0.000 0.705 0.757 0.949 0.843 

Day 2022-12-06 2022-12-07 2022-12-08 2022-12-09 2022-12-10 

Reputation Score 0.518 0.613 0.697 0.770 0.835 
Daily Score 0.928 0.965 0.958 0.944 0.964 

Day 2022-12-11 2022-12-12 

Reputation Score 0.867 0.899 
Daily Score 0.790 0.858 

Table 6.2: Reputation score and daily scores of V . V . B B . Q Q IP address. 

highest shown y value in Figure 6.2 is 0.009, while the maximal value in Figure 6.1 is above 
0.9. 

A n objection to the scoring method can be brought upon analysing data in Figures 6.1 
and 6.2. One might argue, that the reputation score is high for V . V . B B . Q Q because of its 
large amount of traffic compared to other IP addresses (36 000 flow records in E V E logs). 
The counterargument to this statement is that there were also other IP addresses in the 
dataset with similar or higher volume of traffic but much lower occurrence of misbehaviour. 
They are 298 addresses out of 300, which are discussed at the beginning of this section. 
V . V . B B . V V with 1943 000 events is the example. Wi th more than 50 times the number 
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o rsi ĵ- i£> co O f N - ^ j - t D c o O t - H m m 
f N f N f N f N r s i m O O O 

- i — I — I — I — I — r -
en t-t m in 

O O t-H r-i iH iH 
en t-H m in O) 
r-H rsi rsi rsi rsi rsi 

f N f N r s i r s i r s i r s i r s i r s i r s i r s i r s i r s i r s i f N f N 
r - H O O O O O O O O O O O O O O O O 

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 
D a t e 

Figure 6.2: Time series of reputation score for selected IP addresses. 
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of events than V . V . B B . Q Q , it has a better reputation score. Other arguments for using 
absolute numbers without normalization for scoring can be found in Section 5.2.3. 

6.3 On Anomalies Found in Reduced Logs 

Because of using unlabelled dataset for anomaly detection, a problem of validation arises. 
Since no predefined labels could be used to determine why a given point is marked as 
anomalous or normal by the model, a post-scoring analysis on the logs containing the 
computed score had to be done. Another reason for the necessity of performing this analysis 
is the nature of anomalies that the model tries to detect. Anomalies detected by the 
developed system are not malicious. Detected anomalies of the IP address represent data 
points, which are not in line with the past traffic of the given IP address. The analysis thus 
tries to evaluate the relation between the new and old traffic of the same IP address. 

Because the anomaly score is computed for each IP address separately and the resulting 
score is normalized for every address, it does not make sense to compare scores or anomaly 
rates of multiple addresses together. The same applies to the threshold. Each IP address 
has different threshold for each day, which makes them incomparable. Threshold is different 
for each day, because it is calculated by an algorithm each day, and because the model is 
recomputed each day in order to include recent data. The algorithm tries to minimize the 
sum of false negatives and false positives. The algorithm is further described in Section 5.1.3. 

Only log records of V . V . B B . V V address are taken into account for the analysis, as 
dataset made out of records with this address as source address was used for the model 
performance evaluation in Chapter 5. This IP address also has enough traffic, so its score 
should not be skewed by lack of data samples. Recorded events of V . V . B B . V V address 
for the last seven days of January 2023 are demonstrated in Figure 6.3. Most of the log 
events happened during the day, after 12:00. This behaviour is visible in the figure, when 
the events with such time have the lowest anomaly scores. Be mindful of the logarithmic 
Y axis, when examining the figure. For the large size of a dataset, the figure is composed 
of every tenth records (1:10) sampling. 

The triangular shape created by events each day (in Figure 6.3) is caused by the amount 
of recorded events in various hours of the day. For example, between the 10th and 20th 
January (dates included in the training data), the mean of hour in a day is 11.86 with 
a deviation of 4.418 hours. Histogram of hour values across training data is shown in 
Figure 6.4. The values centred around noon with slight skew to the right in the histogram 
explain why the anomaly score in Figure 6.3 is the lowest each day at noon. 

The following paragraphs explain the annotated anomalies in Figure 6.3: 

A: Most of the events on 25th January with score lower than 1 0 - 4 are T L S flows with 
a long duration and large amount of transferred bytes and packets. The amount 
of packets sent or received ranges from several hundred to ten thousand. Duration 
of these flows are longer than 11000 seconds. When compared to data shown in 
Chapter 4, Figure 4.3, it is clear why these flows reported higher anomaly scores. 
The score, however, did not exceed the threshold by much — by 1 0 - 2 at most. 

Events with anomaly score in the range 1 0 - 4 - 1 0 - 3 consist of T L S or Flow records. 
Two of these anomalies were also caused by SSH connections to T C P port 22110. 125 
records with this destination port were found in the original data. Total amount of 
ssh connection in the training data is 416, while the training data consisted of more 
than 1400 000 records. SSH being such a small portion of the overall training data 
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Anomaly scores for the V.V.BB.VV IP address 

Figure 6.3: Log events of V . V . B B . V V for seven final days of January 2023. Threshold 
values are marked with red horizontal lines. Events with anomaly scores higher than the 
threshold are marked as anomalous by the model. Note the logarithmic scale on Y axis. 
Data in this figure are sampled in 1:10 ratio. 

can explain, why such data points could be marked as anomalous. A l l of these flows 
also had longer duration than the most other flows in the training data. 

B: The cluster with anomaly score value of 1 0 - 2 was in the entirety composed of 18 608 
records with the same flow ID. These were M Q T T records all captured during one 
second — at 04:16:05. 32 907 packets were sent from V . V . B B . V V , and it received 
21 511 packets. 4.6 M B of traffic belonging to this stream was reported by Suricata. 
In 1 412 104 total records in the training data, only 416 records are M Q T T . Most 
values for packets sent and received in the training data were below 1 000. This 
stream also had extremely long duration. Suricata reports, that this stream begun 
on 20th January at 04:54:50, and ended on 25th January at 04:15:36. After the end 
of this stream, one flow record and 18 608 M Q T T records with conversation details 
were saved into the E V E JSON log, all with the same timestamp. This one long flow 
lasted for 42 964 seconds, which definitely surpasses the normal value measured for 
a flow duration. In the training data, the mean duration of a flow was 40,32, while 
its median was under one second. 

C: Three most prominent anomaly clusters appeared on 31st January. A l l of these clus­
ters are formed by M Q T T flows with exceptionally large number of records in the 
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Figure 6.4: Histogram showing the distribution of records based on an hour of a day in the 
training data 

E V E logs and long durations. The most prominent cluster (C) is composed of five 
different flows with the same anomaly score score of 0.043. Each of these flows was 
composed of more than 42 000 M Q T T events, and each lasted for 947188 seconds 
(10.96 days). A l l of them also sent and received similar number of packets and bytes. 
This explains their very similar anomaly scores. The only difference between the flows 
was a source port and the fact, that each flow sent information about a different device 
(two computers, a coffee machine, a refrigerator, and a network bridge). Nature of 
these streams is similar to the M Q T T stream from 25th January, thus an explanation, 
why these streams are anomalous, is also the same. 

D: Two streams near the 1 0 - 2 mark on the Y axis are also M Q T T streams similar 
to the aforementioned ones. In comparison to the streams mentioned above, they 
demonstrate lower anomaly scores because of their shorter duration — 511 515 and 
409 889 seconds. These two streams transferred information about a wireless access 
point and another coffee machine. 

E: The anomalies detected on 31st January near the threshold line could be marked 
as false positives, as the difference between their anomaly score and the threshold 
is less than 1 0 - 5 . These flows are mainly of the H T T P or SSH type. A l l H T T P 
endpoints are websites belonging to Microsoft. Examples of endpoint hostnames are 
ld.tlu.dl.delivery.mp.microsoft.com or b.c2r.ts.cdn.office.net. A l l connections were 
made using the Microsoft-Delivery-Optimization/10.1 user agent. 

The most anomalous stream of 31st January is not shown in Figure 6.3 due to the 
sampling of the plot. This T L S flow lasted for 441 seconds and 5 397920 bytes were 
downloaded from releases.nixos.org (151.101.2.217). No other T L S record with re­
leases, nixos.org as destination was found in the training data. Median of duration 
of 606 982 events in training data with destination port 443 was 1,73 seconds. The 
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mean of duration is 128,11 seconds. Only 15 860 out of 606 982 were longer than this 
stream. 

6.4 On Correlation Between Anomalies and Reputation 

Since the very beginning of a work on this thesis, the question, whether the anomalous and 
reputation scores are related, has been present, a theoretical answer to this question lies in 
definitions of the two computed scores. 

The anomaly score is defined as a metric of how much the traffic in differs from traffic 
originating from the same IP address in the past. The reputation score represents the 
trustworthiness of the host. The trustworthiness in the developed system is represented 
amount of malicious traffic sent by the IP address during the last two weeks. 

Given these two interpretations of the term anomaly score and reputation score, the 
hypothesis is that these scores should not present a high degree of positive correlation. It 
can be argued, that the correlation of the two scores might, in fact, be negative. This 
hypothesis can be explained by the following scenario: If a reputation score is high, it 
means that the source IP address must sustain a long-lasting malicious or non-trustworthy 
behaviour. Long-lasting trend of behaviour implies that the anomaly score for such IP 
address should be low. Low value of the reputation score does not imply any specific value 
of the anomaly score. Traffic of an IP address can be changing its behaviour, thus increasing 
the anomaly score. A change in behaviour does not necessarily mean that the behaviour 
before or after this change was malicious. 

If the anomalies were considered as malicious behaviour or threats, instead of a simple 
change of behaviour, the correlation of both scores should be positive. Both scores would 
then play a similar way, both scoring a level of bad patterns found in traffic. Each would 
just use a different method to do so. 

Correlation of Anomaly Score and Reputation Score 
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Figure 6.5: Reputation and anomaly scores for all scored IP addresses (markers) during 10 
continuous days. 
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The predicted relation of the two scores is proven by experiments. Logs were rated for 
seven days with both an anomaly and a reputation score. Scores were then extracted from 
the logs for each IP address and plotted in Figures 6.5 and 6.6. Figure 6.5 shows all detected 
scores across ten days. Colours represent the day on which the log events were recorded, and 
the day for which both scores have been calculated. Symbols in the plot represent different 
IP addresses which were scored. Figure 6.6 illustrates the same experiment, except that it 
only shows data points, with values of both scores that were not zero. These figures clearly 
show that there is no significant correlation between the anomaly and the reputation scores. 
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Figure 6.6: Reputation and anomaly scores for all scored IP addresses (markers) during 10 
continuous days. Only records, for which neither of the scores was zero, are shown. 

The two data points, which show certain amount of correlation, represent addresses 
141.94.110.90 and 61.177.173.24. Reputation score of 0.2 of 141.94.110.90 address is caused 
by a series of invalid banner events generated on 2022-11-25, 2022-11-29, 2022-12-02, 2022-
12-05, 2022-12-06, 2022-12-07, and 2022-12-08. The address is shown in Figure 6.6 on 
2022-12-08, as no traffic originating from that address has been captured in the later days. 
Anomaly score value of 0.34 means a non-negligible deviation from absolutely normal be­
haviour of the given IP address, which is however below the threshold for that IP address 
on 2022-12-08. Threshold value for that day/IP is 0.5. It is the default threshold value, the 
model did not however find any better threshold. 

IP address 141.94.110.90 is not shown in Figure 6.1, as it may have a significant repu­
tation score, however, the total sum of scores within multiple days is lower than of which 
addresses shown in Figure 6.1. 

6.5 Using Reputation Score to Enhance Reduced Logs 

When the anomalous log events are found and extracted from the original logs, a person 
responsible for the log monitoring (usually a system administrator) still needs to observe 
these anomalous events to decide, whether a source of such events poses a risk to the 
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installed infrastructure and if an action needs to be taken or not. Even if the amount of 
time spent by going through logs is greatly reduced, new process is still not fully automated. 

Partial or complete automation can be achieved by matching resulting reputation scores 
of source IP addresses with source IP addresses found in the log records. Now, when 
an anomalous record is paired with a reputation score, the job of an administrator is 
simplified. A n administrator can now look just into one source of data (reduced logs with 
anomaly/reputation scores) to determine a follow-up action. In order to achieve trustworthy 
and reliable matches, it is important to match log events with a correct reputation score 
based on the timestamp. A n example of a resulting log record with anomaly and reputation 
score is shown below: 

{'anomaly_score': {'anomaly_score': 0.0013219913112075053, 
'is_anomaly': True, 
'threshold': 2.383783149425184e-05}, 

'app_proto': ' f a i l e d ' , 
'dest_ip': 'V.V.BB.VV, 
'dest_port': 21027, 
'ether': {'dest_macs': [ ' f f : f f : f f : f f : f f : f f ] , 

'src_macs': ['XX:XX:XX:XX:XX:XX']}, 
'event_type': 'flow', 
'flow': {'age': 0, 

'alerted': False, 
'bytes_toclient': 0, 
'bytes_toserver': 485, 
'end': '2023-01-31T23:53:12.120033+0100', 
'pkts_toclient': 0, 
'pkts_toserver': 1, 
'reason': 'timeout', 
'start': '2023-01-31T23:53:12.120033+0100', 
'state': 'new'}, 

'flow_id': 2072079663140589, 
'host': 'XXXX', 
'i n _ i f a c e ' : 'XXXXX', 
'proto': 'UDP', 
'reputation': {'calc_date': '2024-02-22 18:13:21.074152', 

'daily_scores' {'2023-•01 -18' 0 o, 
'2023- 01 -19' 0 o, 
'2023- 01 -20' 0 o, 
'2023- 01 -21' 0 o, 
'2023- 01 -22' 0 o, 
'2023- 01 -23' 0 o, 
'2023- 01 -24' 0 o, 
'2023- 01 -25' 0 o, 
'2023- 01 -26' 0 o, 
'2023- 01 -27' 0 o, 
'2023- 01 -28' 0 323 
'2023- 01 -29' 0 o, 
'2023- 01 -30' 0 o, 
'2023- 01 -31' 0 0}, 

'last_scored_day': '2023-01-31', 
' score': 0.03627313283351473}, 

'src_ip': 'V.V.BB.VV, 
'src_port': 53844, 
'timestamp': '2023-01-31T23:53:42.121035+0100'> 
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This log record shows an example of an event rated with both the anomaly and repu­
tation scores. anomaly_score and reputation fields show the scores added by the system. 
Because the value of anomaly score is higher than the threshold, this record is considered 
anomalous. Reputation score for V . V . B B . V V was computed on 2024-02-22. Reputation 
score of 0.036 was computed for 2023-01-31 Records from 2023-01-18 to 2023-01-31 were 
used for the calculation of overall reputation score. Daily reputation score was zero for all 
days except 2023-01-28. 2023-01-28 was the only day when a malicious event was detected 
by Suricata. 

Because all anomalous events have their reputation scores available in the log event and 
because both the anomaly and reputation scores are numeric, it is possible to develop an 
automatic process which determines the action to be taken. This automation can utilise 
static predefined thresholds to make decisions or a machine learning model can be developed 
to calculate more complex threshold rules. 

During a testing period between 8th December 2022 and 17th December 2022, 727602 
Suricata log records were rated using anomaly score. Out of the 727 602 records, 4 542 were 
classified as anomalous, as seen in Table 6.3. When observed over the ten days of testing, 
there are 454 anomalous events per day by average. This amount of alerts is still higher 
than optimal amount for an administrator to check. A n administrator would probably 
ignore these alerts if he had to investigate 454 events per day. 

Number of Events % of A l l 

A l l records 727 602 100.00 
Non Anomaly 723 060 99.38 
Anomaly 4 542 0.62 

Table 6.3: Number of anomalous records detected by the developed system. Records from 
logs between 8th December 2022 and 17th December 2022. 

30% of 727602 records has a source IP address with the reputation score equal to zero. 
This means that no bad or malicious behaviour has been detected for these addresses. 
505 274 records have been linked to source IP addresses, which did not behave well. This is 
demonstrated in Table 6.4. When the threshold of acceptable reputation score is increased, 
less records produce alerts. 13% of all 727602 records is kept, if the reputation score of the 
sender IP address is above 0.3. 

Number of Events % of A l l 

A l l records 727602 100.00 
Reputation = 0 222 328 30.56 
Reputation > 0 505 274 69.44 
Reputation >= 0.1 503 925 69.26 
Reputation >= 0.2 386 337 53.10 
Reputation >= 0.3 100 714 13.84 

Table 6.4: The number of events with various values of reputation score. Events with 
a reputation score equal to zero are non malicious. The records are from the logs between 
8th December 2022 and 17th December 2022. 
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Number of Events % of A l l % of Anomalous 

A l l records 727602 100.00 -
Anomaly & Reputation = 0 2 616 0.36 57.60 
Anomaly & Reputation > 0 1926 0.26 42.40 
Anomaly & Reputation >= 0.1 1904 0.26 41.92 
Anomaly & Reputation >= 0.2 1444 0.20 31.79 
Anomaly & Reputation >= 0.3 743 0.10 16.36 

Table 6.5: The number of anomalous records left after application of a reputation score. 
The records are from logs between 8th December 2022 and 17th December 2022. 

Table 6.5 demonstrates the effect of combination of the reputation score and anomaly 
score during the testing period between 8th December 2022 and 17th December 2022. When 
combining anomalous events with reputation score calculated for a source IP address, the 
number of reported alerts is be significantly reduced. As the reputation score does not 
have any threshold computed by the reputation scoring algorithm, an administrator has to 
determine the value of threshold. Four threshold values were tested on the dataset. First, 
a reputation threshold was set to zero. This setting is not viable for the real world use, 
as it would produce alerts for records belonging to IP addresses with excellent behaviour. 
Then, reputation scores greater than zero, 0.1, 0.2, and 0.3 were tested. The number of 
reported events gradually declined to the point when it reached 743 reported events out 
of 4 542 anomalous events. Reputation score threshold of 0.3, reports 16 % of anomalous 
points only, which is 74 events per day, when divided over 10 testing days. The process of 
rating log events using anomaly and reputation scores has been able to reduce the number 
of events in the original log file to mere 0.1 % of the original number. 

Anomalies detected by the implemented system represent data points which are distant 
to data included in the training dataset. They are thus unexpected, strange, abnormal 
relatively to the rest of the data. It is not possible to detect these anomalies by simply 
observing the dataset of Suricata E V E logs. These anomalies do not signify an invalid 
behaviour. Invalid behaviour is reported in the the Suricata E V E logs in the built in 
Anomaly event type. Suricata documentation1 describes the Anomaly event type as follows: 
Events with type ,ftnomaly" report unexpected conditions such as truncated packets, packets 
with invalid values, events that render the packet invalid for further processing or unexpected 
behaviours. Anomalies reported by Suricata are mainly syntactic, meaning that for example, 
that the syntactic parsing of an packet ended with an error (Suricata encountered invalid 
character, etc.). 

6.6 Performance Testing 

Performance testing of anomaly detection and evaluation of original log events was per­
formed by repeated running of the entire process of data processing, model training, 
anomaly detection, and matching the resulting scores back to events in the original logs for 
V . V . B B . V V address. This IP address proved to be the best candidate as it contains more 
than 1 900 000 records, and it thus provides enough space for dataset shrinking. For each of 

4 Suricata documentation, anomaly event type:https://docs.suricata.io/en/latest/output/eve/eve-json-
format.html#event-type-anomaly, accessed [2024-04-15] 
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the six tests, a portion of training and testing data was deleted from the dataset. The first 
test consisted of three repeated runs of the scoring program with dataset with 1943118 
records. Next tests used subsets of the dataset used in the first test. A subset of the 
original dataset containing only 230 209 records was used in the last test. For each dataset 
reduction, records from the first five days were removed. The first test thus contained data 
from 2023-01-01 to 2023-01-31, the second test contained records from 2023-01-06 to 2023-
01-31. The last test contained records from 2023-01-25 to 2023-01-31. The time needed 
for extraction of features from the original logs is not taken into account for the testing, 
as that process is carried out once per log file, and it includes all IP addresses detected in 
that file. Limiting the extraction to the V . V . B B . V V only is not possible without serious 
changes of the code. 

Detailed duration for each step of the computing pipeline are shown in Table 6.6. The 
table shows the average duration of the subtask over the three runs performed for each test. 
Most time is spent by modifying E V E logs with the computed score, as this process has 
to load all log files and assign the score to each record with matching flow ID. Calculation 
of Mahalanobis distance, which takes from 22% (smallest dataset) to 44% (largest dataset) 
of the execution, is the longest part of the entire calculation. The process of model fitting 
and following anomaly scoring accounts to 5-12% of the entire duration without the final 
log size reduction. The reduction in time for the Anomaly Score Calculation and Scoring 
Log Events rows for the test no. 6 is explained by data points included in the training and 
testing datasets of test no. 6. The cluster of 18 608 flow records shown in Figure 6.3 under 
letter a belongs to the training dataset of test no. 6. This cluster belongs to testing dataset 
for the other tests. Because this large cluster of records is not in the testing dataset of test 
6, the scoring of the testing dataset and matching these scores to the original log files takes 
less time. 

Test Number 1 2 3 4 5 6 
No. Records (Train+Test) 1943118 1590700 1238500 923721 425633 230209 

Numeric Conversion 3.41 2.81 2.21 1.67 0.84 0.40 
Ordinal Encoding 5.68 4.75 3.77 2.88 1.44 0.78 
Drop Singular Cols 0.95 0.78 0.62 0.51 0.28 0.13 
Normalization 0.16 0.13 0.11 0.08 0.03 0.02 
Mahalanobis Distance 28.95 24.00 18.31 13.64 6.35 3.51 
Outlier Trimming 1.26 0.96 0.71 0.50 0.19 0.10 
Splitting Train/Test 1.04 0.81 0.63 0.47 0.21 0.12 
Removing Temp Cols 0.10 0.08 0.07 0.06 0.03 0.02 
P C A Model Fitting 2.70 2.18 1.56 1.15 0.04 0.02 
Anomaly Score Calc. 3.42 3.41 3.44 3.42 3.45 1.94 
Scoring Log Events 14.22 14.41 14.14 14.24 14.25 8.19 
Reducing Logs 108.33 111.21 112.73 111.85 114.46 114.78 

Total Time, No Log Reduce 65.65 57.28 47.88 40.36 28.02 15.67 
Total Time 173.98 168.49 160.61 152.21 142.48 130.45 

Table 6.6: Duration of a program execution for data preprocessing, anomaly detection, and 
enhancing the original logs. A l l measurements are in seconds. 
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Figure 6.7: Time needed to score events in the original logs in relation to the amount of 
events in the dataset. 

Figure 6.7 shows the relation between the application runtime and the number of events 
in the dataset. The plot consists of two lines. The blue one includes time needed to update 
events in the log files with the computed score. As this process always has to traverse the 
entire set of log files, its runtime is not impacted by the amount of events in the dataset. For 
this reason, the figure also shows a trend without the final log alteration, which is marked 
in orange. The plot shows that the scoring process scales linearly with the dataset size. 
Datasets with more than 2 000 000 data points were not tested due to hardware limitations. 

Reputation scoring was not included in this testing, as the impact of it on the entire 
runtime is negligible. 

Performance testing was done on a system equipped with Intel i5-8265U C P U and 16 G B 
of R A M . A l l log files, temporary files and program were stored on Intel SSDPEKNW512G8H 
SSD. 

6.7 Environment Preparations 

The Suricata E V E logs are highly configurable. As seen in the EVE JSON output section 
of the Suricata documentation , every event type defined can be selected to be included 
or excluded in those logs. Event types have configurable parameters, which further specify 
data fields included in a log record. 

5 E V E J S O N Output documentation: https://docs.suricata.io/en/latest/output/eve/eve-json-
output.html, accessed [2024-04-15] 
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In order for the detection system developed for this work, the following types and fields 
need to be included in records of the E V E JSON logs: 

• Flow event type 

- src_port 

- dest_port 

- app_proto 

- pkts_toserver 

- pkts_toclient 

- bytes_toserver 

- bytes_tocli 

- event_type 

- timestamp 

• DNS event type 

- flags 

- type 

- dns_rrname 

- dns rrtype 

. H T T P event type 

- hostname 

- http_method 

- http_user_agent 

- http_url 

- length 

- status 

- url 

. M Q T T event type 

- host 

- pingresp | publish | pingreq | connect | subscribe | suback | connack | disconnect 

• Anomaly event typee 

- app_proto 

- type 

- event 

• Alert event type 

- category 
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— severity 

— signature 

If any of the needed values are not present in the E V E JSON log given as the output 
for the system, the value will be filled with default value. Computation of anomaly and 
reputation score is performed, and the logs are reduced. However, the performance of the 
detection will be worse, as not all possible information is provided to the models. Examples 
of compatible record formats are shown in Section 5.1.1. 

6.8 Summary 

This chapter presented the results of the developed methods, discussed them, raised ques­
tions related to the methods or results, and tried to answer them. Validation of computed 
reputation score against other reputation systems (NERD, Talos) was included in Sec­
tion 6.1. The developed system was able to detect malicious IP addresses, which were also 
reported by other tools, thus the developed system corresponds with existing solutions. 

In 6.2, the practical implications of computing the reputation score from data gathered 
across multiple weeks was demonstrated. The relation between the daily sub scores and the 
overall reputation score was shown. The section explained, why reputation score cannot 
reach its worst possible values, if a network node behaved badly for only one day. Conditions 
leading to the rise or fall of the reputation score in time were brought up and demonstrated 
in figures. 

Section 6.3 talked about the nature of detected anomalies and it provided explanations, 
why some points were selected as anomalies by the model. Examples of training data 
provided a background as to why the model acted as it did. The anomalies were shown in 
a figure together with non-anomalous points to show the differences. Selected anomalies 
were discussed. A n analysis of why some data points are considered anomalous by the 
model was performed and described. The most anomalous flows were those with extremely 
log duration spanning multiple days. SSH flows with non-standard SSH ports were also 
detected as anomalies. 

The relation between anomaly and reputation score was demonstrated and explained 
in 6.4. No significant correlation between both scores was found. This lack of correlation is 
in line with the hypothesis that if an IP address keeps a stable reputation score over time, 
then its behaviour is stable (not anomalous). 

The result of combining anomaly and reputation scores into an automated alert re­
duction system was described 6.5. The positive real world results were presented. The 
developed system was able to reduce the initial 727602 records to 743 records, which repre­
sents only 0.1% of the original number. The major goal of the thesis—the log reduction—is 
thus reached. 

The complexity of the scoring method was assessed in Section 6.6. It was shown, that 
some actions like the computation of Mahalanobis distance, has worse time complexity than 
other parts of the calculation, and that it is the major contributor to the final runtime of 
the program. The final matching of computed scores to records in the original logs does 
not depend on the number of rated flows, as all logs have to be searched through for the 
needed flow IDs. 
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Chapter 7 

Future Work and Conclusion 

This chapter concludes the work with an overview of the achieved results, its contributions, 
and potential future extensions and improvements upon the developed scoring methods. 

7.1 Future Work 

Although this thesis studied the assigned problematics thoroughly, there remain possible 
considerations or extensions for this work. 

A n extension to this work can be developed. This extension will automatically infer 
the best possible future action, such as create a firewall rule blocking an IP address, based 
on the calculated scores or log events which were marked as anomalous, events with bad 
reputation score, or both. The method could use statically defined rules, or it could utilize 
machine learning to determine the best steps. 

The current approach to the anomaly detection could be brought over to a future work, 
which will try different options for some steps in the computation pipeline. The main idea 
of the process should remain the same. The P C A method used for anomaly detection could 
be exchanged for other methods. Methods for unsupervised learning belonging to different 
categories could be tested and evaluated. Clustering methods like D B S C A N or K-means 
are some of the methods that can be used. Nonlinear variations of P C A or other nonlinear 
methods might prove better results, depending on the nature of the input dataset. Machine 
learning models could be a valid alternative to the mathematical functions used to calculate 
the reputation score. 

Other possible experiments include keeping the methods, but changing the preprocessing 
— especially the way of transforming categorical to numeric attribute. A suitable conversion 

technique might be the One Hot Encoder. This encoder transfers one column (a feature) 
into many columns. The number of newly created columns is equal to by the number of 
unique values of the original feature. Each of the new columns is populated by values zero 
and one only. The value of a data point in the column x is one, if the value of the original 
feature was x. Values in other created columns of that data point remain at zero. 

The current way of extracting data from the Suricata E V E logs creates a data points 
from the individual records. A n alternative approach for the data extraction would be 
to utilise sliding time windows and aggregating multiple records into a single data point. 
Detection can be then performed on a dataset composed of these windows, instead of 
observing individual records. This approach would be better suitable to detect collective 
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anomalies in the data. Collective anomalies are defined in Section 2.1.1. The currently used 
approach is more suitable for a point anomaly detection. 

7.2 Conclusion 

In this master's thesis, a method for rating log events using a reputation and anomaly 
scores was proposed. The implemented method showed how log events from systems like 
Suricata can be used to train machine learning models for anomaly detection. It also shows 
how a reputation score can be computed from detected alerts or by combining information 
from logs with external data. 

A n anomaly detection system from system logs containing network traffic data was pro­
posed, implemented and evaluated. The proposed model based on the statistical detection 
method, Principal Component Analysis, proved to be a good classifier for detection. Prin­
ciples of modern anomaly detection in network traffic and commonly used methods for this 
case were described and brought forth to the reader. Available data from Suricata IDS 
instance running at the Faculty of Information Technology, Brno University of Technology, 
was analysed, and the set of features best describing them was extracted. The P C A model 
for anomaly detection was trained with selected features on a subset of available data for 
data originating from one preselected IP address (representing a network node), and tuned 
to yield the best possible results. The tweaked model was then used for evaluating the rest 
of IP addresses included in the available dataset. 

Records of alerts and protocol anomalies found in the original logs were used together 
with other extracted data ( H T T P and DNS records) to implement a scoring function for 
reputation. The reputation score starts at a baseline and is worsened every time an entity 
(i.e., an IP address) presents itself with a malicious or unwanted behaviour. Information 
that was not accessible in the original logs, such as diverse block lists of hosts or user agents, 
was utilized to enhance the scoring process. A proposed method of matching a reputation 
score to the original logs, together with an anomaly score, can serve as the base for an 
entirely automatic way of deciding, whether a given IP address is malicious, or if it is 
behaving extraordinarily. In that system administrator can proceed with more 
in-depth exploration of traffic originating from such address and derive conclusions. 

These two scores were matched to correct records in the original dataset, composed of 
enhanced NetFlow records generated by the Suricata tool. The matching was done by IP 
address and a date. A reduction of these log files by including only records with scores 
above a specified threshold was proposed, implemented and demonstrated. From more 
than 720 000 log events, only 743 anomalous events with bad reputation remained. Log 
records were reduced to 0.1% of their original number. Experiments and analysis of the 
results were conducted and observed behaviour of scores was explained. Nature of the 
anomalies was discussed and it was shown, why the P C A model marked some points as 
anomalies. Experiments about the stability of reputation score, relation between anomaly 
and reputation scores, and the performance of the scoring methods were carried out. A quick 
glance at the possible future work based on this thesis was presented. 
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agent/ 
agent_settings.yaml 
install_agent.sh 
README.md 
requirements.txt 
service/ 

lerras_core/ 
core/ 
core_settings.yaml 

_README.md 
requirements.txt 

lerras_experiments/ 
thesis_latex_source/ 

_README.md 
thesis.pdf 
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